Added Copyright notice.
[bpt/guile.git] / doc / ref / scheme-procedures.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004
4 @c Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @page
8 @node Procedures and Macros
9 @chapter Procedures and Macros
10
11 @menu
12 * Lambda:: Basic procedure creation using lambda.
13 * Primitive Procedures:: Procedures defined in C.
14 * Optional Arguments:: Handling keyword, optional and rest arguments.
15 * Procedure Properties:: Procedure properties and meta-information.
16 * Procedures with Setters:: Procedures with setters.
17 * Macros:: Lisp style macro definitions.
18 * Syntax Rules:: Support for R5RS @code{syntax-rules}.
19 * Syntax Case:: Support for the @code{syntax-case} system.
20 * Internal Macros:: Guile's internal representation.
21 @end menu
22
23
24 @node Lambda
25 @section Lambda: Basic Procedure Creation
26 @cindex lambda
27
28 @c FIXME::martin: Review me!
29
30 A @code{lambda} expression evaluates to a procedure. The environment
31 which is in effect when a @code{lambda} expression is evaluated is
32 enclosed in the newly created procedure, this is referred to as a
33 @dfn{closure} (@pxref{About Closure}).
34
35 When a procedure created by @code{lambda} is called with some actual
36 arguments, the environment enclosed in the procedure is extended by
37 binding the variables named in the formal argument list to new locations
38 and storing the actual arguments into these locations. Then the body of
39 the @code{lambda} expression is evaluation sequentially. The result of
40 the last expression in the procedure body is then the result of the
41 procedure invocation.
42
43 The following examples will show how procedures can be created using
44 @code{lambda}, and what you can do with these procedures.
45
46 @lisp
47 (lambda (x) (+ x x)) @result{} @r{a procedure}
48 ((lambda (x) (+ x x)) 4) @result{} 8
49 @end lisp
50
51 The fact that the environment in effect when creating a procedure is
52 enclosed in the procedure is shown with this example:
53
54 @lisp
55 (define add4
56 (let ((x 4))
57 (lambda (y) (+ x y))))
58 (add4 6) @result{} 10
59 @end lisp
60
61
62 @deffn syntax lambda formals body
63 @var{formals} should be a formal argument list as described in the
64 following table.
65
66 @table @code
67 @item (@var{variable1} @dots{})
68 The procedure takes a fixed number of arguments; when the procedure is
69 called, the arguments will be stored into the newly created location for
70 the formal variables.
71 @item @var{variable}
72 The procedure takes any number of arguments; when the procedure is
73 called, the sequence of actual arguments will converted into a list and
74 stored into the newly created location for the formal variable.
75 @item (@var{variable1} @dots{} @var{variablen} . @var{variablen+1})
76 If a space-delimited period precedes the last variable, then the
77 procedure takes @var{n} or more variables where @var{n} is the number
78 of formal arguments before the period. There must be at least one
79 argument before the period. The first @var{n} actual arguments will be
80 stored into the newly allocated locations for the first @var{n} formal
81 arguments and the sequence of the remaining actual arguments is
82 converted into a list and the stored into the location for the last
83 formal argument. If there are exactly @var{n} actual arguments, the
84 empty list is stored into the location of the last formal argument.
85 @end table
86
87 The list in @var{variable} or @var{variablen+1} is always newly
88 created and the procedure can modify it if desired. This is the case
89 even when the procedure is invoked via @code{apply}, the required part
90 of the list argument there will be copied (@pxref{Fly Evaluation,,
91 Procedures for On the Fly Evaluation}).
92
93 @var{body} is a sequence of Scheme expressions which are evaluated in
94 order when the procedure is invoked.
95 @end deffn
96
97 @node Primitive Procedures
98 @section Primitive Procedures
99 @cindex primitives
100 @cindex primitive procedures
101
102 Procedures written in C can be registered for use from Scheme,
103 provided they take only arguments of type @code{SCM} and return
104 @code{SCM} values. @code{scm_c_define_gsubr} is likely to be the most
105 useful mechanism, combining the process of registration
106 (@code{scm_c_make_gsubr}) and definition (@code{scm_define}).
107
108 @deftypefun SCM scm_c_make_gsubr (const char *name, int req, int opt, int rst, fcn)
109 Register a C procedure @var{FCN} as a ``subr'' --- a primitive
110 subroutine that can be called from Scheme. It will be associated with
111 the given @var{name} but no environment binding will be created. The
112 arguments @var{req}, @var{opt} and @var{rst} specify the number of
113 required, optional and ``rest'' arguments respectively. The total
114 number of these arguments should match the actual number of arguments
115 to @var{fcn}. The number of rest arguments should be 0 or 1.
116 @code{scm_c_make_gsubr} returns a value of type @code{SCM} which is a
117 ``handle'' for the procedure.
118 @end deftypefun
119
120 @deftypefun SCM scm_c_define_gsubr (const char *name, int req, int opt, int rst, fcn)
121 Register a C procedure @var{FCN}, as for @code{scm_c_make_gsubr}
122 above, and additionally create a top-level Scheme binding for the
123 procedure in the ``current environment'' using @code{scm_define}.
124 @code{scm_c_define_gsubr} returns a handle for the procedure in the
125 same way as @code{scm_c_make_gsubr}, which is usually not further
126 required.
127 @end deftypefun
128
129 @code{scm_c_make_gsubr} and @code{scm_c_define_gsubr} automatically
130 use @code{scm_c_make_subr} and also @code{scm_makcclo} if necessary.
131 It is advisable to use the gsubr variants since they provide a
132 slightly higher-level abstraction of the Guile implementation.
133
134 @node Optional Arguments
135 @section Optional Arguments
136
137 @c FIXME::martin: Review me!
138
139 Scheme procedures, as defined in R5RS, can either handle a fixed number
140 of actual arguments, or a fixed number of actual arguments followed by
141 arbitrarily many additional arguments. Writing procedures of variable
142 arity can be useful, but unfortunately, the syntactic means for handling
143 argument lists of varying length is a bit inconvenient. It is possible
144 to give names to the fixed number of argument, but the remaining
145 (optional) arguments can be only referenced as a list of values
146 (@pxref{Lambda}).
147
148 Guile comes with the module @code{(ice-9 optargs)}, which makes using
149 optional arguments much more convenient. In addition, this module
150 provides syntax for handling keywords in argument lists
151 (@pxref{Keywords}).
152
153 Before using any of the procedures or macros defined in this section,
154 you have to load the module @code{(ice-9 optargs)} with the statement:
155
156 @cindex @code{optargs}
157 @lisp
158 (use-modules (ice-9 optargs))
159 @end lisp
160
161 @menu
162 * let-optional Reference:: Locally binding optional arguments.
163 * let-keywords Reference:: Locally binding keywords arguments.
164 * lambda* Reference:: Creating advanced argument handling procedures.
165 * define* Reference:: Defining procedures and macros.
166 @end menu
167
168
169 @node let-optional Reference
170 @subsection let-optional Reference
171
172 @c FIXME::martin: Review me!
173
174 The syntax @code{let-optional} and @code{let-optional*} are for
175 destructuring rest argument lists and giving names to the various list
176 elements. @code{let-optional} binds all variables simultaneously, while
177 @code{let-optional*} binds them sequentially, consistent with @code{let}
178 and @code{let*} (@pxref{Local Bindings}).
179
180 @deffn {library syntax} let-optional rest-arg (binding @dots{}) expr @dots{}
181 @deffnx {library syntax} let-optional* rest-arg (binding @dots{}) expr @dots{}
182 These two macros give you an optional argument interface that is very
183 @dfn{Schemey} and introduces no fancy syntax. They are compatible with
184 the scsh macros of the same name, but are slightly extended. Each of
185 @var{binding} may be of one of the forms @var{var} or @code{(@var{var}
186 @var{default-value})}. @var{rest-arg} should be the rest-argument of the
187 procedures these are used from. The items in @var{rest-arg} are
188 sequentially bound to the variable names are given. When @var{rest-arg}
189 runs out, the remaining vars are bound either to the default values or
190 @code{#f} if no default value was specified. @var{rest-arg} remains
191 bound to whatever may have been left of @var{rest-arg}.
192
193 After binding the variables, the expressions @var{expr} @dots{} are
194 evaluated in order.
195 @end deffn
196
197
198 @node let-keywords Reference
199 @subsection let-keywords Reference
200
201 @c FIXME::martin: Review me!
202
203 @code{let-keywords} and @code{let-keywords*} are used for extracting
204 values from argument lists which use keywords instead of argument
205 position for binding local variables to argument values.
206
207 @code{let-keywords} binds all variables simultaneously, while
208 @code{let-keywords*} binds them sequentially, consistent with @code{let}
209 and @code{let*} (@pxref{Local Bindings}).
210
211 @deffn {library syntax} let-keywords rest-arg allow-other-keys? (binding @dots{}) expr @dots{}
212 @deffnx {library syntax} let-keywords rest-arg allow-other-keys? (binding @dots{}) expr @dots{}
213 These macros pick out keyword arguments from @var{rest-arg}, but do not
214 modify it. This is consistent at least with Common Lisp, which
215 duplicates keyword arguments in the rest argument. More explanation of what
216 keyword arguments in a lambda list look like can be found below in
217 the documentation for @code{lambda*}
218 (@pxref{lambda* Reference}). @var{binding}s can have the same form as
219 for @code{let-optional}. If @var{allow-other-keys?} is false, an error
220 will be thrown if anything that looks like a keyword argument but does
221 not match a known keyword parameter will result in an error.
222
223 After binding the variables, the expressions @var{expr} @dots{} are
224 evaluated in order.
225 @end deffn
226
227
228 @node lambda* Reference
229 @subsection lambda* Reference
230
231 @c FIXME::martin: Review me!
232
233 When using optional and keyword argument lists, using @code{lambda} for
234 creating procedures and using @code{let-optional} or @code{let-keywords}
235 is a bit lengthy. Therefore, @code{lambda*} is provided, which combines
236 the features of those macros into a single convenient syntax.
237
238 For quick reference, here is the syntax of the formal argument list for
239 @code{lambda*} (brackets are used to indicate grouping only):
240
241 @example
242 ext-param-list ::= [identifier]* [#:optional [ext-var-decl]+]?
243 [#:key [ext-var-decl]+ [#:allow-other-keys]?]?
244 [[#:rest identifier]|[. identifier]]?
245
246 ext-var-decl ::= identifier | ( identifier expression )
247 @end example
248
249 The characters `*', `+' and `?' are not to be taken literally; they mean
250 respectively, zero or more occurrences, one or more occurrences, and one
251 or zero occurrences.
252
253 @deffn {library syntax} lambda* formals body
254 @code{lambda*} creates a procedure that takes optional arguments. These
255 are specified by putting them inside brackets at the end of the
256 parameter list, but before any dotted rest argument. For example,
257
258 @lisp
259 (lambda* (a b #:optional c d . e) '())
260 @end lisp
261
262 creates a procedure with fixed arguments @var{a} and @var{b}, optional
263 arguments @var{c} and @var{d}, and rest argument @var{e}. If the
264 optional arguments are omitted in a call, the variables for them are
265 bound to @code{#f}.
266
267 @code{lambda*} can also take keyword arguments. For example, a procedure
268 defined like this:
269
270 @lisp
271 (lambda* (#:key xyzzy larch) '())
272 @end lisp
273
274 can be called with any of the argument lists @code{(#:xyzzy 11)}
275 @code{(#:larch 13)} @code{(#:larch 42 #:xyzzy 19)} @code{()}. Whichever
276 arguments are given as keywords are bound to values.
277
278 Optional and keyword arguments can also be given default values
279 which they take on when they are not present in a call, by giving a
280 two-item list in place of an optional argument, for example in:
281
282 @lisp
283 (lambda* (foo #:optional (bar 42) #:key (baz 73))
284 (list foo bar baz))
285 @end lisp
286
287 @var{foo} is a fixed argument, @var{bar} is an optional argument with
288 default value 42, and baz is a keyword argument with default value 73.
289 Default value expressions are not evaluated unless they are needed and
290 until the procedure is called.
291
292 @code{lambda*} also supports two more special parameter list keywords.
293
294 @code{lambda*}-defined procedures now throw an error by default if a
295 keyword other than one of those specified is found in the actual
296 passed arguments. However, specifying @code{#:allow-other-keys}
297 immediately after the keyword argument declarations restores the
298 previous behavior of ignoring unknown keywords. @code{lambda*} also now
299 guarantees that if the same keyword is passed more than once, the
300 last one passed is the one that takes effect. For example,
301
302 @lisp
303 ((lambda* (#:key (heads 0) (tails 0)) (display (list heads tails)))
304 #:heads 37 #:tails 42 #:heads 99)
305 @end lisp
306
307 would result in (99 47) being displayed.
308
309 @code{#:rest} is also now provided as a synonym for the dotted syntax
310 rest argument. The argument lists @code{(a . b)} and @code{(a #:rest b)}
311 are equivalent in all respects to @code{lambda*}. This is provided for
312 more similarity to DSSSL, MIT-Scheme and Kawa among others, as well as
313 for refugees from other Lisp dialects.
314 @end deffn
315
316
317 @node define* Reference
318 @subsection define* Reference
319
320 @c FIXME::martin: Review me!
321
322 Just like @code{define} has a shorthand notation for defining procedures
323 (@pxref{Lambda Alternatives}), @code{define*} is provided as an
324 abbreviation of the combination of @code{define} and @code{lambda*}.
325
326 @code{define*-public} is the @code{lambda*} version of
327 @code{define-public}; @code{defmacro*} and @code{defmacro*-public} exist
328 for defining macros with the improved argument list handling
329 possibilities. The @code{-public} versions not only define the
330 procedures/macros, but also export them from the current module.
331
332 @deffn {library syntax} define* formals body
333 @deffnx {library syntax} define*-public formals body
334 @code{define*} and @code{define*-public} support optional arguments with
335 a similar syntax to @code{lambda*}. They also support arbitrary-depth
336 currying, just like Guile's define. Some examples:
337
338 @lisp
339 (define* (x y #:optional a (z 3) #:key w . u)
340 (display (list y z u)))
341 @end lisp
342 defines a procedure @code{x} with a fixed argument @var{y}, an optional
343 argument @var{a}, another optional argument @var{z} with default value 3,
344 a keyword argument @var{w}, and a rest argument @var{u}.
345
346 @lisp
347 (define-public* ((foo #:optional bar) #:optional baz) '())
348 @end lisp
349
350 This illustrates currying. A procedure @code{foo} is defined, which,
351 when called with an optional argument @var{bar}, returns a procedure
352 that takes an optional argument @var{baz}.
353
354 Of course, @code{define*[-public]} also supports @code{#:rest} and
355 @code{#:allow-other-keys} in the same way as @code{lambda*}.
356 @end deffn
357
358 @deffn {library syntax} defmacro* name formals body
359 @deffnx {library syntax} defmacro*-public name formals body
360 These are just like @code{defmacro} and @code{defmacro-public} except that they
361 take @code{lambda*}-style extended parameter lists, where @code{#:optional},
362 @code{#:key}, @code{#:allow-other-keys} and @code{#:rest} are allowed with the usual
363 semantics. Here is an example of a macro with an optional argument:
364
365 @lisp
366 (defmacro* transmorgify (a #:optional b)
367 (a 1))
368 @end lisp
369 @end deffn
370
371
372 @node Procedure Properties
373 @section Procedure Properties and Meta-information
374
375 @c FIXME::martin: Review me!
376
377 Procedures always have attached the environment in which they were
378 created and information about how to apply them to actual arguments. In
379 addition to that, properties and meta-information can be stored with
380 procedures. The procedures in this section can be used to test whether
381 a given procedure satisfies a condition; and to access and set a
382 procedure's property.
383
384 The first group of procedures are predicates to test whether a Scheme
385 object is a procedure, or a special procedure, respectively.
386 @code{procedure?} is the most general predicates, it returns @code{#t}
387 for any kind of procedure. @code{closure?} does not return @code{#t}
388 for primitive procedures, and @code{thunk?} only returns @code{#t} for
389 procedures which do not accept any arguments.
390
391 @rnindex procedure?
392 @deffn {Scheme Procedure} procedure? obj
393 @deffnx {C Function} scm_procedure_p (obj)
394 Return @code{#t} if @var{obj} is a procedure.
395 @end deffn
396
397 @deffn {Scheme Procedure} closure? obj
398 @deffnx {C Function} scm_closure_p (obj)
399 Return @code{#t} if @var{obj} is a closure.
400 @end deffn
401
402 @deffn {Scheme Procedure} thunk? obj
403 @deffnx {C Function} scm_thunk_p (obj)
404 Return @code{#t} if @var{obj} is a thunk.
405 @end deffn
406
407 @c FIXME::martin: Is that true?
408 @cindex procedure properties
409 Procedure properties are general properties to be attached to
410 procedures. These can be the name of a procedure or other relevant
411 information, such as debug hints.
412
413 @deffn {Scheme Procedure} procedure-name proc
414 @deffnx {C Function} scm_procedure_name (proc)
415 Return the name of the procedure @var{proc}
416 @end deffn
417
418 @deffn {Scheme Procedure} procedure-source proc
419 @deffnx {C Function} scm_procedure_source (proc)
420 Return the source of the procedure @var{proc}.
421 @end deffn
422
423 @deffn {Scheme Procedure} procedure-environment proc
424 @deffnx {C Function} scm_procedure_environment (proc)
425 Return the environment of the procedure @var{proc}.
426 @end deffn
427
428 @deffn {Scheme Procedure} procedure-properties proc
429 @deffnx {C Function} scm_procedure_properties (proc)
430 Return @var{obj}'s property list.
431 @end deffn
432
433 @deffn {Scheme Procedure} procedure-property obj key
434 @deffnx {C Function} scm_procedure_property (obj, key)
435 Return the property of @var{obj} with name @var{key}.
436 @end deffn
437
438 @deffn {Scheme Procedure} set-procedure-properties! proc alist
439 @deffnx {C Function} scm_set_procedure_properties_x (proc, alist)
440 Set @var{obj}'s property list to @var{alist}.
441 @end deffn
442
443 @deffn {Scheme Procedure} set-procedure-property! obj key value
444 @deffnx {C Function} scm_set_procedure_property_x (obj, key, value)
445 In @var{obj}'s property list, set the property named @var{key} to
446 @var{value}.
447 @end deffn
448
449 @cindex procedure documentation
450 Documentation for a procedure can be accessed with the procedure
451 @code{procedure-documentation}.
452
453 @deffn {Scheme Procedure} procedure-documentation proc
454 @deffnx {C Function} scm_procedure_documentation (proc)
455 Return the documentation string associated with @code{proc}. By
456 convention, if a procedure contains more than one expression and the
457 first expression is a string constant, that string is assumed to contain
458 documentation for that procedure.
459 @end deffn
460
461 @cindex source properties
462 @c FIXME::martin: Is the following true?
463 Source properties are properties which are related to the source code of
464 a procedure, such as the line and column numbers, the file name etc.
465
466 @deffn {Scheme Procedure} set-source-properties! obj plist
467 @deffnx {C Function} scm_set_source_properties_x (obj, plist)
468 Install the association list @var{plist} as the source property
469 list for @var{obj}.
470 @end deffn
471
472 @deffn {Scheme Procedure} set-source-property! obj key datum
473 @deffnx {C Function} scm_set_source_property_x (obj, key, datum)
474 Set the source property of object @var{obj}, which is specified by
475 @var{key} to @var{datum}. Normally, the key will be a symbol.
476 @end deffn
477
478 @deffn {Scheme Procedure} source-properties obj
479 @deffnx {C Function} scm_source_properties (obj)
480 Return the source property association list of @var{obj}.
481 @end deffn
482
483
484 @deffn {Scheme Procedure} source-property obj key
485 @deffnx {C Function} scm_source_property (obj, key)
486 Return the source property specified by @var{key} from
487 @var{obj}'s source property list.
488 @end deffn
489
490
491 @node Procedures with Setters
492 @section Procedures with Setters
493
494 @c FIXME::martin: Review me!
495
496 @c FIXME::martin: Document `operator struct'.
497
498 @cindex procedure with setter
499 @cindex setter
500 A @dfn{procedure with setter} is a special kind of procedure which
501 normally behaves like any accessor procedure, that is a procedure which
502 accesses a data structure. The difference is that this kind of
503 procedure has a so-called @dfn{setter} attached, which is a procedure
504 for storing something into a data structure.
505
506 Procedures with setters are treated specially when the procedure appears
507 in the special form @code{set!} (REFFIXME). How it works is best shown
508 by example.
509
510 Suppose we have a procedure called @code{foo-ref}, which accepts two
511 arguments, a value of type @code{foo} and an integer. The procedure
512 returns the value stored at the given index in the @code{foo} object.
513 Let @code{f} be a variable containing such a @code{foo} data
514 structure.@footnote{Working definitions would be:
515 @lisp
516 (define foo-ref vector-ref)
517 (define foo-set! vector-set!)
518 (define f (make-vector 2 #f))
519 @end lisp
520 }
521
522 @lisp
523 (foo-ref f 0) @result{} bar
524 (foo-ref f 1) @result{} braz
525 @end lisp
526
527 Also suppose that a corresponding setter procedure called
528 @code{foo-set!} does exist.
529
530 @lisp
531 (foo-set! f 0 'bla)
532 (foo-ref f 0) @result{} bla
533 @end lisp
534
535 Now we could create a new procedure called @code{foo}, which is a
536 procedure with setter, by calling @code{make-procedure-with-setter} with
537 the accessor and setter procedures @code{foo-ref} and @code{foo-set!}.
538 Let us call this new procedure @code{foo}.
539
540 @lisp
541 (define foo (make-procedure-with-setter foo-ref foo-set!))
542 @end lisp
543
544 @code{foo} can from now an be used to either read from the data
545 structure stored in @code{f}, or to write into the structure.
546
547 @lisp
548 (set! (foo f 0) 'dum)
549 (foo f 0) @result{} dum
550 @end lisp
551
552 @deffn {Scheme Procedure} make-procedure-with-setter procedure setter
553 @deffnx {C Function} scm_make_procedure_with_setter (procedure, setter)
554 Create a new procedure which behaves like @var{procedure}, but
555 with the associated setter @var{setter}.
556 @end deffn
557
558 @deffn {Scheme Procedure} procedure-with-setter? obj
559 @deffnx {C Function} scm_procedure_with_setter_p (obj)
560 Return @code{#t} if @var{obj} is a procedure with an
561 associated setter procedure.
562 @end deffn
563
564 @deffn {Scheme Procedure} procedure proc
565 @deffnx {C Function} scm_procedure (proc)
566 Return the procedure of @var{proc}, which must be either a
567 procedure with setter, or an operator struct.
568 @end deffn
569
570 @deffn {Scheme Procedure} setter proc
571 Return the setter of @var{proc}, which must be either a procedure with
572 setter or an operator struct.
573 @end deffn
574
575
576 @node Macros
577 @section Lisp Style Macro Definitions
578
579 @cindex macros
580 @cindex transformation
581 Macros are objects which cause the expression that they appear in to be
582 transformed in some way @emph{before} being evaluated. In expressions
583 that are intended for macro transformation, the identifier that names
584 the relevant macro must appear as the first element, like this:
585
586 @lisp
587 (@var{macro-name} @var{macro-args} @dots{})
588 @end lisp
589
590 In Lisp-like languages, the traditional way to define macros is very
591 similar to procedure definitions. The key differences are that the
592 macro definition body should return a list that describes the
593 transformed expression, and that the definition is marked as a macro
594 definition (rather than a procedure definition) by the use of a
595 different definition keyword: in Lisp, @code{defmacro} rather than
596 @code{defun}, and in Scheme, @code{define-macro} rather than
597 @code{define}.
598
599 @fnindex defmacro
600 @fnindex define-macro
601 Guile supports this style of macro definition using both @code{defmacro}
602 and @code{define-macro}. The only difference between them is how the
603 macro name and arguments are grouped together in the definition:
604
605 @lisp
606 (defmacro @var{name} (@var{args} @dots{}) @var{body} @dots{})
607 @end lisp
608
609 @noindent
610 is the same as
611
612 @lisp
613 (define-macro (@var{name} @var{args} @dots{}) @var{body} @dots{})
614 @end lisp
615
616 @noindent
617 The difference is analogous to the corresponding difference between
618 Lisp's @code{defun} and Scheme's @code{define}.
619
620 @code{false-if-exception}, from the @file{boot-9.scm} file in the Guile
621 distribution, is a good example of macro definition using
622 @code{defmacro}:
623
624 @lisp
625 (defmacro false-if-exception (expr)
626 `(catch #t
627 (lambda () ,expr)
628 (lambda args #f)))
629 @end lisp
630
631 @noindent
632 The effect of this definition is that expressions beginning with the
633 identifier @code{false-if-exception} are automatically transformed into
634 a @code{catch} expression following the macro definition specification.
635 For example:
636
637 @lisp
638 (false-if-exception (open-input-file "may-not-exist"))
639 @equiv{}
640 (catch #t
641 (lambda () (open-input-file "may-not-exist"))
642 (lambda args #f))
643 @end lisp
644
645
646 @node Syntax Rules
647 @section The R5RS @code{syntax-rules} System
648 @cindex R5RS syntax-rules system
649
650 R5RS defines an alternative system for macro and syntax transformations
651 using the keywords @code{define-syntax}, @code{let-syntax},
652 @code{letrec-syntax} and @code{syntax-rules}.
653
654 The main difference between the R5RS system and the traditional macros
655 of the previous section is how the transformation is specified. In
656 R5RS, rather than permitting a macro definition to return an arbitrary
657 expression, the transformation is specified in a pattern language that
658
659 @itemize @bullet
660 @item
661 does not require complicated quoting and extraction of components of the
662 source expression using @code{caddr} etc.
663
664 @item
665 is designed such that the bindings associated with identifiers in the
666 transformed expression are well defined, and such that it is impossible
667 for the transformed expression to construct new identifiers.
668 @end itemize
669
670 @noindent
671 The last point is commonly referred to as being @dfn{hygienic}: the R5RS
672 @code{syntax-case} system provides @dfn{hygienic macros}.
673
674 For example, the R5RS pattern language for the @code{false-if-exception}
675 example of the previous section looks like this:
676
677 @lisp
678 (syntax-rules ()
679 ((_ expr)
680 (catch #t
681 (lambda () expr)
682 (lambda args #f))))
683 @end lisp
684
685 @cindex @code{syncase}
686 In Guile, the @code{syntax-rules} system is provided by the @code{(ice-9
687 syncase)} module. To make these facilities available in your code,
688 include the expression @code{(use-syntax (ice-9 syncase))} (@pxref{Using
689 Guile Modules}) before the first usage of @code{define-syntax} etc. If
690 you are writing a Scheme module, you can alternatively include the form
691 @code{#:use-syntax (ice-9 syncase)} in your @code{define-module}
692 declaration (@pxref{Creating Guile Modules}).
693
694 @menu
695 * Pattern Language:: The @code{syntax-rules} pattern language.
696 * Define-Syntax:: Top level syntax definitions.
697 * Let-Syntax:: Local syntax definitions.
698 @end menu
699
700
701 @node Pattern Language
702 @subsection The @code{syntax-rules} Pattern Language
703
704
705 @node Define-Syntax
706 @subsection Top Level Syntax Definitions
707
708 define-syntax: The gist is
709
710 (define-syntax <keyword> <transformer-spec>)
711
712 makes the <keyword> into a macro so that
713
714 (<keyword> ...)
715
716 expands at _compile_ or _read_ time (i.e. before any
717 evaluation begins) into some expression that is
718 given by the <transformer-spec>.
719
720
721 @node Let-Syntax
722 @subsection Local Syntax Definitions
723
724
725 @node Syntax Case
726 @section Support for the @code{syntax-case} System
727
728
729
730 @node Internal Macros
731 @section Internal Representation of Macros and Syntax
732
733 Internally, Guile uses three different flavors of macros. The three
734 flavors are called @dfn{acro} (or @dfn{syntax}), @dfn{macro} and
735 @dfn{mmacro}.
736
737 Given the expression
738
739 @lisp
740 (foo @dots{})
741 @end lisp
742
743 @noindent
744 with @code{foo} being some flavor of macro, one of the following things
745 will happen when the expression is evaluated.
746
747 @itemize @bullet
748 @item
749 When @code{foo} has been defined to be an @dfn{acro}, the procedure used
750 in the acro definition of @code{foo} is passed the whole expression and
751 the current lexical environment, and whatever that procedure returns is
752 the value of evaluating the expression. You can think of this a
753 procedure that receives its argument as an unevaluated expression.
754
755 @item
756 When @code{foo} has been defined to be a @dfn{macro}, the procedure used
757 in the macro definition of @code{foo} is passed the whole expression and
758 the current lexical environment, and whatever that procedure returns is
759 evaluated again. That is, the procedure should return a valid Scheme
760 expression.
761
762 @item
763 When @code{foo} has been defined to be a @dfn{mmacro}, the procedure
764 used in the mmacro definition of `foo' is passed the whole expression
765 and the current lexical environment, and whatever that procedure returns
766 replaces the original expression. Evaluation then starts over from the
767 new expression that has just been returned.
768 @end itemize
769
770 The key difference between a @dfn{macro} and a @dfn{mmacro} is that the
771 expression returned by a @dfn{mmacro} procedure is remembered (or
772 @dfn{memoized}) so that the expansion does not need to be done again
773 next time the containing code is evaluated.
774
775 The primitives @code{procedure->syntax}, @code{procedure->macro} and
776 @code{procedure->memoizing-macro} are used to construct acros, macros
777 and mmacros respectively. However, if you do not have a very special
778 reason to use one of these primitives, you should avoid them: they are
779 very specific to Guile's current implementation and therefore likely to
780 change. Use @code{defmacro}, @code{define-macro} (@pxref{Macros}) or
781 @code{define-syntax} (@pxref{Syntax Rules}) instead. (In low level
782 terms, @code{defmacro}, @code{define-macro} and @code{define-syntax} are
783 all implemented as mmacros.)
784
785 @deffn {Scheme Procedure} procedure->syntax code
786 @deffnx {C Function} scm_makacro (code)
787 Return a macro which, when a symbol defined to this value appears as the
788 first symbol in an expression, returns the result of applying @var{code}
789 to the expression and the environment.
790 @end deffn
791
792 @deffn {Scheme Procedure} procedure->macro code
793 @deffnx {C Function} scm_makmacro (code)
794 Return a macro which, when a symbol defined to this value appears as the
795 first symbol in an expression, evaluates the result of applying
796 @var{code} to the expression and the environment. For example:
797
798 @lisp
799 (define trace
800 (procedure->macro
801 (lambda (x env)
802 `(set! ,(cadr x) (tracef ,(cadr x) ',(cadr x))))))
803
804 (trace @i{foo})
805 @equiv{}
806 (set! @i{foo} (tracef @i{foo} '@i{foo})).
807 @end lisp
808 @end deffn
809
810 @deffn {Scheme Procedure} procedure->memoizing-macro code
811 @deffnx {C Function} scm_makmmacro (code)
812 Return a macro which, when a symbol defined to this value appears as the
813 first symbol in an expression, evaluates the result of applying
814 @var{code} to the expression and the environment.
815 @code{procedure->memoizing-macro} is the same as
816 @code{procedure->macro}, except that the expression returned by
817 @var{code} replaces the original macro expression in the memoized form
818 of the containing code.
819 @end deffn
820
821 In the following primitives, @dfn{acro} flavor macros are referred to
822 as @dfn{syntax transformers}.
823
824 @deffn {Scheme Procedure} macro? obj
825 @deffnx {C Function} scm_macro_p (obj)
826 Return @code{#t} if @var{obj} is a regular macro, a memoizing macro or a
827 syntax transformer.
828 @end deffn
829
830 @deffn {Scheme Procedure} macro-type m
831 @deffnx {C Function} scm_macro_type (m)
832 Return one of the symbols @code{syntax}, @code{macro} or
833 @code{macro!}, depending on whether @var{m} is a syntax
834 transformer, a regular macro, or a memoizing macro,
835 respectively. If @var{m} is not a macro, @code{#f} is
836 returned.
837 @end deffn
838
839 @deffn {Scheme Procedure} macro-name m
840 @deffnx {C Function} scm_macro_name (m)
841 Return the name of the macro @var{m}.
842 @end deffn
843
844 @deffn {Scheme Procedure} macro-transformer m
845 @deffnx {C Function} scm_macro_transformer (m)
846 Return the transformer of the macro @var{m}.
847 @end deffn
848
849 @deffn {Scheme Procedure} cons-source xorig x y
850 @deffnx {C Function} scm_cons_source (xorig, x, y)
851 Create and return a new pair whose car and cdr are @var{x} and @var{y}.
852 Any source properties associated with @var{xorig} are also associated
853 with the new pair.
854 @end deffn
855
856
857 @c Local Variables:
858 @c TeX-master: "guile.texi"
859 @c End: