warnings written to warning port
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;; Before compiling, make sure any symbols are resolved in the (guile)
37 ;; module, the primary location of those symbols, rather than in
38 ;; (guile-user), the default module that we compile in.
39
40 (eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43 \f
44
45 ;;; {Error handling}
46 ;;;
47
48 ;; Define delimited continuation operators, and implement catch and throw in
49 ;; terms of them.
50
51 (define make-prompt-tag
52 (lambda* (#:optional (stem "prompt"))
53 (gensym stem)))
54
55 (define default-prompt-tag
56 ;; not sure if we should expose this to the user as a fluid
57 (let ((%default-prompt-tag (make-prompt-tag)))
58 (lambda ()
59 %default-prompt-tag)))
60
61 (define (call-with-prompt tag thunk handler)
62 (@prompt tag (thunk) handler))
63 (define (abort-to-prompt tag . args)
64 (@abort tag args))
65
66
67 ;; Define catch and with-throw-handler, using some common helper routines and a
68 ;; shared fluid. Hide the helpers in a lexical contour.
69
70 (define with-throw-handler #f)
71 (let ()
72 (define (default-exception-handler k . args)
73 (cond
74 ((eq? k 'quit)
75 (primitive-exit (cond
76 ((not (pair? args)) 0)
77 ((integer? (car args)) (car args))
78 ((not (car args)) 1)
79 (else 0))))
80 (else
81 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
82 (primitive-exit 1))))
83
84 (define %running-exception-handlers (make-fluid '()))
85 (define %exception-handler (make-fluid default-exception-handler))
86
87 (define (default-throw-handler prompt-tag catch-k)
88 (let ((prev (fluid-ref %exception-handler)))
89 (lambda (thrown-k . args)
90 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
91 (apply abort-to-prompt prompt-tag thrown-k args)
92 (apply prev thrown-k args)))))
93
94 (define (custom-throw-handler prompt-tag catch-k pre)
95 (let ((prev (fluid-ref %exception-handler)))
96 (lambda (thrown-k . args)
97 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
98 (let ((running (fluid-ref %running-exception-handlers)))
99 (with-fluids ((%running-exception-handlers (cons pre running)))
100 (if (not (memq pre running))
101 (apply pre thrown-k args))
102 ;; fall through
103 (if prompt-tag
104 (apply abort-to-prompt prompt-tag thrown-k args)
105 (apply prev thrown-k args))))
106 (apply prev thrown-k args)))))
107
108 (set! catch
109 (lambda* (k thunk handler #:optional pre-unwind-handler)
110 "Invoke @var{thunk} in the dynamic context of @var{handler} for
111 exceptions matching @var{key}. If thunk throws to the symbol
112 @var{key}, then @var{handler} is invoked this way:
113 @lisp
114 (handler key args ...)
115 @end lisp
116
117 @var{key} is a symbol or @code{#t}.
118
119 @var{thunk} takes no arguments. If @var{thunk} returns
120 normally, that is the return value of @code{catch}.
121
122 Handler is invoked outside the scope of its own @code{catch}.
123 If @var{handler} again throws to the same key, a new handler
124 from further up the call chain is invoked.
125
126 If the key is @code{#t}, then a throw to @emph{any} symbol will
127 match this call to @code{catch}.
128
129 If a @var{pre-unwind-handler} is given and @var{thunk} throws
130 an exception that matches @var{key}, Guile calls the
131 @var{pre-unwind-handler} before unwinding the dynamic state and
132 invoking the main @var{handler}. @var{pre-unwind-handler} should
133 be a procedure with the same signature as @var{handler}, that
134 is @code{(lambda (key . args))}. It is typically used to save
135 the stack at the point where the exception occurred, but can also
136 query other parts of the dynamic state at that point, such as
137 fluid values.
138
139 A @var{pre-unwind-handler} can exit either normally or non-locally.
140 If it exits normally, Guile unwinds the stack and dynamic context
141 and then calls the normal (third argument) handler. If it exits
142 non-locally, that exit determines the continuation."
143 (if (not (or (symbol? k) (eqv? k #t)))
144 (scm-error "catch" 'wrong-type-arg
145 "Wrong type argument in position ~a: ~a"
146 (list 1 k) (list k)))
147 (let ((tag (make-prompt-tag "catch")))
148 (call-with-prompt
149 tag
150 (lambda ()
151 (with-fluids
152 ((%exception-handler
153 (if pre-unwind-handler
154 (custom-throw-handler tag k pre-unwind-handler)
155 (default-throw-handler tag k))))
156 (thunk)))
157 (lambda (cont k . args)
158 (apply handler k args))))))
159
160 (set! with-throw-handler
161 (lambda (k thunk pre-unwind-handler)
162 "Add @var{handler} to the dynamic context as a throw handler
163 for key @var{key}, then invoke @var{thunk}."
164 (if (not (or (symbol? k) (eqv? k #t)))
165 (scm-error "with-throw-handler" 'wrong-type-arg
166 "Wrong type argument in position ~a: ~a"
167 (list 1 k) (list k)))
168 (with-fluids ((%exception-handler
169 (custom-throw-handler #f k pre-unwind-handler)))
170 (thunk))))
171
172 (set! throw
173 (lambda (key . args)
174 "Invoke the catch form matching @var{key}, passing @var{args} to the
175 @var{handler}.
176
177 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
178
179 If there is no handler at all, Guile prints an error and then exits."
180 (if (not (symbol? key))
181 ((fluid-ref %exception-handler) 'wrong-type-arg "throw"
182 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
183 (apply (fluid-ref %exception-handler) key args)))))
184
185
186 \f
187
188 ;;; {R4RS compliance}
189 ;;;
190
191 (primitive-load-path "ice-9/r4rs")
192
193 \f
194
195 ;;; {Simple Debugging Tools}
196 ;;;
197
198 ;; peek takes any number of arguments, writes them to the
199 ;; current ouput port, and returns the last argument.
200 ;; It is handy to wrap around an expression to look at
201 ;; a value each time is evaluated, e.g.:
202 ;;
203 ;; (+ 10 (troublesome-fn))
204 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
205 ;;
206
207 (define (peek . stuff)
208 (newline)
209 (display ";;; ")
210 (write stuff)
211 (newline)
212 (car (last-pair stuff)))
213
214 (define pk peek)
215
216 ;; Temporary definition; replaced later.
217 (define current-warning-port current-error-port)
218
219 (define (warn . stuff)
220 (with-output-to-port (current-warning-port)
221 (lambda ()
222 (newline)
223 (display ";;; WARNING ")
224 (display stuff)
225 (newline)
226 (car (last-pair stuff)))))
227
228 \f
229
230 ;;; {Features}
231 ;;;
232
233 (define (provide sym)
234 (if (not (memq sym *features*))
235 (set! *features* (cons sym *features*))))
236
237 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
238 ;; provided? also checks to see if the module is available. We should do that
239 ;; too, but don't.
240
241 (define (provided? feature)
242 (and (memq feature *features*) #t))
243
244 \f
245
246 ;;; {Structs}
247 ;;;
248
249 (define (make-struct/no-tail vtable . args)
250 (apply make-struct vtable 0 args))
251
252 \f
253
254 ;;; Boot versions of `map' and `for-each', enough to get the expander
255 ;;; running.
256 ;;;
257 (define map
258 (case-lambda
259 ((f l)
260 (let map1 ((l l))
261 (if (null? l)
262 '()
263 (cons (f (car l)) (map1 (cdr l))))))
264 ((f l1 l2)
265 (let map2 ((l1 l1) (l2 l2))
266 (if (null? l1)
267 '()
268 (cons (f (car l1) (car l2))
269 (map2 (cdr l1) (cdr l2))))))
270 ((f l1 . rest)
271 (let lp ((l1 l1) (rest rest))
272 (if (null? l1)
273 '()
274 (cons (apply f (car l1) (map car rest))
275 (lp (cdr l1) (map cdr rest))))))))
276
277 (define for-each
278 (case-lambda
279 ((f l)
280 (let for-each1 ((l l))
281 (if (pair? l)
282 (begin
283 (f (car l))
284 (for-each1 (cdr l))))))
285 ((f l1 l2)
286 (let for-each2 ((l1 l1) (l2 l2))
287 (if (pair? l1)
288 (begin
289 (f (car l1) (car l2))
290 (for-each2 (cdr l1) (cdr l2))))))
291 ((f l1 . rest)
292 (let lp ((l1 l1) (rest rest))
293 (if (pair? l1)
294 (begin
295 (apply f (car l1) (map car rest))
296 (lp (cdr l1) (map cdr rest))))))))
297
298 ;;; {and-map and or-map}
299 ;;;
300 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
301 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
302 ;;;
303
304 ;; and-map f l
305 ;;
306 ;; Apply f to successive elements of l until exhaustion or f returns #f.
307 ;; If returning early, return #f. Otherwise, return the last value returned
308 ;; by f. If f has never been called because l is empty, return #t.
309 ;;
310 (define (and-map f lst)
311 (let loop ((result #t)
312 (l lst))
313 (and result
314 (or (and (null? l)
315 result)
316 (loop (f (car l)) (cdr l))))))
317
318 ;; or-map f l
319 ;;
320 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
321 ;; If returning early, return the return value of f.
322 ;;
323 (define (or-map f lst)
324 (let loop ((result #f)
325 (l lst))
326 (or result
327 (and (not (null? l))
328 (loop (f (car l)) (cdr l))))))
329
330 \f
331
332 ;; let format alias simple-format until the more complete version is loaded
333
334 (define format simple-format)
335
336 ;; this is scheme wrapping the C code so the final pred call is a tail call,
337 ;; per SRFI-13 spec
338 (define string-any
339 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
340 (if (and (procedure? char_pred)
341 (> end start)
342 (<= end (string-length s))) ;; let c-code handle range error
343 (or (string-any-c-code char_pred s start (1- end))
344 (char_pred (string-ref s (1- end))))
345 (string-any-c-code char_pred s start end))))
346
347 ;; this is scheme wrapping the C code so the final pred call is a tail call,
348 ;; per SRFI-13 spec
349 (define string-every
350 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
351 (if (and (procedure? char_pred)
352 (> end start)
353 (<= end (string-length s))) ;; let c-code handle range error
354 (and (string-every-c-code char_pred s start (1- end))
355 (char_pred (string-ref s (1- end))))
356 (string-every-c-code char_pred s start end))))
357
358 ;; A variant of string-fill! that we keep for compatability
359 ;;
360 (define (substring-fill! str start end fill)
361 (string-fill! str fill start end))
362
363 \f
364
365 ;; Define a minimal stub of the module API for psyntax, before modules
366 ;; have booted.
367 (define (module-name x)
368 '(guile))
369 (define (module-add! module sym var)
370 (hashq-set! (%get-pre-modules-obarray) sym var))
371 (define (module-define! module sym val)
372 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
373 (if v
374 (variable-set! v val)
375 (module-add! (current-module) sym (make-variable val)))))
376 (define (module-ref module sym)
377 (let ((v (module-variable module sym)))
378 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
379 (define (resolve-module . args)
380 #f)
381
382 ;; API provided by psyntax
383 (define syntax-violation #f)
384 (define datum->syntax #f)
385 (define syntax->datum #f)
386 (define syntax-source #f)
387 (define identifier? #f)
388 (define generate-temporaries #f)
389 (define bound-identifier=? #f)
390 (define free-identifier=? #f)
391
392 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
393 ;; expanded macros, to dispatch an input against a set of patterns.
394 (define $sc-dispatch #f)
395
396 ;; Load it up!
397 (primitive-load-path "ice-9/psyntax-pp")
398 ;; The binding for `macroexpand' has now been overridden, making psyntax the
399 ;; expander now.
400
401 (define-syntax and
402 (syntax-rules ()
403 ((_) #t)
404 ((_ x) x)
405 ((_ x y ...) (if x (and y ...) #f))))
406
407 (define-syntax or
408 (syntax-rules ()
409 ((_) #f)
410 ((_ x) x)
411 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
412
413 ;; The "maybe-more" bits are something of a hack, so that we can support
414 ;; SRFI-61. Rewrites into a standalone syntax-case macro would be
415 ;; appreciated.
416 (define-syntax cond
417 (syntax-rules (=> else)
418 ((_ "maybe-more" test consequent)
419 (if test consequent))
420
421 ((_ "maybe-more" test consequent clause ...)
422 (if test consequent (cond clause ...)))
423
424 ((_ (else else1 else2 ...))
425 (begin else1 else2 ...))
426
427 ((_ (test => receiver) more-clause ...)
428 (let ((t test))
429 (cond "maybe-more" t (receiver t) more-clause ...)))
430
431 ((_ (generator guard => receiver) more-clause ...)
432 (call-with-values (lambda () generator)
433 (lambda t
434 (cond "maybe-more"
435 (apply guard t) (apply receiver t) more-clause ...))))
436
437 ((_ (test => receiver ...) more-clause ...)
438 (syntax-violation 'cond "wrong number of receiver expressions"
439 '(test => receiver ...)))
440 ((_ (generator guard => receiver ...) more-clause ...)
441 (syntax-violation 'cond "wrong number of receiver expressions"
442 '(generator guard => receiver ...)))
443
444 ((_ (test) more-clause ...)
445 (let ((t test))
446 (cond "maybe-more" t t more-clause ...)))
447
448 ((_ (test body1 body2 ...) more-clause ...)
449 (cond "maybe-more"
450 test (begin body1 body2 ...) more-clause ...))))
451
452 (define-syntax case
453 (syntax-rules (else)
454 ((case (key ...)
455 clauses ...)
456 (let ((atom-key (key ...)))
457 (case atom-key clauses ...)))
458 ((case key
459 (else result1 result2 ...))
460 (begin result1 result2 ...))
461 ((case key
462 ((atoms ...) result1 result2 ...))
463 (if (memv key '(atoms ...))
464 (begin result1 result2 ...)))
465 ((case key
466 ((atoms ...) result1 result2 ...)
467 clause clauses ...)
468 (if (memv key '(atoms ...))
469 (begin result1 result2 ...)
470 (case key clause clauses ...)))))
471
472 (define-syntax do
473 (syntax-rules ()
474 ((do ((var init step ...) ...)
475 (test expr ...)
476 command ...)
477 (letrec
478 ((loop
479 (lambda (var ...)
480 (if test
481 (begin
482 (if #f #f)
483 expr ...)
484 (begin
485 command
486 ...
487 (loop (do "step" var step ...)
488 ...))))))
489 (loop init ...)))
490 ((do "step" x)
491 x)
492 ((do "step" x y)
493 y)))
494
495 (define-syntax-rule (delay exp)
496 (make-promise (lambda () exp)))
497
498 (include-from-path "ice-9/quasisyntax")
499
500 (define-syntax current-source-location
501 (lambda (x)
502 (syntax-case x ()
503 ((_)
504 (with-syntax ((s (datum->syntax x (syntax-source x))))
505 #''s)))))
506
507 (define-syntax-rule (define-once sym val)
508 (define sym
509 (if (module-locally-bound? (current-module) 'sym) sym val)))
510
511 ;;; The real versions of `map' and `for-each', with cycle detection, and
512 ;;; that use reverse! instead of recursion in the case of `map'.
513 ;;;
514 (define map
515 (case-lambda
516 ((f l)
517 (let map1 ((hare l) (tortoise l) (move? #f) (out '()))
518 (if (pair? hare)
519 (if move?
520 (if (eq? tortoise hare)
521 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
522 (list l) #f)
523 (map1 (cdr hare) (cdr tortoise) #f
524 (cons (f (car hare)) out)))
525 (map1 (cdr hare) tortoise #t
526 (cons (f (car hare)) out)))
527 (if (null? hare)
528 (reverse! out)
529 (scm-error 'wrong-type-arg "map" "Not a list: ~S"
530 (list l) #f)))))
531
532 ((f l1 l2)
533 (let map2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f) (out '()))
534 (cond
535 ((pair? h1)
536 (cond
537 ((not (pair? h2))
538 (scm-error 'wrong-type-arg "map"
539 (if (list? h2)
540 "List of wrong length: ~S"
541 "Not a list: ~S")
542 (list l2) #f))
543 ((not move?)
544 (map2 (cdr h1) (cdr h2) t1 t2 #t
545 (cons (f (car h1) (car h2)) out)))
546 ((eq? t1 h1)
547 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
548 (list l1) #f))
549 ((eq? t2 h2)
550 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
551 (list l2) #f))
552 (else
553 (map2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f
554 (cons (f (car h1) (car h2)) out)))))
555
556 ((and (null? h1) (null? h2))
557 (reverse! out))
558
559 ((null? h1)
560 (scm-error 'wrong-type-arg "map"
561 (if (list? h2)
562 "List of wrong length: ~S"
563 "Not a list: ~S")
564 (list l2) #f))
565 (else
566 (scm-error 'wrong-type-arg "map"
567 "Not a list: ~S"
568 (list l1) #f)))))
569
570 ((f l1 . rest)
571 (let ((len (length l1)))
572 (let mapn ((rest rest))
573 (or (null? rest)
574 (if (= (length (car rest)) len)
575 (mapn (cdr rest))
576 (scm-error 'wrong-type-arg "map" "List of wrong length: ~S"
577 (list (car rest)) #f)))))
578 (let mapn ((l1 l1) (rest rest) (out '()))
579 (if (null? l1)
580 (reverse! out)
581 (mapn (cdr l1) (map cdr rest)
582 (cons (apply f (car l1) (map car rest)) out)))))))
583
584 (define map-in-order map)
585
586 (define for-each
587 (case-lambda
588 ((f l)
589 (let for-each1 ((hare l) (tortoise l) (move? #f))
590 (if (pair? hare)
591 (if move?
592 (if (eq? tortoise hare)
593 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
594 (list l) #f)
595 (begin
596 (f (car hare))
597 (for-each1 (cdr hare) (cdr tortoise) #f)))
598 (begin
599 (f (car hare))
600 (for-each1 (cdr hare) tortoise #t)))
601
602 (if (not (null? hare))
603 (scm-error 'wrong-type-arg "for-each" "Not a list: ~S"
604 (list l) #f)))))
605
606 ((f l1 l2)
607 (let for-each2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f))
608 (cond
609 ((and (pair? h1) (pair? h2))
610 (cond
611 ((not move?)
612 (f (car h1) (car h2))
613 (for-each2 (cdr h1) (cdr h2) t1 t2 #t))
614 ((eq? t1 h1)
615 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
616 (list l1) #f))
617 ((eq? t2 h2)
618 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
619 (list l2) #f))
620 (else
621 (f (car h1) (car h2))
622 (for-each2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f))))
623
624 ((if (null? h1)
625 (or (null? h2) (pair? h2))
626 (and (pair? h1) (null? h2)))
627 (if #f #f))
628
629 ((list? h1)
630 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
631 (list h2) #f))
632 (else
633 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
634 (list h1) #f)))))
635
636 ((f l1 . rest)
637 (let ((len (length l1)))
638 (let for-eachn ((rest rest))
639 (or (null? rest)
640 (if (= (length (car rest)) len)
641 (for-eachn (cdr rest))
642 (scm-error 'wrong-type-arg "for-each" "List of wrong length: ~S"
643 (list (car rest)) #f)))))
644
645 (let for-eachn ((l1 l1) (rest rest))
646 (if (pair? l1)
647 (begin
648 (apply f (car l1) (map car rest))
649 (for-eachn (cdr l1) (map cdr rest))))))))
650
651
652 \f
653
654 ;;;
655 ;;; Extensible exception printing.
656 ;;;
657
658 (define set-exception-printer! #f)
659 ;; There is already a definition of print-exception from backtrace.c
660 ;; that we will override.
661
662 (let ((exception-printers '()))
663 (define (print-location frame port)
664 (let ((source (and=> frame frame-source)))
665 ;; source := (addr . (filename . (line . column)))
666 (if source
667 (let ((filename (or (cadr source) "<unnamed port>"))
668 (line (caddr source))
669 (col (cdddr source)))
670 (format port "~a:~a:~a: " filename (1+ line) col))
671 (format port "ERROR: "))))
672
673 (set! set-exception-printer!
674 (lambda (key proc)
675 (set! exception-printers (acons key proc exception-printers))))
676
677 (set! print-exception
678 (lambda (port frame key args)
679 (define (default-printer)
680 (format port "Throw to key `~a' with args `~s'." key args))
681
682 (if frame
683 (let ((proc (frame-procedure frame)))
684 (print-location frame port)
685 (format port "In procedure ~a:\n"
686 (or (procedure-name proc) proc))))
687
688 (print-location frame port)
689 (catch #t
690 (lambda ()
691 (let ((printer (assq-ref exception-printers key)))
692 (if printer
693 (printer port key args default-printer)
694 (default-printer))))
695 (lambda (k . args)
696 (format port "Error while printing exception.")))
697 (newline port)
698 (force-output port))))
699
700 ;;;
701 ;;; Printers for those keys thrown by Guile.
702 ;;;
703 (let ()
704 (define (scm-error-printer port key args default-printer)
705 ;; Abuse case-lambda as a pattern matcher, given that we don't have
706 ;; ice-9 match at this point.
707 (apply (case-lambda
708 ((subr msg args . rest)
709 (if subr
710 (format port "In procedure ~a: " subr))
711 (apply format port msg (or args '())))
712 (_ (default-printer)))
713 args))
714
715 (define (syntax-error-printer port key args default-printer)
716 (apply (case-lambda
717 ((who what where form subform . extra)
718 (format port "Syntax error:\n")
719 (if where
720 (let ((file (or (assq-ref where 'filename) "unknown file"))
721 (line (and=> (assq-ref where 'line) 1+))
722 (col (assq-ref where 'column)))
723 (format port "~a:~a:~a: " file line col))
724 (format port "unknown location: "))
725 (if who
726 (format port "~a: " who))
727 (format port "~a" what)
728 (if subform
729 (format port " in subform ~s of ~s" subform form)
730 (if form
731 (format port " in form ~s" form))))
732 (_ (default-printer)))
733 args))
734
735 (set-exception-printer! 'goops-error scm-error-printer)
736 (set-exception-printer! 'host-not-found scm-error-printer)
737 (set-exception-printer! 'keyword-argument-error scm-error-printer)
738 (set-exception-printer! 'misc-error scm-error-printer)
739 (set-exception-printer! 'no-data scm-error-printer)
740 (set-exception-printer! 'no-recovery scm-error-printer)
741 (set-exception-printer! 'null-pointer-error scm-error-printer)
742 (set-exception-printer! 'out-of-range scm-error-printer)
743 (set-exception-printer! 'program-error scm-error-printer)
744 (set-exception-printer! 'read-error scm-error-printer)
745 (set-exception-printer! 'regular-expression-syntax scm-error-printer)
746 (set-exception-printer! 'signal scm-error-printer)
747 (set-exception-printer! 'stack-overflow scm-error-printer)
748 (set-exception-printer! 'system-error scm-error-printer)
749 (set-exception-printer! 'try-again scm-error-printer)
750 (set-exception-printer! 'unbound-variable scm-error-printer)
751 (set-exception-printer! 'wrong-number-of-args scm-error-printer)
752 (set-exception-printer! 'wrong-type-arg scm-error-printer)
753
754 (set-exception-printer! 'syntax-error syntax-error-printer))
755
756
757 \f
758
759 ;;; {Defmacros}
760 ;;;
761
762 (define-syntax define-macro
763 (lambda (x)
764 "Define a defmacro."
765 (syntax-case x ()
766 ((_ (macro . args) doc body1 body ...)
767 (string? (syntax->datum #'doc))
768 #'(define-macro macro doc (lambda args body1 body ...)))
769 ((_ (macro . args) body ...)
770 #'(define-macro macro #f (lambda args body ...)))
771 ((_ macro doc transformer)
772 (or (string? (syntax->datum #'doc))
773 (not (syntax->datum #'doc)))
774 #'(define-syntax macro
775 (lambda (y)
776 doc
777 #((macro-type . defmacro)
778 (defmacro-args args))
779 (syntax-case y ()
780 ((_ . args)
781 (let ((v (syntax->datum #'args)))
782 (datum->syntax y (apply transformer v)))))))))))
783
784 (define-syntax defmacro
785 (lambda (x)
786 "Define a defmacro, with the old lispy defun syntax."
787 (syntax-case x ()
788 ((_ macro args doc body1 body ...)
789 (string? (syntax->datum #'doc))
790 #'(define-macro macro doc (lambda args body1 body ...)))
791 ((_ macro args body ...)
792 #'(define-macro macro #f (lambda args body ...))))))
793
794 (provide 'defmacro)
795
796 \f
797
798 ;;; {Deprecation}
799 ;;;
800
801 (define-syntax begin-deprecated
802 (lambda (x)
803 (syntax-case x ()
804 ((_ form form* ...)
805 (if (include-deprecated-features)
806 #'(begin form form* ...)
807 #'(begin))))))
808
809 \f
810
811 ;;; {Trivial Functions}
812 ;;;
813
814 (define (identity x) x)
815
816 (define (compose proc . rest)
817 "Compose PROC with the procedures in REST, such that the last one in
818 REST is applied first and PROC last, and return the resulting procedure.
819 The given procedures must have compatible arity."
820 (if (null? rest)
821 proc
822 (let ((g (apply compose rest)))
823 (lambda args
824 (call-with-values (lambda () (apply g args)) proc)))))
825
826 (define (negate proc)
827 "Return a procedure with the same arity as PROC that returns the `not'
828 of PROC's result."
829 (lambda args
830 (not (apply proc args))))
831
832 (define (const value)
833 "Return a procedure that accepts any number of arguments and returns
834 VALUE."
835 (lambda _
836 value))
837
838 (define (and=> value procedure) (and value (procedure value)))
839 (define call/cc call-with-current-continuation)
840
841 (define-syntax-rule (false-if-exception expr)
842 (catch #t
843 (lambda () expr)
844 (lambda (k . args) #f)))
845
846 \f
847
848 ;;; {General Properties}
849 ;;;
850
851 ;; Properties are a lispy way to associate random info with random objects.
852 ;; Traditionally properties are implemented as an alist or a plist actually
853 ;; pertaining to the object in question.
854 ;;
855 ;; These "object properties" have the advantage that they can be associated with
856 ;; any object, even if the object has no plist. Object properties are good when
857 ;; you are extending pre-existing objects in unexpected ways. They also present
858 ;; a pleasing, uniform procedure-with-setter interface. But if you have a data
859 ;; type that always has properties, it's often still best to store those
860 ;; properties within the object itself.
861
862 (define (make-object-property)
863 (define-syntax-rule (with-mutex lock exp)
864 (dynamic-wind (lambda () (lock-mutex lock))
865 (lambda () exp)
866 (lambda () (unlock-mutex lock))))
867 (let ((prop (make-weak-key-hash-table))
868 (lock (make-mutex)))
869 (make-procedure-with-setter
870 (lambda (obj) (with-mutex lock (hashq-ref prop obj)))
871 (lambda (obj val) (with-mutex lock (hashq-set! prop obj val))))))
872
873
874 \f
875
876 ;;; {Symbol Properties}
877 ;;;
878
879 ;;; Symbol properties are something you see in old Lisp code. In most current
880 ;;; Guile code, symbols are not used as a data structure -- they are used as
881 ;;; keys into other data structures.
882
883 (define (symbol-property sym prop)
884 (let ((pair (assoc prop (symbol-pref sym))))
885 (and pair (cdr pair))))
886
887 (define (set-symbol-property! sym prop val)
888 (let ((pair (assoc prop (symbol-pref sym))))
889 (if pair
890 (set-cdr! pair val)
891 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
892
893 (define (symbol-property-remove! sym prop)
894 (let ((pair (assoc prop (symbol-pref sym))))
895 (if pair
896 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
897
898 \f
899
900 ;;; {Arrays}
901 ;;;
902
903 (define (array-shape a)
904 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
905 (array-dimensions a)))
906
907 \f
908
909 ;;; {Keywords}
910 ;;;
911
912 ;;; It's much better if you can use lambda* / define*, of course.
913
914 (define (kw-arg-ref args kw)
915 (let ((rem (member kw args)))
916 (and rem (pair? (cdr rem)) (cadr rem))))
917
918 \f
919
920 ;;; {Structs}
921 ;;;
922
923 (define (struct-layout s)
924 (struct-ref (struct-vtable s) vtable-index-layout))
925
926 \f
927
928 ;;; {Records}
929 ;;;
930
931 ;; Printing records: by default, records are printed as
932 ;;
933 ;; #<type-name field1: val1 field2: val2 ...>
934 ;;
935 ;; You can change that by giving a custom printing function to
936 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
937 ;; will be called like
938 ;;
939 ;; (<printer> object port)
940 ;;
941 ;; It should print OBJECT to PORT.
942
943 (define (inherit-print-state old-port new-port)
944 (if (get-print-state old-port)
945 (port-with-print-state new-port (get-print-state old-port))
946 new-port))
947
948 ;; 0: type-name, 1: fields, 2: constructor
949 (define record-type-vtable
950 ;; FIXME: This should just call make-vtable, not make-vtable-vtable; but for
951 ;; that we need to expose the bare vtable-vtable to Scheme.
952 (make-vtable-vtable "prprpw" 0
953 (lambda (s p)
954 (cond ((eq? s record-type-vtable)
955 (display "#<record-type-vtable>" p))
956 (else
957 (display "#<record-type " p)
958 (display (record-type-name s) p)
959 (display ">" p))))))
960
961 (define (record-type? obj)
962 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
963
964 (define* (make-record-type type-name fields #:optional printer)
965 ;; Pre-generate constructors for nfields < 20.
966 (define-syntax make-constructor
967 (lambda (x)
968 (define *max-static-argument-count* 20)
969 (define (make-formals n)
970 (let lp ((i 0))
971 (if (< i n)
972 (cons (datum->syntax
973 x
974 (string->symbol
975 (string (integer->char (+ (char->integer #\a) i)))))
976 (lp (1+ i)))
977 '())))
978 (syntax-case x ()
979 ((_ rtd exp) (not (identifier? #'exp))
980 #'(let ((n exp))
981 (make-constructor rtd n)))
982 ((_ rtd nfields)
983 #`(case nfields
984 #,@(let lp ((n 0))
985 (if (< n *max-static-argument-count*)
986 (cons (with-syntax (((formal ...) (make-formals n))
987 (n n))
988 #'((n)
989 (lambda (formal ...)
990 (make-struct rtd 0 formal ...))))
991 (lp (1+ n)))
992 '()))
993 (else
994 (lambda args
995 (if (= (length args) nfields)
996 (apply make-struct rtd 0 args)
997 (scm-error 'wrong-number-of-args
998 (format #f "make-~a" type-name)
999 "Wrong number of arguments" '() #f)))))))))
1000
1001 (define (default-record-printer s p)
1002 (display "#<" p)
1003 (display (record-type-name (record-type-descriptor s)) p)
1004 (let loop ((fields (record-type-fields (record-type-descriptor s)))
1005 (off 0))
1006 (cond
1007 ((not (null? fields))
1008 (display " " p)
1009 (display (car fields) p)
1010 (display ": " p)
1011 (display (struct-ref s off) p)
1012 (loop (cdr fields) (+ 1 off)))))
1013 (display ">" p))
1014
1015 (let ((rtd (make-struct record-type-vtable 0
1016 (make-struct-layout
1017 (apply string-append
1018 (map (lambda (f) "pw") fields)))
1019 (or printer default-record-printer)
1020 type-name
1021 (copy-tree fields))))
1022 (struct-set! rtd (+ vtable-offset-user 2)
1023 (make-constructor rtd (length fields)))
1024 ;; Temporary solution: Associate a name to the record type descriptor
1025 ;; so that the object system can create a wrapper class for it.
1026 (set-struct-vtable-name! rtd (if (symbol? type-name)
1027 type-name
1028 (string->symbol type-name)))
1029 rtd))
1030
1031 (define (record-type-name obj)
1032 (if (record-type? obj)
1033 (struct-ref obj vtable-offset-user)
1034 (error 'not-a-record-type obj)))
1035
1036 (define (record-type-fields obj)
1037 (if (record-type? obj)
1038 (struct-ref obj (+ 1 vtable-offset-user))
1039 (error 'not-a-record-type obj)))
1040
1041 (define* (record-constructor rtd #:optional field-names)
1042 (if (not field-names)
1043 (struct-ref rtd (+ 2 vtable-offset-user))
1044 (primitive-eval
1045 `(lambda ,field-names
1046 (make-struct ',rtd 0 ,@(map (lambda (f)
1047 (if (memq f field-names)
1048 f
1049 #f))
1050 (record-type-fields rtd)))))))
1051
1052 (define (record-predicate rtd)
1053 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
1054
1055 (define (%record-type-error rtd obj) ;; private helper
1056 (or (eq? rtd (record-type-descriptor obj))
1057 (scm-error 'wrong-type-arg "%record-type-check"
1058 "Wrong type record (want `~S'): ~S"
1059 (list (record-type-name rtd) obj)
1060 #f)))
1061
1062 (define (record-accessor rtd field-name)
1063 (let ((pos (list-index (record-type-fields rtd) field-name)))
1064 (if (not pos)
1065 (error 'no-such-field field-name))
1066 (lambda (obj)
1067 (if (eq? (struct-vtable obj) rtd)
1068 (struct-ref obj pos)
1069 (%record-type-error rtd obj)))))
1070
1071 (define (record-modifier rtd field-name)
1072 (let ((pos (list-index (record-type-fields rtd) field-name)))
1073 (if (not pos)
1074 (error 'no-such-field field-name))
1075 (lambda (obj val)
1076 (if (eq? (struct-vtable obj) rtd)
1077 (struct-set! obj pos val)
1078 (%record-type-error rtd obj)))))
1079
1080 (define (record? obj)
1081 (and (struct? obj) (record-type? (struct-vtable obj))))
1082
1083 (define (record-type-descriptor obj)
1084 (if (struct? obj)
1085 (struct-vtable obj)
1086 (error 'not-a-record obj)))
1087
1088 (provide 'record)
1089
1090 \f
1091
1092 ;;; {Booleans}
1093 ;;;
1094
1095 (define (->bool x) (not (not x)))
1096
1097 \f
1098
1099 ;;; {Symbols}
1100 ;;;
1101
1102 (define (symbol-append . args)
1103 (string->symbol (apply string-append (map symbol->string args))))
1104
1105 (define (list->symbol . args)
1106 (string->symbol (apply list->string args)))
1107
1108 (define (symbol . args)
1109 (string->symbol (apply string args)))
1110
1111 \f
1112
1113 ;;; {Lists}
1114 ;;;
1115
1116 (define (list-index l k)
1117 (let loop ((n 0)
1118 (l l))
1119 (and (not (null? l))
1120 (if (eq? (car l) k)
1121 n
1122 (loop (+ n 1) (cdr l))))))
1123
1124 \f
1125
1126 ;; Load `posix.scm' even when not (provided? 'posix) so that we get the
1127 ;; `stat' accessors.
1128 (primitive-load-path "ice-9/posix")
1129
1130 (if (provided? 'socket)
1131 (primitive-load-path "ice-9/networking"))
1132
1133 ;; For reference, Emacs file-exists-p uses stat in this same way.
1134 (define file-exists?
1135 (if (provided? 'posix)
1136 (lambda (str)
1137 (->bool (stat str #f)))
1138 (lambda (str)
1139 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
1140 (lambda args #f))))
1141 (if port (begin (close-port port) #t)
1142 #f)))))
1143
1144 (define file-is-directory?
1145 (if (provided? 'posix)
1146 (lambda (str)
1147 (eq? (stat:type (stat str)) 'directory))
1148 (lambda (str)
1149 (let ((port (catch 'system-error
1150 (lambda () (open-file (string-append str "/.")
1151 OPEN_READ))
1152 (lambda args #f))))
1153 (if port (begin (close-port port) #t)
1154 #f)))))
1155
1156 (define (system-error-errno args)
1157 (if (eq? (car args) 'system-error)
1158 (car (list-ref args 4))
1159 #f))
1160
1161 \f
1162
1163 ;;; {Error Handling}
1164 ;;;
1165
1166 (define error
1167 (case-lambda
1168 (()
1169 (scm-error 'misc-error #f "?" #f #f))
1170 ((message . args)
1171 (let ((msg (string-join (cons "~A" (make-list (length args) "~S")))))
1172 (scm-error 'misc-error #f msg (cons message args) #f)))))
1173
1174 \f
1175
1176 ;;; {Time Structures}
1177 ;;;
1178
1179 (define (tm:sec obj) (vector-ref obj 0))
1180 (define (tm:min obj) (vector-ref obj 1))
1181 (define (tm:hour obj) (vector-ref obj 2))
1182 (define (tm:mday obj) (vector-ref obj 3))
1183 (define (tm:mon obj) (vector-ref obj 4))
1184 (define (tm:year obj) (vector-ref obj 5))
1185 (define (tm:wday obj) (vector-ref obj 6))
1186 (define (tm:yday obj) (vector-ref obj 7))
1187 (define (tm:isdst obj) (vector-ref obj 8))
1188 (define (tm:gmtoff obj) (vector-ref obj 9))
1189 (define (tm:zone obj) (vector-ref obj 10))
1190
1191 (define (set-tm:sec obj val) (vector-set! obj 0 val))
1192 (define (set-tm:min obj val) (vector-set! obj 1 val))
1193 (define (set-tm:hour obj val) (vector-set! obj 2 val))
1194 (define (set-tm:mday obj val) (vector-set! obj 3 val))
1195 (define (set-tm:mon obj val) (vector-set! obj 4 val))
1196 (define (set-tm:year obj val) (vector-set! obj 5 val))
1197 (define (set-tm:wday obj val) (vector-set! obj 6 val))
1198 (define (set-tm:yday obj val) (vector-set! obj 7 val))
1199 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
1200 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
1201 (define (set-tm:zone obj val) (vector-set! obj 10 val))
1202
1203 (define (tms:clock obj) (vector-ref obj 0))
1204 (define (tms:utime obj) (vector-ref obj 1))
1205 (define (tms:stime obj) (vector-ref obj 2))
1206 (define (tms:cutime obj) (vector-ref obj 3))
1207 (define (tms:cstime obj) (vector-ref obj 4))
1208
1209 \f
1210
1211 ;;; {File Descriptors and Ports}
1212 ;;;
1213
1214 (define file-position ftell)
1215 (define* (file-set-position port offset #:optional (whence SEEK_SET))
1216 (seek port offset whence))
1217
1218 (define (move->fdes fd/port fd)
1219 (cond ((integer? fd/port)
1220 (dup->fdes fd/port fd)
1221 (close fd/port)
1222 fd)
1223 (else
1224 (primitive-move->fdes fd/port fd)
1225 (set-port-revealed! fd/port 1)
1226 fd/port)))
1227
1228 (define (release-port-handle port)
1229 (let ((revealed (port-revealed port)))
1230 (if (> revealed 0)
1231 (set-port-revealed! port (- revealed 1)))))
1232
1233 (define dup->port
1234 (case-lambda
1235 ((port/fd mode)
1236 (fdopen (dup->fdes port/fd) mode))
1237 ((port/fd mode new-fd)
1238 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
1239 (set-port-revealed! port 1)
1240 port))))
1241
1242 (define dup->inport
1243 (case-lambda
1244 ((port/fd)
1245 (dup->port port/fd "r"))
1246 ((port/fd new-fd)
1247 (dup->port port/fd "r" new-fd))))
1248
1249 (define dup->outport
1250 (case-lambda
1251 ((port/fd)
1252 (dup->port port/fd "w"))
1253 ((port/fd new-fd)
1254 (dup->port port/fd "w" new-fd))))
1255
1256 (define dup
1257 (case-lambda
1258 ((port/fd)
1259 (if (integer? port/fd)
1260 (dup->fdes port/fd)
1261 (dup->port port/fd (port-mode port/fd))))
1262 ((port/fd new-fd)
1263 (if (integer? port/fd)
1264 (dup->fdes port/fd new-fd)
1265 (dup->port port/fd (port-mode port/fd) new-fd)))))
1266
1267 (define (duplicate-port port modes)
1268 (dup->port port modes))
1269
1270 (define (fdes->inport fdes)
1271 (let loop ((rest-ports (fdes->ports fdes)))
1272 (cond ((null? rest-ports)
1273 (let ((result (fdopen fdes "r")))
1274 (set-port-revealed! result 1)
1275 result))
1276 ((input-port? (car rest-ports))
1277 (set-port-revealed! (car rest-ports)
1278 (+ (port-revealed (car rest-ports)) 1))
1279 (car rest-ports))
1280 (else
1281 (loop (cdr rest-ports))))))
1282
1283 (define (fdes->outport fdes)
1284 (let loop ((rest-ports (fdes->ports fdes)))
1285 (cond ((null? rest-ports)
1286 (let ((result (fdopen fdes "w")))
1287 (set-port-revealed! result 1)
1288 result))
1289 ((output-port? (car rest-ports))
1290 (set-port-revealed! (car rest-ports)
1291 (+ (port-revealed (car rest-ports)) 1))
1292 (car rest-ports))
1293 (else
1294 (loop (cdr rest-ports))))))
1295
1296 (define (port->fdes port)
1297 (set-port-revealed! port (+ (port-revealed port) 1))
1298 (fileno port))
1299
1300 (define (setenv name value)
1301 (if value
1302 (putenv (string-append name "=" value))
1303 (putenv name)))
1304
1305 (define (unsetenv name)
1306 "Remove the entry for NAME from the environment."
1307 (putenv name))
1308
1309 \f
1310
1311 ;;; {Load Paths}
1312 ;;;
1313
1314 (define (in-vicinity vicinity file)
1315 (let ((tail (let ((len (string-length vicinity)))
1316 (if (zero? len)
1317 #f
1318 (string-ref vicinity (- len 1))))))
1319 (string-append vicinity
1320 (if (or (not tail)
1321 (eq? tail #\/))
1322 ""
1323 "/")
1324 file)))
1325
1326 \f
1327
1328 ;;; {Help for scm_shell}
1329 ;;;
1330 ;;; The argument-processing code used by Guile-based shells generates
1331 ;;; Scheme code based on the argument list. This page contains help
1332 ;;; functions for the code it generates.
1333 ;;;
1334
1335 (define (command-line) (program-arguments))
1336
1337 ;; This is mostly for the internal use of the code generated by
1338 ;; scm_compile_shell_switches.
1339
1340 (define (load-user-init)
1341 (let* ((home (or (getenv "HOME")
1342 (false-if-exception (passwd:dir (getpwuid (getuid))))
1343 "/")) ;; fallback for cygwin etc.
1344 (init-file (in-vicinity home ".guile")))
1345 (if (file-exists? init-file)
1346 (primitive-load init-file))))
1347
1348 \f
1349
1350 ;;; {The interpreter stack}
1351 ;;;
1352
1353 ;; %stacks defined in stacks.c
1354 (define (%start-stack tag thunk)
1355 (let ((prompt-tag (make-prompt-tag "start-stack")))
1356 (call-with-prompt
1357 prompt-tag
1358 (lambda ()
1359 (with-fluids ((%stacks (acons tag prompt-tag
1360 (or (fluid-ref %stacks) '()))))
1361 (thunk)))
1362 (lambda (k . args)
1363 (%start-stack tag (lambda () (apply k args)))))))
1364
1365 (define-syntax-rule (start-stack tag exp)
1366 (%start-stack tag (lambda () exp)))
1367
1368 \f
1369
1370 ;;; {Loading by paths}
1371 ;;;
1372
1373 ;;; Load a Scheme source file named NAME, searching for it in the
1374 ;;; directories listed in %load-path, and applying each of the file
1375 ;;; name extensions listed in %load-extensions.
1376 (define (load-from-path name)
1377 (start-stack 'load-stack
1378 (primitive-load-path name)))
1379
1380 (define %load-verbosely #f)
1381 (define (assert-load-verbosity v) (set! %load-verbosely v))
1382
1383 (define (%load-announce file)
1384 (if %load-verbosely
1385 (with-output-to-port (current-warning-port)
1386 (lambda ()
1387 (display ";;; ")
1388 (display "loading ")
1389 (display file)
1390 (newline)
1391 (force-output)))))
1392
1393 (set! %load-hook %load-announce)
1394
1395 \f
1396
1397 ;;; {Reader Extensions}
1398 ;;;
1399 ;;; Reader code for various "#c" forms.
1400 ;;;
1401
1402 (define read-eval? (make-fluid #f))
1403 (read-hash-extend #\.
1404 (lambda (c port)
1405 (if (fluid-ref read-eval?)
1406 (eval (read port) (interaction-environment))
1407 (error
1408 "#. read expansion found and read-eval? is #f."))))
1409
1410 \f
1411
1412 ;;; {Low Level Modules}
1413 ;;;
1414 ;;; These are the low level data structures for modules.
1415 ;;;
1416 ;;; Every module object is of the type 'module-type', which is a record
1417 ;;; consisting of the following members:
1418 ;;;
1419 ;;; - eval-closure: the function that defines for its module the strategy that
1420 ;;; shall be followed when looking up symbols in the module.
1421 ;;;
1422 ;;; An eval-closure is a function taking two arguments: the symbol to be
1423 ;;; looked up and a boolean value telling whether a binding for the symbol
1424 ;;; should be created if it does not exist yet. If the symbol lookup
1425 ;;; succeeded (either because an existing binding was found or because a new
1426 ;;; binding was created), a variable object representing the binding is
1427 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1428 ;;; closure does not take the module to be searched as an argument: During
1429 ;;; construction of the eval-closure, the eval-closure has to store the
1430 ;;; module it belongs to in its environment. This means, that any
1431 ;;; eval-closure can belong to only one module.
1432 ;;;
1433 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1434 ;;; special cases of eval-closures are to be distinguished: During startup
1435 ;;; the module system is not yet activated. In this phase, no modules are
1436 ;;; defined and all bindings are automatically stored by the system in the
1437 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1438 ;;; functions which require an eval-closure as their argument need to be
1439 ;;; passed the value #f.
1440 ;;;
1441 ;;; The other two special cases of eval-closures are the
1442 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1443 ;;; behave equally for the case that no new binding is to be created. The
1444 ;;; difference between the two comes in, when the boolean argument to the
1445 ;;; eval-closure indicates that a new binding shall be created if it is not
1446 ;;; found.
1447 ;;;
1448 ;;; Given that no new binding shall be created, both standard eval-closures
1449 ;;; define the following standard strategy of searching bindings in the
1450 ;;; module: First, the module's obarray is searched for the symbol. Second,
1451 ;;; if no binding for the symbol was found in the module's obarray, the
1452 ;;; module's binder procedure is exececuted. If this procedure did not
1453 ;;; return a binding for the symbol, the modules referenced in the module's
1454 ;;; uses list are recursively searched for a binding of the symbol. If the
1455 ;;; binding can not be found in these modules also, the symbol lookup has
1456 ;;; failed.
1457 ;;;
1458 ;;; If a new binding shall be created, the standard-interface-eval-closure
1459 ;;; immediately returns indicating failure. That is, it does not even try
1460 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1461 ;;; first search the obarray, and if no binding was found there, would
1462 ;;; create a new binding in the obarray, therefore not calling the binder
1463 ;;; procedure or searching the modules in the uses list.
1464 ;;;
1465 ;;; The explanation of the following members obarray, binder and uses
1466 ;;; assumes that the symbol lookup follows the strategy that is defined in
1467 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1468 ;;;
1469 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1470 ;;; hash table, the definitions are found that are local to the module (that
1471 ;;; is, not imported from other modules). When looking up bindings in the
1472 ;;; module, this hash table is searched first.
1473 ;;;
1474 ;;; - binder: either #f or a function taking a module and a symbol argument.
1475 ;;; If it is a function it is called after the obarray has been
1476 ;;; unsuccessfully searched for a binding. It then can provide bindings
1477 ;;; that would otherwise not be found locally in the module.
1478 ;;;
1479 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1480 ;;; These modules are the third place queried for bindings after the obarray
1481 ;;; has been unsuccessfully searched and the binder function did not deliver
1482 ;;; a result either.
1483 ;;;
1484 ;;; - transformer: either #f or a function taking a scheme expression as
1485 ;;; delivered by read. If it is a function, it will be called to perform
1486 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1487 ;;; expression. The output of the transformer function will then be passed
1488 ;;; to Guile's internal memoizer. This means that the output must be valid
1489 ;;; scheme code. The only exception is, that the output may make use of the
1490 ;;; syntax extensions provided to identify the modules that a binding
1491 ;;; belongs to.
1492 ;;;
1493 ;;; - name: the name of the module. This is used for all kinds of printing
1494 ;;; outputs. In certain places the module name also serves as a way of
1495 ;;; identification. When adding a module to the uses list of another
1496 ;;; module, it is made sure that the new uses list will not contain two
1497 ;;; modules of the same name.
1498 ;;;
1499 ;;; - kind: classification of the kind of module. The value is (currently?)
1500 ;;; only used for printing. It has no influence on how a module is treated.
1501 ;;; Currently the following values are used when setting the module kind:
1502 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1503 ;;; is set, it defaults to 'module.
1504 ;;;
1505 ;;; - duplicates-handlers: a list of procedures that get called to make a
1506 ;;; choice between two duplicate bindings when name clashes occur. See the
1507 ;;; `duplicate-handlers' global variable below.
1508 ;;;
1509 ;;; - observers: a list of procedures that get called when the module is
1510 ;;; modified.
1511 ;;;
1512 ;;; - weak-observers: a weak-key hash table of procedures that get called
1513 ;;; when the module is modified. See `module-observe-weak' for details.
1514 ;;;
1515 ;;; In addition, the module may (must?) contain a binding for
1516 ;;; `%module-public-interface'. This variable should be bound to a module
1517 ;;; representing the exported interface of a module. See the
1518 ;;; `module-public-interface' and `module-export!' procedures.
1519 ;;;
1520 ;;; !!! warning: The interface to lazy binder procedures is going
1521 ;;; to be changed in an incompatible way to permit all the basic
1522 ;;; module ops to be virtualized.
1523 ;;;
1524 ;;; (make-module size use-list lazy-binding-proc) => module
1525 ;;; module-{obarray,uses,binder}[|-set!]
1526 ;;; (module? obj) => [#t|#f]
1527 ;;; (module-locally-bound? module symbol) => [#t|#f]
1528 ;;; (module-bound? module symbol) => [#t|#f]
1529 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1530 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1531 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1532 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1533 ;;; (module-symbol-binding module symbol opt-value)
1534 ;;; => [ <obj> | opt-value | an error occurs ]
1535 ;;; (module-make-local-var! module symbol) => #<variable...>
1536 ;;; (module-add! module symbol var) => unspecified
1537 ;;; (module-remove! module symbol) => unspecified
1538 ;;; (module-for-each proc module) => unspecified
1539 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1540 ;;; (set-current-module module) => unspecified
1541 ;;; (current-module) => #<module...>
1542 ;;;
1543 ;;;
1544
1545 \f
1546
1547 ;;; {Printing Modules}
1548 ;;;
1549
1550 ;; This is how modules are printed. You can re-define it.
1551 (define (%print-module mod port)
1552 (display "#<" port)
1553 (display (or (module-kind mod) "module") port)
1554 (display " " port)
1555 (display (module-name mod) port)
1556 (display " " port)
1557 (display (number->string (object-address mod) 16) port)
1558 (display ">" port))
1559
1560 (letrec-syntax
1561 ;; Locally extend the syntax to allow record accessors to be defined at
1562 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1563 ;; the setters, in order to allow for redefinition of the record type; not
1564 ;; relevant in the case of modules, but perhaps if we make this public, it
1565 ;; could matter.
1566
1567 ((define-record-type
1568 (lambda (x)
1569 (define (make-id scope . fragments)
1570 (datum->syntax #'scope
1571 (apply symbol-append
1572 (map (lambda (x)
1573 (if (symbol? x) x (syntax->datum x)))
1574 fragments))))
1575
1576 (define (getter rtd type-name field slot)
1577 #`(define #,(make-id rtd type-name '- field)
1578 (let ((rtd #,rtd))
1579 (lambda (#,type-name)
1580 (if (eq? (struct-vtable #,type-name) rtd)
1581 (struct-ref #,type-name #,slot)
1582 (%record-type-error rtd #,type-name))))))
1583
1584 (define (setter rtd type-name field slot)
1585 #`(define #,(make-id rtd 'set- type-name '- field '!)
1586 (let ((rtd #,rtd))
1587 (lambda (#,type-name val)
1588 (if (eq? (struct-vtable #,type-name) rtd)
1589 (struct-set! #,type-name #,slot val)
1590 (%record-type-error rtd #,type-name))))))
1591
1592 (define (accessors rtd type-name fields n exp)
1593 (syntax-case fields ()
1594 (() exp)
1595 (((field #:no-accessors) field* ...) (identifier? #'field)
1596 (accessors rtd type-name #'(field* ...) (1+ n)
1597 exp))
1598 (((field #:no-setter) field* ...) (identifier? #'field)
1599 (accessors rtd type-name #'(field* ...) (1+ n)
1600 #`(begin #,exp
1601 #,(getter rtd type-name #'field n))))
1602 (((field #:no-getter) field* ...) (identifier? #'field)
1603 (accessors rtd type-name #'(field* ...) (1+ n)
1604 #`(begin #,exp
1605 #,(setter rtd type-name #'field n))))
1606 ((field field* ...) (identifier? #'field)
1607 (accessors rtd type-name #'(field* ...) (1+ n)
1608 #`(begin #,exp
1609 #,(getter rtd type-name #'field n)
1610 #,(setter rtd type-name #'field n))))))
1611
1612 (define (predicate rtd type-name fields exp)
1613 (accessors
1614 rtd type-name fields 0
1615 #`(begin
1616 #,exp
1617 (define (#,(make-id rtd type-name '?) obj)
1618 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1619
1620 (define (field-list fields)
1621 (syntax-case fields ()
1622 (() '())
1623 (((f . opts) . rest) (identifier? #'f)
1624 (cons #'f (field-list #'rest)))
1625 ((f . rest) (identifier? #'f)
1626 (cons #'f (field-list #'rest)))))
1627
1628 (define (constructor rtd type-name fields exp)
1629 (let ((ctor (make-id rtd type-name '-constructor))
1630 (args (field-list fields)))
1631 (predicate rtd type-name fields
1632 #`(begin #,exp
1633 (define #,ctor
1634 (let ((rtd #,rtd))
1635 (lambda #,args
1636 (make-struct rtd 0 #,@args))))
1637 (struct-set! #,rtd (+ vtable-offset-user 2)
1638 #,ctor)))))
1639
1640 (define (type type-name printer fields)
1641 (define (make-layout)
1642 (let lp ((fields fields) (slots '()))
1643 (syntax-case fields ()
1644 (() (datum->syntax #'here
1645 (make-struct-layout
1646 (apply string-append slots))))
1647 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1648
1649 (let ((rtd (make-id type-name type-name '-type)))
1650 (constructor rtd type-name fields
1651 #`(begin
1652 (define #,rtd
1653 (make-struct record-type-vtable 0
1654 '#,(make-layout)
1655 #,printer
1656 '#,type-name
1657 '#,(field-list fields)))
1658 (set-struct-vtable-name! #,rtd '#,type-name)))))
1659
1660 (syntax-case x ()
1661 ((_ type-name printer (field ...))
1662 (type #'type-name #'printer #'(field ...)))))))
1663
1664 ;; module-type
1665 ;;
1666 ;; A module is characterized by an obarray in which local symbols
1667 ;; are interned, a list of modules, "uses", from which non-local
1668 ;; bindings can be inherited, and an optional lazy-binder which
1669 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1670 ;; bindings that would otherwise not be found locally in the module.
1671 ;;
1672 ;; NOTE: If you change the set of fields or their order, you also need to
1673 ;; change the constants in libguile/modules.h.
1674 ;;
1675 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
1676 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1677 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1678 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1679 ;;
1680 (define-record-type module
1681 (lambda (obj port) (%print-module obj port))
1682 (obarray
1683 uses
1684 binder
1685 eval-closure
1686 (transformer #:no-getter)
1687 (name #:no-getter)
1688 kind
1689 duplicates-handlers
1690 (import-obarray #:no-setter)
1691 observers
1692 (weak-observers #:no-setter)
1693 version
1694 submodules
1695 submodule-binder
1696 public-interface
1697 filename)))
1698
1699
1700 ;; make-module &opt size uses binder
1701 ;;
1702 ;; Create a new module, perhaps with a particular size of obarray,
1703 ;; initial uses list, or binding procedure.
1704 ;;
1705 (define* (make-module #:optional (size 31) (uses '()) (binder #f))
1706 (define %default-import-size
1707 ;; Typical number of imported bindings actually used by a module.
1708 600)
1709
1710 (if (not (integer? size))
1711 (error "Illegal size to make-module." size))
1712 (if (not (and (list? uses)
1713 (and-map module? uses)))
1714 (error "Incorrect use list." uses))
1715 (if (and binder (not (procedure? binder)))
1716 (error
1717 "Lazy-binder expected to be a procedure or #f." binder))
1718
1719 (let ((module (module-constructor (make-hash-table size)
1720 uses binder #f macroexpand
1721 #f #f #f
1722 (make-hash-table %default-import-size)
1723 '()
1724 (make-weak-key-hash-table 31) #f
1725 (make-hash-table 7) #f #f #f)))
1726
1727 ;; We can't pass this as an argument to module-constructor,
1728 ;; because we need it to close over a pointer to the module
1729 ;; itself.
1730 (set-module-eval-closure! module (standard-eval-closure module))
1731
1732 module))
1733
1734
1735 \f
1736
1737 ;;; {Observer protocol}
1738 ;;;
1739
1740 (define (module-observe module proc)
1741 (set-module-observers! module (cons proc (module-observers module)))
1742 (cons module proc))
1743
1744 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
1745 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1746 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1747 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1748 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1749 ;; for instance).
1750
1751 ;; The two-argument version is kept for backward compatibility: when called
1752 ;; with two arguments, the observer gets unregistered when closure PROC
1753 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1754 (hashq-set! (module-weak-observers module) observer-id proc))
1755
1756 (define (module-unobserve token)
1757 (let ((module (car token))
1758 (id (cdr token)))
1759 (if (integer? id)
1760 (hash-remove! (module-weak-observers module) id)
1761 (set-module-observers! module (delq1! id (module-observers module)))))
1762 *unspecified*)
1763
1764 (define module-defer-observers #f)
1765 (define module-defer-observers-mutex (make-mutex 'recursive))
1766 (define module-defer-observers-table (make-hash-table))
1767
1768 (define (module-modified m)
1769 (if module-defer-observers
1770 (hash-set! module-defer-observers-table m #t)
1771 (module-call-observers m)))
1772
1773 ;;; This function can be used to delay calls to observers so that they
1774 ;;; can be called once only in the face of massive updating of modules.
1775 ;;;
1776 (define (call-with-deferred-observers thunk)
1777 (dynamic-wind
1778 (lambda ()
1779 (lock-mutex module-defer-observers-mutex)
1780 (set! module-defer-observers #t))
1781 thunk
1782 (lambda ()
1783 (set! module-defer-observers #f)
1784 (hash-for-each (lambda (m dummy)
1785 (module-call-observers m))
1786 module-defer-observers-table)
1787 (hash-clear! module-defer-observers-table)
1788 (unlock-mutex module-defer-observers-mutex))))
1789
1790 (define (module-call-observers m)
1791 (for-each (lambda (proc) (proc m)) (module-observers m))
1792
1793 ;; We assume that weak observers don't (un)register themselves as they are
1794 ;; called since this would preclude proper iteration over the hash table
1795 ;; elements.
1796 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1797
1798 \f
1799
1800 ;;; {Module Searching in General}
1801 ;;;
1802 ;;; We sometimes want to look for properties of a symbol
1803 ;;; just within the obarray of one module. If the property
1804 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1805 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1806 ;;;
1807 ;;;
1808 ;;; Other times, we want to test for a symbol property in the obarray
1809 ;;; of M and, if it is not found there, try each of the modules in the
1810 ;;; uses list of M. This is the normal way of testing for some
1811 ;;; property, so we state these properties without qualification as
1812 ;;; in: ``The symbol 'fnord is interned in module M because it is
1813 ;;; interned locally in module M2 which is a member of the uses list
1814 ;;; of M.''
1815 ;;;
1816
1817 ;; module-search fn m
1818 ;;
1819 ;; return the first non-#f result of FN applied to M and then to
1820 ;; the modules in the uses of m, and so on recursively. If all applications
1821 ;; return #f, then so does this function.
1822 ;;
1823 (define (module-search fn m v)
1824 (define (loop pos)
1825 (and (pair? pos)
1826 (or (module-search fn (car pos) v)
1827 (loop (cdr pos)))))
1828 (or (fn m v)
1829 (loop (module-uses m))))
1830
1831
1832 ;;; {Is a symbol bound in a module?}
1833 ;;;
1834 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1835 ;;; of S in M has been set to some well-defined value.
1836 ;;;
1837
1838 ;; module-locally-bound? module symbol
1839 ;;
1840 ;; Is a symbol bound (interned and defined) locally in a given module?
1841 ;;
1842 (define (module-locally-bound? m v)
1843 (let ((var (module-local-variable m v)))
1844 (and var
1845 (variable-bound? var))))
1846
1847 ;; module-bound? module symbol
1848 ;;
1849 ;; Is a symbol bound (interned and defined) anywhere in a given module
1850 ;; or its uses?
1851 ;;
1852 (define (module-bound? m v)
1853 (let ((var (module-variable m v)))
1854 (and var
1855 (variable-bound? var))))
1856
1857 ;;; {Is a symbol interned in a module?}
1858 ;;;
1859 ;;; Symbol S in Module M is interned if S occurs in
1860 ;;; of S in M has been set to some well-defined value.
1861 ;;;
1862 ;;; It is possible to intern a symbol in a module without providing
1863 ;;; an initial binding for the corresponding variable. This is done
1864 ;;; with:
1865 ;;; (module-add! module symbol (make-undefined-variable))
1866 ;;;
1867 ;;; In that case, the symbol is interned in the module, but not
1868 ;;; bound there. The unbound symbol shadows any binding for that
1869 ;;; symbol that might otherwise be inherited from a member of the uses list.
1870 ;;;
1871
1872 (define (module-obarray-get-handle ob key)
1873 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1874
1875 (define (module-obarray-ref ob key)
1876 ((if (symbol? key) hashq-ref hash-ref) ob key))
1877
1878 (define (module-obarray-set! ob key val)
1879 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1880
1881 (define (module-obarray-remove! ob key)
1882 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1883
1884 ;; module-symbol-locally-interned? module symbol
1885 ;;
1886 ;; is a symbol interned (not neccessarily defined) locally in a given module
1887 ;; or its uses? Interned symbols shadow inherited bindings even if
1888 ;; they are not themselves bound to a defined value.
1889 ;;
1890 (define (module-symbol-locally-interned? m v)
1891 (not (not (module-obarray-get-handle (module-obarray m) v))))
1892
1893 ;; module-symbol-interned? module symbol
1894 ;;
1895 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1896 ;; or its uses? Interned symbols shadow inherited bindings even if
1897 ;; they are not themselves bound to a defined value.
1898 ;;
1899 (define (module-symbol-interned? m v)
1900 (module-search module-symbol-locally-interned? m v))
1901
1902
1903 ;;; {Mapping modules x symbols --> variables}
1904 ;;;
1905
1906 ;; module-local-variable module symbol
1907 ;; return the local variable associated with a MODULE and SYMBOL.
1908 ;;
1909 ;;; This function is very important. It is the only function that can
1910 ;;; return a variable from a module other than the mutators that store
1911 ;;; new variables in modules. Therefore, this function is the location
1912 ;;; of the "lazy binder" hack.
1913 ;;;
1914 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1915 ;;; to a variable, return that variable object.
1916 ;;;
1917 ;;; If the symbols is not found at first, but the module has a lazy binder,
1918 ;;; then try the binder.
1919 ;;;
1920 ;;; If the symbol is not found at all, return #f.
1921 ;;;
1922 ;;; (This is now written in C, see `modules.c'.)
1923 ;;;
1924
1925 ;;; {Mapping modules x symbols --> bindings}
1926 ;;;
1927 ;;; These are similar to the mapping to variables, except that the
1928 ;;; variable is dereferenced.
1929 ;;;
1930
1931 ;; module-symbol-binding module symbol opt-value
1932 ;;
1933 ;; return the binding of a variable specified by name within
1934 ;; a given module, signalling an error if the variable is unbound.
1935 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1936 ;; return OPT-VALUE.
1937 ;;
1938 (define (module-symbol-local-binding m v . opt-val)
1939 (let ((var (module-local-variable m v)))
1940 (if (and var (variable-bound? var))
1941 (variable-ref var)
1942 (if (not (null? opt-val))
1943 (car opt-val)
1944 (error "Locally unbound variable." v)))))
1945
1946 ;; module-symbol-binding module symbol opt-value
1947 ;;
1948 ;; return the binding of a variable specified by name within
1949 ;; a given module, signalling an error if the variable is unbound.
1950 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1951 ;; return OPT-VALUE.
1952 ;;
1953 (define (module-symbol-binding m v . opt-val)
1954 (let ((var (module-variable m v)))
1955 (if (and var (variable-bound? var))
1956 (variable-ref var)
1957 (if (not (null? opt-val))
1958 (car opt-val)
1959 (error "Unbound variable." v)))))
1960
1961
1962 \f
1963
1964 ;;; {Adding Variables to Modules}
1965 ;;;
1966
1967 ;; module-make-local-var! module symbol
1968 ;;
1969 ;; ensure a variable for V in the local namespace of M.
1970 ;; If no variable was already there, then create a new and uninitialzied
1971 ;; variable.
1972 ;;
1973 ;; This function is used in modules.c.
1974 ;;
1975 (define (module-make-local-var! m v)
1976 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1977 (and (variable? b)
1978 (begin
1979 ;; Mark as modified since this function is called when
1980 ;; the standard eval closure defines a binding
1981 (module-modified m)
1982 b)))
1983
1984 ;; Create a new local variable.
1985 (let ((local-var (make-undefined-variable)))
1986 (module-add! m v local-var)
1987 local-var)))
1988
1989 ;; module-ensure-local-variable! module symbol
1990 ;;
1991 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1992 ;; there is no binding for SYMBOL, create a new uninitialized
1993 ;; variable. Return the local variable.
1994 ;;
1995 (define (module-ensure-local-variable! module symbol)
1996 (or (module-local-variable module symbol)
1997 (let ((var (make-undefined-variable)))
1998 (module-add! module symbol var)
1999 var)))
2000
2001 ;; module-add! module symbol var
2002 ;;
2003 ;; ensure a particular variable for V in the local namespace of M.
2004 ;;
2005 (define (module-add! m v var)
2006 (if (not (variable? var))
2007 (error "Bad variable to module-add!" var))
2008 (module-obarray-set! (module-obarray m) v var)
2009 (module-modified m))
2010
2011 ;; module-remove!
2012 ;;
2013 ;; make sure that a symbol is undefined in the local namespace of M.
2014 ;;
2015 (define (module-remove! m v)
2016 (module-obarray-remove! (module-obarray m) v)
2017 (module-modified m))
2018
2019 (define (module-clear! m)
2020 (hash-clear! (module-obarray m))
2021 (module-modified m))
2022
2023 ;; MODULE-FOR-EACH -- exported
2024 ;;
2025 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
2026 ;;
2027 (define (module-for-each proc module)
2028 (hash-for-each proc (module-obarray module)))
2029
2030 (define (module-map proc module)
2031 (hash-map->list proc (module-obarray module)))
2032
2033 ;; Submodules
2034 ;;
2035 ;; Modules exist in a separate namespace from values, because you generally do
2036 ;; not want the name of a submodule, which you might not even use, to collide
2037 ;; with local variables that happen to be named the same as the submodule.
2038 ;;
2039 (define (module-ref-submodule module name)
2040 (or (hashq-ref (module-submodules module) name)
2041 (and (module-submodule-binder module)
2042 ((module-submodule-binder module) module name))))
2043
2044 (define (module-define-submodule! module name submodule)
2045 (hashq-set! (module-submodules module) name submodule))
2046
2047 ;; It used to be, however, that module names were also present in the
2048 ;; value namespace. When we enable deprecated code, we preserve this
2049 ;; legacy behavior.
2050 ;;
2051 ;; These shims are defined here instead of in deprecated.scm because we
2052 ;; need their definitions before loading other modules.
2053 ;;
2054 (begin-deprecated
2055 (define (module-ref-submodule module name)
2056 (or (hashq-ref (module-submodules module) name)
2057 (and (module-submodule-binder module)
2058 ((module-submodule-binder module) module name))
2059 (let ((var (module-local-variable module name)))
2060 (and var (variable-bound? var) (module? (variable-ref var))
2061 (begin
2062 (warn "module" module "not in submodules table")
2063 (variable-ref var))))))
2064
2065 (define (module-define-submodule! module name submodule)
2066 (let ((var (module-local-variable module name)))
2067 (if (and var
2068 (or (not (variable-bound? var))
2069 (not (module? (variable-ref var)))))
2070 (warn "defining module" module ": not overriding local definition" var)
2071 (module-define! module name submodule)))
2072 (hashq-set! (module-submodules module) name submodule)))
2073
2074 \f
2075
2076 ;;; {Module-based Loading}
2077 ;;;
2078
2079 (define (save-module-excursion thunk)
2080 (let ((inner-module (current-module))
2081 (outer-module #f))
2082 (dynamic-wind (lambda ()
2083 (set! outer-module (current-module))
2084 (set-current-module inner-module)
2085 (set! inner-module #f))
2086 thunk
2087 (lambda ()
2088 (set! inner-module (current-module))
2089 (set-current-module outer-module)
2090 (set! outer-module #f)))))
2091
2092 \f
2093
2094 ;;; {MODULE-REF -- exported}
2095 ;;;
2096
2097 ;; Returns the value of a variable called NAME in MODULE or any of its
2098 ;; used modules. If there is no such variable, then if the optional third
2099 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
2100 ;;
2101 (define (module-ref module name . rest)
2102 (let ((variable (module-variable module name)))
2103 (if (and variable (variable-bound? variable))
2104 (variable-ref variable)
2105 (if (null? rest)
2106 (error "No variable named" name 'in module)
2107 (car rest) ; default value
2108 ))))
2109
2110 ;; MODULE-SET! -- exported
2111 ;;
2112 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
2113 ;; to VALUE; if there is no such variable, an error is signaled.
2114 ;;
2115 (define (module-set! module name value)
2116 (let ((variable (module-variable module name)))
2117 (if variable
2118 (variable-set! variable value)
2119 (error "No variable named" name 'in module))))
2120
2121 ;; MODULE-DEFINE! -- exported
2122 ;;
2123 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
2124 ;; variable, it is added first.
2125 ;;
2126 (define (module-define! module name value)
2127 (let ((variable (module-local-variable module name)))
2128 (if variable
2129 (begin
2130 (variable-set! variable value)
2131 (module-modified module))
2132 (let ((variable (make-variable value)))
2133 (module-add! module name variable)))))
2134
2135 ;; MODULE-DEFINED? -- exported
2136 ;;
2137 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
2138 ;; uses)
2139 ;;
2140 (define (module-defined? module name)
2141 (let ((variable (module-variable module name)))
2142 (and variable (variable-bound? variable))))
2143
2144 ;; MODULE-USE! module interface
2145 ;;
2146 ;; Add INTERFACE to the list of interfaces used by MODULE.
2147 ;;
2148 (define (module-use! module interface)
2149 (if (not (or (eq? module interface)
2150 (memq interface (module-uses module))))
2151 (begin
2152 ;; Newly used modules must be appended rather than consed, so that
2153 ;; `module-variable' traverses the use list starting from the first
2154 ;; used module.
2155 (set-module-uses! module (append (module-uses module)
2156 (list interface)))
2157 (hash-clear! (module-import-obarray module))
2158 (module-modified module))))
2159
2160 ;; MODULE-USE-INTERFACES! module interfaces
2161 ;;
2162 ;; Same as MODULE-USE!, but only notifies module observers after all
2163 ;; interfaces are added to the inports list.
2164 ;;
2165 (define (module-use-interfaces! module interfaces)
2166 (let* ((cur (module-uses module))
2167 (new (let lp ((in interfaces) (out '()))
2168 (if (null? in)
2169 (reverse out)
2170 (lp (cdr in)
2171 (let ((iface (car in)))
2172 (if (or (memq iface cur) (memq iface out))
2173 out
2174 (cons iface out))))))))
2175 (set-module-uses! module (append cur new))
2176 (hash-clear! (module-import-obarray module))
2177 (module-modified module)))
2178
2179 \f
2180
2181 ;;; {Recursive Namespaces}
2182 ;;;
2183 ;;; A hierarchical namespace emerges if we consider some module to be
2184 ;;; root, and submodules of that module to be nested namespaces.
2185 ;;;
2186 ;;; The routines here manage variable names in hierarchical namespace.
2187 ;;; Each variable name is a list of elements, looked up in successively nested
2188 ;;; modules.
2189 ;;;
2190 ;;; (nested-ref some-root-module '(foo bar baz))
2191 ;;; => <value of a variable named baz in the submodule bar of
2192 ;;; the submodule foo of some-root-module>
2193 ;;;
2194 ;;;
2195 ;;; There are:
2196 ;;;
2197 ;;; ;; a-root is a module
2198 ;;; ;; name is a list of symbols
2199 ;;;
2200 ;;; nested-ref a-root name
2201 ;;; nested-set! a-root name val
2202 ;;; nested-define! a-root name val
2203 ;;; nested-remove! a-root name
2204 ;;;
2205 ;;; These functions manipulate values in namespaces. For referencing the
2206 ;;; namespaces themselves, use the following:
2207 ;;;
2208 ;;; nested-ref-module a-root name
2209 ;;; nested-define-module! a-root name mod
2210 ;;;
2211 ;;; (current-module) is a natural choice for a root so for convenience there are
2212 ;;; also:
2213 ;;;
2214 ;;; local-ref name == nested-ref (current-module) name
2215 ;;; local-set! name val == nested-set! (current-module) name val
2216 ;;; local-define name val == nested-define! (current-module) name val
2217 ;;; local-remove name == nested-remove! (current-module) name
2218 ;;; local-ref-module name == nested-ref-module (current-module) name
2219 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2220 ;;;
2221
2222
2223 (define (nested-ref root names)
2224 (if (null? names)
2225 root
2226 (let loop ((cur root)
2227 (head (car names))
2228 (tail (cdr names)))
2229 (if (null? tail)
2230 (module-ref cur head #f)
2231 (let ((cur (module-ref-submodule cur head)))
2232 (and cur
2233 (loop cur (car tail) (cdr tail))))))))
2234
2235 (define (nested-set! root names val)
2236 (let loop ((cur root)
2237 (head (car names))
2238 (tail (cdr names)))
2239 (if (null? tail)
2240 (module-set! cur head val)
2241 (let ((cur (module-ref-submodule cur head)))
2242 (if (not cur)
2243 (error "failed to resolve module" names)
2244 (loop cur (car tail) (cdr tail)))))))
2245
2246 (define (nested-define! root names val)
2247 (let loop ((cur root)
2248 (head (car names))
2249 (tail (cdr names)))
2250 (if (null? tail)
2251 (module-define! cur head val)
2252 (let ((cur (module-ref-submodule cur head)))
2253 (if (not cur)
2254 (error "failed to resolve module" names)
2255 (loop cur (car tail) (cdr tail)))))))
2256
2257 (define (nested-remove! root names)
2258 (let loop ((cur root)
2259 (head (car names))
2260 (tail (cdr names)))
2261 (if (null? tail)
2262 (module-remove! cur head)
2263 (let ((cur (module-ref-submodule cur head)))
2264 (if (not cur)
2265 (error "failed to resolve module" names)
2266 (loop cur (car tail) (cdr tail)))))))
2267
2268
2269 (define (nested-ref-module root names)
2270 (let loop ((cur root)
2271 (names names))
2272 (if (null? names)
2273 cur
2274 (let ((cur (module-ref-submodule cur (car names))))
2275 (and cur
2276 (loop cur (cdr names)))))))
2277
2278 (define (nested-define-module! root names module)
2279 (if (null? names)
2280 (error "can't redefine root module" root module)
2281 (let loop ((cur root)
2282 (head (car names))
2283 (tail (cdr names)))
2284 (if (null? tail)
2285 (module-define-submodule! cur head module)
2286 (let ((cur (or (module-ref-submodule cur head)
2287 (let ((m (make-module 31)))
2288 (set-module-kind! m 'directory)
2289 (set-module-name! m (append (module-name cur)
2290 (list head)))
2291 (module-define-submodule! cur head m)
2292 m))))
2293 (loop cur (car tail) (cdr tail)))))))
2294
2295
2296 (define (local-ref names)
2297 (nested-ref (current-module) names))
2298
2299 (define (local-set! names val)
2300 (nested-set! (current-module) names val))
2301
2302 (define (local-define names val)
2303 (nested-define! (current-module) names val))
2304
2305 (define (local-remove names)
2306 (nested-remove! (current-module) names))
2307
2308 (define (local-ref-module names)
2309 (nested-ref-module (current-module) names))
2310
2311 (define (local-define-module names mod)
2312 (nested-define-module! (current-module) names mod))
2313
2314
2315
2316 \f
2317
2318 ;;; {The (guile) module}
2319 ;;;
2320 ;;; The standard module, which has the core Guile bindings. Also called the
2321 ;;; "root module", as it is imported by many other modules, but it is not
2322 ;;; necessarily the root of anything; and indeed, the module named '() might be
2323 ;;; better thought of as a root.
2324 ;;;
2325
2326 (define (set-system-module! m s)
2327 (set-procedure-property! (module-eval-closure m) 'system-module s))
2328
2329 ;; The root module uses the pre-modules-obarray as its obarray. This
2330 ;; special obarray accumulates all bindings that have been established
2331 ;; before the module system is fully booted.
2332 ;;
2333 ;; (The obarray continues to be used by code that has been closed over
2334 ;; before the module system has been booted.)
2335 ;;
2336 (define the-root-module
2337 (let ((m (make-module 0)))
2338 (set-module-obarray! m (%get-pre-modules-obarray))
2339 (set-module-name! m '(guile))
2340 (set-system-module! m #t)
2341 m))
2342
2343 ;; The root interface is a module that uses the same obarray as the
2344 ;; root module. It does not allow new definitions, tho.
2345 ;;
2346 (define the-scm-module
2347 (let ((m (make-module 0)))
2348 (set-module-obarray! m (%get-pre-modules-obarray))
2349 (set-module-eval-closure! m (standard-interface-eval-closure m))
2350 (set-module-name! m '(guile))
2351 (set-module-kind! m 'interface)
2352 (set-system-module! m #t)
2353
2354 ;; In Guile 1.8 and earlier M was its own public interface.
2355 (set-module-public-interface! m m)
2356
2357 m))
2358
2359 (set-module-public-interface! the-root-module the-scm-module)
2360
2361 \f
2362
2363 ;; Now that we have a root module, even though modules aren't fully booted,
2364 ;; expand the definition of resolve-module.
2365 ;;
2366 (define (resolve-module name . args)
2367 (if (equal? name '(guile))
2368 the-root-module
2369 (error "unexpected module to resolve during module boot" name)))
2370
2371 ;; Cheat. These bindings are needed by modules.c, but we don't want
2372 ;; to move their real definition here because that would be unnatural.
2373 ;;
2374 (define define-module* #f)
2375 (define process-use-modules #f)
2376 (define module-export! #f)
2377 (define default-duplicate-binding-procedures #f)
2378
2379 ;; This boots the module system. All bindings needed by modules.c
2380 ;; must have been defined by now.
2381 ;;
2382 (set-current-module the-root-module)
2383
2384
2385 \f
2386
2387 ;; Now that modules are booted, give module-name its final definition.
2388 ;;
2389 (define module-name
2390 (let ((accessor (record-accessor module-type 'name)))
2391 (lambda (mod)
2392 (or (accessor mod)
2393 (let ((name (list (gensym))))
2394 ;; Name MOD and bind it in the module root so that it's visible to
2395 ;; `resolve-module'. This is important as `psyntax' stores module
2396 ;; names and relies on being able to `resolve-module' them.
2397 (set-module-name! mod name)
2398 (nested-define-module! (resolve-module '() #f) name mod)
2399 (accessor mod))))))
2400
2401 (define (make-modules-in module name)
2402 (or (nested-ref-module module name)
2403 (let ((m (make-module 31)))
2404 (set-module-kind! m 'directory)
2405 (set-module-name! m (append (module-name module) name))
2406 (nested-define-module! module name m)
2407 m)))
2408
2409 (define (beautify-user-module! module)
2410 (let ((interface (module-public-interface module)))
2411 (if (or (not interface)
2412 (eq? interface module))
2413 (let ((interface (make-module 31)))
2414 (set-module-name! interface (module-name module))
2415 (set-module-version! interface (module-version module))
2416 (set-module-kind! interface 'interface)
2417 (set-module-public-interface! module interface))))
2418 (if (and (not (memq the-scm-module (module-uses module)))
2419 (not (eq? module the-root-module)))
2420 ;; Import the default set of bindings (from the SCM module) in MODULE.
2421 (module-use! module the-scm-module)))
2422
2423 (define (version-matches? version-ref target)
2424 (define (sub-versions-match? v-refs t)
2425 (define (sub-version-matches? v-ref t)
2426 (let ((matches? (lambda (v) (sub-version-matches? v t))))
2427 (cond
2428 ((number? v-ref) (eqv? v-ref t))
2429 ((list? v-ref)
2430 (case (car v-ref)
2431 ((>=) (>= t (cadr v-ref)))
2432 ((<=) (<= t (cadr v-ref)))
2433 ((and) (and-map matches? (cdr v-ref)))
2434 ((or) (or-map matches? (cdr v-ref)))
2435 ((not) (not (matches? (cadr v-ref))))
2436 (else (error "Invalid sub-version reference" v-ref))))
2437 (else (error "Invalid sub-version reference" v-ref)))))
2438 (or (null? v-refs)
2439 (and (not (null? t))
2440 (sub-version-matches? (car v-refs) (car t))
2441 (sub-versions-match? (cdr v-refs) (cdr t)))))
2442
2443 (let ((matches? (lambda (v) (version-matches? v target))))
2444 (or (null? version-ref)
2445 (case (car version-ref)
2446 ((and) (and-map matches? (cdr version-ref)))
2447 ((or) (or-map matches? (cdr version-ref)))
2448 ((not) (not (matches? (cadr version-ref))))
2449 (else (sub-versions-match? version-ref target))))))
2450
2451 (define (make-fresh-user-module)
2452 (let ((m (make-module)))
2453 (beautify-user-module! m)
2454 m))
2455
2456 ;; NOTE: This binding is used in libguile/modules.c.
2457 ;;
2458 (define resolve-module
2459 (let ((root (make-module)))
2460 (set-module-name! root '())
2461 ;; Define the-root-module as '(guile).
2462 (module-define-submodule! root 'guile the-root-module)
2463
2464 (lambda* (name #:optional (autoload #t) (version #f) #:key (ensure #t))
2465 (let ((already (nested-ref-module root name)))
2466 (cond
2467 ((and already
2468 (or (not autoload) (module-public-interface already)))
2469 ;; A hit, a palpable hit.
2470 (if (and version
2471 (not (version-matches? version (module-version already))))
2472 (error "incompatible module version already loaded" name))
2473 already)
2474 (autoload
2475 ;; Try to autoload the module, and recurse.
2476 (try-load-module name version)
2477 (resolve-module name #f #:ensure ensure))
2478 (else
2479 ;; No module found (or if one was, it had no public interface), and
2480 ;; we're not autoloading. Make an empty module if #:ensure is true.
2481 (or already
2482 (and ensure
2483 (make-modules-in root name)))))))))
2484
2485
2486 (define (try-load-module name version)
2487 (try-module-autoload name version))
2488
2489 (define (reload-module m)
2490 "Revisit the source file corresponding to the module @var{m}."
2491 (let ((f (module-filename m)))
2492 (if f
2493 (save-module-excursion
2494 (lambda ()
2495 ;; Re-set the initial environment, as in try-module-autoload.
2496 (set-current-module (make-fresh-user-module))
2497 (primitive-load-path f)
2498 m))
2499 ;; Though we could guess, we *should* know it.
2500 (error "unknown file name for module" m))))
2501
2502 (define (purify-module! module)
2503 "Removes bindings in MODULE which are inherited from the (guile) module."
2504 (let ((use-list (module-uses module)))
2505 (if (and (pair? use-list)
2506 (eq? (car (last-pair use-list)) the-scm-module))
2507 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2508
2509 ;; Return a module that is an interface to the module designated by
2510 ;; NAME.
2511 ;;
2512 ;; `resolve-interface' takes four keyword arguments:
2513 ;;
2514 ;; #:select SELECTION
2515 ;;
2516 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2517 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2518 ;; is the name in the used module and SEEN is the name in the using
2519 ;; module. Note that SEEN is also passed through RENAMER, below. The
2520 ;; default is to select all bindings. If you specify no selection but
2521 ;; a renamer, only the bindings that already exist in the used module
2522 ;; are made available in the interface. Bindings that are added later
2523 ;; are not picked up.
2524 ;;
2525 ;; #:hide BINDINGS
2526 ;;
2527 ;; BINDINGS is a list of bindings which should not be imported.
2528 ;;
2529 ;; #:prefix PREFIX
2530 ;;
2531 ;; PREFIX is a symbol that will be appended to each exported name.
2532 ;; The default is to not perform any renaming.
2533 ;;
2534 ;; #:renamer RENAMER
2535 ;;
2536 ;; RENAMER is a procedure that takes a symbol and returns its new
2537 ;; name. The default is not perform any renaming.
2538 ;;
2539 ;; Signal "no code for module" error if module name is not resolvable
2540 ;; or its public interface is not available. Signal "no binding"
2541 ;; error if selected binding does not exist in the used module.
2542 ;;
2543 (define* (resolve-interface name #:key
2544 (select #f)
2545 (hide '())
2546 (prefix #f)
2547 (renamer (if prefix
2548 (symbol-prefix-proc prefix)
2549 identity))
2550 version)
2551 (let* ((module (resolve-module name #t version #:ensure #f))
2552 (public-i (and module (module-public-interface module))))
2553 (and (or (not module) (not public-i))
2554 (error "no code for module" name))
2555 (if (and (not select) (null? hide) (eq? renamer identity))
2556 public-i
2557 (let ((selection (or select (module-map (lambda (sym var) sym)
2558 public-i)))
2559 (custom-i (make-module 31)))
2560 (set-module-kind! custom-i 'custom-interface)
2561 (set-module-name! custom-i name)
2562 ;; XXX - should use a lazy binder so that changes to the
2563 ;; used module are picked up automatically.
2564 (for-each (lambda (bspec)
2565 (let* ((direct? (symbol? bspec))
2566 (orig (if direct? bspec (car bspec)))
2567 (seen (if direct? bspec (cdr bspec)))
2568 (var (or (module-local-variable public-i orig)
2569 (module-local-variable module orig)
2570 (error
2571 ;; fixme: format manually for now
2572 (simple-format
2573 #f "no binding `~A' in module ~A"
2574 orig name)))))
2575 (if (memq orig hide)
2576 (set! hide (delq! orig hide))
2577 (module-add! custom-i
2578 (renamer seen)
2579 var))))
2580 selection)
2581 ;; Check that we are not hiding bindings which don't exist
2582 (for-each (lambda (binding)
2583 (if (not (module-local-variable public-i binding))
2584 (error
2585 (simple-format
2586 #f "no binding `~A' to hide in module ~A"
2587 binding name))))
2588 hide)
2589 custom-i))))
2590
2591 (define (symbol-prefix-proc prefix)
2592 (lambda (symbol)
2593 (symbol-append prefix symbol)))
2594
2595 ;; This function is called from "modules.c". If you change it, be
2596 ;; sure to update "modules.c" as well.
2597
2598 (define* (define-module* name
2599 #:key filename pure version (duplicates '())
2600 (imports '()) (exports '()) (replacements '())
2601 (re-exports '()) (autoloads '()) transformer)
2602 (define (list-of pred l)
2603 (or (null? l)
2604 (and (pair? l) (pred (car l)) (list-of pred (cdr l)))))
2605 (define (valid-export? x)
2606 (or (symbol? x) (and (pair? x) (symbol? (car x)) (symbol? (cdr x)))))
2607 (define (valid-autoload? x)
2608 (and (pair? x) (list-of symbol? (car x)) (list-of symbol? (cdr x))))
2609
2610 (define (resolve-imports imports)
2611 (define (resolve-import import-spec)
2612 (if (list? import-spec)
2613 (apply resolve-interface import-spec)
2614 (error "unexpected use-module specification" import-spec)))
2615 (let lp ((imports imports) (out '()))
2616 (cond
2617 ((null? imports) (reverse! out))
2618 ((pair? imports)
2619 (lp (cdr imports)
2620 (cons (resolve-import (car imports)) out)))
2621 (else (error "unexpected tail of imports list" imports)))))
2622
2623 ;; We could add a #:no-check arg, set by the define-module macro, if
2624 ;; these checks are taking too much time.
2625 ;;
2626 (let ((module (resolve-module name #f)))
2627 (beautify-user-module! module)
2628 (if filename
2629 (set-module-filename! module filename))
2630 (if pure
2631 (purify-module! module))
2632 (if version
2633 (begin
2634 (if (not (list-of integer? version))
2635 (error "expected list of integers for version"))
2636 (set-module-version! module version)
2637 (set-module-version! (module-public-interface module) version)))
2638 (let ((imports (resolve-imports imports)))
2639 (call-with-deferred-observers
2640 (lambda ()
2641 (if (pair? imports)
2642 (module-use-interfaces! module imports))
2643 (if (list-of valid-export? exports)
2644 (if (pair? exports)
2645 (module-export! module exports))
2646 (error "expected exports to be a list of symbols or symbol pairs"))
2647 (if (list-of valid-export? replacements)
2648 (if (pair? replacements)
2649 (module-replace! module replacements))
2650 (error "expected replacements to be a list of symbols or symbol pairs"))
2651 (if (list-of valid-export? re-exports)
2652 (if (pair? re-exports)
2653 (module-re-export! module re-exports))
2654 (error "expected re-exports to be a list of symbols or symbol pairs"))
2655 ;; FIXME
2656 (if (not (null? autoloads))
2657 (apply module-autoload! module autoloads))
2658 ;; Wait until modules have been loaded to resolve duplicates
2659 ;; handlers.
2660 (if (pair? duplicates)
2661 (let ((handlers (lookup-duplicates-handlers duplicates)))
2662 (set-module-duplicates-handlers! module handlers))))))
2663
2664 (if transformer
2665 (if (and (pair? transformer) (list-of symbol? transformer))
2666 (let ((iface (resolve-interface transformer))
2667 (sym (car (last-pair transformer))))
2668 (set-module-transformer! module (module-ref iface sym)))
2669 (error "expected transformer to be a module name" transformer)))
2670
2671 (run-hook module-defined-hook module)
2672 module))
2673
2674 ;; `module-defined-hook' is a hook that is run whenever a new module
2675 ;; is defined. Its members are called with one argument, the new
2676 ;; module.
2677 (define module-defined-hook (make-hook 1))
2678
2679 \f
2680
2681 ;;; {Autoload}
2682 ;;;
2683
2684 (define (make-autoload-interface module name bindings)
2685 (let ((b (lambda (a sym definep)
2686 (and (memq sym bindings)
2687 (let ((i (module-public-interface (resolve-module name))))
2688 (if (not i)
2689 (error "missing interface for module" name))
2690 (let ((autoload (memq a (module-uses module))))
2691 ;; Replace autoload-interface with actual interface if
2692 ;; that has not happened yet.
2693 (if (pair? autoload)
2694 (set-car! autoload i)))
2695 (module-local-variable i sym))))))
2696 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2697 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2698 (make-hash-table 0) #f #f #f)))
2699
2700 (define (module-autoload! module . args)
2701 "Have @var{module} automatically load the module named @var{name} when one
2702 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2703 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2704 module '(ice-9 q) '(make-q q-length))}."
2705 (let loop ((args args))
2706 (cond ((null? args)
2707 #t)
2708 ((null? (cdr args))
2709 (error "invalid name+binding autoload list" args))
2710 (else
2711 (let ((name (car args))
2712 (bindings (cadr args)))
2713 (module-use! module (make-autoload-interface module
2714 name bindings))
2715 (loop (cddr args)))))))
2716
2717
2718 \f
2719
2720 ;;; {Autoloading modules}
2721 ;;;
2722
2723 (define autoloads-in-progress '())
2724
2725 ;; This function is called from "modules.c". If you change it, be
2726 ;; sure to update "modules.c" as well.
2727
2728 (define* (try-module-autoload module-name #:optional version)
2729 (let* ((reverse-name (reverse module-name))
2730 (name (symbol->string (car reverse-name)))
2731 (dir-hint-module-name (reverse (cdr reverse-name)))
2732 (dir-hint (apply string-append
2733 (map (lambda (elt)
2734 (string-append (symbol->string elt) "/"))
2735 dir-hint-module-name))))
2736 (resolve-module dir-hint-module-name #f)
2737 (and (not (autoload-done-or-in-progress? dir-hint name))
2738 (let ((didit #f))
2739 (dynamic-wind
2740 (lambda () (autoload-in-progress! dir-hint name))
2741 (lambda ()
2742 (with-fluids ((current-reader #f))
2743 (save-module-excursion
2744 (lambda ()
2745 ;; The initial environment when loading a module is a fresh
2746 ;; user module.
2747 (set-current-module (make-fresh-user-module))
2748 ;; Here we could allow some other search strategy (other than
2749 ;; primitive-load-path), for example using versions encoded
2750 ;; into the file system -- but then we would have to figure
2751 ;; out how to locate the compiled file, do auto-compilation,
2752 ;; etc. Punt for now, and don't use versions when locating
2753 ;; the file.
2754 (primitive-load-path (in-vicinity dir-hint name) #f)
2755 (set! didit #t)))))
2756 (lambda () (set-autoloaded! dir-hint name didit)))
2757 didit))))
2758
2759 \f
2760
2761 ;;; {Dynamic linking of modules}
2762 ;;;
2763
2764 (define autoloads-done '((guile . guile)))
2765
2766 (define (autoload-done-or-in-progress? p m)
2767 (let ((n (cons p m)))
2768 (->bool (or (member n autoloads-done)
2769 (member n autoloads-in-progress)))))
2770
2771 (define (autoload-done! p m)
2772 (let ((n (cons p m)))
2773 (set! autoloads-in-progress
2774 (delete! n autoloads-in-progress))
2775 (or (member n autoloads-done)
2776 (set! autoloads-done (cons n autoloads-done)))))
2777
2778 (define (autoload-in-progress! p m)
2779 (let ((n (cons p m)))
2780 (set! autoloads-done
2781 (delete! n autoloads-done))
2782 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2783
2784 (define (set-autoloaded! p m done?)
2785 (if done?
2786 (autoload-done! p m)
2787 (let ((n (cons p m)))
2788 (set! autoloads-done (delete! n autoloads-done))
2789 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2790
2791 \f
2792
2793 ;;; {Run-time options}
2794 ;;;
2795
2796 (define-syntax define-option-interface
2797 (syntax-rules ()
2798 ((_ (interface (options enable disable) (option-set!)))
2799 (begin
2800 (define options
2801 (case-lambda
2802 (() (interface))
2803 ((arg)
2804 (if (list? arg)
2805 (begin (interface arg) (interface))
2806 (for-each
2807 (lambda (option)
2808 (apply (lambda (name value documentation)
2809 (display name)
2810 (if (< (string-length (symbol->string name)) 8)
2811 (display #\tab))
2812 (display #\tab)
2813 (display value)
2814 (display #\tab)
2815 (display documentation)
2816 (newline))
2817 option))
2818 (interface #t))))))
2819 (define (enable . flags)
2820 (interface (append flags (interface)))
2821 (interface))
2822 (define (disable . flags)
2823 (let ((options (interface)))
2824 (for-each (lambda (flag) (set! options (delq! flag options)))
2825 flags)
2826 (interface options)
2827 (interface)))
2828 (define-syntax-rule (option-set! opt val)
2829 (eval-when (eval load compile expand)
2830 (options (append (options) (list 'opt val)))))))))
2831
2832 (define-option-interface
2833 (debug-options-interface
2834 (debug-options debug-enable debug-disable)
2835 (debug-set!)))
2836
2837 (define-option-interface
2838 (read-options-interface
2839 (read-options read-enable read-disable)
2840 (read-set!)))
2841
2842 (define-option-interface
2843 (print-options-interface
2844 (print-options print-enable print-disable)
2845 (print-set!)))
2846
2847 \f
2848
2849 ;;; {The Unspecified Value}
2850 ;;;
2851 ;;; Currently Guile represents unspecified values via one particular value,
2852 ;;; which may be obtained by evaluating (if #f #f). It would be nice in the
2853 ;;; future if we could replace this with a return of 0 values, though.
2854 ;;;
2855
2856 (define-syntax *unspecified*
2857 (identifier-syntax (if #f #f)))
2858
2859 (define (unspecified? v) (eq? v *unspecified*))
2860
2861
2862 \f
2863
2864 ;;; {Parameters}
2865 ;;;
2866
2867 (define <parameter>
2868 ;; Three fields: the procedure itself, the fluid, and the converter.
2869 (make-struct <applicable-struct-vtable> 0 'pwprpr))
2870 (set-struct-vtable-name! <parameter> '<parameter>)
2871
2872 (define* (make-parameter init #:optional (conv (lambda (x) x)))
2873 (let ((fluid (make-fluid (conv init))))
2874 (make-struct <parameter> 0
2875 (case-lambda
2876 (() (fluid-ref fluid))
2877 ((x) (let ((prev (fluid-ref fluid)))
2878 (fluid-set! fluid (conv x))
2879 prev)))
2880 fluid conv)))
2881
2882 (define (parameter? x)
2883 (and (struct? x) (eq? (struct-vtable x) <parameter>)))
2884
2885 (define (parameter-fluid p)
2886 (if (parameter? p)
2887 (struct-ref p 1)
2888 (scm-error 'wrong-type-arg "parameter-fluid"
2889 "Not a parameter: ~S" (list p) #f)))
2890
2891 (define (parameter-converter p)
2892 (if (parameter? p)
2893 (struct-ref p 2)
2894 (scm-error 'wrong-type-arg "parameter-fluid"
2895 "Not a parameter: ~S" (list p) #f)))
2896
2897 (define-syntax parameterize
2898 (lambda (x)
2899 (syntax-case x ()
2900 ((_ ((param value) ...) body body* ...)
2901 (with-syntax (((p ...) (generate-temporaries #'(param ...))))
2902 #'(let ((p param) ...)
2903 (if (not (parameter? p))
2904 (scm-error 'wrong-type-arg "parameterize"
2905 "Not a parameter: ~S" (list p) #f))
2906 ...
2907 (with-fluids (((struct-ref p 1) ((struct-ref p 2) value))
2908 ...)
2909 body body* ...)))))))
2910
2911 \f
2912 ;;;
2913 ;;; Warnings.
2914 ;;;
2915
2916 (define current-warning-port
2917 (make-parameter (current-error-port)
2918 (lambda (x)
2919 (if (output-port? x)
2920 x
2921 (error "expected an output port" x)))))
2922
2923
2924 \f
2925
2926 ;;; {Running Repls}
2927 ;;;
2928
2929 (define *repl-stack* (make-fluid '()))
2930
2931 ;; Programs can call `batch-mode?' to see if they are running as part of a
2932 ;; script or if they are running interactively. REPL implementations ensure that
2933 ;; `batch-mode?' returns #f during their extent.
2934 ;;
2935 (define (batch-mode?)
2936 (null? (fluid-ref *repl-stack*)))
2937
2938 ;; Programs can re-enter batch mode, for example after a fork, by calling
2939 ;; `ensure-batch-mode!'. It's not a great interface, though; it would be better
2940 ;; to abort to the outermost prompt, and call a thunk there.
2941 ;;
2942 (define (ensure-batch-mode!)
2943 (set! batch-mode? (lambda () #t)))
2944
2945 (define (quit . args)
2946 (apply throw 'quit args))
2947
2948 (define exit quit)
2949
2950 (define (gc-run-time)
2951 (cdr (assq 'gc-time-taken (gc-stats))))
2952
2953 (define abort-hook (make-hook))
2954 (define before-error-hook (make-hook))
2955 (define after-error-hook (make-hook))
2956 (define before-backtrace-hook (make-hook))
2957 (define after-backtrace-hook (make-hook))
2958
2959 (define before-read-hook (make-hook))
2960 (define after-read-hook (make-hook))
2961 (define before-eval-hook (make-hook 1))
2962 (define after-eval-hook (make-hook 1))
2963 (define before-print-hook (make-hook 1))
2964 (define after-print-hook (make-hook 1))
2965
2966 ;;; This hook is run at the very end of an interactive session.
2967 ;;;
2968 (define exit-hook (make-hook))
2969
2970 ;;; The default repl-reader function. We may override this if we've
2971 ;;; the readline library.
2972 (define repl-reader
2973 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
2974 (if (not (char-ready?))
2975 (begin
2976 (display (if (string? prompt) prompt (prompt)))
2977 ;; An interesting situation. The printer resets the column to
2978 ;; 0 by printing a newline, but we then advance it by printing
2979 ;; the prompt. However the port-column of the output port
2980 ;; does not typically correspond with the actual column on the
2981 ;; screen, because the input is is echoed back! Since the
2982 ;; input is line-buffered and thus ends with a newline, the
2983 ;; output will really start on column zero. So, here we zero
2984 ;; it out. See bug 9664.
2985 ;;
2986 ;; Note that for similar reasons, the output-line will not
2987 ;; reflect the actual line on the screen. But given the
2988 ;; possibility of multiline input, the fix is not as
2989 ;; straightforward, so we don't bother.
2990 ;;
2991 ;; Also note that the readline implementation papers over
2992 ;; these concerns, because it's readline itself printing the
2993 ;; prompt, and not Guile.
2994 (set-port-column! (current-output-port) 0)))
2995 (force-output)
2996 (run-hook before-read-hook)
2997 ((or reader read) (current-input-port))))
2998
2999
3000 \f
3001
3002 ;;; {IOTA functions: generating lists of numbers}
3003 ;;;
3004
3005 (define (iota n)
3006 (let loop ((count (1- n)) (result '()))
3007 (if (< count 0) result
3008 (loop (1- count) (cons count result)))))
3009
3010 \f
3011
3012 ;;; {While}
3013 ;;;
3014 ;;; with `continue' and `break'.
3015 ;;;
3016
3017 ;; The inliner will remove the prompts at compile-time if it finds that
3018 ;; `continue' or `break' are not used.
3019 ;;
3020 (define-syntax while
3021 (lambda (x)
3022 (syntax-case x ()
3023 ((while cond body ...)
3024 #`(let ((break-tag (make-prompt-tag "break"))
3025 (continue-tag (make-prompt-tag "continue")))
3026 (call-with-prompt
3027 break-tag
3028 (lambda ()
3029 (define-syntax #,(datum->syntax #'while 'break)
3030 (lambda (x)
3031 (syntax-case x ()
3032 ((_ arg (... ...))
3033 #'(abort-to-prompt break-tag arg (... ...)))
3034 (_
3035 #'(lambda args
3036 (apply abort-to-prompt break-tag args))))))
3037 (let lp ()
3038 (call-with-prompt
3039 continue-tag
3040 (lambda ()
3041 (define-syntax #,(datum->syntax #'while 'continue)
3042 (lambda (x)
3043 (syntax-case x ()
3044 ((_)
3045 #'(abort-to-prompt continue-tag))
3046 ((_ . args)
3047 (syntax-violation 'continue "too many arguments" x))
3048 (_
3049 #'(lambda ()
3050 (abort-to-prompt continue-tag))))))
3051 (do () ((not cond) #f) body ...))
3052 (lambda (k) (lp)))))
3053 (lambda (k . args)
3054 (if (null? args)
3055 #t
3056 (apply values args)))))))))
3057
3058
3059 \f
3060
3061 ;;; {Module System Macros}
3062 ;;;
3063
3064 ;; Return a list of expressions that evaluate to the appropriate
3065 ;; arguments for resolve-interface according to SPEC.
3066
3067 (eval-when (compile)
3068 (if (memq 'prefix (read-options))
3069 (error "boot-9 must be compiled with #:kw, not :kw")))
3070
3071 (define (keyword-like-symbol->keyword sym)
3072 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3073
3074 (define-syntax define-module
3075 (lambda (x)
3076 (define (keyword-like? stx)
3077 (let ((dat (syntax->datum stx)))
3078 (and (symbol? dat)
3079 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3080 (define (->keyword sym)
3081 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3082
3083 (define (parse-iface args)
3084 (let loop ((in args) (out '()))
3085 (syntax-case in ()
3086 (() (reverse! out))
3087 ;; The user wanted #:foo, but wrote :foo. Fix it.
3088 ((sym . in) (keyword-like? #'sym)
3089 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3090 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3091 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3092 ((#:renamer renamer . in)
3093 (loop #'in (cons* #',renamer #:renamer out)))
3094 ((kw val . in)
3095 (loop #'in (cons* #'val #'kw out))))))
3096
3097 (define (parse args imp exp rex rep aut)
3098 ;; Just quote everything except #:use-module and #:use-syntax. We
3099 ;; need to know about all arguments regardless since we want to turn
3100 ;; symbols that look like keywords into real keywords, and the
3101 ;; keyword args in a define-module form are not regular
3102 ;; (i.e. no-backtrace doesn't take a value).
3103 (syntax-case args ()
3104 (()
3105 (let ((imp (if (null? imp) '() #`(#:imports `#,imp)))
3106 (exp (if (null? exp) '() #`(#:exports '#,exp)))
3107 (rex (if (null? rex) '() #`(#:re-exports '#,rex)))
3108 (rep (if (null? rep) '() #`(#:replacements '#,rep)))
3109 (aut (if (null? aut) '() #`(#:autoloads '#,aut))))
3110 #`(#,@imp #,@exp #,@rex #,@rep #,@aut)))
3111 ;; The user wanted #:foo, but wrote :foo. Fix it.
3112 ((sym . args) (keyword-like? #'sym)
3113 (parse #`(#,(->keyword (syntax->datum #'sym)) . args)
3114 imp exp rex rep aut))
3115 ((kw . args) (not (keyword? (syntax->datum #'kw)))
3116 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3117 ((#:no-backtrace . args)
3118 ;; Ignore this one.
3119 (parse #'args imp exp rex rep aut))
3120 ((#:pure . args)
3121 #`(#:pure #t . #,(parse #'args imp exp rex rep aut)))
3122 ((kw)
3123 (syntax-violation 'define-module "keyword arg without value" x #'kw))
3124 ((#:version (v ...) . args)
3125 #`(#:version '(v ...) . #,(parse #'args imp exp rex rep aut)))
3126 ((#:duplicates (d ...) . args)
3127 #`(#:duplicates '(d ...) . #,(parse #'args imp exp rex rep aut)))
3128 ((#:filename f . args)
3129 #`(#:filename 'f . #,(parse #'args imp exp rex rep aut)))
3130 ((#:use-module (name name* ...) . args)
3131 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3132 (parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut))
3133 ((#:use-syntax (name name* ...) . args)
3134 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3135 #`(#:transformer '(name name* ...)
3136 . #,(parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut)))
3137 ((#:use-module ((name name* ...) arg ...) . args)
3138 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3139 (parse #'args
3140 #`(#,@imp ((name name* ...) #,@(parse-iface #'(arg ...))))
3141 exp rex rep aut))
3142 ((#:export (ex ...) . args)
3143 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3144 ((#:export-syntax (ex ...) . args)
3145 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3146 ((#:re-export (re ...) . args)
3147 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3148 ((#:re-export-syntax (re ...) . args)
3149 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3150 ((#:replace (r ...) . args)
3151 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3152 ((#:replace-syntax (r ...) . args)
3153 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3154 ((#:autoload name bindings . args)
3155 (parse #'args imp exp rex rep #`(#,@aut name bindings)))
3156 ((kw val . args)
3157 (syntax-violation 'define-module "unknown keyword or bad argument"
3158 #'kw #'val))))
3159
3160 (syntax-case x ()
3161 ((_ (name name* ...) arg ...)
3162 (and-map symbol? (syntax->datum #'(name name* ...)))
3163 (with-syntax (((quoted-arg ...)
3164 (parse #'(arg ...) '() '() '() '() '()))
3165 ;; Ideally the filename is either a string or #f;
3166 ;; this hack is to work around a case in which
3167 ;; port-filename returns a symbol (`socket') for
3168 ;; sockets.
3169 (filename (let ((f (assq-ref (or (syntax-source x) '())
3170 'filename)))
3171 (and (string? f) f))))
3172 #'(eval-when (eval load compile expand)
3173 (let ((m (define-module* '(name name* ...)
3174 #:filename filename quoted-arg ...)))
3175 (set-current-module m)
3176 m)))))))
3177
3178 ;; The guts of the use-modules macro. Add the interfaces of the named
3179 ;; modules to the use-list of the current module, in order.
3180
3181 ;; This function is called by "modules.c". If you change it, be sure
3182 ;; to change scm_c_use_module as well.
3183
3184 (define (process-use-modules module-interface-args)
3185 (let ((interfaces (map (lambda (mif-args)
3186 (or (apply resolve-interface mif-args)
3187 (error "no such module" mif-args)))
3188 module-interface-args)))
3189 (call-with-deferred-observers
3190 (lambda ()
3191 (module-use-interfaces! (current-module) interfaces)))))
3192
3193 (define-syntax use-modules
3194 (lambda (x)
3195 (define (keyword-like? stx)
3196 (let ((dat (syntax->datum stx)))
3197 (and (symbol? dat)
3198 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3199 (define (->keyword sym)
3200 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3201
3202 (define (quotify-iface args)
3203 (let loop ((in args) (out '()))
3204 (syntax-case in ()
3205 (() (reverse! out))
3206 ;; The user wanted #:foo, but wrote :foo. Fix it.
3207 ((sym . in) (keyword-like? #'sym)
3208 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3209 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3210 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3211 ((#:renamer renamer . in)
3212 (loop #'in (cons* #'renamer #:renamer out)))
3213 ((kw val . in)
3214 (loop #'in (cons* #''val #'kw out))))))
3215
3216 (define (quotify specs)
3217 (let lp ((in specs) (out '()))
3218 (syntax-case in ()
3219 (() (reverse out))
3220 (((name name* ...) . in)
3221 (and-map symbol? (syntax->datum #'(name name* ...)))
3222 (lp #'in (cons #''((name name* ...)) out)))
3223 ((((name name* ...) arg ...) . in)
3224 (and-map symbol? (syntax->datum #'(name name* ...)))
3225 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
3226 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
3227 out)))))))
3228
3229 (syntax-case x ()
3230 ((_ spec ...)
3231 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
3232 #'(eval-when (eval load compile expand)
3233 (process-use-modules (list quoted-args ...))
3234 *unspecified*))))))
3235
3236 (define-syntax-rule (use-syntax spec ...)
3237 (begin
3238 (eval-when (eval load compile expand)
3239 (issue-deprecation-warning
3240 "`use-syntax' is deprecated. Please contact guile-devel for more info."))
3241 (use-modules spec ...)))
3242
3243 (include-from-path "ice-9/r6rs-libraries")
3244
3245 (define-syntax-rule (define-private foo bar)
3246 (define foo bar))
3247
3248 (define-syntax define-public
3249 (syntax-rules ()
3250 ((_ (name . args) . body)
3251 (define-public name (lambda args . body)))
3252 ((_ name val)
3253 (begin
3254 (define name val)
3255 (export name)))))
3256
3257 (define-syntax-rule (defmacro-public name args body ...)
3258 (begin
3259 (defmacro name args body ...)
3260 (export-syntax name)))
3261
3262 ;; And now for the most important macro.
3263 (define-syntax-rule (λ formals body ...)
3264 (lambda formals body ...))
3265
3266 \f
3267 ;; Export a local variable
3268
3269 ;; This function is called from "modules.c". If you change it, be
3270 ;; sure to update "modules.c" as well.
3271
3272 (define (module-export! m names)
3273 (let ((public-i (module-public-interface m)))
3274 (for-each (lambda (name)
3275 (let* ((internal-name (if (pair? name) (car name) name))
3276 (external-name (if (pair? name) (cdr name) name))
3277 (var (module-ensure-local-variable! m internal-name)))
3278 (module-add! public-i external-name var)))
3279 names)))
3280
3281 (define (module-replace! m names)
3282 (let ((public-i (module-public-interface m)))
3283 (for-each (lambda (name)
3284 (let* ((internal-name (if (pair? name) (car name) name))
3285 (external-name (if (pair? name) (cdr name) name))
3286 (var (module-ensure-local-variable! m internal-name)))
3287 ;; FIXME: use a bit on variables instead of object
3288 ;; properties.
3289 (set-object-property! var 'replace #t)
3290 (module-add! public-i external-name var)))
3291 names)))
3292
3293 ;; Export all local variables from a module
3294 ;;
3295 (define (module-export-all! mod)
3296 (define (fresh-interface!)
3297 (let ((iface (make-module)))
3298 (set-module-name! iface (module-name mod))
3299 (set-module-version! iface (module-version mod))
3300 (set-module-kind! iface 'interface)
3301 (set-module-public-interface! mod iface)
3302 iface))
3303 (let ((iface (or (module-public-interface mod)
3304 (fresh-interface!))))
3305 (set-module-obarray! iface (module-obarray mod))))
3306
3307 ;; Re-export a imported variable
3308 ;;
3309 (define (module-re-export! m names)
3310 (let ((public-i (module-public-interface m)))
3311 (for-each (lambda (name)
3312 (let* ((internal-name (if (pair? name) (car name) name))
3313 (external-name (if (pair? name) (cdr name) name))
3314 (var (module-variable m internal-name)))
3315 (cond ((not var)
3316 (error "Undefined variable:" internal-name))
3317 ((eq? var (module-local-variable m internal-name))
3318 (error "re-exporting local variable:" internal-name))
3319 (else
3320 (module-add! public-i external-name var)))))
3321 names)))
3322
3323 (define-syntax-rule (export name ...)
3324 (eval-when (eval load compile expand)
3325 (call-with-deferred-observers
3326 (lambda ()
3327 (module-export! (current-module) '(name ...))))))
3328
3329 (define-syntax-rule (re-export name ...)
3330 (eval-when (eval load compile expand)
3331 (call-with-deferred-observers
3332 (lambda ()
3333 (module-re-export! (current-module) '(name ...))))))
3334
3335 (define-syntax-rule (export! name ...)
3336 (eval-when (eval load compile expand)
3337 (call-with-deferred-observers
3338 (lambda ()
3339 (module-replace! (current-module) '(name ...))))))
3340
3341 (define-syntax-rule (export-syntax name ...)
3342 (export name ...))
3343
3344 (define-syntax-rule (re-export-syntax name ...)
3345 (re-export name ...))
3346
3347 \f
3348
3349 ;;; {Parameters}
3350 ;;;
3351
3352 (define* (make-mutable-parameter init #:optional (converter identity))
3353 (let ((fluid (make-fluid (converter init))))
3354 (case-lambda
3355 (() (fluid-ref fluid))
3356 ((val) (fluid-set! fluid (converter val))))))
3357
3358
3359 \f
3360
3361 ;;; {Handling of duplicate imported bindings}
3362 ;;;
3363
3364 ;; Duplicate handlers take the following arguments:
3365 ;;
3366 ;; module importing module
3367 ;; name conflicting name
3368 ;; int1 old interface where name occurs
3369 ;; val1 value of binding in old interface
3370 ;; int2 new interface where name occurs
3371 ;; val2 value of binding in new interface
3372 ;; var previous resolution or #f
3373 ;; val value of previous resolution
3374 ;;
3375 ;; A duplicate handler can take three alternative actions:
3376 ;;
3377 ;; 1. return #f => leave responsibility to next handler
3378 ;; 2. exit with an error
3379 ;; 3. return a variable resolving the conflict
3380 ;;
3381
3382 (define duplicate-handlers
3383 (let ((m (make-module 7)))
3384
3385 (define (check module name int1 val1 int2 val2 var val)
3386 (scm-error 'misc-error
3387 #f
3388 "~A: `~A' imported from both ~A and ~A"
3389 (list (module-name module)
3390 name
3391 (module-name int1)
3392 (module-name int2))
3393 #f))
3394
3395 (define (warn module name int1 val1 int2 val2 var val)
3396 (format (current-warning-port)
3397 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3398 (module-name module)
3399 name
3400 (module-name int1)
3401 (module-name int2))
3402 #f)
3403
3404 (define (replace module name int1 val1 int2 val2 var val)
3405 (let ((old (or (and var (object-property var 'replace) var)
3406 (module-variable int1 name)))
3407 (new (module-variable int2 name)))
3408 (if (object-property old 'replace)
3409 (and (or (eq? old new)
3410 (not (object-property new 'replace)))
3411 old)
3412 (and (object-property new 'replace)
3413 new))))
3414
3415 (define (warn-override-core module name int1 val1 int2 val2 var val)
3416 (and (eq? int1 the-scm-module)
3417 (begin
3418 (format (current-warning-port)
3419 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3420 (module-name module)
3421 (module-name int2)
3422 name)
3423 (module-local-variable int2 name))))
3424
3425 (define (first module name int1 val1 int2 val2 var val)
3426 (or var (module-local-variable int1 name)))
3427
3428 (define (last module name int1 val1 int2 val2 var val)
3429 (module-local-variable int2 name))
3430
3431 (define (noop module name int1 val1 int2 val2 var val)
3432 #f)
3433
3434 (set-module-name! m 'duplicate-handlers)
3435 (set-module-kind! m 'interface)
3436 (module-define! m 'check check)
3437 (module-define! m 'warn warn)
3438 (module-define! m 'replace replace)
3439 (module-define! m 'warn-override-core warn-override-core)
3440 (module-define! m 'first first)
3441 (module-define! m 'last last)
3442 (module-define! m 'merge-generics noop)
3443 (module-define! m 'merge-accessors noop)
3444 m))
3445
3446 (define (lookup-duplicates-handlers handler-names)
3447 (and handler-names
3448 (map (lambda (handler-name)
3449 (or (module-symbol-local-binding
3450 duplicate-handlers handler-name #f)
3451 (error "invalid duplicate handler name:"
3452 handler-name)))
3453 (if (list? handler-names)
3454 handler-names
3455 (list handler-names)))))
3456
3457 (define default-duplicate-binding-procedures
3458 (make-mutable-parameter #f))
3459
3460 (define default-duplicate-binding-handler
3461 (make-mutable-parameter '(replace warn-override-core warn last)
3462 (lambda (handler-names)
3463 (default-duplicate-binding-procedures
3464 (lookup-duplicates-handlers handler-names))
3465 handler-names)))
3466
3467 \f
3468
3469 ;;; {`load'.}
3470 ;;;
3471 ;;; Load is tricky when combined with relative paths, compilation, and
3472 ;;; the filesystem. If a path is relative, what is it relative to? The
3473 ;;; path of the source file at the time it was compiled? The path of
3474 ;;; the compiled file? What if both or either were installed? And how
3475 ;;; do you get that information? Tricky, I say.
3476 ;;;
3477 ;;; To get around all of this, we're going to do something nasty, and
3478 ;;; turn `load' into a macro. That way it can know the path of the
3479 ;;; source file with respect to which it was invoked, so it can resolve
3480 ;;; relative paths with respect to the original source path.
3481 ;;;
3482 ;;; There is an exception, and that is that if the source file was in
3483 ;;; the load path when it was compiled, instead of looking up against
3484 ;;; the absolute source location, we load-from-path against the relative
3485 ;;; source location.
3486 ;;;
3487
3488 (define %auto-compilation-options
3489 ;; Default `compile-file' option when auto-compiling.
3490 '(#:warnings (unbound-variable arity-mismatch format)))
3491
3492 (define* (load-in-vicinity dir path #:optional reader)
3493 (define (canonical->suffix canon)
3494 (cond
3495 ((string-prefix? "/" canon) canon)
3496 ((and (> (string-length canon) 2)
3497 (eqv? (string-ref canon 1) #\:))
3498 ;; Paths like C:... transform to /C...
3499 (string-append "/" (substring canon 0 1) (substring canon 2)))
3500 (else canon)))
3501
3502 ;; Returns the .go file corresponding to `name'. Does not search load
3503 ;; paths, only the fallback path. If the .go file is missing or out of
3504 ;; date, and auto-compilation is enabled, will try auto-compilation, just
3505 ;; as primitive-load-path does internally. primitive-load is
3506 ;; unaffected. Returns #f if auto-compilation failed or was disabled.
3507 ;;
3508 ;; NB: Unless we need to compile the file, this function should not cause
3509 ;; (system base compile) to be loaded up. For that reason compiled-file-name
3510 ;; partially duplicates functionality from (system base compile).
3511 ;;
3512 (define (compiled-file-name canon-path)
3513 ;; FIXME: would probably be better just to append SHA1(canon-path)
3514 ;; to the %compile-fallback-path, to avoid deep directory stats.
3515 (and %compile-fallback-path
3516 (string-append
3517 %compile-fallback-path
3518 (canonical->suffix canon-path)
3519 (cond ((or (null? %load-compiled-extensions)
3520 (string-null? (car %load-compiled-extensions)))
3521 (warn "invalid %load-compiled-extensions"
3522 %load-compiled-extensions)
3523 ".go")
3524 (else (car %load-compiled-extensions))))))
3525
3526 (define (fresh-compiled-file-name name go-path)
3527 (catch #t
3528 (lambda ()
3529 (let* ((scmstat (stat name))
3530 (gostat (and (not %fresh-auto-compile)
3531 (stat go-path #f))))
3532 (if (and gostat
3533 (or (> (stat:mtime gostat) (stat:mtime scmstat))
3534 (and (= (stat:mtime gostat) (stat:mtime scmstat))
3535 (>= (stat:mtimensec gostat)
3536 (stat:mtimensec scmstat)))))
3537 go-path
3538 (begin
3539 (if gostat
3540 (format (current-warning-port)
3541 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
3542 name go-path))
3543 (cond
3544 (%load-should-auto-compile
3545 (%warn-auto-compilation-enabled)
3546 (format (current-warning-port) ";;; compiling ~a\n" name)
3547 (let ((cfn
3548 ((module-ref
3549 (resolve-interface '(system base compile))
3550 'compile-file)
3551 name
3552 #:opts %auto-compilation-options
3553 #:env (current-module))))
3554 (format (current-warning-port) ";;; compiled ~a\n" cfn)
3555 cfn))
3556 (else #f))))))
3557 (lambda (k . args)
3558 (format (current-warning-port)
3559 ";;; WARNING: compilation of ~a failed:\n" name)
3560 (for-each (lambda (s)
3561 (if (not (string-null? s))
3562 (format (current-warning-port) ";;; ~a\n" s)))
3563 (string-split
3564 (call-with-output-string
3565 (lambda (port) (print-exception port #f k args)))
3566 #\newline))
3567 #f)))
3568
3569 (define (absolute-path? path)
3570 (string-prefix? "/" path))
3571
3572 (define (load-absolute abs-path)
3573 (let ((cfn (let ((canon (false-if-exception (canonicalize-path abs-path))))
3574 (and canon
3575 (let ((go-path (compiled-file-name canon)))
3576 (and go-path
3577 (fresh-compiled-file-name abs-path go-path)))))))
3578 (if cfn
3579 (begin
3580 (if %load-hook
3581 (%load-hook abs-path))
3582 (load-compiled cfn))
3583 (start-stack 'load-stack
3584 (primitive-load abs-path)))))
3585
3586 (save-module-excursion
3587 (lambda ()
3588 (with-fluids ((current-reader reader)
3589 (%file-port-name-canonicalization 'relative))
3590 (cond
3591 ((or (absolute-path? path))
3592 (load-absolute path))
3593 ((absolute-path? dir)
3594 (load-absolute (in-vicinity dir path)))
3595 (else
3596 (load-from-path (in-vicinity dir path))))))))
3597
3598 (define-syntax load
3599 (make-variable-transformer
3600 (lambda (x)
3601 (let* ((src (syntax-source x))
3602 (file (and src (assq-ref src 'filename)))
3603 (dir (and (string? file) (dirname file))))
3604 (syntax-case x ()
3605 ((_ arg ...)
3606 #`(load-in-vicinity #,(or dir #'(getcwd)) arg ...))
3607 (id
3608 (identifier? #'id)
3609 #`(lambda args
3610 (apply load-in-vicinity #,(or dir #'(getcwd)) args))))))))
3611
3612 \f
3613
3614 ;;; {`cond-expand' for SRFI-0 support.}
3615 ;;;
3616 ;;; This syntactic form expands into different commands or
3617 ;;; definitions, depending on the features provided by the Scheme
3618 ;;; implementation.
3619 ;;;
3620 ;;; Syntax:
3621 ;;;
3622 ;;; <cond-expand>
3623 ;;; --> (cond-expand <cond-expand-clause>+)
3624 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3625 ;;; <cond-expand-clause>
3626 ;;; --> (<feature-requirement> <command-or-definition>*)
3627 ;;; <feature-requirement>
3628 ;;; --> <feature-identifier>
3629 ;;; | (and <feature-requirement>*)
3630 ;;; | (or <feature-requirement>*)
3631 ;;; | (not <feature-requirement>)
3632 ;;; <feature-identifier>
3633 ;;; --> <a symbol which is the name or alias of a SRFI>
3634 ;;;
3635 ;;; Additionally, this implementation provides the
3636 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3637 ;;; determine the implementation type and the supported standard.
3638 ;;;
3639 ;;; Currently, the following feature identifiers are supported:
3640 ;;;
3641 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3642 ;;;
3643 ;;; Remember to update the features list when adding more SRFIs.
3644 ;;;
3645
3646 (define %cond-expand-features
3647 ;; Adjust the above comment when changing this.
3648 '(guile
3649 guile-2
3650 r5rs
3651 srfi-0 ;; cond-expand itself
3652 srfi-4 ;; homogenous numeric vectors
3653 srfi-6 ;; open-input-string etc, in the guile core
3654 srfi-13 ;; string library
3655 srfi-23 ;; `error` procedure
3656 srfi-14 ;; character sets
3657 srfi-55 ;; require-extension
3658 srfi-61 ;; general cond clause
3659 ))
3660
3661 ;; This table maps module public interfaces to the list of features.
3662 ;;
3663 (define %cond-expand-table (make-hash-table 31))
3664
3665 ;; Add one or more features to the `cond-expand' feature list of the
3666 ;; module `module'.
3667 ;;
3668 (define (cond-expand-provide module features)
3669 (let ((mod (module-public-interface module)))
3670 (and mod
3671 (hashq-set! %cond-expand-table mod
3672 (append (hashq-ref %cond-expand-table mod '())
3673 features)))))
3674
3675 (define-syntax cond-expand
3676 (lambda (x)
3677 (define (module-has-feature? mod sym)
3678 (or-map (lambda (mod)
3679 (memq sym (hashq-ref %cond-expand-table mod '())))
3680 (module-uses mod)))
3681
3682 (define (condition-matches? condition)
3683 (syntax-case condition (and or not)
3684 ((and c ...)
3685 (and-map condition-matches? #'(c ...)))
3686 ((or c ...)
3687 (or-map condition-matches? #'(c ...)))
3688 ((not c)
3689 (if (condition-matches? #'c) #f #t))
3690 (c
3691 (identifier? #'c)
3692 (let ((sym (syntax->datum #'c)))
3693 (if (memq sym %cond-expand-features)
3694 #t
3695 (module-has-feature? (current-module) sym))))))
3696
3697 (define (match clauses alternate)
3698 (syntax-case clauses ()
3699 (((condition form ...) . rest)
3700 (if (condition-matches? #'condition)
3701 #'(begin form ...)
3702 (match #'rest alternate)))
3703 (() (alternate))))
3704
3705 (syntax-case x (else)
3706 ((_ clause ... (else form ...))
3707 (match #'(clause ...)
3708 (lambda ()
3709 #'(begin form ...))))
3710 ((_ clause ...)
3711 (match #'(clause ...)
3712 (lambda ()
3713 (syntax-violation 'cond-expand "unfulfilled cond-expand" x)))))))
3714
3715 ;; This procedure gets called from the startup code with a list of
3716 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3717 ;;
3718 (define (use-srfis srfis)
3719 (process-use-modules
3720 (map (lambda (num)
3721 (list (list 'srfi (string->symbol
3722 (string-append "srfi-" (number->string num))))))
3723 srfis)))
3724
3725 \f
3726
3727 ;;; srfi-55: require-extension
3728 ;;;
3729
3730 (define-syntax require-extension
3731 (lambda (x)
3732 (syntax-case x (srfi)
3733 ((_ (srfi n ...))
3734 (and-map integer? (syntax->datum #'(n ...)))
3735 (with-syntax
3736 (((srfi-n ...)
3737 (map (lambda (n)
3738 (datum->syntax x (symbol-append 'srfi- n)))
3739 (map string->symbol
3740 (map number->string (syntax->datum #'(n ...)))))))
3741 #'(use-modules (srfi srfi-n) ...)))
3742 ((_ (type arg ...))
3743 (identifier? #'type)
3744 (syntax-violation 'require-extension "Not a recognized extension type"
3745 x)))))
3746
3747 \f
3748 ;;; Defining transparently inlinable procedures
3749 ;;;
3750
3751 (define-syntax define-inlinable
3752 ;; Define a macro and a procedure such that direct calls are inlined, via
3753 ;; the macro expansion, whereas references in non-call contexts refer to
3754 ;; the procedure. Inspired by the `define-integrable' macro by Dybvig et al.
3755 (lambda (x)
3756 ;; Use a space in the prefix to avoid potential -Wunused-toplevel
3757 ;; warning
3758 (define prefix (string->symbol "% "))
3759 (define (make-procedure-name name)
3760 (datum->syntax name
3761 (symbol-append prefix (syntax->datum name)
3762 '-procedure)))
3763
3764 (syntax-case x ()
3765 ((_ (name formals ...) body ...)
3766 (identifier? #'name)
3767 (with-syntax ((proc-name (make-procedure-name #'name))
3768 ((args ...) (generate-temporaries #'(formals ...))))
3769 #`(begin
3770 (define (proc-name formals ...)
3771 (fluid-let-syntax ((name (identifier-syntax proc-name)))
3772 body ...))
3773 (define-syntax name
3774 (lambda (x)
3775 (syntax-case x ()
3776 ((_ args ...)
3777 #'((fluid-let-syntax ((name (identifier-syntax proc-name)))
3778 (lambda (formals ...)
3779 body ...))
3780 args ...))
3781 (_
3782 (identifier? x)
3783 #'proc-name))))))))))
3784
3785 \f
3786
3787 (define using-readline?
3788 (let ((using-readline? (make-fluid)))
3789 (make-procedure-with-setter
3790 (lambda () (fluid-ref using-readline?))
3791 (lambda (v) (fluid-set! using-readline? v)))))
3792
3793 \f
3794
3795 ;;; {Deprecated stuff}
3796 ;;;
3797
3798 (begin-deprecated
3799 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
3800
3801 \f
3802
3803 ;;; Place the user in the guile-user module.
3804 ;;;
3805
3806 ;; FIXME:
3807 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
3808
3809 ;; Set filename to #f to prevent reload.
3810 (define-module (guile-user)
3811 #:autoload (system base compile) (compile compile-file)
3812 #:filename #f)
3813
3814 ;; Remain in the `(guile)' module at compilation-time so that the
3815 ;; `-Wunused-toplevel' warning works as expected.
3816 (eval-when (compile) (set-current-module the-root-module))
3817
3818 ;;; boot-9.scm ends here