Merge branch 'stable-2.0'
[bpt/guile.git] / module / language / tree-il / peval.scm
1 ;;; Tree-IL partial evaluator
2
3 ;; Copyright (C) 2011, 2012, 2013 Free Software Foundation, Inc.
4
5 ;;;; This library is free software; you can redistribute it and/or
6 ;;;; modify it under the terms of the GNU Lesser General Public
7 ;;;; License as published by the Free Software Foundation; either
8 ;;;; version 3 of the License, or (at your option) any later version.
9 ;;;;
10 ;;;; This library is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 ;;;; Lesser General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU Lesser General Public
16 ;;;; License along with this library; if not, write to the Free Software
17 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18
19 (define-module (language tree-il peval)
20 #:use-module (language tree-il)
21 #:use-module (language tree-il primitives)
22 #:use-module (language tree-il effects)
23 #:use-module (ice-9 vlist)
24 #:use-module (ice-9 match)
25 #:use-module (srfi srfi-1)
26 #:use-module (srfi srfi-9)
27 #:use-module (srfi srfi-11)
28 #:use-module (srfi srfi-26)
29 #:use-module (ice-9 control)
30 #:export (peval))
31
32 ;;;
33 ;;; Partial evaluation is Guile's most important source-to-source
34 ;;; optimization pass. It performs copy propagation, dead code
35 ;;; elimination, inlining, and constant folding, all while preserving
36 ;;; the order of effects in the residual program.
37 ;;;
38 ;;; For more on partial evaluation, see William Cook’s excellent
39 ;;; tutorial on partial evaluation at DSL 2011, called “Build your own
40 ;;; partial evaluator in 90 minutes”[0].
41 ;;;
42 ;;; Our implementation of this algorithm was heavily influenced by
43 ;;; Waddell and Dybvig's paper, "Fast and Effective Procedure Inlining",
44 ;;; IU CS Dept. TR 484.
45 ;;;
46 ;;; [0] http://www.cs.utexas.edu/~wcook/tutorial/.
47 ;;;
48
49 ;; First, some helpers.
50 ;;
51 (define-syntax *logging* (identifier-syntax #f))
52
53 ;; For efficiency we define *logging* to inline to #f, so that the call
54 ;; to log* gets optimized out. If you want to log, uncomment these
55 ;; lines:
56 ;;
57 ;; (define %logging #f)
58 ;; (define-syntax *logging* (identifier-syntax %logging))
59 ;;
60 ;; Then you can change %logging at runtime.
61
62 (define-syntax log
63 (syntax-rules (quote)
64 ((log 'event arg ...)
65 (if (and *logging*
66 (or (eq? *logging* #t)
67 (memq 'event *logging*)))
68 (log* 'event arg ...)))))
69
70 (define (log* event . args)
71 (let ((pp (module-ref (resolve-interface '(ice-9 pretty-print))
72 'pretty-print)))
73 (pp `(log ,event . ,args))
74 (newline)
75 (values)))
76
77 (define (tree-il-any proc exp)
78 (let/ec k
79 (tree-il-fold (lambda (exp res)
80 (let ((res (proc exp)))
81 (if res (k res) #f)))
82 (lambda (exp res) #f)
83 #f exp)))
84
85 (define (vlist-any proc vlist)
86 (let ((len (vlist-length vlist)))
87 (let lp ((i 0))
88 (and (< i len)
89 (or (proc (vlist-ref vlist i))
90 (lp (1+ i)))))))
91
92 (define (singly-valued-expression? exp)
93 (match exp
94 (($ <const>) #t)
95 (($ <lexical-ref>) #t)
96 (($ <void>) #t)
97 (($ <lexical-ref>) #t)
98 (($ <primitive-ref>) #t)
99 (($ <module-ref>) #t)
100 (($ <toplevel-ref>) #t)
101 (($ <primcall> _ (? singly-valued-primitive?)) #t)
102 (($ <primcall> _ 'values (val)) #t)
103 (($ <lambda>) #t)
104 (($ <conditional> _ test consequent alternate)
105 (and (singly-valued-expression? consequent)
106 (singly-valued-expression? alternate)))
107 (else #f)))
108
109 (define (truncate-values x)
110 "Discard all but the first value of X."
111 (if (singly-valued-expression? x)
112 x
113 (make-primcall (tree-il-src x) 'values (list x))))
114
115 ;; Peval will do a one-pass analysis on the source program to determine
116 ;; the set of assigned lexicals, and to identify unreferenced and
117 ;; singly-referenced lexicals.
118 ;;
119 (define-record-type <var>
120 (make-var name gensym refcount set?)
121 var?
122 (name var-name)
123 (gensym var-gensym)
124 (refcount var-refcount set-var-refcount!)
125 (set? var-set? set-var-set?!))
126
127 (define* (build-var-table exp #:optional (table vlist-null))
128 (tree-il-fold
129 (lambda (exp res)
130 (match exp
131 (($ <lexical-ref> src name gensym)
132 (let ((var (cdr (vhash-assq gensym res))))
133 (set-var-refcount! var (1+ (var-refcount var)))
134 res))
135 (($ <lambda-case> src req opt rest kw init gensyms body alt)
136 (fold (lambda (name sym res)
137 (vhash-consq sym (make-var name sym 0 #f) res))
138 res
139 (append req (or opt '()) (if rest (list rest) '())
140 (match kw
141 ((aok? (kw name sym) ...) name)
142 (_ '())))
143 gensyms))
144 (($ <let> src names gensyms vals body)
145 (fold (lambda (name sym res)
146 (vhash-consq sym (make-var name sym 0 #f) res))
147 res names gensyms))
148 (($ <letrec> src in-order? names gensyms vals body)
149 (fold (lambda (name sym res)
150 (vhash-consq sym (make-var name sym 0 #f) res))
151 res names gensyms))
152 (($ <fix> src names gensyms vals body)
153 (fold (lambda (name sym res)
154 (vhash-consq sym (make-var name sym 0 #f) res))
155 res names gensyms))
156 (($ <lexical-set> src name gensym exp)
157 (set-var-set?! (cdr (vhash-assq gensym res)) #t)
158 res)
159 (_ res)))
160 (lambda (exp res) res)
161 table exp))
162
163 ;; Counters are data structures used to limit the effort that peval
164 ;; spends on particular inlining attempts. Each call site in the source
165 ;; program is allocated some amount of effort. If peval exceeds the
166 ;; effort counter while attempting to inline a call site, it aborts the
167 ;; inlining attempt and residualizes a call instead.
168 ;;
169 ;; As there is a fixed number of call sites, that makes `peval' O(N) in
170 ;; the number of call sites in the source program.
171 ;;
172 ;; Counters should limit the size of the residual program as well, but
173 ;; currently this is not implemented.
174 ;;
175 ;; At the top level, before seeing any peval call, there is no counter,
176 ;; because inlining will terminate as there is no recursion. When peval
177 ;; sees a call at the top level, it will make a new counter, allocating
178 ;; it some amount of effort and size.
179 ;;
180 ;; This top-level effort counter effectively "prints money". Within a
181 ;; toplevel counter, no more effort is printed ex nihilo; for a nested
182 ;; inlining attempt to proceed, effort must be transferred from the
183 ;; toplevel counter to the nested counter.
184 ;;
185 ;; Via `data' and `prev', counters form a linked list, terminating in a
186 ;; toplevel counter. In practice `data' will be the a pointer to the
187 ;; source expression of the procedure being inlined.
188 ;;
189 ;; In this way peval can detect a recursive inlining attempt, by walking
190 ;; back on the `prev' links looking for matching `data'. Recursive
191 ;; counters receive a more limited effort allocation, as we don't want
192 ;; to spend all of the effort for a toplevel inlining site on loops.
193 ;; Also, recursive counters don't need a prompt at each inlining site:
194 ;; either the call chain folds entirely, or it will be residualized at
195 ;; its original call.
196 ;;
197 (define-record-type <counter>
198 (%make-counter effort size continuation recursive? data prev)
199 counter?
200 (effort effort-counter)
201 (size size-counter)
202 (continuation counter-continuation)
203 (recursive? counter-recursive? set-counter-recursive?!)
204 (data counter-data)
205 (prev counter-prev))
206
207 (define (abort-counter c)
208 ((counter-continuation c)))
209
210 (define (record-effort! c)
211 (let ((e (effort-counter c)))
212 (if (zero? (variable-ref e))
213 (abort-counter c)
214 (variable-set! e (1- (variable-ref e))))))
215
216 (define (record-size! c)
217 (let ((s (size-counter c)))
218 (if (zero? (variable-ref s))
219 (abort-counter c)
220 (variable-set! s (1- (variable-ref s))))))
221
222 (define (find-counter data counter)
223 (and counter
224 (if (eq? data (counter-data counter))
225 counter
226 (find-counter data (counter-prev counter)))))
227
228 (define* (transfer! from to #:optional
229 (effort (variable-ref (effort-counter from)))
230 (size (variable-ref (size-counter from))))
231 (define (transfer-counter! from-v to-v amount)
232 (let* ((from-balance (variable-ref from-v))
233 (to-balance (variable-ref to-v))
234 (amount (min amount from-balance)))
235 (variable-set! from-v (- from-balance amount))
236 (variable-set! to-v (+ to-balance amount))))
237
238 (transfer-counter! (effort-counter from) (effort-counter to) effort)
239 (transfer-counter! (size-counter from) (size-counter to) size))
240
241 (define (make-top-counter effort-limit size-limit continuation data)
242 (%make-counter (make-variable effort-limit)
243 (make-variable size-limit)
244 continuation
245 #t
246 data
247 #f))
248
249 (define (make-nested-counter continuation data current)
250 (let ((c (%make-counter (make-variable 0)
251 (make-variable 0)
252 continuation
253 #f
254 data
255 current)))
256 (transfer! current c)
257 c))
258
259 (define (make-recursive-counter effort-limit size-limit orig current)
260 (let ((c (%make-counter (make-variable 0)
261 (make-variable 0)
262 (counter-continuation orig)
263 #t
264 (counter-data orig)
265 current)))
266 (transfer! current c effort-limit size-limit)
267 c))
268
269 ;; Operand structures allow bindings to be processed lazily instead of
270 ;; eagerly. By doing so, hopefully we can get process them in a way
271 ;; appropriate to their use contexts. Operands also prevent values from
272 ;; being visited multiple times, wasting effort.
273 ;;
274 ;; TODO: Record value size in operand structure?
275 ;;
276 (define-record-type <operand>
277 (%make-operand var sym visit source visit-count use-count
278 copyable? residual-value constant-value alias-value)
279 operand?
280 (var operand-var)
281 (sym operand-sym)
282 (visit %operand-visit)
283 (source operand-source)
284 (visit-count operand-visit-count set-operand-visit-count!)
285 (use-count operand-use-count set-operand-use-count!)
286 (copyable? operand-copyable? set-operand-copyable?!)
287 (residual-value operand-residual-value %set-operand-residual-value!)
288 (constant-value operand-constant-value set-operand-constant-value!)
289 (alias-value operand-alias-value set-operand-alias-value!))
290
291 (define* (make-operand var sym #:optional source visit alias)
292 ;; Bind SYM to VAR, with value SOURCE. Unassigned bound operands are
293 ;; considered copyable until we prove otherwise. If we have a source
294 ;; expression, truncate it to one value. Copy propagation does not
295 ;; work on multiply-valued expressions.
296 (let ((source (and=> source truncate-values)))
297 (%make-operand var sym visit source 0 0
298 (and source (not (var-set? var))) #f #f
299 (and (not (var-set? var)) alias))))
300
301 (define* (make-bound-operands vars syms sources visit #:optional aliases)
302 (if aliases
303 (map (lambda (name sym source alias)
304 (make-operand name sym source visit alias))
305 vars syms sources aliases)
306 (map (lambda (name sym source)
307 (make-operand name sym source visit #f))
308 vars syms sources)))
309
310 (define (make-unbound-operands vars syms)
311 (map make-operand vars syms))
312
313 (define (set-operand-residual-value! op val)
314 (%set-operand-residual-value!
315 op
316 (match val
317 (($ <primcall> src 'values (first))
318 ;; The continuation of a residualized binding does not need the
319 ;; introduced `values' node, so undo the effects of truncation.
320 first)
321 (else
322 val))))
323
324 (define* (visit-operand op counter ctx #:optional effort-limit size-limit)
325 ;; Peval is O(N) in call sites of the source program. However,
326 ;; visiting an operand can introduce new call sites. If we visit an
327 ;; operand outside a counter -- i.e., outside an inlining attempt --
328 ;; this can lead to divergence. So, if we are visiting an operand to
329 ;; try to copy it, and there is no counter, make a new one.
330 ;;
331 ;; This will only happen at most as many times as there are lexical
332 ;; references in the source program.
333 (and (zero? (operand-visit-count op))
334 (dynamic-wind
335 (lambda ()
336 (set-operand-visit-count! op (1+ (operand-visit-count op))))
337 (lambda ()
338 (and (operand-source op)
339 (if (or counter (and (not effort-limit) (not size-limit)))
340 ((%operand-visit op) (operand-source op) counter ctx)
341 (let/ec k
342 (define (abort)
343 ;; If we abort when visiting the value in a
344 ;; fresh context, we won't succeed in any future
345 ;; attempt, so don't try to copy it again.
346 (set-operand-copyable?! op #f)
347 (k #f))
348 ((%operand-visit op)
349 (operand-source op)
350 (make-top-counter effort-limit size-limit abort op)
351 ctx)))))
352 (lambda ()
353 (set-operand-visit-count! op (1- (operand-visit-count op)))))))
354
355 ;; A helper for constant folding.
356 ;;
357 (define (types-check? primitive-name args)
358 (case primitive-name
359 ((values) #t)
360 ((not pair? null? list? symbol? vector? struct?)
361 (= (length args) 1))
362 ((eq? eqv? equal?)
363 (= (length args) 2))
364 ;; FIXME: add more cases?
365 (else #f)))
366
367 (define* (peval exp #:optional (cenv (current-module)) (env vlist-null)
368 #:key
369 (operator-size-limit 40)
370 (operand-size-limit 20)
371 (value-size-limit 10)
372 (effort-limit 500)
373 (recursive-effort-limit 100))
374 "Partially evaluate EXP in compilation environment CENV, with
375 top-level bindings from ENV and return the resulting expression."
376
377 ;; This is a simple partial evaluator. It effectively performs
378 ;; constant folding, copy propagation, dead code elimination, and
379 ;; inlining.
380
381 ;; TODO:
382 ;;
383 ;; Propagate copies across toplevel bindings, if we can prove the
384 ;; bindings to be immutable.
385 ;;
386 ;; Specialize lambda expressions with invariant arguments.
387
388 (define local-toplevel-env
389 ;; The top-level environment of the module being compiled.
390 (let ()
391 (define (env-folder x env)
392 (match x
393 (($ <toplevel-define> _ name)
394 (vhash-consq name #t env))
395 (($ <seq> _ head tail)
396 (env-folder tail (env-folder head env)))
397 (_ env)))
398 (env-folder exp vlist-null)))
399
400 (define (local-toplevel? name)
401 (vhash-assq name local-toplevel-env))
402
403 ;; gensym -> <var>
404 ;; renamed-term -> original-term
405 ;;
406 (define store (build-var-table exp))
407
408 (define (record-new-temporary! name sym refcount)
409 (set! store (vhash-consq sym (make-var name sym refcount #f) store)))
410
411 (define (lookup-var sym)
412 (let ((v (vhash-assq sym store)))
413 (if v (cdr v) (error "unbound var" sym (vlist->list store)))))
414
415 (define (fresh-gensyms vars)
416 (map (lambda (var)
417 (let ((new (gensym (string-append (symbol->string (var-name var))
418 " "))))
419 (set! store (vhash-consq new var store))
420 new))
421 vars))
422
423 (define (fresh-temporaries ls)
424 (map (lambda (elt)
425 (let ((new (gensym "tmp ")))
426 (record-new-temporary! 'tmp new 1)
427 new))
428 ls))
429
430 (define (assigned-lexical? sym)
431 (var-set? (lookup-var sym)))
432
433 (define (lexical-refcount sym)
434 (var-refcount (lookup-var sym)))
435
436 (define (with-temporaries src exps refcount can-copy? k)
437 (let* ((pairs (map (match-lambda
438 ((and exp (? can-copy?))
439 (cons #f exp))
440 (exp
441 (let ((sym (gensym "tmp ")))
442 (record-new-temporary! 'tmp sym refcount)
443 (cons sym exp))))
444 exps))
445 (tmps (filter car pairs)))
446 (match tmps
447 (() (k exps))
448 (tmps
449 (make-let src
450 (make-list (length tmps) 'tmp)
451 (map car tmps)
452 (map cdr tmps)
453 (k (map (match-lambda
454 ((#f . val) val)
455 ((sym . _)
456 (make-lexical-ref #f 'tmp sym)))
457 pairs)))))))
458
459 (define (make-begin0 src first second)
460 (make-let-values
461 src
462 first
463 (let ((vals (gensym "vals ")))
464 (record-new-temporary! 'vals vals 1)
465 (make-lambda-case
466 #f
467 '() #f 'vals #f '() (list vals)
468 (make-seq
469 src
470 second
471 (make-primcall #f 'apply
472 (list
473 (make-primitive-ref #f 'values)
474 (make-lexical-ref #f 'vals vals))))
475 #f))))
476
477 ;; ORIG has been alpha-renamed to NEW. Analyze NEW and record a link
478 ;; from it to ORIG.
479 ;;
480 (define (record-source-expression! orig new)
481 (set! store (vhash-consq new (source-expression orig) store))
482 new)
483
484 ;; Find the source expression corresponding to NEW. Used to detect
485 ;; recursive inlining attempts.
486 ;;
487 (define (source-expression new)
488 (let ((x (vhash-assq new store)))
489 (if x (cdr x) new)))
490
491 (define (record-operand-use op)
492 (set-operand-use-count! op (1+ (operand-use-count op))))
493
494 (define (unrecord-operand-uses op n)
495 (let ((count (- (operand-use-count op) n)))
496 (when (zero? count)
497 (set-operand-residual-value! op #f))
498 (set-operand-use-count! op count)))
499
500 (define* (residualize-lexical op #:optional ctx val)
501 (log 'residualize op)
502 (record-operand-use op)
503 (if (memq ctx '(value values))
504 (set-operand-residual-value! op val))
505 (make-lexical-ref #f (var-name (operand-var op)) (operand-sym op)))
506
507 (define (fold-constants src name args ctx)
508 (define (apply-primitive name args)
509 ;; todo: further optimize commutative primitives
510 (catch #t
511 (lambda ()
512 (call-with-values
513 (lambda ()
514 (apply (module-ref the-scm-module name) args))
515 (lambda results
516 (values #t results))))
517 (lambda _
518 (values #f '()))))
519 (define (make-values src values)
520 (match values
521 ((single) single) ; 1 value
522 ((_ ...) ; 0, or 2 or more values
523 (make-primcall src 'values values))))
524 (define (residualize-call)
525 (make-primcall src name args))
526 (cond
527 ((every const? args)
528 (let-values (((success? values)
529 (apply-primitive name (map const-exp args))))
530 (log 'fold success? values name args)
531 (if success?
532 (case ctx
533 ((effect) (make-void src))
534 ((test)
535 ;; Values truncation: only take the first
536 ;; value.
537 (if (pair? values)
538 (make-const src (car values))
539 (make-values src '())))
540 (else
541 (make-values src (map (cut make-const src <>) values))))
542 (residualize-call))))
543 ((and (eq? ctx 'effect) (types-check? name args))
544 (make-void #f))
545 (else
546 (residualize-call))))
547
548 (define (inline-values src exp nmin nmax consumer)
549 (let loop ((exp exp))
550 (match exp
551 ;; Some expression types are always singly-valued.
552 ((or ($ <const>)
553 ($ <void>)
554 ($ <lambda>)
555 ($ <lexical-ref>)
556 ($ <toplevel-ref>)
557 ($ <module-ref>)
558 ($ <primitive-ref>)
559 ($ <lexical-set>) ; FIXME: these set! expressions
560 ($ <toplevel-set>) ; could return zero values in
561 ($ <toplevel-define>) ; the future
562 ($ <module-set>) ;
563 ($ <primcall> src (? singly-valued-primitive?)))
564 (and (<= nmin 1) (or (not nmax) (>= nmax 1))
565 (make-call src (make-lambda #f '() consumer) (list exp))))
566
567 ;; Statically-known number of values.
568 (($ <primcall> src 'values vals)
569 (and (<= nmin (length vals)) (or (not nmax) (>= nmax (length vals)))
570 (make-call src (make-lambda #f '() consumer) vals)))
571
572 ;; Not going to copy code into both branches.
573 (($ <conditional>) #f)
574
575 ;; Bail on other applications.
576 (($ <call>) #f)
577 (($ <primcall>) #f)
578
579 ;; Bail on prompt and abort.
580 (($ <prompt>) #f)
581 (($ <abort>) #f)
582
583 ;; Propagate to tail positions.
584 (($ <let> src names gensyms vals body)
585 (let ((body (loop body)))
586 (and body
587 (make-let src names gensyms vals body))))
588 (($ <letrec> src in-order? names gensyms vals body)
589 (let ((body (loop body)))
590 (and body
591 (make-letrec src in-order? names gensyms vals body))))
592 (($ <fix> src names gensyms vals body)
593 (let ((body (loop body)))
594 (and body
595 (make-fix src names gensyms vals body))))
596 (($ <let-values> src exp
597 ($ <lambda-case> src2 req opt rest kw inits gensyms body #f))
598 (let ((body (loop body)))
599 (and body
600 (make-let-values src exp
601 (make-lambda-case src2 req opt rest kw
602 inits gensyms body #f)))))
603 (($ <seq> src head tail)
604 (let ((tail (loop tail)))
605 (and tail (make-seq src head tail)))))))
606
607 (define compute-effects
608 (make-effects-analyzer assigned-lexical?))
609
610 (define (constant-expression? x)
611 ;; Return true if X is constant, for the purposes of copying or
612 ;; elision---i.e., if it is known to have no effects, does not
613 ;; allocate storage for a mutable object, and does not access
614 ;; mutable data (like `car' or toplevel references).
615 (constant? (compute-effects x)))
616
617 (define (prune-bindings ops in-order? body counter ctx build-result)
618 ;; This helper handles both `let' and `letrec'/`fix'. In the latter
619 ;; cases we need to make sure that if referenced binding A needs
620 ;; as-yet-unreferenced binding B, that B is processed for value.
621 ;; Likewise if C, when processed for effect, needs otherwise
622 ;; unreferenced D, then D needs to be processed for value too.
623 ;;
624 (define (referenced? op)
625 ;; When we visit lambdas in operator context, we just copy them,
626 ;; as we will process their body later. However this does have
627 ;; the problem that any free var referenced by the lambda is not
628 ;; marked as needing residualization. Here we hack around this
629 ;; and treat all bindings as referenced if we are in operator
630 ;; context.
631 (or (eq? ctx 'operator)
632 (not (zero? (operand-use-count op)))))
633
634 ;; values := (op ...)
635 ;; effects := (op ...)
636 (define (residualize values effects)
637 ;; Note, values and effects are reversed.
638 (cond
639 (in-order?
640 (let ((values (filter operand-residual-value ops)))
641 (if (null? values)
642 body
643 (build-result (map (compose var-name operand-var) values)
644 (map operand-sym values)
645 (map operand-residual-value values)
646 body))))
647 (else
648 (let ((body
649 (if (null? effects)
650 body
651 (let ((effect-vals (map operand-residual-value effects)))
652 (list->seq #f (reverse (cons body effect-vals)))))))
653 (if (null? values)
654 body
655 (let ((values (reverse values)))
656 (build-result (map (compose var-name operand-var) values)
657 (map operand-sym values)
658 (map operand-residual-value values)
659 body)))))))
660
661 ;; old := (bool ...)
662 ;; values := (op ...)
663 ;; effects := ((op . value) ...)
664 (let prune ((old (map referenced? ops)) (values '()) (effects '()))
665 (let lp ((ops* ops) (values values) (effects effects))
666 (cond
667 ((null? ops*)
668 (let ((new (map referenced? ops)))
669 (if (not (equal? new old))
670 (prune new values '())
671 (residualize values
672 (map (lambda (op val)
673 (set-operand-residual-value! op val)
674 op)
675 (map car effects) (map cdr effects))))))
676 (else
677 (let ((op (car ops*)))
678 (cond
679 ((memq op values)
680 (lp (cdr ops*) values effects))
681 ((operand-residual-value op)
682 (lp (cdr ops*) (cons op values) effects))
683 ((referenced? op)
684 (set-operand-residual-value! op (visit-operand op counter 'value))
685 (lp (cdr ops*) (cons op values) effects))
686 (else
687 (lp (cdr ops*)
688 values
689 (let ((effect (visit-operand op counter 'effect)))
690 (if (void? effect)
691 effects
692 (acons op effect effects))))))))))))
693
694 (define (small-expression? x limit)
695 (let/ec k
696 (tree-il-fold
697 (lambda (x res) ; down
698 (1+ res))
699 (lambda (x res) ; up
700 (if (< res limit)
701 res
702 (k #f)))
703 0 x)
704 #t))
705
706 (define (extend-env sym op env)
707 (vhash-consq (operand-sym op) op (vhash-consq sym op env)))
708
709 (let loop ((exp exp)
710 (env vlist-null) ; vhash of gensym -> <operand>
711 (counter #f) ; inlined call stack
712 (ctx 'values)) ; effect, value, values, test, operator, or call
713 (define (lookup var)
714 (cond
715 ((vhash-assq var env) => cdr)
716 (else (error "unbound var" var))))
717
718 ;; Find a value referenced a specific number of times. This is a hack
719 ;; that's used for propagating fresh data structures like rest lists and
720 ;; prompt tags. Usually we wouldn't copy consed data, but we can do so in
721 ;; some special cases like `apply' or prompts if we can account
722 ;; for all of its uses.
723 ;;
724 ;; You don't want to use this in general because it introduces a slight
725 ;; nonlinearity by running peval again (though with a small effort and size
726 ;; counter).
727 ;;
728 (define (find-definition x n-aliases)
729 (cond
730 ((lexical-ref? x)
731 (cond
732 ((lookup (lexical-ref-gensym x))
733 => (lambda (op)
734 (if (var-set? (operand-var op))
735 (values #f #f)
736 (let ((y (or (operand-residual-value op)
737 (visit-operand op counter 'value 10 10)
738 (operand-source op))))
739 (cond
740 ((and (lexical-ref? y)
741 (= (lexical-refcount (lexical-ref-gensym x)) 1))
742 ;; X is a simple alias for Y. Recurse, regardless of
743 ;; the number of aliases we were expecting.
744 (find-definition y n-aliases))
745 ((= (lexical-refcount (lexical-ref-gensym x)) n-aliases)
746 ;; We found a definition that is aliased the right
747 ;; number of times. We still recurse in case it is a
748 ;; lexical.
749 (values (find-definition y 1)
750 op))
751 (else
752 ;; We can't account for our aliases.
753 (values #f #f)))))))
754 (else
755 ;; A formal parameter. Can't say anything about that.
756 (values #f #f))))
757 ((= n-aliases 1)
758 ;; Not a lexical: success, but only if we are looking for an
759 ;; unaliased value.
760 (values x #f))
761 (else (values #f #f))))
762
763 (define (visit exp ctx)
764 (loop exp env counter ctx))
765
766 (define (for-value exp) (visit exp 'value))
767 (define (for-values exp) (visit exp 'values))
768 (define (for-test exp) (visit exp 'test))
769 (define (for-effect exp) (visit exp 'effect))
770 (define (for-call exp) (visit exp 'call))
771 (define (for-tail exp) (visit exp ctx))
772
773 (if counter
774 (record-effort! counter))
775
776 (log 'visit ctx (and=> counter effort-counter)
777 (unparse-tree-il exp))
778
779 (match exp
780 (($ <const>)
781 (case ctx
782 ((effect) (make-void #f))
783 (else exp)))
784 (($ <void>)
785 (case ctx
786 ((test) (make-const #f #t))
787 (else exp)))
788 (($ <lexical-ref> _ _ gensym)
789 (log 'begin-copy gensym)
790 (let ((op (lookup gensym)))
791 (cond
792 ((eq? ctx 'effect)
793 (log 'lexical-for-effect gensym)
794 (make-void #f))
795 ((operand-alias-value op)
796 ;; This is an unassigned operand that simply aliases some
797 ;; other operand. Recurse to avoid residualizing the leaf
798 ;; binding.
799 => for-tail)
800 ((eq? ctx 'call)
801 ;; Don't propagate copies if we are residualizing a call.
802 (log 'residualize-lexical-call gensym op)
803 (residualize-lexical op))
804 ((var-set? (operand-var op))
805 ;; Assigned lexicals don't copy-propagate.
806 (log 'assigned-var gensym op)
807 (residualize-lexical op))
808 ((not (operand-copyable? op))
809 ;; We already know that this operand is not copyable.
810 (log 'not-copyable gensym op)
811 (residualize-lexical op))
812 ((and=> (operand-constant-value op)
813 (lambda (x) (or (const? x) (void? x) (primitive-ref? x))))
814 ;; A cache hit.
815 (let ((val (operand-constant-value op)))
816 (log 'memoized-constant gensym val)
817 (for-tail val)))
818 ((visit-operand op counter (if (eq? ctx 'values) 'value ctx)
819 recursive-effort-limit operand-size-limit)
820 =>
821 ;; If we end up deciding to residualize this value instead of
822 ;; copying it, save that residualized value.
823 (lambda (val)
824 (cond
825 ((not (constant-expression? val))
826 (log 'not-constant gensym op)
827 ;; At this point, ctx is operator, test, or value. A
828 ;; value that is non-constant in one context will be
829 ;; non-constant in the others, so it's safe to record
830 ;; that here, and avoid future visits.
831 (set-operand-copyable?! op #f)
832 (residualize-lexical op ctx val))
833 ((or (const? val)
834 (void? val)
835 (primitive-ref? val))
836 ;; Always propagate simple values that cannot lead to
837 ;; code bloat.
838 (log 'copy-simple gensym val)
839 ;; It could be this constant is the result of folding.
840 ;; If that is the case, cache it. This helps loop
841 ;; unrolling get farther.
842 (if (or (eq? ctx 'value) (eq? ctx 'values))
843 (begin
844 (log 'memoize-constant gensym val)
845 (set-operand-constant-value! op val)))
846 val)
847 ((= 1 (var-refcount (operand-var op)))
848 ;; Always propagate values referenced only once.
849 (log 'copy-single gensym val)
850 val)
851 ;; FIXME: do demand-driven size accounting rather than
852 ;; these heuristics.
853 ((eq? ctx 'operator)
854 ;; A pure expression in the operator position. Inline
855 ;; if it's a lambda that's small enough.
856 (if (and (lambda? val)
857 (small-expression? val operator-size-limit))
858 (begin
859 (log 'copy-operator gensym val)
860 val)
861 (begin
862 (log 'too-big-for-operator gensym val)
863 (residualize-lexical op ctx val))))
864 (else
865 ;; A pure expression, processed for call or for value.
866 ;; Don't inline lambdas, because they will probably won't
867 ;; fold because we don't know the operator.
868 (if (and (small-expression? val value-size-limit)
869 (not (tree-il-any lambda? val)))
870 (begin
871 (log 'copy-value gensym val)
872 val)
873 (begin
874 (log 'too-big-or-has-lambda gensym val)
875 (residualize-lexical op ctx val)))))))
876 (else
877 ;; Visit failed. Either the operand isn't bound, as in
878 ;; lambda formal parameters, or the copy was aborted.
879 (log 'unbound-or-aborted gensym op)
880 (residualize-lexical op)))))
881 (($ <lexical-set> src name gensym exp)
882 (let ((op (lookup gensym)))
883 (if (zero? (var-refcount (operand-var op)))
884 (let ((exp (for-effect exp)))
885 (if (void? exp)
886 exp
887 (make-seq src exp (make-void #f))))
888 (begin
889 (record-operand-use op)
890 (make-lexical-set src name (operand-sym op) (for-value exp))))))
891 (($ <let> src
892 (names ... rest)
893 (gensyms ... rest-sym)
894 (vals ... ($ <primcall> _ 'list rest-args))
895 ($ <primcall> asrc 'apply
896 (proc args ...
897 ($ <lexical-ref> _
898 (? (cut eq? <> rest))
899 (? (lambda (sym)
900 (and (eq? sym rest-sym)
901 (= (lexical-refcount sym) 1))))))))
902 (let* ((tmps (make-list (length rest-args) 'tmp))
903 (tmp-syms (fresh-temporaries tmps)))
904 (for-tail
905 (make-let src
906 (append names tmps)
907 (append gensyms tmp-syms)
908 (append vals rest-args)
909 (make-call
910 asrc
911 proc
912 (append args
913 (map (cut make-lexical-ref #f <> <>)
914 tmps tmp-syms)))))))
915 (($ <let> src names gensyms vals body)
916 (define (compute-alias exp)
917 ;; It's very common for macros to introduce something like:
918 ;;
919 ;; ((lambda (x y) ...) x-exp y-exp)
920 ;;
921 ;; In that case you might end up trying to inline something like:
922 ;;
923 ;; (let ((x x-exp) (y y-exp)) ...)
924 ;;
925 ;; But if x-exp is itself a lexical-ref that aliases some much
926 ;; larger expression, perhaps it will fail to inline due to
927 ;; size. However we don't want to introduce a useless alias
928 ;; (in this case, x). So if the RHS of a let expression is a
929 ;; lexical-ref, we record that expression. If we end up having
930 ;; to residualize X, then instead we residualize X-EXP, as long
931 ;; as it isn't assigned.
932 ;;
933 (match exp
934 (($ <lexical-ref> _ _ sym)
935 (let ((op (lookup sym)))
936 (and (not (var-set? (operand-var op)))
937 (or (operand-alias-value op)
938 exp))))
939 (_ #f)))
940
941 (let* ((vars (map lookup-var gensyms))
942 (new (fresh-gensyms vars))
943 (ops (make-bound-operands vars new vals
944 (lambda (exp counter ctx)
945 (loop exp env counter ctx))
946 (map compute-alias vals)))
947 (env (fold extend-env env gensyms ops))
948 (body (loop body env counter ctx)))
949 (cond
950 ((const? body)
951 (for-tail (list->seq src (append vals (list body)))))
952 ((and (lexical-ref? body)
953 (memq (lexical-ref-gensym body) new))
954 (let ((sym (lexical-ref-gensym body))
955 (pairs (map cons new vals)))
956 ;; (let ((x foo) (y bar) ...) x) => (begin bar ... foo)
957 (for-tail
958 (list->seq
959 src
960 (append (map cdr (alist-delete sym pairs eq?))
961 (list (assq-ref pairs sym)))))))
962 (else
963 ;; Only include bindings for which lexical references
964 ;; have been residualized.
965 (prune-bindings ops #f body counter ctx
966 (lambda (names gensyms vals body)
967 (if (null? names) (error "what!" names))
968 (make-let src names gensyms vals body)))))))
969 (($ <letrec> src in-order? names gensyms vals body)
970 ;; Note the difference from the `let' case: here we use letrec*
971 ;; so that the `visit' procedure for the new operands closes over
972 ;; an environment that includes the operands. Also we don't try
973 ;; to elide aliases, because we can't sensibly reduce something
974 ;; like (letrec ((a b) (b a)) a).
975 (letrec* ((visit (lambda (exp counter ctx)
976 (loop exp env* counter ctx)))
977 (vars (map lookup-var gensyms))
978 (new (fresh-gensyms vars))
979 (ops (make-bound-operands vars new vals visit))
980 (env* (fold extend-env env gensyms ops))
981 (body* (visit body counter ctx)))
982 (if (and (const? body*) (every constant-expression? vals))
983 ;; We may have folded a loop completely, even though there
984 ;; might be cyclical references between the bound values.
985 ;; Handle this degenerate case specially.
986 body*
987 (prune-bindings ops in-order? body* counter ctx
988 (lambda (names gensyms vals body)
989 (make-letrec src in-order?
990 names gensyms vals body))))))
991 (($ <fix> src names gensyms vals body)
992 (letrec* ((visit (lambda (exp counter ctx)
993 (loop exp env* counter ctx)))
994 (vars (map lookup-var gensyms))
995 (new (fresh-gensyms vars))
996 (ops (make-bound-operands vars new vals visit))
997 (env* (fold extend-env env gensyms ops))
998 (body* (visit body counter ctx)))
999 (if (const? body*)
1000 body*
1001 (prune-bindings ops #f body* counter ctx
1002 (lambda (names gensyms vals body)
1003 (make-fix src names gensyms vals body))))))
1004 (($ <let-values> lv-src producer consumer)
1005 ;; Peval the producer, then try to inline the consumer into
1006 ;; the producer. If that succeeds, peval again. Otherwise
1007 ;; reconstruct the let-values, pevaling the consumer.
1008 (let ((producer (for-values producer)))
1009 (or (match consumer
1010 (($ <lambda-case> src (req-name) #f #f #f () (req-sym) body #f)
1011 (for-tail
1012 (make-let src (list req-name) (list req-sym) (list producer)
1013 body)))
1014 ((and ($ <lambda-case> src () #f rest #f () (rest-sym) body #f)
1015 (? (lambda _ (singly-valued-expression? producer))))
1016 (let ((tmp (gensym "tmp ")))
1017 (record-new-temporary! 'tmp tmp 1)
1018 (for-tail
1019 (make-let
1020 src (list 'tmp) (list tmp) (list producer)
1021 (make-let
1022 src (list rest) (list rest-sym)
1023 (list
1024 (make-primcall #f 'list
1025 (list (make-lexical-ref #f 'tmp tmp))))
1026 body)))))
1027 (($ <lambda-case> src req opt rest #f inits gensyms body #f)
1028 (let* ((nmin (length req))
1029 (nmax (and (not rest) (+ nmin (if opt (length opt) 0)))))
1030 (cond
1031 ((inline-values lv-src producer nmin nmax consumer)
1032 => for-tail)
1033 (else #f))))
1034 (_ #f))
1035 (make-let-values lv-src producer (for-tail consumer)))))
1036 (($ <toplevel-ref> src (? effect-free-primitive? name))
1037 exp)
1038 (($ <toplevel-ref>)
1039 ;; todo: open private local bindings.
1040 exp)
1041 (($ <module-ref> src module (? effect-free-primitive? name) #f)
1042 (let ((module (false-if-exception
1043 (resolve-module module #:ensure #f))))
1044 (if (module? module)
1045 (let ((var (module-variable module name)))
1046 (if (eq? var (module-variable the-scm-module name))
1047 (make-primitive-ref src name)
1048 exp))
1049 exp)))
1050 (($ <module-ref>)
1051 exp)
1052 (($ <module-set> src mod name public? exp)
1053 (make-module-set src mod name public? (for-value exp)))
1054 (($ <toplevel-define> src name exp)
1055 (make-toplevel-define src name (for-value exp)))
1056 (($ <toplevel-set> src name exp)
1057 (make-toplevel-set src name (for-value exp)))
1058 (($ <primitive-ref>)
1059 (case ctx
1060 ((effect) (make-void #f))
1061 ((test) (make-const #f #t))
1062 (else exp)))
1063 (($ <conditional> src condition subsequent alternate)
1064 (define (call-with-failure-thunk exp proc)
1065 (match exp
1066 (($ <call> _ _ ()) (proc exp))
1067 (($ <primcall> _ _ ()) (proc exp))
1068 (($ <const>) (proc exp))
1069 (($ <void>) (proc exp))
1070 (($ <lexical-ref>) (proc exp))
1071 (_
1072 (let ((t (gensym "failure-")))
1073 (record-new-temporary! 'failure t 2)
1074 (make-let
1075 src (list 'failure) (list t)
1076 (list
1077 (make-lambda
1078 #f '()
1079 (make-lambda-case #f '() #f #f #f '() '() exp #f)))
1080 (proc (make-call #f (make-lexical-ref #f 'failure t)
1081 '())))))))
1082 (define (simplify-conditional c)
1083 (match c
1084 ;; Swap the arms of (if (not FOO) A B), to simplify.
1085 (($ <conditional> src ($ <primcall> _ 'not (pred))
1086 subsequent alternate)
1087 (simplify-conditional
1088 (make-conditional src pred alternate subsequent)))
1089 ;; Special cases for common tests in the predicates of chains
1090 ;; of if expressions.
1091 (($ <conditional> src
1092 ($ <conditional> src* outer-test inner-test ($ <const> _ #f))
1093 inner-subsequent
1094 alternate)
1095 (let lp ((alternate alternate))
1096 (match alternate
1097 ;; Lift a common repeated test out of a chain of if
1098 ;; expressions.
1099 (($ <conditional> _ (? (cut tree-il=? outer-test <>))
1100 other-subsequent alternate)
1101 (make-conditional
1102 src outer-test
1103 (simplify-conditional
1104 (make-conditional src* inner-test inner-subsequent
1105 other-subsequent))
1106 alternate))
1107 ;; Likewise, but punching through any surrounding
1108 ;; failure continuations.
1109 (($ <let> let-src (name) (sym) ((and thunk ($ <lambda>))) body)
1110 (make-let
1111 let-src (list name) (list sym) (list thunk)
1112 (lp body)))
1113 ;; Otherwise, rotate AND tests to expose a simple
1114 ;; condition in the front. Although this may result in
1115 ;; lexically binding failure thunks, the thunks will be
1116 ;; compiled to labels allocation, so there's no actual
1117 ;; code growth.
1118 (_
1119 (call-with-failure-thunk
1120 alternate
1121 (lambda (failure)
1122 (make-conditional
1123 src outer-test
1124 (simplify-conditional
1125 (make-conditional src* inner-test inner-subsequent failure))
1126 failure)))))))
1127 (_ c)))
1128 (match (for-test condition)
1129 (($ <const> _ val)
1130 (if val
1131 (for-tail subsequent)
1132 (for-tail alternate)))
1133 (c
1134 (simplify-conditional
1135 (make-conditional src c (for-tail subsequent)
1136 (for-tail alternate))))))
1137 (($ <primcall> src 'call-with-values
1138 (producer
1139 ($ <lambda> _ _
1140 (and consumer
1141 ;; No optional or kwargs.
1142 ($ <lambda-case>
1143 _ req #f rest #f () gensyms body #f)))))
1144 (for-tail (make-let-values src (make-call src producer '())
1145 consumer)))
1146 (($ <primcall> src 'dynamic-wind (w thunk u))
1147 (for-tail
1148 (with-temporaries
1149 src (list w u) 2 constant-expression?
1150 (match-lambda
1151 ((w u)
1152 (make-seq
1153 src
1154 (make-seq
1155 src
1156 (make-conditional
1157 src
1158 ;; fixme: introduce logic to fold thunk?
1159 (make-primcall src 'thunk? (list u))
1160 (make-call src w '())
1161 (make-primcall
1162 src 'scm-error
1163 (list
1164 (make-const #f 'wrong-type-arg)
1165 (make-const #f "dynamic-wind")
1166 (make-const #f "Wrong type (expecting thunk): ~S")
1167 (make-primcall #f 'list (list u))
1168 (make-primcall #f 'list (list u)))))
1169 (make-primcall src 'wind (list w u)))
1170 (make-begin0 src
1171 (make-call src thunk '())
1172 (make-seq src
1173 (make-primcall src 'unwind '())
1174 (make-call src u '())))))))))
1175
1176 (($ <primcall> src 'with-fluid* (f v thunk))
1177 (for-tail
1178 (with-temporaries
1179 src (list f v thunk) 1 constant-expression?
1180 (match-lambda
1181 ((f v thunk)
1182 (make-seq src
1183 (make-primcall src 'push-fluid (list f v))
1184 (make-begin0 src
1185 (make-call src thunk '())
1186 (make-primcall src 'pop-fluid '()))))))))
1187
1188 (($ <primcall> src 'values exps)
1189 (cond
1190 ((null? exps)
1191 (if (eq? ctx 'effect)
1192 (make-void #f)
1193 exp))
1194 (else
1195 (let ((vals (map for-value exps)))
1196 (if (and (case ctx
1197 ((value test effect) #t)
1198 (else (null? (cdr vals))))
1199 (every singly-valued-expression? vals))
1200 (for-tail (list->seq src (append (cdr vals) (list (car vals)))))
1201 (make-primcall src 'values vals))))))
1202
1203 (($ <primcall> src 'apply (proc args ... tail))
1204 (let lp ((tail* (find-definition tail 1)) (speculative? #t))
1205 (define (copyable? x)
1206 ;; Inlining a result from find-definition effectively copies it,
1207 ;; relying on the let-pruning to remove its original binding. We
1208 ;; shouldn't copy non-constant expressions.
1209 (or (not speculative?) (constant-expression? x)))
1210 (match tail*
1211 (($ <const> _ (args* ...))
1212 (let ((args* (map (cut make-const #f <>) args*)))
1213 (for-tail (make-call src proc (append args args*)))))
1214 (($ <primcall> _ 'cons
1215 ((and head (? copyable?)) (and tail (? copyable?))))
1216 (for-tail (make-primcall src 'apply
1217 (cons proc
1218 (append args (list head tail))))))
1219 (($ <primcall> _ 'list
1220 (and args* ((? copyable?) ...)))
1221 (for-tail (make-call src proc (append args args*))))
1222 (tail*
1223 (if speculative?
1224 (lp (for-value tail) #f)
1225 (let ((args (append (map for-value args) (list tail*))))
1226 (make-primcall src 'apply
1227 (cons (for-value proc) args))))))))
1228
1229 (($ <primcall> src (? constructor-primitive? name) args)
1230 (cond
1231 ((and (memq ctx '(effect test))
1232 (match (cons name args)
1233 ((or ('cons _ _)
1234 ('list . _)
1235 ('vector . _)
1236 ('make-prompt-tag)
1237 ('make-prompt-tag ($ <const> _ (? string?))))
1238 #t)
1239 (_ #f)))
1240 ;; Some expressions can be folded without visiting the
1241 ;; arguments for value.
1242 (let ((res (if (eq? ctx 'effect)
1243 (make-void #f)
1244 (make-const #f #t))))
1245 (for-tail (list->seq src (append args (list res))))))
1246 (else
1247 (match (cons name (map for-value args))
1248 (('cons x ($ <const> _ (? (cut eq? <> '()))))
1249 (make-primcall src 'list (list x)))
1250 (('cons x ($ <primcall> _ 'list elts))
1251 (make-primcall src 'list (cons x elts)))
1252 ((name . args)
1253 (make-primcall src name args))))))
1254
1255 (($ <primcall> src 'thunk? (proc))
1256 (case ctx
1257 ((effect)
1258 (for-tail (make-seq src proc (make-void src))))
1259 (else
1260 (match (for-value proc)
1261 (($ <lambda> _ _ ($ <lambda-case> _ req))
1262 (for-tail (make-const src (null? req))))
1263 (proc
1264 (match (find-definition proc 2)
1265 (($ <lambda> _ _ ($ <lambda-case> _ req))
1266 (for-tail (make-const src (null? req))))
1267 (_
1268 (make-primcall src 'thunk? (list proc)))))))))
1269
1270 (($ <primcall> src name args)
1271 (match (cons name (map for-value args))
1272 ;; FIXME: these for-tail recursions could take place outside
1273 ;; an effort counter.
1274 (('car ($ <primcall> src 'cons (head tail)))
1275 (for-tail (make-seq src tail head)))
1276 (('cdr ($ <primcall> src 'cons (head tail)))
1277 (for-tail (make-seq src head tail)))
1278 (('car ($ <primcall> src 'list (head . tail)))
1279 (for-tail (list->seq src (append tail (list head)))))
1280 (('cdr ($ <primcall> src 'list (head . tail)))
1281 (for-tail (make-seq src head (make-primcall #f 'list tail))))
1282
1283 (('car ($ <const> src (head . tail)))
1284 (for-tail (make-const src head)))
1285 (('cdr ($ <const> src (head . tail)))
1286 (for-tail (make-const src tail)))
1287 (((or 'memq 'memv) k ($ <const> _ (elts ...)))
1288 ;; FIXME: factor
1289 (case ctx
1290 ((effect)
1291 (for-tail
1292 (make-seq src k (make-void #f))))
1293 ((test)
1294 (cond
1295 ((const? k)
1296 ;; A shortcut. The `else' case would handle it, but
1297 ;; this way is faster.
1298 (let ((member (case name ((memq) memq) ((memv) memv))))
1299 (make-const #f (and (member (const-exp k) elts) #t))))
1300 ((null? elts)
1301 (for-tail
1302 (make-seq src k (make-const #f #f))))
1303 (else
1304 (let ((t (gensym "t "))
1305 (eq (if (eq? name 'memq) 'eq? 'eqv?)))
1306 (record-new-temporary! 't t (length elts))
1307 (for-tail
1308 (make-let
1309 src (list 't) (list t) (list k)
1310 (let lp ((elts elts))
1311 (define test
1312 (make-primcall #f eq
1313 (list (make-lexical-ref #f 't t)
1314 (make-const #f (car elts)))))
1315 (if (null? (cdr elts))
1316 test
1317 (make-conditional src test
1318 (make-const #f #t)
1319 (lp (cdr elts)))))))))))
1320 (else
1321 (cond
1322 ((const? k)
1323 (let ((member (case name ((memq) memq) ((memv) memv))))
1324 (make-const #f (member (const-exp k) elts))))
1325 ((null? elts)
1326 (for-tail (make-seq src k (make-const #f #f))))
1327 (else
1328 (make-primcall src name (list k (make-const #f elts))))))))
1329 (((? equality-primitive?)
1330 ($ <lexical-ref> _ _ sym) ($ <lexical-ref> _ _ sym))
1331 (for-tail (make-const #f #t)))
1332
1333 (((? effect-free-primitive?) . args)
1334 (fold-constants src name args ctx))
1335
1336 ((name . args)
1337 (make-primcall src name args))))
1338
1339 (($ <call> src orig-proc orig-args)
1340 ;; todo: augment the global env with specialized functions
1341 (let revisit-proc ((proc (visit orig-proc 'operator)))
1342 (match proc
1343 (($ <primitive-ref> _ name)
1344 (for-tail (make-primcall src name orig-args)))
1345 (($ <lambda> _ _
1346 ($ <lambda-case> _ req opt rest #f inits gensyms body #f))
1347 ;; Simple case: no keyword arguments.
1348 ;; todo: handle the more complex cases
1349 (let* ((nargs (length orig-args))
1350 (nreq (length req))
1351 (opt (or opt '()))
1352 (rest (if rest (list rest) '()))
1353 (nopt (length opt))
1354 (key (source-expression proc)))
1355 (define (inlined-call)
1356 (let ((req-vals (list-head orig-args nreq))
1357 (opt-vals (let lp ((args (drop orig-args nreq))
1358 (inits inits)
1359 (out '()))
1360 (match inits
1361 (() (reverse out))
1362 ((init . inits)
1363 (match args
1364 (()
1365 (lp '() inits (cons init out)))
1366 ((arg . args)
1367 (lp args inits (cons arg out))))))))
1368 (rest-vals (cond
1369 ((> nargs (+ nreq nopt))
1370 (list (make-primcall
1371 #f 'list
1372 (drop orig-args (+ nreq nopt)))))
1373 (rest (list (make-const #f '())))
1374 (else '()))))
1375 (if (>= nargs (+ nreq nopt))
1376 (make-let src
1377 (append req opt rest)
1378 gensyms
1379 (append req-vals opt-vals rest-vals)
1380 body)
1381 ;; The required argument values are in the scope
1382 ;; of the optional argument initializers.
1383 (make-let src
1384 (append req rest)
1385 (append (list-head gensyms nreq)
1386 (last-pair gensyms))
1387 (append req-vals rest-vals)
1388 (make-let src
1389 opt
1390 (list-head (drop gensyms nreq) nopt)
1391 opt-vals
1392 body)))))
1393
1394 (cond
1395 ((or (< nargs nreq) (and (not rest) (> nargs (+ nreq nopt))))
1396 ;; An error, or effecting arguments.
1397 (make-call src (for-call orig-proc) (map for-value orig-args)))
1398 ((or (and=> (find-counter key counter) counter-recursive?)
1399 (lambda? orig-proc))
1400 ;; A recursive call, or a lambda in the operator
1401 ;; position of the source expression. Process again in
1402 ;; tail context.
1403 ;;
1404 ;; In the recursive case, mark intervening counters as
1405 ;; recursive, so we can handle a toplevel counter that
1406 ;; recurses mutually with some other procedure.
1407 ;; Otherwise, the next time we see the other procedure,
1408 ;; the effort limit would be clamped to 100.
1409 ;;
1410 (let ((found (find-counter key counter)))
1411 (if (and found (counter-recursive? found))
1412 (let lp ((counter counter))
1413 (if (not (eq? counter found))
1414 (begin
1415 (set-counter-recursive?! counter #t)
1416 (lp (counter-prev counter)))))))
1417
1418 (log 'inline-recurse key)
1419 (loop (inlined-call) env counter ctx))
1420 (else
1421 ;; An integration at the top-level, the first
1422 ;; recursion of a recursive procedure, or a nested
1423 ;; integration of a procedure that hasn't been seen
1424 ;; yet.
1425 (log 'inline-begin exp)
1426 (let/ec k
1427 (define (abort)
1428 (log 'inline-abort exp)
1429 (k (make-call src (for-call orig-proc)
1430 (map for-value orig-args))))
1431 (define new-counter
1432 (cond
1433 ;; These first two cases will transfer effort
1434 ;; from the current counter into the new
1435 ;; counter.
1436 ((find-counter key counter)
1437 => (lambda (prev)
1438 (make-recursive-counter recursive-effort-limit
1439 operand-size-limit
1440 prev counter)))
1441 (counter
1442 (make-nested-counter abort key counter))
1443 ;; This case opens a new account, effectively
1444 ;; printing money. It should only do so once
1445 ;; for each call site in the source program.
1446 (else
1447 (make-top-counter effort-limit operand-size-limit
1448 abort key))))
1449 (define result
1450 (loop (inlined-call) env new-counter ctx))
1451
1452 (if counter
1453 ;; The nested inlining attempt succeeded.
1454 ;; Deposit the unspent effort and size back
1455 ;; into the current counter.
1456 (transfer! new-counter counter))
1457
1458 (log 'inline-end result exp)
1459 result)))))
1460 (($ <let> _ _ _ vals _)
1461 ;; Attempt to inline `let' in the operator position.
1462 ;;
1463 ;; We have to re-visit the proc in value mode, since the
1464 ;; `let' bindings might have been introduced or renamed,
1465 ;; whereas the lambda (if any) in operator position has not
1466 ;; been renamed.
1467 (if (or (and-map constant-expression? vals)
1468 (and-map constant-expression? orig-args))
1469 ;; The arguments and the let-bound values commute.
1470 (match (for-value orig-proc)
1471 (($ <let> lsrc names syms vals body)
1472 (log 'inline-let orig-proc)
1473 (for-tail
1474 (make-let lsrc names syms vals
1475 (make-call src body orig-args))))
1476 ;; It's possible for a `let' to go away after the
1477 ;; visit due to the fact that visiting a procedure in
1478 ;; value context will prune unused bindings, whereas
1479 ;; visiting in operator mode can't because it doesn't
1480 ;; traverse through lambdas. In that case re-visit
1481 ;; the procedure.
1482 (proc (revisit-proc proc)))
1483 (make-call src (for-call orig-proc)
1484 (map for-value orig-args))))
1485 (_
1486 (make-call src (for-call orig-proc) (map for-value orig-args))))))
1487 (($ <lambda> src meta body)
1488 (case ctx
1489 ((effect) (make-void #f))
1490 ((test) (make-const #f #t))
1491 ((operator) exp)
1492 (else (record-source-expression!
1493 exp
1494 (make-lambda src meta (and body (for-values body)))))))
1495 (($ <lambda-case> src req opt rest kw inits gensyms body alt)
1496 (define (lift-applied-lambda body gensyms)
1497 (and (not opt) rest (not kw)
1498 (match body
1499 (($ <primcall> _ 'apply
1500 (($ <lambda> _ _ (and lcase ($ <lambda-case>)))
1501 ($ <lexical-ref> _ _ sym)
1502 ...))
1503 (and (equal? sym gensyms)
1504 (not (lambda-case-alternate lcase))
1505 lcase))
1506 (_ #f))))
1507 (let* ((vars (map lookup-var gensyms))
1508 (new (fresh-gensyms vars))
1509 (env (fold extend-env env gensyms
1510 (make-unbound-operands vars new)))
1511 (new-sym (lambda (old)
1512 (operand-sym (cdr (vhash-assq old env)))))
1513 (body (loop body env counter ctx)))
1514 (or
1515 ;; (lambda args (apply (lambda ...) args)) => (lambda ...)
1516 (lift-applied-lambda body new)
1517 (make-lambda-case src req opt rest
1518 (match kw
1519 ((aok? (kw name old) ...)
1520 (cons aok? (map list kw name (map new-sym old))))
1521 (_ #f))
1522 (map (cut loop <> env counter 'value) inits)
1523 new
1524 body
1525 (and alt (for-tail alt))))))
1526 (($ <seq> src head tail)
1527 (let ((head (for-effect head))
1528 (tail (for-tail tail)))
1529 (if (void? head)
1530 tail
1531 (make-seq src
1532 (if (and (seq? head)
1533 (void? (seq-tail head)))
1534 (seq-head head)
1535 head)
1536 tail))))
1537 (($ <prompt> src escape-only? tag body handler)
1538 (define (make-prompt-tag? x)
1539 (match x
1540 (($ <primcall> _ 'make-prompt-tag (or () ((? constant-expression?))))
1541 #t)
1542 (_ #f)))
1543
1544 (let ((tag (for-value tag))
1545 (body (if escape-only? (for-tail body) (for-value body))))
1546 (cond
1547 ((find-definition tag 1)
1548 (lambda (val op)
1549 (make-prompt-tag? val))
1550 => (lambda (val op)
1551 ;; There is no way that an <abort> could know the tag
1552 ;; for this <prompt>, so we can elide the <prompt>
1553 ;; entirely.
1554 (unrecord-operand-uses op 1)
1555 (for-tail (if escape-only? body (make-call src body '())))))
1556 (else
1557 (let ((handler (for-value handler)))
1558 (define (escape-only-handler? handler)
1559 (match handler
1560 (($ <lambda> _ _
1561 ($ <lambda-case> _ (_ . _) _ _ _ _ (k . _) body #f))
1562 (not (tree-il-any
1563 (match-lambda
1564 (($ <lexical-ref> _ _ (? (cut eq? <> k))) #t)
1565 (_ #f))
1566 body)))
1567 (else #f)))
1568 (if (and (not escape-only?) (escape-only-handler? handler))
1569 ;; Prompt transitioning to escape-only; transition body
1570 ;; to be an expression.
1571 (for-tail
1572 (make-prompt src #t tag (make-call #f body '()) handler))
1573 (make-prompt src escape-only? tag body handler)))))))
1574
1575 (($ <abort> src tag args tail)
1576 (make-abort src (for-value tag) (map for-value args)
1577 (for-value tail))))))