rnrs modules #:replace as appropriate
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;; Before compiling, make sure any symbols are resolved in the (guile)
37 ;; module, the primary location of those symbols, rather than in
38 ;; (guile-user), the default module that we compile in.
39
40 (eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43 \f
44
45 ;;; {Error handling}
46 ;;;
47
48 ;; Define delimited continuation operators, and implement catch and throw in
49 ;; terms of them.
50
51 (define make-prompt-tag
52 (lambda* (#:optional (stem "prompt"))
53 (gensym stem)))
54
55 (define default-prompt-tag
56 ;; not sure if we should expose this to the user as a fluid
57 (let ((%default-prompt-tag (make-prompt-tag)))
58 (lambda ()
59 %default-prompt-tag)))
60
61 (define (call-with-prompt tag thunk handler)
62 (@prompt tag (thunk) handler))
63 (define (abort-to-prompt tag . args)
64 (@abort tag args))
65
66
67 ;; Define catch and with-throw-handler, using some common helper routines and a
68 ;; shared fluid. Hide the helpers in a lexical contour.
69
70 (define with-throw-handler #f)
71 (let ()
72 ;; Ideally we'd like to be able to give these default values for all threads,
73 ;; even threads not created by Guile; but alack, that does not currently seem
74 ;; possible. So wrap the getters in thunks.
75 (define %running-exception-handlers (make-fluid))
76 (define %exception-handler (make-fluid))
77
78 (define (running-exception-handlers)
79 (or (fluid-ref %running-exception-handlers)
80 (begin
81 (fluid-set! %running-exception-handlers '())
82 '())))
83 (define (exception-handler)
84 (or (fluid-ref %exception-handler)
85 (begin
86 (fluid-set! %exception-handler default-exception-handler)
87 default-exception-handler)))
88
89 (define (default-exception-handler k . args)
90 (cond
91 ((eq? k 'quit)
92 (primitive-exit (cond
93 ((not (pair? args)) 0)
94 ((integer? (car args)) (car args))
95 ((not (car args)) 1)
96 (else 0))))
97 (else
98 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
99 (primitive-exit 1))))
100
101 (define (default-throw-handler prompt-tag catch-k)
102 (let ((prev (exception-handler)))
103 (lambda (thrown-k . args)
104 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
105 (apply abort-to-prompt prompt-tag thrown-k args)
106 (apply prev thrown-k args)))))
107
108 (define (custom-throw-handler prompt-tag catch-k pre)
109 (let ((prev (exception-handler)))
110 (lambda (thrown-k . args)
111 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
112 (let ((running (running-exception-handlers)))
113 (with-fluids ((%running-exception-handlers (cons pre running)))
114 (if (not (memq pre running))
115 (apply pre thrown-k args))
116 ;; fall through
117 (if prompt-tag
118 (apply abort-to-prompt prompt-tag thrown-k args)
119 (apply prev thrown-k args))))
120 (apply prev thrown-k args)))))
121
122 (set! catch
123 (lambda* (k thunk handler #:optional pre-unwind-handler)
124 "Invoke @var{thunk} in the dynamic context of @var{handler} for
125 exceptions matching @var{key}. If thunk throws to the symbol
126 @var{key}, then @var{handler} is invoked this way:
127 @lisp
128 (handler key args ...)
129 @end lisp
130
131 @var{key} is a symbol or @code{#t}.
132
133 @var{thunk} takes no arguments. If @var{thunk} returns
134 normally, that is the return value of @code{catch}.
135
136 Handler is invoked outside the scope of its own @code{catch}.
137 If @var{handler} again throws to the same key, a new handler
138 from further up the call chain is invoked.
139
140 If the key is @code{#t}, then a throw to @emph{any} symbol will
141 match this call to @code{catch}.
142
143 If a @var{pre-unwind-handler} is given and @var{thunk} throws
144 an exception that matches @var{key}, Guile calls the
145 @var{pre-unwind-handler} before unwinding the dynamic state and
146 invoking the main @var{handler}. @var{pre-unwind-handler} should
147 be a procedure with the same signature as @var{handler}, that
148 is @code{(lambda (key . args))}. It is typically used to save
149 the stack at the point where the exception occurred, but can also
150 query other parts of the dynamic state at that point, such as
151 fluid values.
152
153 A @var{pre-unwind-handler} can exit either normally or non-locally.
154 If it exits normally, Guile unwinds the stack and dynamic context
155 and then calls the normal (third argument) handler. If it exits
156 non-locally, that exit determines the continuation."
157 (if (not (or (symbol? k) (eqv? k #t)))
158 (scm-error "catch" 'wrong-type-arg
159 "Wrong type argument in position ~a: ~a"
160 (list 1 k) (list k)))
161 (let ((tag (make-prompt-tag "catch")))
162 (call-with-prompt
163 tag
164 (lambda ()
165 (with-fluids
166 ((%exception-handler
167 (if pre-unwind-handler
168 (custom-throw-handler tag k pre-unwind-handler)
169 (default-throw-handler tag k))))
170 (thunk)))
171 (lambda (cont k . args)
172 (apply handler k args))))))
173
174 (set! with-throw-handler
175 (lambda (k thunk pre-unwind-handler)
176 "Add @var{handler} to the dynamic context as a throw handler
177 for key @var{key}, then invoke @var{thunk}."
178 (if (not (or (symbol? k) (eqv? k #t)))
179 (scm-error "with-throw-handler" 'wrong-type-arg
180 "Wrong type argument in position ~a: ~a"
181 (list 1 k) (list k)))
182 (with-fluids ((%exception-handler
183 (custom-throw-handler #f k pre-unwind-handler)))
184 (thunk))))
185
186 (set! throw
187 (lambda (key . args)
188 "Invoke the catch form matching @var{key}, passing @var{args} to the
189 @var{handler}.
190
191 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
192
193 If there is no handler at all, Guile prints an error and then exits."
194 (if (not (symbol? key))
195 ((exception-handler) 'wrong-type-arg "throw"
196 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
197 (apply (exception-handler) key args)))))
198
199
200 \f
201
202 ;;; {R4RS compliance}
203 ;;;
204
205 (primitive-load-path "ice-9/r4rs")
206
207 \f
208
209 ;;; {Simple Debugging Tools}
210 ;;;
211
212 ;; peek takes any number of arguments, writes them to the
213 ;; current ouput port, and returns the last argument.
214 ;; It is handy to wrap around an expression to look at
215 ;; a value each time is evaluated, e.g.:
216 ;;
217 ;; (+ 10 (troublesome-fn))
218 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
219 ;;
220
221 (define (peek . stuff)
222 (newline)
223 (display ";;; ")
224 (write stuff)
225 (newline)
226 (car (last-pair stuff)))
227
228 (define pk peek)
229
230
231 (define (warn . stuff)
232 (with-output-to-port (current-error-port)
233 (lambda ()
234 (newline)
235 (display ";;; WARNING ")
236 (display stuff)
237 (newline)
238 (car (last-pair stuff)))))
239
240 \f
241
242 ;;; {Features}
243 ;;;
244
245 (define (provide sym)
246 (if (not (memq sym *features*))
247 (set! *features* (cons sym *features*))))
248
249 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
250 ;; provided? also checks to see if the module is available. We should do that
251 ;; too, but don't.
252
253 (define (provided? feature)
254 (and (memq feature *features*) #t))
255
256 \f
257
258 ;;; {Structs}
259 ;;;
260
261 (define (make-struct/no-tail vtable . args)
262 (apply make-struct vtable 0 args))
263
264 \f
265
266 ;;; {and-map and or-map}
267 ;;;
268 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
269 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
270 ;;;
271
272 ;; and-map f l
273 ;;
274 ;; Apply f to successive elements of l until exhaustion or f returns #f.
275 ;; If returning early, return #f. Otherwise, return the last value returned
276 ;; by f. If f has never been called because l is empty, return #t.
277 ;;
278 (define (and-map f lst)
279 (let loop ((result #t)
280 (l lst))
281 (and result
282 (or (and (null? l)
283 result)
284 (loop (f (car l)) (cdr l))))))
285
286 ;; or-map f l
287 ;;
288 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
289 ;; If returning early, return the return value of f.
290 ;;
291 (define (or-map f lst)
292 (let loop ((result #f)
293 (l lst))
294 (or result
295 (and (not (null? l))
296 (loop (f (car l)) (cdr l))))))
297
298 \f
299
300 ;; let format alias simple-format until the more complete version is loaded
301
302 (define format simple-format)
303
304 ;; this is scheme wrapping the C code so the final pred call is a tail call,
305 ;; per SRFI-13 spec
306 (define string-any
307 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
308 (if (and (procedure? char_pred)
309 (> end start)
310 (<= end (string-length s))) ;; let c-code handle range error
311 (or (string-any-c-code char_pred s start (1- end))
312 (char_pred (string-ref s (1- end))))
313 (string-any-c-code char_pred s start end))))
314
315 ;; this is scheme wrapping the C code so the final pred call is a tail call,
316 ;; per SRFI-13 spec
317 (define string-every
318 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
319 (if (and (procedure? char_pred)
320 (> end start)
321 (<= end (string-length s))) ;; let c-code handle range error
322 (and (string-every-c-code char_pred s start (1- end))
323 (char_pred (string-ref s (1- end))))
324 (string-every-c-code char_pred s start end))))
325
326 ;; A variant of string-fill! that we keep for compatability
327 ;;
328 (define (substring-fill! str start end fill)
329 (string-fill! str fill start end))
330
331 \f
332
333 ;; Define a minimal stub of the module API for psyntax, before modules
334 ;; have booted.
335 (define (module-name x)
336 '(guile))
337 (define (module-define! module sym val)
338 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
339 (if v
340 (variable-set! v val)
341 (hashq-set! (%get-pre-modules-obarray) sym
342 (make-variable val)))))
343 (define (module-ref module sym)
344 (let ((v (module-variable module sym)))
345 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
346 (define (resolve-module . args)
347 #f)
348
349 ;; API provided by psyntax
350 (define syntax-violation #f)
351 (define datum->syntax #f)
352 (define syntax->datum #f)
353 (define syntax-source #f)
354 (define identifier? #f)
355 (define generate-temporaries #f)
356 (define bound-identifier=? #f)
357 (define free-identifier=? #f)
358
359 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
360 ;; expanded macros, to dispatch an input against a set of patterns.
361 (define $sc-dispatch #f)
362
363 ;; Load it up!
364 (primitive-load-path "ice-9/psyntax-pp")
365 ;; The binding for `macroexpand' has now been overridden, making psyntax the
366 ;; expander now.
367
368 (define-syntax and
369 (syntax-rules ()
370 ((_) #t)
371 ((_ x) x)
372 ((_ x y ...) (if x (and y ...) #f))))
373
374 (define-syntax or
375 (syntax-rules ()
376 ((_) #f)
377 ((_ x) x)
378 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
379
380 ;; The "maybe-more" bits are something of a hack, so that we can support
381 ;; SRFI-61. Rewrites into a standalone syntax-case macro would be
382 ;; appreciated.
383 (define-syntax cond
384 (syntax-rules (=> else)
385 ((_ "maybe-more" test consequent)
386 (if test consequent))
387
388 ((_ "maybe-more" test consequent clause ...)
389 (if test consequent (cond clause ...)))
390
391 ((_ (else else1 else2 ...))
392 (begin else1 else2 ...))
393
394 ((_ (test => receiver) more-clause ...)
395 (let ((t test))
396 (cond "maybe-more" t (receiver t) more-clause ...)))
397
398 ((_ (generator guard => receiver) more-clause ...)
399 (call-with-values (lambda () generator)
400 (lambda t
401 (cond "maybe-more"
402 (apply guard t) (apply receiver t) more-clause ...))))
403
404 ((_ (test => receiver ...) more-clause ...)
405 (syntax-violation 'cond "wrong number of receiver expressions"
406 '(test => receiver ...)))
407 ((_ (generator guard => receiver ...) more-clause ...)
408 (syntax-violation 'cond "wrong number of receiver expressions"
409 '(generator guard => receiver ...)))
410
411 ((_ (test) more-clause ...)
412 (let ((t test))
413 (cond "maybe-more" t t more-clause ...)))
414
415 ((_ (test body1 body2 ...) more-clause ...)
416 (cond "maybe-more"
417 test (begin body1 body2 ...) more-clause ...))))
418
419 (define-syntax case
420 (syntax-rules (else)
421 ((case (key ...)
422 clauses ...)
423 (let ((atom-key (key ...)))
424 (case atom-key clauses ...)))
425 ((case key
426 (else result1 result2 ...))
427 (begin result1 result2 ...))
428 ((case key
429 ((atoms ...) result1 result2 ...))
430 (if (memv key '(atoms ...))
431 (begin result1 result2 ...)))
432 ((case key
433 ((atoms ...) result1 result2 ...)
434 clause clauses ...)
435 (if (memv key '(atoms ...))
436 (begin result1 result2 ...)
437 (case key clause clauses ...)))))
438
439 (define-syntax do
440 (syntax-rules ()
441 ((do ((var init step ...) ...)
442 (test expr ...)
443 command ...)
444 (letrec
445 ((loop
446 (lambda (var ...)
447 (if test
448 (begin
449 (if #f #f)
450 expr ...)
451 (begin
452 command
453 ...
454 (loop (do "step" var step ...)
455 ...))))))
456 (loop init ...)))
457 ((do "step" x)
458 x)
459 ((do "step" x y)
460 y)))
461
462 (define-syntax delay
463 (syntax-rules ()
464 ((_ exp) (make-promise (lambda () exp)))))
465
466 (include-from-path "ice-9/quasisyntax")
467
468 (define-syntax current-source-location
469 (lambda (x)
470 (syntax-case x ()
471 ((_)
472 (with-syntax ((s (datum->syntax x (syntax-source x))))
473 #''s)))))
474
475
476 \f
477
478 ;;; {Defmacros}
479 ;;;
480
481 (define-syntax define-macro
482 (lambda (x)
483 "Define a defmacro."
484 (syntax-case x ()
485 ((_ (macro . args) doc body1 body ...)
486 (string? (syntax->datum #'doc))
487 #'(define-macro macro doc (lambda args body1 body ...)))
488 ((_ (macro . args) body ...)
489 #'(define-macro macro #f (lambda args body ...)))
490 ((_ macro doc transformer)
491 (or (string? (syntax->datum #'doc))
492 (not (syntax->datum #'doc)))
493 #'(define-syntax macro
494 (lambda (y)
495 doc
496 #((macro-type . defmacro)
497 (defmacro-args args))
498 (syntax-case y ()
499 ((_ . args)
500 (let ((v (syntax->datum #'args)))
501 (datum->syntax y (apply transformer v)))))))))))
502
503 (define-syntax defmacro
504 (lambda (x)
505 "Define a defmacro, with the old lispy defun syntax."
506 (syntax-case x ()
507 ((_ macro args doc body1 body ...)
508 (string? (syntax->datum #'doc))
509 #'(define-macro macro doc (lambda args body1 body ...)))
510 ((_ macro args body ...)
511 #'(define-macro macro #f (lambda args body ...))))))
512
513 (provide 'defmacro)
514
515 \f
516
517 ;;; {Deprecation}
518 ;;;
519 ;;; Depends on: defmacro
520 ;;;
521
522 (defmacro begin-deprecated forms
523 (if (include-deprecated-features)
524 `(begin ,@forms)
525 `(begin)))
526
527 \f
528
529 ;;; {Trivial Functions}
530 ;;;
531
532 (define (identity x) x)
533 (define (and=> value procedure) (and value (procedure value)))
534 (define call/cc call-with-current-continuation)
535
536 (define-syntax false-if-exception
537 (syntax-rules ()
538 ((_ expr)
539 (catch #t
540 (lambda () expr)
541 (lambda (k . args) #f)))))
542
543 \f
544
545 ;;; {General Properties}
546 ;;;
547
548 ;; Properties are a lispy way to associate random info with random objects.
549 ;; Traditionally properties are implemented as an alist or a plist actually
550 ;; pertaining to the object in question.
551 ;;
552 ;; These "object properties" have the advantage that they can be associated with
553 ;; any object, even if the object has no plist. Object properties are good when
554 ;; you are extending pre-existing objects in unexpected ways. They also present
555 ;; a pleasing, uniform procedure-with-setter interface. But if you have a data
556 ;; type that always has properties, it's often still best to store those
557 ;; properties within the object itself.
558
559 (define (make-object-property)
560 (let ((prop (primitive-make-property #f)))
561 (make-procedure-with-setter
562 (lambda (obj) (primitive-property-ref prop obj))
563 (lambda (obj val) (primitive-property-set! prop obj val)))))
564
565 \f
566
567 ;;; {Symbol Properties}
568 ;;;
569
570 ;;; Symbol properties are something you see in old Lisp code. In most current
571 ;;; Guile code, symbols are not used as a data structure -- they are used as
572 ;;; keys into other data structures.
573
574 (define (symbol-property sym prop)
575 (let ((pair (assoc prop (symbol-pref sym))))
576 (and pair (cdr pair))))
577
578 (define (set-symbol-property! sym prop val)
579 (let ((pair (assoc prop (symbol-pref sym))))
580 (if pair
581 (set-cdr! pair val)
582 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
583
584 (define (symbol-property-remove! sym prop)
585 (let ((pair (assoc prop (symbol-pref sym))))
586 (if pair
587 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
588
589 \f
590
591 ;;; {Arrays}
592 ;;;
593
594 (define (array-shape a)
595 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
596 (array-dimensions a)))
597
598 \f
599
600 ;;; {Keywords}
601 ;;;
602
603 ;;; It's much better if you can use lambda* / define*, of course.
604
605 (define (kw-arg-ref args kw)
606 (let ((rem (member kw args)))
607 (and rem (pair? (cdr rem)) (cadr rem))))
608
609 \f
610
611 ;;; {Structs}
612 ;;;
613
614 (define (struct-layout s)
615 (struct-ref (struct-vtable s) vtable-index-layout))
616
617 \f
618
619 ;;; {Records}
620 ;;;
621
622 ;; Printing records: by default, records are printed as
623 ;;
624 ;; #<type-name field1: val1 field2: val2 ...>
625 ;;
626 ;; You can change that by giving a custom printing function to
627 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
628 ;; will be called like
629 ;;
630 ;; (<printer> object port)
631 ;;
632 ;; It should print OBJECT to PORT.
633
634 (define (inherit-print-state old-port new-port)
635 (if (get-print-state old-port)
636 (port-with-print-state new-port (get-print-state old-port))
637 new-port))
638
639 ;; 0: type-name, 1: fields, 2: constructor
640 (define record-type-vtable
641 ;; FIXME: This should just call make-vtable, not make-vtable-vtable; but for
642 ;; that we need to expose the bare vtable-vtable to Scheme.
643 (make-vtable-vtable "prprpw" 0
644 (lambda (s p)
645 (cond ((eq? s record-type-vtable)
646 (display "#<record-type-vtable>" p))
647 (else
648 (display "#<record-type " p)
649 (display (record-type-name s) p)
650 (display ">" p))))))
651
652 (define (record-type? obj)
653 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
654
655 (define* (make-record-type type-name fields #:optional printer)
656 ;; Pre-generate constructors for nfields < 20.
657 (define-syntax make-constructor
658 (lambda (x)
659 (define *max-static-argument-count* 20)
660 (define (make-formals n)
661 (let lp ((i 0))
662 (if (< i n)
663 (cons (datum->syntax
664 x
665 (string->symbol
666 (string (integer->char (+ (char->integer #\a) i)))))
667 (lp (1+ i)))
668 '())))
669 (syntax-case x ()
670 ((_ rtd exp) (not (identifier? #'exp))
671 #'(let ((n exp))
672 (make-constructor rtd n)))
673 ((_ rtd nfields)
674 #`(case nfields
675 #,@(let lp ((n 0))
676 (if (< n *max-static-argument-count*)
677 (cons (with-syntax (((formal ...) (make-formals n))
678 (n n))
679 #'((n)
680 (lambda (formal ...)
681 (make-struct rtd 0 formal ...))))
682 (lp (1+ n)))
683 '()))
684 (else
685 (lambda args
686 (if (= (length args) nfields)
687 (apply make-struct rtd 0 args)
688 (scm-error 'wrong-number-of-args
689 (format #f "make-~a" type-name)
690 "Wrong number of arguments" '() #f)))))))))
691
692 (define (default-record-printer s p)
693 (display "#<" p)
694 (display (record-type-name (record-type-descriptor s)) p)
695 (let loop ((fields (record-type-fields (record-type-descriptor s)))
696 (off 0))
697 (cond
698 ((not (null? fields))
699 (display " " p)
700 (display (car fields) p)
701 (display ": " p)
702 (display (struct-ref s off) p)
703 (loop (cdr fields) (+ 1 off)))))
704 (display ">" p))
705
706 (let ((rtd (make-struct record-type-vtable 0
707 (make-struct-layout
708 (apply string-append
709 (map (lambda (f) "pw") fields)))
710 (or printer default-record-printer)
711 type-name
712 (copy-tree fields))))
713 (struct-set! rtd (+ vtable-offset-user 2)
714 (make-constructor rtd (length fields)))
715 ;; Temporary solution: Associate a name to the record type descriptor
716 ;; so that the object system can create a wrapper class for it.
717 (set-struct-vtable-name! rtd (if (symbol? type-name)
718 type-name
719 (string->symbol type-name)))
720 rtd))
721
722 (define (record-type-name obj)
723 (if (record-type? obj)
724 (struct-ref obj vtable-offset-user)
725 (error 'not-a-record-type obj)))
726
727 (define (record-type-fields obj)
728 (if (record-type? obj)
729 (struct-ref obj (+ 1 vtable-offset-user))
730 (error 'not-a-record-type obj)))
731
732 (define* (record-constructor rtd #:optional field-names)
733 (if (not field-names)
734 (struct-ref rtd (+ 2 vtable-offset-user))
735 (primitive-eval
736 `(lambda ,field-names
737 (make-struct ',rtd 0 ,@(map (lambda (f)
738 (if (memq f field-names)
739 f
740 #f))
741 (record-type-fields rtd)))))))
742
743 (define (record-predicate rtd)
744 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
745
746 (define (%record-type-error rtd obj) ;; private helper
747 (or (eq? rtd (record-type-descriptor obj))
748 (scm-error 'wrong-type-arg "%record-type-check"
749 "Wrong type record (want `~S'): ~S"
750 (list (record-type-name rtd) obj)
751 #f)))
752
753 (define (record-accessor rtd field-name)
754 (let ((pos (list-index (record-type-fields rtd) field-name)))
755 (if (not pos)
756 (error 'no-such-field field-name))
757 (lambda (obj)
758 (if (eq? (struct-vtable obj) rtd)
759 (struct-ref obj pos)
760 (%record-type-error rtd obj)))))
761
762 (define (record-modifier rtd field-name)
763 (let ((pos (list-index (record-type-fields rtd) field-name)))
764 (if (not pos)
765 (error 'no-such-field field-name))
766 (lambda (obj val)
767 (if (eq? (struct-vtable obj) rtd)
768 (struct-set! obj pos val)
769 (%record-type-error rtd obj)))))
770
771 (define (record? obj)
772 (and (struct? obj) (record-type? (struct-vtable obj))))
773
774 (define (record-type-descriptor obj)
775 (if (struct? obj)
776 (struct-vtable obj)
777 (error 'not-a-record obj)))
778
779 (provide 'record)
780
781 \f
782
783 ;;; {Booleans}
784 ;;;
785
786 (define (->bool x) (not (not x)))
787
788 \f
789
790 ;;; {Symbols}
791 ;;;
792
793 (define (symbol-append . args)
794 (string->symbol (apply string-append (map symbol->string args))))
795
796 (define (list->symbol . args)
797 (string->symbol (apply list->string args)))
798
799 (define (symbol . args)
800 (string->symbol (apply string args)))
801
802 \f
803
804 ;;; {Lists}
805 ;;;
806
807 (define (list-index l k)
808 (let loop ((n 0)
809 (l l))
810 (and (not (null? l))
811 (if (eq? (car l) k)
812 n
813 (loop (+ n 1) (cdr l))))))
814
815 \f
816
817 (if (provided? 'posix)
818 (primitive-load-path "ice-9/posix"))
819
820 (if (provided? 'socket)
821 (primitive-load-path "ice-9/networking"))
822
823 ;; For reference, Emacs file-exists-p uses stat in this same way.
824 (define file-exists?
825 (if (provided? 'posix)
826 (lambda (str)
827 (->bool (stat str #f)))
828 (lambda (str)
829 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
830 (lambda args #f))))
831 (if port (begin (close-port port) #t)
832 #f)))))
833
834 (define file-is-directory?
835 (if (provided? 'posix)
836 (lambda (str)
837 (eq? (stat:type (stat str)) 'directory))
838 (lambda (str)
839 (let ((port (catch 'system-error
840 (lambda () (open-file (string-append str "/.")
841 OPEN_READ))
842 (lambda args #f))))
843 (if port (begin (close-port port) #t)
844 #f)))))
845
846 (define (system-error-errno args)
847 (if (eq? (car args) 'system-error)
848 (car (list-ref args 4))
849 #f))
850
851 \f
852
853 ;;; {Error Handling}
854 ;;;
855
856 (define error
857 (case-lambda
858 (()
859 (scm-error 'misc-error #f "?" #f #f))
860 ((message . args)
861 (let ((msg (string-join (cons "~A" (make-list (length args) "~S")))))
862 (scm-error 'misc-error #f msg (cons message args) #f)))))
863
864 \f
865
866 ;;; {Time Structures}
867 ;;;
868
869 (define (tm:sec obj) (vector-ref obj 0))
870 (define (tm:min obj) (vector-ref obj 1))
871 (define (tm:hour obj) (vector-ref obj 2))
872 (define (tm:mday obj) (vector-ref obj 3))
873 (define (tm:mon obj) (vector-ref obj 4))
874 (define (tm:year obj) (vector-ref obj 5))
875 (define (tm:wday obj) (vector-ref obj 6))
876 (define (tm:yday obj) (vector-ref obj 7))
877 (define (tm:isdst obj) (vector-ref obj 8))
878 (define (tm:gmtoff obj) (vector-ref obj 9))
879 (define (tm:zone obj) (vector-ref obj 10))
880
881 (define (set-tm:sec obj val) (vector-set! obj 0 val))
882 (define (set-tm:min obj val) (vector-set! obj 1 val))
883 (define (set-tm:hour obj val) (vector-set! obj 2 val))
884 (define (set-tm:mday obj val) (vector-set! obj 3 val))
885 (define (set-tm:mon obj val) (vector-set! obj 4 val))
886 (define (set-tm:year obj val) (vector-set! obj 5 val))
887 (define (set-tm:wday obj val) (vector-set! obj 6 val))
888 (define (set-tm:yday obj val) (vector-set! obj 7 val))
889 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
890 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
891 (define (set-tm:zone obj val) (vector-set! obj 10 val))
892
893 (define (tms:clock obj) (vector-ref obj 0))
894 (define (tms:utime obj) (vector-ref obj 1))
895 (define (tms:stime obj) (vector-ref obj 2))
896 (define (tms:cutime obj) (vector-ref obj 3))
897 (define (tms:cstime obj) (vector-ref obj 4))
898
899 \f
900
901 ;;; {File Descriptors and Ports}
902 ;;;
903
904 (define file-position ftell)
905 (define* (file-set-position port offset #:optional (whence SEEK_SET))
906 (seek port offset whence))
907
908 (define (move->fdes fd/port fd)
909 (cond ((integer? fd/port)
910 (dup->fdes fd/port fd)
911 (close fd/port)
912 fd)
913 (else
914 (primitive-move->fdes fd/port fd)
915 (set-port-revealed! fd/port 1)
916 fd/port)))
917
918 (define (release-port-handle port)
919 (let ((revealed (port-revealed port)))
920 (if (> revealed 0)
921 (set-port-revealed! port (- revealed 1)))))
922
923 (define dup->port
924 (case-lambda
925 ((port/fd mode)
926 (fdopen (dup->fdes port/fd) mode))
927 ((port/fd mode new-fd)
928 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
929 (set-port-revealed! port 1)
930 port))))
931
932 (define dup->inport
933 (case-lambda
934 ((port/fd)
935 (dup->port port/fd "r"))
936 ((port/fd new-fd)
937 (dup->port port/fd "r" new-fd))))
938
939 (define dup->outport
940 (case-lambda
941 ((port/fd)
942 (dup->port port/fd "w"))
943 ((port/fd new-fd)
944 (dup->port port/fd "w" new-fd))))
945
946 (define dup
947 (case-lambda
948 ((port/fd)
949 (if (integer? port/fd)
950 (dup->fdes port/fd)
951 (dup->port port/fd (port-mode port/fd))))
952 ((port/fd new-fd)
953 (if (integer? port/fd)
954 (dup->fdes port/fd new-fd)
955 (dup->port port/fd (port-mode port/fd) new-fd)))))
956
957 (define (duplicate-port port modes)
958 (dup->port port modes))
959
960 (define (fdes->inport fdes)
961 (let loop ((rest-ports (fdes->ports fdes)))
962 (cond ((null? rest-ports)
963 (let ((result (fdopen fdes "r")))
964 (set-port-revealed! result 1)
965 result))
966 ((input-port? (car rest-ports))
967 (set-port-revealed! (car rest-ports)
968 (+ (port-revealed (car rest-ports)) 1))
969 (car rest-ports))
970 (else
971 (loop (cdr rest-ports))))))
972
973 (define (fdes->outport fdes)
974 (let loop ((rest-ports (fdes->ports fdes)))
975 (cond ((null? rest-ports)
976 (let ((result (fdopen fdes "w")))
977 (set-port-revealed! result 1)
978 result))
979 ((output-port? (car rest-ports))
980 (set-port-revealed! (car rest-ports)
981 (+ (port-revealed (car rest-ports)) 1))
982 (car rest-ports))
983 (else
984 (loop (cdr rest-ports))))))
985
986 (define (port->fdes port)
987 (set-port-revealed! port (+ (port-revealed port) 1))
988 (fileno port))
989
990 (define (setenv name value)
991 (if value
992 (putenv (string-append name "=" value))
993 (putenv name)))
994
995 (define (unsetenv name)
996 "Remove the entry for NAME from the environment."
997 (putenv name))
998
999 \f
1000
1001 ;;; {Load Paths}
1002 ;;;
1003
1004 (define (in-vicinity vicinity file)
1005 (let ((tail (let ((len (string-length vicinity)))
1006 (if (zero? len)
1007 #f
1008 (string-ref vicinity (- len 1))))))
1009 (string-append vicinity
1010 (if (or (not tail)
1011 (eq? tail #\/))
1012 ""
1013 "/")
1014 file)))
1015
1016 \f
1017
1018 ;;; {Help for scm_shell}
1019 ;;;
1020 ;;; The argument-processing code used by Guile-based shells generates
1021 ;;; Scheme code based on the argument list. This page contains help
1022 ;;; functions for the code it generates.
1023 ;;;
1024
1025 (define (command-line) (program-arguments))
1026
1027 ;; This is mostly for the internal use of the code generated by
1028 ;; scm_compile_shell_switches.
1029
1030 (define (turn-on-debugging)
1031 (debug-enable 'debug)
1032 (debug-enable 'backtrace)
1033 (read-enable 'positions))
1034
1035 (define (load-user-init)
1036 (let* ((home (or (getenv "HOME")
1037 (false-if-exception (passwd:dir (getpwuid (getuid))))
1038 "/")) ;; fallback for cygwin etc.
1039 (init-file (in-vicinity home ".guile")))
1040 (if (file-exists? init-file)
1041 (primitive-load init-file))))
1042
1043 \f
1044
1045 ;;; {The interpreter stack}
1046 ;;;
1047
1048 ;; %stacks defined in stacks.c
1049 (define (%start-stack tag thunk)
1050 (let ((prompt-tag (make-prompt-tag "start-stack")))
1051 (call-with-prompt
1052 prompt-tag
1053 (lambda ()
1054 (with-fluids ((%stacks (acons tag prompt-tag
1055 (or (fluid-ref %stacks) '()))))
1056 (thunk)))
1057 (lambda (k . args)
1058 (%start-stack tag (lambda () (apply k args)))))))
1059 (define-syntax start-stack
1060 (syntax-rules ()
1061 ((_ tag exp)
1062 (%start-stack tag (lambda () exp)))))
1063
1064 \f
1065
1066 ;;; {Loading by paths}
1067 ;;;
1068
1069 ;;; Load a Scheme source file named NAME, searching for it in the
1070 ;;; directories listed in %load-path, and applying each of the file
1071 ;;; name extensions listed in %load-extensions.
1072 (define (load-from-path name)
1073 (start-stack 'load-stack
1074 (primitive-load-path name)))
1075
1076 (define %load-verbosely #f)
1077 (define (assert-load-verbosity v) (set! %load-verbosely v))
1078
1079 (define (%load-announce file)
1080 (if %load-verbosely
1081 (with-output-to-port (current-error-port)
1082 (lambda ()
1083 (display ";;; ")
1084 (display "loading ")
1085 (display file)
1086 (newline)
1087 (force-output)))))
1088
1089 (set! %load-hook %load-announce)
1090
1091 (define* (load name #:optional reader)
1092 ;; Returns the .go file corresponding to `name'. Does not search load
1093 ;; paths, only the fallback path. If the .go file is missing or out of
1094 ;; date, and autocompilation is enabled, will try autocompilation, just
1095 ;; as primitive-load-path does internally. primitive-load is
1096 ;; unaffected. Returns #f if autocompilation failed or was disabled.
1097 ;;
1098 ;; NB: Unless we need to compile the file, this function should not cause
1099 ;; (system base compile) to be loaded up. For that reason compiled-file-name
1100 ;; partially duplicates functionality from (system base compile).
1101 (define (compiled-file-name canon-path)
1102 (and %compile-fallback-path
1103 (string-append
1104 %compile-fallback-path
1105 ;; no need for '/' separator here, canon-path is absolute
1106 canon-path
1107 (cond ((or (null? %load-compiled-extensions)
1108 (string-null? (car %load-compiled-extensions)))
1109 (warn "invalid %load-compiled-extensions"
1110 %load-compiled-extensions)
1111 ".go")
1112 (else (car %load-compiled-extensions))))))
1113 (define (fresh-compiled-file-name go-path)
1114 (catch #t
1115 (lambda ()
1116 (let* ((scmstat (stat name))
1117 (gostat (stat go-path #f)))
1118 (if (and gostat (= (stat:mtime gostat) (stat:mtime scmstat)))
1119 go-path
1120 (begin
1121 (if gostat
1122 (format (current-error-port)
1123 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
1124 name go-path))
1125 (cond
1126 (%load-should-autocompile
1127 (%warn-autocompilation-enabled)
1128 (format (current-error-port) ";;; compiling ~a\n" name)
1129 ;; This use of @ is (ironically?) boot-safe, as modules have
1130 ;; not been booted yet, so the resolve-module call in psyntax
1131 ;; doesn't try to load a module, and compile-file will be
1132 ;; treated as a function, not a macro.
1133 (let ((cfn ((@ (system base compile) compile-file) name
1134 #:env (current-module))))
1135 (format (current-error-port) ";;; compiled ~a\n" cfn)
1136 cfn))
1137 (else #f))))))
1138 (lambda (k . args)
1139 (format (current-error-port)
1140 ";;; WARNING: compilation of ~a failed:\n;;; key ~a, throw_args ~s\n"
1141 name k args)
1142 #f)))
1143 (with-fluids ((current-reader reader))
1144 (let ((cfn (and=> (and=> (false-if-exception (canonicalize-path name))
1145 compiled-file-name)
1146 fresh-compiled-file-name)))
1147 (if cfn
1148 (load-compiled cfn)
1149 (start-stack 'load-stack
1150 (primitive-load name))))))
1151
1152 \f
1153
1154 ;;; {Reader Extensions}
1155 ;;;
1156 ;;; Reader code for various "#c" forms.
1157 ;;;
1158
1159 (define read-eval? (make-fluid))
1160 (fluid-set! read-eval? #f)
1161 (read-hash-extend #\.
1162 (lambda (c port)
1163 (if (fluid-ref read-eval?)
1164 (eval (read port) (interaction-environment))
1165 (error
1166 "#. read expansion found and read-eval? is #f."))))
1167
1168 \f
1169
1170 ;;; {Low Level Modules}
1171 ;;;
1172 ;;; These are the low level data structures for modules.
1173 ;;;
1174 ;;; Every module object is of the type 'module-type', which is a record
1175 ;;; consisting of the following members:
1176 ;;;
1177 ;;; - eval-closure: the function that defines for its module the strategy that
1178 ;;; shall be followed when looking up symbols in the module.
1179 ;;;
1180 ;;; An eval-closure is a function taking two arguments: the symbol to be
1181 ;;; looked up and a boolean value telling whether a binding for the symbol
1182 ;;; should be created if it does not exist yet. If the symbol lookup
1183 ;;; succeeded (either because an existing binding was found or because a new
1184 ;;; binding was created), a variable object representing the binding is
1185 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1186 ;;; closure does not take the module to be searched as an argument: During
1187 ;;; construction of the eval-closure, the eval-closure has to store the
1188 ;;; module it belongs to in its environment. This means, that any
1189 ;;; eval-closure can belong to only one module.
1190 ;;;
1191 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1192 ;;; special cases of eval-closures are to be distinguished: During startup
1193 ;;; the module system is not yet activated. In this phase, no modules are
1194 ;;; defined and all bindings are automatically stored by the system in the
1195 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1196 ;;; functions which require an eval-closure as their argument need to be
1197 ;;; passed the value #f.
1198 ;;;
1199 ;;; The other two special cases of eval-closures are the
1200 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1201 ;;; behave equally for the case that no new binding is to be created. The
1202 ;;; difference between the two comes in, when the boolean argument to the
1203 ;;; eval-closure indicates that a new binding shall be created if it is not
1204 ;;; found.
1205 ;;;
1206 ;;; Given that no new binding shall be created, both standard eval-closures
1207 ;;; define the following standard strategy of searching bindings in the
1208 ;;; module: First, the module's obarray is searched for the symbol. Second,
1209 ;;; if no binding for the symbol was found in the module's obarray, the
1210 ;;; module's binder procedure is exececuted. If this procedure did not
1211 ;;; return a binding for the symbol, the modules referenced in the module's
1212 ;;; uses list are recursively searched for a binding of the symbol. If the
1213 ;;; binding can not be found in these modules also, the symbol lookup has
1214 ;;; failed.
1215 ;;;
1216 ;;; If a new binding shall be created, the standard-interface-eval-closure
1217 ;;; immediately returns indicating failure. That is, it does not even try
1218 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1219 ;;; first search the obarray, and if no binding was found there, would
1220 ;;; create a new binding in the obarray, therefore not calling the binder
1221 ;;; procedure or searching the modules in the uses list.
1222 ;;;
1223 ;;; The explanation of the following members obarray, binder and uses
1224 ;;; assumes that the symbol lookup follows the strategy that is defined in
1225 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1226 ;;;
1227 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1228 ;;; hash table, the definitions are found that are local to the module (that
1229 ;;; is, not imported from other modules). When looking up bindings in the
1230 ;;; module, this hash table is searched first.
1231 ;;;
1232 ;;; - binder: either #f or a function taking a module and a symbol argument.
1233 ;;; If it is a function it is called after the obarray has been
1234 ;;; unsuccessfully searched for a binding. It then can provide bindings
1235 ;;; that would otherwise not be found locally in the module.
1236 ;;;
1237 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1238 ;;; These modules are the third place queried for bindings after the obarray
1239 ;;; has been unsuccessfully searched and the binder function did not deliver
1240 ;;; a result either.
1241 ;;;
1242 ;;; - transformer: either #f or a function taking a scheme expression as
1243 ;;; delivered by read. If it is a function, it will be called to perform
1244 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1245 ;;; expression. The output of the transformer function will then be passed
1246 ;;; to Guile's internal memoizer. This means that the output must be valid
1247 ;;; scheme code. The only exception is, that the output may make use of the
1248 ;;; syntax extensions provided to identify the modules that a binding
1249 ;;; belongs to.
1250 ;;;
1251 ;;; - name: the name of the module. This is used for all kinds of printing
1252 ;;; outputs. In certain places the module name also serves as a way of
1253 ;;; identification. When adding a module to the uses list of another
1254 ;;; module, it is made sure that the new uses list will not contain two
1255 ;;; modules of the same name.
1256 ;;;
1257 ;;; - kind: classification of the kind of module. The value is (currently?)
1258 ;;; only used for printing. It has no influence on how a module is treated.
1259 ;;; Currently the following values are used when setting the module kind:
1260 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1261 ;;; is set, it defaults to 'module.
1262 ;;;
1263 ;;; - duplicates-handlers: a list of procedures that get called to make a
1264 ;;; choice between two duplicate bindings when name clashes occur. See the
1265 ;;; `duplicate-handlers' global variable below.
1266 ;;;
1267 ;;; - observers: a list of procedures that get called when the module is
1268 ;;; modified.
1269 ;;;
1270 ;;; - weak-observers: a weak-key hash table of procedures that get called
1271 ;;; when the module is modified. See `module-observe-weak' for details.
1272 ;;;
1273 ;;; In addition, the module may (must?) contain a binding for
1274 ;;; `%module-public-interface'. This variable should be bound to a module
1275 ;;; representing the exported interface of a module. See the
1276 ;;; `module-public-interface' and `module-export!' procedures.
1277 ;;;
1278 ;;; !!! warning: The interface to lazy binder procedures is going
1279 ;;; to be changed in an incompatible way to permit all the basic
1280 ;;; module ops to be virtualized.
1281 ;;;
1282 ;;; (make-module size use-list lazy-binding-proc) => module
1283 ;;; module-{obarray,uses,binder}[|-set!]
1284 ;;; (module? obj) => [#t|#f]
1285 ;;; (module-locally-bound? module symbol) => [#t|#f]
1286 ;;; (module-bound? module symbol) => [#t|#f]
1287 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1288 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1289 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1290 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1291 ;;; (module-symbol-binding module symbol opt-value)
1292 ;;; => [ <obj> | opt-value | an error occurs ]
1293 ;;; (module-make-local-var! module symbol) => #<variable...>
1294 ;;; (module-add! module symbol var) => unspecified
1295 ;;; (module-remove! module symbol) => unspecified
1296 ;;; (module-for-each proc module) => unspecified
1297 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1298 ;;; (set-current-module module) => unspecified
1299 ;;; (current-module) => #<module...>
1300 ;;;
1301 ;;;
1302
1303 \f
1304
1305 ;;; {Printing Modules}
1306 ;;;
1307
1308 ;; This is how modules are printed. You can re-define it.
1309 (define (%print-module mod port)
1310 (display "#<" port)
1311 (display (or (module-kind mod) "module") port)
1312 (display " " port)
1313 (display (module-name mod) port)
1314 (display " " port)
1315 (display (number->string (object-address mod) 16) port)
1316 (display ">" port))
1317
1318 (letrec-syntax
1319 ;; Locally extend the syntax to allow record accessors to be defined at
1320 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1321 ;; the setters, in order to allow for redefinition of the record type; not
1322 ;; relevant in the case of modules, but perhaps if we make this public, it
1323 ;; could matter.
1324
1325 ((define-record-type
1326 (lambda (x)
1327 (define (make-id scope . fragments)
1328 (datum->syntax #'scope
1329 (apply symbol-append
1330 (map (lambda (x)
1331 (if (symbol? x) x (syntax->datum x)))
1332 fragments))))
1333
1334 (define (getter rtd type-name field slot)
1335 #`(define #,(make-id rtd type-name '- field)
1336 (let ((rtd #,rtd))
1337 (lambda (#,type-name)
1338 (if (eq? (struct-vtable #,type-name) rtd)
1339 (struct-ref #,type-name #,slot)
1340 (%record-type-error rtd #,type-name))))))
1341
1342 (define (setter rtd type-name field slot)
1343 #`(define #,(make-id rtd 'set- type-name '- field '!)
1344 (let ((rtd #,rtd))
1345 (lambda (#,type-name val)
1346 (if (eq? (struct-vtable #,type-name) rtd)
1347 (struct-set! #,type-name #,slot val)
1348 (%record-type-error rtd #,type-name))))))
1349
1350 (define (accessors rtd type-name fields n exp)
1351 (syntax-case fields ()
1352 (() exp)
1353 (((field #:no-accessors) field* ...) (identifier? #'field)
1354 (accessors rtd type-name #'(field* ...) (1+ n)
1355 exp))
1356 (((field #:no-setter) field* ...) (identifier? #'field)
1357 (accessors rtd type-name #'(field* ...) (1+ n)
1358 #`(begin #,exp
1359 #,(getter rtd type-name #'field n))))
1360 (((field #:no-getter) field* ...) (identifier? #'field)
1361 (accessors rtd type-name #'(field* ...) (1+ n)
1362 #`(begin #,exp
1363 #,(setter rtd type-name #'field n))))
1364 ((field field* ...) (identifier? #'field)
1365 (accessors rtd type-name #'(field* ...) (1+ n)
1366 #`(begin #,exp
1367 #,(getter rtd type-name #'field n)
1368 #,(setter rtd type-name #'field n))))))
1369
1370 (define (predicate rtd type-name fields exp)
1371 (accessors
1372 rtd type-name fields 0
1373 #`(begin
1374 #,exp
1375 (define (#,(make-id rtd type-name '?) obj)
1376 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1377
1378 (define (field-list fields)
1379 (syntax-case fields ()
1380 (() '())
1381 (((f . opts) . rest) (identifier? #'f)
1382 (cons #'f (field-list #'rest)))
1383 ((f . rest) (identifier? #'f)
1384 (cons #'f (field-list #'rest)))))
1385
1386 (define (constructor rtd type-name fields exp)
1387 (let ((ctor (make-id rtd type-name '-constructor))
1388 (args (field-list fields)))
1389 (predicate rtd type-name fields
1390 #`(begin #,exp
1391 (define #,ctor
1392 (let ((rtd #,rtd))
1393 (lambda #,args
1394 (make-struct rtd 0 #,@args))))
1395 (struct-set! #,rtd (+ vtable-offset-user 2)
1396 #,ctor)))))
1397
1398 (define (type type-name printer fields)
1399 (define (make-layout)
1400 (let lp ((fields fields) (slots '()))
1401 (syntax-case fields ()
1402 (() (datum->syntax #'here
1403 (make-struct-layout
1404 (apply string-append slots))))
1405 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1406
1407 (let ((rtd (make-id type-name type-name '-type)))
1408 (constructor rtd type-name fields
1409 #`(begin
1410 (define #,rtd
1411 (make-struct record-type-vtable 0
1412 '#,(make-layout)
1413 #,printer
1414 '#,type-name
1415 '#,(field-list fields)))
1416 (set-struct-vtable-name! #,rtd '#,type-name)))))
1417
1418 (syntax-case x ()
1419 ((_ type-name printer (field ...))
1420 (type #'type-name #'printer #'(field ...)))))))
1421
1422 ;; module-type
1423 ;;
1424 ;; A module is characterized by an obarray in which local symbols
1425 ;; are interned, a list of modules, "uses", from which non-local
1426 ;; bindings can be inherited, and an optional lazy-binder which
1427 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1428 ;; bindings that would otherwise not be found locally in the module.
1429 ;;
1430 ;; NOTE: If you change the set of fields or their order, you also need to
1431 ;; change the constants in libguile/modules.h.
1432 ;;
1433 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
1434 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1435 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1436 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1437 ;;
1438 (define-record-type module
1439 (lambda (obj port) (%print-module obj port))
1440 (obarray
1441 uses
1442 binder
1443 eval-closure
1444 (transformer #:no-getter)
1445 (name #:no-getter)
1446 kind
1447 duplicates-handlers
1448 (import-obarray #:no-setter)
1449 observers
1450 (weak-observers #:no-setter)
1451 version
1452 submodules
1453 submodule-binder
1454 public-interface
1455 filename)))
1456
1457
1458 ;; make-module &opt size uses binder
1459 ;;
1460 ;; Create a new module, perhaps with a particular size of obarray,
1461 ;; initial uses list, or binding procedure.
1462 ;;
1463 (define make-module
1464 (lambda args
1465
1466 (define (parse-arg index default)
1467 (if (> (length args) index)
1468 (list-ref args index)
1469 default))
1470
1471 (define %default-import-size
1472 ;; Typical number of imported bindings actually used by a module.
1473 600)
1474
1475 (if (> (length args) 3)
1476 (error "Too many args to make-module." args))
1477
1478 (let ((size (parse-arg 0 31))
1479 (uses (parse-arg 1 '()))
1480 (binder (parse-arg 2 #f)))
1481
1482 (if (not (integer? size))
1483 (error "Illegal size to make-module." size))
1484 (if (not (and (list? uses)
1485 (and-map module? uses)))
1486 (error "Incorrect use list." uses))
1487 (if (and binder (not (procedure? binder)))
1488 (error
1489 "Lazy-binder expected to be a procedure or #f." binder))
1490
1491 (let ((module (module-constructor (make-hash-table size)
1492 uses binder #f macroexpand
1493 #f #f #f
1494 (make-hash-table %default-import-size)
1495 '()
1496 (make-weak-key-hash-table 31) #f
1497 (make-hash-table 7) #f #f #f)))
1498
1499 ;; We can't pass this as an argument to module-constructor,
1500 ;; because we need it to close over a pointer to the module
1501 ;; itself.
1502 (set-module-eval-closure! module (standard-eval-closure module))
1503
1504 module))))
1505
1506
1507 \f
1508
1509 ;;; {Observer protocol}
1510 ;;;
1511
1512 (define (module-observe module proc)
1513 (set-module-observers! module (cons proc (module-observers module)))
1514 (cons module proc))
1515
1516 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
1517 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1518 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1519 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1520 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1521 ;; for instance).
1522
1523 ;; The two-argument version is kept for backward compatibility: when called
1524 ;; with two arguments, the observer gets unregistered when closure PROC
1525 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1526 (hashq-set! (module-weak-observers module) observer-id proc))
1527
1528 (define (module-unobserve token)
1529 (let ((module (car token))
1530 (id (cdr token)))
1531 (if (integer? id)
1532 (hash-remove! (module-weak-observers module) id)
1533 (set-module-observers! module (delq1! id (module-observers module)))))
1534 *unspecified*)
1535
1536 (define module-defer-observers #f)
1537 (define module-defer-observers-mutex (make-mutex 'recursive))
1538 (define module-defer-observers-table (make-hash-table))
1539
1540 (define (module-modified m)
1541 (if module-defer-observers
1542 (hash-set! module-defer-observers-table m #t)
1543 (module-call-observers m)))
1544
1545 ;;; This function can be used to delay calls to observers so that they
1546 ;;; can be called once only in the face of massive updating of modules.
1547 ;;;
1548 (define (call-with-deferred-observers thunk)
1549 (dynamic-wind
1550 (lambda ()
1551 (lock-mutex module-defer-observers-mutex)
1552 (set! module-defer-observers #t))
1553 thunk
1554 (lambda ()
1555 (set! module-defer-observers #f)
1556 (hash-for-each (lambda (m dummy)
1557 (module-call-observers m))
1558 module-defer-observers-table)
1559 (hash-clear! module-defer-observers-table)
1560 (unlock-mutex module-defer-observers-mutex))))
1561
1562 (define (module-call-observers m)
1563 (for-each (lambda (proc) (proc m)) (module-observers m))
1564
1565 ;; We assume that weak observers don't (un)register themselves as they are
1566 ;; called since this would preclude proper iteration over the hash table
1567 ;; elements.
1568 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1569
1570 \f
1571
1572 ;;; {Module Searching in General}
1573 ;;;
1574 ;;; We sometimes want to look for properties of a symbol
1575 ;;; just within the obarray of one module. If the property
1576 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1577 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1578 ;;;
1579 ;;;
1580 ;;; Other times, we want to test for a symbol property in the obarray
1581 ;;; of M and, if it is not found there, try each of the modules in the
1582 ;;; uses list of M. This is the normal way of testing for some
1583 ;;; property, so we state these properties without qualification as
1584 ;;; in: ``The symbol 'fnord is interned in module M because it is
1585 ;;; interned locally in module M2 which is a member of the uses list
1586 ;;; of M.''
1587 ;;;
1588
1589 ;; module-search fn m
1590 ;;
1591 ;; return the first non-#f result of FN applied to M and then to
1592 ;; the modules in the uses of m, and so on recursively. If all applications
1593 ;; return #f, then so does this function.
1594 ;;
1595 (define (module-search fn m v)
1596 (define (loop pos)
1597 (and (pair? pos)
1598 (or (module-search fn (car pos) v)
1599 (loop (cdr pos)))))
1600 (or (fn m v)
1601 (loop (module-uses m))))
1602
1603
1604 ;;; {Is a symbol bound in a module?}
1605 ;;;
1606 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1607 ;;; of S in M has been set to some well-defined value.
1608 ;;;
1609
1610 ;; module-locally-bound? module symbol
1611 ;;
1612 ;; Is a symbol bound (interned and defined) locally in a given module?
1613 ;;
1614 (define (module-locally-bound? m v)
1615 (let ((var (module-local-variable m v)))
1616 (and var
1617 (variable-bound? var))))
1618
1619 ;; module-bound? module symbol
1620 ;;
1621 ;; Is a symbol bound (interned and defined) anywhere in a given module
1622 ;; or its uses?
1623 ;;
1624 (define (module-bound? m v)
1625 (let ((var (module-variable m v)))
1626 (and var
1627 (variable-bound? var))))
1628
1629 ;;; {Is a symbol interned in a module?}
1630 ;;;
1631 ;;; Symbol S in Module M is interned if S occurs in
1632 ;;; of S in M has been set to some well-defined value.
1633 ;;;
1634 ;;; It is possible to intern a symbol in a module without providing
1635 ;;; an initial binding for the corresponding variable. This is done
1636 ;;; with:
1637 ;;; (module-add! module symbol (make-undefined-variable))
1638 ;;;
1639 ;;; In that case, the symbol is interned in the module, but not
1640 ;;; bound there. The unbound symbol shadows any binding for that
1641 ;;; symbol that might otherwise be inherited from a member of the uses list.
1642 ;;;
1643
1644 (define (module-obarray-get-handle ob key)
1645 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1646
1647 (define (module-obarray-ref ob key)
1648 ((if (symbol? key) hashq-ref hash-ref) ob key))
1649
1650 (define (module-obarray-set! ob key val)
1651 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1652
1653 (define (module-obarray-remove! ob key)
1654 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1655
1656 ;; module-symbol-locally-interned? module symbol
1657 ;;
1658 ;; is a symbol interned (not neccessarily defined) locally in a given module
1659 ;; or its uses? Interned symbols shadow inherited bindings even if
1660 ;; they are not themselves bound to a defined value.
1661 ;;
1662 (define (module-symbol-locally-interned? m v)
1663 (not (not (module-obarray-get-handle (module-obarray m) v))))
1664
1665 ;; module-symbol-interned? module symbol
1666 ;;
1667 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1668 ;; or its uses? Interned symbols shadow inherited bindings even if
1669 ;; they are not themselves bound to a defined value.
1670 ;;
1671 (define (module-symbol-interned? m v)
1672 (module-search module-symbol-locally-interned? m v))
1673
1674
1675 ;;; {Mapping modules x symbols --> variables}
1676 ;;;
1677
1678 ;; module-local-variable module symbol
1679 ;; return the local variable associated with a MODULE and SYMBOL.
1680 ;;
1681 ;;; This function is very important. It is the only function that can
1682 ;;; return a variable from a module other than the mutators that store
1683 ;;; new variables in modules. Therefore, this function is the location
1684 ;;; of the "lazy binder" hack.
1685 ;;;
1686 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1687 ;;; to a variable, return that variable object.
1688 ;;;
1689 ;;; If the symbols is not found at first, but the module has a lazy binder,
1690 ;;; then try the binder.
1691 ;;;
1692 ;;; If the symbol is not found at all, return #f.
1693 ;;;
1694 ;;; (This is now written in C, see `modules.c'.)
1695 ;;;
1696
1697 ;;; {Mapping modules x symbols --> bindings}
1698 ;;;
1699 ;;; These are similar to the mapping to variables, except that the
1700 ;;; variable is dereferenced.
1701 ;;;
1702
1703 ;; module-symbol-binding module symbol opt-value
1704 ;;
1705 ;; return the binding of a variable specified by name within
1706 ;; a given module, signalling an error if the variable is unbound.
1707 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1708 ;; return OPT-VALUE.
1709 ;;
1710 (define (module-symbol-local-binding m v . opt-val)
1711 (let ((var (module-local-variable m v)))
1712 (if (and var (variable-bound? var))
1713 (variable-ref var)
1714 (if (not (null? opt-val))
1715 (car opt-val)
1716 (error "Locally unbound variable." v)))))
1717
1718 ;; module-symbol-binding module symbol opt-value
1719 ;;
1720 ;; return the binding of a variable specified by name within
1721 ;; a given module, signalling an error if the variable is unbound.
1722 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1723 ;; return OPT-VALUE.
1724 ;;
1725 (define (module-symbol-binding m v . opt-val)
1726 (let ((var (module-variable m v)))
1727 (if (and var (variable-bound? var))
1728 (variable-ref var)
1729 (if (not (null? opt-val))
1730 (car opt-val)
1731 (error "Unbound variable." v)))))
1732
1733
1734 \f
1735
1736 ;;; {Adding Variables to Modules}
1737 ;;;
1738
1739 ;; module-make-local-var! module symbol
1740 ;;
1741 ;; ensure a variable for V in the local namespace of M.
1742 ;; If no variable was already there, then create a new and uninitialzied
1743 ;; variable.
1744 ;;
1745 ;; This function is used in modules.c.
1746 ;;
1747 (define (module-make-local-var! m v)
1748 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1749 (and (variable? b)
1750 (begin
1751 ;; Mark as modified since this function is called when
1752 ;; the standard eval closure defines a binding
1753 (module-modified m)
1754 b)))
1755
1756 ;; Create a new local variable.
1757 (let ((local-var (make-undefined-variable)))
1758 (module-add! m v local-var)
1759 local-var)))
1760
1761 ;; module-ensure-local-variable! module symbol
1762 ;;
1763 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1764 ;; there is no binding for SYMBOL, create a new uninitialized
1765 ;; variable. Return the local variable.
1766 ;;
1767 (define (module-ensure-local-variable! module symbol)
1768 (or (module-local-variable module symbol)
1769 (let ((var (make-undefined-variable)))
1770 (module-add! module symbol var)
1771 var)))
1772
1773 ;; module-add! module symbol var
1774 ;;
1775 ;; ensure a particular variable for V in the local namespace of M.
1776 ;;
1777 (define (module-add! m v var)
1778 (if (not (variable? var))
1779 (error "Bad variable to module-add!" var))
1780 (module-obarray-set! (module-obarray m) v var)
1781 (module-modified m))
1782
1783 ;; module-remove!
1784 ;;
1785 ;; make sure that a symbol is undefined in the local namespace of M.
1786 ;;
1787 (define (module-remove! m v)
1788 (module-obarray-remove! (module-obarray m) v)
1789 (module-modified m))
1790
1791 (define (module-clear! m)
1792 (hash-clear! (module-obarray m))
1793 (module-modified m))
1794
1795 ;; MODULE-FOR-EACH -- exported
1796 ;;
1797 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1798 ;;
1799 (define (module-for-each proc module)
1800 (hash-for-each proc (module-obarray module)))
1801
1802 (define (module-map proc module)
1803 (hash-map->list proc (module-obarray module)))
1804
1805 ;; Submodules
1806 ;;
1807 ;; Modules exist in a separate namespace from values, because you generally do
1808 ;; not want the name of a submodule, which you might not even use, to collide
1809 ;; with local variables that happen to be named the same as the submodule.
1810 ;;
1811 (define (module-ref-submodule module name)
1812 (or (hashq-ref (module-submodules module) name)
1813 (and (module-submodule-binder module)
1814 ((module-submodule-binder module) module name))))
1815
1816 (define (module-define-submodule! module name submodule)
1817 (hashq-set! (module-submodules module) name submodule))
1818
1819 \f
1820
1821 ;;; {Low Level Bootstrapping}
1822 ;;;
1823
1824 ;; make-root-module
1825
1826 ;; A root module uses the pre-modules-obarray as its obarray. This
1827 ;; special obarray accumulates all bindings that have been established
1828 ;; before the module system is fully booted.
1829 ;;
1830 ;; (The obarray continues to be used by code that has been closed over
1831 ;; before the module system has been booted.)
1832
1833 (define (make-root-module)
1834 (let ((m (make-module 0)))
1835 (set-module-obarray! m (%get-pre-modules-obarray))
1836 m))
1837
1838 ;; make-scm-module
1839
1840 ;; The root interface is a module that uses the same obarray as the
1841 ;; root module. It does not allow new definitions, tho.
1842
1843 (define (make-scm-module)
1844 (let ((m (make-module 0)))
1845 (set-module-obarray! m (%get-pre-modules-obarray))
1846 (set-module-eval-closure! m (standard-interface-eval-closure m))
1847 m))
1848
1849
1850 \f
1851
1852 ;;; {Module-based Loading}
1853 ;;;
1854
1855 (define (save-module-excursion thunk)
1856 (let ((inner-module (current-module))
1857 (outer-module #f))
1858 (dynamic-wind (lambda ()
1859 (set! outer-module (current-module))
1860 (set-current-module inner-module)
1861 (set! inner-module #f))
1862 thunk
1863 (lambda ()
1864 (set! inner-module (current-module))
1865 (set-current-module outer-module)
1866 (set! outer-module #f)))))
1867
1868 (define basic-load load)
1869
1870 (define* (load-module filename #:optional reader)
1871 (save-module-excursion
1872 (lambda ()
1873 (let ((oldname (and (current-load-port)
1874 (port-filename (current-load-port)))))
1875 (basic-load (if (and oldname
1876 (> (string-length filename) 0)
1877 (not (char=? (string-ref filename 0) #\/))
1878 (not (string=? (dirname oldname) ".")))
1879 (string-append (dirname oldname) "/" filename)
1880 filename)
1881 reader)))))
1882
1883
1884 \f
1885
1886 ;;; {MODULE-REF -- exported}
1887 ;;;
1888
1889 ;; Returns the value of a variable called NAME in MODULE or any of its
1890 ;; used modules. If there is no such variable, then if the optional third
1891 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1892 ;;
1893 (define (module-ref module name . rest)
1894 (let ((variable (module-variable module name)))
1895 (if (and variable (variable-bound? variable))
1896 (variable-ref variable)
1897 (if (null? rest)
1898 (error "No variable named" name 'in module)
1899 (car rest) ; default value
1900 ))))
1901
1902 ;; MODULE-SET! -- exported
1903 ;;
1904 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1905 ;; to VALUE; if there is no such variable, an error is signaled.
1906 ;;
1907 (define (module-set! module name value)
1908 (let ((variable (module-variable module name)))
1909 (if variable
1910 (variable-set! variable value)
1911 (error "No variable named" name 'in module))))
1912
1913 ;; MODULE-DEFINE! -- exported
1914 ;;
1915 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1916 ;; variable, it is added first.
1917 ;;
1918 (define (module-define! module name value)
1919 (let ((variable (module-local-variable module name)))
1920 (if variable
1921 (begin
1922 (variable-set! variable value)
1923 (module-modified module))
1924 (let ((variable (make-variable value)))
1925 (module-add! module name variable)))))
1926
1927 ;; MODULE-DEFINED? -- exported
1928 ;;
1929 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1930 ;; uses)
1931 ;;
1932 (define (module-defined? module name)
1933 (let ((variable (module-variable module name)))
1934 (and variable (variable-bound? variable))))
1935
1936 ;; MODULE-USE! module interface
1937 ;;
1938 ;; Add INTERFACE to the list of interfaces used by MODULE.
1939 ;;
1940 (define (module-use! module interface)
1941 (if (not (or (eq? module interface)
1942 (memq interface (module-uses module))))
1943 (begin
1944 ;; Newly used modules must be appended rather than consed, so that
1945 ;; `module-variable' traverses the use list starting from the first
1946 ;; used module.
1947 (set-module-uses! module
1948 (append (filter (lambda (m)
1949 (not
1950 (equal? (module-name m)
1951 (module-name interface))))
1952 (module-uses module))
1953 (list interface)))
1954 (hash-clear! (module-import-obarray module))
1955 (module-modified module))))
1956
1957 ;; MODULE-USE-INTERFACES! module interfaces
1958 ;;
1959 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1960 ;;
1961 (define (module-use-interfaces! module interfaces)
1962 (set-module-uses! module
1963 (append (module-uses module) interfaces))
1964 (hash-clear! (module-import-obarray module))
1965 (module-modified module))
1966
1967 \f
1968
1969 ;;; {Recursive Namespaces}
1970 ;;;
1971 ;;; A hierarchical namespace emerges if we consider some module to be
1972 ;;; root, and submodules of that module to be nested namespaces.
1973 ;;;
1974 ;;; The routines here manage variable names in hierarchical namespace.
1975 ;;; Each variable name is a list of elements, looked up in successively nested
1976 ;;; modules.
1977 ;;;
1978 ;;; (nested-ref some-root-module '(foo bar baz))
1979 ;;; => <value of a variable named baz in the submodule bar of
1980 ;;; the submodule foo of some-root-module>
1981 ;;;
1982 ;;;
1983 ;;; There are:
1984 ;;;
1985 ;;; ;; a-root is a module
1986 ;;; ;; name is a list of symbols
1987 ;;;
1988 ;;; nested-ref a-root name
1989 ;;; nested-set! a-root name val
1990 ;;; nested-define! a-root name val
1991 ;;; nested-remove! a-root name
1992 ;;;
1993 ;;; These functions manipulate values in namespaces. For referencing the
1994 ;;; namespaces themselves, use the following:
1995 ;;;
1996 ;;; nested-ref-module a-root name
1997 ;;; nested-define-module! a-root name mod
1998 ;;;
1999 ;;; (current-module) is a natural choice for a root so for convenience there are
2000 ;;; also:
2001 ;;;
2002 ;;; local-ref name == nested-ref (current-module) name
2003 ;;; local-set! name val == nested-set! (current-module) name val
2004 ;;; local-define name val == nested-define! (current-module) name val
2005 ;;; local-remove name == nested-remove! (current-module) name
2006 ;;; local-ref-module name == nested-ref-module (current-module) name
2007 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2008 ;;;
2009
2010
2011 (define (nested-ref root names)
2012 (if (null? names)
2013 root
2014 (let loop ((cur root)
2015 (head (car names))
2016 (tail (cdr names)))
2017 (if (null? tail)
2018 (module-ref cur head #f)
2019 (let ((cur (module-ref-submodule cur head)))
2020 (and cur
2021 (loop cur (car tail) (cdr tail))))))))
2022
2023 (define (nested-set! root names val)
2024 (let loop ((cur root)
2025 (head (car names))
2026 (tail (cdr names)))
2027 (if (null? tail)
2028 (module-set! cur head val)
2029 (let ((cur (module-ref-submodule cur head)))
2030 (if (not cur)
2031 (error "failed to resolve module" names)
2032 (loop cur (car tail) (cdr tail)))))))
2033
2034 (define (nested-define! root names val)
2035 (let loop ((cur root)
2036 (head (car names))
2037 (tail (cdr names)))
2038 (if (null? tail)
2039 (module-define! cur head val)
2040 (let ((cur (module-ref-submodule cur head)))
2041 (if (not cur)
2042 (error "failed to resolve module" names)
2043 (loop cur (car tail) (cdr tail)))))))
2044
2045 (define (nested-remove! root names)
2046 (let loop ((cur root)
2047 (head (car names))
2048 (tail (cdr names)))
2049 (if (null? tail)
2050 (module-remove! cur head)
2051 (let ((cur (module-ref-submodule cur head)))
2052 (if (not cur)
2053 (error "failed to resolve module" names)
2054 (loop cur (car tail) (cdr tail)))))))
2055
2056
2057 (define (nested-ref-module root names)
2058 (let loop ((cur root)
2059 (names names))
2060 (if (null? names)
2061 cur
2062 (let ((cur (module-ref-submodule cur (car names))))
2063 (and cur
2064 (loop cur (cdr names)))))))
2065
2066 (define (nested-define-module! root names module)
2067 (if (null? names)
2068 (error "can't redefine root module" root module)
2069 (let loop ((cur root)
2070 (head (car names))
2071 (tail (cdr names)))
2072 (if (null? tail)
2073 (module-define-submodule! cur head module)
2074 (let ((cur (or (module-ref-submodule cur head)
2075 (let ((m (make-module 31)))
2076 (set-module-kind! m 'directory)
2077 (set-module-name! m (append (module-name cur)
2078 (list head)))
2079 (module-define-submodule! cur head m)
2080 m))))
2081 (loop cur (car tail) (cdr tail)))))))
2082
2083
2084 (define (local-ref names) (nested-ref (current-module) names))
2085 (define (local-set! names val) (nested-set! (current-module) names val))
2086 (define (local-define names val) (nested-define! (current-module) names val))
2087 (define (local-remove names) (nested-remove! (current-module) names))
2088 (define (local-ref-module names) (nested-ref-module (current-module) names))
2089 (define (local-define-module names mod) (nested-define-module! (current-module) names mod))
2090
2091
2092
2093 \f
2094
2095 ;;; {The (guile) module}
2096 ;;;
2097 ;;; The standard module, which has the core Guile bindings. Also called the
2098 ;;; "root module", as it is imported by many other modules, but it is not
2099 ;;; necessarily the root of anything; and indeed, the module named '() might be
2100 ;;; better thought of as a root.
2101 ;;;
2102
2103 (define (set-system-module! m s)
2104 (set-procedure-property! (module-eval-closure m) 'system-module s))
2105 (define the-root-module (make-root-module))
2106 (define the-scm-module (make-scm-module))
2107 (set-module-public-interface! the-root-module the-scm-module)
2108 (set-module-name! the-root-module '(guile))
2109 (set-module-name! the-scm-module '(guile))
2110 (set-module-kind! the-scm-module 'interface)
2111 (set-system-module! the-root-module #t)
2112 (set-system-module! the-scm-module #t)
2113
2114
2115 \f
2116
2117 ;; Now that we have a root module, even though modules aren't fully booted,
2118 ;; expand the definition of resolve-module.
2119 ;;
2120 (define (resolve-module name . args)
2121 (if (equal? name '(guile))
2122 the-root-module
2123 (error "unexpected module to resolve during module boot" name)))
2124
2125 ;; Cheat. These bindings are needed by modules.c, but we don't want
2126 ;; to move their real definition here because that would be unnatural.
2127 ;;
2128 (define process-define-module #f)
2129 (define process-use-modules #f)
2130 (define module-export! #f)
2131 (define default-duplicate-binding-procedures #f)
2132
2133 ;; This boots the module system. All bindings needed by modules.c
2134 ;; must have been defined by now.
2135 ;;
2136 (set-current-module the-root-module)
2137
2138
2139 \f
2140
2141 ;; Now that modules are booted, give module-name its final definition.
2142 ;;
2143 (define module-name
2144 (let ((accessor (record-accessor module-type 'name)))
2145 (lambda (mod)
2146 (or (accessor mod)
2147 (let ((name (list (gensym))))
2148 ;; Name MOD and bind it in the module root so that it's visible to
2149 ;; `resolve-module'. This is important as `psyntax' stores module
2150 ;; names and relies on being able to `resolve-module' them.
2151 (set-module-name! mod name)
2152 (nested-define-module! (resolve-module '() #f) name mod)
2153 (accessor mod))))))
2154
2155 (define (make-modules-in module name)
2156 (or (nested-ref-module module name)
2157 (let ((m (make-module 31)))
2158 (set-module-kind! m 'directory)
2159 (set-module-name! m (append (module-name module) name))
2160 (nested-define-module! module name m)
2161 m)))
2162
2163 (define (beautify-user-module! module)
2164 (let ((interface (module-public-interface module)))
2165 (if (or (not interface)
2166 (eq? interface module))
2167 (let ((interface (make-module 31)))
2168 (set-module-name! interface (module-name module))
2169 (set-module-version! interface (module-version module))
2170 (set-module-kind! interface 'interface)
2171 (set-module-public-interface! module interface))))
2172 (if (and (not (memq the-scm-module (module-uses module)))
2173 (not (eq? module the-root-module)))
2174 ;; Import the default set of bindings (from the SCM module) in MODULE.
2175 (module-use! module the-scm-module)))
2176
2177 (define (version-matches? version-ref target)
2178 (define (sub-versions-match? v-refs t)
2179 (define (sub-version-matches? v-ref t)
2180 (let ((matches? (lambda (v) (sub-version-matches? v t))))
2181 (cond
2182 ((number? v-ref) (eqv? v-ref t))
2183 ((list? v-ref)
2184 (case (car v-ref)
2185 ((>=) (>= t (cadr v-ref)))
2186 ((<=) (<= t (cadr v-ref)))
2187 ((and) (and-map matches? (cdr v-ref)))
2188 ((or) (or-map matches? (cdr v-ref)))
2189 ((not) (not (matches? (cadr v-ref))))
2190 (else (error "Invalid sub-version reference" v-ref))))
2191 (else (error "Invalid sub-version reference" v-ref)))))
2192 (or (null? v-refs)
2193 (and (not (null? t))
2194 (sub-version-matches? (car v-refs) (car t))
2195 (sub-versions-match? (cdr v-refs) (cdr t)))))
2196
2197 (let ((matches? (lambda (v) (version-matches? v target))))
2198 (or (null? version-ref)
2199 (case (car version-ref)
2200 ((and) (and-map matches? (cdr version-ref)))
2201 ((or) (or-map matches? (cdr version-ref)))
2202 ((not) (not (matches? (cadr version-ref))))
2203 (else (sub-versions-match? version-ref target))))))
2204
2205 (define (make-fresh-user-module)
2206 (let ((m (make-module)))
2207 (beautify-user-module! m)
2208 m))
2209
2210 ;; NOTE: This binding is used in libguile/modules.c.
2211 ;;
2212 (define resolve-module
2213 (let ((root (make-module)))
2214 (set-module-name! root '())
2215 ;; Define the-root-module as '(guile).
2216 (module-define-submodule! root 'guile the-root-module)
2217
2218 (lambda* (name #:optional (autoload #t) (version #f) #:key (ensure #t))
2219 (let ((already (nested-ref-module root name)))
2220 (cond
2221 ((and already
2222 (or (not autoload) (module-public-interface already)))
2223 ;; A hit, a palpable hit.
2224 (if (and version
2225 (not (version-matches? version (module-version already))))
2226 (error "incompatible module version already loaded" name))
2227 already)
2228 (autoload
2229 ;; Try to autoload the module, and recurse.
2230 (try-load-module name version)
2231 (resolve-module name #f #:ensure ensure))
2232 (else
2233 ;; No module found (or if one was, it had no public interface), and
2234 ;; we're not autoloading. Make an empty module if #:ensure is true.
2235 (or already
2236 (and ensure
2237 (make-modules-in root name)))))))))
2238
2239
2240 (define (try-load-module name version)
2241 (try-module-autoload name version))
2242
2243 (define (purify-module! module)
2244 "Removes bindings in MODULE which are inherited from the (guile) module."
2245 (let ((use-list (module-uses module)))
2246 (if (and (pair? use-list)
2247 (eq? (car (last-pair use-list)) the-scm-module))
2248 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2249
2250 ;; Return a module that is an interface to the module designated by
2251 ;; NAME.
2252 ;;
2253 ;; `resolve-interface' takes four keyword arguments:
2254 ;;
2255 ;; #:select SELECTION
2256 ;;
2257 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2258 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2259 ;; is the name in the used module and SEEN is the name in the using
2260 ;; module. Note that SEEN is also passed through RENAMER, below. The
2261 ;; default is to select all bindings. If you specify no selection but
2262 ;; a renamer, only the bindings that already exist in the used module
2263 ;; are made available in the interface. Bindings that are added later
2264 ;; are not picked up.
2265 ;;
2266 ;; #:hide BINDINGS
2267 ;;
2268 ;; BINDINGS is a list of bindings which should not be imported.
2269 ;;
2270 ;; #:prefix PREFIX
2271 ;;
2272 ;; PREFIX is a symbol that will be appended to each exported name.
2273 ;; The default is to not perform any renaming.
2274 ;;
2275 ;; #:renamer RENAMER
2276 ;;
2277 ;; RENAMER is a procedure that takes a symbol and returns its new
2278 ;; name. The default is not perform any renaming.
2279 ;;
2280 ;; Signal "no code for module" error if module name is not resolvable
2281 ;; or its public interface is not available. Signal "no binding"
2282 ;; error if selected binding does not exist in the used module.
2283 ;;
2284 (define* (resolve-interface name #:key
2285 (select #f)
2286 (hide '())
2287 (prefix #f)
2288 (renamer (if prefix
2289 (symbol-prefix-proc prefix)
2290 identity))
2291 version)
2292 (let* ((module (resolve-module name #t version #:ensure #f))
2293 (public-i (and module (module-public-interface module))))
2294 (and (or (not module) (not public-i))
2295 (error "no code for module" name))
2296 (if (and (not select) (null? hide) (eq? renamer identity))
2297 public-i
2298 (let ((selection (or select (module-map (lambda (sym var) sym)
2299 public-i)))
2300 (custom-i (make-module 31)))
2301 (set-module-kind! custom-i 'custom-interface)
2302 (set-module-name! custom-i name)
2303 ;; XXX - should use a lazy binder so that changes to the
2304 ;; used module are picked up automatically.
2305 (for-each (lambda (bspec)
2306 (let* ((direct? (symbol? bspec))
2307 (orig (if direct? bspec (car bspec)))
2308 (seen (if direct? bspec (cdr bspec)))
2309 (var (or (module-local-variable public-i orig)
2310 (module-local-variable module orig)
2311 (error
2312 ;; fixme: format manually for now
2313 (simple-format
2314 #f "no binding `~A' in module ~A"
2315 orig name)))))
2316 (if (memq orig hide)
2317 (set! hide (delq! orig hide))
2318 (module-add! custom-i
2319 (renamer seen)
2320 var))))
2321 selection)
2322 ;; Check that we are not hiding bindings which don't exist
2323 (for-each (lambda (binding)
2324 (if (not (module-local-variable public-i binding))
2325 (error
2326 (simple-format
2327 #f "no binding `~A' to hide in module ~A"
2328 binding name))))
2329 hide)
2330 custom-i))))
2331
2332 (define (symbol-prefix-proc prefix)
2333 (lambda (symbol)
2334 (symbol-append prefix symbol)))
2335
2336 ;; This function is called from "modules.c". If you change it, be
2337 ;; sure to update "modules.c" as well.
2338
2339 (define (process-define-module args)
2340 (let* ((module-id (car args))
2341 (module (resolve-module module-id #f))
2342 (kws (cdr args))
2343 (unrecognized (lambda (arg)
2344 (error "unrecognized define-module argument" arg))))
2345 (beautify-user-module! module)
2346 (let loop ((kws kws)
2347 (reversed-interfaces '())
2348 (exports '())
2349 (re-exports '())
2350 (replacements '())
2351 (autoloads '()))
2352
2353 (if (null? kws)
2354 (call-with-deferred-observers
2355 (lambda ()
2356 (module-use-interfaces! module (reverse reversed-interfaces))
2357 (module-export! module exports)
2358 (module-replace! module replacements)
2359 (module-re-export! module re-exports)
2360 (if (not (null? autoloads))
2361 (apply module-autoload! module autoloads))))
2362 (case (car kws)
2363 ((#:use-module #:use-syntax)
2364 (or (pair? (cdr kws))
2365 (unrecognized kws))
2366 (cond
2367 ((equal? (caadr kws) '(ice-9 syncase))
2368 (issue-deprecation-warning
2369 "(ice-9 syncase) is deprecated. Support for syntax-case is now in Guile core.")
2370 (loop (cddr kws)
2371 reversed-interfaces
2372 exports
2373 re-exports
2374 replacements
2375 autoloads))
2376 (else
2377 (let* ((interface-args (cadr kws))
2378 (interface (apply resolve-interface interface-args)))
2379 (and (eq? (car kws) #:use-syntax)
2380 (or (symbol? (caar interface-args))
2381 (error "invalid module name for use-syntax"
2382 (car interface-args)))
2383 (set-module-transformer!
2384 module
2385 (module-ref interface
2386 (car (last-pair (car interface-args)))
2387 #f)))
2388 (loop (cddr kws)
2389 (cons interface reversed-interfaces)
2390 exports
2391 re-exports
2392 replacements
2393 autoloads)))))
2394 ((#:autoload)
2395 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2396 (unrecognized kws))
2397 (loop (cdddr kws)
2398 reversed-interfaces
2399 exports
2400 re-exports
2401 replacements
2402 (let ((name (cadr kws))
2403 (bindings (caddr kws)))
2404 (cons* name bindings autoloads))))
2405 ((#:no-backtrace)
2406 (set-system-module! module #t)
2407 (loop (cdr kws) reversed-interfaces exports re-exports
2408 replacements autoloads))
2409 ((#:pure)
2410 (purify-module! module)
2411 (loop (cdr kws) reversed-interfaces exports re-exports
2412 replacements autoloads))
2413 ((#:version)
2414 (or (pair? (cdr kws))
2415 (unrecognized kws))
2416 (let ((version (cadr kws)))
2417 (set-module-version! module version)
2418 (set-module-version! (module-public-interface module) version))
2419 (loop (cddr kws) reversed-interfaces exports re-exports
2420 replacements autoloads))
2421 ((#:duplicates)
2422 (if (not (pair? (cdr kws)))
2423 (unrecognized kws))
2424 (set-module-duplicates-handlers!
2425 module
2426 (lookup-duplicates-handlers (cadr kws)))
2427 (loop (cddr kws) reversed-interfaces exports re-exports
2428 replacements autoloads))
2429 ((#:export #:export-syntax)
2430 (or (pair? (cdr kws))
2431 (unrecognized kws))
2432 (loop (cddr kws)
2433 reversed-interfaces
2434 (append (cadr kws) exports)
2435 re-exports
2436 replacements
2437 autoloads))
2438 ((#:re-export #:re-export-syntax)
2439 (or (pair? (cdr kws))
2440 (unrecognized kws))
2441 (loop (cddr kws)
2442 reversed-interfaces
2443 exports
2444 (append (cadr kws) re-exports)
2445 replacements
2446 autoloads))
2447 ((#:replace #:replace-syntax)
2448 (or (pair? (cdr kws))
2449 (unrecognized kws))
2450 (loop (cddr kws)
2451 reversed-interfaces
2452 exports
2453 re-exports
2454 (append (cadr kws) replacements)
2455 autoloads))
2456 ((#:filename)
2457 (or (pair? (cdr kws))
2458 (unrecognized kws))
2459 (set-module-filename! module (cadr kws))
2460 (loop (cddr kws)
2461 reversed-interfaces
2462 exports
2463 re-exports
2464 replacements
2465 autoloads))
2466 (else
2467 (unrecognized kws)))))
2468 (run-hook module-defined-hook module)
2469 module))
2470
2471 ;; `module-defined-hook' is a hook that is run whenever a new module
2472 ;; is defined. Its members are called with one argument, the new
2473 ;; module.
2474 (define module-defined-hook (make-hook 1))
2475
2476 \f
2477
2478 ;;; {Autoload}
2479 ;;;
2480
2481 (define (make-autoload-interface module name bindings)
2482 (let ((b (lambda (a sym definep)
2483 (and (memq sym bindings)
2484 (let ((i (module-public-interface (resolve-module name))))
2485 (if (not i)
2486 (error "missing interface for module" name))
2487 (let ((autoload (memq a (module-uses module))))
2488 ;; Replace autoload-interface with actual interface if
2489 ;; that has not happened yet.
2490 (if (pair? autoload)
2491 (set-car! autoload i)))
2492 (module-local-variable i sym))))))
2493 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2494 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2495 (make-hash-table 0) #f #f #f)))
2496
2497 (define (module-autoload! module . args)
2498 "Have @var{module} automatically load the module named @var{name} when one
2499 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2500 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2501 module '(ice-9 q) '(make-q q-length))}."
2502 (let loop ((args args))
2503 (cond ((null? args)
2504 #t)
2505 ((null? (cdr args))
2506 (error "invalid name+binding autoload list" args))
2507 (else
2508 (let ((name (car args))
2509 (bindings (cadr args)))
2510 (module-use! module (make-autoload-interface module
2511 name bindings))
2512 (loop (cddr args)))))))
2513
2514
2515 \f
2516
2517 ;;; {Autoloading modules}
2518 ;;;
2519
2520 (define autoloads-in-progress '())
2521
2522 ;; This function is called from "modules.c". If you change it, be
2523 ;; sure to update "modules.c" as well.
2524
2525 (define* (try-module-autoload module-name #:optional version)
2526 (let* ((reverse-name (reverse module-name))
2527 (name (symbol->string (car reverse-name)))
2528 (dir-hint-module-name (reverse (cdr reverse-name)))
2529 (dir-hint (apply string-append
2530 (map (lambda (elt)
2531 (string-append (symbol->string elt) "/"))
2532 dir-hint-module-name))))
2533 (resolve-module dir-hint-module-name #f)
2534 (and (not (autoload-done-or-in-progress? dir-hint name))
2535 (let ((didit #f))
2536 (dynamic-wind
2537 (lambda () (autoload-in-progress! dir-hint name))
2538 (lambda ()
2539 (with-fluids ((current-reader #f))
2540 (save-module-excursion
2541 (lambda ()
2542 ;; The initial environment when loading a module is a fresh
2543 ;; user module.
2544 (set-current-module (make-fresh-user-module))
2545 ;; Here we could allow some other search strategy (other than
2546 ;; primitive-load-path), for example using versions encoded
2547 ;; into the file system -- but then we would have to figure
2548 ;; out how to locate the compiled file, do autocompilation,
2549 ;; etc. Punt for now, and don't use versions when locating
2550 ;; the file.
2551 (primitive-load-path (in-vicinity dir-hint name) #f)
2552 (set! didit #t)))))
2553 (lambda () (set-autoloaded! dir-hint name didit)))
2554 didit))))
2555
2556 \f
2557
2558 ;;; {Dynamic linking of modules}
2559 ;;;
2560
2561 (define autoloads-done '((guile . guile)))
2562
2563 (define (autoload-done-or-in-progress? p m)
2564 (let ((n (cons p m)))
2565 (->bool (or (member n autoloads-done)
2566 (member n autoloads-in-progress)))))
2567
2568 (define (autoload-done! p m)
2569 (let ((n (cons p m)))
2570 (set! autoloads-in-progress
2571 (delete! n autoloads-in-progress))
2572 (or (member n autoloads-done)
2573 (set! autoloads-done (cons n autoloads-done)))))
2574
2575 (define (autoload-in-progress! p m)
2576 (let ((n (cons p m)))
2577 (set! autoloads-done
2578 (delete! n autoloads-done))
2579 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2580
2581 (define (set-autoloaded! p m done?)
2582 (if done?
2583 (autoload-done! p m)
2584 (let ((n (cons p m)))
2585 (set! autoloads-done (delete! n autoloads-done))
2586 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2587
2588 \f
2589
2590 ;;; {Run-time options}
2591 ;;;
2592
2593 (define-syntax define-option-interface
2594 (syntax-rules ()
2595 ((_ (interface (options enable disable) (option-set!)))
2596 (begin
2597 (define options
2598 (case-lambda
2599 (() (interface))
2600 ((arg)
2601 (if (list? arg)
2602 (begin (interface arg) (interface))
2603 (for-each
2604 (lambda (option)
2605 (apply (lambda (name value documentation)
2606 (display name)
2607 (if (< (string-length (symbol->string name)) 8)
2608 (display #\tab))
2609 (display #\tab)
2610 (display value)
2611 (display #\tab)
2612 (display documentation)
2613 (newline))
2614 option))
2615 (interface #t))))))
2616 (define (enable . flags)
2617 (interface (append flags (interface)))
2618 (interface))
2619 (define (disable . flags)
2620 (let ((options (interface)))
2621 (for-each (lambda (flag) (set! options (delq! flag options)))
2622 flags)
2623 (interface options)
2624 (interface)))
2625 (define-syntax option-set!
2626 (syntax-rules ()
2627 ((_ opt val)
2628 (options (append (options) (list 'opt val))))))))))
2629
2630 (define-option-interface
2631 (eval-options-interface
2632 (eval-options eval-enable eval-disable)
2633 (eval-set!)))
2634
2635 (define-option-interface
2636 (debug-options-interface
2637 (debug-options debug-enable debug-disable)
2638 (debug-set!)))
2639
2640 (define-option-interface
2641 (evaluator-traps-interface
2642 (traps trap-enable trap-disable)
2643 (trap-set!)))
2644
2645 (define-option-interface
2646 (read-options-interface
2647 (read-options read-enable read-disable)
2648 (read-set!)))
2649
2650 (define-option-interface
2651 (print-options-interface
2652 (print-options print-enable print-disable)
2653 (print-set!)))
2654
2655 \f
2656
2657 ;;; {The Unspecified Value}
2658 ;;;
2659 ;;; Currently Guile represents unspecified values via one particular value,
2660 ;;; which may be obtained by evaluating (if #f #f). It would be nice in the
2661 ;;; future if we could replace this with a return of 0 values, though.
2662 ;;;
2663
2664 (define-syntax *unspecified*
2665 (identifier-syntax (if #f #f)))
2666
2667 (define (unspecified? v) (eq? v *unspecified*))
2668
2669
2670 \f
2671
2672 ;;; {Running Repls}
2673 ;;;
2674
2675 ;; Programs can call `batch-mode?' to see if they are running as part of a
2676 ;; script or if they are running interactively. REPL implementations ensure that
2677 ;; `batch-mode?' returns #f during their extent.
2678 ;;
2679 ;; Programs can re-enter batch mode, for example after a fork, by calling
2680 ;; `ensure-batch-mode!'. It's not a great interface, though; it would be better
2681 ;; to abort to the outermost prompt, and call a thunk there.
2682 (define *repl-level* (make-fluid))
2683 (define (batch-mode?)
2684 (negative? (or (fluid-ref *repl-level*) -1)))
2685 (define (ensure-batch-mode!)
2686 (fluid-set! *repl-level* #f))
2687
2688 (define (quit . args)
2689 (apply throw 'quit args))
2690
2691 (define exit quit)
2692
2693 (define (gc-run-time)
2694 (cdr (assq 'gc-time-taken (gc-stats))))
2695
2696 (define abort-hook (make-hook))
2697 (define before-error-hook (make-hook))
2698 (define after-error-hook (make-hook))
2699 (define before-backtrace-hook (make-hook))
2700 (define after-backtrace-hook (make-hook))
2701
2702 (define before-read-hook (make-hook))
2703 (define after-read-hook (make-hook))
2704 (define before-eval-hook (make-hook 1))
2705 (define after-eval-hook (make-hook 1))
2706 (define before-print-hook (make-hook 1))
2707 (define after-print-hook (make-hook 1))
2708
2709 ;;; The default repl-reader function. We may override this if we've
2710 ;;; the readline library.
2711 (define repl-reader
2712 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
2713 (if (not (char-ready?))
2714 (display (if (string? prompt) prompt (prompt))))
2715 (force-output)
2716 (run-hook before-read-hook)
2717 ((or reader read) (current-input-port))))
2718
2719
2720 \f
2721
2722 ;;; {IOTA functions: generating lists of numbers}
2723 ;;;
2724
2725 (define (iota n)
2726 (let loop ((count (1- n)) (result '()))
2727 (if (< count 0) result
2728 (loop (1- count) (cons count result)))))
2729
2730 \f
2731
2732 ;;; {While}
2733 ;;;
2734 ;;; with `continue' and `break'.
2735 ;;;
2736
2737 ;; The inliner will remove the prompts at compile-time if it finds that
2738 ;; `continue' or `break' are not used.
2739 ;;
2740 (define-syntax while
2741 (lambda (x)
2742 (syntax-case x ()
2743 ((while cond body ...)
2744 #`(let ((break-tag (make-prompt-tag "break"))
2745 (continue-tag (make-prompt-tag "continue")))
2746 (call-with-prompt
2747 break-tag
2748 (lambda ()
2749 (define-syntax #,(datum->syntax #'while 'break)
2750 (lambda (x)
2751 (syntax-case x ()
2752 ((_)
2753 #'(abort-to-prompt break-tag))
2754 ((_ . args)
2755 (syntax-violation 'break "too many arguments" x))
2756 (_
2757 #'(lambda ()
2758 (abort-to-prompt break-tag))))))
2759 (let lp ()
2760 (call-with-prompt
2761 continue-tag
2762 (lambda ()
2763 (define-syntax #,(datum->syntax #'while 'continue)
2764 (lambda (x)
2765 (syntax-case x ()
2766 ((_)
2767 #'(abort-to-prompt continue-tag))
2768 ((_ . args)
2769 (syntax-violation 'continue "too many arguments" x))
2770 (_
2771 #'(lambda args
2772 (apply abort-to-prompt continue-tag args))))))
2773 (do () ((not cond)) body ...))
2774 (lambda (k) (lp)))))
2775 (lambda (k)
2776 #t)))))))
2777
2778
2779 \f
2780
2781 ;;; {Module System Macros}
2782 ;;;
2783
2784 ;; Return a list of expressions that evaluate to the appropriate
2785 ;; arguments for resolve-interface according to SPEC.
2786
2787 (eval-when
2788 (compile)
2789 (if (memq 'prefix (read-options))
2790 (error "boot-9 must be compiled with #:kw, not :kw")))
2791
2792 (define (keyword-like-symbol->keyword sym)
2793 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2794
2795 ;; FIXME: we really need to clean up the guts of the module system.
2796 ;; We can compile to something better than process-define-module.
2797 (define-syntax define-module
2798 (lambda (x)
2799 (define (keyword-like? stx)
2800 (let ((dat (syntax->datum stx)))
2801 (and (symbol? dat)
2802 (eqv? (string-ref (symbol->string dat) 0) #\:))))
2803 (define (->keyword sym)
2804 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2805
2806 (define (quotify-iface args)
2807 (let loop ((in args) (out '()))
2808 (syntax-case in ()
2809 (() (reverse! out))
2810 ;; The user wanted #:foo, but wrote :foo. Fix it.
2811 ((sym . in) (keyword-like? #'sym)
2812 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2813 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2814 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2815 ((#:renamer renamer . in)
2816 (loop #'in (cons* #'renamer #:renamer out)))
2817 ((kw val . in)
2818 (loop #'in (cons* #''val #'kw out))))))
2819
2820 (define (quotify args)
2821 ;; Just quote everything except #:use-module and #:use-syntax. We
2822 ;; need to know about all arguments regardless since we want to turn
2823 ;; symbols that look like keywords into real keywords, and the
2824 ;; keyword args in a define-module form are not regular
2825 ;; (i.e. no-backtrace doesn't take a value).
2826 (let loop ((in args) (out '()))
2827 (syntax-case in ()
2828 (() (reverse! out))
2829 ;; The user wanted #:foo, but wrote :foo. Fix it.
2830 ((sym . in) (keyword-like? #'sym)
2831 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2832 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2833 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2834 ((#:no-backtrace . in)
2835 (loop #'in (cons #:no-backtrace out)))
2836 ((#:pure . in)
2837 (loop #'in (cons #:pure out)))
2838 ((kw)
2839 (syntax-violation 'define-module "keyword arg without value" x #'kw))
2840 ((use-module (name name* ...) . in)
2841 (and (memq (syntax->datum #'use-module) '(#:use-module #:use-syntax))
2842 (and-map symbol? (syntax->datum #'(name name* ...))))
2843 (loop #'in
2844 (cons* #''((name name* ...))
2845 #'use-module
2846 out)))
2847 ((use-module ((name name* ...) arg ...) . in)
2848 (and (memq (syntax->datum #'use-module) '(#:use-module #:use-syntax))
2849 (and-map symbol? (syntax->datum #'(name name* ...))))
2850 (loop #'in
2851 (cons* #`(list '(name name* ...) #,@(quotify-iface #'(arg ...)))
2852 #'use-module
2853 out)))
2854 ((#:autoload name bindings . in)
2855 (loop #'in (cons* #''bindings #''name #:autoload out)))
2856 ((kw val . in)
2857 (loop #'in (cons* #''val #'kw out))))))
2858
2859 (syntax-case x ()
2860 ((_ (name name* ...) arg ...)
2861 (with-syntax (((quoted-arg ...) (quotify #'(arg ...))))
2862 #'(eval-when (eval load compile expand)
2863 (let ((m (process-define-module
2864 (list '(name name* ...)
2865 #:filename (assq-ref
2866 (or (current-source-location) '())
2867 'filename)
2868 quoted-arg ...))))
2869 (set-current-module m)
2870 m)))))))
2871
2872 ;; The guts of the use-modules macro. Add the interfaces of the named
2873 ;; modules to the use-list of the current module, in order.
2874
2875 ;; This function is called by "modules.c". If you change it, be sure
2876 ;; to change scm_c_use_module as well.
2877
2878 (define (process-use-modules module-interface-args)
2879 (let ((interfaces (map (lambda (mif-args)
2880 (or (apply resolve-interface mif-args)
2881 (error "no such module" mif-args)))
2882 module-interface-args)))
2883 (call-with-deferred-observers
2884 (lambda ()
2885 (module-use-interfaces! (current-module) interfaces)))))
2886
2887 (define-syntax use-modules
2888 (lambda (x)
2889 (define (keyword-like? stx)
2890 (let ((dat (syntax->datum stx)))
2891 (and (symbol? dat)
2892 (eqv? (string-ref (symbol->string dat) 0) #\:))))
2893 (define (->keyword sym)
2894 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2895
2896 (define (quotify-iface args)
2897 (let loop ((in args) (out '()))
2898 (syntax-case in ()
2899 (() (reverse! out))
2900 ;; The user wanted #:foo, but wrote :foo. Fix it.
2901 ((sym . in) (keyword-like? #'sym)
2902 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2903 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2904 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2905 ((#:renamer renamer . in)
2906 (loop #'in (cons* #'renamer #:renamer out)))
2907 ((kw val . in)
2908 (loop #'in (cons* #''val #'kw out))))))
2909
2910 (define (quotify specs)
2911 (let lp ((in specs) (out '()))
2912 (syntax-case in ()
2913 (() (reverse out))
2914 (((name name* ...) . in)
2915 (and-map symbol? (syntax->datum #'(name name* ...)))
2916 (lp #'in (cons #''((name name* ...)) out)))
2917 ((((name name* ...) arg ...) . in)
2918 (and-map symbol? (syntax->datum #'(name name* ...)))
2919 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
2920 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
2921 out)))))))
2922
2923 (syntax-case x ()
2924 ((_ spec ...)
2925 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
2926 #'(eval-when (eval load compile expand)
2927 (process-use-modules (list quoted-args ...))
2928 *unspecified*))))))
2929
2930 (define-syntax use-syntax
2931 (syntax-rules ()
2932 ((_ spec ...)
2933 (begin
2934 (eval-when (eval load compile expand)
2935 (issue-deprecation-warning
2936 "`use-syntax' is deprecated. Please contact guile-devel for more info."))
2937 (use-modules spec ...)))))
2938
2939 (include-from-path "ice-9/r6rs-libraries")
2940
2941 (define-syntax define-private
2942 (syntax-rules ()
2943 ((_ foo bar)
2944 (define foo bar))))
2945
2946 (define-syntax define-public
2947 (syntax-rules ()
2948 ((_ (name . args) . body)
2949 (define-public name (lambda args . body)))
2950 ((_ name val)
2951 (begin
2952 (define name val)
2953 (export name)))))
2954
2955 (define-syntax defmacro-public
2956 (syntax-rules ()
2957 ((_ name args . body)
2958 (begin
2959 (defmacro name args . body)
2960 (export-syntax name)))))
2961
2962 ;; And now for the most important macro.
2963 (define-syntax λ
2964 (syntax-rules ()
2965 ((_ formals body ...)
2966 (lambda formals body ...))))
2967
2968 \f
2969 ;; Export a local variable
2970
2971 ;; This function is called from "modules.c". If you change it, be
2972 ;; sure to update "modules.c" as well.
2973
2974 (define (module-export! m names)
2975 (let ((public-i (module-public-interface m)))
2976 (for-each (lambda (name)
2977 (let* ((internal-name (if (pair? name) (car name) name))
2978 (external-name (if (pair? name) (cdr name) name))
2979 (var (module-ensure-local-variable! m internal-name)))
2980 (module-add! public-i external-name var)))
2981 names)))
2982
2983 (define (module-replace! m names)
2984 (let ((public-i (module-public-interface m)))
2985 (for-each (lambda (name)
2986 (let* ((internal-name (if (pair? name) (car name) name))
2987 (external-name (if (pair? name) (cdr name) name))
2988 (var (module-ensure-local-variable! m internal-name)))
2989 (set-object-property! var 'replace #t)
2990 (module-add! public-i external-name var)))
2991 names)))
2992
2993 ;; Export all local variables from a module
2994 ;;
2995 (define (module-export-all! mod)
2996 (define (fresh-interface!)
2997 (let ((iface (make-module)))
2998 (set-module-name! iface (module-name mod))
2999 (set-module-version! iface (module-version mod))
3000 (set-module-kind! iface 'interface)
3001 (set-module-public-interface! mod iface)
3002 iface))
3003 (let ((iface (or (module-public-interface mod)
3004 (fresh-interface!))))
3005 (set-module-obarray! iface (module-obarray mod))))
3006
3007 ;; Re-export a imported variable
3008 ;;
3009 (define (module-re-export! m names)
3010 (let ((public-i (module-public-interface m)))
3011 (for-each (lambda (name)
3012 (let* ((internal-name (if (pair? name) (car name) name))
3013 (external-name (if (pair? name) (cdr name) name))
3014 (var (module-variable m internal-name)))
3015 (cond ((not var)
3016 (error "Undefined variable:" internal-name))
3017 ((eq? var (module-local-variable m internal-name))
3018 (error "re-exporting local variable:" internal-name))
3019 (else
3020 (module-add! public-i external-name var)))))
3021 names)))
3022
3023 (define-syntax export
3024 (syntax-rules ()
3025 ((_ name ...)
3026 (eval-when (eval load compile expand)
3027 (call-with-deferred-observers
3028 (lambda ()
3029 (module-export! (current-module) '(name ...))))))))
3030
3031 (define-syntax re-export
3032 (syntax-rules ()
3033 ((_ name ...)
3034 (eval-when (eval load compile expand)
3035 (call-with-deferred-observers
3036 (lambda ()
3037 (module-re-export! (current-module) '(name ...))))))))
3038
3039 (define-syntax export!
3040 (syntax-rules ()
3041 ((_ name ...)
3042 (eval-when (eval load compile expand)
3043 (call-with-deferred-observers
3044 (lambda ()
3045 (module-replace! (current-module) '(name ...))))))))
3046
3047 (define-syntax export-syntax
3048 (syntax-rules ()
3049 ((_ name ...)
3050 (export name ...))))
3051
3052 (define-syntax re-export-syntax
3053 (syntax-rules ()
3054 ((_ name ...)
3055 (re-export name ...))))
3056
3057 (define load load-module)
3058
3059 \f
3060
3061 ;;; {Parameters}
3062 ;;;
3063
3064 (define make-mutable-parameter
3065 (let ((make (lambda (fluid converter)
3066 (lambda args
3067 (if (null? args)
3068 (fluid-ref fluid)
3069 (fluid-set! fluid (converter (car args))))))))
3070 (lambda* (init #:optional (converter identity))
3071 (let ((fluid (make-fluid)))
3072 (fluid-set! fluid (converter init))
3073 (make fluid converter)))))
3074
3075 \f
3076
3077 ;;; {Handling of duplicate imported bindings}
3078 ;;;
3079
3080 ;; Duplicate handlers take the following arguments:
3081 ;;
3082 ;; module importing module
3083 ;; name conflicting name
3084 ;; int1 old interface where name occurs
3085 ;; val1 value of binding in old interface
3086 ;; int2 new interface where name occurs
3087 ;; val2 value of binding in new interface
3088 ;; var previous resolution or #f
3089 ;; val value of previous resolution
3090 ;;
3091 ;; A duplicate handler can take three alternative actions:
3092 ;;
3093 ;; 1. return #f => leave responsibility to next handler
3094 ;; 2. exit with an error
3095 ;; 3. return a variable resolving the conflict
3096 ;;
3097
3098 (define duplicate-handlers
3099 (let ((m (make-module 7)))
3100
3101 (define (check module name int1 val1 int2 val2 var val)
3102 (scm-error 'misc-error
3103 #f
3104 "~A: `~A' imported from both ~A and ~A"
3105 (list (module-name module)
3106 name
3107 (module-name int1)
3108 (module-name int2))
3109 #f))
3110
3111 (define (warn module name int1 val1 int2 val2 var val)
3112 (format (current-error-port)
3113 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3114 (module-name module)
3115 name
3116 (module-name int1)
3117 (module-name int2))
3118 #f)
3119
3120 (define (replace module name int1 val1 int2 val2 var val)
3121 (let ((old (or (and var (object-property var 'replace) var)
3122 (module-variable int1 name)))
3123 (new (module-variable int2 name)))
3124 (if (object-property old 'replace)
3125 (and (or (eq? old new)
3126 (not (object-property new 'replace)))
3127 old)
3128 (and (object-property new 'replace)
3129 new))))
3130
3131 (define (warn-override-core module name int1 val1 int2 val2 var val)
3132 (and (eq? int1 the-scm-module)
3133 (begin
3134 (format (current-error-port)
3135 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3136 (module-name module)
3137 (module-name int2)
3138 name)
3139 (module-local-variable int2 name))))
3140
3141 (define (first module name int1 val1 int2 val2 var val)
3142 (or var (module-local-variable int1 name)))
3143
3144 (define (last module name int1 val1 int2 val2 var val)
3145 (module-local-variable int2 name))
3146
3147 (define (noop module name int1 val1 int2 val2 var val)
3148 #f)
3149
3150 (set-module-name! m 'duplicate-handlers)
3151 (set-module-kind! m 'interface)
3152 (module-define! m 'check check)
3153 (module-define! m 'warn warn)
3154 (module-define! m 'replace replace)
3155 (module-define! m 'warn-override-core warn-override-core)
3156 (module-define! m 'first first)
3157 (module-define! m 'last last)
3158 (module-define! m 'merge-generics noop)
3159 (module-define! m 'merge-accessors noop)
3160 m))
3161
3162 (define (lookup-duplicates-handlers handler-names)
3163 (and handler-names
3164 (map (lambda (handler-name)
3165 (or (module-symbol-local-binding
3166 duplicate-handlers handler-name #f)
3167 (error "invalid duplicate handler name:"
3168 handler-name)))
3169 (if (list? handler-names)
3170 handler-names
3171 (list handler-names)))))
3172
3173 (define default-duplicate-binding-procedures
3174 (make-mutable-parameter #f))
3175
3176 (define default-duplicate-binding-handler
3177 (make-mutable-parameter '(replace warn-override-core warn last)
3178 (lambda (handler-names)
3179 (default-duplicate-binding-procedures
3180 (lookup-duplicates-handlers handler-names))
3181 handler-names)))
3182
3183 \f
3184
3185 ;;; {`cond-expand' for SRFI-0 support.}
3186 ;;;
3187 ;;; This syntactic form expands into different commands or
3188 ;;; definitions, depending on the features provided by the Scheme
3189 ;;; implementation.
3190 ;;;
3191 ;;; Syntax:
3192 ;;;
3193 ;;; <cond-expand>
3194 ;;; --> (cond-expand <cond-expand-clause>+)
3195 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3196 ;;; <cond-expand-clause>
3197 ;;; --> (<feature-requirement> <command-or-definition>*)
3198 ;;; <feature-requirement>
3199 ;;; --> <feature-identifier>
3200 ;;; | (and <feature-requirement>*)
3201 ;;; | (or <feature-requirement>*)
3202 ;;; | (not <feature-requirement>)
3203 ;;; <feature-identifier>
3204 ;;; --> <a symbol which is the name or alias of a SRFI>
3205 ;;;
3206 ;;; Additionally, this implementation provides the
3207 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3208 ;;; determine the implementation type and the supported standard.
3209 ;;;
3210 ;;; Currently, the following feature identifiers are supported:
3211 ;;;
3212 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3213 ;;;
3214 ;;; Remember to update the features list when adding more SRFIs.
3215 ;;;
3216
3217 (define %cond-expand-features
3218 ;; Adjust the above comment when changing this.
3219 '(guile
3220 guile-2
3221 r5rs
3222 srfi-0 ;; cond-expand itself
3223 srfi-4 ;; homogenous numeric vectors
3224 srfi-6 ;; open-input-string etc, in the guile core
3225 srfi-13 ;; string library
3226 srfi-14 ;; character sets
3227 srfi-55 ;; require-extension
3228 srfi-61 ;; general cond clause
3229 ))
3230
3231 ;; This table maps module public interfaces to the list of features.
3232 ;;
3233 (define %cond-expand-table (make-hash-table 31))
3234
3235 ;; Add one or more features to the `cond-expand' feature list of the
3236 ;; module `module'.
3237 ;;
3238 (define (cond-expand-provide module features)
3239 (let ((mod (module-public-interface module)))
3240 (and mod
3241 (hashq-set! %cond-expand-table mod
3242 (append (hashq-ref %cond-expand-table mod '())
3243 features)))))
3244
3245 (define-macro (cond-expand . clauses)
3246 (let ((syntax-error (lambda (cl)
3247 (error "invalid clause in `cond-expand'" cl))))
3248 (letrec
3249 ((test-clause
3250 (lambda (clause)
3251 (cond
3252 ((symbol? clause)
3253 (or (memq clause %cond-expand-features)
3254 (let lp ((uses (module-uses (current-module))))
3255 (if (pair? uses)
3256 (or (memq clause
3257 (hashq-ref %cond-expand-table
3258 (car uses) '()))
3259 (lp (cdr uses)))
3260 #f))))
3261 ((pair? clause)
3262 (cond
3263 ((eq? 'and (car clause))
3264 (let lp ((l (cdr clause)))
3265 (cond ((null? l)
3266 #t)
3267 ((pair? l)
3268 (and (test-clause (car l)) (lp (cdr l))))
3269 (else
3270 (syntax-error clause)))))
3271 ((eq? 'or (car clause))
3272 (let lp ((l (cdr clause)))
3273 (cond ((null? l)
3274 #f)
3275 ((pair? l)
3276 (or (test-clause (car l)) (lp (cdr l))))
3277 (else
3278 (syntax-error clause)))))
3279 ((eq? 'not (car clause))
3280 (cond ((not (pair? (cdr clause)))
3281 (syntax-error clause))
3282 ((pair? (cddr clause))
3283 ((syntax-error clause))))
3284 (not (test-clause (cadr clause))))
3285 (else
3286 (syntax-error clause))))
3287 (else
3288 (syntax-error clause))))))
3289 (let lp ((c clauses))
3290 (cond
3291 ((null? c)
3292 (error "Unfulfilled `cond-expand'"))
3293 ((not (pair? c))
3294 (syntax-error c))
3295 ((not (pair? (car c)))
3296 (syntax-error (car c)))
3297 ((test-clause (caar c))
3298 `(begin ,@(cdar c)))
3299 ((eq? (caar c) 'else)
3300 (if (pair? (cdr c))
3301 (syntax-error c))
3302 `(begin ,@(cdar c)))
3303 (else
3304 (lp (cdr c))))))))
3305
3306 ;; This procedure gets called from the startup code with a list of
3307 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3308 ;;
3309 (define (use-srfis srfis)
3310 (process-use-modules
3311 (map (lambda (num)
3312 (list (list 'srfi (string->symbol
3313 (string-append "srfi-" (number->string num))))))
3314 srfis)))
3315
3316 \f
3317
3318 ;;; srfi-55: require-extension
3319 ;;;
3320
3321 (define-macro (require-extension extension-spec)
3322 ;; This macro only handles the srfi extension, which, at present, is
3323 ;; the only one defined by the standard.
3324 (if (not (pair? extension-spec))
3325 (scm-error 'wrong-type-arg "require-extension"
3326 "Not an extension: ~S" (list extension-spec) #f))
3327 (let ((extension (car extension-spec))
3328 (extension-args (cdr extension-spec)))
3329 (case extension
3330 ((srfi)
3331 (let ((use-list '()))
3332 (for-each
3333 (lambda (i)
3334 (if (not (integer? i))
3335 (scm-error 'wrong-type-arg "require-extension"
3336 "Invalid srfi name: ~S" (list i) #f))
3337 (let ((srfi-sym (string->symbol
3338 (string-append "srfi-" (number->string i)))))
3339 (if (not (memq srfi-sym %cond-expand-features))
3340 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3341 use-list)))))
3342 extension-args)
3343 (if (pair? use-list)
3344 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3345 `(begin ,@(reverse! use-list)))))
3346 (else
3347 (scm-error
3348 'wrong-type-arg "require-extension"
3349 "Not a recognized extension type: ~S" (list extension) #f)))))
3350
3351 \f
3352
3353 ;;; {Load emacs interface support if emacs option is given.}
3354 ;;;
3355
3356 (define (named-module-use! user usee)
3357 (module-use! (resolve-module user) (resolve-interface usee)))
3358
3359 (define (load-emacs-interface)
3360 (and (provided? 'debug-extensions)
3361 (debug-enable 'backtrace))
3362 (named-module-use! '(guile-user) '(ice-9 emacs)))
3363
3364 \f
3365
3366 (define using-readline?
3367 (let ((using-readline? (make-fluid)))
3368 (make-procedure-with-setter
3369 (lambda () (fluid-ref using-readline?))
3370 (lambda (v) (fluid-set! using-readline? v)))))
3371
3372 (define (top-repl)
3373 (let ((guile-user-module (resolve-module '(guile-user))))
3374
3375 ;; Load emacs interface support if emacs option is given.
3376 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3377 (module-ref guile-user-module 'use-emacs-interface))
3378 (load-emacs-interface))
3379
3380 ;; Use some convenient modules (in reverse order)
3381
3382 (set-current-module guile-user-module)
3383 (process-use-modules
3384 (append
3385 '(((ice-9 r5rs))
3386 ((ice-9 session))
3387 ((ice-9 debug)))
3388 (if (provided? 'regex)
3389 '(((ice-9 regex)))
3390 '())
3391 (if (provided? 'threads)
3392 '(((ice-9 threads)))
3393 '())))
3394 ;; load debugger on demand
3395 (module-autoload! guile-user-module '(system vm debug) '(debug))
3396
3397 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3398 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3399 ;; no effect.
3400 (let ((old-handlers #f)
3401 ;; We can't use @ here, as modules have been booted, but in Guile's
3402 ;; build the srfi-1 helper lib hasn't been built yet, which will
3403 ;; result in an error when (system repl repl) is loaded at compile
3404 ;; time (to see if it is a macro or not).
3405 (start-repl (module-ref (resolve-module '(system repl repl))
3406 'start-repl))
3407 (signals (if (provided? 'posix)
3408 `((,SIGINT . "User interrupt")
3409 (,SIGFPE . "Arithmetic error")
3410 (,SIGSEGV
3411 . "Bad memory access (Segmentation violation)"))
3412 '())))
3413 ;; no SIGBUS on mingw
3414 (if (defined? 'SIGBUS)
3415 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3416 signals)))
3417
3418 (dynamic-wind
3419
3420 ;; call at entry
3421 (lambda ()
3422 (let ((make-handler (lambda (msg)
3423 (lambda (sig)
3424 (scm-error 'signal
3425 #f
3426 msg
3427 #f
3428 (list sig))))))
3429 (set! old-handlers
3430 (map (lambda (sig-msg)
3431 (sigaction (car sig-msg)
3432 (make-handler (cdr sig-msg))))
3433 signals))))
3434
3435 ;; the protected thunk.
3436 (lambda ()
3437 (let ((status (start-repl 'scheme)))
3438 (run-hook exit-hook)
3439 status))
3440
3441 ;; call at exit.
3442 (lambda ()
3443 (map (lambda (sig-msg old-handler)
3444 (if (not (car old-handler))
3445 ;; restore original C handler.
3446 (sigaction (car sig-msg) #f)
3447 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3448 (sigaction (car sig-msg)
3449 (car old-handler)
3450 (cdr old-handler))))
3451 signals old-handlers))))))
3452
3453 ;;; This hook is run at the very end of an interactive session.
3454 ;;;
3455 (define exit-hook (make-hook))
3456
3457 \f
3458
3459 ;;; {Deprecated stuff}
3460 ;;;
3461
3462 (begin-deprecated
3463 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
3464
3465 \f
3466
3467 ;;; Place the user in the guile-user module.
3468 ;;;
3469
3470 ;; FIXME:
3471 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
3472
3473 (define-module (guile-user)
3474 #:autoload (system base compile) (compile))
3475
3476 ;; Remain in the `(guile)' module at compilation-time so that the
3477 ;; `-Wunused-toplevel' warning works as expected.
3478 (eval-when (compile) (set-current-module the-root-module))
3479
3480 ;;; boot-9.scm ends here