* gc.c: remove set_debug_cell_accesses! when
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001, 2002, 2003 Free Software Foundation, Inc.
2 *
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Lesser General Public
5 * License as published by the Free Software Foundation; either
6 * version 2.1 of the License, or (at your option) any later version.
7 *
8 * This library is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 */
17
18
19 /* #define DEBUGINFO */
20
21 #if HAVE_CONFIG_H
22 # include <config.h>
23 #endif
24
25 #include <stdio.h>
26 #include <errno.h>
27 #include <string.h>
28 #include <assert.h>
29
30 #ifdef __ia64__
31 #include <ucontext.h>
32 extern unsigned long * __libc_ia64_register_backing_store_base;
33 #endif
34
35 #include "libguile/_scm.h"
36 #include "libguile/eval.h"
37 #include "libguile/stime.h"
38 #include "libguile/stackchk.h"
39 #include "libguile/struct.h"
40 #include "libguile/smob.h"
41 #include "libguile/unif.h"
42 #include "libguile/async.h"
43 #include "libguile/ports.h"
44 #include "libguile/root.h"
45 #include "libguile/strings.h"
46 #include "libguile/vectors.h"
47 #include "libguile/weaks.h"
48 #include "libguile/hashtab.h"
49 #include "libguile/tags.h"
50
51 #include "libguile/private-gc.h"
52 #include "libguile/validate.h"
53 #include "libguile/deprecation.h"
54 #include "libguile/gc.h"
55
56 #ifdef GUILE_DEBUG_MALLOC
57 #include "libguile/debug-malloc.h"
58 #endif
59
60 #ifdef HAVE_MALLOC_H
61 #include <malloc.h>
62 #endif
63
64 #ifdef HAVE_UNISTD_H
65 #include <unistd.h>
66 #endif
67
68
69
70 unsigned int scm_gc_running_p = 0;
71
72 /* Lock this mutex before doing lazy sweeping.
73 */
74 scm_t_rec_mutex scm_i_sweep_mutex;
75
76 /* Set this to != 0 if every cell that is accessed shall be checked:
77 */
78 int scm_debug_cell_accesses_p = 0;
79 int scm_expensive_debug_cell_accesses_p = 0;
80
81 /* Set this to 0 if no additional gc's shall be performed, otherwise set it to
82 * the number of cell accesses after which a gc shall be called.
83 */
84 int scm_debug_cells_gc_interval = 0;
85
86 /*
87 Global variable, so you can switch it off at runtime by setting
88 scm_i_cell_validation_already_running.
89 */
90 int scm_i_cell_validation_already_running ;
91
92 #if (SCM_DEBUG_CELL_ACCESSES == 1)
93
94
95 /*
96
97 Assert that the given object is a valid reference to a valid cell. This
98 test involves to determine whether the object is a cell pointer, whether
99 this pointer actually points into a heap segment and whether the cell
100 pointed to is not a free cell. Further, additional garbage collections may
101 get executed after a user defined number of cell accesses. This helps to
102 find places in the C code where references are dropped for extremely short
103 periods.
104
105 */
106 void
107 scm_i_expensive_validation_check (SCM cell)
108 {
109 if (!scm_in_heap_p (cell))
110 {
111 fprintf (stderr, "scm_assert_cell_valid: this object does not live in the heap: %lux\n",
112 (unsigned long) SCM_UNPACK (cell));
113 abort ();
114 }
115
116 /* If desired, perform additional garbage collections after a user
117 * defined number of cell accesses.
118 */
119 if (scm_debug_cells_gc_interval)
120 {
121 static unsigned int counter = 0;
122
123 if (counter != 0)
124 {
125 --counter;
126 }
127 else
128 {
129 counter = scm_debug_cells_gc_interval;
130 scm_igc ("scm_assert_cell_valid");
131 }
132 }
133 }
134
135 void
136 scm_assert_cell_valid (SCM cell)
137 {
138 if (!scm_i_cell_validation_already_running && scm_debug_cell_accesses_p)
139 {
140 scm_i_cell_validation_already_running = 1; /* set to avoid recursion */
141
142 /*
143 During GC, no user-code should be run, and the guile core
144 should use non-protected accessors.
145 */
146 if (scm_gc_running_p)
147 return;
148
149 /*
150 Only scm_in_heap_p and rescanning the heap is wildly
151 expensive.
152 */
153 if (scm_expensive_debug_cell_accesses_p)
154 scm_i_expensive_validation_check (cell);
155
156 if (!SCM_GC_MARK_P (cell))
157 {
158 fprintf (stderr,
159 "scm_assert_cell_valid: this object is unmarked. \n"
160 "It has been garbage-collected in the last GC run: "
161 "%lux\n",
162 (unsigned long) SCM_UNPACK (cell));
163 abort ();
164 }
165
166 scm_i_cell_validation_already_running = 0; /* re-enable */
167 }
168 }
169
170
171
172 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
173 (SCM flag),
174 "If @var{flag} is @code{#f}, cell access checking is disabled.\n"
175 "If @var{flag} is @code{#t}, cheap cell access checking is enabled,\n"
176 "but no additional calls to garbage collection are issued.\n"
177 "If @var{flag} is a number, strict cell access checking is enabled,\n"
178 "with an additional garbage collection after the given\n"
179 "number of cell accesses.\n"
180 "This procedure only exists when the compile-time flag\n"
181 "@code{SCM_DEBUG_CELL_ACCESSES} was set to 1.")
182 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
183 {
184 if (SCM_FALSEP (flag))
185 {
186 scm_debug_cell_accesses_p = 0;
187 }
188 else if (SCM_EQ_P (flag, SCM_BOOL_T))
189 {
190 scm_debug_cells_gc_interval = 0;
191 scm_debug_cell_accesses_p = 1;
192 scm_expensive_debug_cell_accesses_p = 0;
193 }
194 else if (SCM_INUMP (flag))
195 {
196 long int f = SCM_INUM (flag);
197 if (f <= 0)
198 SCM_OUT_OF_RANGE (1, flag);
199 scm_debug_cells_gc_interval = f;
200 scm_debug_cell_accesses_p = 1;
201 scm_expensive_debug_cell_accesses_p = 1;
202 }
203 else
204 {
205 SCM_WRONG_TYPE_ARG (1, flag);
206 }
207 return SCM_UNSPECIFIED;
208 }
209 #undef FUNC_NAME
210
211
212 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
213
214 \f
215
216 scm_t_key scm_i_freelist;
217 scm_t_key scm_i_freelist2;
218
219
220 /* scm_mtrigger
221 * is the number of bytes of malloc allocation needed to trigger gc.
222 */
223 unsigned long scm_mtrigger;
224
225 /* scm_gc_heap_lock
226 * If set, don't expand the heap. Set only during gc, during which no allocation
227 * is supposed to take place anyway.
228 */
229 int scm_gc_heap_lock = 0;
230
231 /* GC Blocking
232 * Don't pause for collection if this is set -- just
233 * expand the heap.
234 */
235 int scm_block_gc = 1;
236
237 /* During collection, this accumulates objects holding
238 * weak references.
239 */
240 SCM scm_weak_vectors;
241
242 /* GC Statistics Keeping
243 */
244 unsigned long scm_cells_allocated = 0;
245 unsigned long scm_mallocated = 0;
246 unsigned long scm_gc_cells_collected;
247 unsigned long scm_gc_cells_collected_1 = 0; /* previous GC yield */
248 unsigned long scm_gc_malloc_collected;
249 unsigned long scm_gc_ports_collected;
250 unsigned long scm_gc_time_taken = 0;
251 static unsigned long t_before_gc;
252 unsigned long scm_gc_mark_time_taken = 0;
253 unsigned long scm_gc_times = 0;
254 unsigned long scm_gc_cells_swept = 0;
255 double scm_gc_cells_marked_acc = 0.;
256 double scm_gc_cells_swept_acc = 0.;
257 int scm_gc_cell_yield_percentage =0;
258 int scm_gc_malloc_yield_percentage = 0;
259 unsigned long protected_obj_count = 0;
260
261
262 SCM_SYMBOL (sym_cells_allocated, "cells-allocated");
263 SCM_SYMBOL (sym_heap_size, "cell-heap-size");
264 SCM_SYMBOL (sym_mallocated, "bytes-malloced");
265 SCM_SYMBOL (sym_mtrigger, "gc-malloc-threshold");
266 SCM_SYMBOL (sym_heap_segments, "cell-heap-segments");
267 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
268 SCM_SYMBOL (sym_gc_mark_time_taken, "gc-mark-time-taken");
269 SCM_SYMBOL (sym_times, "gc-times");
270 SCM_SYMBOL (sym_cells_marked, "cells-marked");
271 SCM_SYMBOL (sym_cells_swept, "cells-swept");
272 SCM_SYMBOL (sym_malloc_yield, "malloc-yield");
273 SCM_SYMBOL (sym_cell_yield, "cell-yield");
274 SCM_SYMBOL (sym_protected_objects, "protected-objects");
275
276
277
278
279 /* Number of calls to SCM_NEWCELL since startup. */
280 unsigned scm_newcell_count;
281 unsigned scm_newcell2_count;
282
283
284 /* {Scheme Interface to GC}
285 */
286 extern int scm_gc_malloc_yield_percentage;
287 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
288 (),
289 "Return an association list of statistics about Guile's current\n"
290 "use of storage.\n")
291 #define FUNC_NAME s_scm_gc_stats
292 {
293 long i = 0;
294 SCM heap_segs = SCM_EOL ;
295 unsigned long int local_scm_mtrigger;
296 unsigned long int local_scm_mallocated;
297 unsigned long int local_scm_heap_size;
298 int local_scm_gc_cell_yield_percentage;
299 int local_scm_gc_malloc_yield_percentage;
300 unsigned long int local_scm_cells_allocated;
301 unsigned long int local_scm_gc_time_taken;
302 unsigned long int local_scm_gc_times;
303 unsigned long int local_scm_gc_mark_time_taken;
304 unsigned long int local_protected_obj_count;
305 double local_scm_gc_cells_swept;
306 double local_scm_gc_cells_marked;
307 SCM answer;
308 unsigned long *bounds = 0;
309 int table_size = scm_i_heap_segment_table_size;
310 SCM_DEFER_INTS;
311
312 /*
313 temporarily store the numbers, so as not to cause GC.
314 */
315
316 bounds = malloc (sizeof (int) * table_size * 2);
317 if (!bounds)
318 abort();
319 for (i = table_size; i--; )
320 {
321 bounds[2*i] = (unsigned long)scm_i_heap_segment_table[i]->bounds[0];
322 bounds[2*i+1] = (unsigned long)scm_i_heap_segment_table[i]->bounds[1];
323 }
324
325
326 /* Below, we cons to produce the resulting list. We want a snapshot of
327 * the heap situation before consing.
328 */
329 local_scm_mtrigger = scm_mtrigger;
330 local_scm_mallocated = scm_mallocated;
331 local_scm_heap_size = SCM_HEAP_SIZE;
332
333 local_scm_cells_allocated = scm_cells_allocated;
334
335 local_scm_gc_time_taken = scm_gc_time_taken;
336 local_scm_gc_mark_time_taken = scm_gc_mark_time_taken;
337 local_scm_gc_times = scm_gc_times;
338 local_scm_gc_malloc_yield_percentage = scm_gc_malloc_yield_percentage;
339 local_scm_gc_cell_yield_percentage= scm_gc_cell_yield_percentage;
340 local_protected_obj_count = protected_obj_count;
341 local_scm_gc_cells_swept =
342 (double) scm_gc_cells_swept_acc
343 + (double) scm_gc_cells_swept;
344 local_scm_gc_cells_marked = scm_gc_cells_marked_acc
345 +(double) scm_gc_cells_swept
346 -(double) scm_gc_cells_collected;
347
348 for (i = table_size; i--;)
349 {
350 heap_segs = scm_cons (scm_cons (scm_ulong2num (bounds[2*i]),
351 scm_ulong2num (bounds[2*i+1])),
352 heap_segs);
353 }
354
355 answer = scm_list_n (scm_cons (sym_gc_time_taken, scm_ulong2num (local_scm_gc_time_taken)),
356 scm_cons (sym_cells_allocated, scm_ulong2num (local_scm_cells_allocated)),
357 scm_cons (sym_heap_size, scm_ulong2num (local_scm_heap_size)),
358 scm_cons (sym_mallocated, scm_ulong2num (local_scm_mallocated)),
359 scm_cons (sym_mtrigger, scm_ulong2num (local_scm_mtrigger)),
360 scm_cons (sym_times, scm_ulong2num (local_scm_gc_times)),
361 scm_cons (sym_gc_mark_time_taken, scm_ulong2num (local_scm_gc_mark_time_taken)),
362 scm_cons (sym_cells_marked, scm_i_dbl2big (local_scm_gc_cells_marked)),
363 scm_cons (sym_cells_swept, scm_i_dbl2big (local_scm_gc_cells_swept)),
364 scm_cons (sym_malloc_yield, scm_long2num (local_scm_gc_malloc_yield_percentage)),
365 scm_cons (sym_cell_yield, scm_long2num (local_scm_gc_cell_yield_percentage)),
366 scm_cons (sym_protected_objects, scm_ulong2num (local_protected_obj_count)),
367 scm_cons (sym_heap_segments, heap_segs),
368 SCM_UNDEFINED);
369 SCM_ALLOW_INTS;
370
371 free (bounds);
372 return answer;
373 }
374 #undef FUNC_NAME
375
376 static void
377 gc_start_stats (const char *what SCM_UNUSED)
378 {
379 t_before_gc = scm_c_get_internal_run_time ();
380
381 scm_gc_cells_marked_acc += (double) scm_gc_cells_swept
382 - (double) scm_gc_cells_collected;
383 scm_gc_cells_swept_acc += (double) scm_gc_cells_swept;
384
385 scm_gc_cell_yield_percentage = ( scm_gc_cells_collected * 100 ) / SCM_HEAP_SIZE;
386
387 scm_gc_cells_swept = 0;
388 scm_gc_cells_collected_1 = scm_gc_cells_collected;
389
390 /*
391 CELLS SWEPT is another word for the number of cells that were
392 examined during GC. YIELD is the number that we cleaned
393 out. MARKED is the number that weren't cleaned.
394 */
395 scm_gc_cells_collected = 0;
396 scm_gc_malloc_collected = 0;
397 scm_gc_ports_collected = 0;
398 }
399
400 static void
401 gc_end_stats ()
402 {
403 unsigned long t = scm_c_get_internal_run_time ();
404 scm_gc_time_taken += (t - t_before_gc);
405
406 ++scm_gc_times;
407 }
408
409
410 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
411 (SCM obj),
412 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
413 "returned by this function for @var{obj}")
414 #define FUNC_NAME s_scm_object_address
415 {
416 return scm_ulong2num ((unsigned long) SCM_UNPACK (obj));
417 }
418 #undef FUNC_NAME
419
420
421 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
422 (),
423 "Scans all of SCM objects and reclaims for further use those that are\n"
424 "no longer accessible.")
425 #define FUNC_NAME s_scm_gc
426 {
427 scm_igc ("call");
428 return SCM_UNSPECIFIED;
429 }
430 #undef FUNC_NAME
431
432
433 \f
434
435 /* When we get POSIX threads support, the master will be global and
436 * common while the freelist will be individual for each thread.
437 */
438
439 SCM
440 scm_gc_for_newcell (scm_t_cell_type_statistics *freelist, SCM *free_cells)
441 {
442 SCM cell;
443
444 scm_rec_mutex_lock (&scm_i_sweep_mutex);
445
446 *free_cells = scm_i_sweep_some_segments (freelist);
447 if (*free_cells == SCM_EOL && scm_i_gc_grow_heap_p (freelist))
448 {
449 freelist->heap_segment_idx = scm_i_get_new_heap_segment (freelist, abort_on_error);
450 *free_cells = scm_i_sweep_some_segments (freelist);
451 }
452
453 if (*free_cells == SCM_EOL && !scm_block_gc)
454 {
455 /*
456 with the advent of lazy sweep, GC yield is only know just
457 before doing the GC.
458 */
459 scm_i_adjust_min_yield (freelist);
460
461 /*
462 out of fresh cells. Try to get some new ones.
463 */
464
465 scm_igc ("cells");
466
467 *free_cells = scm_i_sweep_some_segments (freelist);
468 }
469
470 if (*free_cells == SCM_EOL)
471 {
472 /*
473 failed getting new cells. Get new juice or die.
474 */
475 freelist->heap_segment_idx = scm_i_get_new_heap_segment (freelist, abort_on_error);
476 *free_cells = scm_i_sweep_some_segments (freelist);
477 }
478
479 if (*free_cells == SCM_EOL)
480 abort ();
481
482 cell = *free_cells;
483
484 *free_cells = SCM_FREE_CELL_CDR (cell);
485
486 scm_rec_mutex_unlock (&scm_i_sweep_mutex);
487
488 return cell;
489 }
490
491
492 scm_t_c_hook scm_before_gc_c_hook;
493 scm_t_c_hook scm_before_mark_c_hook;
494 scm_t_c_hook scm_before_sweep_c_hook;
495 scm_t_c_hook scm_after_sweep_c_hook;
496 scm_t_c_hook scm_after_gc_c_hook;
497
498 void
499 scm_igc (const char *what)
500 {
501 scm_rec_mutex_lock (&scm_i_sweep_mutex);
502 ++scm_gc_running_p;
503 scm_c_hook_run (&scm_before_gc_c_hook, 0);
504
505 #ifdef DEBUGINFO
506 fprintf (stderr,"gc reason %s\n", what);
507
508 fprintf (stderr,
509 SCM_NULLP (*SCM_FREELIST_LOC (scm_i_freelist))
510 ? "*"
511 : (SCM_NULLP (*SCM_FREELIST_LOC (scm_i_freelist2)) ? "o" : "m"));
512 #endif
513
514 /* During the critical section, only the current thread may run. */
515 scm_i_thread_put_to_sleep ();
516
517 if (!scm_root || !scm_stack_base || scm_block_gc)
518 {
519 --scm_gc_running_p;
520 return;
521 }
522
523 gc_start_stats (what);
524
525 if (scm_gc_heap_lock)
526 /* We've invoked the collector while a GC is already in progress.
527 That should never happen. */
528 abort ();
529
530 ++scm_gc_heap_lock;
531
532 /*
533 Let's finish the sweep. The conservative GC might point into the
534 garbage, and marking that would create a mess.
535 */
536 scm_i_sweep_all_segments("GC");
537 if (scm_mallocated < scm_i_deprecated_memory_return)
538 {
539 /* The byte count of allocated objects has underflowed. This is
540 probably because you forgot to report the sizes of objects you
541 have allocated, by calling scm_done_malloc or some such. When
542 the GC freed them, it subtracted their size from
543 scm_mallocated, which underflowed. */
544 fprintf (stderr,
545 "scm_gc_sweep: Byte count of allocated objects has underflowed.\n"
546 "This is probably because the GC hasn't been correctly informed\n"
547 "about object sizes\n");
548 abort ();
549 }
550 scm_mallocated -= scm_i_deprecated_memory_return;
551
552
553
554 scm_c_hook_run (&scm_before_mark_c_hook, 0);
555
556 scm_mark_all ();
557
558 scm_gc_mark_time_taken += (scm_c_get_internal_run_time () - t_before_gc);
559
560 scm_c_hook_run (&scm_before_sweep_c_hook, 0);
561
562 /*
563 Moved this lock upwards so that we can alloc new heap at the end of a sweep.
564
565 DOCME: why should the heap be locked anyway?
566 */
567 --scm_gc_heap_lock;
568
569 scm_gc_sweep ();
570
571
572 /*
573 TODO: this hook should probably be moved to just before the mark,
574 since that's where the sweep is finished in lazy sweeping.
575
576 MDJ 030219 <djurfeldt@nada.kth.se>: No, probably not. The
577 original meaning implied at least two things: that it would be
578 called when
579
580 1. the freelist is re-initialized (no evaluation possible, though)
581
582 and
583
584 2. the heap is "fresh"
585 (it is well-defined what data is used and what is not)
586
587 Neither of these conditions would hold just before the mark phase.
588
589 Of course, the lazy sweeping has muddled the distinction between
590 scm_before_sweep_c_hook and scm_after_sweep_c_hook, but even if
591 there were no difference, it would still be useful to have two
592 distinct classes of hook functions since this can prevent some
593 bad interference when several modules adds gc hooks.
594 */
595 scm_c_hook_run (&scm_after_sweep_c_hook, 0);
596 gc_end_stats ();
597
598 scm_i_thread_wake_up ();
599
600 /*
601 See above.
602 */
603 scm_c_hook_run (&scm_after_gc_c_hook, 0);
604 --scm_gc_running_p;
605 scm_rec_mutex_unlock (&scm_i_sweep_mutex);
606
607 /*
608 For debugging purposes, you could do
609 scm_i_sweep_all_segments("debug"), but then the remains of the
610 cell aren't left to analyse.
611 */
612 }
613
614 \f
615 /* {GC Protection Helper Functions}
616 */
617
618
619 /*
620 * If within a function you need to protect one or more scheme objects from
621 * garbage collection, pass them as parameters to one of the
622 * scm_remember_upto_here* functions below. These functions don't do
623 * anything, but since the compiler does not know that they are actually
624 * no-ops, it will generate code that calls these functions with the given
625 * parameters. Therefore, you can be sure that the compiler will keep those
626 * scheme values alive (on the stack or in a register) up to the point where
627 * scm_remember_upto_here* is called. In other words, place the call to
628 * scm_remember_upto_here* _behind_ the last code in your function, that
629 * depends on the scheme object to exist.
630 *
631 * Example: We want to make sure that the string object str does not get
632 * garbage collected during the execution of 'some_function' in the code
633 * below, because otherwise the characters belonging to str would be freed and
634 * 'some_function' might access freed memory. To make sure that the compiler
635 * keeps str alive on the stack or in a register such that it is visible to
636 * the conservative gc we add the call to scm_remember_upto_here_1 _after_ the
637 * call to 'some_function'. Note that this would not be necessary if str was
638 * used anyway after the call to 'some_function'.
639 * char *chars = SCM_STRING_CHARS (str);
640 * some_function (chars);
641 * scm_remember_upto_here_1 (str); // str will be alive up to this point.
642 */
643
644 /* Remove any macro versions of these while defining the functions.
645 Functions are always included in the library, for upward binary
646 compatibility and in case combinations of GCC and non-GCC are used. */
647 #undef scm_remember_upto_here_1
648 #undef scm_remember_upto_here_2
649
650 void
651 scm_remember_upto_here_1 (SCM obj SCM_UNUSED)
652 {
653 /* Empty. Protects a single object from garbage collection. */
654 }
655
656 void
657 scm_remember_upto_here_2 (SCM obj1 SCM_UNUSED, SCM obj2 SCM_UNUSED)
658 {
659 /* Empty. Protects two objects from garbage collection. */
660 }
661
662 void
663 scm_remember_upto_here (SCM obj SCM_UNUSED, ...)
664 {
665 /* Empty. Protects any number of objects from garbage collection. */
666 }
667
668 /*
669 These crazy functions prevent garbage collection
670 of arguments after the first argument by
671 ensuring they remain live throughout the
672 function because they are used in the last
673 line of the code block.
674 It'd be better to have a nice compiler hint to
675 aid the conservative stack-scanning GC. --03/09/00 gjb */
676 SCM
677 scm_return_first (SCM elt, ...)
678 {
679 return elt;
680 }
681
682 int
683 scm_return_first_int (int i, ...)
684 {
685 return i;
686 }
687
688
689 SCM
690 scm_permanent_object (SCM obj)
691 {
692 SCM_REDEFER_INTS;
693 scm_permobjs = scm_cons (obj, scm_permobjs);
694 SCM_REALLOW_INTS;
695 return obj;
696 }
697
698
699 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
700 other references are dropped, until the object is unprotected by calling
701 scm_gc_unprotect_object (OBJ). Calls to scm_gc_protect/unprotect_object nest,
702 i. e. it is possible to protect the same object several times, but it is
703 necessary to unprotect the object the same number of times to actually get
704 the object unprotected. It is an error to unprotect an object more often
705 than it has been protected before. The function scm_protect_object returns
706 OBJ.
707 */
708
709 /* Implementation note: For every object X, there is a counter which
710 scm_gc_protect_object(X) increments and scm_gc_unprotect_object(X) decrements.
711 */
712
713
714
715 SCM
716 scm_gc_protect_object (SCM obj)
717 {
718 SCM handle;
719
720 /* This critical section barrier will be replaced by a mutex. */
721 SCM_REDEFER_INTS;
722
723 handle = scm_hashq_create_handle_x (scm_protects, obj, SCM_MAKINUM (0));
724 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), SCM_MAKINUM (1)));
725
726 protected_obj_count ++;
727
728 SCM_REALLOW_INTS;
729
730 return obj;
731 }
732
733
734 /* Remove any protection for OBJ established by a prior call to
735 scm_protect_object. This function returns OBJ.
736
737 See scm_protect_object for more information. */
738 SCM
739 scm_gc_unprotect_object (SCM obj)
740 {
741 SCM handle;
742
743 /* This critical section barrier will be replaced by a mutex. */
744 SCM_REDEFER_INTS;
745
746 handle = scm_hashq_get_handle (scm_protects, obj);
747
748 if (SCM_FALSEP (handle))
749 {
750 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
751 abort ();
752 }
753 else
754 {
755 SCM count = scm_difference (SCM_CDR (handle), SCM_MAKINUM (1));
756 if (SCM_EQ_P (count, SCM_MAKINUM (0)))
757 scm_hashq_remove_x (scm_protects, obj);
758 else
759 SCM_SETCDR (handle, count);
760 }
761 protected_obj_count --;
762
763 SCM_REALLOW_INTS;
764
765 return obj;
766 }
767
768 void
769 scm_gc_register_root (SCM *p)
770 {
771 SCM handle;
772 SCM key = scm_long2num ((long) p);
773
774 /* This critical section barrier will be replaced by a mutex. */
775 SCM_REDEFER_INTS;
776
777 handle = scm_hashv_create_handle_x (scm_gc_registered_roots, key, SCM_MAKINUM (0));
778 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), SCM_MAKINUM (1)));
779
780 SCM_REALLOW_INTS;
781 }
782
783 void
784 scm_gc_unregister_root (SCM *p)
785 {
786 SCM handle;
787 SCM key = scm_long2num ((long) p);
788
789 /* This critical section barrier will be replaced by a mutex. */
790 SCM_REDEFER_INTS;
791
792 handle = scm_hashv_get_handle (scm_gc_registered_roots, key);
793
794 if (SCM_FALSEP (handle))
795 {
796 fprintf (stderr, "scm_gc_unregister_root called on unregistered root\n");
797 abort ();
798 }
799 else
800 {
801 SCM count = scm_difference (SCM_CDR (handle), SCM_MAKINUM (1));
802 if (SCM_EQ_P (count, SCM_MAKINUM (0)))
803 scm_hashv_remove_x (scm_gc_registered_roots, key);
804 else
805 SCM_SETCDR (handle, count);
806 }
807
808 SCM_REALLOW_INTS;
809 }
810
811 void
812 scm_gc_register_roots (SCM *b, unsigned long n)
813 {
814 SCM *p = b;
815 for (; p < b + n; ++p)
816 scm_gc_register_root (p);
817 }
818
819 void
820 scm_gc_unregister_roots (SCM *b, unsigned long n)
821 {
822 SCM *p = b;
823 for (; p < b + n; ++p)
824 scm_gc_unregister_root (p);
825 }
826
827 int scm_i_terminating;
828
829 /* called on process termination. */
830 #ifdef HAVE_ATEXIT
831 static void
832 cleanup (void)
833 #else
834 #ifdef HAVE_ON_EXIT
835 extern int on_exit (void (*procp) (), int arg);
836
837 static void
838 cleanup (int status, void *arg)
839 #else
840 #error Dont know how to setup a cleanup handler on your system.
841 #endif
842 #endif
843 {
844 scm_i_terminating = 1;
845 scm_flush_all_ports ();
846 }
847
848 \f
849
850
851 /*
852 MOVE THIS FUNCTION. IT DOES NOT HAVE ANYTHING TODO WITH GC.
853 */
854
855 /* Get an integer from an environment variable. */
856 int
857 scm_getenv_int (const char *var, int def)
858 {
859 char *end = 0;
860 char *val = getenv (var);
861 long res = def;
862 if (!val)
863 return def;
864 res = strtol (val, &end, 10);
865 if (end == val)
866 return def;
867 return res;
868 }
869
870 void
871 scm_storage_prehistory ()
872 {
873 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
874 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
875 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
876 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
877 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
878 }
879
880 int
881 scm_init_storage ()
882 {
883 size_t j;
884
885 /* Fixme: Should use mutexattr from the low-level API. */
886 scm_rec_mutex_init (&scm_i_sweep_mutex, &scm_i_plugin_rec_mutex);
887
888 j = SCM_NUM_PROTECTS;
889 while (j)
890 scm_sys_protects[--j] = SCM_BOOL_F;
891 scm_block_gc = 1;
892
893 scm_gc_init_freelist();
894 scm_gc_init_malloc ();
895
896 j = SCM_HEAP_SEG_SIZE;
897
898
899 /* Initialise the list of ports. */
900 scm_i_port_table = (scm_t_port **)
901 malloc (sizeof (scm_t_port *) * scm_i_port_table_room);
902 if (!scm_i_port_table)
903 return 1;
904
905 #ifdef HAVE_ATEXIT
906 atexit (cleanup);
907 #else
908 #ifdef HAVE_ON_EXIT
909 on_exit (cleanup, 0);
910 #endif
911 #endif
912
913 scm_stand_in_procs = SCM_EOL;
914 scm_permobjs = SCM_EOL;
915 scm_protects = scm_c_make_hash_table (31);
916 scm_gc_registered_roots = scm_c_make_hash_table (31);
917
918 return 0;
919 }
920
921 \f
922
923 SCM scm_after_gc_hook;
924
925 static SCM gc_async;
926
927 /* The function gc_async_thunk causes the execution of the after-gc-hook. It
928 * is run after the gc, as soon as the asynchronous events are handled by the
929 * evaluator.
930 */
931 static SCM
932 gc_async_thunk (void)
933 {
934 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
935 return SCM_UNSPECIFIED;
936 }
937
938
939 /* The function mark_gc_async is run by the scm_after_gc_c_hook at the end of
940 * the garbage collection. The only purpose of this function is to mark the
941 * gc_async (which will eventually lead to the execution of the
942 * gc_async_thunk).
943 */
944 static void *
945 mark_gc_async (void * hook_data SCM_UNUSED,
946 void *func_data SCM_UNUSED,
947 void *data SCM_UNUSED)
948 {
949 /* If cell access debugging is enabled, the user may choose to perform
950 * additional garbage collections after an arbitrary number of cell
951 * accesses. We don't want the scheme level after-gc-hook to be performed
952 * for each of these garbage collections for the following reason: The
953 * execution of the after-gc-hook causes cell accesses itself. Thus, if the
954 * after-gc-hook was performed with every gc, and if the gc was performed
955 * after a very small number of cell accesses, then the number of cell
956 * accesses during the execution of the after-gc-hook will suffice to cause
957 * the execution of the next gc. Then, guile would keep executing the
958 * after-gc-hook over and over again, and would never come to do other
959 * things.
960 *
961 * To overcome this problem, if cell access debugging with additional
962 * garbage collections is enabled, the after-gc-hook is never run by the
963 * garbage collecter. When running guile with cell access debugging and the
964 * execution of the after-gc-hook is desired, then it is necessary to run
965 * the hook explicitly from the user code. This has the effect, that from
966 * the scheme level point of view it seems that garbage collection is
967 * performed with a much lower frequency than it actually is. Obviously,
968 * this will not work for code that depends on a fixed one to one
969 * relationship between the execution counts of the C level garbage
970 * collection hooks and the execution count of the scheme level
971 * after-gc-hook.
972 */
973 #if (SCM_DEBUG_CELL_ACCESSES == 1)
974 if (scm_debug_cells_gc_interval == 0)
975 scm_system_async_mark (gc_async);
976 #else
977 scm_system_async_mark (gc_async);
978 #endif
979
980 return NULL;
981 }
982
983 void
984 scm_init_gc ()
985 {
986 scm_gc_init_mark ();
987
988 scm_after_gc_hook = scm_permanent_object (scm_make_hook (SCM_INUM0));
989 scm_c_define ("after-gc-hook", scm_after_gc_hook);
990
991 gc_async = scm_c_make_subr ("%gc-thunk", scm_tc7_subr_0,
992 gc_async_thunk);
993
994 scm_c_hook_add (&scm_after_gc_c_hook, mark_gc_async, NULL, 0);
995
996 #include "libguile/gc.x"
997 }
998
999
1000 void
1001 scm_gc_sweep (void)
1002 #define FUNC_NAME "scm_gc_sweep"
1003 {
1004 scm_i_deprecated_memory_return = 0;
1005
1006 scm_i_gc_sweep_freelist_reset (&scm_i_master_freelist);
1007 scm_i_gc_sweep_freelist_reset (&scm_i_master_freelist2);
1008
1009 /*
1010 NOTHING HERE: LAZY SWEEPING !
1011 */
1012 scm_i_reset_segments ();
1013
1014 /* When we move to POSIX threads private freelists should probably
1015 be GC-protected instead. */
1016 *SCM_FREELIST_LOC (scm_i_freelist) = SCM_EOL;
1017 *SCM_FREELIST_LOC (scm_i_freelist2) = SCM_EOL;
1018
1019 /* Invalidate the freelists of other threads. */
1020 scm_i_thread_invalidate_freelists ();
1021 }
1022
1023 #undef FUNC_NAME
1024
1025
1026
1027 /*
1028 Local Variables:
1029 c-file-style: "gnu"
1030 End:
1031 */