* Makefile.am (libqthreads_la_LDFLAGS): use libtool interface version
[bpt/guile.git] / libguile / gc.c
CommitLineData
22a52da1 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001 Free Software Foundation, Inc.
a00c95d9 2 *
0f2d19dd
JB
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2, or (at your option)
6 * any later version.
a00c95d9 7 *
0f2d19dd
JB
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
a00c95d9 12 *
0f2d19dd
JB
13 * You should have received a copy of the GNU General Public License
14 * along with this software; see the file COPYING. If not, write to
82892bed
JB
15 * the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
16 * Boston, MA 02111-1307 USA
0f2d19dd
JB
17 *
18 * As a special exception, the Free Software Foundation gives permission
19 * for additional uses of the text contained in its release of GUILE.
20 *
21 * The exception is that, if you link the GUILE library with other files
22 * to produce an executable, this does not by itself cause the
23 * resulting executable to be covered by the GNU General Public License.
24 * Your use of that executable is in no way restricted on account of
25 * linking the GUILE library code into it.
26 *
27 * This exception does not however invalidate any other reasons why
28 * the executable file might be covered by the GNU General Public License.
29 *
30 * This exception applies only to the code released by the
31 * Free Software Foundation under the name GUILE. If you copy
32 * code from other Free Software Foundation releases into a copy of
33 * GUILE, as the General Public License permits, the exception does
34 * not apply to the code that you add in this way. To avoid misleading
35 * anyone as to the status of such modified files, you must delete
36 * this exception notice from them.
37 *
38 * If you write modifications of your own for GUILE, it is your choice
39 * whether to permit this exception to apply to your modifications.
82892bed 40 * If you do not wish that, delete this exception notice. */
1bbd0b84 41
1bbd0b84 42
37ddcaf6
MD
43/* #define DEBUGINFO */
44
56495472
ML
45/* SECTION: This code is compiled once.
46 */
47
48#ifndef MARK_DEPENDENCIES
49
0f2d19dd
JB
50\f
51#include <stdio.h>
e6e2e95a 52#include <errno.h>
783e7774 53#include <string.h>
e6e2e95a 54
a0599745 55#include "libguile/_scm.h"
0a7a7445 56#include "libguile/eval.h"
a0599745
MD
57#include "libguile/stime.h"
58#include "libguile/stackchk.h"
59#include "libguile/struct.h"
a0599745
MD
60#include "libguile/smob.h"
61#include "libguile/unif.h"
62#include "libguile/async.h"
63#include "libguile/ports.h"
64#include "libguile/root.h"
65#include "libguile/strings.h"
66#include "libguile/vectors.h"
801cb5e7 67#include "libguile/weaks.h"
686765af 68#include "libguile/hashtab.h"
ecf470a2 69#include "libguile/tags.h"
a0599745
MD
70
71#include "libguile/validate.h"
1be6b49c 72#include "libguile/deprecation.h"
a0599745 73#include "libguile/gc.h"
fce59c93 74
bc9d9bb2 75#ifdef GUILE_DEBUG_MALLOC
a0599745 76#include "libguile/debug-malloc.h"
bc9d9bb2
MD
77#endif
78
0f2d19dd 79#ifdef HAVE_MALLOC_H
95b88819 80#include <malloc.h>
0f2d19dd
JB
81#endif
82
83#ifdef HAVE_UNISTD_H
95b88819 84#include <unistd.h>
0f2d19dd
JB
85#endif
86
1cc91f1b
JB
87#ifdef __STDC__
88#include <stdarg.h>
89#define var_start(x, y) va_start(x, y)
90#else
91#include <varargs.h>
92#define var_start(x, y) va_start(x)
93#endif
94
0f2d19dd 95\f
406c7d90
DH
96
97unsigned int scm_gc_running_p = 0;
98
99\f
100
101#if (SCM_DEBUG_CELL_ACCESSES == 1)
102
92c2555f 103scm_t_bits scm_tc16_allocated;
61045190
DH
104
105/* Set this to != 0 if every cell that is accessed shall be checked:
106 */
107unsigned int scm_debug_cell_accesses_p = 1;
406c7d90 108
e81d98ec
DH
109/* Set this to 0 if no additional gc's shall be performed, otherwise set it to
110 * the number of cell accesses after which a gc shall be called.
111 */
112static unsigned int debug_cells_gc_interval = 0;
113
406c7d90 114
592996c9
DH
115/* If an allocated cell is detected during garbage collection, this means that
116 * some code has just obtained the object but was preempted before the
117 * initialization of the object was completed. This meanst that some entries
118 * of the allocated cell may already contain SCM objects. Therefore,
119 * allocated cells are scanned conservatively. */
120static SCM
121allocated_mark (SCM allocated)
122{
123 scm_gc_mark_cell_conservatively (allocated);
124 return SCM_BOOL_F;
125}
126
127
406c7d90
DH
128/* Assert that the given object is a valid reference to a valid cell. This
129 * test involves to determine whether the object is a cell pointer, whether
130 * this pointer actually points into a heap segment and whether the cell
e81d98ec
DH
131 * pointed to is not a free cell. Further, additional garbage collections may
132 * get executed after a user defined number of cell accesses. This helps to
133 * find places in the C code where references are dropped for extremely short
134 * periods.
406c7d90
DH
135 */
136void
137scm_assert_cell_valid (SCM cell)
138{
61045190
DH
139 static unsigned int already_running = 0;
140
141 if (scm_debug_cell_accesses_p && !already_running)
406c7d90 142 {
61045190 143 already_running = 1; /* set to avoid recursion */
406c7d90 144
9d47a1e6 145 if (!scm_cellp (cell))
406c7d90 146 {
1be6b49c
ML
147 fprintf (stderr, "scm_assert_cell_valid: Not a cell object: %lux\n",
148 (unsigned long) SCM_UNPACK (cell));
406c7d90
DH
149 abort ();
150 }
151 else if (!scm_gc_running_p)
152 {
153 /* Dirk::FIXME:: During garbage collection there occur references to
154 free cells. This is allright during conservative marking, but
155 should not happen otherwise (I think). The case of free cells
156 accessed during conservative marking is handled in function
157 scm_mark_locations. However, there still occur accesses to free
158 cells during gc. I don't understand why this happens. If it is
159 a bug and gets fixed, the following test should also work while
160 gc is running.
161 */
162 if (SCM_FREE_CELL_P (cell))
163 {
1be6b49c
ML
164 fprintf (stderr, "scm_assert_cell_valid: Accessing free cell: %lux\n",
165 (unsigned long) SCM_UNPACK (cell));
406c7d90
DH
166 abort ();
167 }
e81d98ec
DH
168
169 /* If desired, perform additional garbage collections after a user
170 * defined number of cell accesses.
171 */
172 if (debug_cells_gc_interval)
173 {
174 static unsigned int counter = 0;
175
176 if (counter != 0)
177 {
178 --counter;
179 }
180 else
181 {
182 counter = debug_cells_gc_interval;
183 scm_igc ("scm_assert_cell_valid");
184 }
185 }
406c7d90 186 }
61045190 187 already_running = 0; /* re-enable */
406c7d90
DH
188 }
189}
190
191
192SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
193 (SCM flag),
1e6808ea 194 "If @var{flag} is @code{#f}, cell access checking is disabled.\n"
e81d98ec
DH
195 "If @var{flag} is @code{#t}, cell access checking is enabled,\n"
196 "but no additional calls to garbage collection are issued.\n"
197 "If @var{flag} is a number, cell access checking is enabled,\n"
198 "with an additional garbage collection after the given\n"
199 "number of cell accesses.\n"
1e6808ea
MG
200 "This procedure only exists when the compile-time flag\n"
201 "@code{SCM_DEBUG_CELL_ACCESSES} was set to 1.")
406c7d90
DH
202#define FUNC_NAME s_scm_set_debug_cell_accesses_x
203{
204 if (SCM_FALSEP (flag)) {
205 scm_debug_cell_accesses_p = 0;
206 } else if (SCM_EQ_P (flag, SCM_BOOL_T)) {
e81d98ec
DH
207 debug_cells_gc_interval = 0;
208 scm_debug_cell_accesses_p = 1;
209 } else if (SCM_INUMP (flag)) {
210 long int f = SCM_INUM (flag);
211 if (f <= 0) SCM_OUT_OF_RANGE (1, flag);
212 debug_cells_gc_interval = f;
406c7d90
DH
213 scm_debug_cell_accesses_p = 1;
214 } else {
215 SCM_WRONG_TYPE_ARG (1, flag);
216 }
217 return SCM_UNSPECIFIED;
218}
219#undef FUNC_NAME
220
221#endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
222
223\f
224
0f2d19dd 225/* {heap tuning parameters}
a00c95d9 226 *
0f2d19dd
JB
227 * These are parameters for controlling memory allocation. The heap
228 * is the area out of which scm_cons, and object headers are allocated.
229 *
230 * Each heap cell is 8 bytes on a 32 bit machine and 16 bytes on a
231 * 64 bit machine. The units of the _SIZE parameters are bytes.
232 * Cons pairs and object headers occupy one heap cell.
233 *
234 * SCM_INIT_HEAP_SIZE is the initial size of heap. If this much heap is
235 * allocated initially the heap will grow by half its current size
236 * each subsequent time more heap is needed.
237 *
238 * If SCM_INIT_HEAP_SIZE heap cannot be allocated initially, SCM_HEAP_SEG_SIZE
239 * will be used, and the heap will grow by SCM_HEAP_SEG_SIZE when more
1be6b49c 240 * heap is needed. SCM_HEAP_SEG_SIZE must fit into type size_t. This code
0f2d19dd 241 * is in scm_init_storage() and alloc_some_heap() in sys.c
a00c95d9 242 *
0f2d19dd
JB
243 * If SCM_INIT_HEAP_SIZE can be allocated initially, the heap will grow by
244 * SCM_EXPHEAP(scm_heap_size) when more heap is needed.
245 *
246 * SCM_MIN_HEAP_SEG_SIZE is minimum size of heap to accept when more heap
247 * is needed.
248 *
249 * INIT_MALLOC_LIMIT is the initial amount of malloc usage which will
a00c95d9 250 * trigger a GC.
6064dcc6
MV
251 *
252 * SCM_MTRIGGER_HYSTERESIS is the amount of malloc storage that must be
253 * reclaimed by a GC triggered by must_malloc. If less than this is
254 * reclaimed, the trigger threshold is raised. [I don't know what a
255 * good value is. I arbitrarily chose 1/10 of the INIT_MALLOC_LIMIT to
a00c95d9 256 * work around a oscillation that caused almost constant GC.]
0f2d19dd
JB
257 */
258
8fef55a8
MD
259/*
260 * Heap size 45000 and 40% min yield gives quick startup and no extra
261 * heap allocation. Having higher values on min yield may lead to
262 * large heaps, especially if code behaviour is varying its
263 * maximum consumption between different freelists.
264 */
d6884e63
ML
265
266#define SCM_DATA_CELLS2CARDS(n) (((n) + SCM_GC_CARD_N_DATA_CELLS - 1) / SCM_GC_CARD_N_DATA_CELLS)
267#define SCM_CARDS_PER_CLUSTER SCM_DATA_CELLS2CARDS (2000L)
268#define SCM_CLUSTER_SIZE_1 (SCM_CARDS_PER_CLUSTER * SCM_GC_CARD_N_DATA_CELLS)
1be6b49c 269size_t scm_default_init_heap_size_1 = (((SCM_DATA_CELLS2CARDS (45000L) + SCM_CARDS_PER_CLUSTER - 1)
d6884e63 270 / SCM_CARDS_PER_CLUSTER) * SCM_GC_CARD_SIZE);
aeacfc8f 271int scm_default_min_yield_1 = 40;
4c48ba06 272
d6884e63 273#define SCM_CLUSTER_SIZE_2 (SCM_CARDS_PER_CLUSTER * (SCM_GC_CARD_N_DATA_CELLS / 2))
1be6b49c 274size_t scm_default_init_heap_size_2 = (((SCM_DATA_CELLS2CARDS (2500L * 2) + SCM_CARDS_PER_CLUSTER - 1)
d6884e63 275 / SCM_CARDS_PER_CLUSTER) * SCM_GC_CARD_SIZE);
4c48ba06
MD
276/* The following value may seem large, but note that if we get to GC at
277 * all, this means that we have a numerically intensive application
278 */
aeacfc8f 279int scm_default_min_yield_2 = 40;
4c48ba06 280
1be6b49c 281size_t scm_default_max_segment_size = 2097000L;/* a little less (adm) than 2 Mb */
4c48ba06 282
d6884e63 283#define SCM_MIN_HEAP_SEG_SIZE (8 * SCM_GC_CARD_SIZE)
0f2d19dd
JB
284#ifdef _QC
285# define SCM_HEAP_SEG_SIZE 32768L
286#else
287# ifdef sequent
4c48ba06 288# define SCM_HEAP_SEG_SIZE (7000L * sizeof (scm_cell))
0f2d19dd 289# else
4c48ba06 290# define SCM_HEAP_SEG_SIZE (16384L * sizeof (scm_cell))
0f2d19dd
JB
291# endif
292#endif
4c48ba06 293/* Make heap grow with factor 1.5 */
4a4c9785 294#define SCM_EXPHEAP(scm_heap_size) (scm_heap_size / 2)
0f2d19dd 295#define SCM_INIT_MALLOC_LIMIT 100000
6064dcc6 296#define SCM_MTRIGGER_HYSTERESIS (SCM_INIT_MALLOC_LIMIT/10)
0f2d19dd 297
d6884e63
ML
298/* CELL_UP and CELL_DN are used by scm_init_heap_seg to find (scm_cell * span)
299 aligned inner bounds for allocated storage */
0f2d19dd
JB
300
301#ifdef PROT386
302/*in 386 protected mode we must only adjust the offset */
a00c95d9
ML
303# define CELL_UP(p, span) MK_FP(FP_SEG(p), ~(8*(span)-1)&(FP_OFF(p)+8*(span)-1))
304# define CELL_DN(p, span) MK_FP(FP_SEG(p), ~(8*(span)-1)&FP_OFF(p))
0f2d19dd
JB
305#else
306# ifdef _UNICOS
c014a02e
ML
307# define CELL_UP(p, span) (SCM_CELLPTR)(~(span) & ((long)(p)+(span)))
308# define CELL_DN(p, span) (SCM_CELLPTR)(~(span) & (long)(p))
0f2d19dd 309# else
c014a02e
ML
310# define CELL_UP(p, span) (SCM_CELLPTR)(~(sizeof(scm_cell)*(span)-1L) & ((long)(p)+sizeof(scm_cell)*(span)-1L))
311# define CELL_DN(p, span) (SCM_CELLPTR)(~(sizeof(scm_cell)*(span)-1L) & (long)(p))
0f2d19dd
JB
312# endif /* UNICOS */
313#endif /* PROT386 */
314
ecf470a2
ML
315#define DOUBLECELL_ALIGNED_P(x) (((2 * sizeof (scm_cell) - 1) & SCM_UNPACK (x)) == 0)
316
d6884e63
ML
317#define ALIGNMENT_SLACK(freelist) (SCM_GC_CARD_SIZE - 1)
318#define CLUSTER_SIZE_IN_BYTES(freelist) \
319 (((freelist)->cluster_size / (SCM_GC_CARD_N_DATA_CELLS / (freelist)->span)) * SCM_GC_CARD_SIZE)
0f2d19dd
JB
320
321\f
945fec60 322/* scm_freelists
0f2d19dd 323 */
945fec60 324
92c2555f 325typedef struct scm_t_freelist {
a00c95d9
ML
326 /* collected cells */
327 SCM cells;
a00c95d9
ML
328 /* number of cells left to collect before cluster is full */
329 unsigned int left_to_collect;
b37fe1c5
MD
330 /* number of clusters which have been allocated */
331 unsigned int clusters_allocated;
8fef55a8
MD
332 /* a list of freelists, each of size cluster_size,
333 * except the last one which may be shorter
334 */
a00c95d9
ML
335 SCM clusters;
336 SCM *clustertail;
b37fe1c5 337 /* this is the number of objects in each cluster, including the spine cell */
1be6b49c 338 unsigned int cluster_size;
8fef55a8 339 /* indicates that we should grow heap instead of GC:ing
a00c95d9
ML
340 */
341 int grow_heap_p;
8fef55a8 342 /* minimum yield on this list in order not to grow the heap
a00c95d9 343 */
8fef55a8
MD
344 long min_yield;
345 /* defines min_yield as percent of total heap size
a00c95d9 346 */
8fef55a8 347 int min_yield_fraction;
a00c95d9
ML
348 /* number of cells per object on this list */
349 int span;
350 /* number of collected cells during last GC */
c014a02e 351 unsigned long collected;
1811ebce 352 /* number of collected cells during penultimate GC */
c014a02e 353 unsigned long collected_1;
a00c95d9
ML
354 /* total number of cells in heap segments
355 * belonging to this list.
356 */
c014a02e 357 unsigned long heap_size;
92c2555f 358} scm_t_freelist;
a00c95d9 359
4a4c9785 360SCM scm_freelist = SCM_EOL;
92c2555f 361scm_t_freelist scm_master_freelist = {
729dbac3 362 SCM_EOL, 0, 0, SCM_EOL, 0, SCM_CLUSTER_SIZE_1, 0, 0, 0, 1, 0, 0, 0
4a4c9785
MD
363};
364SCM scm_freelist2 = SCM_EOL;
92c2555f 365scm_t_freelist scm_master_freelist2 = {
729dbac3 366 SCM_EOL, 0, 0, SCM_EOL, 0, SCM_CLUSTER_SIZE_2, 0, 0, 0, 2, 0, 0, 0
4a4c9785 367};
0f2d19dd
JB
368
369/* scm_mtrigger
370 * is the number of bytes of must_malloc allocation needed to trigger gc.
371 */
c014a02e 372unsigned long scm_mtrigger;
0f2d19dd 373
0f2d19dd
JB
374/* scm_gc_heap_lock
375 * If set, don't expand the heap. Set only during gc, during which no allocation
376 * is supposed to take place anyway.
377 */
378int scm_gc_heap_lock = 0;
379
380/* GC Blocking
381 * Don't pause for collection if this is set -- just
382 * expand the heap.
383 */
0f2d19dd
JB
384int scm_block_gc = 1;
385
0f2d19dd
JB
386/* During collection, this accumulates objects holding
387 * weak references.
388 */
ab4bef85 389SCM scm_weak_vectors;
0f2d19dd 390
7445e0e8
MD
391/* During collection, this accumulates structures which are to be freed.
392 */
393SCM scm_structs_to_free;
394
0f2d19dd
JB
395/* GC Statistics Keeping
396 */
c014a02e
ML
397unsigned long scm_cells_allocated = 0;
398unsigned long scm_mallocated = 0;
399unsigned long scm_gc_cells_collected;
400unsigned long scm_gc_yield;
401static unsigned long scm_gc_yield_1 = 0; /* previous GC yield */
402unsigned long scm_gc_malloc_collected;
403unsigned long scm_gc_ports_collected;
0f2d19dd 404unsigned long scm_gc_time_taken = 0;
c014a02e
ML
405static unsigned long t_before_gc;
406static unsigned long t_before_sweep;
c9b0d4b0
ML
407unsigned long scm_gc_mark_time_taken = 0;
408unsigned long scm_gc_sweep_time_taken = 0;
c014a02e
ML
409unsigned long scm_gc_times = 0;
410unsigned long scm_gc_cells_swept = 0;
c9b0d4b0
ML
411double scm_gc_cells_marked_acc = 0.;
412double scm_gc_cells_swept_acc = 0.;
0f2d19dd
JB
413
414SCM_SYMBOL (sym_cells_allocated, "cells-allocated");
415SCM_SYMBOL (sym_heap_size, "cell-heap-size");
416SCM_SYMBOL (sym_mallocated, "bytes-malloced");
417SCM_SYMBOL (sym_mtrigger, "gc-malloc-threshold");
418SCM_SYMBOL (sym_heap_segments, "cell-heap-segments");
419SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
c9b0d4b0
ML
420SCM_SYMBOL (sym_gc_mark_time_taken, "gc-mark-time-taken");
421SCM_SYMBOL (sym_gc_sweep_time_taken, "gc-sweep-time-taken");
422SCM_SYMBOL (sym_times, "gc-times");
423SCM_SYMBOL (sym_cells_marked, "cells-marked");
424SCM_SYMBOL (sym_cells_swept, "cells-swept");
0f2d19dd 425
92c2555f 426typedef struct scm_t_heap_seg_data
0f2d19dd 427{
cf2d30f6
JB
428 /* lower and upper bounds of the segment */
429 SCM_CELLPTR bounds[2];
430
431 /* address of the head-of-freelist pointer for this segment's cells.
432 All segments usually point to the same one, scm_freelist. */
92c2555f 433 scm_t_freelist *freelist;
cf2d30f6 434
fe517a7d 435 /* number of cells per object in this segment */
945fec60 436 int span;
92c2555f 437} scm_t_heap_seg_data;
0f2d19dd
JB
438
439
440
92c2555f 441static size_t init_heap_seg (SCM_CELLPTR, size_t, scm_t_freelist *);
b6efc951
DH
442
443typedef enum { return_on_error, abort_on_error } policy_on_error;
92c2555f 444static void alloc_some_heap (scm_t_freelist *, policy_on_error);
0f2d19dd
JB
445
446
d6884e63
ML
447#define SCM_HEAP_SIZE \
448 (scm_master_freelist.heap_size + scm_master_freelist2.heap_size)
449#define SCM_MAX(A, B) ((A) > (B) ? (A) : (B))
450
451#define BVEC_GROW_SIZE 256
452#define BVEC_GROW_SIZE_IN_LIMBS (SCM_GC_CARD_BVEC_SIZE_IN_LIMBS * BVEC_GROW_SIZE)
92c2555f 453#define BVEC_GROW_SIZE_IN_BYTES (BVEC_GROW_SIZE_IN_LIMBS * sizeof (scm_t_c_bvec_limb))
d6884e63
ML
454
455/* mark space allocation */
456
92c2555f 457typedef struct scm_t_mark_space
d6884e63 458{
92c2555f
MV
459 scm_t_c_bvec_limb *bvec_space;
460 struct scm_t_mark_space *next;
461} scm_t_mark_space;
d6884e63 462
92c2555f
MV
463static scm_t_mark_space *current_mark_space;
464static scm_t_mark_space **mark_space_ptr;
1be6b49c 465static ptrdiff_t current_mark_space_offset;
92c2555f 466static scm_t_mark_space *mark_space_head;
d6884e63 467
92c2555f 468static scm_t_c_bvec_limb *
d6884e63 469get_bvec ()
db4b4ca6 470#define FUNC_NAME "get_bvec"
d6884e63 471{
92c2555f 472 scm_t_c_bvec_limb *res;
d6884e63
ML
473
474 if (!current_mark_space)
475 {
92c2555f 476 SCM_SYSCALL (current_mark_space = (scm_t_mark_space *) malloc (sizeof (scm_t_mark_space)));
d6884e63 477 if (!current_mark_space)
db4b4ca6 478 SCM_MISC_ERROR ("could not grow heap", SCM_EOL);
d6884e63
ML
479
480 current_mark_space->bvec_space = NULL;
481 current_mark_space->next = NULL;
482
483 *mark_space_ptr = current_mark_space;
484 mark_space_ptr = &(current_mark_space->next);
485
486 return get_bvec ();
487 }
488
489 if (!(current_mark_space->bvec_space))
490 {
491 SCM_SYSCALL (current_mark_space->bvec_space =
92c2555f 492 (scm_t_c_bvec_limb *) calloc (BVEC_GROW_SIZE_IN_BYTES, 1));
d6884e63 493 if (!(current_mark_space->bvec_space))
db4b4ca6 494 SCM_MISC_ERROR ("could not grow heap", SCM_EOL);
d6884e63
ML
495
496 current_mark_space_offset = 0;
497
498 return get_bvec ();
499 }
500
501 if (current_mark_space_offset == BVEC_GROW_SIZE_IN_LIMBS)
502 {
503 current_mark_space = NULL;
504
505 return get_bvec ();
506 }
507
508 res = current_mark_space->bvec_space + current_mark_space_offset;
509 current_mark_space_offset += SCM_GC_CARD_BVEC_SIZE_IN_LIMBS;
510
511 return res;
512}
db4b4ca6
DH
513#undef FUNC_NAME
514
d6884e63
ML
515
516static void
517clear_mark_space ()
518{
92c2555f 519 scm_t_mark_space *ms;
d6884e63
ML
520
521 for (ms = mark_space_head; ms; ms = ms->next)
522 memset (ms->bvec_space, 0, BVEC_GROW_SIZE_IN_BYTES);
523}
524
525
0f2d19dd 526\f
cf2d30f6
JB
527/* Debugging functions. */
528
bb2c57fa 529#if defined (GUILE_DEBUG) || defined (GUILE_DEBUG_FREELIST)
cf2d30f6 530
8ded62a3 531static void
92c2555f 532map_free_list (scm_t_freelist *master, SCM freelist)
8ded62a3 533{
c014a02e 534 long last_seg = -1, count = 0;
8ded62a3 535 SCM f;
a00c95d9 536
3f5d82cd 537 for (f = freelist; !SCM_NULLP (f); f = SCM_FREE_CELL_CDR (f))
8ded62a3 538 {
592996c9 539 long int this_seg = heap_segment (f);
8ded62a3 540
592996c9
DH
541 if (this_seg == -1)
542 {
543 fprintf (stderr,
544 "map_free_list: can't find segment containing cell %lux\n",
545 (unsigned long int) SCM_UNPACK (cell));
546 abort ();
547 }
548 else if (this_seg != last_seg)
8ded62a3
MD
549 {
550 if (last_seg != -1)
1be6b49c
ML
551 fprintf (stderr, " %5ld %d-cells in segment %ld\n",
552 (long) count, master->span, (long) last_seg);
8ded62a3
MD
553 last_seg = this_seg;
554 count = 0;
555 }
556 count++;
557 }
558 if (last_seg != -1)
1be6b49c
ML
559 fprintf (stderr, " %5ld %d-cells in segment %ld\n",
560 (long) count, master->span, (long) last_seg);
8ded62a3 561}
cf2d30f6 562
a00c95d9 563SCM_DEFINE (scm_map_free_list, "map-free-list", 0, 0, 0,
acb0a19c 564 (),
5352393c
MG
565 "Print debugging information about the free-list.\n"
566 "@code{map-free-list} is only included in\n"
567 "@code{--enable-guile-debug} builds of Guile.")
acb0a19c
MD
568#define FUNC_NAME s_scm_map_free_list
569{
592996c9
DH
570 size_t i;
571
1be6b49c
ML
572 fprintf (stderr, "%ld segments total (%d:%ld",
573 (long) scm_n_heap_segs,
4c48ba06 574 scm_heap_table[0].span,
1be6b49c 575 (long) (scm_heap_table[0].bounds[1] - scm_heap_table[0].bounds[0]));
592996c9
DH
576
577 for (i = 1; i != scm_n_heap_segs; i++)
1be6b49c 578 fprintf (stderr, ", %d:%ld",
4c48ba06 579 scm_heap_table[i].span,
1be6b49c 580 (long) (scm_heap_table[i].bounds[1] - scm_heap_table[i].bounds[0]));
4c48ba06 581 fprintf (stderr, ")\n");
8ded62a3
MD
582 map_free_list (&scm_master_freelist, scm_freelist);
583 map_free_list (&scm_master_freelist2, scm_freelist2);
cf2d30f6
JB
584 fflush (stderr);
585
586 return SCM_UNSPECIFIED;
587}
1bbd0b84 588#undef FUNC_NAME
cf2d30f6 589
c014a02e
ML
590static long last_cluster;
591static long last_size;
4c48ba06 592
c014a02e
ML
593static long
594free_list_length (char *title, long i, SCM freelist)
5384bc5b
MD
595{
596 SCM ls;
c014a02e 597 long n = 0;
3f5d82cd
DH
598 for (ls = freelist; !SCM_NULLP (ls); ls = SCM_FREE_CELL_CDR (ls))
599 if (SCM_FREE_CELL_P (ls))
5384bc5b
MD
600 ++n;
601 else
602 {
1be6b49c 603 fprintf (stderr, "bad cell in %s at position %ld\n", title, (long) n);
5384bc5b
MD
604 abort ();
605 }
4c48ba06
MD
606 if (n != last_size)
607 {
608 if (i > 0)
609 {
610 if (last_cluster == i - 1)
1be6b49c 611 fprintf (stderr, "\t%ld\n", (long) last_size);
4c48ba06 612 else
1be6b49c 613 fprintf (stderr, "-%ld\t%ld\n", (long) (i - 1), (long) last_size);
4c48ba06
MD
614 }
615 if (i >= 0)
1be6b49c 616 fprintf (stderr, "%s %ld", title, (long) i);
4c48ba06 617 else
1be6b49c 618 fprintf (stderr, "%s\t%ld\n", title, (long) n);
4c48ba06
MD
619 last_cluster = i;
620 last_size = n;
621 }
5384bc5b
MD
622 return n;
623}
624
625static void
92c2555f 626free_list_lengths (char *title, scm_t_freelist *master, SCM freelist)
5384bc5b
MD
627{
628 SCM clusters;
c014a02e 629 long i = 0, len, n = 0;
5384bc5b
MD
630 fprintf (stderr, "%s\n\n", title);
631 n += free_list_length ("free list", -1, freelist);
632 for (clusters = master->clusters;
633 SCM_NNULLP (clusters);
634 clusters = SCM_CDR (clusters))
4c48ba06
MD
635 {
636 len = free_list_length ("cluster", i++, SCM_CAR (clusters));
637 n += len;
638 }
639 if (last_cluster == i - 1)
1be6b49c 640 fprintf (stderr, "\t%ld\n", (long) last_size);
4c48ba06 641 else
1be6b49c
ML
642 fprintf (stderr, "-%ld\t%ld\n", (long) (i - 1), (long) last_size);
643 fprintf (stderr, "\ntotal %ld objects\n\n", (long) n);
5384bc5b
MD
644}
645
a00c95d9 646SCM_DEFINE (scm_free_list_length, "free-list-length", 0, 0, 0,
5384bc5b 647 (),
5352393c
MG
648 "Print debugging information about the free-list.\n"
649 "@code{free-list-length} is only included in\n"
650 "@code{--enable-guile-debug} builds of Guile.")
5384bc5b
MD
651#define FUNC_NAME s_scm_free_list_length
652{
b37fe1c5
MD
653 free_list_lengths ("1-cells", &scm_master_freelist, scm_freelist);
654 free_list_lengths ("2-cells", &scm_master_freelist2, scm_freelist2);
12e5fb3b 655 return SCM_UNSPECIFIED;
5384bc5b
MD
656}
657#undef FUNC_NAME
658
bb2c57fa
MD
659#endif
660
661#ifdef GUILE_DEBUG_FREELIST
cf2d30f6 662
d3dd80ab
MG
663/* Non-zero if freelist debugging is in effect. Set this via
664 `gc-set-debug-check-freelist!'. */
665static int scm_debug_check_freelist = 0;
666
cf2d30f6 667/* Number of calls to SCM_NEWCELL since startup. */
c014a02e
ML
668static unsigned long scm_newcell_count;
669static unsigned long scm_newcell2_count;
cf2d30f6
JB
670
671/* Search freelist for anything that isn't marked as a free cell.
672 Abort if we find something. */
8ded62a3
MD
673static void
674scm_check_freelist (SCM freelist)
675{
676 SCM f;
c014a02e 677 long i = 0;
8ded62a3 678
3f5d82cd
DH
679 for (f = freelist; !SCM_NULLP (f); f = SCM_FREE_CELL_CDR (f), i++)
680 if (!SCM_FREE_CELL_P (f))
8ded62a3 681 {
1be6b49c
ML
682 fprintf (stderr, "Bad cell in freelist on newcell %lu: %lu'th elt\n",
683 (long) scm_newcell_count, (long) i);
8ded62a3
MD
684 abort ();
685 }
686}
cf2d30f6 687
a00c95d9 688SCM_DEFINE (scm_gc_set_debug_check_freelist_x, "gc-set-debug-check-freelist!", 1, 0, 0,
1bbd0b84 689 (SCM flag),
1e6808ea
MG
690 "If @var{flag} is @code{#t}, check the freelist for consistency\n"
691 "on each cell allocation. This procedure only exists when the\n"
692 "@code{GUILE_DEBUG_FREELIST} compile-time flag was selected.")
1bbd0b84 693#define FUNC_NAME s_scm_gc_set_debug_check_freelist_x
25748c78 694{
d6884e63
ML
695 /* [cmm] I did a double-take when I read this code the first time.
696 well, FWIW. */
945fec60 697 SCM_VALIDATE_BOOL_COPY (1, flag, scm_debug_check_freelist);
25748c78
GB
698 return SCM_UNSPECIFIED;
699}
1bbd0b84 700#undef FUNC_NAME
25748c78
GB
701
702
4a4c9785
MD
703SCM
704scm_debug_newcell (void)
705{
706 SCM new;
707
708 scm_newcell_count++;
709 if (scm_debug_check_freelist)
710 {
8ded62a3 711 scm_check_freelist (scm_freelist);
4a4c9785
MD
712 scm_gc();
713 }
714
715 /* The rest of this is supposed to be identical to the SCM_NEWCELL
716 macro. */
3f5d82cd 717 if (SCM_NULLP (scm_freelist))
7c33806a
DH
718 {
719 new = scm_gc_for_newcell (&scm_master_freelist, &scm_freelist);
720 SCM_GC_SET_ALLOCATED (new);
721 }
4a4c9785
MD
722 else
723 {
724 new = scm_freelist;
3f5d82cd 725 scm_freelist = SCM_FREE_CELL_CDR (scm_freelist);
7c33806a 726 SCM_GC_SET_ALLOCATED (new);
4a4c9785
MD
727 }
728
729 return new;
730}
731
732SCM
733scm_debug_newcell2 (void)
734{
735 SCM new;
736
737 scm_newcell2_count++;
738 if (scm_debug_check_freelist)
739 {
8ded62a3 740 scm_check_freelist (scm_freelist2);
4a4c9785
MD
741 scm_gc ();
742 }
743
744 /* The rest of this is supposed to be identical to the SCM_NEWCELL
745 macro. */
3f5d82cd 746 if (SCM_NULLP (scm_freelist2))
7c33806a
DH
747 {
748 new = scm_gc_for_newcell (&scm_master_freelist2, &scm_freelist2);
749 SCM_GC_SET_ALLOCATED (new);
750 }
4a4c9785
MD
751 else
752 {
753 new = scm_freelist2;
3f5d82cd 754 scm_freelist2 = SCM_FREE_CELL_CDR (scm_freelist2);
7c33806a 755 SCM_GC_SET_ALLOCATED (new);
4a4c9785
MD
756 }
757
758 return new;
759}
760
fca7547b 761#endif /* GUILE_DEBUG_FREELIST */
cf2d30f6
JB
762
763\f
0f2d19dd 764
c014a02e 765static unsigned long
92c2555f 766master_cells_allocated (scm_t_freelist *master)
b37fe1c5 767{
d6884e63 768 /* the '- 1' below is to ignore the cluster spine cells. */
c014a02e 769 long objects = master->clusters_allocated * (master->cluster_size - 1);
b37fe1c5
MD
770 if (SCM_NULLP (master->clusters))
771 objects -= master->left_to_collect;
772 return master->span * objects;
773}
774
c014a02e 775static unsigned long
b37fe1c5
MD
776freelist_length (SCM freelist)
777{
c014a02e 778 long n;
3f5d82cd 779 for (n = 0; !SCM_NULLP (freelist); freelist = SCM_FREE_CELL_CDR (freelist))
b37fe1c5
MD
780 ++n;
781 return n;
782}
783
c014a02e 784static unsigned long
b37fe1c5
MD
785compute_cells_allocated ()
786{
787 return (scm_cells_allocated
788 + master_cells_allocated (&scm_master_freelist)
789 + master_cells_allocated (&scm_master_freelist2)
790 - scm_master_freelist.span * freelist_length (scm_freelist)
791 - scm_master_freelist2.span * freelist_length (scm_freelist2));
792}
b37fe1c5 793
0f2d19dd
JB
794/* {Scheme Interface to GC}
795 */
796
a00c95d9 797SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
1bbd0b84 798 (),
1e6808ea
MG
799 "Return an association list of statistics about Guile's current\n"
800 "use of storage.")
1bbd0b84 801#define FUNC_NAME s_scm_gc_stats
0f2d19dd 802{
c014a02e
ML
803 long i;
804 long n;
0f2d19dd 805 SCM heap_segs;
c014a02e
ML
806 unsigned long int local_scm_mtrigger;
807 unsigned long int local_scm_mallocated;
808 unsigned long int local_scm_heap_size;
809 unsigned long int local_scm_cells_allocated;
810 unsigned long int local_scm_gc_time_taken;
811 unsigned long int local_scm_gc_times;
812 unsigned long int local_scm_gc_mark_time_taken;
813 unsigned long int local_scm_gc_sweep_time_taken;
c9b0d4b0
ML
814 double local_scm_gc_cells_swept;
815 double local_scm_gc_cells_marked;
0f2d19dd
JB
816 SCM answer;
817
818 SCM_DEFER_INTS;
939794ce
DH
819
820 ++scm_block_gc;
821
0f2d19dd
JB
822 retry:
823 heap_segs = SCM_EOL;
824 n = scm_n_heap_segs;
825 for (i = scm_n_heap_segs; i--; )
c014a02e
ML
826 heap_segs = scm_cons (scm_cons (scm_ulong2num ((unsigned long)scm_heap_table[i].bounds[1]),
827 scm_ulong2num ((unsigned long)scm_heap_table[i].bounds[0])),
0f2d19dd
JB
828 heap_segs);
829 if (scm_n_heap_segs != n)
830 goto retry;
939794ce
DH
831
832 --scm_block_gc;
0f2d19dd 833
7febb4a2
MD
834 /* Below, we cons to produce the resulting list. We want a snapshot of
835 * the heap situation before consing.
836 */
0f2d19dd
JB
837 local_scm_mtrigger = scm_mtrigger;
838 local_scm_mallocated = scm_mallocated;
b37fe1c5 839 local_scm_heap_size = SCM_HEAP_SIZE;
b37fe1c5 840 local_scm_cells_allocated = compute_cells_allocated ();
0f2d19dd 841 local_scm_gc_time_taken = scm_gc_time_taken;
c9b0d4b0
ML
842 local_scm_gc_mark_time_taken = scm_gc_mark_time_taken;
843 local_scm_gc_sweep_time_taken = scm_gc_sweep_time_taken;
844 local_scm_gc_times = scm_gc_times;
845 local_scm_gc_cells_swept = scm_gc_cells_swept_acc;
846 local_scm_gc_cells_marked = scm_gc_cells_marked_acc;
0f2d19dd 847
1afff620
KN
848 answer = scm_list_n (scm_cons (sym_gc_time_taken, scm_ulong2num (local_scm_gc_time_taken)),
849 scm_cons (sym_cells_allocated, scm_ulong2num (local_scm_cells_allocated)),
850 scm_cons (sym_heap_size, scm_ulong2num (local_scm_heap_size)),
851 scm_cons (sym_mallocated, scm_ulong2num (local_scm_mallocated)),
852 scm_cons (sym_mtrigger, scm_ulong2num (local_scm_mtrigger)),
853 scm_cons (sym_times, scm_ulong2num (local_scm_gc_times)),
854 scm_cons (sym_gc_mark_time_taken, scm_ulong2num (local_scm_gc_mark_time_taken)),
855 scm_cons (sym_gc_sweep_time_taken, scm_ulong2num (local_scm_gc_sweep_time_taken)),
856 scm_cons (sym_cells_marked, scm_i_dbl2big (local_scm_gc_cells_marked)),
857 scm_cons (sym_cells_swept, scm_i_dbl2big (local_scm_gc_cells_swept)),
858 scm_cons (sym_heap_segments, heap_segs),
859 SCM_UNDEFINED);
0f2d19dd
JB
860 SCM_ALLOW_INTS;
861 return answer;
862}
1bbd0b84 863#undef FUNC_NAME
0f2d19dd
JB
864
865
c9b0d4b0 866static void
e81d98ec 867gc_start_stats (const char *what SCM_UNUSED)
0f2d19dd 868{
c9b0d4b0
ML
869 t_before_gc = scm_c_get_internal_run_time ();
870 scm_gc_cells_swept = 0;
b37fe1c5 871 scm_gc_cells_collected = 0;
37ddcaf6 872 scm_gc_yield_1 = scm_gc_yield;
8b0d194f
MD
873 scm_gc_yield = (scm_cells_allocated
874 + master_cells_allocated (&scm_master_freelist)
875 + master_cells_allocated (&scm_master_freelist2));
0f2d19dd
JB
876 scm_gc_malloc_collected = 0;
877 scm_gc_ports_collected = 0;
878}
879
939794ce 880
c9b0d4b0
ML
881static void
882gc_end_stats ()
0f2d19dd 883{
c9b0d4b0
ML
884 unsigned long t = scm_c_get_internal_run_time ();
885 scm_gc_time_taken += (t - t_before_gc);
886 scm_gc_sweep_time_taken += (t - t_before_sweep);
887 ++scm_gc_times;
888
889 scm_gc_cells_marked_acc += scm_gc_cells_swept - scm_gc_cells_collected;
890 scm_gc_cells_swept_acc += scm_gc_cells_swept;
0f2d19dd
JB
891}
892
893
a00c95d9 894SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
1bbd0b84 895 (SCM obj),
b380b885
MD
896 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
897 "returned by this function for @var{obj}")
1bbd0b84 898#define FUNC_NAME s_scm_object_address
0f2d19dd 899{
c014a02e 900 return scm_ulong2num ((unsigned long) SCM_UNPACK (obj));
0f2d19dd 901}
1bbd0b84 902#undef FUNC_NAME
0f2d19dd
JB
903
904
a00c95d9 905SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
1bbd0b84 906 (),
b380b885
MD
907 "Scans all of SCM objects and reclaims for further use those that are\n"
908 "no longer accessible.")
1bbd0b84 909#define FUNC_NAME s_scm_gc
0f2d19dd
JB
910{
911 SCM_DEFER_INTS;
912 scm_igc ("call");
913 SCM_ALLOW_INTS;
914 return SCM_UNSPECIFIED;
915}
1bbd0b84 916#undef FUNC_NAME
0f2d19dd
JB
917
918
919\f
920/* {C Interface For When GC is Triggered}
921 */
922
b37fe1c5 923static void
92c2555f 924adjust_min_yield (scm_t_freelist *freelist)
b37fe1c5 925{
8fef55a8 926 /* min yield is adjusted upwards so that next predicted total yield
bda1446c 927 * (allocated cells actually freed by GC) becomes
8fef55a8
MD
928 * `min_yield_fraction' of total heap size. Note, however, that
929 * the absolute value of min_yield will correspond to `collected'
bda1446c 930 * on one master (the one which currently is triggering GC).
b37fe1c5 931 *
bda1446c
MD
932 * The reason why we look at total yield instead of cells collected
933 * on one list is that we want to take other freelists into account.
934 * On this freelist, we know that (local) yield = collected cells,
935 * but that's probably not the case on the other lists.
b37fe1c5
MD
936 *
937 * (We might consider computing a better prediction, for example
938 * by computing an average over multiple GC:s.)
939 */
8fef55a8 940 if (freelist->min_yield_fraction)
b37fe1c5 941 {
37ddcaf6 942 /* Pick largest of last two yields. */
1be6b49c 943 long delta = ((SCM_HEAP_SIZE * freelist->min_yield_fraction / 100)
8fef55a8 944 - (long) SCM_MAX (scm_gc_yield_1, scm_gc_yield));
b37fe1c5 945#ifdef DEBUGINFO
1be6b49c
ML
946 fprintf (stderr, " after GC = %lu, delta = %ld\n",
947 (long) scm_cells_allocated,
948 (long) delta);
b37fe1c5
MD
949#endif
950 if (delta > 0)
8fef55a8 951 freelist->min_yield += delta;
b37fe1c5
MD
952 }
953}
954
b6efc951 955
4a4c9785 956/* When we get POSIX threads support, the master will be global and
4c48ba06
MD
957 * common while the freelist will be individual for each thread.
958 */
4a4c9785
MD
959
960SCM
92c2555f 961scm_gc_for_newcell (scm_t_freelist *master, SCM *freelist)
4a4c9785
MD
962{
963 SCM cell;
964 ++scm_ints_disabled;
4c48ba06
MD
965 do
966 {
c7387918 967 if (SCM_NULLP (master->clusters))
4c48ba06 968 {
150c200b 969 if (master->grow_heap_p || scm_block_gc)
4c48ba06 970 {
b6efc951
DH
971 /* In order to reduce gc frequency, try to allocate a new heap
972 * segment first, even if gc might find some free cells. If we
973 * can't obtain a new heap segment, we will try gc later.
974 */
4c48ba06 975 master->grow_heap_p = 0;
b6efc951 976 alloc_some_heap (master, return_on_error);
4c48ba06 977 }
b6efc951 978 if (SCM_NULLP (master->clusters))
b37fe1c5 979 {
b6efc951
DH
980 /* The heap was not grown, either because it wasn't scheduled to
981 * grow, or because there was not enough memory available. In
982 * both cases we have to try gc to get some free cells.
983 */
37ddcaf6 984#ifdef DEBUGINFO
1be6b49c
ML
985 fprintf (stderr, "allocated = %lu, ",
986 (long) (scm_cells_allocated
37ddcaf6 987 + master_cells_allocated (&scm_master_freelist)
c014a02e 988 + master_cells_allocated (&scm_master_freelist2)));
37ddcaf6 989#endif
b37fe1c5 990 scm_igc ("cells");
8fef55a8 991 adjust_min_yield (master);
c7387918
DH
992 if (SCM_NULLP (master->clusters))
993 {
b6efc951
DH
994 /* gc could not free any cells. Now, we _must_ allocate a
995 * new heap segment, because there is no other possibility
996 * to provide a new cell for the caller.
997 */
998 alloc_some_heap (master, abort_on_error);
c7387918 999 }
b37fe1c5 1000 }
4c48ba06
MD
1001 }
1002 cell = SCM_CAR (master->clusters);
1003 master->clusters = SCM_CDR (master->clusters);
b37fe1c5 1004 ++master->clusters_allocated;
4c48ba06
MD
1005 }
1006 while (SCM_NULLP (cell));
d6884e63
ML
1007
1008#ifdef GUILE_DEBUG_FREELIST
1009 scm_check_freelist (cell);
1010#endif
1011
4a4c9785 1012 --scm_ints_disabled;
3f5d82cd 1013 *freelist = SCM_FREE_CELL_CDR (cell);
4a4c9785
MD
1014 return cell;
1015}
1016
b6efc951 1017
4c48ba06
MD
1018#if 0
1019/* This is a support routine which can be used to reserve a cluster
1020 * for some special use, such as debugging. It won't be useful until
1021 * free cells are preserved between garbage collections.
1022 */
1023
1024void
92c2555f 1025scm_alloc_cluster (scm_t_freelist *master)
4c48ba06
MD
1026{
1027 SCM freelist, cell;
1028 cell = scm_gc_for_newcell (master, &freelist);
1029 SCM_SETCDR (cell, freelist);
1030 return cell;
1031}
1032#endif
1033
801cb5e7 1034
92c2555f
MV
1035scm_t_c_hook scm_before_gc_c_hook;
1036scm_t_c_hook scm_before_mark_c_hook;
1037scm_t_c_hook scm_before_sweep_c_hook;
1038scm_t_c_hook scm_after_sweep_c_hook;
1039scm_t_c_hook scm_after_gc_c_hook;
801cb5e7 1040
b6efc951 1041
0f2d19dd 1042void
1bbd0b84 1043scm_igc (const char *what)
0f2d19dd 1044{
c014a02e 1045 long j;
0f2d19dd 1046
406c7d90 1047 ++scm_gc_running_p;
801cb5e7 1048 scm_c_hook_run (&scm_before_gc_c_hook, 0);
4c48ba06
MD
1049#ifdef DEBUGINFO
1050 fprintf (stderr,
1051 SCM_NULLP (scm_freelist)
1052 ? "*"
1053 : (SCM_NULLP (scm_freelist2) ? "o" : "m"));
1054#endif
42db06f0 1055 /* During the critical section, only the current thread may run. */
216eedfc 1056 SCM_CRITICAL_SECTION_START;
42db06f0 1057
e242dfd2 1058 /* fprintf (stderr, "gc: %s\n", what); */
c68296f8 1059
ab4bef85
JB
1060 if (!scm_stack_base || scm_block_gc)
1061 {
406c7d90 1062 --scm_gc_running_p;
ab4bef85
JB
1063 return;
1064 }
1065
c9b0d4b0
ML
1066 gc_start_stats (what);
1067
ab4bef85
JB
1068 if (scm_gc_heap_lock)
1069 /* We've invoked the collector while a GC is already in progress.
1070 That should never happen. */
1071 abort ();
0f2d19dd
JB
1072
1073 ++scm_gc_heap_lock;
ab4bef85 1074
0f2d19dd
JB
1075 /* flush dead entries from the continuation stack */
1076 {
c014a02e
ML
1077 long x;
1078 long bound;
0f2d19dd
JB
1079 SCM * elts;
1080 elts = SCM_VELTS (scm_continuation_stack);
b5c2579a 1081 bound = SCM_VECTOR_LENGTH (scm_continuation_stack);
0f2d19dd
JB
1082 x = SCM_INUM (scm_continuation_stack_ptr);
1083 while (x < bound)
1084 {
1085 elts[x] = SCM_BOOL_F;
1086 ++x;
1087 }
1088 }
1089
801cb5e7
MD
1090 scm_c_hook_run (&scm_before_mark_c_hook, 0);
1091
d6884e63
ML
1092 clear_mark_space ();
1093
42db06f0 1094#ifndef USE_THREADS
a00c95d9 1095
1b9be268 1096 /* Mark objects on the C stack. */
0f2d19dd
JB
1097 SCM_FLUSH_REGISTER_WINDOWS;
1098 /* This assumes that all registers are saved into the jmp_buf */
1099 setjmp (scm_save_regs_gc_mark);
1100 scm_mark_locations ((SCM_STACKITEM *) scm_save_regs_gc_mark,
1be6b49c 1101 ( (size_t) (sizeof (SCM_STACKITEM) - 1 +
ce4a361d
JB
1102 sizeof scm_save_regs_gc_mark)
1103 / sizeof (SCM_STACKITEM)));
0f2d19dd
JB
1104
1105 {
6b1b030e 1106 unsigned long stack_len = scm_stack_size (scm_stack_base);
0f2d19dd 1107#ifdef SCM_STACK_GROWS_UP
6ba93e5e 1108 scm_mark_locations (scm_stack_base, stack_len);
0f2d19dd 1109#else
6ba93e5e 1110 scm_mark_locations (scm_stack_base - stack_len, stack_len);
0f2d19dd
JB
1111#endif
1112 }
1113
42db06f0
MD
1114#else /* USE_THREADS */
1115
1116 /* Mark every thread's stack and registers */
945fec60 1117 scm_threads_mark_stacks ();
42db06f0
MD
1118
1119#endif /* USE_THREADS */
0f2d19dd 1120
0f2d19dd
JB
1121 j = SCM_NUM_PROTECTS;
1122 while (j--)
1123 scm_gc_mark (scm_sys_protects[j]);
1124
6b1b030e
ML
1125 /* mark the registered roots */
1126 {
592996c9 1127 size_t i;
6b1b030e
ML
1128 for (i = 0; i < SCM_VECTOR_LENGTH (scm_gc_registered_roots); ++i) {
1129 SCM l = SCM_VELTS (scm_gc_registered_roots)[i];
592996c9 1130 for (; !SCM_NULLP (l); l = SCM_CDR (l)) {
6b1b030e
ML
1131 SCM *p = (SCM *) (scm_num2long (SCM_CAAR (l), 0, NULL));
1132 scm_gc_mark (*p);
1133 }
1134 }
1135 }
1136
9de33deb
MD
1137 /* FIXME: we should have a means to register C functions to be run
1138 * in different phases of GC
a00c95d9 1139 */
9de33deb 1140 scm_mark_subr_table ();
a00c95d9 1141
42db06f0
MD
1142#ifndef USE_THREADS
1143 scm_gc_mark (scm_root->handle);
1144#endif
a00c95d9 1145
c9b0d4b0
ML
1146 t_before_sweep = scm_c_get_internal_run_time ();
1147 scm_gc_mark_time_taken += (t_before_sweep - t_before_gc);
1148
801cb5e7 1149 scm_c_hook_run (&scm_before_sweep_c_hook, 0);
0493cd89 1150
0f2d19dd
JB
1151 scm_gc_sweep ();
1152
801cb5e7
MD
1153 scm_c_hook_run (&scm_after_sweep_c_hook, 0);
1154
0f2d19dd 1155 --scm_gc_heap_lock;
c9b0d4b0 1156 gc_end_stats ();
42db06f0 1157
216eedfc 1158 SCM_CRITICAL_SECTION_END;
801cb5e7 1159 scm_c_hook_run (&scm_after_gc_c_hook, 0);
406c7d90 1160 --scm_gc_running_p;
0f2d19dd
JB
1161}
1162
1163\f
939794ce 1164
a00c95d9 1165/* {Mark/Sweep}
0f2d19dd
JB
1166 */
1167
56495472
ML
1168#define MARK scm_gc_mark
1169#define FNAME "scm_gc_mark"
0f2d19dd 1170
56495472 1171#endif /*!MARK_DEPENDENCIES*/
0f2d19dd
JB
1172
1173/* Mark an object precisely.
1174 */
a00c95d9 1175void
56495472
ML
1176MARK (SCM p)
1177#define FUNC_NAME FNAME
0f2d19dd 1178{
c014a02e 1179 register long i;
0f2d19dd 1180 register SCM ptr;
92c2555f 1181 scm_t_bits cell_type;
0f2d19dd 1182
56495472
ML
1183#ifndef MARK_DEPENDENCIES
1184# define RECURSE scm_gc_mark
1185#else
1186 /* go through the usual marking, but not for self-cycles. */
1187# define RECURSE(x) do { if ((x) != p) scm_gc_mark (x); } while (0)
1188#endif
0f2d19dd
JB
1189 ptr = p;
1190
56495472
ML
1191#ifdef MARK_DEPENDENCIES
1192 goto gc_mark_loop_first_time;
1193#endif
1194
86d31dfe
MV
1195/* A simple hack for debugging. Chose the second branch to get a
1196 meaningful backtrace for crashes inside the GC.
1197*/
1198#if 1
1199#define goto_gc_mark_loop goto gc_mark_loop
1200#define goto_gc_mark_nimp goto gc_mark_nimp
1201#else
1202#define goto_gc_mark_loop RECURSE(ptr); return
1203#define goto_gc_mark_nimp RECURSE(ptr); return
1204#endif
1205
0f2d19dd
JB
1206gc_mark_loop:
1207 if (SCM_IMP (ptr))
1208 return;
1209
1210gc_mark_nimp:
56495472
ML
1211
1212#ifdef MARK_DEPENDENCIES
0209177b 1213 if (SCM_EQ_P (ptr, p))
56495472
ML
1214 return;
1215
1216 scm_gc_mark (ptr);
0209177b 1217 return;
56495472
ML
1218
1219gc_mark_loop_first_time:
1220#endif
9a6976cd 1221
61045190 1222#if (SCM_DEBUG_CELL_ACCESSES == 1) || (defined (GUILE_DEBUG_FREELIST))
9a6976cd 1223 /* We are in debug mode. Check the ptr exhaustively. */
61045190 1224 if (!scm_cellp (ptr))
db4b4ca6 1225 SCM_MISC_ERROR ("rogue pointer in heap", SCM_EOL);
9a6976cd
DH
1226#else
1227 /* In non-debug mode, do at least some cheap testing. */
1228 if (!SCM_CELLP (ptr))
1229 SCM_MISC_ERROR ("rogue pointer in heap", SCM_EOL);
d6884e63
ML
1230#endif
1231
56495472
ML
1232#ifndef MARK_DEPENDENCIES
1233
d6884e63
ML
1234 if (SCM_GCMARKP (ptr))
1235 return;
56495472 1236
d6884e63
ML
1237 SCM_SETGCMARK (ptr);
1238
56495472
ML
1239#endif
1240
61045190
DH
1241 cell_type = SCM_GC_CELL_TYPE (ptr);
1242 switch (SCM_ITAG7 (cell_type))
0f2d19dd
JB
1243 {
1244 case scm_tcs_cons_nimcar:
d6884e63 1245 if (SCM_IMP (SCM_CDR (ptr)))
0f2d19dd
JB
1246 {
1247 ptr = SCM_CAR (ptr);
86d31dfe 1248 goto_gc_mark_nimp;
0f2d19dd 1249 }
56495472 1250 RECURSE (SCM_CAR (ptr));
d6884e63 1251 ptr = SCM_CDR (ptr);
86d31dfe 1252 goto_gc_mark_nimp;
0f2d19dd 1253 case scm_tcs_cons_imcar:
d6884e63 1254 ptr = SCM_CDR (ptr);
86d31dfe 1255 goto_gc_mark_loop;
e641afaf 1256 case scm_tc7_pws:
22a52da1
DH
1257 RECURSE (SCM_SETTER (ptr));
1258 ptr = SCM_PROCEDURE (ptr);
86d31dfe 1259 goto_gc_mark_loop;
904a077d 1260 case scm_tcs_struct:
0f2d19dd 1261 {
904a077d
MV
1262 /* XXX - use less explicit code. */
1263 scm_t_bits word0 = SCM_CELL_WORD_0 (ptr) - scm_tc3_struct;
1264 scm_t_bits * vtable_data = (scm_t_bits *) word0;
1265 SCM layout = SCM_PACK (vtable_data [scm_vtable_index_layout]);
1266 long len = SCM_SYMBOL_LENGTH (layout);
1267 char * fields_desc = SCM_SYMBOL_CHARS (layout);
1268 scm_t_bits * struct_data = (scm_t_bits *) SCM_STRUCT_DATA (ptr);
1269
1270 if (vtable_data[scm_struct_i_flags] & SCM_STRUCTF_ENTITY)
0f2d19dd 1271 {
904a077d
MV
1272 RECURSE (SCM_PACK (struct_data[scm_struct_i_procedure]));
1273 RECURSE (SCM_PACK (struct_data[scm_struct_i_setter]));
0f2d19dd 1274 }
904a077d
MV
1275 if (len)
1276 {
1277 long x;
1278
1279 for (x = 0; x < len - 2; x += 2, ++struct_data)
1280 if (fields_desc[x] == 'p')
1281 RECURSE (SCM_PACK (*struct_data));
1282 if (fields_desc[x] == 'p')
1283 {
1284 if (SCM_LAYOUT_TAILP (fields_desc[x + 1]))
1285 for (x = *struct_data++; x; --x, ++struct_data)
1286 RECURSE (SCM_PACK (*struct_data));
1287 else
1288 RECURSE (SCM_PACK (*struct_data));
1289 }
1290 }
1291 /* mark vtable */
1292 ptr = SCM_PACK (vtable_data [scm_vtable_index_vtable]);
1293 goto_gc_mark_loop;
0f2d19dd
JB
1294 }
1295 break;
1296 case scm_tcs_closures:
22a52da1 1297 if (SCM_IMP (SCM_ENV (ptr)))
0f2d19dd
JB
1298 {
1299 ptr = SCM_CLOSCAR (ptr);
86d31dfe 1300 goto_gc_mark_nimp;
0f2d19dd 1301 }
56495472 1302 RECURSE (SCM_CLOSCAR (ptr));
22a52da1 1303 ptr = SCM_ENV (ptr);
86d31dfe 1304 goto_gc_mark_nimp;
0f2d19dd 1305 case scm_tc7_vector:
b5c2579a
DH
1306 i = SCM_VECTOR_LENGTH (ptr);
1307 if (i == 0)
1308 break;
1309 while (--i > 0)
1310 if (SCM_NIMP (SCM_VELTS (ptr)[i]))
56495472 1311 RECURSE (SCM_VELTS (ptr)[i]);
b5c2579a 1312 ptr = SCM_VELTS (ptr)[0];
86d31dfe 1313 goto_gc_mark_loop;
0f2d19dd
JB
1314#ifdef CCLO
1315 case scm_tc7_cclo:
362306b9 1316 {
1be6b49c
ML
1317 size_t i = SCM_CCLO_LENGTH (ptr);
1318 size_t j;
362306b9
DH
1319 for (j = 1; j != i; ++j)
1320 {
1321 SCM obj = SCM_CCLO_REF (ptr, j);
1322 if (!SCM_IMP (obj))
56495472 1323 RECURSE (obj);
362306b9
DH
1324 }
1325 ptr = SCM_CCLO_REF (ptr, 0);
86d31dfe 1326 goto_gc_mark_loop;
362306b9 1327 }
b5c2579a 1328#endif
afe5177e 1329#ifdef HAVE_ARRAYS
0f2d19dd
JB
1330 case scm_tc7_bvect:
1331 case scm_tc7_byvect:
1332 case scm_tc7_ivect:
1333 case scm_tc7_uvect:
1334 case scm_tc7_fvect:
1335 case scm_tc7_dvect:
1336 case scm_tc7_cvect:
1337 case scm_tc7_svect:
5c11cc9d 1338#ifdef HAVE_LONG_LONGS
0f2d19dd
JB
1339 case scm_tc7_llvect:
1340#endif
afe5177e 1341#endif
0f2d19dd 1342 case scm_tc7_string:
0f2d19dd
JB
1343 break;
1344
1345 case scm_tc7_substring:
0f2d19dd 1346 ptr = SCM_CDR (ptr);
86d31dfe 1347 goto_gc_mark_loop;
0f2d19dd
JB
1348
1349 case scm_tc7_wvect:
592996c9 1350 SCM_SET_WVECT_GC_CHAIN (ptr, scm_weak_vectors);
ab4bef85 1351 scm_weak_vectors = ptr;
0f2d19dd
JB
1352 if (SCM_IS_WHVEC_ANY (ptr))
1353 {
c014a02e
ML
1354 long x;
1355 long len;
0f2d19dd
JB
1356 int weak_keys;
1357 int weak_values;
1358
b5c2579a 1359 len = SCM_VECTOR_LENGTH (ptr);
0f2d19dd
JB
1360 weak_keys = SCM_IS_WHVEC (ptr) || SCM_IS_WHVEC_B (ptr);
1361 weak_values = SCM_IS_WHVEC_V (ptr) || SCM_IS_WHVEC_B (ptr);
a00c95d9 1362
0f2d19dd
JB
1363 for (x = 0; x < len; ++x)
1364 {
1365 SCM alist;
1366 alist = SCM_VELTS (ptr)[x];
46408039
JB
1367
1368 /* mark everything on the alist except the keys or
1369 * values, according to weak_values and weak_keys. */
0b5f3f34 1370 while ( SCM_CONSP (alist)
0f2d19dd 1371 && !SCM_GCMARKP (alist)
0f2d19dd
JB
1372 && SCM_CONSP (SCM_CAR (alist)))
1373 {
1374 SCM kvpair;
1375 SCM next_alist;
1376
1377 kvpair = SCM_CAR (alist);
1378 next_alist = SCM_CDR (alist);
a00c95d9 1379 /*
0f2d19dd
JB
1380 * Do not do this:
1381 * SCM_SETGCMARK (alist);
1382 * SCM_SETGCMARK (kvpair);
1383 *
1384 * It may be that either the key or value is protected by
1385 * an escaped reference to part of the spine of this alist.
1386 * If we mark the spine here, and only mark one or neither of the
1387 * key and value, they may never be properly marked.
1388 * This leads to a horrible situation in which an alist containing
1389 * freelist cells is exported.
1390 *
1391 * So only mark the spines of these arrays last of all marking.
1392 * If somebody confuses us by constructing a weak vector
1393 * with a circular alist then we are hosed, but at least we
1394 * won't prematurely drop table entries.
1395 */
1396 if (!weak_keys)
56495472 1397 RECURSE (SCM_CAR (kvpair));
0f2d19dd 1398 if (!weak_values)
56495472 1399 RECURSE (SCM_CDR (kvpair));
0f2d19dd
JB
1400 alist = next_alist;
1401 }
1402 if (SCM_NIMP (alist))
56495472 1403 RECURSE (alist);
0f2d19dd
JB
1404 }
1405 }
1406 break;
1407
28b06554
DH
1408 case scm_tc7_symbol:
1409 ptr = SCM_PROP_SLOTS (ptr);
86d31dfe 1410 goto_gc_mark_loop;
e5aca4b5
MV
1411 case scm_tc7_variable:
1412 ptr = SCM_CELL_OBJECT_1 (ptr);
1413 goto_gc_mark_loop;
0f2d19dd 1414 case scm_tcs_subrs:
9de33deb 1415 break;
0f2d19dd
JB
1416 case scm_tc7_port:
1417 i = SCM_PTOBNUM (ptr);
7a7f7c53 1418#if (SCM_DEBUG_CELL_ACCESSES == 1) || (defined (GUILE_DEBUG_FREELIST))
0f2d19dd 1419 if (!(i < scm_numptob))
7a7f7c53
DH
1420 SCM_MISC_ERROR ("undefined port type", SCM_EOL);
1421#endif
ebf7394e 1422 if (SCM_PTAB_ENTRY(ptr))
56495472 1423 RECURSE (SCM_FILENAME (ptr));
dc53f026
JB
1424 if (scm_ptobs[i].mark)
1425 {
1426 ptr = (scm_ptobs[i].mark) (ptr);
86d31dfe 1427 goto_gc_mark_loop;
dc53f026
JB
1428 }
1429 else
1430 return;
0f2d19dd
JB
1431 break;
1432 case scm_tc7_smob:
d6884e63 1433 switch (SCM_TYP16 (ptr))
0f2d19dd
JB
1434 { /* should be faster than going through scm_smobs */
1435 case scm_tc_free_cell:
592996c9
DH
1436 /* We have detected a free cell. This can happen if non-object data
1437 * on the C stack points into guile's heap and is scanned during
1438 * conservative marking. */
1439#if (SCM_DEBUG_CELL_ACCESSES == 0)
1440 /* If cell debugging is disabled, there is a second situation in
1441 * which a free cell can be encountered, namely if with preemptive
1442 * threading one thread has just obtained a fresh cell and was
1443 * preempted before the cell initialization was completed. In this
1444 * case, some entries of the cell may already contain objects.
1445 * Thus, if cell debugging is disabled, free cells are scanned
1446 * conservatively. */
1447 scm_gc_mark_cell_conservatively (ptr);
1448#else /* SCM_DEBUG_CELL_ACCESSES == 1 */
1449 /* With cell debugging enabled, a freshly obtained but not fully
1450 * initialized cell is guaranteed to be of type scm_tc16_allocated.
1451 * Thus, no conservative scanning for free cells is necessary, but
1452 * instead cells of type scm_tc16_allocated have to be scanned
1453 * conservatively. This is done in the mark function of the
1454 * scm_tc16_allocated smob type. */
1455#endif
1456 break;
acb0a19c
MD
1457 case scm_tc16_big:
1458 case scm_tc16_real:
1459 case scm_tc16_complex:
0f2d19dd
JB
1460 break;
1461 default:
1462 i = SCM_SMOBNUM (ptr);
7a7f7c53 1463#if (SCM_DEBUG_CELL_ACCESSES == 1) || (defined (GUILE_DEBUG_FREELIST))
0f2d19dd 1464 if (!(i < scm_numsmob))
7a7f7c53
DH
1465 SCM_MISC_ERROR ("undefined smob type", SCM_EOL);
1466#endif
dc53f026
JB
1467 if (scm_smobs[i].mark)
1468 {
1469 ptr = (scm_smobs[i].mark) (ptr);
86d31dfe 1470 goto_gc_mark_loop;
dc53f026
JB
1471 }
1472 else
1473 return;
0f2d19dd
JB
1474 }
1475 break;
1476 default:
acf4331f 1477 SCM_MISC_ERROR ("unknown type", SCM_EOL);
0f2d19dd 1478 }
0209177b 1479#undef RECURSE
0f2d19dd 1480}
acf4331f 1481#undef FUNC_NAME
0f2d19dd 1482
56495472
ML
1483#ifndef MARK_DEPENDENCIES
1484
1485#undef MARK
56495472
ML
1486#undef FNAME
1487
1488/* And here we define `scm_gc_mark_dependencies', by including this
1489 * same file in itself.
1490 */
1491#define MARK scm_gc_mark_dependencies
1492#define FNAME "scm_gc_mark_dependencies"
1493#define MARK_DEPENDENCIES
1494#include "gc.c"
1495#undef MARK_DEPENDENCIES
1496#undef MARK
56495472
ML
1497#undef FNAME
1498
0f2d19dd 1499
592996c9
DH
1500/* Determine whether the given value does actually represent a cell in some
1501 * heap segment. If this is the case, the number of the heap segment is
1502 * returned. Otherwise, -1 is returned. Binary search is used in order to
1503 * determine the heap segment that contains the cell.*/
1504/* FIXME: To be used within scm_gc_mark_cell_conservatively,
1505 * scm_mark_locations and scm_cellp this function should be an inline
1506 * function. */
1507static long int
1508heap_segment (SCM obj)
0f2d19dd 1509{
592996c9
DH
1510 if (!SCM_CELLP (obj))
1511 return -1;
1512 else
c4da09e2 1513 {
592996c9
DH
1514 SCM_CELLPTR ptr = SCM2PTR (obj);
1515 unsigned long int i = 0;
1516 unsigned long int j = scm_n_heap_segs - 1;
1517
1518 if (SCM_PTR_LT (ptr, scm_heap_table[i].bounds[0]))
1519 return -1;
1520 else if (SCM_PTR_LE (scm_heap_table[j].bounds[1], ptr))
1521 return -1;
1522 else
c4da09e2 1523 {
592996c9 1524 while (i < j)
c4da09e2 1525 {
592996c9 1526 if (SCM_PTR_LT (ptr, scm_heap_table[i].bounds[1]))
c4da09e2 1527 {
592996c9
DH
1528 break;
1529 }
1530 else if (SCM_PTR_LE (scm_heap_table[j].bounds[0], ptr))
1531 {
1532 i = j;
1533 break;
1534 }
1535 else
1536 {
1537 unsigned long int k = (i + j) / 2;
1538
1539 if (k == i)
1540 return -1;
1541 else if (SCM_PTR_LT (ptr, scm_heap_table[k].bounds[1]))
c4da09e2 1542 {
592996c9
DH
1543 j = k;
1544 ++i;
1545 if (SCM_PTR_LT (ptr, scm_heap_table[i].bounds[0]))
1546 return -1;
1547 }
1548 else if (SCM_PTR_LE (scm_heap_table[k].bounds[0], ptr))
1549 {
1550 i = k;
1551 --j;
1552 if (SCM_PTR_LE (scm_heap_table[j].bounds[1], ptr))
1553 return -1;
c4da09e2 1554 }
c4da09e2
DH
1555 }
1556 }
592996c9
DH
1557
1558 if (!DOUBLECELL_ALIGNED_P (obj) && scm_heap_table[i].span == 2)
1559 return -1;
1560 else if (SCM_GC_IN_CARD_HEADERP (ptr))
1561 return -1;
1562 else
1563 return i;
c4da09e2
DH
1564 }
1565 }
0f2d19dd
JB
1566}
1567
1568
592996c9
DH
1569/* Mark the entries of a cell conservatively. The given cell is known to be
1570 * on the heap. Still we have to determine its heap segment in order to
1571 * figure out whether it is a single or a double cell. Then, each of the cell
1572 * elements itself is checked and potentially marked. */
1573void
1574scm_gc_mark_cell_conservatively (SCM cell)
2e11a577 1575{
592996c9
DH
1576 unsigned long int cell_segment = heap_segment (cell);
1577 unsigned int span = scm_heap_table[cell_segment].span;
1578 unsigned int i;
1a548472 1579
592996c9
DH
1580 for (i = 1; i != span * 2; ++i)
1581 {
1582 SCM obj = SCM_CELL_OBJECT (cell, i);
1583 long int obj_segment = heap_segment (obj);
1584 if (obj_segment >= 0)
1585 scm_gc_mark (obj);
1586 }
1587}
61045190 1588
592996c9
DH
1589
1590/* Mark a region conservatively */
1591void
1592scm_mark_locations (SCM_STACKITEM x[], unsigned long n)
1593{
1594 unsigned long m;
1595
1596 for (m = 0; m < n; ++m)
1597 {
1598 SCM obj = * (SCM *) &x[m];
1599 long int segment = heap_segment (obj);
1600 if (segment >= 0)
1601 scm_gc_mark (obj);
1a548472 1602 }
592996c9 1603}
2e11a577 1604
592996c9
DH
1605
1606/* The function scm_cellp determines whether an SCM value can be regarded as a
1607 * pointer to a cell on the heap.
1608 */
1609int
1610scm_cellp (SCM value)
1611{
1612 long int segment = heap_segment (value);
1613 return (segment >= 0);
2e11a577
MD
1614}
1615
1616
4c48ba06 1617static void
92c2555f 1618gc_sweep_freelist_start (scm_t_freelist *freelist)
4c48ba06
MD
1619{
1620 freelist->cells = SCM_EOL;
1621 freelist->left_to_collect = freelist->cluster_size;
b37fe1c5 1622 freelist->clusters_allocated = 0;
4c48ba06
MD
1623 freelist->clusters = SCM_EOL;
1624 freelist->clustertail = &freelist->clusters;
1811ebce 1625 freelist->collected_1 = freelist->collected;
4c48ba06
MD
1626 freelist->collected = 0;
1627}
1628
1629static void
92c2555f 1630gc_sweep_freelist_finish (scm_t_freelist *freelist)
4c48ba06 1631{
c014a02e 1632 long collected;
4c48ba06 1633 *freelist->clustertail = freelist->cells;
3f5d82cd 1634 if (!SCM_NULLP (freelist->cells))
4c48ba06
MD
1635 {
1636 SCM c = freelist->cells;
22a52da1
DH
1637 SCM_SET_CELL_WORD_0 (c, SCM_FREE_CELL_CDR (c));
1638 SCM_SET_CELL_WORD_1 (c, SCM_EOL);
4c48ba06
MD
1639 freelist->collected +=
1640 freelist->span * (freelist->cluster_size - freelist->left_to_collect);
1641 }
b37fe1c5 1642 scm_gc_cells_collected += freelist->collected;
a00c95d9 1643
8fef55a8 1644 /* Although freelist->min_yield is used to test freelist->collected
7dbff8b1 1645 * (which is the local GC yield for freelist), it is adjusted so
8fef55a8 1646 * that *total* yield is freelist->min_yield_fraction of total heap
7dbff8b1
MD
1647 * size. This means that a too low yield is compensated by more
1648 * heap on the list which is currently doing most work, which is
1649 * just what we want.
1650 */
1811ebce 1651 collected = SCM_MAX (freelist->collected_1, freelist->collected);
8fef55a8 1652 freelist->grow_heap_p = (collected < freelist->min_yield);
4c48ba06 1653}
0f2d19dd 1654
d6884e63
ML
1655#define NEXT_DATA_CELL(ptr, span) \
1656 do { \
1657 scm_cell *nxt__ = CELL_UP ((char *) (ptr) + 1, (span)); \
1658 (ptr) = (SCM_GC_IN_CARD_HEADERP (nxt__) ? \
1659 CELL_UP (SCM_GC_CELL_CARD (nxt__) + SCM_GC_CARD_N_HEADER_CELLS, span) \
1660 : nxt__); \
1661 } while (0)
1662
a00c95d9 1663void
0f2d19dd 1664scm_gc_sweep ()
acf4331f 1665#define FUNC_NAME "scm_gc_sweep"
0f2d19dd
JB
1666{
1667 register SCM_CELLPTR ptr;
0f2d19dd 1668 register SCM nfreelist;
92c2555f 1669 register scm_t_freelist *freelist;
c014a02e 1670 register unsigned long m;
0f2d19dd 1671 register int span;
592996c9 1672 size_t i;
1be6b49c 1673 size_t seg_size;
0f2d19dd 1674
0f2d19dd 1675 m = 0;
0f2d19dd 1676
4c48ba06
MD
1677 gc_sweep_freelist_start (&scm_master_freelist);
1678 gc_sweep_freelist_start (&scm_master_freelist2);
a00c95d9 1679
cf2d30f6 1680 for (i = 0; i < scm_n_heap_segs; i++)
0f2d19dd 1681 {
c014a02e 1682 register long left_to_collect;
1be6b49c 1683 register size_t j;
15e9d186 1684
cf2d30f6
JB
1685 /* Unmarked cells go onto the front of the freelist this heap
1686 segment points to. Rather than updating the real freelist
1687 pointer as we go along, we accumulate the new head in
1688 nfreelist. Then, if it turns out that the entire segment is
1689 free, we free (i.e., malloc's free) the whole segment, and
1690 simply don't assign nfreelist back into the real freelist. */
4c48ba06
MD
1691 freelist = scm_heap_table[i].freelist;
1692 nfreelist = freelist->cells;
4c48ba06 1693 left_to_collect = freelist->left_to_collect;
945fec60 1694 span = scm_heap_table[i].span;
cf2d30f6 1695
a00c95d9
ML
1696 ptr = CELL_UP (scm_heap_table[i].bounds[0], span);
1697 seg_size = CELL_DN (scm_heap_table[i].bounds[1], span) - ptr;
c9b0d4b0 1698
d6884e63
ML
1699 /* use only data cells in seg_size */
1700 seg_size = (seg_size / SCM_GC_CARD_N_CELLS) * (SCM_GC_CARD_N_DATA_CELLS / span) * span;
1701
c9b0d4b0
ML
1702 scm_gc_cells_swept += seg_size;
1703
0f2d19dd
JB
1704 for (j = seg_size + span; j -= span; ptr += span)
1705 {
d6884e63 1706 SCM scmptr;
96f6f4ae 1707
d6884e63 1708 if (SCM_GC_IN_CARD_HEADERP (ptr))
0f2d19dd 1709 {
d6884e63
ML
1710 SCM_CELLPTR nxt;
1711
1712 /* cheat here */
1713 nxt = ptr;
1714 NEXT_DATA_CELL (nxt, span);
1715 j += span;
1716
1717 ptr = nxt - span;
1718 continue;
1719 }
1720
1721 scmptr = PTR2SCM (ptr);
1722
1723 if (SCM_GCMARKP (scmptr))
1724 continue;
7bb8eac7 1725
d6884e63
ML
1726 switch SCM_TYP7 (scmptr)
1727 {
904a077d 1728 case scm_tcs_struct:
0f2d19dd 1729 {
904a077d
MV
1730 /* Structs need to be freed in a special order.
1731 * This is handled by GC C hooks in struct.c.
c8045e8d 1732 */
904a077d
MV
1733 SCM_SET_STRUCT_GC_CHAIN (scmptr, scm_structs_to_free);
1734 scm_structs_to_free = scmptr;
0f2d19dd 1735 }
904a077d 1736 continue;
0f2d19dd
JB
1737 case scm_tcs_cons_imcar:
1738 case scm_tcs_cons_nimcar:
1739 case scm_tcs_closures:
e641afaf 1740 case scm_tc7_pws:
0f2d19dd
JB
1741 break;
1742 case scm_tc7_wvect:
0f2d19dd 1743 case scm_tc7_vector:
1b9be268 1744 {
c014a02e 1745 unsigned long int length = SCM_VECTOR_LENGTH (scmptr);
1b9be268
DH
1746 if (length > 0)
1747 {
92c2555f 1748 m += length * sizeof (scm_t_bits);
1b9be268
DH
1749 scm_must_free (SCM_VECTOR_BASE (scmptr));
1750 }
1751 break;
1752 }
0f2d19dd
JB
1753#ifdef CCLO
1754 case scm_tc7_cclo:
b5c2579a 1755 m += (SCM_CCLO_LENGTH (scmptr) * sizeof (SCM));
06ee04b2 1756 scm_must_free (SCM_CCLO_BASE (scmptr));
0f2d19dd 1757 break;
06ee04b2 1758#endif
afe5177e 1759#ifdef HAVE_ARRAYS
0f2d19dd 1760 case scm_tc7_bvect:
93778877 1761 {
c014a02e 1762 unsigned long int length = SCM_BITVECTOR_LENGTH (scmptr);
93778877
DH
1763 if (length > 0)
1764 {
c014a02e 1765 m += sizeof (long) * ((length + SCM_LONG_BIT - 1) / SCM_LONG_BIT);
93778877
DH
1766 scm_must_free (SCM_BITVECTOR_BASE (scmptr));
1767 }
1768 }
06ee04b2 1769 break;
0f2d19dd 1770 case scm_tc7_byvect:
0f2d19dd
JB
1771 case scm_tc7_ivect:
1772 case scm_tc7_uvect:
0f2d19dd 1773 case scm_tc7_svect:
5c11cc9d 1774#ifdef HAVE_LONG_LONGS
0f2d19dd 1775 case scm_tc7_llvect:
0f2d19dd
JB
1776#endif
1777 case scm_tc7_fvect:
0f2d19dd 1778 case scm_tc7_dvect:
0f2d19dd 1779 case scm_tc7_cvect:
d1ca2c64 1780 m += SCM_UVECTOR_LENGTH (scmptr) * scm_uniform_element_size (scmptr);
06ee04b2
DH
1781 scm_must_free (SCM_UVECTOR_BASE (scmptr));
1782 break;
afe5177e 1783#endif
0f2d19dd 1784 case scm_tc7_substring:
0f2d19dd
JB
1785 break;
1786 case scm_tc7_string:
b5c2579a 1787 m += SCM_STRING_LENGTH (scmptr) + 1;
f151f912
DH
1788 scm_must_free (SCM_STRING_CHARS (scmptr));
1789 break;
28b06554 1790 case scm_tc7_symbol:
b5c2579a 1791 m += SCM_SYMBOL_LENGTH (scmptr) + 1;
f151f912 1792 scm_must_free (SCM_SYMBOL_CHARS (scmptr));
0f2d19dd 1793 break;
0f2d19dd 1794 case scm_tcs_subrs:
d6884e63 1795 /* the various "subrs" (primitives) are never freed */
0f2d19dd
JB
1796 continue;
1797 case scm_tc7_port:
0f2d19dd
JB
1798 if SCM_OPENP (scmptr)
1799 {
1800 int k = SCM_PTOBNUM (scmptr);
7a7f7c53 1801#if (SCM_DEBUG_CELL_ACCESSES == 1) || (defined (GUILE_DEBUG_FREELIST))
0f2d19dd 1802 if (!(k < scm_numptob))
7a7f7c53
DH
1803 SCM_MISC_ERROR ("undefined port type", SCM_EOL);
1804#endif
0f2d19dd 1805 /* Keep "revealed" ports alive. */
945fec60 1806 if (scm_revealed_count (scmptr) > 0)
0f2d19dd
JB
1807 continue;
1808 /* Yes, I really do mean scm_ptobs[k].free */
1809 /* rather than ftobs[k].close. .close */
1810 /* is for explicit CLOSE-PORT by user */
84af0382 1811 m += (scm_ptobs[k].free) (scmptr);
0f2d19dd
JB
1812 SCM_SETSTREAM (scmptr, 0);
1813 scm_remove_from_port_table (scmptr);
1814 scm_gc_ports_collected++;
22a52da1 1815 SCM_CLR_PORT_OPEN_FLAG (scmptr);
0f2d19dd
JB
1816 }
1817 break;
1818 case scm_tc7_smob:
d6884e63 1819 switch SCM_TYP16 (scmptr)
0f2d19dd
JB
1820 {
1821 case scm_tc_free_cell:
acb0a19c 1822 case scm_tc16_real:
0f2d19dd
JB
1823 break;
1824#ifdef SCM_BIGDIG
acb0a19c 1825 case scm_tc16_big:
0f2d19dd 1826 m += (SCM_NUMDIGS (scmptr) * SCM_BITSPERDIG / SCM_CHAR_BIT);
06ee04b2
DH
1827 scm_must_free (SCM_BDIGITS (scmptr));
1828 break;
0f2d19dd 1829#endif /* def SCM_BIGDIG */
acb0a19c 1830 case scm_tc16_complex:
92c2555f 1831 m += sizeof (scm_t_complex);
405aaef9 1832 scm_must_free (SCM_COMPLEX_MEM (scmptr));
06ee04b2 1833 break;
0f2d19dd 1834 default:
0f2d19dd
JB
1835 {
1836 int k;
1837 k = SCM_SMOBNUM (scmptr);
7a7f7c53 1838#if (SCM_DEBUG_CELL_ACCESSES == 1) || (defined (GUILE_DEBUG_FREELIST))
0f2d19dd 1839 if (!(k < scm_numsmob))
7a7f7c53
DH
1840 SCM_MISC_ERROR ("undefined smob type", SCM_EOL);
1841#endif
1842 if (scm_smobs[k].free)
1843 m += (scm_smobs[k].free) (scmptr);
0f2d19dd
JB
1844 break;
1845 }
1846 }
1847 break;
1848 default:
acf4331f 1849 SCM_MISC_ERROR ("unknown type", SCM_EOL);
0f2d19dd 1850 }
7bb8eac7 1851
4c48ba06 1852 if (!--left_to_collect)
4a4c9785 1853 {
22a52da1 1854 SCM_SET_CELL_WORD_0 (scmptr, nfreelist);
4c48ba06
MD
1855 *freelist->clustertail = scmptr;
1856 freelist->clustertail = SCM_CDRLOC (scmptr);
a00c95d9 1857
4a4c9785 1858 nfreelist = SCM_EOL;
4c48ba06
MD
1859 freelist->collected += span * freelist->cluster_size;
1860 left_to_collect = freelist->cluster_size;
4a4c9785
MD
1861 }
1862 else
4a4c9785
MD
1863 {
1864 /* Stick the new cell on the front of nfreelist. It's
1865 critical that we mark this cell as freed; otherwise, the
1866 conservative collector might trace it as some other type
1867 of object. */
54778cd3 1868 SCM_SET_CELL_TYPE (scmptr, scm_tc_free_cell);
3f5d82cd 1869 SCM_SET_FREE_CELL_CDR (scmptr, nfreelist);
4a4c9785
MD
1870 nfreelist = scmptr;
1871 }
0f2d19dd 1872 }
d6884e63 1873
0f2d19dd
JB
1874#ifdef GC_FREE_SEGMENTS
1875 if (n == seg_size)
1876 {
c014a02e 1877 register long j;
15e9d186 1878
4c48ba06 1879 freelist->heap_size -= seg_size;
cf2d30f6
JB
1880 free ((char *) scm_heap_table[i].bounds[0]);
1881 scm_heap_table[i].bounds[0] = 0;
1882 for (j = i + 1; j < scm_n_heap_segs; j++)
0f2d19dd
JB
1883 scm_heap_table[j - 1] = scm_heap_table[j];
1884 scm_n_heap_segs -= 1;
cf2d30f6 1885 i--; /* We need to scan the segment just moved. */
0f2d19dd
JB
1886 }
1887 else
1888#endif /* ifdef GC_FREE_SEGMENTS */
4a4c9785
MD
1889 {
1890 /* Update the real freelist pointer to point to the head of
1891 the list of free cells we've built for this segment. */
4c48ba06 1892 freelist->cells = nfreelist;
4c48ba06 1893 freelist->left_to_collect = left_to_collect;
4a4c9785
MD
1894 }
1895
fca7547b 1896#ifdef GUILE_DEBUG_FREELIST
cf2d30f6
JB
1897 scm_map_free_list ();
1898#endif
4a4c9785 1899 }
a00c95d9 1900
4c48ba06
MD
1901 gc_sweep_freelist_finish (&scm_master_freelist);
1902 gc_sweep_freelist_finish (&scm_master_freelist2);
a00c95d9 1903
8ded62a3
MD
1904 /* When we move to POSIX threads private freelists should probably
1905 be GC-protected instead. */
1906 scm_freelist = SCM_EOL;
1907 scm_freelist2 = SCM_EOL;
a00c95d9 1908
b37fe1c5 1909 scm_cells_allocated = (SCM_HEAP_SIZE - scm_gc_cells_collected);
8b0d194f 1910 scm_gc_yield -= scm_cells_allocated;
1be6b49c
ML
1911
1912 if (scm_mallocated < m)
1913 /* The byte count of allocated objects has underflowed. This is
1914 probably because you forgot to report the sizes of objects you
1915 have allocated, by calling scm_done_malloc or some such. When
1916 the GC freed them, it subtracted their size from
1917 scm_mallocated, which underflowed. */
1918 abort ();
1919
0f2d19dd
JB
1920 scm_mallocated -= m;
1921 scm_gc_malloc_collected = m;
1922}
acf4331f 1923#undef FUNC_NAME
0f2d19dd
JB
1924
1925
1926\f
0f2d19dd
JB
1927/* {Front end to malloc}
1928 *
9d47a1e6
ML
1929 * scm_must_malloc, scm_must_realloc, scm_must_free, scm_done_malloc,
1930 * scm_done_free
0f2d19dd 1931 *
c6c79933
GH
1932 * These functions provide services comparable to malloc, realloc, and
1933 * free. They should be used when allocating memory that will be under
1934 * control of the garbage collector, i.e., if the memory may be freed
1935 * during garbage collection.
1936 */
bc9d9bb2 1937
0f2d19dd
JB
1938/* scm_must_malloc
1939 * Return newly malloced storage or throw an error.
1940 *
1941 * The parameter WHAT is a string for error reporting.
a00c95d9 1942 * If the threshold scm_mtrigger will be passed by this
0f2d19dd
JB
1943 * allocation, or if the first call to malloc fails,
1944 * garbage collect -- on the presumption that some objects
1945 * using malloced storage may be collected.
1946 *
1947 * The limit scm_mtrigger may be raised by this allocation.
1948 */
07806695 1949void *
1be6b49c 1950scm_must_malloc (size_t size, const char *what)
0f2d19dd 1951{
07806695 1952 void *ptr;
c014a02e 1953 unsigned long nm = scm_mallocated + size;
1be6b49c
ML
1954
1955 if (nm < size)
1956 /* The byte count of allocated objects has overflowed. This is
1957 probably because you forgot to report the correct size of freed
1958 memory in some of your smob free methods. */
1959 abort ();
e4ef2330
MD
1960
1961 if (nm <= scm_mtrigger)
0f2d19dd 1962 {
07806695 1963 SCM_SYSCALL (ptr = malloc (size));
0f2d19dd
JB
1964 if (NULL != ptr)
1965 {
1966 scm_mallocated = nm;
bc9d9bb2
MD
1967#ifdef GUILE_DEBUG_MALLOC
1968 scm_malloc_register (ptr, what);
1969#endif
0f2d19dd
JB
1970 return ptr;
1971 }
1972 }
6064dcc6 1973
0f2d19dd 1974 scm_igc (what);
e4ef2330 1975
0f2d19dd 1976 nm = scm_mallocated + size;
1be6b49c
ML
1977
1978 if (nm < size)
1979 /* The byte count of allocated objects has overflowed. This is
1980 probably because you forgot to report the correct size of freed
1981 memory in some of your smob free methods. */
1982 abort ();
1983
07806695 1984 SCM_SYSCALL (ptr = malloc (size));
0f2d19dd
JB
1985 if (NULL != ptr)
1986 {
1987 scm_mallocated = nm;
6064dcc6
MV
1988 if (nm > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS) {
1989 if (nm > scm_mtrigger)
1990 scm_mtrigger = nm + nm / 2;
1991 else
1992 scm_mtrigger += scm_mtrigger / 2;
1993 }
bc9d9bb2
MD
1994#ifdef GUILE_DEBUG_MALLOC
1995 scm_malloc_register (ptr, what);
1996#endif
1997
0f2d19dd
JB
1998 return ptr;
1999 }
e4ef2330 2000
acf4331f 2001 scm_memory_error (what);
0f2d19dd
JB
2002}
2003
2004
2005/* scm_must_realloc
2006 * is similar to scm_must_malloc.
2007 */
07806695
JB
2008void *
2009scm_must_realloc (void *where,
1be6b49c
ML
2010 size_t old_size,
2011 size_t size,
3eeba8d4 2012 const char *what)
0f2d19dd 2013{
07806695 2014 void *ptr;
c014a02e 2015 unsigned long nm;
1be6b49c
ML
2016
2017 if (size <= old_size)
2018 return where;
2019
2020 nm = scm_mallocated + size - old_size;
2021
2022 if (nm < (size - old_size))
2023 /* The byte count of allocated objects has overflowed. This is
2024 probably because you forgot to report the correct size of freed
2025 memory in some of your smob free methods. */
2026 abort ();
e4ef2330
MD
2027
2028 if (nm <= scm_mtrigger)
0f2d19dd 2029 {
07806695 2030 SCM_SYSCALL (ptr = realloc (where, size));
0f2d19dd
JB
2031 if (NULL != ptr)
2032 {
2033 scm_mallocated = nm;
bc9d9bb2
MD
2034#ifdef GUILE_DEBUG_MALLOC
2035 scm_malloc_reregister (where, ptr, what);
2036#endif
0f2d19dd
JB
2037 return ptr;
2038 }
2039 }
e4ef2330 2040
0f2d19dd 2041 scm_igc (what);
e4ef2330
MD
2042
2043 nm = scm_mallocated + size - old_size;
1be6b49c
ML
2044
2045 if (nm < (size - old_size))
2046 /* The byte count of allocated objects has overflowed. This is
2047 probably because you forgot to report the correct size of freed
2048 memory in some of your smob free methods. */
2049 abort ();
2050
07806695 2051 SCM_SYSCALL (ptr = realloc (where, size));
0f2d19dd
JB
2052 if (NULL != ptr)
2053 {
2054 scm_mallocated = nm;
6064dcc6
MV
2055 if (nm > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS) {
2056 if (nm > scm_mtrigger)
2057 scm_mtrigger = nm + nm / 2;
2058 else
2059 scm_mtrigger += scm_mtrigger / 2;
2060 }
bc9d9bb2
MD
2061#ifdef GUILE_DEBUG_MALLOC
2062 scm_malloc_reregister (where, ptr, what);
2063#endif
0f2d19dd
JB
2064 return ptr;
2065 }
e4ef2330 2066
acf4331f 2067 scm_memory_error (what);
0f2d19dd
JB
2068}
2069
e4a7824f 2070char *
1be6b49c 2071scm_must_strndup (const char *str, size_t length)
e4a7824f
MV
2072{
2073 char * dst = scm_must_malloc (length + 1, "scm_must_strndup");
2074 memcpy (dst, str, length);
2075 dst[length] = 0;
2076 return dst;
2077}
2078
2079char *
2080scm_must_strdup (const char *str)
2081{
2082 return scm_must_strndup (str, strlen (str));
2083}
acf4331f 2084
a00c95d9 2085void
07806695 2086scm_must_free (void *obj)
acf4331f 2087#define FUNC_NAME "scm_must_free"
0f2d19dd 2088{
bc9d9bb2
MD
2089#ifdef GUILE_DEBUG_MALLOC
2090 scm_malloc_unregister (obj);
2091#endif
0f2d19dd
JB
2092 if (obj)
2093 free (obj);
2094 else
acf4331f 2095 SCM_MISC_ERROR ("freeing NULL pointer", SCM_EOL);
0f2d19dd 2096}
acf4331f
DH
2097#undef FUNC_NAME
2098
0f2d19dd 2099
c68296f8
MV
2100/* Announce that there has been some malloc done that will be freed
2101 * during gc. A typical use is for a smob that uses some malloced
2102 * memory but can not get it from scm_must_malloc (for whatever
2103 * reason). When a new object of this smob is created you call
2104 * scm_done_malloc with the size of the object. When your smob free
2105 * function is called, be sure to include this size in the return
9d47a1e6
ML
2106 * value.
2107 *
2108 * If you can't actually free the memory in the smob free function,
2109 * for whatever reason (like reference counting), you still can (and
2110 * should) report the amount of memory freed when you actually free it.
2111 * Do it by calling scm_done_malloc with the _negated_ size. Clever,
2112 * eh? Or even better, call scm_done_free. */
0f2d19dd 2113
c68296f8 2114void
c014a02e 2115scm_done_malloc (long size)
c68296f8 2116{
1be6b49c
ML
2117 if (size < 0) {
2118 if (scm_mallocated < size)
2119 /* The byte count of allocated objects has underflowed. This is
2120 probably because you forgot to report the sizes of objects you
2121 have allocated, by calling scm_done_malloc or some such. When
2122 the GC freed them, it subtracted their size from
2123 scm_mallocated, which underflowed. */
2124 abort ();
2125 } else {
c014a02e 2126 unsigned long nm = scm_mallocated + size;
1be6b49c
ML
2127 if (nm < size)
2128 /* The byte count of allocated objects has overflowed. This is
2129 probably because you forgot to report the correct size of freed
2130 memory in some of your smob free methods. */
2131 abort ();
2132 }
2133
c68296f8
MV
2134 scm_mallocated += size;
2135
2136 if (scm_mallocated > scm_mtrigger)
2137 {
2138 scm_igc ("foreign mallocs");
2139 if (scm_mallocated > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS)
2140 {
2141 if (scm_mallocated > scm_mtrigger)
2142 scm_mtrigger = scm_mallocated + scm_mallocated / 2;
2143 else
2144 scm_mtrigger += scm_mtrigger / 2;
2145 }
2146 }
2147}
2148
9d47a1e6 2149void
c014a02e 2150scm_done_free (long size)
9d47a1e6 2151{
1be6b49c
ML
2152 if (size >= 0) {
2153 if (scm_mallocated < size)
2154 /* The byte count of allocated objects has underflowed. This is
2155 probably because you forgot to report the sizes of objects you
2156 have allocated, by calling scm_done_malloc or some such. When
2157 the GC freed them, it subtracted their size from
2158 scm_mallocated, which underflowed. */
2159 abort ();
2160 } else {
c014a02e 2161 unsigned long nm = scm_mallocated + size;
1be6b49c
ML
2162 if (nm < size)
2163 /* The byte count of allocated objects has overflowed. This is
2164 probably because you forgot to report the correct size of freed
2165 memory in some of your smob free methods. */
2166 abort ();
2167 }
2168
9d47a1e6
ML
2169 scm_mallocated -= size;
2170}
2171
c68296f8
MV
2172
2173\f
0f2d19dd
JB
2174/* {Heap Segments}
2175 *
2176 * Each heap segment is an array of objects of a particular size.
2177 * Every segment has an associated (possibly shared) freelist.
2178 * A table of segment records is kept that records the upper and
2179 * lower extents of the segment; this is used during the conservative
2180 * phase of gc to identify probably gc roots (because they point
c68296f8 2181 * into valid segments at reasonable offsets). */
0f2d19dd
JB
2182
2183/* scm_expmem
2184 * is true if the first segment was smaller than INIT_HEAP_SEG.
2185 * If scm_expmem is set to one, subsequent segment allocations will
2186 * allocate segments of size SCM_EXPHEAP(scm_heap_size).
2187 */
2188int scm_expmem = 0;
2189
1be6b49c 2190size_t scm_max_segment_size;
4c48ba06 2191
0f2d19dd
JB
2192/* scm_heap_org
2193 * is the lowest base address of any heap segment.
2194 */
2195SCM_CELLPTR scm_heap_org;
2196
92c2555f 2197scm_t_heap_seg_data * scm_heap_table = 0;
1be6b49c
ML
2198static size_t heap_segment_table_size = 0;
2199size_t scm_n_heap_segs = 0;
0f2d19dd 2200
0f2d19dd 2201/* init_heap_seg
d6884e63 2202 * initializes a new heap segment and returns the number of objects it contains.
0f2d19dd 2203 *
d6884e63
ML
2204 * The segment origin and segment size in bytes are input parameters.
2205 * The freelist is both input and output.
0f2d19dd 2206 *
d6884e63
ML
2207 * This function presumes that the scm_heap_table has already been expanded
2208 * to accomodate a new segment record and that the markbit space was reserved
2209 * for all the cards in this segment.
0f2d19dd
JB
2210 */
2211
d6884e63
ML
2212#define INIT_CARD(card, span) \
2213 do { \
322ec19d 2214 SCM_GC_SET_CARD_BVEC (card, get_bvec ()); \
d6884e63
ML
2215 if ((span) == 2) \
2216 SCM_GC_SET_CARD_DOUBLECELL (card); \
2217 } while (0)
0f2d19dd 2218
1be6b49c 2219static size_t
92c2555f 2220init_heap_seg (SCM_CELLPTR seg_org, size_t size, scm_t_freelist *freelist)
0f2d19dd
JB
2221{
2222 register SCM_CELLPTR ptr;
0f2d19dd 2223 SCM_CELLPTR seg_end;
592996c9 2224 size_t new_seg_index;
1be6b49c 2225 ptrdiff_t n_new_cells;
4c48ba06 2226 int span = freelist->span;
a00c95d9 2227
0f2d19dd
JB
2228 if (seg_org == NULL)
2229 return 0;
2230
d6884e63
ML
2231 /* Align the begin ptr up.
2232 */
2233 ptr = SCM_GC_CARD_UP (seg_org);
acb0a19c 2234
a00c95d9 2235 /* Compute the ceiling on valid object pointers w/in this segment.
0f2d19dd 2236 */
d6884e63 2237 seg_end = SCM_GC_CARD_DOWN ((char *)seg_org + size);
0f2d19dd 2238
a00c95d9 2239 /* Find the right place and insert the segment record.
0f2d19dd 2240 */
592996c9
DH
2241 new_seg_index = 0;
2242 while (new_seg_index < scm_n_heap_segs
2243 && SCM_PTR_LE (scm_heap_table[new_seg_index].bounds[0], seg_org))
2244 new_seg_index++;
0f2d19dd
JB
2245
2246 {
2247 int i;
2248 for (i = scm_n_heap_segs; i > new_seg_index; --i)
2249 scm_heap_table[i] = scm_heap_table[i - 1];
2250 }
a00c95d9 2251
0f2d19dd
JB
2252 ++scm_n_heap_segs;
2253
945fec60 2254 scm_heap_table[new_seg_index].span = span;
4c48ba06 2255 scm_heap_table[new_seg_index].freelist = freelist;
195e6201
DH
2256 scm_heap_table[new_seg_index].bounds[0] = ptr;
2257 scm_heap_table[new_seg_index].bounds[1] = seg_end;
0f2d19dd 2258
acb0a19c
MD
2259 /*n_new_cells*/
2260 n_new_cells = seg_end - ptr;
0f2d19dd 2261
4c48ba06 2262 freelist->heap_size += n_new_cells;
4a4c9785 2263
a00c95d9 2264 /* Partition objects in this segment into clusters */
4a4c9785
MD
2265 {
2266 SCM clusters;
2267 SCM *clusterp = &clusters;
4a4c9785 2268
d6884e63
ML
2269 NEXT_DATA_CELL (ptr, span);
2270 while (ptr < seg_end)
4a4c9785 2271 {
d6884e63
ML
2272 scm_cell *nxt = ptr;
2273 scm_cell *prv = NULL;
2274 scm_cell *last_card = NULL;
2275 int n_data_cells = (SCM_GC_CARD_N_DATA_CELLS / span) * SCM_CARDS_PER_CLUSTER - 1;
2276 NEXT_DATA_CELL(nxt, span);
4a4c9785 2277
4c48ba06
MD
2278 /* Allocate cluster spine
2279 */
4a4c9785 2280 *clusterp = PTR2SCM (ptr);
d6884e63 2281 SCM_SETCAR (*clusterp, PTR2SCM (nxt));
4a4c9785 2282 clusterp = SCM_CDRLOC (*clusterp);
d6884e63 2283 ptr = nxt;
a00c95d9 2284
d6884e63 2285 while (n_data_cells--)
4a4c9785 2286 {
d6884e63 2287 scm_cell *card = SCM_GC_CELL_CARD (ptr);
96f6f4ae 2288 SCM scmptr = PTR2SCM (ptr);
d6884e63
ML
2289 nxt = ptr;
2290 NEXT_DATA_CELL (nxt, span);
2291 prv = ptr;
2292
2293 if (card != last_card)
2294 {
2295 INIT_CARD (card, span);
2296 last_card = card;
2297 }
96f6f4ae 2298
54778cd3 2299 SCM_SET_CELL_TYPE (scmptr, scm_tc_free_cell);
22a52da1 2300 SCM_SET_FREE_CELL_CDR (scmptr, PTR2SCM (nxt));
d6884e63
ML
2301
2302 ptr = nxt;
4a4c9785 2303 }
4c48ba06 2304
d6884e63 2305 SCM_SET_FREE_CELL_CDR (PTR2SCM (prv), SCM_EOL);
4a4c9785 2306 }
a00c95d9 2307
d6884e63
ML
2308 /* sanity check */
2309 {
2310 scm_cell *ref = seg_end;
2311 NEXT_DATA_CELL (ref, span);
2312 if (ref != ptr)
2313 /* [cmm] looks like the segment size doesn't divide cleanly by
2314 cluster size. bad cmm! */
2315 abort();
2316 }
2317
4a4c9785
MD
2318 /* Patch up the last cluster pointer in the segment
2319 * to join it to the input freelist.
2320 */
4c48ba06
MD
2321 *clusterp = freelist->clusters;
2322 freelist->clusters = clusters;
4a4c9785
MD
2323 }
2324
4c48ba06
MD
2325#ifdef DEBUGINFO
2326 fprintf (stderr, "H");
2327#endif
0f2d19dd 2328 return size;
0f2d19dd
JB
2329}
2330
1be6b49c 2331static size_t
92c2555f 2332round_to_cluster_size (scm_t_freelist *freelist, size_t len)
a00c95d9 2333{
1be6b49c 2334 size_t cluster_size_in_bytes = CLUSTER_SIZE_IN_BYTES (freelist);
a00c95d9
ML
2335
2336 return
2337 (len + cluster_size_in_bytes - 1) / cluster_size_in_bytes * cluster_size_in_bytes
2338 + ALIGNMENT_SLACK (freelist);
2339}
2340
a00c95d9 2341static void
92c2555f 2342alloc_some_heap (scm_t_freelist *freelist, policy_on_error error_policy)
acf4331f 2343#define FUNC_NAME "alloc_some_heap"
0f2d19dd 2344{
0f2d19dd 2345 SCM_CELLPTR ptr;
1be6b49c 2346 size_t len;
a00c95d9 2347
9d47a1e6 2348 if (scm_gc_heap_lock)
b6efc951
DH
2349 {
2350 /* Critical code sections (such as the garbage collector) aren't
2351 * supposed to add heap segments.
2352 */
2353 fprintf (stderr, "alloc_some_heap: Can not extend locked heap.\n");
2354 abort ();
2355 }
0f2d19dd 2356
9d47a1e6 2357 if (scm_n_heap_segs == heap_segment_table_size)
b6efc951
DH
2358 {
2359 /* We have to expand the heap segment table to have room for the new
2360 * segment. Do not yet increment scm_n_heap_segs -- that is done by
2361 * init_heap_seg only if the allocation of the segment itself succeeds.
2362 */
1be6b49c 2363 size_t new_table_size = scm_n_heap_segs + 1;
92c2555f
MV
2364 size_t size = new_table_size * sizeof (scm_t_heap_seg_data);
2365 scm_t_heap_seg_data *new_heap_table;
b6efc951 2366
92c2555f 2367 SCM_SYSCALL (new_heap_table = ((scm_t_heap_seg_data *)
b6efc951
DH
2368 realloc ((char *)scm_heap_table, size)));
2369 if (!new_heap_table)
2370 {
2371 if (error_policy == abort_on_error)
2372 {
2373 fprintf (stderr, "alloc_some_heap: Could not grow heap segment table.\n");
2374 abort ();
2375 }
2376 else
2377 {
2378 return;
2379 }
2380 }
2381 else
2382 {
2383 scm_heap_table = new_heap_table;
2384 heap_segment_table_size = new_table_size;
2385 }
2386 }
0f2d19dd 2387
0f2d19dd 2388 /* Pick a size for the new heap segment.
a00c95d9 2389 * The rule for picking the size of a segment is explained in
0f2d19dd
JB
2390 * gc.h
2391 */
4c48ba06 2392 {
1811ebce
MD
2393 /* Assure that the new segment is predicted to be large enough.
2394 *
2395 * New yield should at least equal GC fraction of new heap size, i.e.
2396 *
2397 * y + dh > f * (h + dh)
2398 *
2399 * y : yield
8fef55a8 2400 * f : min yield fraction
1811ebce
MD
2401 * h : heap size
2402 * dh : size of new heap segment
2403 *
2404 * This gives dh > (f * h - y) / (1 - f)
bda1446c 2405 */
8fef55a8 2406 int f = freelist->min_yield_fraction;
c014a02e 2407 unsigned long h = SCM_HEAP_SIZE;
1be6b49c 2408 size_t min_cells = (f * h - 100 * (long) scm_gc_yield) / (99 - f);
4c48ba06
MD
2409 len = SCM_EXPHEAP (freelist->heap_size);
2410#ifdef DEBUGINFO
1be6b49c 2411 fprintf (stderr, "(%ld < %ld)", (long) len, (long) min_cells);
4c48ba06
MD
2412#endif
2413 if (len < min_cells)
1811ebce 2414 len = min_cells + freelist->cluster_size;
4c48ba06 2415 len *= sizeof (scm_cell);
1811ebce
MD
2416 /* force new sampling */
2417 freelist->collected = LONG_MAX;
4c48ba06 2418 }
a00c95d9 2419
4c48ba06
MD
2420 if (len > scm_max_segment_size)
2421 len = scm_max_segment_size;
0f2d19dd
JB
2422
2423 {
1be6b49c 2424 size_t smallest;
0f2d19dd 2425
a00c95d9 2426 smallest = CLUSTER_SIZE_IN_BYTES (freelist);
a00c95d9 2427
0f2d19dd 2428 if (len < smallest)
a00c95d9 2429 len = smallest;
0f2d19dd
JB
2430
2431 /* Allocate with decaying ambition. */
2432 while ((len >= SCM_MIN_HEAP_SEG_SIZE)
2433 && (len >= smallest))
2434 {
1be6b49c 2435 size_t rounded_len = round_to_cluster_size (freelist, len);
a00c95d9 2436 SCM_SYSCALL (ptr = (SCM_CELLPTR) malloc (rounded_len));
0f2d19dd
JB
2437 if (ptr)
2438 {
a00c95d9 2439 init_heap_seg (ptr, rounded_len, freelist);
0f2d19dd
JB
2440 return;
2441 }
2442 len /= 2;
2443 }
2444 }
2445
b6efc951
DH
2446 if (error_policy == abort_on_error)
2447 {
2448 fprintf (stderr, "alloc_some_heap: Could not grow heap.\n");
2449 abort ();
2450 }
0f2d19dd 2451}
acf4331f 2452#undef FUNC_NAME
0f2d19dd 2453
0f2d19dd
JB
2454\f
2455/* {GC Protection Helper Functions}
2456 */
2457
2458
5d2b97cd
DH
2459/*
2460 * If within a function you need to protect one or more scheme objects from
2461 * garbage collection, pass them as parameters to one of the
2462 * scm_remember_upto_here* functions below. These functions don't do
2463 * anything, but since the compiler does not know that they are actually
2464 * no-ops, it will generate code that calls these functions with the given
2465 * parameters. Therefore, you can be sure that the compiler will keep those
2466 * scheme values alive (on the stack or in a register) up to the point where
2467 * scm_remember_upto_here* is called. In other words, place the call to
592996c9 2468 * scm_remember_upto_here* _behind_ the last code in your function, that
5d2b97cd
DH
2469 * depends on the scheme object to exist.
2470 *
2471 * Example: We want to make sure, that the string object str does not get
2472 * garbage collected during the execution of 'some_function', because
2473 * otherwise the characters belonging to str would be freed and
2474 * 'some_function' might access freed memory. To make sure that the compiler
2475 * keeps str alive on the stack or in a register such that it is visible to
2476 * the conservative gc we add the call to scm_remember_upto_here_1 _after_ the
2477 * call to 'some_function'. Note that this would not be necessary if str was
2478 * used anyway after the call to 'some_function'.
2479 * char *chars = SCM_STRING_CHARS (str);
2480 * some_function (chars);
2481 * scm_remember_upto_here_1 (str); // str will be alive up to this point.
2482 */
2483
2484void
e81d98ec 2485scm_remember_upto_here_1 (SCM obj SCM_UNUSED)
5d2b97cd
DH
2486{
2487 /* Empty. Protects a single object from garbage collection. */
2488}
2489
2490void
e81d98ec 2491scm_remember_upto_here_2 (SCM obj1 SCM_UNUSED, SCM obj2 SCM_UNUSED)
5d2b97cd
DH
2492{
2493 /* Empty. Protects two objects from garbage collection. */
2494}
2495
2496void
e81d98ec 2497scm_remember_upto_here (SCM obj SCM_UNUSED, ...)
5d2b97cd
DH
2498{
2499 /* Empty. Protects any number of objects from garbage collection. */
2500}
2501
2502
2503#if (SCM_DEBUG_DEPRECATED == 0)
2504
0f2d19dd 2505void
6e8d25a6 2506scm_remember (SCM *ptr)
b24b5e13 2507{
1be6b49c
ML
2508 scm_c_issue_deprecation_warning ("`scm_remember' is deprecated. "
2509 "Use the `scm_remember_upto_here*' family of functions instead.");
b24b5e13 2510}
0f2d19dd 2511
6b1b030e
ML
2512SCM
2513scm_protect_object (SCM obj)
2514{
2515 scm_c_issue_deprecation_warning ("`scm_protect_object' is deprecated. "
2516 "Use `scm_gc_protect_object' instead.");
2517 return scm_gc_protect_object (obj);
2518}
2519
2520SCM
2521scm_unprotect_object (SCM obj)
2522{
2523 scm_c_issue_deprecation_warning ("`scm_unprotect_object' is deprecated. "
2524 "Use `scm_gc_unprotect_object' instead.");
2525 return scm_gc_unprotect_object (obj);
2526}
2527
5d2b97cd 2528#endif /* SCM_DEBUG_DEPRECATED == 0 */
1cc91f1b 2529
c209c88e 2530/*
41b0806d
GB
2531 These crazy functions prevent garbage collection
2532 of arguments after the first argument by
2533 ensuring they remain live throughout the
2534 function because they are used in the last
2535 line of the code block.
2536 It'd be better to have a nice compiler hint to
2537 aid the conservative stack-scanning GC. --03/09/00 gjb */
0f2d19dd
JB
2538SCM
2539scm_return_first (SCM elt, ...)
0f2d19dd
JB
2540{
2541 return elt;
2542}
2543
41b0806d
GB
2544int
2545scm_return_first_int (int i, ...)
2546{
2547 return i;
2548}
2549
0f2d19dd 2550
0f2d19dd 2551SCM
6e8d25a6 2552scm_permanent_object (SCM obj)
0f2d19dd
JB
2553{
2554 SCM_REDEFER_INTS;
2555 scm_permobjs = scm_cons (obj, scm_permobjs);
2556 SCM_REALLOW_INTS;
2557 return obj;
2558}
2559
2560
7bd4fbe2
MD
2561/* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
2562 other references are dropped, until the object is unprotected by calling
6b1b030e 2563 scm_gc_unprotect_object (OBJ). Calls to scm_gc_protect/unprotect_object nest,
7bd4fbe2
MD
2564 i. e. it is possible to protect the same object several times, but it is
2565 necessary to unprotect the object the same number of times to actually get
2566 the object unprotected. It is an error to unprotect an object more often
2567 than it has been protected before. The function scm_protect_object returns
2568 OBJ.
2569*/
2570
2571/* Implementation note: For every object X, there is a counter which
6b1b030e 2572 scm_gc_protect_object(X) increments and scm_gc_unprotect_object(X) decrements.
7bd4fbe2 2573*/
686765af 2574
ef290276 2575SCM
6b1b030e 2576scm_gc_protect_object (SCM obj)
ef290276 2577{
686765af 2578 SCM handle;
9d47a1e6 2579
686765af 2580 /* This critical section barrier will be replaced by a mutex. */
2dd6a83a 2581 SCM_REDEFER_INTS;
9d47a1e6 2582
0f0f0899 2583 handle = scm_hashq_create_handle_x (scm_protects, obj, SCM_MAKINUM (0));
1be6b49c 2584 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), SCM_MAKINUM (1)));
9d47a1e6 2585
2dd6a83a 2586 SCM_REALLOW_INTS;
9d47a1e6 2587
ef290276
JB
2588 return obj;
2589}
2590
2591
2592/* Remove any protection for OBJ established by a prior call to
dab7f566 2593 scm_protect_object. This function returns OBJ.
ef290276 2594
dab7f566 2595 See scm_protect_object for more information. */
ef290276 2596SCM
6b1b030e 2597scm_gc_unprotect_object (SCM obj)
ef290276 2598{
686765af 2599 SCM handle;
9d47a1e6 2600
686765af 2601 /* This critical section barrier will be replaced by a mutex. */
2dd6a83a 2602 SCM_REDEFER_INTS;
9d47a1e6 2603
686765af 2604 handle = scm_hashq_get_handle (scm_protects, obj);
9d47a1e6 2605
22a52da1 2606 if (SCM_FALSEP (handle))
686765af 2607 {
0f0f0899
MD
2608 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
2609 abort ();
686765af 2610 }
6a199940
DH
2611 else
2612 {
1be6b49c
ML
2613 SCM count = scm_difference (SCM_CDR (handle), SCM_MAKINUM (1));
2614 if (SCM_EQ_P (count, SCM_MAKINUM (0)))
6a199940
DH
2615 scm_hashq_remove_x (scm_protects, obj);
2616 else
1be6b49c 2617 SCM_SETCDR (handle, count);
6a199940 2618 }
686765af 2619
2dd6a83a 2620 SCM_REALLOW_INTS;
ef290276
JB
2621
2622 return obj;
2623}
2624
6b1b030e
ML
2625void
2626scm_gc_register_root (SCM *p)
2627{
2628 SCM handle;
2629 SCM key = scm_long2num ((long) p);
2630
2631 /* This critical section barrier will be replaced by a mutex. */
2632 SCM_REDEFER_INTS;
2633
2634 handle = scm_hashv_create_handle_x (scm_gc_registered_roots, key, SCM_MAKINUM (0));
2635 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), SCM_MAKINUM (1)));
2636
2637 SCM_REALLOW_INTS;
2638}
2639
2640void
2641scm_gc_unregister_root (SCM *p)
2642{
2643 SCM handle;
2644 SCM key = scm_long2num ((long) p);
2645
2646 /* This critical section barrier will be replaced by a mutex. */
2647 SCM_REDEFER_INTS;
2648
2649 handle = scm_hashv_get_handle (scm_gc_registered_roots, key);
2650
2651 if (SCM_FALSEP (handle))
2652 {
2653 fprintf (stderr, "scm_gc_unregister_root called on unregistered root\n");
2654 abort ();
2655 }
2656 else
2657 {
2658 SCM count = scm_difference (SCM_CDR (handle), SCM_MAKINUM (1));
2659 if (SCM_EQ_P (count, SCM_MAKINUM (0)))
2660 scm_hashv_remove_x (scm_gc_registered_roots, key);
2661 else
2662 SCM_SETCDR (handle, count);
2663 }
2664
2665 SCM_REALLOW_INTS;
2666}
2667
2668void
2669scm_gc_register_roots (SCM *b, unsigned long n)
2670{
2671 SCM *p = b;
2672 for (; p < b + n; ++p)
2673 scm_gc_register_root (p);
2674}
2675
2676void
2677scm_gc_unregister_roots (SCM *b, unsigned long n)
2678{
2679 SCM *p = b;
2680 for (; p < b + n; ++p)
2681 scm_gc_unregister_root (p);
2682}
2683
c45acc34
JB
2684int terminating;
2685
2686/* called on process termination. */
e52ceaac
MD
2687#ifdef HAVE_ATEXIT
2688static void
2689cleanup (void)
2690#else
2691#ifdef HAVE_ON_EXIT
51157deb
MD
2692extern int on_exit (void (*procp) (), int arg);
2693
e52ceaac
MD
2694static void
2695cleanup (int status, void *arg)
2696#else
2697#error Dont know how to setup a cleanup handler on your system.
2698#endif
2699#endif
c45acc34
JB
2700{
2701 terminating = 1;
2702 scm_flush_all_ports ();
2703}
ef290276 2704
0f2d19dd 2705\f
acb0a19c 2706static int
92c2555f 2707make_initial_segment (size_t init_heap_size, scm_t_freelist *freelist)
acb0a19c 2708{
1be6b49c 2709 size_t rounded_size = round_to_cluster_size (freelist, init_heap_size);
d6884e63 2710
a00c95d9
ML
2711 if (!init_heap_seg ((SCM_CELLPTR) malloc (rounded_size),
2712 rounded_size,
4c48ba06 2713 freelist))
acb0a19c 2714 {
a00c95d9
ML
2715 rounded_size = round_to_cluster_size (freelist, SCM_HEAP_SEG_SIZE);
2716 if (!init_heap_seg ((SCM_CELLPTR) malloc (rounded_size),
2717 rounded_size,
4c48ba06 2718 freelist))
acb0a19c
MD
2719 return 1;
2720 }
2721 else
2722 scm_expmem = 1;
2723
8fef55a8
MD
2724 if (freelist->min_yield_fraction)
2725 freelist->min_yield = (freelist->heap_size * freelist->min_yield_fraction
b37fe1c5 2726 / 100);
8fef55a8 2727 freelist->grow_heap_p = (freelist->heap_size < freelist->min_yield);
a00c95d9 2728
acb0a19c
MD
2729 return 0;
2730}
2731
2732\f
4c48ba06 2733static void
92c2555f 2734init_freelist (scm_t_freelist *freelist,
4c48ba06 2735 int span,
c014a02e 2736 long cluster_size,
8fef55a8 2737 int min_yield)
4c48ba06
MD
2738{
2739 freelist->clusters = SCM_EOL;
2740 freelist->cluster_size = cluster_size + 1;
b37fe1c5
MD
2741 freelist->left_to_collect = 0;
2742 freelist->clusters_allocated = 0;
8fef55a8
MD
2743 freelist->min_yield = 0;
2744 freelist->min_yield_fraction = min_yield;
4c48ba06
MD
2745 freelist->span = span;
2746 freelist->collected = 0;
1811ebce 2747 freelist->collected_1 = 0;
4c48ba06
MD
2748 freelist->heap_size = 0;
2749}
2750
85db4a2c
DH
2751
2752/* Get an integer from an environment variable. */
2753static int
2754scm_i_getenv_int (const char *var, int def)
2755{
2756 char *end, *val = getenv (var);
2757 long res;
2758 if (!val)
2759 return def;
2760 res = strtol (val, &end, 10);
2761 if (end == val)
2762 return def;
2763 return res;
2764}
2765
2766
4a4c9785 2767int
85db4a2c 2768scm_init_storage ()
0f2d19dd 2769{
1be6b49c
ML
2770 unsigned long gc_trigger_1;
2771 unsigned long gc_trigger_2;
2772 size_t init_heap_size_1;
2773 size_t init_heap_size_2;
2774 size_t j;
0f2d19dd 2775
7c33806a
DH
2776#if (SCM_DEBUG_CELL_ACCESSES == 1)
2777 scm_tc16_allocated = scm_make_smob_type ("allocated cell", 0);
592996c9 2778 scm_set_smob_mark (scm_tc16_allocated, allocated_mark);
7c33806a
DH
2779#endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
2780
0f2d19dd
JB
2781 j = SCM_NUM_PROTECTS;
2782 while (j)
2783 scm_sys_protects[--j] = SCM_BOOL_F;
2784 scm_block_gc = 1;
4a4c9785 2785
4a4c9785 2786 scm_freelist = SCM_EOL;
4c48ba06 2787 scm_freelist2 = SCM_EOL;
85db4a2c
DH
2788 gc_trigger_1 = scm_i_getenv_int ("GUILE_MIN_YIELD_1", scm_default_min_yield_1);
2789 init_freelist (&scm_master_freelist, 1, SCM_CLUSTER_SIZE_1, gc_trigger_1);
2790 gc_trigger_2 = scm_i_getenv_int ("GUILE_MIN_YIELD_2", scm_default_min_yield_2);
2791 init_freelist (&scm_master_freelist2, 2, SCM_CLUSTER_SIZE_2, gc_trigger_2);
2792 scm_max_segment_size = scm_i_getenv_int ("GUILE_MAX_SEGMENT_SIZE", scm_default_max_segment_size);
4a4c9785 2793
0f2d19dd
JB
2794 scm_expmem = 0;
2795
2796 j = SCM_HEAP_SEG_SIZE;
2797 scm_mtrigger = SCM_INIT_MALLOC_LIMIT;
92c2555f
MV
2798 scm_heap_table = ((scm_t_heap_seg_data *)
2799 scm_must_malloc (sizeof (scm_t_heap_seg_data) * 2, "hplims"));
b6efc951 2800 heap_segment_table_size = 2;
acb0a19c 2801
d6884e63
ML
2802 mark_space_ptr = &mark_space_head;
2803
85db4a2c
DH
2804 init_heap_size_1 = scm_i_getenv_int ("GUILE_INIT_SEGMENT_SIZE_1", scm_default_init_heap_size_1);
2805 init_heap_size_2 = scm_i_getenv_int ("GUILE_INIT_SEGMENT_SIZE_2", scm_default_init_heap_size_2);
4c48ba06
MD
2806 if (make_initial_segment (init_heap_size_1, &scm_master_freelist) ||
2807 make_initial_segment (init_heap_size_2, &scm_master_freelist2))
4a4c9785 2808 return 1;
acb0a19c 2809
801cb5e7 2810 /* scm_hplims[0] can change. do not remove scm_heap_org */
a00c95d9 2811 scm_heap_org = CELL_UP (scm_heap_table[0].bounds[0], 1);
acb0a19c 2812
801cb5e7
MD
2813 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
2814 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
2815 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
2816 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
2817 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
0f2d19dd
JB
2818
2819 /* Initialise the list of ports. */
92c2555f
MV
2820 scm_t_portable = (scm_t_port **)
2821 malloc (sizeof (scm_t_port *) * scm_t_portable_room);
2822 if (!scm_t_portable)
0f2d19dd
JB
2823 return 1;
2824
a18bcd0e 2825#ifdef HAVE_ATEXIT
c45acc34 2826 atexit (cleanup);
e52ceaac
MD
2827#else
2828#ifdef HAVE_ON_EXIT
2829 on_exit (cleanup, 0);
2830#endif
a18bcd0e 2831#endif
0f2d19dd 2832
8960e0a0 2833 scm_stand_in_procs = SCM_EOL;
0f2d19dd 2834 scm_permobjs = SCM_EOL;
00ffa0e7 2835 scm_protects = scm_c_make_hash_table (31);
6b1b030e 2836 scm_gc_registered_roots = scm_c_make_hash_table (31);
d6884e63 2837
0f2d19dd
JB
2838 return 0;
2839}
939794ce 2840
0f2d19dd
JB
2841\f
2842
939794ce
DH
2843SCM scm_after_gc_hook;
2844
939794ce
DH
2845static SCM gc_async;
2846
939794ce
DH
2847/* The function gc_async_thunk causes the execution of the after-gc-hook. It
2848 * is run after the gc, as soon as the asynchronous events are handled by the
2849 * evaluator.
2850 */
2851static SCM
2852gc_async_thunk (void)
2853{
2854 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
939794ce
DH
2855 return SCM_UNSPECIFIED;
2856}
2857
2858
2859/* The function mark_gc_async is run by the scm_after_gc_c_hook at the end of
2860 * the garbage collection. The only purpose of this function is to mark the
2861 * gc_async (which will eventually lead to the execution of the
2862 * gc_async_thunk).
2863 */
2864static void *
e81d98ec
DH
2865mark_gc_async (void * hook_data SCM_UNUSED,
2866 void *func_data SCM_UNUSED,
2867 void *data SCM_UNUSED)
2868{
2869 /* If cell access debugging is enabled, the user may choose to perform
2870 * additional garbage collections after an arbitrary number of cell
2871 * accesses. We don't want the scheme level after-gc-hook to be performed
2872 * for each of these garbage collections for the following reason: The
2873 * execution of the after-gc-hook causes cell accesses itself. Thus, if the
2874 * after-gc-hook was performed with every gc, and if the gc was performed
2875 * after a very small number of cell accesses, then the number of cell
2876 * accesses during the execution of the after-gc-hook will suffice to cause
2877 * the execution of the next gc. Then, guile would keep executing the
2878 * after-gc-hook over and over again, and would never come to do other
2879 * things.
2880 *
2881 * To overcome this problem, if cell access debugging with additional
2882 * garbage collections is enabled, the after-gc-hook is never run by the
2883 * garbage collecter. When running guile with cell access debugging and the
2884 * execution of the after-gc-hook is desired, then it is necessary to run
2885 * the hook explicitly from the user code. This has the effect, that from
2886 * the scheme level point of view it seems that garbage collection is
2887 * performed with a much lower frequency than it actually is. Obviously,
2888 * this will not work for code that depends on a fixed one to one
2889 * relationship between the execution counts of the C level garbage
2890 * collection hooks and the execution count of the scheme level
2891 * after-gc-hook.
2892 */
2893#if (SCM_DEBUG_CELL_ACCESSES == 1)
2894 if (debug_cells_gc_interval == 0)
2895 scm_system_async_mark (gc_async);
2896#else
939794ce 2897 scm_system_async_mark (gc_async);
e81d98ec
DH
2898#endif
2899
939794ce
DH
2900 return NULL;
2901}
2902
2903
0f2d19dd
JB
2904void
2905scm_init_gc ()
0f2d19dd 2906{
939794ce
DH
2907 SCM after_gc_thunk;
2908
fde50407
ML
2909 scm_after_gc_hook = scm_permanent_object (scm_make_hook (SCM_INUM0));
2910 scm_c_define ("after-gc-hook", scm_after_gc_hook);
939794ce 2911
9a441ddb
MV
2912 after_gc_thunk = scm_c_make_subr ("%gc-thunk", scm_tc7_subr_0,
2913 gc_async_thunk);
23670993 2914 gc_async = scm_system_async (after_gc_thunk); /* protected via scm_asyncs */
939794ce
DH
2915
2916 scm_c_hook_add (&scm_after_gc_c_hook, mark_gc_async, NULL, 0);
2917
8dc9439f 2918#ifndef SCM_MAGIC_SNARFER
a0599745 2919#include "libguile/gc.x"
8dc9439f 2920#endif
0f2d19dd 2921}
89e00824 2922
56495472
ML
2923#endif /*MARK_DEPENDENCIES*/
2924
89e00824
ML
2925/*
2926 Local Variables:
2927 c-file-style: "gnu"
2928 End:
2929*/