*** empty log message ***
[bpt/guile.git] / libguile / gc.c
CommitLineData
acb0a19c 1/* Copyright (C) 1995, 96, 97, 98, 99, 2000 Free Software Foundation, Inc.
a00c95d9 2 *
0f2d19dd
JB
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2, or (at your option)
6 * any later version.
a00c95d9 7 *
0f2d19dd
JB
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
a00c95d9 12 *
0f2d19dd
JB
13 * You should have received a copy of the GNU General Public License
14 * along with this software; see the file COPYING. If not, write to
82892bed
JB
15 * the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
16 * Boston, MA 02111-1307 USA
0f2d19dd
JB
17 *
18 * As a special exception, the Free Software Foundation gives permission
19 * for additional uses of the text contained in its release of GUILE.
20 *
21 * The exception is that, if you link the GUILE library with other files
22 * to produce an executable, this does not by itself cause the
23 * resulting executable to be covered by the GNU General Public License.
24 * Your use of that executable is in no way restricted on account of
25 * linking the GUILE library code into it.
26 *
27 * This exception does not however invalidate any other reasons why
28 * the executable file might be covered by the GNU General Public License.
29 *
30 * This exception applies only to the code released by the
31 * Free Software Foundation under the name GUILE. If you copy
32 * code from other Free Software Foundation releases into a copy of
33 * GUILE, as the General Public License permits, the exception does
34 * not apply to the code that you add in this way. To avoid misleading
35 * anyone as to the status of such modified files, you must delete
36 * this exception notice from them.
37 *
38 * If you write modifications of your own for GUILE, it is your choice
39 * whether to permit this exception to apply to your modifications.
82892bed 40 * If you do not wish that, delete this exception notice. */
1bbd0b84
GB
41
42/* Software engineering face-lift by Greg J. Badros, 11-Dec-1999,
43 gjb@cs.washington.edu, http://www.cs.washington.edu/homes/gjb */
44
37ddcaf6
MD
45/* #define DEBUGINFO */
46
0f2d19dd
JB
47\f
48#include <stdio.h>
a0599745 49#include "libguile/_scm.h"
0a7a7445 50#include "libguile/eval.h"
a0599745
MD
51#include "libguile/stime.h"
52#include "libguile/stackchk.h"
53#include "libguile/struct.h"
a0599745
MD
54#include "libguile/smob.h"
55#include "libguile/unif.h"
56#include "libguile/async.h"
57#include "libguile/ports.h"
58#include "libguile/root.h"
59#include "libguile/strings.h"
60#include "libguile/vectors.h"
801cb5e7 61#include "libguile/weaks.h"
686765af 62#include "libguile/hashtab.h"
a0599745
MD
63
64#include "libguile/validate.h"
65#include "libguile/gc.h"
fce59c93 66
bc9d9bb2 67#ifdef GUILE_DEBUG_MALLOC
a0599745 68#include "libguile/debug-malloc.h"
bc9d9bb2
MD
69#endif
70
0f2d19dd 71#ifdef HAVE_MALLOC_H
95b88819 72#include <malloc.h>
0f2d19dd
JB
73#endif
74
75#ifdef HAVE_UNISTD_H
95b88819 76#include <unistd.h>
0f2d19dd
JB
77#endif
78
1cc91f1b
JB
79#ifdef __STDC__
80#include <stdarg.h>
81#define var_start(x, y) va_start(x, y)
82#else
83#include <varargs.h>
84#define var_start(x, y) va_start(x)
85#endif
86
0f2d19dd 87\f
406c7d90
DH
88
89unsigned int scm_gc_running_p = 0;
90
91\f
92
93#if (SCM_DEBUG_CELL_ACCESSES == 1)
94
95unsigned int scm_debug_cell_accesses_p = 0;
96
97
98/* Assert that the given object is a valid reference to a valid cell. This
99 * test involves to determine whether the object is a cell pointer, whether
100 * this pointer actually points into a heap segment and whether the cell
101 * pointed to is not a free cell.
102 */
103void
104scm_assert_cell_valid (SCM cell)
105{
106 if (scm_debug_cell_accesses_p)
107 {
108 scm_debug_cell_accesses_p = 0; /* disable to avoid recursion */
109
9d47a1e6 110 if (!scm_cellp (cell))
406c7d90
DH
111 {
112 fprintf (stderr, "scm_assert_cell_valid: Not a cell object: %lx\n", SCM_UNPACK (cell));
113 abort ();
114 }
115 else if (!scm_gc_running_p)
116 {
117 /* Dirk::FIXME:: During garbage collection there occur references to
118 free cells. This is allright during conservative marking, but
119 should not happen otherwise (I think). The case of free cells
120 accessed during conservative marking is handled in function
121 scm_mark_locations. However, there still occur accesses to free
122 cells during gc. I don't understand why this happens. If it is
123 a bug and gets fixed, the following test should also work while
124 gc is running.
125 */
126 if (SCM_FREE_CELL_P (cell))
127 {
128 fprintf (stderr, "scm_assert_cell_valid: Accessing free cell: %lx\n", SCM_UNPACK (cell));
129 abort ();
130 }
131 }
132 scm_debug_cell_accesses_p = 1; /* re-enable */
133 }
134}
135
136
137SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
138 (SCM flag),
139 "If FLAG is #f, cell access checking is disabled.\n"
140 "If FLAG is #t, cell access checking is enabled.\n"
141 "This procedure only exists because the compile-time flag\n"
142 "SCM_DEBUG_CELL_ACCESSES was set to 1.\n")
143#define FUNC_NAME s_scm_set_debug_cell_accesses_x
144{
145 if (SCM_FALSEP (flag)) {
146 scm_debug_cell_accesses_p = 0;
147 } else if (SCM_EQ_P (flag, SCM_BOOL_T)) {
148 scm_debug_cell_accesses_p = 1;
149 } else {
150 SCM_WRONG_TYPE_ARG (1, flag);
151 }
152 return SCM_UNSPECIFIED;
153}
154#undef FUNC_NAME
155
156#endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
157
158\f
159
0f2d19dd 160/* {heap tuning parameters}
a00c95d9 161 *
0f2d19dd
JB
162 * These are parameters for controlling memory allocation. The heap
163 * is the area out of which scm_cons, and object headers are allocated.
164 *
165 * Each heap cell is 8 bytes on a 32 bit machine and 16 bytes on a
166 * 64 bit machine. The units of the _SIZE parameters are bytes.
167 * Cons pairs and object headers occupy one heap cell.
168 *
169 * SCM_INIT_HEAP_SIZE is the initial size of heap. If this much heap is
170 * allocated initially the heap will grow by half its current size
171 * each subsequent time more heap is needed.
172 *
173 * If SCM_INIT_HEAP_SIZE heap cannot be allocated initially, SCM_HEAP_SEG_SIZE
174 * will be used, and the heap will grow by SCM_HEAP_SEG_SIZE when more
175 * heap is needed. SCM_HEAP_SEG_SIZE must fit into type scm_sizet. This code
176 * is in scm_init_storage() and alloc_some_heap() in sys.c
a00c95d9 177 *
0f2d19dd
JB
178 * If SCM_INIT_HEAP_SIZE can be allocated initially, the heap will grow by
179 * SCM_EXPHEAP(scm_heap_size) when more heap is needed.
180 *
181 * SCM_MIN_HEAP_SEG_SIZE is minimum size of heap to accept when more heap
182 * is needed.
183 *
184 * INIT_MALLOC_LIMIT is the initial amount of malloc usage which will
a00c95d9 185 * trigger a GC.
6064dcc6
MV
186 *
187 * SCM_MTRIGGER_HYSTERESIS is the amount of malloc storage that must be
188 * reclaimed by a GC triggered by must_malloc. If less than this is
189 * reclaimed, the trigger threshold is raised. [I don't know what a
190 * good value is. I arbitrarily chose 1/10 of the INIT_MALLOC_LIMIT to
a00c95d9 191 * work around a oscillation that caused almost constant GC.]
0f2d19dd
JB
192 */
193
8fef55a8
MD
194/*
195 * Heap size 45000 and 40% min yield gives quick startup and no extra
196 * heap allocation. Having higher values on min yield may lead to
197 * large heaps, especially if code behaviour is varying its
198 * maximum consumption between different freelists.
199 */
d6884e63
ML
200
201#define SCM_DATA_CELLS2CARDS(n) (((n) + SCM_GC_CARD_N_DATA_CELLS - 1) / SCM_GC_CARD_N_DATA_CELLS)
202#define SCM_CARDS_PER_CLUSTER SCM_DATA_CELLS2CARDS (2000L)
203#define SCM_CLUSTER_SIZE_1 (SCM_CARDS_PER_CLUSTER * SCM_GC_CARD_N_DATA_CELLS)
204int scm_default_init_heap_size_1 = (((SCM_DATA_CELLS2CARDS (45000L) + SCM_CARDS_PER_CLUSTER - 1)
205 / SCM_CARDS_PER_CLUSTER) * SCM_GC_CARD_SIZE);
aeacfc8f 206int scm_default_min_yield_1 = 40;
4c48ba06 207
d6884e63
ML
208#define SCM_CLUSTER_SIZE_2 (SCM_CARDS_PER_CLUSTER * (SCM_GC_CARD_N_DATA_CELLS / 2))
209int scm_default_init_heap_size_2 = (((SCM_DATA_CELLS2CARDS (2500L * 2) + SCM_CARDS_PER_CLUSTER - 1)
210 / SCM_CARDS_PER_CLUSTER) * SCM_GC_CARD_SIZE);
4c48ba06
MD
211/* The following value may seem large, but note that if we get to GC at
212 * all, this means that we have a numerically intensive application
213 */
aeacfc8f 214int scm_default_min_yield_2 = 40;
4c48ba06 215
aeacfc8f 216int scm_default_max_segment_size = 2097000L;/* a little less (adm) than 2 Mb */
4c48ba06 217
d6884e63 218#define SCM_MIN_HEAP_SEG_SIZE (8 * SCM_GC_CARD_SIZE)
0f2d19dd
JB
219#ifdef _QC
220# define SCM_HEAP_SEG_SIZE 32768L
221#else
222# ifdef sequent
4c48ba06 223# define SCM_HEAP_SEG_SIZE (7000L * sizeof (scm_cell))
0f2d19dd 224# else
4c48ba06 225# define SCM_HEAP_SEG_SIZE (16384L * sizeof (scm_cell))
0f2d19dd
JB
226# endif
227#endif
4c48ba06 228/* Make heap grow with factor 1.5 */
4a4c9785 229#define SCM_EXPHEAP(scm_heap_size) (scm_heap_size / 2)
0f2d19dd 230#define SCM_INIT_MALLOC_LIMIT 100000
6064dcc6 231#define SCM_MTRIGGER_HYSTERESIS (SCM_INIT_MALLOC_LIMIT/10)
0f2d19dd 232
d6884e63
ML
233/* CELL_UP and CELL_DN are used by scm_init_heap_seg to find (scm_cell * span)
234 aligned inner bounds for allocated storage */
0f2d19dd
JB
235
236#ifdef PROT386
237/*in 386 protected mode we must only adjust the offset */
a00c95d9
ML
238# define CELL_UP(p, span) MK_FP(FP_SEG(p), ~(8*(span)-1)&(FP_OFF(p)+8*(span)-1))
239# define CELL_DN(p, span) MK_FP(FP_SEG(p), ~(8*(span)-1)&FP_OFF(p))
0f2d19dd
JB
240#else
241# ifdef _UNICOS
a00c95d9
ML
242# define CELL_UP(p, span) (SCM_CELLPTR)(~(span) & ((long)(p)+(span)))
243# define CELL_DN(p, span) (SCM_CELLPTR)(~(span) & (long)(p))
0f2d19dd 244# else
a00c95d9
ML
245# define CELL_UP(p, span) (SCM_CELLPTR)(~(sizeof(scm_cell)*(span)-1L) & ((long)(p)+sizeof(scm_cell)*(span)-1L))
246# define CELL_DN(p, span) (SCM_CELLPTR)(~(sizeof(scm_cell)*(span)-1L) & (long)(p))
0f2d19dd
JB
247# endif /* UNICOS */
248#endif /* PROT386 */
249
d6884e63
ML
250#define ALIGNMENT_SLACK(freelist) (SCM_GC_CARD_SIZE - 1)
251#define CLUSTER_SIZE_IN_BYTES(freelist) \
252 (((freelist)->cluster_size / (SCM_GC_CARD_N_DATA_CELLS / (freelist)->span)) * SCM_GC_CARD_SIZE)
0f2d19dd
JB
253
254\f
945fec60 255/* scm_freelists
0f2d19dd 256 */
945fec60 257
a00c95d9
ML
258typedef struct scm_freelist_t {
259 /* collected cells */
260 SCM cells;
a00c95d9
ML
261 /* number of cells left to collect before cluster is full */
262 unsigned int left_to_collect;
b37fe1c5
MD
263 /* number of clusters which have been allocated */
264 unsigned int clusters_allocated;
8fef55a8
MD
265 /* a list of freelists, each of size cluster_size,
266 * except the last one which may be shorter
267 */
a00c95d9
ML
268 SCM clusters;
269 SCM *clustertail;
b37fe1c5 270 /* this is the number of objects in each cluster, including the spine cell */
a00c95d9 271 int cluster_size;
8fef55a8 272 /* indicates that we should grow heap instead of GC:ing
a00c95d9
ML
273 */
274 int grow_heap_p;
8fef55a8 275 /* minimum yield on this list in order not to grow the heap
a00c95d9 276 */
8fef55a8
MD
277 long min_yield;
278 /* defines min_yield as percent of total heap size
a00c95d9 279 */
8fef55a8 280 int min_yield_fraction;
a00c95d9
ML
281 /* number of cells per object on this list */
282 int span;
283 /* number of collected cells during last GC */
1811ebce
MD
284 long collected;
285 /* number of collected cells during penultimate GC */
286 long collected_1;
a00c95d9
ML
287 /* total number of cells in heap segments
288 * belonging to this list.
289 */
1811ebce 290 long heap_size;
a00c95d9
ML
291} scm_freelist_t;
292
4a4c9785
MD
293SCM scm_freelist = SCM_EOL;
294scm_freelist_t scm_master_freelist = {
b37fe1c5 295 SCM_EOL, 0, 0, SCM_EOL, 0, SCM_CLUSTER_SIZE_1, 0, 0, 0, 1, 0, 0
4a4c9785
MD
296};
297SCM scm_freelist2 = SCM_EOL;
298scm_freelist_t scm_master_freelist2 = {
b37fe1c5 299 SCM_EOL, 0, 0, SCM_EOL, 0, SCM_CLUSTER_SIZE_2, 0, 0, 0, 2, 0, 0
4a4c9785 300};
0f2d19dd
JB
301
302/* scm_mtrigger
303 * is the number of bytes of must_malloc allocation needed to trigger gc.
304 */
15e9d186 305unsigned long scm_mtrigger;
0f2d19dd 306
0f2d19dd
JB
307/* scm_gc_heap_lock
308 * If set, don't expand the heap. Set only during gc, during which no allocation
309 * is supposed to take place anyway.
310 */
311int scm_gc_heap_lock = 0;
312
313/* GC Blocking
314 * Don't pause for collection if this is set -- just
315 * expand the heap.
316 */
0f2d19dd
JB
317int scm_block_gc = 1;
318
0f2d19dd
JB
319/* During collection, this accumulates objects holding
320 * weak references.
321 */
ab4bef85 322SCM scm_weak_vectors;
0f2d19dd 323
7445e0e8
MD
324/* During collection, this accumulates structures which are to be freed.
325 */
326SCM scm_structs_to_free;
327
0f2d19dd
JB
328/* GC Statistics Keeping
329 */
330unsigned long scm_cells_allocated = 0;
a5c314c8 331long scm_mallocated = 0;
b37fe1c5 332unsigned long scm_gc_cells_collected;
8b0d194f 333unsigned long scm_gc_yield;
37ddcaf6 334static unsigned long scm_gc_yield_1 = 0; /* previous GC yield */
0f2d19dd
JB
335unsigned long scm_gc_malloc_collected;
336unsigned long scm_gc_ports_collected;
0f2d19dd 337unsigned long scm_gc_time_taken = 0;
c9b0d4b0
ML
338static unsigned long t_before_gc;
339static unsigned long t_before_sweep;
340unsigned long scm_gc_mark_time_taken = 0;
341unsigned long scm_gc_sweep_time_taken = 0;
342unsigned long scm_gc_times = 0;
343unsigned long scm_gc_cells_swept = 0;
344double scm_gc_cells_marked_acc = 0.;
345double scm_gc_cells_swept_acc = 0.;
0f2d19dd
JB
346
347SCM_SYMBOL (sym_cells_allocated, "cells-allocated");
348SCM_SYMBOL (sym_heap_size, "cell-heap-size");
349SCM_SYMBOL (sym_mallocated, "bytes-malloced");
350SCM_SYMBOL (sym_mtrigger, "gc-malloc-threshold");
351SCM_SYMBOL (sym_heap_segments, "cell-heap-segments");
352SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
c9b0d4b0
ML
353SCM_SYMBOL (sym_gc_mark_time_taken, "gc-mark-time-taken");
354SCM_SYMBOL (sym_gc_sweep_time_taken, "gc-sweep-time-taken");
355SCM_SYMBOL (sym_times, "gc-times");
356SCM_SYMBOL (sym_cells_marked, "cells-marked");
357SCM_SYMBOL (sym_cells_swept, "cells-swept");
0f2d19dd 358
a00c95d9 359typedef struct scm_heap_seg_data_t
0f2d19dd 360{
cf2d30f6
JB
361 /* lower and upper bounds of the segment */
362 SCM_CELLPTR bounds[2];
363
364 /* address of the head-of-freelist pointer for this segment's cells.
365 All segments usually point to the same one, scm_freelist. */
4c48ba06 366 scm_freelist_t *freelist;
cf2d30f6 367
fe517a7d 368 /* number of cells per object in this segment */
945fec60 369 int span;
a00c95d9 370} scm_heap_seg_data_t;
0f2d19dd
JB
371
372
373
945fec60 374static scm_sizet init_heap_seg (SCM_CELLPTR, scm_sizet, scm_freelist_t *);
b6efc951
DH
375
376typedef enum { return_on_error, abort_on_error } policy_on_error;
377static void alloc_some_heap (scm_freelist_t *, policy_on_error);
0f2d19dd
JB
378
379
d6884e63
ML
380#define SCM_HEAP_SIZE \
381 (scm_master_freelist.heap_size + scm_master_freelist2.heap_size)
382#define SCM_MAX(A, B) ((A) > (B) ? (A) : (B))
383
384#define BVEC_GROW_SIZE 256
385#define BVEC_GROW_SIZE_IN_LIMBS (SCM_GC_CARD_BVEC_SIZE_IN_LIMBS * BVEC_GROW_SIZE)
386#define BVEC_GROW_SIZE_IN_BYTES (BVEC_GROW_SIZE_IN_LIMBS * sizeof (scm_c_bvec_limb_t))
387
388/* mark space allocation */
389
390typedef struct scm_mark_space_t
391{
392 scm_c_bvec_limb_t *bvec_space;
393 struct scm_mark_space_t *next;
394} scm_mark_space_t;
395
396static scm_mark_space_t *current_mark_space;
397static scm_mark_space_t **mark_space_ptr;
398static int current_mark_space_offset;
399static scm_mark_space_t *mark_space_head;
400
401static scm_c_bvec_limb_t *
402get_bvec ()
403{
404 scm_c_bvec_limb_t *res;
405
406 if (!current_mark_space)
407 {
408 SCM_SYSCALL (current_mark_space = (scm_mark_space_t *) malloc (sizeof (scm_mark_space_t)));
409 if (!current_mark_space)
410 scm_wta (SCM_UNDEFINED, "could not grow", "heap");
411
412 current_mark_space->bvec_space = NULL;
413 current_mark_space->next = NULL;
414
415 *mark_space_ptr = current_mark_space;
416 mark_space_ptr = &(current_mark_space->next);
417
418 return get_bvec ();
419 }
420
421 if (!(current_mark_space->bvec_space))
422 {
423 SCM_SYSCALL (current_mark_space->bvec_space =
424 (scm_c_bvec_limb_t *) calloc (BVEC_GROW_SIZE_IN_BYTES, 1));
425 if (!(current_mark_space->bvec_space))
426 scm_wta (SCM_UNDEFINED, "could not grow", "heap");
427
428 current_mark_space_offset = 0;
429
430 return get_bvec ();
431 }
432
433 if (current_mark_space_offset == BVEC_GROW_SIZE_IN_LIMBS)
434 {
435 current_mark_space = NULL;
436
437 return get_bvec ();
438 }
439
440 res = current_mark_space->bvec_space + current_mark_space_offset;
441 current_mark_space_offset += SCM_GC_CARD_BVEC_SIZE_IN_LIMBS;
442
443 return res;
444}
445
446static void
447clear_mark_space ()
448{
449 scm_mark_space_t *ms;
450
451 for (ms = mark_space_head; ms; ms = ms->next)
452 memset (ms->bvec_space, 0, BVEC_GROW_SIZE_IN_BYTES);
453}
454
455
0f2d19dd 456\f
cf2d30f6
JB
457/* Debugging functions. */
458
bb2c57fa 459#if defined (GUILE_DEBUG) || defined (GUILE_DEBUG_FREELIST)
cf2d30f6
JB
460
461/* Return the number of the heap segment containing CELL. */
462static int
463which_seg (SCM cell)
464{
465 int i;
466
467 for (i = 0; i < scm_n_heap_segs; i++)
195e6201
DH
468 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], SCM2PTR (cell))
469 && SCM_PTR_GT (scm_heap_table[i].bounds[1], SCM2PTR (cell)))
cf2d30f6
JB
470 return i;
471 fprintf (stderr, "which_seg: can't find segment containing cell %lx\n",
945fec60 472 SCM_UNPACK (cell));
cf2d30f6
JB
473 abort ();
474}
475
476
8ded62a3
MD
477static void
478map_free_list (scm_freelist_t *master, SCM freelist)
479{
480 int last_seg = -1, count = 0;
481 SCM f;
a00c95d9 482
3f5d82cd 483 for (f = freelist; !SCM_NULLP (f); f = SCM_FREE_CELL_CDR (f))
8ded62a3
MD
484 {
485 int this_seg = which_seg (f);
486
487 if (this_seg != last_seg)
488 {
489 if (last_seg != -1)
490 fprintf (stderr, " %5d %d-cells in segment %d\n",
491 count, master->span, last_seg);
492 last_seg = this_seg;
493 count = 0;
494 }
495 count++;
496 }
497 if (last_seg != -1)
498 fprintf (stderr, " %5d %d-cells in segment %d\n",
499 count, master->span, last_seg);
500}
cf2d30f6 501
a00c95d9 502SCM_DEFINE (scm_map_free_list, "map-free-list", 0, 0, 0,
acb0a19c
MD
503 (),
504 "Print debugging information about the free-list.\n"
5384bc5b 505 "`map-free-list' is only included in --enable-guile-debug builds of Guile.")
acb0a19c
MD
506#define FUNC_NAME s_scm_map_free_list
507{
4c48ba06
MD
508 int i;
509 fprintf (stderr, "%d segments total (%d:%d",
510 scm_n_heap_segs,
511 scm_heap_table[0].span,
512 scm_heap_table[0].bounds[1] - scm_heap_table[0].bounds[0]);
513 for (i = 1; i < scm_n_heap_segs; i++)
514 fprintf (stderr, ", %d:%d",
515 scm_heap_table[i].span,
516 scm_heap_table[i].bounds[1] - scm_heap_table[i].bounds[0]);
517 fprintf (stderr, ")\n");
8ded62a3
MD
518 map_free_list (&scm_master_freelist, scm_freelist);
519 map_free_list (&scm_master_freelist2, scm_freelist2);
cf2d30f6
JB
520 fflush (stderr);
521
522 return SCM_UNSPECIFIED;
523}
1bbd0b84 524#undef FUNC_NAME
cf2d30f6 525
4c48ba06
MD
526static int last_cluster;
527static int last_size;
528
5384bc5b
MD
529static int
530free_list_length (char *title, int i, SCM freelist)
531{
532 SCM ls;
533 int n = 0;
3f5d82cd
DH
534 for (ls = freelist; !SCM_NULLP (ls); ls = SCM_FREE_CELL_CDR (ls))
535 if (SCM_FREE_CELL_P (ls))
5384bc5b
MD
536 ++n;
537 else
538 {
539 fprintf (stderr, "bad cell in %s at position %d\n", title, n);
540 abort ();
541 }
4c48ba06
MD
542 if (n != last_size)
543 {
544 if (i > 0)
545 {
546 if (last_cluster == i - 1)
547 fprintf (stderr, "\t%d\n", last_size);
548 else
549 fprintf (stderr, "-%d\t%d\n", i - 1, last_size);
550 }
551 if (i >= 0)
552 fprintf (stderr, "%s %d", title, i);
553 else
554 fprintf (stderr, "%s\t%d\n", title, n);
555 last_cluster = i;
556 last_size = n;
557 }
5384bc5b
MD
558 return n;
559}
560
561static void
562free_list_lengths (char *title, scm_freelist_t *master, SCM freelist)
563{
564 SCM clusters;
4c48ba06 565 int i = 0, len, n = 0;
5384bc5b
MD
566 fprintf (stderr, "%s\n\n", title);
567 n += free_list_length ("free list", -1, freelist);
568 for (clusters = master->clusters;
569 SCM_NNULLP (clusters);
570 clusters = SCM_CDR (clusters))
4c48ba06
MD
571 {
572 len = free_list_length ("cluster", i++, SCM_CAR (clusters));
573 n += len;
574 }
575 if (last_cluster == i - 1)
576 fprintf (stderr, "\t%d\n", last_size);
577 else
578 fprintf (stderr, "-%d\t%d\n", i - 1, last_size);
579 fprintf (stderr, "\ntotal %d objects\n\n", n);
5384bc5b
MD
580}
581
a00c95d9 582SCM_DEFINE (scm_free_list_length, "free-list-length", 0, 0, 0,
5384bc5b
MD
583 (),
584 "Print debugging information about the free-list.\n"
585 "`free-list-length' is only included in --enable-guile-debug builds of Guile.")
586#define FUNC_NAME s_scm_free_list_length
587{
b37fe1c5
MD
588 free_list_lengths ("1-cells", &scm_master_freelist, scm_freelist);
589 free_list_lengths ("2-cells", &scm_master_freelist2, scm_freelist2);
12e5fb3b 590 return SCM_UNSPECIFIED;
5384bc5b
MD
591}
592#undef FUNC_NAME
593
bb2c57fa
MD
594#endif
595
596#ifdef GUILE_DEBUG_FREELIST
cf2d30f6
JB
597
598/* Number of calls to SCM_NEWCELL since startup. */
599static unsigned long scm_newcell_count;
acb0a19c 600static unsigned long scm_newcell2_count;
cf2d30f6
JB
601
602/* Search freelist for anything that isn't marked as a free cell.
603 Abort if we find something. */
8ded62a3
MD
604static void
605scm_check_freelist (SCM freelist)
606{
607 SCM f;
608 int i = 0;
609
3f5d82cd
DH
610 for (f = freelist; !SCM_NULLP (f); f = SCM_FREE_CELL_CDR (f), i++)
611 if (!SCM_FREE_CELL_P (f))
8ded62a3
MD
612 {
613 fprintf (stderr, "Bad cell in freelist on newcell %lu: %d'th elt\n",
614 scm_newcell_count, i);
8ded62a3
MD
615 abort ();
616 }
617}
cf2d30f6 618
a00c95d9 619SCM_DEFINE (scm_gc_set_debug_check_freelist_x, "gc-set-debug-check-freelist!", 1, 0, 0,
1bbd0b84 620 (SCM flag),
da4a1dba
GB
621 "If FLAG is #t, check the freelist for consistency on each cell allocation.\n"
622 "This procedure only exists because the GUILE_DEBUG_FREELIST \n"
623 "compile-time flag was selected.\n")
1bbd0b84 624#define FUNC_NAME s_scm_gc_set_debug_check_freelist_x
25748c78 625{
d6884e63
ML
626 /* [cmm] I did a double-take when I read this code the first time.
627 well, FWIW. */
945fec60 628 SCM_VALIDATE_BOOL_COPY (1, flag, scm_debug_check_freelist);
25748c78
GB
629 return SCM_UNSPECIFIED;
630}
1bbd0b84 631#undef FUNC_NAME
25748c78
GB
632
633
4a4c9785
MD
634SCM
635scm_debug_newcell (void)
636{
637 SCM new;
638
639 scm_newcell_count++;
640 if (scm_debug_check_freelist)
641 {
8ded62a3 642 scm_check_freelist (scm_freelist);
4a4c9785
MD
643 scm_gc();
644 }
645
646 /* The rest of this is supposed to be identical to the SCM_NEWCELL
647 macro. */
3f5d82cd 648 if (SCM_NULLP (scm_freelist))
4a4c9785
MD
649 new = scm_gc_for_newcell (&scm_master_freelist, &scm_freelist);
650 else
651 {
652 new = scm_freelist;
3f5d82cd 653 scm_freelist = SCM_FREE_CELL_CDR (scm_freelist);
4a4c9785
MD
654 }
655
656 return new;
657}
658
659SCM
660scm_debug_newcell2 (void)
661{
662 SCM new;
663
664 scm_newcell2_count++;
665 if (scm_debug_check_freelist)
666 {
8ded62a3 667 scm_check_freelist (scm_freelist2);
4a4c9785
MD
668 scm_gc ();
669 }
670
671 /* The rest of this is supposed to be identical to the SCM_NEWCELL
672 macro. */
3f5d82cd 673 if (SCM_NULLP (scm_freelist2))
4a4c9785
MD
674 new = scm_gc_for_newcell (&scm_master_freelist2, &scm_freelist2);
675 else
676 {
677 new = scm_freelist2;
3f5d82cd 678 scm_freelist2 = SCM_FREE_CELL_CDR (scm_freelist2);
4a4c9785
MD
679 }
680
681 return new;
682}
683
fca7547b 684#endif /* GUILE_DEBUG_FREELIST */
cf2d30f6
JB
685
686\f
0f2d19dd 687
b37fe1c5
MD
688static unsigned long
689master_cells_allocated (scm_freelist_t *master)
690{
d6884e63 691 /* the '- 1' below is to ignore the cluster spine cells. */
b37fe1c5
MD
692 int objects = master->clusters_allocated * (master->cluster_size - 1);
693 if (SCM_NULLP (master->clusters))
694 objects -= master->left_to_collect;
695 return master->span * objects;
696}
697
698static unsigned long
699freelist_length (SCM freelist)
700{
701 int n;
3f5d82cd 702 for (n = 0; !SCM_NULLP (freelist); freelist = SCM_FREE_CELL_CDR (freelist))
b37fe1c5
MD
703 ++n;
704 return n;
705}
706
707static unsigned long
708compute_cells_allocated ()
709{
710 return (scm_cells_allocated
711 + master_cells_allocated (&scm_master_freelist)
712 + master_cells_allocated (&scm_master_freelist2)
713 - scm_master_freelist.span * freelist_length (scm_freelist)
714 - scm_master_freelist2.span * freelist_length (scm_freelist2));
715}
b37fe1c5 716
0f2d19dd
JB
717/* {Scheme Interface to GC}
718 */
719
a00c95d9 720SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
1bbd0b84 721 (),
b380b885 722 "Returns an association list of statistics about Guile's current use of storage. ")
1bbd0b84 723#define FUNC_NAME s_scm_gc_stats
0f2d19dd
JB
724{
725 int i;
726 int n;
727 SCM heap_segs;
c209c88e
GB
728 long int local_scm_mtrigger;
729 long int local_scm_mallocated;
730 long int local_scm_heap_size;
731 long int local_scm_cells_allocated;
732 long int local_scm_gc_time_taken;
c9b0d4b0
ML
733 long int local_scm_gc_times;
734 long int local_scm_gc_mark_time_taken;
735 long int local_scm_gc_sweep_time_taken;
736 double local_scm_gc_cells_swept;
737 double local_scm_gc_cells_marked;
0f2d19dd
JB
738 SCM answer;
739
740 SCM_DEFER_INTS;
939794ce
DH
741
742 ++scm_block_gc;
743
0f2d19dd
JB
744 retry:
745 heap_segs = SCM_EOL;
746 n = scm_n_heap_segs;
747 for (i = scm_n_heap_segs; i--; )
748 heap_segs = scm_cons (scm_cons (scm_ulong2num ((unsigned long)scm_heap_table[i].bounds[1]),
749 scm_ulong2num ((unsigned long)scm_heap_table[i].bounds[0])),
750 heap_segs);
751 if (scm_n_heap_segs != n)
752 goto retry;
939794ce
DH
753
754 --scm_block_gc;
0f2d19dd 755
7febb4a2
MD
756 /* Below, we cons to produce the resulting list. We want a snapshot of
757 * the heap situation before consing.
758 */
0f2d19dd
JB
759 local_scm_mtrigger = scm_mtrigger;
760 local_scm_mallocated = scm_mallocated;
b37fe1c5 761 local_scm_heap_size = SCM_HEAP_SIZE;
b37fe1c5 762 local_scm_cells_allocated = compute_cells_allocated ();
0f2d19dd 763 local_scm_gc_time_taken = scm_gc_time_taken;
c9b0d4b0
ML
764 local_scm_gc_mark_time_taken = scm_gc_mark_time_taken;
765 local_scm_gc_sweep_time_taken = scm_gc_sweep_time_taken;
766 local_scm_gc_times = scm_gc_times;
767 local_scm_gc_cells_swept = scm_gc_cells_swept_acc;
768 local_scm_gc_cells_marked = scm_gc_cells_marked_acc;
0f2d19dd
JB
769
770 answer = scm_listify (scm_cons (sym_gc_time_taken, scm_ulong2num (local_scm_gc_time_taken)),
771 scm_cons (sym_cells_allocated, scm_ulong2num (local_scm_cells_allocated)),
772 scm_cons (sym_heap_size, scm_ulong2num (local_scm_heap_size)),
773 scm_cons (sym_mallocated, scm_ulong2num (local_scm_mallocated)),
774 scm_cons (sym_mtrigger, scm_ulong2num (local_scm_mtrigger)),
c9b0d4b0
ML
775 scm_cons (sym_times, scm_ulong2num (local_scm_gc_times)),
776 scm_cons (sym_gc_mark_time_taken, scm_ulong2num (local_scm_gc_mark_time_taken)),
777 scm_cons (sym_gc_sweep_time_taken, scm_ulong2num (local_scm_gc_sweep_time_taken)),
778 scm_cons (sym_cells_marked, scm_dbl2big (local_scm_gc_cells_marked)),
779 scm_cons (sym_cells_swept, scm_dbl2big (local_scm_gc_cells_swept)),
0f2d19dd
JB
780 scm_cons (sym_heap_segments, heap_segs),
781 SCM_UNDEFINED);
782 SCM_ALLOW_INTS;
783 return answer;
784}
1bbd0b84 785#undef FUNC_NAME
0f2d19dd
JB
786
787
c9b0d4b0
ML
788static void
789gc_start_stats (const char *what)
0f2d19dd 790{
c9b0d4b0
ML
791 t_before_gc = scm_c_get_internal_run_time ();
792 scm_gc_cells_swept = 0;
b37fe1c5 793 scm_gc_cells_collected = 0;
37ddcaf6 794 scm_gc_yield_1 = scm_gc_yield;
8b0d194f
MD
795 scm_gc_yield = (scm_cells_allocated
796 + master_cells_allocated (&scm_master_freelist)
797 + master_cells_allocated (&scm_master_freelist2));
0f2d19dd
JB
798 scm_gc_malloc_collected = 0;
799 scm_gc_ports_collected = 0;
800}
801
939794ce 802
c9b0d4b0
ML
803static void
804gc_end_stats ()
0f2d19dd 805{
c9b0d4b0
ML
806 unsigned long t = scm_c_get_internal_run_time ();
807 scm_gc_time_taken += (t - t_before_gc);
808 scm_gc_sweep_time_taken += (t - t_before_sweep);
809 ++scm_gc_times;
810
811 scm_gc_cells_marked_acc += scm_gc_cells_swept - scm_gc_cells_collected;
812 scm_gc_cells_swept_acc += scm_gc_cells_swept;
0f2d19dd
JB
813}
814
815
a00c95d9 816SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
1bbd0b84 817 (SCM obj),
b380b885
MD
818 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
819 "returned by this function for @var{obj}")
1bbd0b84 820#define FUNC_NAME s_scm_object_address
0f2d19dd 821{
54778cd3 822 return scm_ulong2num ((unsigned long) SCM_UNPACK (obj));
0f2d19dd 823}
1bbd0b84 824#undef FUNC_NAME
0f2d19dd
JB
825
826
a00c95d9 827SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
1bbd0b84 828 (),
b380b885
MD
829 "Scans all of SCM objects and reclaims for further use those that are\n"
830 "no longer accessible.")
1bbd0b84 831#define FUNC_NAME s_scm_gc
0f2d19dd
JB
832{
833 SCM_DEFER_INTS;
834 scm_igc ("call");
835 SCM_ALLOW_INTS;
836 return SCM_UNSPECIFIED;
837}
1bbd0b84 838#undef FUNC_NAME
0f2d19dd
JB
839
840
841\f
842/* {C Interface For When GC is Triggered}
843 */
844
b37fe1c5 845static void
8fef55a8 846adjust_min_yield (scm_freelist_t *freelist)
b37fe1c5 847{
8fef55a8 848 /* min yield is adjusted upwards so that next predicted total yield
bda1446c 849 * (allocated cells actually freed by GC) becomes
8fef55a8
MD
850 * `min_yield_fraction' of total heap size. Note, however, that
851 * the absolute value of min_yield will correspond to `collected'
bda1446c 852 * on one master (the one which currently is triggering GC).
b37fe1c5 853 *
bda1446c
MD
854 * The reason why we look at total yield instead of cells collected
855 * on one list is that we want to take other freelists into account.
856 * On this freelist, we know that (local) yield = collected cells,
857 * but that's probably not the case on the other lists.
b37fe1c5
MD
858 *
859 * (We might consider computing a better prediction, for example
860 * by computing an average over multiple GC:s.)
861 */
8fef55a8 862 if (freelist->min_yield_fraction)
b37fe1c5 863 {
37ddcaf6 864 /* Pick largest of last two yields. */
8fef55a8
MD
865 int delta = ((SCM_HEAP_SIZE * freelist->min_yield_fraction / 100)
866 - (long) SCM_MAX (scm_gc_yield_1, scm_gc_yield));
b37fe1c5
MD
867#ifdef DEBUGINFO
868 fprintf (stderr, " after GC = %d, delta = %d\n",
869 scm_cells_allocated,
870 delta);
871#endif
872 if (delta > 0)
8fef55a8 873 freelist->min_yield += delta;
b37fe1c5
MD
874 }
875}
876
b6efc951 877
4a4c9785 878/* When we get POSIX threads support, the master will be global and
4c48ba06
MD
879 * common while the freelist will be individual for each thread.
880 */
4a4c9785
MD
881
882SCM
883scm_gc_for_newcell (scm_freelist_t *master, SCM *freelist)
884{
885 SCM cell;
886 ++scm_ints_disabled;
4c48ba06
MD
887 do
888 {
c7387918 889 if (SCM_NULLP (master->clusters))
4c48ba06 890 {
150c200b 891 if (master->grow_heap_p || scm_block_gc)
4c48ba06 892 {
b6efc951
DH
893 /* In order to reduce gc frequency, try to allocate a new heap
894 * segment first, even if gc might find some free cells. If we
895 * can't obtain a new heap segment, we will try gc later.
896 */
4c48ba06 897 master->grow_heap_p = 0;
b6efc951 898 alloc_some_heap (master, return_on_error);
4c48ba06 899 }
b6efc951 900 if (SCM_NULLP (master->clusters))
b37fe1c5 901 {
b6efc951
DH
902 /* The heap was not grown, either because it wasn't scheduled to
903 * grow, or because there was not enough memory available. In
904 * both cases we have to try gc to get some free cells.
905 */
37ddcaf6
MD
906#ifdef DEBUGINFO
907 fprintf (stderr, "allocated = %d, ",
908 scm_cells_allocated
909 + master_cells_allocated (&scm_master_freelist)
910 + master_cells_allocated (&scm_master_freelist2));
911#endif
b37fe1c5 912 scm_igc ("cells");
8fef55a8 913 adjust_min_yield (master);
c7387918
DH
914 if (SCM_NULLP (master->clusters))
915 {
b6efc951
DH
916 /* gc could not free any cells. Now, we _must_ allocate a
917 * new heap segment, because there is no other possibility
918 * to provide a new cell for the caller.
919 */
920 alloc_some_heap (master, abort_on_error);
c7387918 921 }
b37fe1c5 922 }
4c48ba06
MD
923 }
924 cell = SCM_CAR (master->clusters);
925 master->clusters = SCM_CDR (master->clusters);
b37fe1c5 926 ++master->clusters_allocated;
4c48ba06
MD
927 }
928 while (SCM_NULLP (cell));
d6884e63
ML
929
930#ifdef GUILE_DEBUG_FREELIST
931 scm_check_freelist (cell);
932#endif
933
4a4c9785 934 --scm_ints_disabled;
3f5d82cd 935 *freelist = SCM_FREE_CELL_CDR (cell);
4a4c9785
MD
936 return cell;
937}
938
b6efc951 939
4c48ba06
MD
940#if 0
941/* This is a support routine which can be used to reserve a cluster
942 * for some special use, such as debugging. It won't be useful until
943 * free cells are preserved between garbage collections.
944 */
945
946void
947scm_alloc_cluster (scm_freelist_t *master)
948{
949 SCM freelist, cell;
950 cell = scm_gc_for_newcell (master, &freelist);
951 SCM_SETCDR (cell, freelist);
952 return cell;
953}
954#endif
955
801cb5e7
MD
956
957scm_c_hook_t scm_before_gc_c_hook;
958scm_c_hook_t scm_before_mark_c_hook;
959scm_c_hook_t scm_before_sweep_c_hook;
960scm_c_hook_t scm_after_sweep_c_hook;
961scm_c_hook_t scm_after_gc_c_hook;
962
b6efc951 963
0f2d19dd 964void
1bbd0b84 965scm_igc (const char *what)
0f2d19dd
JB
966{
967 int j;
968
406c7d90 969 ++scm_gc_running_p;
801cb5e7 970 scm_c_hook_run (&scm_before_gc_c_hook, 0);
4c48ba06
MD
971#ifdef DEBUGINFO
972 fprintf (stderr,
973 SCM_NULLP (scm_freelist)
974 ? "*"
975 : (SCM_NULLP (scm_freelist2) ? "o" : "m"));
976#endif
42db06f0
MD
977#ifdef USE_THREADS
978 /* During the critical section, only the current thread may run. */
979 SCM_THREAD_CRITICAL_SECTION_START;
980#endif
981
e242dfd2 982 /* fprintf (stderr, "gc: %s\n", what); */
c68296f8 983
ab4bef85
JB
984 if (!scm_stack_base || scm_block_gc)
985 {
406c7d90 986 --scm_gc_running_p;
ab4bef85
JB
987 return;
988 }
989
c9b0d4b0
ML
990 gc_start_stats (what);
991
a5c314c8
JB
992 if (scm_mallocated < 0)
993 /* The byte count of allocated objects has underflowed. This is
994 probably because you forgot to report the sizes of objects you
995 have allocated, by calling scm_done_malloc or some such. When
996 the GC freed them, it subtracted their size from
997 scm_mallocated, which underflowed. */
998 abort ();
c45acc34 999
ab4bef85
JB
1000 if (scm_gc_heap_lock)
1001 /* We've invoked the collector while a GC is already in progress.
1002 That should never happen. */
1003 abort ();
0f2d19dd
JB
1004
1005 ++scm_gc_heap_lock;
ab4bef85 1006
0f2d19dd
JB
1007 /* flush dead entries from the continuation stack */
1008 {
1009 int x;
1010 int bound;
1011 SCM * elts;
1012 elts = SCM_VELTS (scm_continuation_stack);
b5c2579a 1013 bound = SCM_VECTOR_LENGTH (scm_continuation_stack);
0f2d19dd
JB
1014 x = SCM_INUM (scm_continuation_stack_ptr);
1015 while (x < bound)
1016 {
1017 elts[x] = SCM_BOOL_F;
1018 ++x;
1019 }
1020 }
1021
801cb5e7
MD
1022 scm_c_hook_run (&scm_before_mark_c_hook, 0);
1023
d6884e63
ML
1024 clear_mark_space ();
1025
42db06f0 1026#ifndef USE_THREADS
a00c95d9 1027
1b9be268 1028 /* Mark objects on the C stack. */
0f2d19dd
JB
1029 SCM_FLUSH_REGISTER_WINDOWS;
1030 /* This assumes that all registers are saved into the jmp_buf */
1031 setjmp (scm_save_regs_gc_mark);
1032 scm_mark_locations ((SCM_STACKITEM *) scm_save_regs_gc_mark,
ce4a361d
JB
1033 ( (scm_sizet) (sizeof (SCM_STACKITEM) - 1 +
1034 sizeof scm_save_regs_gc_mark)
1035 / sizeof (SCM_STACKITEM)));
0f2d19dd
JB
1036
1037 {
6ba93e5e 1038 scm_sizet stack_len = scm_stack_size (scm_stack_base);
0f2d19dd 1039#ifdef SCM_STACK_GROWS_UP
6ba93e5e 1040 scm_mark_locations (scm_stack_base, stack_len);
0f2d19dd 1041#else
6ba93e5e 1042 scm_mark_locations (scm_stack_base - stack_len, stack_len);
0f2d19dd
JB
1043#endif
1044 }
1045
42db06f0
MD
1046#else /* USE_THREADS */
1047
1048 /* Mark every thread's stack and registers */
945fec60 1049 scm_threads_mark_stacks ();
42db06f0
MD
1050
1051#endif /* USE_THREADS */
0f2d19dd 1052
0f2d19dd
JB
1053 j = SCM_NUM_PROTECTS;
1054 while (j--)
1055 scm_gc_mark (scm_sys_protects[j]);
1056
9de33deb
MD
1057 /* FIXME: we should have a means to register C functions to be run
1058 * in different phases of GC
a00c95d9 1059 */
9de33deb 1060 scm_mark_subr_table ();
a00c95d9 1061
42db06f0
MD
1062#ifndef USE_THREADS
1063 scm_gc_mark (scm_root->handle);
1064#endif
a00c95d9 1065
c9b0d4b0
ML
1066 t_before_sweep = scm_c_get_internal_run_time ();
1067 scm_gc_mark_time_taken += (t_before_sweep - t_before_gc);
1068
801cb5e7 1069 scm_c_hook_run (&scm_before_sweep_c_hook, 0);
0493cd89 1070
0f2d19dd
JB
1071 scm_gc_sweep ();
1072
801cb5e7
MD
1073 scm_c_hook_run (&scm_after_sweep_c_hook, 0);
1074
0f2d19dd 1075 --scm_gc_heap_lock;
c9b0d4b0 1076 gc_end_stats ();
42db06f0
MD
1077
1078#ifdef USE_THREADS
1079 SCM_THREAD_CRITICAL_SECTION_END;
1080#endif
801cb5e7 1081 scm_c_hook_run (&scm_after_gc_c_hook, 0);
406c7d90 1082 --scm_gc_running_p;
0f2d19dd
JB
1083}
1084
1085\f
939794ce 1086
a00c95d9 1087/* {Mark/Sweep}
0f2d19dd
JB
1088 */
1089
1090
1091
1092/* Mark an object precisely.
1093 */
a00c95d9 1094void
1bbd0b84 1095scm_gc_mark (SCM p)
acf4331f 1096#define FUNC_NAME "scm_gc_mark"
0f2d19dd
JB
1097{
1098 register long i;
1099 register SCM ptr;
1100
1101 ptr = p;
1102
1103gc_mark_loop:
1104 if (SCM_IMP (ptr))
1105 return;
1106
1107gc_mark_nimp:
3f5d82cd 1108 if (!SCM_CELLP (ptr))
acf4331f 1109 SCM_MISC_ERROR ("rogue pointer in heap", SCM_EOL);
0f2d19dd 1110
641d17a8 1111#if (defined (GUILE_DEBUG_FREELIST))
d6884e63
ML
1112
1113 if (SCM_GC_IN_CARD_HEADERP (SCM2PTR (ptr)))
1114 scm_wta (ptr, "rogue pointer in heap", NULL);
1115
1116#endif
1117
1118 if (SCM_GCMARKP (ptr))
1119 return;
1120
1121 SCM_SETGCMARK (ptr);
1122
0f2d19dd
JB
1123 switch (SCM_TYP7 (ptr))
1124 {
1125 case scm_tcs_cons_nimcar:
d6884e63 1126 if (SCM_IMP (SCM_CDR (ptr)))
0f2d19dd
JB
1127 {
1128 ptr = SCM_CAR (ptr);
1129 goto gc_mark_nimp;
1130 }
1131 scm_gc_mark (SCM_CAR (ptr));
d6884e63 1132 ptr = SCM_CDR (ptr);
0f2d19dd
JB
1133 goto gc_mark_nimp;
1134 case scm_tcs_cons_imcar:
d6884e63 1135 ptr = SCM_CDR (ptr);
acb0a19c 1136 goto gc_mark_loop;
e641afaf 1137 case scm_tc7_pws:
54778cd3 1138 scm_gc_mark (SCM_CELL_OBJECT_2 (ptr));
d6884e63 1139 ptr = SCM_CDR (ptr);
0f2d19dd
JB
1140 goto gc_mark_loop;
1141 case scm_tcs_cons_gloc:
0f2d19dd 1142 {
c8045e8d
DH
1143 /* Dirk:FIXME:: The following code is super ugly: ptr may be a struct
1144 * or a gloc. If it is a gloc, the cell word #0 of ptr is a pointer
1145 * to a heap cell. If it is a struct, the cell word #0 of ptr is a
1146 * pointer to a struct vtable data region. The fact that these are
1147 * accessed in the same way restricts the possibilites to change the
9d47a1e6 1148 * data layout of structs or heap cells.
c8045e8d
DH
1149 */
1150 scm_bits_t word0 = SCM_CELL_WORD_0 (ptr) - scm_tc3_cons_gloc;
1151 scm_bits_t * vtable_data = (scm_bits_t *) word0; /* access as struct */
7445e0e8 1152 if (vtable_data [scm_vtable_index_vcell] != 0)
0f2d19dd 1153 {
d6884e63
ML
1154 /* ptr is a gloc */
1155 SCM gloc_car = SCM_PACK (word0);
1156 scm_gc_mark (gloc_car);
1157 ptr = SCM_CDR (ptr);
1158 goto gc_mark_loop;
1159 }
1160 else
1161 {
1162 /* ptr is a struct */
1163 SCM layout = SCM_PACK (vtable_data [scm_vtable_index_layout]);
b5c2579a 1164 int len = SCM_SYMBOL_LENGTH (layout);
06ee04b2 1165 char * fields_desc = SCM_SYMBOL_CHARS (layout);
d6884e63 1166 scm_bits_t * struct_data = (scm_bits_t *) SCM_STRUCT_DATA (ptr);
7bb8eac7 1167
d6884e63
ML
1168 if (vtable_data[scm_struct_i_flags] & SCM_STRUCTF_ENTITY)
1169 {
1170 scm_gc_mark (SCM_PACK (struct_data[scm_struct_i_procedure]));
1171 scm_gc_mark (SCM_PACK (struct_data[scm_struct_i_setter]));
1172 }
1173 if (len)
1174 {
1175 int x;
7bb8eac7 1176
d6884e63
ML
1177 for (x = 0; x < len - 2; x += 2, ++struct_data)
1178 if (fields_desc[x] == 'p')
1179 scm_gc_mark (SCM_PACK (*struct_data));
1180 if (fields_desc[x] == 'p')
1181 {
1182 if (SCM_LAYOUT_TAILP (fields_desc[x + 1]))
1183 for (x = *struct_data; x; --x)
1184 scm_gc_mark (SCM_PACK (*++struct_data));
1185 else
1186 scm_gc_mark (SCM_PACK (*struct_data));
1187 }
1188 }
1189 /* mark vtable */
1190 ptr = SCM_PACK (vtable_data [scm_vtable_index_vtable]);
1191 goto gc_mark_loop;
0f2d19dd
JB
1192 }
1193 }
1194 break;
1195 case scm_tcs_closures:
0f2d19dd
JB
1196 if (SCM_IMP (SCM_CDR (ptr)))
1197 {
1198 ptr = SCM_CLOSCAR (ptr);
1199 goto gc_mark_nimp;
1200 }
1201 scm_gc_mark (SCM_CLOSCAR (ptr));
d6884e63 1202 ptr = SCM_CDR (ptr);
0f2d19dd
JB
1203 goto gc_mark_nimp;
1204 case scm_tc7_vector:
b5c2579a
DH
1205 i = SCM_VECTOR_LENGTH (ptr);
1206 if (i == 0)
1207 break;
1208 while (--i > 0)
1209 if (SCM_NIMP (SCM_VELTS (ptr)[i]))
1210 scm_gc_mark (SCM_VELTS (ptr)[i]);
1211 ptr = SCM_VELTS (ptr)[0];
1212 goto gc_mark_loop;
0f2d19dd
JB
1213#ifdef CCLO
1214 case scm_tc7_cclo:
362306b9
DH
1215 {
1216 unsigned long int i = SCM_CCLO_LENGTH (ptr);
1217 unsigned long int j;
1218 for (j = 1; j != i; ++j)
1219 {
1220 SCM obj = SCM_CCLO_REF (ptr, j);
1221 if (!SCM_IMP (obj))
1222 scm_gc_mark (obj);
1223 }
1224 ptr = SCM_CCLO_REF (ptr, 0);
1225 goto gc_mark_loop;
1226 }
b5c2579a 1227#endif
afe5177e 1228#ifdef HAVE_ARRAYS
0f2d19dd
JB
1229 case scm_tc7_bvect:
1230 case scm_tc7_byvect:
1231 case scm_tc7_ivect:
1232 case scm_tc7_uvect:
1233 case scm_tc7_fvect:
1234 case scm_tc7_dvect:
1235 case scm_tc7_cvect:
1236 case scm_tc7_svect:
5c11cc9d 1237#ifdef HAVE_LONG_LONGS
0f2d19dd
JB
1238 case scm_tc7_llvect:
1239#endif
afe5177e 1240#endif
0f2d19dd 1241 case scm_tc7_string:
0f2d19dd
JB
1242 break;
1243
1244 case scm_tc7_substring:
0f2d19dd
JB
1245 ptr = SCM_CDR (ptr);
1246 goto gc_mark_loop;
1247
1248 case scm_tc7_wvect:
ab4bef85
JB
1249 SCM_WVECT_GC_CHAIN (ptr) = scm_weak_vectors;
1250 scm_weak_vectors = ptr;
0f2d19dd
JB
1251 if (SCM_IS_WHVEC_ANY (ptr))
1252 {
1253 int x;
1254 int len;
1255 int weak_keys;
1256 int weak_values;
1257
b5c2579a 1258 len = SCM_VECTOR_LENGTH (ptr);
0f2d19dd
JB
1259 weak_keys = SCM_IS_WHVEC (ptr) || SCM_IS_WHVEC_B (ptr);
1260 weak_values = SCM_IS_WHVEC_V (ptr) || SCM_IS_WHVEC_B (ptr);
a00c95d9 1261
0f2d19dd
JB
1262 for (x = 0; x < len; ++x)
1263 {
1264 SCM alist;
1265 alist = SCM_VELTS (ptr)[x];
46408039
JB
1266
1267 /* mark everything on the alist except the keys or
1268 * values, according to weak_values and weak_keys. */
0b5f3f34 1269 while ( SCM_CONSP (alist)
0f2d19dd 1270 && !SCM_GCMARKP (alist)
0f2d19dd
JB
1271 && SCM_CONSP (SCM_CAR (alist)))
1272 {
1273 SCM kvpair;
1274 SCM next_alist;
1275
1276 kvpair = SCM_CAR (alist);
1277 next_alist = SCM_CDR (alist);
a00c95d9 1278 /*
0f2d19dd
JB
1279 * Do not do this:
1280 * SCM_SETGCMARK (alist);
1281 * SCM_SETGCMARK (kvpair);
1282 *
1283 * It may be that either the key or value is protected by
1284 * an escaped reference to part of the spine of this alist.
1285 * If we mark the spine here, and only mark one or neither of the
1286 * key and value, they may never be properly marked.
1287 * This leads to a horrible situation in which an alist containing
1288 * freelist cells is exported.
1289 *
1290 * So only mark the spines of these arrays last of all marking.
1291 * If somebody confuses us by constructing a weak vector
1292 * with a circular alist then we are hosed, but at least we
1293 * won't prematurely drop table entries.
1294 */
1295 if (!weak_keys)
1296 scm_gc_mark (SCM_CAR (kvpair));
1297 if (!weak_values)
d6884e63 1298 scm_gc_mark (SCM_CDR (kvpair));
0f2d19dd
JB
1299 alist = next_alist;
1300 }
1301 if (SCM_NIMP (alist))
1302 scm_gc_mark (alist);
1303 }
1304 }
1305 break;
1306
28b06554
DH
1307 case scm_tc7_symbol:
1308 ptr = SCM_PROP_SLOTS (ptr);
0f2d19dd 1309 goto gc_mark_loop;
0f2d19dd 1310 case scm_tcs_subrs:
9de33deb 1311 break;
0f2d19dd
JB
1312 case scm_tc7_port:
1313 i = SCM_PTOBNUM (ptr);
1314 if (!(i < scm_numptob))
1315 goto def;
ebf7394e 1316 if (SCM_PTAB_ENTRY(ptr))
b24b5e13 1317 scm_gc_mark (SCM_FILENAME (ptr));
dc53f026
JB
1318 if (scm_ptobs[i].mark)
1319 {
1320 ptr = (scm_ptobs[i].mark) (ptr);
1321 goto gc_mark_loop;
1322 }
1323 else
1324 return;
0f2d19dd
JB
1325 break;
1326 case scm_tc7_smob:
d6884e63 1327 switch (SCM_TYP16 (ptr))
0f2d19dd
JB
1328 { /* should be faster than going through scm_smobs */
1329 case scm_tc_free_cell:
1330 /* printf("found free_cell %X ", ptr); fflush(stdout); */
acb0a19c
MD
1331 case scm_tc16_big:
1332 case scm_tc16_real:
1333 case scm_tc16_complex:
0f2d19dd
JB
1334 break;
1335 default:
1336 i = SCM_SMOBNUM (ptr);
1337 if (!(i < scm_numsmob))
1338 goto def;
dc53f026
JB
1339 if (scm_smobs[i].mark)
1340 {
1341 ptr = (scm_smobs[i].mark) (ptr);
1342 goto gc_mark_loop;
1343 }
1344 else
1345 return;
0f2d19dd
JB
1346 }
1347 break;
1348 default:
acf4331f
DH
1349 def:
1350 SCM_MISC_ERROR ("unknown type", SCM_EOL);
0f2d19dd
JB
1351 }
1352}
acf4331f 1353#undef FUNC_NAME
0f2d19dd
JB
1354
1355
1356/* Mark a Region Conservatively
1357 */
1358
a00c95d9 1359void
6e8d25a6 1360scm_mark_locations (SCM_STACKITEM x[], scm_sizet n)
0f2d19dd 1361{
c4da09e2 1362 unsigned long m;
0f2d19dd 1363
c4da09e2
DH
1364 for (m = 0; m < n; ++m)
1365 {
1366 SCM obj = * (SCM *) &x[m];
1367 if (SCM_CELLP (obj))
1368 {
1369 SCM_CELLPTR ptr = SCM2PTR (obj);
1370 int i = 0;
1371 int j = scm_n_heap_segs - 1;
1372 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], ptr)
1373 && SCM_PTR_GT (scm_heap_table[j].bounds[1], ptr))
1374 {
1375 while (i <= j)
1376 {
1377 int seg_id;
1378 seg_id = -1;
1379 if ((i == j)
1380 || SCM_PTR_GT (scm_heap_table[i].bounds[1], ptr))
1381 seg_id = i;
1382 else if (SCM_PTR_LE (scm_heap_table[j].bounds[0], ptr))
1383 seg_id = j;
1384 else
1385 {
1386 int k;
1387 k = (i + j) / 2;
1388 if (k == i)
1389 break;
1390 if (SCM_PTR_GT (scm_heap_table[k].bounds[1], ptr))
1391 {
1392 j = k;
1393 ++i;
1394 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], ptr))
1395 continue;
1396 else
1397 break;
1398 }
1399 else if (SCM_PTR_LE (scm_heap_table[k].bounds[0], ptr))
1400 {
1401 i = k;
1402 --j;
1403 if (SCM_PTR_GT (scm_heap_table[j].bounds[1], ptr))
1404 continue;
1405 else
1406 break;
1407 }
1408 }
7bb8eac7 1409
d6884e63
ML
1410 if (SCM_GC_IN_CARD_HEADERP (ptr))
1411 break;
7bb8eac7 1412
c4da09e2
DH
1413 if (scm_heap_table[seg_id].span == 1
1414 || SCM_DOUBLE_CELLP (obj))
3731149d
ML
1415 scm_gc_mark (obj);
1416
c4da09e2
DH
1417 break;
1418 }
1419 }
1420 }
1421 }
0f2d19dd
JB
1422}
1423
1424
1a548472
DH
1425/* The function scm_cellp determines whether an SCM value can be regarded as a
1426 * pointer to a cell on the heap. Binary search is used in order to determine
1427 * the heap segment that contains the cell.
1428 */
2e11a577 1429int
6e8d25a6 1430scm_cellp (SCM value)
2e11a577 1431{
1a548472
DH
1432 if (SCM_CELLP (value)) {
1433 scm_cell * ptr = SCM2PTR (value);
1434 unsigned int i = 0;
1435 unsigned int j = scm_n_heap_segs - 1;
1436
1437 while (i < j) {
1438 int k = (i + j) / 2;
1439 if (SCM_PTR_GT (scm_heap_table[k].bounds[1], ptr)) {
1440 j = k;
1441 } else if (SCM_PTR_LE (scm_heap_table[k].bounds[0], ptr)) {
1442 i = k + 1;
1443 }
1444 }
2e11a577 1445
9d47a1e6 1446 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], ptr)
1a548472 1447 && SCM_PTR_GT (scm_heap_table[i].bounds[1], ptr)
d6884e63
ML
1448 && (scm_heap_table[i].span == 1 || SCM_DOUBLE_CELLP (value))
1449 && !SCM_GC_IN_CARD_HEADERP (ptr)
1450 )
1a548472 1451 return 1;
d6884e63 1452 else
1a548472 1453 return 0;
d6884e63 1454 } else
1a548472 1455 return 0;
2e11a577
MD
1456}
1457
1458
4c48ba06
MD
1459static void
1460gc_sweep_freelist_start (scm_freelist_t *freelist)
1461{
1462 freelist->cells = SCM_EOL;
1463 freelist->left_to_collect = freelist->cluster_size;
b37fe1c5 1464 freelist->clusters_allocated = 0;
4c48ba06
MD
1465 freelist->clusters = SCM_EOL;
1466 freelist->clustertail = &freelist->clusters;
1811ebce 1467 freelist->collected_1 = freelist->collected;
4c48ba06
MD
1468 freelist->collected = 0;
1469}
1470
1471static void
1472gc_sweep_freelist_finish (scm_freelist_t *freelist)
1473{
1811ebce 1474 int collected;
4c48ba06 1475 *freelist->clustertail = freelist->cells;
3f5d82cd 1476 if (!SCM_NULLP (freelist->cells))
4c48ba06
MD
1477 {
1478 SCM c = freelist->cells;
1479 SCM_SETCAR (c, SCM_CDR (c));
1480 SCM_SETCDR (c, SCM_EOL);
1481 freelist->collected +=
1482 freelist->span * (freelist->cluster_size - freelist->left_to_collect);
1483 }
b37fe1c5 1484 scm_gc_cells_collected += freelist->collected;
a00c95d9 1485
8fef55a8 1486 /* Although freelist->min_yield is used to test freelist->collected
7dbff8b1 1487 * (which is the local GC yield for freelist), it is adjusted so
8fef55a8 1488 * that *total* yield is freelist->min_yield_fraction of total heap
7dbff8b1
MD
1489 * size. This means that a too low yield is compensated by more
1490 * heap on the list which is currently doing most work, which is
1491 * just what we want.
1492 */
1811ebce 1493 collected = SCM_MAX (freelist->collected_1, freelist->collected);
8fef55a8 1494 freelist->grow_heap_p = (collected < freelist->min_yield);
4c48ba06 1495}
0f2d19dd 1496
d6884e63
ML
1497#define NEXT_DATA_CELL(ptr, span) \
1498 do { \
1499 scm_cell *nxt__ = CELL_UP ((char *) (ptr) + 1, (span)); \
1500 (ptr) = (SCM_GC_IN_CARD_HEADERP (nxt__) ? \
1501 CELL_UP (SCM_GC_CELL_CARD (nxt__) + SCM_GC_CARD_N_HEADER_CELLS, span) \
1502 : nxt__); \
1503 } while (0)
1504
a00c95d9 1505void
0f2d19dd 1506scm_gc_sweep ()
acf4331f 1507#define FUNC_NAME "scm_gc_sweep"
0f2d19dd
JB
1508{
1509 register SCM_CELLPTR ptr;
0f2d19dd 1510 register SCM nfreelist;
4c48ba06 1511 register scm_freelist_t *freelist;
0f2d19dd 1512 register long m;
0f2d19dd 1513 register int span;
15e9d186 1514 long i;
0f2d19dd
JB
1515 scm_sizet seg_size;
1516
0f2d19dd 1517 m = 0;
0f2d19dd 1518
4c48ba06
MD
1519 gc_sweep_freelist_start (&scm_master_freelist);
1520 gc_sweep_freelist_start (&scm_master_freelist2);
a00c95d9 1521
cf2d30f6 1522 for (i = 0; i < scm_n_heap_segs; i++)
0f2d19dd 1523 {
4c48ba06 1524 register unsigned int left_to_collect;
4c48ba06 1525 register scm_sizet j;
15e9d186 1526
cf2d30f6
JB
1527 /* Unmarked cells go onto the front of the freelist this heap
1528 segment points to. Rather than updating the real freelist
1529 pointer as we go along, we accumulate the new head in
1530 nfreelist. Then, if it turns out that the entire segment is
1531 free, we free (i.e., malloc's free) the whole segment, and
1532 simply don't assign nfreelist back into the real freelist. */
4c48ba06
MD
1533 freelist = scm_heap_table[i].freelist;
1534 nfreelist = freelist->cells;
4c48ba06 1535 left_to_collect = freelist->left_to_collect;
945fec60 1536 span = scm_heap_table[i].span;
cf2d30f6 1537
a00c95d9
ML
1538 ptr = CELL_UP (scm_heap_table[i].bounds[0], span);
1539 seg_size = CELL_DN (scm_heap_table[i].bounds[1], span) - ptr;
c9b0d4b0 1540
d6884e63
ML
1541 /* use only data cells in seg_size */
1542 seg_size = (seg_size / SCM_GC_CARD_N_CELLS) * (SCM_GC_CARD_N_DATA_CELLS / span) * span;
1543
c9b0d4b0
ML
1544 scm_gc_cells_swept += seg_size;
1545
0f2d19dd
JB
1546 for (j = seg_size + span; j -= span; ptr += span)
1547 {
d6884e63 1548 SCM scmptr;
96f6f4ae 1549
d6884e63 1550 if (SCM_GC_IN_CARD_HEADERP (ptr))
0f2d19dd 1551 {
d6884e63
ML
1552 SCM_CELLPTR nxt;
1553
1554 /* cheat here */
1555 nxt = ptr;
1556 NEXT_DATA_CELL (nxt, span);
1557 j += span;
1558
1559 ptr = nxt - span;
1560 continue;
1561 }
1562
1563 scmptr = PTR2SCM (ptr);
1564
1565 if (SCM_GCMARKP (scmptr))
1566 continue;
7bb8eac7 1567
d6884e63
ML
1568 switch SCM_TYP7 (scmptr)
1569 {
0f2d19dd 1570 case scm_tcs_cons_gloc:
0f2d19dd 1571 {
c8045e8d
DH
1572 /* Dirk:FIXME:: Again, super ugly code: scmptr may be a
1573 * struct or a gloc. See the corresponding comment in
1574 * scm_gc_mark.
1575 */
7445e0e8
MD
1576 scm_bits_t word0 = (SCM_CELL_WORD_0 (scmptr)
1577 - scm_tc3_cons_gloc);
1578 /* access as struct */
1579 scm_bits_t * vtable_data = (scm_bits_t *) word0;
d6884e63 1580 if (vtable_data[scm_vtable_index_vcell] == 0)
0f2d19dd 1581 {
7445e0e8
MD
1582 /* Structs need to be freed in a special order.
1583 * This is handled by GC C hooks in struct.c.
1584 */
1585 SCM_SET_STRUCT_GC_CHAIN (scmptr, scm_structs_to_free);
1586 scm_structs_to_free = scmptr;
7bb8eac7 1587 continue;
c8045e8d 1588 }
7445e0e8 1589 /* fall through so that scmptr gets collected */
0f2d19dd
JB
1590 }
1591 break;
1592 case scm_tcs_cons_imcar:
1593 case scm_tcs_cons_nimcar:
1594 case scm_tcs_closures:
e641afaf 1595 case scm_tc7_pws:
0f2d19dd
JB
1596 break;
1597 case scm_tc7_wvect:
b5c2579a 1598 m += (2 + SCM_VECTOR_LENGTH (scmptr)) * sizeof (SCM);
06ee04b2 1599 scm_must_free (SCM_VECTOR_BASE (scmptr) - 2);
d6884e63 1600 break;
0f2d19dd 1601 case scm_tc7_vector:
1b9be268
DH
1602 {
1603 unsigned long int length = SCM_VECTOR_LENGTH (scmptr);
1604 if (length > 0)
1605 {
1606 m += length * sizeof (scm_bits_t);
1607 scm_must_free (SCM_VECTOR_BASE (scmptr));
1608 }
1609 break;
1610 }
0f2d19dd
JB
1611#ifdef CCLO
1612 case scm_tc7_cclo:
b5c2579a 1613 m += (SCM_CCLO_LENGTH (scmptr) * sizeof (SCM));
06ee04b2 1614 scm_must_free (SCM_CCLO_BASE (scmptr));
0f2d19dd 1615 break;
06ee04b2 1616#endif
afe5177e 1617#ifdef HAVE_ARRAYS
0f2d19dd 1618 case scm_tc7_bvect:
93778877
DH
1619 {
1620 unsigned long int length = SCM_BITVECTOR_LENGTH (scmptr);
1621 if (length > 0)
1622 {
1623 m += sizeof (long) * ((length + SCM_LONG_BIT - 1) / SCM_LONG_BIT);
1624 scm_must_free (SCM_BITVECTOR_BASE (scmptr));
1625 }
1626 }
06ee04b2 1627 break;
0f2d19dd 1628 case scm_tc7_byvect:
0f2d19dd
JB
1629 case scm_tc7_ivect:
1630 case scm_tc7_uvect:
0f2d19dd 1631 case scm_tc7_svect:
5c11cc9d 1632#ifdef HAVE_LONG_LONGS
0f2d19dd 1633 case scm_tc7_llvect:
0f2d19dd
JB
1634#endif
1635 case scm_tc7_fvect:
0f2d19dd 1636 case scm_tc7_dvect:
0f2d19dd 1637 case scm_tc7_cvect:
d1ca2c64 1638 m += SCM_UVECTOR_LENGTH (scmptr) * scm_uniform_element_size (scmptr);
06ee04b2
DH
1639 scm_must_free (SCM_UVECTOR_BASE (scmptr));
1640 break;
afe5177e 1641#endif
0f2d19dd 1642 case scm_tc7_substring:
0f2d19dd
JB
1643 break;
1644 case scm_tc7_string:
b5c2579a 1645 m += SCM_STRING_LENGTH (scmptr) + 1;
f151f912
DH
1646 scm_must_free (SCM_STRING_CHARS (scmptr));
1647 break;
28b06554 1648 case scm_tc7_symbol:
b5c2579a 1649 m += SCM_SYMBOL_LENGTH (scmptr) + 1;
f151f912 1650 scm_must_free (SCM_SYMBOL_CHARS (scmptr));
0f2d19dd 1651 break;
0f2d19dd 1652 case scm_tcs_subrs:
d6884e63 1653 /* the various "subrs" (primitives) are never freed */
0f2d19dd
JB
1654 continue;
1655 case scm_tc7_port:
0f2d19dd
JB
1656 if SCM_OPENP (scmptr)
1657 {
1658 int k = SCM_PTOBNUM (scmptr);
1659 if (!(k < scm_numptob))
1660 goto sweeperr;
1661 /* Keep "revealed" ports alive. */
945fec60 1662 if (scm_revealed_count (scmptr) > 0)
0f2d19dd
JB
1663 continue;
1664 /* Yes, I really do mean scm_ptobs[k].free */
1665 /* rather than ftobs[k].close. .close */
1666 /* is for explicit CLOSE-PORT by user */
84af0382 1667 m += (scm_ptobs[k].free) (scmptr);
0f2d19dd
JB
1668 SCM_SETSTREAM (scmptr, 0);
1669 scm_remove_from_port_table (scmptr);
1670 scm_gc_ports_collected++;
24e68a57 1671 SCM_SETAND_CAR (scmptr, ~SCM_OPN);
0f2d19dd
JB
1672 }
1673 break;
1674 case scm_tc7_smob:
d6884e63 1675 switch SCM_TYP16 (scmptr)
0f2d19dd
JB
1676 {
1677 case scm_tc_free_cell:
acb0a19c 1678 case scm_tc16_real:
0f2d19dd
JB
1679 break;
1680#ifdef SCM_BIGDIG
acb0a19c 1681 case scm_tc16_big:
0f2d19dd 1682 m += (SCM_NUMDIGS (scmptr) * SCM_BITSPERDIG / SCM_CHAR_BIT);
06ee04b2
DH
1683 scm_must_free (SCM_BDIGITS (scmptr));
1684 break;
0f2d19dd 1685#endif /* def SCM_BIGDIG */
acb0a19c 1686 case scm_tc16_complex:
06ee04b2 1687 m += sizeof (scm_complex_t);
405aaef9 1688 scm_must_free (SCM_COMPLEX_MEM (scmptr));
06ee04b2 1689 break;
0f2d19dd 1690 default:
0f2d19dd
JB
1691 {
1692 int k;
1693 k = SCM_SMOBNUM (scmptr);
1694 if (!(k < scm_numsmob))
1695 goto sweeperr;
c8045e8d 1696 m += (scm_smobs[k].free) (scmptr);
0f2d19dd
JB
1697 break;
1698 }
1699 }
1700 break;
1701 default:
acf4331f
DH
1702 sweeperr:
1703 SCM_MISC_ERROR ("unknown type", SCM_EOL);
0f2d19dd 1704 }
7bb8eac7 1705
4c48ba06 1706 if (!--left_to_collect)
4a4c9785
MD
1707 {
1708 SCM_SETCAR (scmptr, nfreelist);
4c48ba06
MD
1709 *freelist->clustertail = scmptr;
1710 freelist->clustertail = SCM_CDRLOC (scmptr);
a00c95d9 1711
4a4c9785 1712 nfreelist = SCM_EOL;
4c48ba06
MD
1713 freelist->collected += span * freelist->cluster_size;
1714 left_to_collect = freelist->cluster_size;
4a4c9785
MD
1715 }
1716 else
4a4c9785
MD
1717 {
1718 /* Stick the new cell on the front of nfreelist. It's
1719 critical that we mark this cell as freed; otherwise, the
1720 conservative collector might trace it as some other type
1721 of object. */
54778cd3 1722 SCM_SET_CELL_TYPE (scmptr, scm_tc_free_cell);
3f5d82cd 1723 SCM_SET_FREE_CELL_CDR (scmptr, nfreelist);
4a4c9785
MD
1724 nfreelist = scmptr;
1725 }
0f2d19dd 1726 }
d6884e63 1727
0f2d19dd
JB
1728#ifdef GC_FREE_SEGMENTS
1729 if (n == seg_size)
1730 {
15e9d186
JB
1731 register long j;
1732
4c48ba06 1733 freelist->heap_size -= seg_size;
cf2d30f6
JB
1734 free ((char *) scm_heap_table[i].bounds[0]);
1735 scm_heap_table[i].bounds[0] = 0;
1736 for (j = i + 1; j < scm_n_heap_segs; j++)
0f2d19dd
JB
1737 scm_heap_table[j - 1] = scm_heap_table[j];
1738 scm_n_heap_segs -= 1;
cf2d30f6 1739 i--; /* We need to scan the segment just moved. */
0f2d19dd
JB
1740 }
1741 else
1742#endif /* ifdef GC_FREE_SEGMENTS */
4a4c9785
MD
1743 {
1744 /* Update the real freelist pointer to point to the head of
1745 the list of free cells we've built for this segment. */
4c48ba06 1746 freelist->cells = nfreelist;
4c48ba06 1747 freelist->left_to_collect = left_to_collect;
4a4c9785
MD
1748 }
1749
fca7547b 1750#ifdef GUILE_DEBUG_FREELIST
cf2d30f6
JB
1751 scm_map_free_list ();
1752#endif
4a4c9785 1753 }
a00c95d9 1754
4c48ba06
MD
1755 gc_sweep_freelist_finish (&scm_master_freelist);
1756 gc_sweep_freelist_finish (&scm_master_freelist2);
a00c95d9 1757
8ded62a3
MD
1758 /* When we move to POSIX threads private freelists should probably
1759 be GC-protected instead. */
1760 scm_freelist = SCM_EOL;
1761 scm_freelist2 = SCM_EOL;
a00c95d9 1762
b37fe1c5 1763 scm_cells_allocated = (SCM_HEAP_SIZE - scm_gc_cells_collected);
8b0d194f 1764 scm_gc_yield -= scm_cells_allocated;
0f2d19dd
JB
1765 scm_mallocated -= m;
1766 scm_gc_malloc_collected = m;
1767}
acf4331f 1768#undef FUNC_NAME
0f2d19dd
JB
1769
1770
1771\f
0f2d19dd
JB
1772/* {Front end to malloc}
1773 *
9d47a1e6
ML
1774 * scm_must_malloc, scm_must_realloc, scm_must_free, scm_done_malloc,
1775 * scm_done_free
0f2d19dd
JB
1776 *
1777 * These functions provide services comperable to malloc, realloc, and
1778 * free. They are for allocating malloced parts of scheme objects.
9d47a1e6 1779 * The primary purpose of the front end is to impose calls to gc. */
0f2d19dd 1780
bc9d9bb2 1781
0f2d19dd
JB
1782/* scm_must_malloc
1783 * Return newly malloced storage or throw an error.
1784 *
1785 * The parameter WHAT is a string for error reporting.
a00c95d9 1786 * If the threshold scm_mtrigger will be passed by this
0f2d19dd
JB
1787 * allocation, or if the first call to malloc fails,
1788 * garbage collect -- on the presumption that some objects
1789 * using malloced storage may be collected.
1790 *
1791 * The limit scm_mtrigger may be raised by this allocation.
1792 */
07806695 1793void *
e4ef2330 1794scm_must_malloc (scm_sizet size, const char *what)
0f2d19dd 1795{
07806695 1796 void *ptr;
15e9d186 1797 unsigned long nm = scm_mallocated + size;
e4ef2330
MD
1798
1799 if (nm <= scm_mtrigger)
0f2d19dd 1800 {
07806695 1801 SCM_SYSCALL (ptr = malloc (size));
0f2d19dd
JB
1802 if (NULL != ptr)
1803 {
1804 scm_mallocated = nm;
bc9d9bb2
MD
1805#ifdef GUILE_DEBUG_MALLOC
1806 scm_malloc_register (ptr, what);
1807#endif
0f2d19dd
JB
1808 return ptr;
1809 }
1810 }
6064dcc6 1811
0f2d19dd 1812 scm_igc (what);
e4ef2330 1813
0f2d19dd 1814 nm = scm_mallocated + size;
07806695 1815 SCM_SYSCALL (ptr = malloc (size));
0f2d19dd
JB
1816 if (NULL != ptr)
1817 {
1818 scm_mallocated = nm;
6064dcc6
MV
1819 if (nm > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS) {
1820 if (nm > scm_mtrigger)
1821 scm_mtrigger = nm + nm / 2;
1822 else
1823 scm_mtrigger += scm_mtrigger / 2;
1824 }
bc9d9bb2
MD
1825#ifdef GUILE_DEBUG_MALLOC
1826 scm_malloc_register (ptr, what);
1827#endif
1828
0f2d19dd
JB
1829 return ptr;
1830 }
e4ef2330 1831
acf4331f 1832 scm_memory_error (what);
0f2d19dd
JB
1833}
1834
1835
1836/* scm_must_realloc
1837 * is similar to scm_must_malloc.
1838 */
07806695
JB
1839void *
1840scm_must_realloc (void *where,
e4ef2330
MD
1841 scm_sizet old_size,
1842 scm_sizet size,
3eeba8d4 1843 const char *what)
0f2d19dd 1844{
07806695 1845 void *ptr;
e4ef2330
MD
1846 scm_sizet nm = scm_mallocated + size - old_size;
1847
1848 if (nm <= scm_mtrigger)
0f2d19dd 1849 {
07806695 1850 SCM_SYSCALL (ptr = realloc (where, size));
0f2d19dd
JB
1851 if (NULL != ptr)
1852 {
1853 scm_mallocated = nm;
bc9d9bb2
MD
1854#ifdef GUILE_DEBUG_MALLOC
1855 scm_malloc_reregister (where, ptr, what);
1856#endif
0f2d19dd
JB
1857 return ptr;
1858 }
1859 }
e4ef2330 1860
0f2d19dd 1861 scm_igc (what);
e4ef2330
MD
1862
1863 nm = scm_mallocated + size - old_size;
07806695 1864 SCM_SYSCALL (ptr = realloc (where, size));
0f2d19dd
JB
1865 if (NULL != ptr)
1866 {
1867 scm_mallocated = nm;
6064dcc6
MV
1868 if (nm > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS) {
1869 if (nm > scm_mtrigger)
1870 scm_mtrigger = nm + nm / 2;
1871 else
1872 scm_mtrigger += scm_mtrigger / 2;
1873 }
bc9d9bb2
MD
1874#ifdef GUILE_DEBUG_MALLOC
1875 scm_malloc_reregister (where, ptr, what);
1876#endif
0f2d19dd
JB
1877 return ptr;
1878 }
e4ef2330 1879
acf4331f 1880 scm_memory_error (what);
0f2d19dd
JB
1881}
1882
acf4331f 1883
a00c95d9 1884void
07806695 1885scm_must_free (void *obj)
acf4331f 1886#define FUNC_NAME "scm_must_free"
0f2d19dd 1887{
bc9d9bb2
MD
1888#ifdef GUILE_DEBUG_MALLOC
1889 scm_malloc_unregister (obj);
1890#endif
0f2d19dd
JB
1891 if (obj)
1892 free (obj);
1893 else
acf4331f 1894 SCM_MISC_ERROR ("freeing NULL pointer", SCM_EOL);
0f2d19dd 1895}
acf4331f
DH
1896#undef FUNC_NAME
1897
0f2d19dd 1898
c68296f8
MV
1899/* Announce that there has been some malloc done that will be freed
1900 * during gc. A typical use is for a smob that uses some malloced
1901 * memory but can not get it from scm_must_malloc (for whatever
1902 * reason). When a new object of this smob is created you call
1903 * scm_done_malloc with the size of the object. When your smob free
1904 * function is called, be sure to include this size in the return
9d47a1e6
ML
1905 * value.
1906 *
1907 * If you can't actually free the memory in the smob free function,
1908 * for whatever reason (like reference counting), you still can (and
1909 * should) report the amount of memory freed when you actually free it.
1910 * Do it by calling scm_done_malloc with the _negated_ size. Clever,
1911 * eh? Or even better, call scm_done_free. */
0f2d19dd 1912
c68296f8 1913void
6e8d25a6 1914scm_done_malloc (long size)
c68296f8
MV
1915{
1916 scm_mallocated += size;
1917
1918 if (scm_mallocated > scm_mtrigger)
1919 {
1920 scm_igc ("foreign mallocs");
1921 if (scm_mallocated > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS)
1922 {
1923 if (scm_mallocated > scm_mtrigger)
1924 scm_mtrigger = scm_mallocated + scm_mallocated / 2;
1925 else
1926 scm_mtrigger += scm_mtrigger / 2;
1927 }
1928 }
1929}
1930
9d47a1e6
ML
1931void
1932scm_done_free (long size)
1933{
1934 scm_mallocated -= size;
1935}
1936
c68296f8
MV
1937
1938\f
0f2d19dd
JB
1939/* {Heap Segments}
1940 *
1941 * Each heap segment is an array of objects of a particular size.
1942 * Every segment has an associated (possibly shared) freelist.
1943 * A table of segment records is kept that records the upper and
1944 * lower extents of the segment; this is used during the conservative
1945 * phase of gc to identify probably gc roots (because they point
c68296f8 1946 * into valid segments at reasonable offsets). */
0f2d19dd
JB
1947
1948/* scm_expmem
1949 * is true if the first segment was smaller than INIT_HEAP_SEG.
1950 * If scm_expmem is set to one, subsequent segment allocations will
1951 * allocate segments of size SCM_EXPHEAP(scm_heap_size).
1952 */
1953int scm_expmem = 0;
1954
4c48ba06
MD
1955scm_sizet scm_max_segment_size;
1956
0f2d19dd
JB
1957/* scm_heap_org
1958 * is the lowest base address of any heap segment.
1959 */
1960SCM_CELLPTR scm_heap_org;
1961
a00c95d9 1962scm_heap_seg_data_t * scm_heap_table = 0;
b6efc951 1963static unsigned int heap_segment_table_size = 0;
0f2d19dd
JB
1964int scm_n_heap_segs = 0;
1965
0f2d19dd 1966/* init_heap_seg
d6884e63 1967 * initializes a new heap segment and returns the number of objects it contains.
0f2d19dd 1968 *
d6884e63
ML
1969 * The segment origin and segment size in bytes are input parameters.
1970 * The freelist is both input and output.
0f2d19dd 1971 *
d6884e63
ML
1972 * This function presumes that the scm_heap_table has already been expanded
1973 * to accomodate a new segment record and that the markbit space was reserved
1974 * for all the cards in this segment.
0f2d19dd
JB
1975 */
1976
d6884e63
ML
1977#define INIT_CARD(card, span) \
1978 do { \
1979 SCM_GC_CARD_BVEC (card) = get_bvec (); \
1980 if ((span) == 2) \
1981 SCM_GC_SET_CARD_DOUBLECELL (card); \
1982 } while (0)
0f2d19dd 1983
a00c95d9 1984static scm_sizet
4c48ba06 1985init_heap_seg (SCM_CELLPTR seg_org, scm_sizet size, scm_freelist_t *freelist)
0f2d19dd
JB
1986{
1987 register SCM_CELLPTR ptr;
0f2d19dd 1988 SCM_CELLPTR seg_end;
15e9d186 1989 int new_seg_index;
acb0a19c 1990 int n_new_cells;
4c48ba06 1991 int span = freelist->span;
a00c95d9 1992
0f2d19dd
JB
1993 if (seg_org == NULL)
1994 return 0;
1995
d6884e63
ML
1996 /* Align the begin ptr up.
1997 */
1998 ptr = SCM_GC_CARD_UP (seg_org);
acb0a19c 1999
a00c95d9 2000 /* Compute the ceiling on valid object pointers w/in this segment.
0f2d19dd 2001 */
d6884e63 2002 seg_end = SCM_GC_CARD_DOWN ((char *)seg_org + size);
0f2d19dd 2003
a00c95d9 2004 /* Find the right place and insert the segment record.
0f2d19dd
JB
2005 *
2006 */
2007 for (new_seg_index = 0;
2008 ( (new_seg_index < scm_n_heap_segs)
2009 && SCM_PTR_LE (scm_heap_table[new_seg_index].bounds[0], seg_org));
2010 new_seg_index++)
2011 ;
2012
2013 {
2014 int i;
2015 for (i = scm_n_heap_segs; i > new_seg_index; --i)
2016 scm_heap_table[i] = scm_heap_table[i - 1];
2017 }
a00c95d9 2018
0f2d19dd
JB
2019 ++scm_n_heap_segs;
2020
945fec60 2021 scm_heap_table[new_seg_index].span = span;
4c48ba06 2022 scm_heap_table[new_seg_index].freelist = freelist;
195e6201
DH
2023 scm_heap_table[new_seg_index].bounds[0] = ptr;
2024 scm_heap_table[new_seg_index].bounds[1] = seg_end;
0f2d19dd 2025
acb0a19c
MD
2026 /*n_new_cells*/
2027 n_new_cells = seg_end - ptr;
0f2d19dd 2028
4c48ba06 2029 freelist->heap_size += n_new_cells;
4a4c9785 2030
a00c95d9 2031 /* Partition objects in this segment into clusters */
4a4c9785
MD
2032 {
2033 SCM clusters;
2034 SCM *clusterp = &clusters;
4a4c9785 2035
d6884e63
ML
2036 NEXT_DATA_CELL (ptr, span);
2037 while (ptr < seg_end)
4a4c9785 2038 {
d6884e63
ML
2039 scm_cell *nxt = ptr;
2040 scm_cell *prv = NULL;
2041 scm_cell *last_card = NULL;
2042 int n_data_cells = (SCM_GC_CARD_N_DATA_CELLS / span) * SCM_CARDS_PER_CLUSTER - 1;
2043 NEXT_DATA_CELL(nxt, span);
4a4c9785 2044
4c48ba06
MD
2045 /* Allocate cluster spine
2046 */
4a4c9785 2047 *clusterp = PTR2SCM (ptr);
d6884e63 2048 SCM_SETCAR (*clusterp, PTR2SCM (nxt));
4a4c9785 2049 clusterp = SCM_CDRLOC (*clusterp);
d6884e63 2050 ptr = nxt;
a00c95d9 2051
d6884e63 2052 while (n_data_cells--)
4a4c9785 2053 {
d6884e63 2054 scm_cell *card = SCM_GC_CELL_CARD (ptr);
96f6f4ae 2055 SCM scmptr = PTR2SCM (ptr);
d6884e63
ML
2056 nxt = ptr;
2057 NEXT_DATA_CELL (nxt, span);
2058 prv = ptr;
2059
2060 if (card != last_card)
2061 {
2062 INIT_CARD (card, span);
2063 last_card = card;
2064 }
96f6f4ae 2065
54778cd3 2066 SCM_SET_CELL_TYPE (scmptr, scm_tc_free_cell);
d6884e63
ML
2067 SCM_SETCDR (scmptr, PTR2SCM (nxt));
2068
2069 ptr = nxt;
4a4c9785 2070 }
4c48ba06 2071
d6884e63 2072 SCM_SET_FREE_CELL_CDR (PTR2SCM (prv), SCM_EOL);
4a4c9785 2073 }
a00c95d9 2074
d6884e63
ML
2075 /* sanity check */
2076 {
2077 scm_cell *ref = seg_end;
2078 NEXT_DATA_CELL (ref, span);
2079 if (ref != ptr)
2080 /* [cmm] looks like the segment size doesn't divide cleanly by
2081 cluster size. bad cmm! */
2082 abort();
2083 }
2084
4a4c9785
MD
2085 /* Patch up the last cluster pointer in the segment
2086 * to join it to the input freelist.
2087 */
4c48ba06
MD
2088 *clusterp = freelist->clusters;
2089 freelist->clusters = clusters;
4a4c9785
MD
2090 }
2091
4c48ba06
MD
2092#ifdef DEBUGINFO
2093 fprintf (stderr, "H");
2094#endif
0f2d19dd 2095 return size;
0f2d19dd
JB
2096}
2097
a00c95d9
ML
2098static scm_sizet
2099round_to_cluster_size (scm_freelist_t *freelist, scm_sizet len)
2100{
2101 scm_sizet cluster_size_in_bytes = CLUSTER_SIZE_IN_BYTES (freelist);
2102
2103 return
2104 (len + cluster_size_in_bytes - 1) / cluster_size_in_bytes * cluster_size_in_bytes
2105 + ALIGNMENT_SLACK (freelist);
2106}
2107
a00c95d9 2108static void
b6efc951 2109alloc_some_heap (scm_freelist_t *freelist, policy_on_error error_policy)
acf4331f 2110#define FUNC_NAME "alloc_some_heap"
0f2d19dd 2111{
0f2d19dd 2112 SCM_CELLPTR ptr;
b37fe1c5 2113 long len;
a00c95d9 2114
9d47a1e6 2115 if (scm_gc_heap_lock)
b6efc951
DH
2116 {
2117 /* Critical code sections (such as the garbage collector) aren't
2118 * supposed to add heap segments.
2119 */
2120 fprintf (stderr, "alloc_some_heap: Can not extend locked heap.\n");
2121 abort ();
2122 }
0f2d19dd 2123
9d47a1e6 2124 if (scm_n_heap_segs == heap_segment_table_size)
b6efc951
DH
2125 {
2126 /* We have to expand the heap segment table to have room for the new
2127 * segment. Do not yet increment scm_n_heap_segs -- that is done by
2128 * init_heap_seg only if the allocation of the segment itself succeeds.
2129 */
2130 unsigned int new_table_size = scm_n_heap_segs + 1;
2131 size_t size = new_table_size * sizeof (scm_heap_seg_data_t);
2132 scm_heap_seg_data_t * new_heap_table;
2133
2134 SCM_SYSCALL (new_heap_table = ((scm_heap_seg_data_t *)
2135 realloc ((char *)scm_heap_table, size)));
2136 if (!new_heap_table)
2137 {
2138 if (error_policy == abort_on_error)
2139 {
2140 fprintf (stderr, "alloc_some_heap: Could not grow heap segment table.\n");
2141 abort ();
2142 }
2143 else
2144 {
2145 return;
2146 }
2147 }
2148 else
2149 {
2150 scm_heap_table = new_heap_table;
2151 heap_segment_table_size = new_table_size;
2152 }
2153 }
0f2d19dd 2154
0f2d19dd 2155 /* Pick a size for the new heap segment.
a00c95d9 2156 * The rule for picking the size of a segment is explained in
0f2d19dd
JB
2157 * gc.h
2158 */
4c48ba06 2159 {
1811ebce
MD
2160 /* Assure that the new segment is predicted to be large enough.
2161 *
2162 * New yield should at least equal GC fraction of new heap size, i.e.
2163 *
2164 * y + dh > f * (h + dh)
2165 *
2166 * y : yield
8fef55a8 2167 * f : min yield fraction
1811ebce
MD
2168 * h : heap size
2169 * dh : size of new heap segment
2170 *
2171 * This gives dh > (f * h - y) / (1 - f)
bda1446c 2172 */
8fef55a8 2173 int f = freelist->min_yield_fraction;
1811ebce
MD
2174 long h = SCM_HEAP_SIZE;
2175 long min_cells = (f * h - 100 * (long) scm_gc_yield) / (99 - f);
4c48ba06
MD
2176 len = SCM_EXPHEAP (freelist->heap_size);
2177#ifdef DEBUGINFO
2178 fprintf (stderr, "(%d < %d)", len, min_cells);
2179#endif
2180 if (len < min_cells)
1811ebce 2181 len = min_cells + freelist->cluster_size;
4c48ba06 2182 len *= sizeof (scm_cell);
1811ebce
MD
2183 /* force new sampling */
2184 freelist->collected = LONG_MAX;
4c48ba06 2185 }
a00c95d9 2186
4c48ba06
MD
2187 if (len > scm_max_segment_size)
2188 len = scm_max_segment_size;
0f2d19dd
JB
2189
2190 {
2191 scm_sizet smallest;
2192
a00c95d9 2193 smallest = CLUSTER_SIZE_IN_BYTES (freelist);
a00c95d9 2194
0f2d19dd 2195 if (len < smallest)
a00c95d9 2196 len = smallest;
0f2d19dd
JB
2197
2198 /* Allocate with decaying ambition. */
2199 while ((len >= SCM_MIN_HEAP_SEG_SIZE)
2200 && (len >= smallest))
2201 {
1811ebce 2202 scm_sizet rounded_len = round_to_cluster_size (freelist, len);
a00c95d9 2203 SCM_SYSCALL (ptr = (SCM_CELLPTR) malloc (rounded_len));
0f2d19dd
JB
2204 if (ptr)
2205 {
a00c95d9 2206 init_heap_seg (ptr, rounded_len, freelist);
0f2d19dd
JB
2207 return;
2208 }
2209 len /= 2;
2210 }
2211 }
2212
b6efc951
DH
2213 if (error_policy == abort_on_error)
2214 {
2215 fprintf (stderr, "alloc_some_heap: Could not grow heap.\n");
2216 abort ();
2217 }
0f2d19dd 2218}
acf4331f 2219#undef FUNC_NAME
0f2d19dd
JB
2220
2221
a00c95d9 2222SCM_DEFINE (scm_unhash_name, "unhash-name", 1, 0, 0,
1bbd0b84 2223 (SCM name),
b380b885 2224 "")
1bbd0b84 2225#define FUNC_NAME s_scm_unhash_name
0f2d19dd
JB
2226{
2227 int x;
2228 int bound;
3b3b36dd 2229 SCM_VALIDATE_SYMBOL (1,name);
0f2d19dd
JB
2230 SCM_DEFER_INTS;
2231 bound = scm_n_heap_segs;
2232 for (x = 0; x < bound; ++x)
2233 {
2234 SCM_CELLPTR p;
2235 SCM_CELLPTR pbound;
195e6201
DH
2236 p = scm_heap_table[x].bounds[0];
2237 pbound = scm_heap_table[x].bounds[1];
0f2d19dd
JB
2238 while (p < pbound)
2239 {
c8045e8d
DH
2240 SCM cell = PTR2SCM (p);
2241 if (SCM_TYP3 (cell) == scm_tc3_cons_gloc)
0f2d19dd 2242 {
c8045e8d
DH
2243 /* Dirk:FIXME:: Again, super ugly code: cell may be a gloc or a
2244 * struct cell. See the corresponding comment in scm_gc_mark.
2245 */
2246 scm_bits_t word0 = SCM_CELL_WORD_0 (cell) - scm_tc3_cons_gloc;
2247 SCM gloc_car = SCM_PACK (word0); /* access as gloc */
2248 SCM vcell = SCM_CELL_OBJECT_1 (gloc_car);
9a09deb1 2249 if ((SCM_EQ_P (name, SCM_BOOL_T) || SCM_EQ_P (SCM_CAR (gloc_car), name))
c8045e8d 2250 && (SCM_UNPACK (vcell) != 0) && (SCM_UNPACK (vcell) != 1))
0f2d19dd 2251 {
c8045e8d 2252 SCM_SET_CELL_OBJECT_0 (cell, name);
0f2d19dd
JB
2253 }
2254 }
2255 ++p;
2256 }
2257 }
2258 SCM_ALLOW_INTS;
2259 return name;
2260}
1bbd0b84 2261#undef FUNC_NAME
0f2d19dd
JB
2262
2263
2264\f
2265/* {GC Protection Helper Functions}
2266 */
2267
2268
0f2d19dd 2269void
6e8d25a6 2270scm_remember (SCM *ptr)
b24b5e13
DH
2271{
2272 /* empty */
2273}
0f2d19dd 2274
1cc91f1b 2275
c209c88e 2276/*
41b0806d
GB
2277 These crazy functions prevent garbage collection
2278 of arguments after the first argument by
2279 ensuring they remain live throughout the
2280 function because they are used in the last
2281 line of the code block.
2282 It'd be better to have a nice compiler hint to
2283 aid the conservative stack-scanning GC. --03/09/00 gjb */
0f2d19dd
JB
2284SCM
2285scm_return_first (SCM elt, ...)
0f2d19dd
JB
2286{
2287 return elt;
2288}
2289
41b0806d
GB
2290int
2291scm_return_first_int (int i, ...)
2292{
2293 return i;
2294}
2295
0f2d19dd 2296
0f2d19dd 2297SCM
6e8d25a6 2298scm_permanent_object (SCM obj)
0f2d19dd
JB
2299{
2300 SCM_REDEFER_INTS;
2301 scm_permobjs = scm_cons (obj, scm_permobjs);
2302 SCM_REALLOW_INTS;
2303 return obj;
2304}
2305
2306
7bd4fbe2
MD
2307/* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
2308 other references are dropped, until the object is unprotected by calling
2309 scm_unprotect_object (OBJ). Calls to scm_protect/unprotect_object nest,
2310 i. e. it is possible to protect the same object several times, but it is
2311 necessary to unprotect the object the same number of times to actually get
2312 the object unprotected. It is an error to unprotect an object more often
2313 than it has been protected before. The function scm_protect_object returns
2314 OBJ.
2315*/
2316
2317/* Implementation note: For every object X, there is a counter which
2318 scm_protect_object(X) increments and scm_unprotect_object(X) decrements.
2319*/
686765af 2320
ef290276 2321SCM
6e8d25a6 2322scm_protect_object (SCM obj)
ef290276 2323{
686765af 2324 SCM handle;
9d47a1e6 2325
686765af 2326 /* This critical section barrier will be replaced by a mutex. */
2dd6a83a 2327 SCM_REDEFER_INTS;
9d47a1e6 2328
0f0f0899
MD
2329 handle = scm_hashq_create_handle_x (scm_protects, obj, SCM_MAKINUM (0));
2330 SCM_SETCDR (handle, SCM_MAKINUM (SCM_INUM (SCM_CDR (handle)) + 1));
9d47a1e6 2331
2dd6a83a 2332 SCM_REALLOW_INTS;
9d47a1e6 2333
ef290276
JB
2334 return obj;
2335}
2336
2337
2338/* Remove any protection for OBJ established by a prior call to
dab7f566 2339 scm_protect_object. This function returns OBJ.
ef290276 2340
dab7f566 2341 See scm_protect_object for more information. */
ef290276 2342SCM
6e8d25a6 2343scm_unprotect_object (SCM obj)
ef290276 2344{
686765af 2345 SCM handle;
9d47a1e6 2346
686765af 2347 /* This critical section barrier will be replaced by a mutex. */
2dd6a83a 2348 SCM_REDEFER_INTS;
9d47a1e6 2349
686765af 2350 handle = scm_hashq_get_handle (scm_protects, obj);
9d47a1e6 2351
0f0f0899 2352 if (SCM_IMP (handle))
686765af 2353 {
0f0f0899
MD
2354 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
2355 abort ();
686765af 2356 }
6a199940
DH
2357 else
2358 {
2359 unsigned long int count = SCM_INUM (SCM_CDR (handle)) - 1;
2360 if (count == 0)
2361 scm_hashq_remove_x (scm_protects, obj);
2362 else
2363 SCM_SETCDR (handle, SCM_MAKINUM (count));
2364 }
686765af 2365
2dd6a83a 2366 SCM_REALLOW_INTS;
ef290276
JB
2367
2368 return obj;
2369}
2370
c45acc34
JB
2371int terminating;
2372
2373/* called on process termination. */
e52ceaac
MD
2374#ifdef HAVE_ATEXIT
2375static void
2376cleanup (void)
2377#else
2378#ifdef HAVE_ON_EXIT
51157deb
MD
2379extern int on_exit (void (*procp) (), int arg);
2380
e52ceaac
MD
2381static void
2382cleanup (int status, void *arg)
2383#else
2384#error Dont know how to setup a cleanup handler on your system.
2385#endif
2386#endif
c45acc34
JB
2387{
2388 terminating = 1;
2389 scm_flush_all_ports ();
2390}
ef290276 2391
0f2d19dd 2392\f
acb0a19c 2393static int
4c48ba06 2394make_initial_segment (scm_sizet init_heap_size, scm_freelist_t *freelist)
acb0a19c 2395{
a00c95d9 2396 scm_sizet rounded_size = round_to_cluster_size (freelist, init_heap_size);
d6884e63 2397
a00c95d9
ML
2398 if (!init_heap_seg ((SCM_CELLPTR) malloc (rounded_size),
2399 rounded_size,
4c48ba06 2400 freelist))
acb0a19c 2401 {
a00c95d9
ML
2402 rounded_size = round_to_cluster_size (freelist, SCM_HEAP_SEG_SIZE);
2403 if (!init_heap_seg ((SCM_CELLPTR) malloc (rounded_size),
2404 rounded_size,
4c48ba06 2405 freelist))
acb0a19c
MD
2406 return 1;
2407 }
2408 else
2409 scm_expmem = 1;
2410
8fef55a8
MD
2411 if (freelist->min_yield_fraction)
2412 freelist->min_yield = (freelist->heap_size * freelist->min_yield_fraction
b37fe1c5 2413 / 100);
8fef55a8 2414 freelist->grow_heap_p = (freelist->heap_size < freelist->min_yield);
a00c95d9 2415
acb0a19c
MD
2416 return 0;
2417}
2418
2419\f
4c48ba06
MD
2420static void
2421init_freelist (scm_freelist_t *freelist,
2422 int span,
2423 int cluster_size,
8fef55a8 2424 int min_yield)
4c48ba06
MD
2425{
2426 freelist->clusters = SCM_EOL;
2427 freelist->cluster_size = cluster_size + 1;
b37fe1c5
MD
2428 freelist->left_to_collect = 0;
2429 freelist->clusters_allocated = 0;
8fef55a8
MD
2430 freelist->min_yield = 0;
2431 freelist->min_yield_fraction = min_yield;
4c48ba06
MD
2432 freelist->span = span;
2433 freelist->collected = 0;
1811ebce 2434 freelist->collected_1 = 0;
4c48ba06
MD
2435 freelist->heap_size = 0;
2436}
2437
4a4c9785 2438int
4c48ba06
MD
2439scm_init_storage (scm_sizet init_heap_size_1, int gc_trigger_1,
2440 scm_sizet init_heap_size_2, int gc_trigger_2,
2441 scm_sizet max_segment_size)
0f2d19dd
JB
2442{
2443 scm_sizet j;
2444
4c48ba06 2445 if (!init_heap_size_1)
aeacfc8f 2446 init_heap_size_1 = scm_default_init_heap_size_1;
4c48ba06 2447 if (!init_heap_size_2)
aeacfc8f 2448 init_heap_size_2 = scm_default_init_heap_size_2;
4c48ba06 2449
0f2d19dd
JB
2450 j = SCM_NUM_PROTECTS;
2451 while (j)
2452 scm_sys_protects[--j] = SCM_BOOL_F;
2453 scm_block_gc = 1;
4a4c9785 2454
4a4c9785 2455 scm_freelist = SCM_EOL;
4c48ba06
MD
2456 scm_freelist2 = SCM_EOL;
2457 init_freelist (&scm_master_freelist,
2458 1, SCM_CLUSTER_SIZE_1,
aeacfc8f 2459 gc_trigger_1 ? gc_trigger_1 : scm_default_min_yield_1);
4c48ba06
MD
2460 init_freelist (&scm_master_freelist2,
2461 2, SCM_CLUSTER_SIZE_2,
aeacfc8f 2462 gc_trigger_2 ? gc_trigger_2 : scm_default_min_yield_2);
4c48ba06 2463 scm_max_segment_size
aeacfc8f 2464 = max_segment_size ? max_segment_size : scm_default_max_segment_size;
4a4c9785 2465
0f2d19dd
JB
2466 scm_expmem = 0;
2467
2468 j = SCM_HEAP_SEG_SIZE;
2469 scm_mtrigger = SCM_INIT_MALLOC_LIMIT;
a00c95d9
ML
2470 scm_heap_table = ((scm_heap_seg_data_t *)
2471 scm_must_malloc (sizeof (scm_heap_seg_data_t) * 2, "hplims"));
b6efc951 2472 heap_segment_table_size = 2;
acb0a19c 2473
d6884e63
ML
2474 mark_space_ptr = &mark_space_head;
2475
4c48ba06
MD
2476 if (make_initial_segment (init_heap_size_1, &scm_master_freelist) ||
2477 make_initial_segment (init_heap_size_2, &scm_master_freelist2))
4a4c9785 2478 return 1;
acb0a19c 2479
801cb5e7 2480 /* scm_hplims[0] can change. do not remove scm_heap_org */
a00c95d9 2481 scm_heap_org = CELL_UP (scm_heap_table[0].bounds[0], 1);
acb0a19c 2482
801cb5e7
MD
2483 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
2484 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
2485 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
2486 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
2487 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
0f2d19dd
JB
2488
2489 /* Initialise the list of ports. */
840ae05d
JB
2490 scm_port_table = (scm_port **)
2491 malloc (sizeof (scm_port *) * scm_port_table_room);
0f2d19dd
JB
2492 if (!scm_port_table)
2493 return 1;
2494
a18bcd0e 2495#ifdef HAVE_ATEXIT
c45acc34 2496 atexit (cleanup);
e52ceaac
MD
2497#else
2498#ifdef HAVE_ON_EXIT
2499 on_exit (cleanup, 0);
2500#endif
a18bcd0e 2501#endif
0f2d19dd
JB
2502
2503 scm_undefineds = scm_cons (SCM_UNDEFINED, SCM_EOL);
24e68a57 2504 SCM_SETCDR (scm_undefineds, scm_undefineds);
0f2d19dd
JB
2505
2506 scm_listofnull = scm_cons (SCM_EOL, SCM_EOL);
2507 scm_nullstr = scm_makstr (0L, 0);
a8741caa 2508 scm_nullvect = scm_make_vector (SCM_INUM0, SCM_UNDEFINED);
93d40df2
DH
2509
2510#define DEFAULT_SYMHASH_SIZE 277
2511 scm_symhash = scm_make_vector (SCM_MAKINUM (DEFAULT_SYMHASH_SIZE), SCM_EOL);
2512 scm_weak_symhash = scm_make_weak_key_hash_table (SCM_MAKINUM (DEFAULT_SYMHASH_SIZE));
2513 scm_symhash_vars = scm_make_vector (SCM_MAKINUM (DEFAULT_SYMHASH_SIZE), SCM_EOL);
2514
8960e0a0 2515 scm_stand_in_procs = SCM_EOL;
0f2d19dd 2516 scm_permobjs = SCM_EOL;
686765af 2517 scm_protects = scm_make_vector (SCM_MAKINUM (31), SCM_EOL);
54778cd3
DH
2518 scm_sysintern ("most-positive-fixnum", SCM_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
2519 scm_sysintern ("most-negative-fixnum", SCM_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
0f2d19dd
JB
2520#ifdef SCM_BIGDIG
2521 scm_sysintern ("bignum-radix", SCM_MAKINUM (SCM_BIGRAD));
2522#endif
d6884e63 2523
0f2d19dd
JB
2524 return 0;
2525}
939794ce 2526
0f2d19dd
JB
2527\f
2528
939794ce
DH
2529SCM scm_after_gc_hook;
2530
2531#if (SCM_DEBUG_DEPRECATED == 0)
2532static SCM scm_gc_vcell; /* the vcell for gc-thunk. */
2533#endif /* SCM_DEBUG_DEPRECATED == 0 */
2534static SCM gc_async;
2535
2536
2537/* The function gc_async_thunk causes the execution of the after-gc-hook. It
2538 * is run after the gc, as soon as the asynchronous events are handled by the
2539 * evaluator.
2540 */
2541static SCM
2542gc_async_thunk (void)
2543{
2544 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
2545
2546#if (SCM_DEBUG_DEPRECATED == 0)
2547
2548 /* The following code will be removed in Guile 1.5. */
2549 if (SCM_NFALSEP (scm_gc_vcell))
2550 {
2551 SCM proc = SCM_CDR (scm_gc_vcell);
2552
2553 if (SCM_NFALSEP (proc) && !SCM_UNBNDP (proc))
2554 scm_apply (proc, SCM_EOL, SCM_EOL);
2555 }
2556
2557#endif /* SCM_DEBUG_DEPRECATED == 0 */
2558
2559 return SCM_UNSPECIFIED;
2560}
2561
2562
2563/* The function mark_gc_async is run by the scm_after_gc_c_hook at the end of
2564 * the garbage collection. The only purpose of this function is to mark the
2565 * gc_async (which will eventually lead to the execution of the
2566 * gc_async_thunk).
2567 */
2568static void *
2569mark_gc_async (void * hook_data, void *func_data, void *data)
2570{
2571 scm_system_async_mark (gc_async);
2572 return NULL;
2573}
2574
2575
0f2d19dd
JB
2576void
2577scm_init_gc ()
0f2d19dd 2578{
939794ce
DH
2579 SCM after_gc_thunk;
2580
801cb5e7 2581 scm_after_gc_hook = scm_create_hook ("after-gc-hook", 0);
939794ce
DH
2582
2583#if (SCM_DEBUG_DEPRECATED == 0)
2584 scm_gc_vcell = scm_sysintern ("gc-thunk", SCM_BOOL_F);
2585#endif /* SCM_DEBUG_DEPRECATED == 0 */
78573619 2586 after_gc_thunk = scm_make_subr_opt ("%gc-thunk", scm_tc7_subr_0, gc_async_thunk, 0);
23670993 2587 gc_async = scm_system_async (after_gc_thunk); /* protected via scm_asyncs */
939794ce
DH
2588
2589 scm_c_hook_add (&scm_after_gc_c_hook, mark_gc_async, NULL, 0);
2590
8dc9439f 2591#ifndef SCM_MAGIC_SNARFER
a0599745 2592#include "libguile/gc.x"
8dc9439f 2593#endif
0f2d19dd 2594}
89e00824
ML
2595
2596/*
2597 Local Variables:
2598 c-file-style: "gnu"
2599 End:
2600*/