New branch for lexbind, losing all history.
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
2
3 ;; Copyright (C) 1991, 1994, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
4 ;; 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 ;; Author: Jamie Zawinski <jwz@lucid.com>
7 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
8 ;; Maintainer: FSF
9 ;; Keywords: internal
10
11 ;; This file is part of GNU Emacs.
12
13 ;; GNU Emacs is free software: you can redistribute it and/or modify
14 ;; it under the terms of the GNU General Public License as published by
15 ;; the Free Software Foundation, either version 3 of the License, or
16 ;; (at your option) any later version.
17
18 ;; GNU Emacs is distributed in the hope that it will be useful,
19 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 ;; GNU General Public License for more details.
22
23 ;; You should have received a copy of the GNU General Public License
24 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
25
26 ;;; Commentary:
27
28 ;; ========================================================================
29 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
30 ;; You can, however, make a faster pig."
31 ;;
32 ;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
33 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
34 ;; still not going to make it go faster than 70 mph, but it might be easier
35 ;; to get it there.
36 ;;
37
38 ;; TO DO:
39 ;;
40 ;; (apply (lambda (x &rest y) ...) 1 (foo))
41 ;;
42 ;; maintain a list of functions known not to access any global variables
43 ;; (actually, give them a 'dynamically-safe property) and then
44 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
45 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
46 ;; by recursing on this, we might be able to eliminate the entire let.
47 ;; However certain variables should never have their bindings optimized
48 ;; away, because they affect everything.
49 ;; (put 'debug-on-error 'binding-is-magic t)
50 ;; (put 'debug-on-abort 'binding-is-magic t)
51 ;; (put 'debug-on-next-call 'binding-is-magic t)
52 ;; (put 'inhibit-quit 'binding-is-magic t)
53 ;; (put 'quit-flag 'binding-is-magic t)
54 ;; (put 't 'binding-is-magic t)
55 ;; (put 'nil 'binding-is-magic t)
56 ;; possibly also
57 ;; (put 'gc-cons-threshold 'binding-is-magic t)
58 ;; (put 'track-mouse 'binding-is-magic t)
59 ;; others?
60 ;;
61 ;; Simple defsubsts often produce forms like
62 ;; (let ((v1 (f1)) (v2 (f2)) ...)
63 ;; (FN v1 v2 ...))
64 ;; It would be nice if we could optimize this to
65 ;; (FN (f1) (f2) ...)
66 ;; but we can't unless FN is dynamically-safe (it might be dynamically
67 ;; referring to the bindings that the lambda arglist established.)
68 ;; One of the uncountable lossages introduced by dynamic scope...
69 ;;
70 ;; Maybe there should be a control-structure that says "turn on
71 ;; fast-and-loose type-assumptive optimizations here." Then when
72 ;; we see a form like (car foo) we can from then on assume that
73 ;; the variable foo is of type cons, and optimize based on that.
74 ;; But, this won't win much because of (you guessed it) dynamic
75 ;; scope. Anything down the stack could change the value.
76 ;; (Another reason it doesn't work is that it is perfectly valid
77 ;; to call car with a null argument.) A better approach might
78 ;; be to allow type-specification of the form
79 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
80 ;; (put 'foo 'result-type 'bool)
81 ;; It should be possible to have these types checked to a certain
82 ;; degree.
83 ;;
84 ;; collapse common subexpressions
85 ;;
86 ;; It would be nice if redundant sequences could be factored out as well,
87 ;; when they are known to have no side-effects:
88 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
89 ;; but beware of traps like
90 ;; (cons (list x y) (list x y))
91 ;;
92 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
93 ;; Tail-recursion elimination is almost always impossible when all variables
94 ;; have dynamic scope, but given that the "return" byteop requires the
95 ;; binding stack to be empty (rather than emptying it itself), there can be
96 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
97 ;; make any bindings.
98 ;;
99 ;; Here is an example of an Emacs Lisp function which could safely be
100 ;; byte-compiled tail-recursively:
101 ;;
102 ;; (defun tail-map (fn list)
103 ;; (cond (list
104 ;; (funcall fn (car list))
105 ;; (tail-map fn (cdr list)))))
106 ;;
107 ;; However, if there was even a single let-binding around the COND,
108 ;; it could not be byte-compiled, because there would be an "unbind"
109 ;; byte-op between the final "call" and "return." Adding a
110 ;; Bunbind_all byteop would fix this.
111 ;;
112 ;; (defun foo (x y z) ... (foo a b c))
113 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
114 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
115 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
116 ;;
117 ;; this also can be considered tail recursion:
118 ;;
119 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
120 ;; could generalize this by doing the optimization
121 ;; (goto X) ... X: (return) --> (return)
122 ;;
123 ;; But this doesn't solve all of the problems: although by doing tail-
124 ;; recursion elimination in this way, the call-stack does not grow, the
125 ;; binding-stack would grow with each recursive step, and would eventually
126 ;; overflow. I don't believe there is any way around this without lexical
127 ;; scope.
128 ;;
129 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
130 ;;
131 ;; Idea: the form (lexical-scope) in a file means that the file may be
132 ;; compiled lexically. This proclamation is file-local. Then, within
133 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
134 ;; would do things the old way. (Or we could use CL "declare" forms.)
135 ;; We'd have to notice defvars and defconsts, since those variables should
136 ;; always be dynamic, and attempting to do a lexical binding of them
137 ;; should simply do a dynamic binding instead.
138 ;; But! We need to know about variables that were not necessarily defvarred
139 ;; in the file being compiled (doing a boundp check isn't good enough.)
140 ;; Fdefvar() would have to be modified to add something to the plist.
141 ;;
142 ;; A major disadvantage of this scheme is that the interpreter and compiler
143 ;; would have different semantics for files compiled with (dynamic-scope).
144 ;; Since this would be a file-local optimization, there would be no way to
145 ;; modify the interpreter to obey this (unless the loader was hacked
146 ;; in some grody way, but that's a really bad idea.)
147
148 ;; Other things to consider:
149
150 ;; ;; Associative math should recognize subcalls to identical function:
151 ;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
152 ;; ;; This should generate the same as (1+ x) and (1- x)
153
154 ;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
155 ;; ;; An awful lot of functions always return a non-nil value. If they're
156 ;; ;; error free also they may act as true-constants.
157
158 ;; (disassemble (lambda (x) (and (point) (foo))))
159 ;; ;; When
160 ;; ;; - all but one arguments to a function are constant
161 ;; ;; - the non-constant argument is an if-expression (cond-expression?)
162 ;; ;; then the outer function can be distributed. If the guarding
163 ;; ;; condition is side-effect-free [assignment-free] then the other
164 ;; ;; arguments may be any expressions. Since, however, the code size
165 ;; ;; can increase this way they should be "simple". Compare:
166
167 ;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
168 ;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
169
170 ;; ;; (car (cons A B)) -> (prog1 A B)
171 ;; (disassemble (lambda (x) (car (cons (foo) 42))))
172
173 ;; ;; (cdr (cons A B)) -> (progn A B)
174 ;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
175
176 ;; ;; (car (list A B ...)) -> (prog1 A B ...)
177 ;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
178
179 ;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
180 ;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
181
182
183 ;;; Code:
184
185 (require 'bytecomp)
186 (eval-when-compile (require 'cl))
187
188 (defun byte-compile-log-lap-1 (format &rest args)
189 ;; (if (aref byte-code-vector 0)
190 ;; (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
191 (byte-compile-log-1
192 (apply 'format format
193 (let (c a)
194 (mapcar (lambda (arg)
195 (if (not (consp arg))
196 (if (and (symbolp arg)
197 (string-match "^byte-" (symbol-name arg)))
198 (intern (substring (symbol-name arg) 5))
199 arg)
200 (if (integerp (setq c (car arg)))
201 (error "non-symbolic byte-op %s" c))
202 (if (eq c 'TAG)
203 (setq c arg)
204 (setq a (cond ((memq c byte-goto-ops)
205 (car (cdr (cdr arg))))
206 ((memq c byte-constref-ops)
207 (car (cdr arg)))
208 (t (cdr arg))))
209 (setq c (symbol-name c))
210 (if (string-match "^byte-." c)
211 (setq c (intern (substring c 5)))))
212 (if (eq c 'constant) (setq c 'const))
213 (if (and (eq (cdr arg) 0)
214 (not (memq c '(unbind call const))))
215 c
216 (format "(%s %s)" c a))))
217 args)))))
218
219 (defmacro byte-compile-log-lap (format-string &rest args)
220 `(and (memq byte-optimize-log '(t byte))
221 (byte-compile-log-lap-1 ,format-string ,@args)))
222
223 \f
224 ;;; byte-compile optimizers to support inlining
225
226 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
227
228 (defun byte-optimize-inline-handler (form)
229 "byte-optimize-handler for the `inline' special-form."
230 (cons 'progn
231 (mapcar
232 (lambda (sexp)
233 (let ((f (car-safe sexp)))
234 (if (and (symbolp f)
235 (or (cdr (assq f byte-compile-function-environment))
236 (not (or (not (fboundp f))
237 (cdr (assq f byte-compile-macro-environment))
238 (and (consp (setq f (symbol-function f)))
239 (eq (car f) 'macro))
240 (subrp f)))))
241 (byte-compile-inline-expand sexp)
242 sexp)))
243 (cdr form))))
244
245
246 ;; Splice the given lap code into the current instruction stream.
247 ;; If it has any labels in it, you're responsible for making sure there
248 ;; are no collisions, and that byte-compile-tag-number is reasonable
249 ;; after this is spliced in. The provided list is destroyed.
250 (defun byte-inline-lapcode (lap)
251 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
252
253 (defun byte-compile-inline-expand (form)
254 (let* ((name (car form))
255 (fn (or (cdr (assq name byte-compile-function-environment))
256 (and (fboundp name) (symbol-function name)))))
257 (if (null fn)
258 (progn
259 (byte-compile-warn "attempt to inline `%s' before it was defined"
260 name)
261 form)
262 ;; else
263 (when (and (consp fn) (eq (car fn) 'autoload))
264 (load (nth 1 fn))
265 (setq fn (or (and (fboundp name) (symbol-function name))
266 (cdr (assq name byte-compile-function-environment)))))
267 (if (and (consp fn) (eq (car fn) 'autoload))
268 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
269 (if (and (symbolp fn) (not (eq fn t)))
270 (byte-compile-inline-expand (cons fn (cdr form)))
271 (if (byte-code-function-p fn)
272 (let (string)
273 (fetch-bytecode fn)
274 (setq string (aref fn 1))
275 ;; Isn't it an error for `string' not to be unibyte?? --stef
276 (if (fboundp 'string-as-unibyte)
277 (setq string (string-as-unibyte string)))
278 ;; `byte-compile-splice-in-already-compiled-code'
279 ;; takes care of inlining the body.
280 (cons `(lambda ,(aref fn 0)
281 (byte-code ,string ,(aref fn 2) ,(aref fn 3)))
282 (cdr form)))
283 (if (eq (car-safe fn) 'lambda)
284 (macroexpand-all (cons fn (cdr form))
285 byte-compile-macro-environment)
286 ;; Give up on inlining.
287 form))))))
288
289 ;; ((lambda ...) ...)
290 (defun byte-compile-unfold-lambda (form &optional name)
291 (or name (setq name "anonymous lambda"))
292 (let ((lambda (car form))
293 (values (cdr form)))
294 (if (byte-code-function-p lambda)
295 (setq lambda (list 'lambda (aref lambda 0)
296 (list 'byte-code (aref lambda 1)
297 (aref lambda 2) (aref lambda 3)))))
298 (let ((arglist (nth 1 lambda))
299 (body (cdr (cdr lambda)))
300 optionalp restp
301 bindings)
302 (if (and (stringp (car body)) (cdr body))
303 (setq body (cdr body)))
304 (if (and (consp (car body)) (eq 'interactive (car (car body))))
305 (setq body (cdr body)))
306 (while arglist
307 (cond ((eq (car arglist) '&optional)
308 ;; ok, I'll let this slide because funcall_lambda() does...
309 ;; (if optionalp (error "multiple &optional keywords in %s" name))
310 (if restp (error "&optional found after &rest in %s" name))
311 (if (null (cdr arglist))
312 (error "nothing after &optional in %s" name))
313 (setq optionalp t))
314 ((eq (car arglist) '&rest)
315 ;; ...but it is by no stretch of the imagination a reasonable
316 ;; thing that funcall_lambda() allows (&rest x y) and
317 ;; (&rest x &optional y) in arglists.
318 (if (null (cdr arglist))
319 (error "nothing after &rest in %s" name))
320 (if (cdr (cdr arglist))
321 (error "multiple vars after &rest in %s" name))
322 (setq restp t))
323 (restp
324 (setq bindings (cons (list (car arglist)
325 (and values (cons 'list values)))
326 bindings)
327 values nil))
328 ((and (not optionalp) (null values))
329 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
330 (setq arglist nil values 'too-few))
331 (t
332 (setq bindings (cons (list (car arglist) (car values))
333 bindings)
334 values (cdr values))))
335 (setq arglist (cdr arglist)))
336 (if values
337 (progn
338 (or (eq values 'too-few)
339 (byte-compile-warn
340 "attempt to open-code `%s' with too many arguments" name))
341 form)
342
343 ;; The following leads to infinite recursion when loading a
344 ;; file containing `(defsubst f () (f))', and then trying to
345 ;; byte-compile that file.
346 ;(setq body (mapcar 'byte-optimize-form body)))
347
348 (let ((newform
349 (if bindings
350 (cons 'let (cons (nreverse bindings) body))
351 (cons 'progn body))))
352 (byte-compile-log " %s\t==>\t%s" form newform)
353 newform)))))
354
355 \f
356 ;;; implementing source-level optimizers
357
358 (defun byte-optimize-form-code-walker (form for-effect)
359 ;;
360 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
361 ;; we need to have special knowledge of the syntax of the special forms
362 ;; like let and defun (that's why they're special forms :-). (Actually,
363 ;; the important aspect is that they are subrs that don't evaluate all of
364 ;; their args.)
365 ;;
366 (let ((fn (car-safe form))
367 tmp)
368 (cond ((not (consp form))
369 (if (not (and for-effect
370 (or byte-compile-delete-errors
371 (not (symbolp form))
372 (eq form t))))
373 form))
374 ((eq fn 'quote)
375 (if (cdr (cdr form))
376 (byte-compile-warn "malformed quote form: `%s'"
377 (prin1-to-string form)))
378 ;; map (quote nil) to nil to simplify optimizer logic.
379 ;; map quoted constants to nil if for-effect (just because).
380 (and (nth 1 form)
381 (not for-effect)
382 form))
383 ((or (byte-code-function-p fn)
384 (eq 'lambda (car-safe fn)))
385 (byte-optimize-form-code-walker
386 (byte-compile-unfold-lambda form)
387 for-effect))
388 ((memq fn '(let let*))
389 ;; recursively enter the optimizer for the bindings and body
390 ;; of a let or let*. This for depth-firstness: forms that
391 ;; are more deeply nested are optimized first.
392 (cons fn
393 (cons
394 (mapcar (lambda (binding)
395 (if (symbolp binding)
396 binding
397 (if (cdr (cdr binding))
398 (byte-compile-warn "malformed let binding: `%s'"
399 (prin1-to-string binding)))
400 (list (car binding)
401 (byte-optimize-form (nth 1 binding) nil))))
402 (nth 1 form))
403 (byte-optimize-body (cdr (cdr form)) for-effect))))
404 ((eq fn 'cond)
405 (cons fn
406 (mapcar (lambda (clause)
407 (if (consp clause)
408 (cons
409 (byte-optimize-form (car clause) nil)
410 (byte-optimize-body (cdr clause) for-effect))
411 (byte-compile-warn "malformed cond form: `%s'"
412 (prin1-to-string clause))
413 clause))
414 (cdr form))))
415 ((eq fn 'progn)
416 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
417 (if (cdr (cdr form))
418 (progn
419 (setq tmp (byte-optimize-body (cdr form) for-effect))
420 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
421 (byte-optimize-form (nth 1 form) for-effect)))
422 ((eq fn 'prog1)
423 (if (cdr (cdr form))
424 (cons 'prog1
425 (cons (byte-optimize-form (nth 1 form) for-effect)
426 (byte-optimize-body (cdr (cdr form)) t)))
427 (byte-optimize-form (nth 1 form) for-effect)))
428 ((eq fn 'prog2)
429 (cons 'prog2
430 (cons (byte-optimize-form (nth 1 form) t)
431 (cons (byte-optimize-form (nth 2 form) for-effect)
432 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
433
434 ((memq fn '(save-excursion save-restriction save-current-buffer))
435 ;; those subrs which have an implicit progn; it's not quite good
436 ;; enough to treat these like normal function calls.
437 ;; This can turn (save-excursion ...) into (save-excursion) which
438 ;; will be optimized away in the lap-optimize pass.
439 (cons fn (byte-optimize-body (cdr form) for-effect)))
440
441 ((eq fn 'with-output-to-temp-buffer)
442 ;; this is just like the above, except for the first argument.
443 (cons fn
444 (cons
445 (byte-optimize-form (nth 1 form) nil)
446 (byte-optimize-body (cdr (cdr form)) for-effect))))
447
448 ((eq fn 'if)
449 (when (< (length form) 3)
450 (byte-compile-warn "too few arguments for `if'"))
451 (cons fn
452 (cons (byte-optimize-form (nth 1 form) nil)
453 (cons
454 (byte-optimize-form (nth 2 form) for-effect)
455 (byte-optimize-body (nthcdr 3 form) for-effect)))))
456
457 ((memq fn '(and or)) ; remember, and/or are control structures.
458 ;; take forms off the back until we can't any more.
459 ;; In the future it could conceivably be a problem that the
460 ;; subexpressions of these forms are optimized in the reverse
461 ;; order, but it's ok for now.
462 (if for-effect
463 (let ((backwards (reverse (cdr form))))
464 (while (and backwards
465 (null (setcar backwards
466 (byte-optimize-form (car backwards)
467 for-effect))))
468 (setq backwards (cdr backwards)))
469 (if (and (cdr form) (null backwards))
470 (byte-compile-log
471 " all subforms of %s called for effect; deleted" form))
472 (and backwards
473 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
474 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
475
476 ((eq fn 'interactive)
477 (byte-compile-warn "misplaced interactive spec: `%s'"
478 (prin1-to-string form))
479 nil)
480
481 ((memq fn '(defun defmacro function
482 condition-case save-window-excursion))
483 ;; These forms are compiled as constants or by breaking out
484 ;; all the subexpressions and compiling them separately.
485 form)
486
487 ((eq fn 'unwind-protect)
488 ;; the "protected" part of an unwind-protect is compiled (and thus
489 ;; optimized) as a top-level form, so don't do it here. But the
490 ;; non-protected part has the same for-effect status as the
491 ;; unwind-protect itself. (The protected part is always for effect,
492 ;; but that isn't handled properly yet.)
493 (cons fn
494 (cons (byte-optimize-form (nth 1 form) for-effect)
495 (cdr (cdr form)))))
496
497 ((eq fn 'catch)
498 ;; the body of a catch is compiled (and thus optimized) as a
499 ;; top-level form, so don't do it here. The tag is never
500 ;; for-effect. The body should have the same for-effect status
501 ;; as the catch form itself, but that isn't handled properly yet.
502 (cons fn
503 (cons (byte-optimize-form (nth 1 form) nil)
504 (cdr (cdr form)))))
505
506 ((eq fn 'ignore)
507 ;; Don't treat the args to `ignore' as being
508 ;; computed for effect. We want to avoid the warnings
509 ;; that might occur if they were treated that way.
510 ;; However, don't actually bother calling `ignore'.
511 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
512
513 ;; If optimization is on, this is the only place that macros are
514 ;; expanded. If optimization is off, then macroexpansion happens
515 ;; in byte-compile-form. Otherwise, the macros are already expanded
516 ;; by the time that is reached.
517 ((not (eq form
518 (setq form (macroexpand form
519 byte-compile-macro-environment))))
520 (byte-optimize-form form for-effect))
521
522 ;; Support compiler macros as in cl.el.
523 ((and (fboundp 'compiler-macroexpand)
524 (symbolp (car-safe form))
525 (get (car-safe form) 'cl-compiler-macro)
526 (not (eq form
527 (with-no-warnings
528 (setq form (compiler-macroexpand form))))))
529 (byte-optimize-form form for-effect))
530
531 ((not (symbolp fn))
532 (byte-compile-warn "`%s' is a malformed function"
533 (prin1-to-string fn))
534 form)
535
536 ((and for-effect (setq tmp (get fn 'side-effect-free))
537 (or byte-compile-delete-errors
538 (eq tmp 'error-free)
539 ;; Detect the expansion of (pop foo).
540 ;; There is no need to compile the call to `car' there.
541 (and (eq fn 'car)
542 (eq (car-safe (cadr form)) 'prog1)
543 (let ((var (cadr (cadr form)))
544 (last (nth 2 (cadr form))))
545 (and (symbolp var)
546 (null (nthcdr 3 (cadr form)))
547 (eq (car-safe last) 'setq)
548 (eq (cadr last) var)
549 (eq (car-safe (nth 2 last)) 'cdr)
550 (eq (cadr (nth 2 last)) var))))
551 (progn
552 (byte-compile-warn "value returned from %s is unused"
553 (prin1-to-string form))
554 nil)))
555 (byte-compile-log " %s called for effect; deleted" fn)
556 ;; appending a nil here might not be necessary, but it can't hurt.
557 (byte-optimize-form
558 (cons 'progn (append (cdr form) '(nil))) t))
559
560 (t
561 ;; Otherwise, no args can be considered to be for-effect,
562 ;; even if the called function is for-effect, because we
563 ;; don't know anything about that function.
564 (let ((args (mapcar #'byte-optimize-form (cdr form))))
565 (if (and (get fn 'pure)
566 (byte-optimize-all-constp args))
567 (list 'quote (apply fn (mapcar #'eval args)))
568 (cons fn args)))))))
569
570 (defun byte-optimize-all-constp (list)
571 "Non-nil if all elements of LIST satisfy `byte-compile-constp'."
572 (let ((constant t))
573 (while (and list constant)
574 (unless (byte-compile-constp (car list))
575 (setq constant nil))
576 (setq list (cdr list)))
577 constant))
578
579 (defun byte-optimize-form (form &optional for-effect)
580 "The source-level pass of the optimizer."
581 ;;
582 ;; First, optimize all sub-forms of this one.
583 (setq form (byte-optimize-form-code-walker form for-effect))
584 ;;
585 ;; after optimizing all subforms, optimize this form until it doesn't
586 ;; optimize any further. This means that some forms will be passed through
587 ;; the optimizer many times, but that's necessary to make the for-effect
588 ;; processing do as much as possible.
589 ;;
590 (let (opt new)
591 (if (and (consp form)
592 (symbolp (car form))
593 (or (and for-effect
594 ;; we don't have any of these yet, but we might.
595 (setq opt (get (car form) 'byte-for-effect-optimizer)))
596 (setq opt (get (car form) 'byte-optimizer)))
597 (not (eq form (setq new (funcall opt form)))))
598 (progn
599 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
600 (byte-compile-log " %s\t==>\t%s" form new)
601 (setq new (byte-optimize-form new for-effect))
602 new)
603 form)))
604
605
606 (defun byte-optimize-body (forms all-for-effect)
607 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
608 ;; forms, all but the last of which are optimized with the assumption that
609 ;; they are being called for effect. the last is for-effect as well if
610 ;; all-for-effect is true. returns a new list of forms.
611 (let ((rest forms)
612 (result nil)
613 fe new)
614 (while rest
615 (setq fe (or all-for-effect (cdr rest)))
616 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
617 (if (or new (not fe))
618 (setq result (cons new result)))
619 (setq rest (cdr rest)))
620 (nreverse result)))
621
622 \f
623 ;; some source-level optimizers
624 ;;
625 ;; when writing optimizers, be VERY careful that the optimizer returns
626 ;; something not EQ to its argument if and ONLY if it has made a change.
627 ;; This implies that you cannot simply destructively modify the list;
628 ;; you must return something not EQ to it if you make an optimization.
629 ;;
630 ;; It is now safe to optimize code such that it introduces new bindings.
631
632 (defsubst byte-compile-trueconstp (form)
633 "Return non-nil if FORM always evaluates to a non-nil value."
634 (while (eq (car-safe form) 'progn)
635 (setq form (car (last (cdr form)))))
636 (cond ((consp form)
637 (case (car form)
638 (quote (cadr form))
639 ;; Can't use recursion in a defsubst.
640 ;; (progn (byte-compile-trueconstp (car (last (cdr form)))))
641 ))
642 ((not (symbolp form)))
643 ((eq form t))
644 ((keywordp form))))
645
646 (defsubst byte-compile-nilconstp (form)
647 "Return non-nil if FORM always evaluates to a nil value."
648 (while (eq (car-safe form) 'progn)
649 (setq form (car (last (cdr form)))))
650 (cond ((consp form)
651 (case (car form)
652 (quote (null (cadr form)))
653 ;; Can't use recursion in a defsubst.
654 ;; (progn (byte-compile-nilconstp (car (last (cdr form)))))
655 ))
656 ((not (symbolp form)) nil)
657 ((null form))))
658
659 ;; If the function is being called with constant numeric args,
660 ;; evaluate as much as possible at compile-time. This optimizer
661 ;; assumes that the function is associative, like + or *.
662 (defun byte-optimize-associative-math (form)
663 (let ((args nil)
664 (constants nil)
665 (rest (cdr form)))
666 (while rest
667 (if (numberp (car rest))
668 (setq constants (cons (car rest) constants))
669 (setq args (cons (car rest) args)))
670 (setq rest (cdr rest)))
671 (if (cdr constants)
672 (if args
673 (list (car form)
674 (apply (car form) constants)
675 (if (cdr args)
676 (cons (car form) (nreverse args))
677 (car args)))
678 (apply (car form) constants))
679 form)))
680
681 ;; If the function is being called with constant numeric args,
682 ;; evaluate as much as possible at compile-time. This optimizer
683 ;; assumes that the function satisfies
684 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
685 ;; like - and /.
686 (defun byte-optimize-nonassociative-math (form)
687 (if (or (not (numberp (car (cdr form))))
688 (not (numberp (car (cdr (cdr form))))))
689 form
690 (let ((constant (car (cdr form)))
691 (rest (cdr (cdr form))))
692 (while (numberp (car rest))
693 (setq constant (funcall (car form) constant (car rest))
694 rest (cdr rest)))
695 (if rest
696 (cons (car form) (cons constant rest))
697 constant))))
698
699 ;;(defun byte-optimize-associative-two-args-math (form)
700 ;; (setq form (byte-optimize-associative-math form))
701 ;; (if (consp form)
702 ;; (byte-optimize-two-args-left form)
703 ;; form))
704
705 ;;(defun byte-optimize-nonassociative-two-args-math (form)
706 ;; (setq form (byte-optimize-nonassociative-math form))
707 ;; (if (consp form)
708 ;; (byte-optimize-two-args-right form)
709 ;; form))
710
711 (defun byte-optimize-approx-equal (x y)
712 (<= (* (abs (- x y)) 100) (abs (+ x y))))
713
714 ;; Collect all the constants from FORM, after the STARTth arg,
715 ;; and apply FUN to them to make one argument at the end.
716 ;; For functions that can handle floats, that optimization
717 ;; can be incorrect because reordering can cause an overflow
718 ;; that would otherwise be avoided by encountering an arg that is a float.
719 ;; We avoid this problem by (1) not moving float constants and
720 ;; (2) not moving anything if it would cause an overflow.
721 (defun byte-optimize-delay-constants-math (form start fun)
722 ;; Merge all FORM's constants from number START, call FUN on them
723 ;; and put the result at the end.
724 (let ((rest (nthcdr (1- start) form))
725 (orig form)
726 ;; t means we must check for overflow.
727 (overflow (memq fun '(+ *))))
728 (while (cdr (setq rest (cdr rest)))
729 (if (integerp (car rest))
730 (let (constants)
731 (setq form (copy-sequence form)
732 rest (nthcdr (1- start) form))
733 (while (setq rest (cdr rest))
734 (cond ((integerp (car rest))
735 (setq constants (cons (car rest) constants))
736 (setcar rest nil))))
737 ;; If necessary, check now for overflow
738 ;; that might be caused by reordering.
739 (if (and overflow
740 ;; We have overflow if the result of doing the arithmetic
741 ;; on floats is not even close to the result
742 ;; of doing it on integers.
743 (not (byte-optimize-approx-equal
744 (apply fun (mapcar 'float constants))
745 (float (apply fun constants)))))
746 (setq form orig)
747 (setq form (nconc (delq nil form)
748 (list (apply fun (nreverse constants)))))))))
749 form))
750
751 (defsubst byte-compile-butlast (form)
752 (nreverse (cdr (reverse form))))
753
754 (defun byte-optimize-plus (form)
755 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
756 ;;(setq form (byte-optimize-delay-constants-math form 1 '+))
757 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
758 ;; For (+ constants...), byte-optimize-predicate does the work.
759 (when (memq nil (mapcar 'numberp (cdr form)))
760 (cond
761 ;; (+ x 1) --> (1+ x) and (+ x -1) --> (1- x).
762 ((and (= (length form) 3)
763 (or (memq (nth 1 form) '(1 -1))
764 (memq (nth 2 form) '(1 -1))))
765 (let (integer other)
766 (if (memq (nth 1 form) '(1 -1))
767 (setq integer (nth 1 form) other (nth 2 form))
768 (setq integer (nth 2 form) other (nth 1 form)))
769 (setq form
770 (list (if (eq integer 1) '1+ '1-) other))))
771 ;; Here, we could also do
772 ;; (+ x y ... 1) --> (1+ (+ x y ...))
773 ;; (+ x y ... -1) --> (1- (+ x y ...))
774 ;; The resulting bytecode is smaller, but is it faster? -- cyd
775 ))
776 (byte-optimize-predicate form))
777
778 (defun byte-optimize-minus (form)
779 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
780 ;;(setq form (byte-optimize-delay-constants-math form 2 '+))
781 ;; Remove zeros.
782 (when (and (nthcdr 3 form)
783 (memq 0 (cddr form)))
784 (setq form (nconc (list (car form) (cadr form))
785 (delq 0 (copy-sequence (cddr form)))))
786 ;; After the above, we must turn (- x) back into (- x 0)
787 (or (cddr form)
788 (setq form (nconc form (list 0)))))
789 ;; For (- constants..), byte-optimize-predicate does the work.
790 (when (memq nil (mapcar 'numberp (cdr form)))
791 (cond
792 ;; (- x 1) --> (1- x)
793 ((equal (nthcdr 2 form) '(1))
794 (setq form (list '1- (nth 1 form))))
795 ;; (- x -1) --> (1+ x)
796 ((equal (nthcdr 2 form) '(-1))
797 (setq form (list '1+ (nth 1 form))))
798 ;; (- 0 x) --> (- x)
799 ((and (eq (nth 1 form) 0)
800 (= (length form) 3))
801 (setq form (list '- (nth 2 form))))
802 ;; Here, we could also do
803 ;; (- x y ... 1) --> (1- (- x y ...))
804 ;; (- x y ... -1) --> (1+ (- x y ...))
805 ;; The resulting bytecode is smaller, but is it faster? -- cyd
806 ))
807 (byte-optimize-predicate form))
808
809 (defun byte-optimize-multiply (form)
810 (setq form (byte-optimize-delay-constants-math form 1 '*))
811 ;; For (* constants..), byte-optimize-predicate does the work.
812 (when (memq nil (mapcar 'numberp (cdr form)))
813 ;; After `byte-optimize-predicate', if there is a INTEGER constant
814 ;; in FORM, it is in the last element.
815 (let ((last (car (reverse (cdr form)))))
816 (cond
817 ;; Would handling (* ... 0) here cause floating point errors?
818 ;; See bug#1334.
819 ((eq 1 last) (setq form (byte-compile-butlast form)))
820 ((eq -1 last)
821 (setq form (list '- (if (nthcdr 3 form)
822 (byte-compile-butlast form)
823 (nth 1 form))))))))
824 (byte-optimize-predicate form))
825
826 (defun byte-optimize-divide (form)
827 (setq form (byte-optimize-delay-constants-math form 2 '*))
828 ;; After `byte-optimize-predicate', if there is a INTEGER constant
829 ;; in FORM, it is in the last element.
830 (let ((last (car (reverse (cdr (cdr form))))))
831 (cond
832 ;; Runtime error (leave it intact).
833 ((or (null last)
834 (eq last 0)
835 (memql 0.0 (cddr form))))
836 ;; No constants in expression
837 ((not (numberp last)))
838 ;; For (* constants..), byte-optimize-predicate does the work.
839 ((null (memq nil (mapcar 'numberp (cdr form)))))
840 ;; (/ x y.. 1) --> (/ x y..)
841 ((and (eq last 1) (nthcdr 3 form))
842 (setq form (byte-compile-butlast form)))
843 ;; (/ x -1), (/ x .. -1) --> (- x), (- (/ x ..))
844 ((eq last -1)
845 (setq form (list '- (if (nthcdr 3 form)
846 (byte-compile-butlast form)
847 (nth 1 form)))))))
848 (byte-optimize-predicate form))
849
850 (defun byte-optimize-logmumble (form)
851 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
852 (byte-optimize-predicate
853 (cond ((memq 0 form)
854 (setq form (if (eq (car form) 'logand)
855 (cons 'progn (cdr form))
856 (delq 0 (copy-sequence form)))))
857 ((and (eq (car-safe form) 'logior)
858 (memq -1 form))
859 (cons 'progn (cdr form)))
860 (form))))
861
862
863 (defun byte-optimize-binary-predicate (form)
864 (if (byte-compile-constp (nth 1 form))
865 (if (byte-compile-constp (nth 2 form))
866 (condition-case ()
867 (list 'quote (eval form))
868 (error form))
869 ;; This can enable some lapcode optimizations.
870 (list (car form) (nth 2 form) (nth 1 form)))
871 form))
872
873 (defun byte-optimize-predicate (form)
874 (let ((ok t)
875 (rest (cdr form)))
876 (while (and rest ok)
877 (setq ok (byte-compile-constp (car rest))
878 rest (cdr rest)))
879 (if ok
880 (condition-case ()
881 (list 'quote (eval form))
882 (error form))
883 form)))
884
885 (defun byte-optimize-identity (form)
886 (if (and (cdr form) (null (cdr (cdr form))))
887 (nth 1 form)
888 (byte-compile-warn "identity called with %d arg%s, but requires 1"
889 (length (cdr form))
890 (if (= 1 (length (cdr form))) "" "s"))
891 form))
892
893 (put 'identity 'byte-optimizer 'byte-optimize-identity)
894
895 (put '+ 'byte-optimizer 'byte-optimize-plus)
896 (put '* 'byte-optimizer 'byte-optimize-multiply)
897 (put '- 'byte-optimizer 'byte-optimize-minus)
898 (put '/ 'byte-optimizer 'byte-optimize-divide)
899 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
900 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
901
902 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
903 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
904 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
905 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
906 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
907
908 (put '< 'byte-optimizer 'byte-optimize-predicate)
909 (put '> 'byte-optimizer 'byte-optimize-predicate)
910 (put '<= 'byte-optimizer 'byte-optimize-predicate)
911 (put '>= 'byte-optimizer 'byte-optimize-predicate)
912 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
913 (put '1- 'byte-optimizer 'byte-optimize-predicate)
914 (put 'not 'byte-optimizer 'byte-optimize-predicate)
915 (put 'null 'byte-optimizer 'byte-optimize-predicate)
916 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
917 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
918 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
919 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
920 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
921 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
922 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
923
924 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
925 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
926 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
927 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
928
929 (put 'car 'byte-optimizer 'byte-optimize-predicate)
930 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
931 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
932 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
933
934
935 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
936 ;; take care of this? - Jamie
937 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
938 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
939 (put 'quote 'byte-optimizer 'byte-optimize-quote)
940 (defun byte-optimize-quote (form)
941 (if (or (consp (nth 1 form))
942 (and (symbolp (nth 1 form))
943 (not (byte-compile-const-symbol-p form))))
944 form
945 (nth 1 form)))
946
947 (defun byte-optimize-zerop (form)
948 (cond ((numberp (nth 1 form))
949 (eval form))
950 (byte-compile-delete-errors
951 (list '= (nth 1 form) 0))
952 (form)))
953
954 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
955
956 (defun byte-optimize-and (form)
957 ;; Simplify if less than 2 args.
958 ;; if there is a literal nil in the args to `and', throw it and following
959 ;; forms away, and surround the `and' with (progn ... nil).
960 (cond ((null (cdr form)))
961 ((memq nil form)
962 (list 'progn
963 (byte-optimize-and
964 (prog1 (setq form (copy-sequence form))
965 (while (nth 1 form)
966 (setq form (cdr form)))
967 (setcdr form nil)))
968 nil))
969 ((null (cdr (cdr form)))
970 (nth 1 form))
971 ((byte-optimize-predicate form))))
972
973 (defun byte-optimize-or (form)
974 ;; Throw away nil's, and simplify if less than 2 args.
975 ;; If there is a literal non-nil constant in the args to `or', throw away all
976 ;; following forms.
977 (if (memq nil form)
978 (setq form (delq nil (copy-sequence form))))
979 (let ((rest form))
980 (while (cdr (setq rest (cdr rest)))
981 (if (byte-compile-trueconstp (car rest))
982 (setq form (copy-sequence form)
983 rest (setcdr (memq (car rest) form) nil))))
984 (if (cdr (cdr form))
985 (byte-optimize-predicate form)
986 (nth 1 form))))
987
988 (defun byte-optimize-cond (form)
989 ;; if any clauses have a literal nil as their test, throw them away.
990 ;; if any clause has a literal non-nil constant as its test, throw
991 ;; away all following clauses.
992 (let (rest)
993 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
994 (while (setq rest (assq nil (cdr form)))
995 (setq form (delq rest (copy-sequence form))))
996 (if (memq nil (cdr form))
997 (setq form (delq nil (copy-sequence form))))
998 (setq rest form)
999 (while (setq rest (cdr rest))
1000 (cond ((byte-compile-trueconstp (car-safe (car rest)))
1001 ;; This branch will always be taken: kill the subsequent ones.
1002 (cond ((eq rest (cdr form)) ;First branch of `cond'.
1003 (setq form `(progn ,@(car rest))))
1004 ((cdr rest)
1005 (setq form (copy-sequence form))
1006 (setcdr (memq (car rest) form) nil)))
1007 (setq rest nil))
1008 ((and (consp (car rest))
1009 (byte-compile-nilconstp (caar rest)))
1010 ;; This branch will never be taken: kill its body.
1011 (setcdr (car rest) nil)))))
1012 ;;
1013 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
1014 (if (eq 'cond (car-safe form))
1015 (let ((clauses (cdr form)))
1016 (if (and (consp (car clauses))
1017 (null (cdr (car clauses))))
1018 (list 'or (car (car clauses))
1019 (byte-optimize-cond
1020 (cons (car form) (cdr (cdr form)))))
1021 form))
1022 form))
1023
1024 (defun byte-optimize-if (form)
1025 ;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
1026 ;; (if <true-constant> <then> <else...>) ==> <then>
1027 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1028 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1029 ;; (if <test> <then> nil) ==> (if <test> <then>)
1030 (let ((clause (nth 1 form)))
1031 (cond ((and (eq (car-safe clause) 'progn)
1032 ;; `clause' is a proper list.
1033 (null (cdr (last clause))))
1034 (if (null (cddr clause))
1035 ;; A trivial `progn'.
1036 (byte-optimize-if `(if ,(cadr clause) ,@(nthcdr 2 form)))
1037 (nconc (butlast clause)
1038 (list
1039 (byte-optimize-if
1040 `(if ,(car (last clause)) ,@(nthcdr 2 form)))))))
1041 ((byte-compile-trueconstp clause)
1042 `(progn ,clause ,(nth 2 form)))
1043 ((byte-compile-nilconstp clause)
1044 `(progn ,clause ,@(nthcdr 3 form)))
1045 ((nth 2 form)
1046 (if (equal '(nil) (nthcdr 3 form))
1047 (list 'if clause (nth 2 form))
1048 form))
1049 ((or (nth 3 form) (nthcdr 4 form))
1050 (list 'if
1051 ;; Don't make a double negative;
1052 ;; instead, take away the one that is there.
1053 (if (and (consp clause) (memq (car clause) '(not null))
1054 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1055 (nth 1 clause)
1056 (list 'not clause))
1057 (if (nthcdr 4 form)
1058 (cons 'progn (nthcdr 3 form))
1059 (nth 3 form))))
1060 (t
1061 (list 'progn clause nil)))))
1062
1063 (defun byte-optimize-while (form)
1064 (when (< (length form) 2)
1065 (byte-compile-warn "too few arguments for `while'"))
1066 (if (nth 1 form)
1067 form))
1068
1069 (put 'and 'byte-optimizer 'byte-optimize-and)
1070 (put 'or 'byte-optimizer 'byte-optimize-or)
1071 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1072 (put 'if 'byte-optimizer 'byte-optimize-if)
1073 (put 'while 'byte-optimizer 'byte-optimize-while)
1074
1075 ;; byte-compile-negation-optimizer lives in bytecomp.el
1076 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1077 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1078 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1079
1080
1081 (defun byte-optimize-funcall (form)
1082 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1083 ;; (funcall foo ...) ==> (foo ...)
1084 (let ((fn (nth 1 form)))
1085 (if (memq (car-safe fn) '(quote function))
1086 (cons (nth 1 fn) (cdr (cdr form)))
1087 form)))
1088
1089 (defun byte-optimize-apply (form)
1090 ;; If the last arg is a literal constant, turn this into a funcall.
1091 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1092 (let ((fn (nth 1 form))
1093 (last (nth (1- (length form)) form))) ; I think this really is fastest
1094 (or (if (or (null last)
1095 (eq (car-safe last) 'quote))
1096 (if (listp (nth 1 last))
1097 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1098 (nconc (list 'funcall fn) butlast
1099 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1100 (byte-compile-warn
1101 "last arg to apply can't be a literal atom: `%s'"
1102 (prin1-to-string last))
1103 nil))
1104 form)))
1105
1106 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1107 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1108
1109
1110 (put 'let 'byte-optimizer 'byte-optimize-letX)
1111 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1112 (defun byte-optimize-letX (form)
1113 (cond ((null (nth 1 form))
1114 ;; No bindings
1115 (cons 'progn (cdr (cdr form))))
1116 ((or (nth 2 form) (nthcdr 3 form))
1117 form)
1118 ;; The body is nil
1119 ((eq (car form) 'let)
1120 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1121 '(nil)))
1122 (t
1123 (let ((binds (reverse (nth 1 form))))
1124 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1125
1126
1127 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1128 (defun byte-optimize-nth (form)
1129 (if (= (safe-length form) 3)
1130 (if (memq (nth 1 form) '(0 1))
1131 (list 'car (if (zerop (nth 1 form))
1132 (nth 2 form)
1133 (list 'cdr (nth 2 form))))
1134 (byte-optimize-predicate form))
1135 form))
1136
1137 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1138 (defun byte-optimize-nthcdr (form)
1139 (if (= (safe-length form) 3)
1140 (if (memq (nth 1 form) '(0 1 2))
1141 (let ((count (nth 1 form)))
1142 (setq form (nth 2 form))
1143 (while (>= (setq count (1- count)) 0)
1144 (setq form (list 'cdr form)))
1145 form)
1146 (byte-optimize-predicate form))
1147 form))
1148
1149 ;; Fixme: delete-char -> delete-region (byte-coded)
1150 ;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1151 ;; string-make-multibyte for constant args.
1152
1153 (put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1154 (defun byte-optimize-featurep (form)
1155 ;; Emacs-21's byte-code doesn't run under XEmacs or SXEmacs anyway, so we
1156 ;; can safely optimize away this test.
1157 (if (member (cdr-safe form) '(((quote xemacs)) ((quote sxemacs))))
1158 nil
1159 (if (member (cdr-safe form) '(((quote emacs))))
1160 t
1161 form)))
1162
1163 (put 'set 'byte-optimizer 'byte-optimize-set)
1164 (defun byte-optimize-set (form)
1165 (let ((var (car-safe (cdr-safe form))))
1166 (cond
1167 ((and (eq (car-safe var) 'quote) (consp (cdr var)))
1168 `(setq ,(cadr var) ,@(cddr form)))
1169 ((and (eq (car-safe var) 'make-local-variable)
1170 (eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
1171 (consp (cdr var)))
1172 `(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
1173 (t form))))
1174 \f
1175 ;; enumerating those functions which need not be called if the returned
1176 ;; value is not used. That is, something like
1177 ;; (progn (list (something-with-side-effects) (yow))
1178 ;; (foo))
1179 ;; may safely be turned into
1180 ;; (progn (progn (something-with-side-effects) (yow))
1181 ;; (foo))
1182 ;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1183
1184 ;; Some of these functions have the side effect of allocating memory
1185 ;; and it would be incorrect to replace two calls with one.
1186 ;; But we don't try to do those kinds of optimizations,
1187 ;; so it is safe to list such functions here.
1188 ;; Some of these functions return values that depend on environment
1189 ;; state, so that constant folding them would be wrong,
1190 ;; but we don't do constant folding based on this list.
1191
1192 ;; However, at present the only optimization we normally do
1193 ;; is delete calls that need not occur, and we only do that
1194 ;; with the error-free functions.
1195
1196 ;; I wonder if I missed any :-\)
1197 (let ((side-effect-free-fns
1198 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1199 assoc assq
1200 boundp buffer-file-name buffer-local-variables buffer-modified-p
1201 buffer-substring byte-code-function-p
1202 capitalize car-less-than-car car cdr ceiling char-after char-before
1203 char-equal char-to-string char-width
1204 compare-strings concat coordinates-in-window-p
1205 copy-alist copy-sequence copy-marker cos count-lines
1206 decode-char
1207 decode-time default-boundp default-value documentation downcase
1208 elt encode-char exp expt encode-time error-message-string
1209 fboundp fceiling featurep ffloor
1210 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1211 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1212 float float-time floor format format-time-string frame-visible-p
1213 fround ftruncate
1214 get gethash get-buffer get-buffer-window getenv get-file-buffer
1215 hash-table-count
1216 int-to-string intern-soft
1217 keymap-parent
1218 length local-variable-if-set-p local-variable-p log log10 logand
1219 logb logior lognot logxor lsh langinfo
1220 make-list make-string make-symbol
1221 marker-buffer max member memq min mod multibyte-char-to-unibyte
1222 next-window nth nthcdr number-to-string
1223 parse-colon-path plist-get plist-member
1224 prefix-numeric-value previous-window prin1-to-string propertize
1225 degrees-to-radians
1226 radians-to-degrees rassq rassoc read-from-string regexp-quote
1227 region-beginning region-end reverse round
1228 sin sqrt string string< string= string-equal string-lessp string-to-char
1229 string-to-int string-to-number substring sxhash symbol-function
1230 symbol-name symbol-plist symbol-value string-make-unibyte
1231 string-make-multibyte string-as-multibyte string-as-unibyte
1232 string-to-multibyte
1233 tan truncate
1234 unibyte-char-to-multibyte upcase user-full-name
1235 user-login-name user-original-login-name user-variable-p
1236 vconcat
1237 window-buffer window-dedicated-p window-edges window-height
1238 window-hscroll window-minibuffer-p window-width
1239 zerop))
1240 (side-effect-and-error-free-fns
1241 '(arrayp atom
1242 bobp bolp bool-vector-p
1243 buffer-end buffer-list buffer-size buffer-string bufferp
1244 car-safe case-table-p cdr-safe char-or-string-p characterp
1245 charsetp commandp cons consp
1246 current-buffer current-global-map current-indentation
1247 current-local-map current-minor-mode-maps current-time
1248 current-time-string current-time-zone
1249 eobp eolp eq equal eventp
1250 floatp following-char framep
1251 get-largest-window get-lru-window
1252 hash-table-p
1253 identity ignore integerp integer-or-marker-p interactive-p
1254 invocation-directory invocation-name
1255 keymapp
1256 line-beginning-position line-end-position list listp
1257 make-marker mark mark-marker markerp max-char
1258 memory-limit minibuffer-window
1259 mouse-movement-p
1260 natnump nlistp not null number-or-marker-p numberp
1261 one-window-p overlayp
1262 point point-marker point-min point-max preceding-char primary-charset
1263 processp
1264 recent-keys recursion-depth
1265 safe-length selected-frame selected-window sequencep
1266 standard-case-table standard-syntax-table stringp subrp symbolp
1267 syntax-table syntax-table-p
1268 this-command-keys this-command-keys-vector this-single-command-keys
1269 this-single-command-raw-keys
1270 user-real-login-name user-real-uid user-uid
1271 vector vectorp visible-frame-list
1272 wholenump window-configuration-p window-live-p windowp)))
1273 (while side-effect-free-fns
1274 (put (car side-effect-free-fns) 'side-effect-free t)
1275 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1276 (while side-effect-and-error-free-fns
1277 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1278 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1279 nil)
1280
1281 \f
1282 ;; pure functions are side-effect free functions whose values depend
1283 ;; only on their arguments. For these functions, calls with constant
1284 ;; arguments can be evaluated at compile time. This may shift run time
1285 ;; errors to compile time.
1286
1287 (let ((pure-fns
1288 '(concat symbol-name regexp-opt regexp-quote string-to-syntax)))
1289 (while pure-fns
1290 (put (car pure-fns) 'pure t)
1291 (setq pure-fns (cdr pure-fns)))
1292 nil)
1293
1294 (defun byte-compile-splice-in-already-compiled-code (form)
1295 ;; form is (byte-code "..." [...] n)
1296 (if (not (memq byte-optimize '(t lap)))
1297 (byte-compile-normal-call form)
1298 (byte-inline-lapcode
1299 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1300 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1301 byte-compile-maxdepth))
1302 (setq byte-compile-depth (1+ byte-compile-depth))))
1303
1304 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1305
1306 \f
1307 (defconst byte-constref-ops
1308 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1309
1310 ;; This function extracts the bitfields from variable-length opcodes.
1311 ;; Originally defined in disass.el (which no longer uses it.)
1312
1313 (defun disassemble-offset ()
1314 "Don't call this!"
1315 ;; fetch and return the offset for the current opcode.
1316 ;; return nil if this opcode has no offset
1317 ;; OP, PTR and BYTES are used and set dynamically
1318 (defvar op)
1319 (defvar ptr)
1320 (defvar bytes)
1321 (cond ((< op byte-nth)
1322 (let ((tem (logand op 7)))
1323 (setq op (logand op 248))
1324 (cond ((eq tem 6)
1325 (setq ptr (1+ ptr)) ;offset in next byte
1326 (aref bytes ptr))
1327 ((eq tem 7)
1328 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1329 (+ (aref bytes ptr)
1330 (progn (setq ptr (1+ ptr))
1331 (lsh (aref bytes ptr) 8))))
1332 (t tem)))) ;offset was in opcode
1333 ((>= op byte-constant)
1334 (prog1 (- op byte-constant) ;offset in opcode
1335 (setq op byte-constant)))
1336 ((or (and (>= op byte-constant2)
1337 (<= op byte-goto-if-not-nil-else-pop))
1338 (= op byte-stack-set2))
1339 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1340 (+ (aref bytes ptr)
1341 (progn (setq ptr (1+ ptr))
1342 (lsh (aref bytes ptr) 8))))
1343 ((and (>= op byte-listN)
1344 (<= op byte-discardN))
1345 (setq ptr (1+ ptr)) ;offset in next byte
1346 (aref bytes ptr))))
1347
1348
1349 ;; This de-compiler is used for inline expansion of compiled functions,
1350 ;; and by the disassembler.
1351 ;;
1352 ;; This list contains numbers, which are pc values,
1353 ;; before each instruction.
1354 (defun byte-decompile-bytecode (bytes constvec)
1355 "Turn BYTECODE into lapcode, referring to CONSTVEC."
1356 (let ((byte-compile-constants nil)
1357 (byte-compile-variables nil)
1358 (byte-compile-tag-number 0))
1359 (byte-decompile-bytecode-1 bytes constvec)))
1360
1361 ;; As byte-decompile-bytecode, but updates
1362 ;; byte-compile-{constants, variables, tag-number}.
1363 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1364 ;; with `goto's destined for the end of the code.
1365 ;; That is for use by the compiler.
1366 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1367 ;; In that case, we put a pc value into the list
1368 ;; before each insn (or its label).
1369 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1370 (let ((length (length bytes))
1371 (ptr 0) optr tags op offset
1372 lap tmp
1373 endtag)
1374 (while (not (= ptr length))
1375 (or make-spliceable
1376 (setq lap (cons ptr lap)))
1377 (setq op (aref bytes ptr)
1378 optr ptr
1379 offset (disassemble-offset)) ; this does dynamic-scope magic
1380 (setq op (aref byte-code-vector op))
1381 (cond ((memq op byte-goto-ops)
1382 ;; it's a pc
1383 (setq offset
1384 (cdr (or (assq offset tags)
1385 (car (setq tags
1386 (cons (cons offset
1387 (byte-compile-make-tag))
1388 tags)))))))
1389 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1390 ((memq op byte-constref-ops)))
1391 (setq tmp (if (>= offset (length constvec))
1392 (list 'out-of-range offset)
1393 (aref constvec offset))
1394 offset (if (eq op 'byte-constant)
1395 (byte-compile-get-constant tmp)
1396 (or (assq tmp byte-compile-variables)
1397 (car (setq byte-compile-variables
1398 (cons (list tmp)
1399 byte-compile-variables)))))))
1400 ((and make-spliceable
1401 (eq op 'byte-return))
1402 (if (= ptr (1- length))
1403 (setq op nil)
1404 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1405 op 'byte-goto)))
1406 ((eq op 'byte-stack-set2)
1407 (setq op 'byte-stack-set))
1408 ((and (eq op 'byte-discardN) (>= offset #x80))
1409 ;; The top bit of the operand for byte-discardN is a flag,
1410 ;; saying whether the top-of-stack is preserved. In
1411 ;; lapcode, we represent this by using a different opcode
1412 ;; (with the flag removed from the operand).
1413 (setq op 'byte-discardN-preserve-tos)
1414 (setq offset (- offset #x80))))
1415 ;; lap = ( [ (pc . (op . arg)) ]* )
1416 (setq lap (cons (cons optr (cons op (or offset 0)))
1417 lap))
1418 (setq ptr (1+ ptr)))
1419 ;; take off the dummy nil op that we replaced a trailing "return" with.
1420 (let ((rest lap))
1421 (while rest
1422 (cond ((numberp (car rest)))
1423 ((setq tmp (assq (car (car rest)) tags))
1424 ;; this addr is jumped to
1425 (setcdr rest (cons (cons nil (cdr tmp))
1426 (cdr rest)))
1427 (setq tags (delq tmp tags))
1428 (setq rest (cdr rest))))
1429 (setq rest (cdr rest))))
1430 (if tags (error "optimizer error: missed tags %s" tags))
1431 (if (null (car (cdr (car lap))))
1432 (setq lap (cdr lap)))
1433 (if endtag
1434 (setq lap (cons (cons nil endtag) lap)))
1435 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1436 (mapcar (function (lambda (elt)
1437 (if (numberp elt)
1438 elt
1439 (cdr elt))))
1440 (nreverse lap))))
1441
1442 \f
1443 ;;; peephole optimizer
1444
1445 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1446
1447 (defconst byte-conditional-ops
1448 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1449 byte-goto-if-not-nil-else-pop))
1450
1451 (defconst byte-after-unbind-ops
1452 '(byte-constant byte-dup
1453 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1454 byte-eq byte-not
1455 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1456 byte-interactive-p)
1457 ;; How about other side-effect-free-ops? Is it safe to move an
1458 ;; error invocation (such as from nth) out of an unwind-protect?
1459 ;; No, it is not, because the unwind-protect forms can alter
1460 ;; the inside of the object to which nth would apply.
1461 ;; For the same reason, byte-equal was deleted from this list.
1462 "Byte-codes that can be moved past an unbind.")
1463
1464 (defconst byte-compile-side-effect-and-error-free-ops
1465 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1466 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1467 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1468 byte-point-min byte-following-char byte-preceding-char
1469 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1470 byte-current-buffer byte-interactive-p byte-stack-ref))
1471
1472 (defconst byte-compile-side-effect-free-ops
1473 (nconc
1474 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1475 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1476 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1477 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1478 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1479 byte-member byte-assq byte-quo byte-rem byte-vec-ref)
1480 byte-compile-side-effect-and-error-free-ops))
1481
1482 ;; This crock is because of the way DEFVAR_BOOL variables work.
1483 ;; Consider the code
1484 ;;
1485 ;; (defun foo (flag)
1486 ;; (let ((old-pop-ups pop-up-windows)
1487 ;; (pop-up-windows flag))
1488 ;; (cond ((not (eq pop-up-windows old-pop-ups))
1489 ;; (setq old-pop-ups pop-up-windows)
1490 ;; ...))))
1491 ;;
1492 ;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1493 ;; something else. But if we optimize
1494 ;;
1495 ;; varref flag
1496 ;; varbind pop-up-windows
1497 ;; varref pop-up-windows
1498 ;; not
1499 ;; to
1500 ;; varref flag
1501 ;; dup
1502 ;; varbind pop-up-windows
1503 ;; not
1504 ;;
1505 ;; we break the program, because it will appear that pop-up-windows and
1506 ;; old-pop-ups are not EQ when really they are. So we have to know what
1507 ;; the BOOL variables are, and not perform this optimization on them.
1508
1509 ;; The variable `byte-boolean-vars' is now primitive and updated
1510 ;; automatically by DEFVAR_BOOL.
1511
1512 (defmacro byte-opt-update-stack-params (stack-adjust stack-depth lap0 rest lap)
1513 "...macro used by byte-optimize-lapcode..."
1514 `(progn
1515 (byte-compile-log-lap "Before %s [depth = %s]" ,lap0 ,stack-depth)
1516 (cond ((eq (car ,lap0) 'TAG)
1517 ;; A tag can encode the expected stack depth.
1518 (when (cddr ,lap0)
1519 ;; First, check to see if our notion of the current stack
1520 ;; depth agrees with this tag. We don't check at the
1521 ;; beginning of the function, because the presence of
1522 ;; lexical arguments means the first tag will have a
1523 ;; non-zero offset.
1524 (when (and (not (eq ,rest ,lap)) ; not at first insn
1525 ,stack-depth ; not just after a goto
1526 (not (= (cddr ,lap0) ,stack-depth)))
1527 (error "Compiler error: optimizer is confused about %s:
1528 %s != %s at lapcode %s" ',stack-depth (cddr ,lap0) ,stack-depth ,lap0))
1529 ;; Now set out current depth from this tag
1530 (setq ,stack-depth (cddr ,lap0)))
1531 (setq ,stack-adjust 0))
1532 ((memq (car ,lap0) '(byte-goto byte-return))
1533 ;; These insns leave us in an unknown state
1534 (setq ,stack-adjust nil))
1535 ((car ,lap0)
1536 ;; Not a no-op, set ,stack-adjust for lap0. ,stack-adjust will
1537 ;; be added to ,stack-depth at the end of the loop, so any code
1538 ;; that modifies the instruction sequence must adjust this too.
1539 (setq ,stack-adjust
1540 (byte-compile-stack-adjustment (car ,lap0) (cdr ,lap0)))))
1541 (byte-compile-log-lap "Before %s [depth => %s, adj = %s]" ,lap0 ,stack-depth ,stack-adjust)
1542 ))
1543
1544 (defun byte-optimize-lapcode (lap &optional for-effect)
1545 "Simple peephole optimizer. LAP is both modified and returned.
1546 If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
1547 (let (lap0
1548 lap1
1549 lap2
1550 stack-adjust
1551 stack-depth
1552 (initial-stack-depth
1553 (if (and lap (eq (car (car lap)) 'TAG))
1554 (cdr (cdr (car lap)))
1555 0))
1556 (keep-going 'first-time)
1557 (add-depth 0)
1558 rest tmp tmp2 tmp3
1559 (side-effect-free (if byte-compile-delete-errors
1560 byte-compile-side-effect-free-ops
1561 byte-compile-side-effect-and-error-free-ops)))
1562 (while keep-going
1563 (or (eq keep-going 'first-time)
1564 (byte-compile-log-lap " ---- next pass"))
1565 (setq rest lap
1566 stack-depth initial-stack-depth
1567 keep-going nil)
1568 (while rest
1569 (setq lap0 (car rest)
1570 lap1 (nth 1 rest)
1571 lap2 (nth 2 rest))
1572
1573 (byte-opt-update-stack-params stack-adjust stack-depth lap0 rest lap)
1574
1575 ;; You may notice that sequences like "dup varset discard" are
1576 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1577 ;; You may be tempted to change this; resist that temptation.
1578 (cond ;;
1579 ;; <side-effect-free> pop --> <deleted>
1580 ;; ...including:
1581 ;; const-X pop --> <deleted>
1582 ;; varref-X pop --> <deleted>
1583 ;; dup pop --> <deleted>
1584 ;;
1585 ((and (eq 'byte-discard (car lap1))
1586 (memq (car lap0) side-effect-free))
1587 (setq keep-going t)
1588 (setq rest (cdr rest))
1589 (cond ((= stack-adjust 1)
1590 (byte-compile-log-lap
1591 " %s discard\t-->\t<deleted>" lap0)
1592 (setq lap (delq lap0 (delq lap1 lap))))
1593 ((= stack-adjust 0)
1594 (byte-compile-log-lap
1595 " %s discard\t-->\t<deleted> discard" lap0)
1596 (setq lap (delq lap0 lap)))
1597 ((= stack-adjust -1)
1598 (byte-compile-log-lap
1599 " %s discard\t-->\tdiscard discard" lap0)
1600 (setcar lap0 'byte-discard)
1601 (setcdr lap0 0))
1602 ((error "Optimizer error: too much on the stack")))
1603 (setq stack-adjust (1- stack-adjust)))
1604 ;;
1605 ;; goto*-X X: --> X:
1606 ;;
1607 ((and (memq (car lap0) byte-goto-ops)
1608 (eq (cdr lap0) lap1))
1609 (cond ((eq (car lap0) 'byte-goto)
1610 (setq lap (delq lap0 lap))
1611 (setq tmp "<deleted>"))
1612 ((memq (car lap0) byte-goto-always-pop-ops)
1613 (setcar lap0 (setq tmp 'byte-discard))
1614 (setcdr lap0 0))
1615 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1616 (and (memq byte-optimize-log '(t byte))
1617 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1618 (nth 1 lap1) (nth 1 lap1)
1619 tmp (nth 1 lap1)))
1620 (setq keep-going t))
1621 ;;
1622 ;; varset-X varref-X --> dup varset-X
1623 ;; varbind-X varref-X --> dup varbind-X
1624 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1625 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1626 ;; The latter two can enable other optimizations.
1627 ;;
1628 ((or (and (eq 'byte-varref (car lap2))
1629 (eq (cdr lap1) (cdr lap2))
1630 (memq (car lap1) '(byte-varset byte-varbind)))
1631 (and (eq (car lap2) 'byte-stack-ref)
1632 (eq (car lap1) 'byte-stack-set)
1633 (eq (cdr lap1) (cdr lap2))))
1634 (if (and (eq 'byte-varref (car lap2))
1635 (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1636 (not (eq (car lap0) 'byte-constant)))
1637 nil
1638 (setq keep-going t)
1639 (if (memq (car lap0) '(byte-constant byte-dup))
1640 (progn
1641 (setq tmp (if (or (not tmp)
1642 (byte-compile-const-symbol-p
1643 (car (cdr lap0))))
1644 (cdr lap0)
1645 (byte-compile-get-constant t)))
1646 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1647 lap0 lap1 lap2 lap0 lap1
1648 (cons (car lap0) tmp))
1649 (setcar lap2 (car lap0))
1650 (setcdr lap2 tmp))
1651 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1652 (setcar lap2 (car lap1))
1653 (setcar lap1 'byte-dup)
1654 (setcdr lap1 0)
1655 ;; The stack depth gets locally increased, so we will
1656 ;; increase maxdepth in case depth = maxdepth here.
1657 ;; This can cause the third argument to byte-code to
1658 ;; be larger than necessary.
1659 (setq add-depth 1))))
1660 ;;
1661 ;; dup varset-X discard --> varset-X
1662 ;; dup varbind-X discard --> varbind-X
1663 ;; (the varbind variant can emerge from other optimizations)
1664 ;;
1665 ((and (eq 'byte-dup (car lap0))
1666 (eq 'byte-discard (car lap2))
1667 (memq (car lap1) '(byte-varset byte-varbind byte-stack-set byte-vec-set)))
1668 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1669 (setq keep-going t
1670 rest (cdr rest)
1671 stack-adjust -1)
1672 (setq lap (delq lap0 (delq lap2 lap))))
1673 ;;
1674 ;; not goto-X-if-nil --> goto-X-if-non-nil
1675 ;; not goto-X-if-non-nil --> goto-X-if-nil
1676 ;;
1677 ;; it is wrong to do the same thing for the -else-pop variants.
1678 ;;
1679 ((and (eq 'byte-not (car lap0))
1680 (or (eq 'byte-goto-if-nil (car lap1))
1681 (eq 'byte-goto-if-not-nil (car lap1))))
1682 (byte-compile-log-lap " not %s\t-->\t%s"
1683 lap1
1684 (cons
1685 (if (eq (car lap1) 'byte-goto-if-nil)
1686 'byte-goto-if-not-nil
1687 'byte-goto-if-nil)
1688 (cdr lap1)))
1689 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1690 'byte-goto-if-not-nil
1691 'byte-goto-if-nil))
1692 (setq lap (delq lap0 lap))
1693 (setq keep-going t
1694 stack-adjust 0))
1695 ;;
1696 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1697 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1698 ;;
1699 ;; it is wrong to do the same thing for the -else-pop variants.
1700 ;;
1701 ((and (or (eq 'byte-goto-if-nil (car lap0))
1702 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1703 (eq 'byte-goto (car lap1)) ; gotoY
1704 (eq (cdr lap0) lap2)) ; TAG X
1705 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1706 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1707 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1708 lap0 lap1 lap2
1709 (cons inverse (cdr lap1)) lap2)
1710 (setq lap (delq lap0 lap)
1711 stack-adjust 0)
1712 (setcar lap1 inverse)
1713 (setq keep-going t)))
1714 ;;
1715 ;; const goto-if-* --> whatever
1716 ;;
1717 ((and (eq 'byte-constant (car lap0))
1718 (memq (car lap1) byte-conditional-ops))
1719 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1720 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1721 (car (cdr lap0))
1722 (not (car (cdr lap0))))
1723 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1724 lap0 lap1)
1725 (setq rest (cdr rest)
1726 lap (delq lap0 (delq lap1 lap))))
1727 (t
1728 (byte-compile-log-lap " %s %s\t-->\t%s"
1729 lap0 lap1
1730 (cons 'byte-goto (cdr lap1)))
1731 (when (memq (car lap1) byte-goto-always-pop-ops)
1732 (setq lap (delq lap0 lap)))
1733 (setcar lap1 'byte-goto)))
1734 (setq keep-going t
1735 stack-adjust 0))
1736 ;;
1737 ;; varref-X varref-X --> varref-X dup
1738 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1739 ;; We don't optimize the const-X variations on this here,
1740 ;; because that would inhibit some goto optimizations; we
1741 ;; optimize the const-X case after all other optimizations.
1742 ;;
1743 ((and (memq (car lap0) '(byte-varref byte-stack-ref))
1744 (progn
1745 (setq tmp (cdr rest) tmp2 0)
1746 (while (eq (car (car tmp)) 'byte-dup)
1747 (setq tmp (cdr tmp) tmp2 (1+ tmp2)))
1748 t)
1749 (eq (car lap0) (car (car tmp)))
1750 (eq (cdr lap0) (cdr (car tmp))))
1751 (if (memq byte-optimize-log '(t byte))
1752 (let ((str ""))
1753 (setq tmp2 (cdr rest))
1754 (while (not (eq tmp tmp2))
1755 (setq tmp2 (cdr tmp2)
1756 str (concat str " dup")))
1757 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1758 lap0 str lap0 lap0 str)))
1759 (setq keep-going t)
1760 (setcar (car tmp) 'byte-dup)
1761 (setcdr (car tmp) 0)
1762 (setq rest tmp
1763 stack-adjust (+ 2 tmp2)))
1764 ;;
1765 ;; TAG1: TAG2: --> TAG1: <deleted>
1766 ;; (and other references to TAG2 are replaced with TAG1)
1767 ;;
1768 ((and (eq (car lap0) 'TAG)
1769 (eq (car lap1) 'TAG))
1770 (and (memq byte-optimize-log '(t byte))
1771 (byte-compile-log " adjacent tags %d and %d merged"
1772 (nth 1 lap1) (nth 1 lap0)))
1773 (setq tmp3 lap)
1774 (while (setq tmp2 (rassq lap0 tmp3))
1775 (setcdr tmp2 lap1)
1776 (setq tmp3 (cdr (memq tmp2 tmp3))))
1777 (setq lap (delq lap0 lap)
1778 keep-going t))
1779 ;;
1780 ;; unused-TAG: --> <deleted>
1781 ;;
1782 ((and (eq 'TAG (car lap0))
1783 (not (rassq lap0 lap)))
1784 (and (memq byte-optimize-log '(t byte))
1785 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1786 (setq lap (delq lap0 lap)
1787 keep-going t))
1788 ;;
1789 ;; goto ... --> goto <delete until TAG or end>
1790 ;; return ... --> return <delete until TAG or end>
1791 ;;
1792 ((and (memq (car lap0) '(byte-goto byte-return))
1793 (not (memq (car lap1) '(TAG nil))))
1794 (setq tmp rest)
1795 (let ((i 0)
1796 (opt-p (memq byte-optimize-log '(t lap)))
1797 str deleted)
1798 (while (and (setq tmp (cdr tmp))
1799 (not (eq 'TAG (car (car tmp)))))
1800 (if opt-p (setq deleted (cons (car tmp) deleted)
1801 str (concat str " %s")
1802 i (1+ i))))
1803 (if opt-p
1804 (let ((tagstr
1805 (if (eq 'TAG (car (car tmp)))
1806 (format "%d:" (car (cdr (car tmp))))
1807 (or (car tmp) ""))))
1808 (if (< i 6)
1809 (apply 'byte-compile-log-lap-1
1810 (concat " %s" str
1811 " %s\t-->\t%s <deleted> %s")
1812 lap0
1813 (nconc (nreverse deleted)
1814 (list tagstr lap0 tagstr)))
1815 (byte-compile-log-lap
1816 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1817 lap0 i (if (= i 1) "" "s")
1818 tagstr lap0 tagstr))))
1819 (rplacd rest tmp))
1820 (setq keep-going t))
1821 ;;
1822 ;; <safe-op> unbind --> unbind <safe-op>
1823 ;; (this may enable other optimizations.)
1824 ;;
1825 ((and (eq 'byte-unbind (car lap1))
1826 (memq (car lap0) byte-after-unbind-ops))
1827 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1828 (setcar rest lap1)
1829 (setcar (cdr rest) lap0)
1830 (setq keep-going t
1831 stack-adjust 0))
1832 ;;
1833 ;; varbind-X unbind-N --> discard unbind-(N-1)
1834 ;; save-excursion unbind-N --> unbind-(N-1)
1835 ;; save-restriction unbind-N --> unbind-(N-1)
1836 ;;
1837 ((and (eq 'byte-unbind (car lap1))
1838 (memq (car lap0) '(byte-varbind byte-save-excursion
1839 byte-save-restriction))
1840 (< 0 (cdr lap1)))
1841 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1842 (delq lap1 rest))
1843 (if (eq (car lap0) 'byte-varbind)
1844 (setcar rest (cons 'byte-discard 0))
1845 (setq lap (delq lap0 lap)))
1846 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1847 lap0 (cons (car lap1) (1+ (cdr lap1)))
1848 (if (eq (car lap0) 'byte-varbind)
1849 (car rest)
1850 (car (cdr rest)))
1851 (if (and (/= 0 (cdr lap1))
1852 (eq (car lap0) 'byte-varbind))
1853 (car (cdr rest))
1854 ""))
1855 (setq keep-going t))
1856 ;;
1857 ;; stack-ref-N --> dup ; where N is TOS
1858 ;;
1859 ((and (eq (car lap0) 'byte-stack-ref)
1860 (= (cdr lap0) (1- stack-depth)))
1861 (setcar lap0 'byte-dup)
1862 (setcdr lap0 nil)
1863 (setq keep-going t))
1864 ;;
1865 ;; goto*-X ... X: goto-Y --> goto*-Y
1866 ;; goto-X ... X: return --> return
1867 ;;
1868 ((and (memq (car lap0) byte-goto-ops)
1869 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1870 '(byte-goto byte-return)))
1871 (cond ((and (not (eq tmp lap0))
1872 (or (eq (car lap0) 'byte-goto)
1873 (eq (car tmp) 'byte-goto)))
1874 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1875 (car lap0) tmp tmp)
1876 (if (eq (car tmp) 'byte-return)
1877 (setcar lap0 'byte-return))
1878 (setcdr lap0 (cdr tmp))
1879 (setq keep-going t))))
1880 ;;
1881 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1882 ;; goto-*-else-pop X ... X: discard --> whatever
1883 ;;
1884 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1885 byte-goto-if-not-nil-else-pop))
1886 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1887 (eval-when-compile
1888 (cons 'byte-discard byte-conditional-ops)))
1889 (not (eq lap0 (car tmp))))
1890 (setq tmp2 (car tmp))
1891 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1892 byte-goto-if-nil)
1893 (byte-goto-if-not-nil-else-pop
1894 byte-goto-if-not-nil))))
1895 (if (memq (car tmp2) tmp3)
1896 (progn (setcar lap0 (car tmp2))
1897 (setcdr lap0 (cdr tmp2))
1898 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1899 (car lap0) tmp2 lap0))
1900 ;; Get rid of the -else-pop's and jump one step further.
1901 (or (eq 'TAG (car (nth 1 tmp)))
1902 (setcdr tmp (cons (byte-compile-make-tag)
1903 (cdr tmp))))
1904 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1905 (car lap0) tmp2 (nth 1 tmp3))
1906 (setcar lap0 (nth 1 tmp3))
1907 (setcdr lap0 (nth 1 tmp)))
1908 (setq keep-going t))
1909 ;;
1910 ;; const goto-X ... X: goto-if-* --> whatever
1911 ;; const goto-X ... X: discard --> whatever
1912 ;;
1913 ((and (eq (car lap0) 'byte-constant)
1914 (eq (car lap1) 'byte-goto)
1915 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1916 (eval-when-compile
1917 (cons 'byte-discard byte-conditional-ops)))
1918 (not (eq lap1 (car tmp))))
1919 (setq tmp2 (car tmp))
1920 (cond ((memq (car tmp2)
1921 (if (null (car (cdr lap0)))
1922 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1923 '(byte-goto-if-not-nil
1924 byte-goto-if-not-nil-else-pop)))
1925 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1926 lap0 tmp2 lap0 tmp2)
1927 (setcar lap1 (car tmp2))
1928 (setcdr lap1 (cdr tmp2))
1929 ;; Let next step fix the (const,goto-if*) sequence.
1930 (setq rest (cons nil rest)))
1931 (t
1932 ;; Jump one step further
1933 (byte-compile-log-lap
1934 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1935 lap0 tmp2)
1936 (or (eq 'TAG (car (nth 1 tmp)))
1937 (setcdr tmp (cons (byte-compile-make-tag)
1938 (cdr tmp))))
1939 (setcdr lap1 (car (cdr tmp)))
1940 (setq lap (delq lap0 lap))))
1941 (setq keep-going t
1942 stack-adjust 0))
1943 ;;
1944 ;; X: varref-Y ... varset-Y goto-X -->
1945 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1946 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1947 ;; (This is so usual for while loops that it is worth handling).
1948 ;;
1949 ((and (memq (car lap1) '(byte-varset byte-stack-set))
1950 (eq (car lap2) 'byte-goto)
1951 (not (memq (cdr lap2) rest)) ;Backwards jump
1952 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1953 (if (eq (car lap1) 'byte-varset) 'byte-varref 'byte-stack-ref))
1954 (eq (cdr (car tmp)) (cdr lap1))
1955 (not (and (eq (car lap1) 'byte-varref)
1956 (memq (car (cdr lap1)) byte-boolean-vars))))
1957 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1958 (let ((newtag (byte-compile-make-tag)))
1959 (byte-compile-log-lap
1960 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1961 (nth 1 (cdr lap2)) (car tmp)
1962 lap1 lap2
1963 (nth 1 (cdr lap2)) (car tmp)
1964 (nth 1 newtag) 'byte-dup lap1
1965 (cons 'byte-goto newtag)
1966 )
1967 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1968 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1969 (setq add-depth 1)
1970 (setq keep-going t))
1971 ;;
1972 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1973 ;; (This can pull the loop test to the end of the loop)
1974 ;;
1975 ((and (eq (car lap0) 'byte-goto)
1976 (eq (car lap1) 'TAG)
1977 (eq lap1
1978 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1979 (memq (car (car tmp))
1980 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1981 byte-goto-if-nil-else-pop)))
1982 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1983 ;; lap0 lap1 (cdr lap0) (car tmp))
1984 (let ((newtag (byte-compile-make-tag)))
1985 (byte-compile-log-lap
1986 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1987 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1988 (cons (cdr (assq (car (car tmp))
1989 '((byte-goto-if-nil . byte-goto-if-not-nil)
1990 (byte-goto-if-not-nil . byte-goto-if-nil)
1991 (byte-goto-if-nil-else-pop .
1992 byte-goto-if-not-nil-else-pop)
1993 (byte-goto-if-not-nil-else-pop .
1994 byte-goto-if-nil-else-pop))))
1995 newtag)
1996
1997 (nth 1 newtag)
1998 )
1999 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
2000 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
2001 ;; We can handle this case but not the -if-not-nil case,
2002 ;; because we won't know which non-nil constant to push.
2003 (setcdr rest (cons (cons 'byte-constant
2004 (byte-compile-get-constant nil))
2005 (cdr rest))))
2006 (setcar lap0 (nth 1 (memq (car (car tmp))
2007 '(byte-goto-if-nil-else-pop
2008 byte-goto-if-not-nil
2009 byte-goto-if-nil
2010 byte-goto-if-not-nil
2011 byte-goto byte-goto))))
2012 )
2013 (setq keep-going t
2014 stack-adjust (and (not (eq (car lap0) 'byte-goto)) -1)))
2015 )
2016
2017 (setq stack-depth
2018 (and stack-depth stack-adjust (+ stack-depth stack-adjust)))
2019 (setq rest (cdr rest)))
2020 )
2021
2022 ;; Cleanup stage:
2023 ;; Rebuild byte-compile-constants / byte-compile-variables.
2024 ;; Simple optimizations that would inhibit other optimizations if they
2025 ;; were done in the optimizing loop, and optimizations which there is no
2026 ;; need to do more than once.
2027 (setq byte-compile-constants nil
2028 byte-compile-variables nil)
2029 (setq rest lap
2030 stack-depth initial-stack-depth)
2031 (byte-compile-log-lap " ---- final pass")
2032 (while rest
2033 (setq lap0 (car rest)
2034 lap1 (nth 1 rest))
2035 (byte-opt-update-stack-params stack-adjust stack-depth lap0 rest lap)
2036 (if (memq (car lap0) byte-constref-ops)
2037 (if (or (eq (car lap0) 'byte-constant)
2038 (eq (car lap0) 'byte-constant2))
2039 (unless (memq (cdr lap0) byte-compile-constants)
2040 (setq byte-compile-constants (cons (cdr lap0)
2041 byte-compile-constants)))
2042 (unless (memq (cdr lap0) byte-compile-variables)
2043 (setq byte-compile-variables (cons (cdr lap0)
2044 byte-compile-variables)))))
2045 (cond (;;
2046 ;; const-C varset-X const-C --> const-C dup varset-X
2047 ;; const-C varbind-X const-C --> const-C dup varbind-X
2048 ;;
2049 (and (eq (car lap0) 'byte-constant)
2050 (eq (car (nth 2 rest)) 'byte-constant)
2051 (eq (cdr lap0) (cdr (nth 2 rest)))
2052 (memq (car lap1) '(byte-varbind byte-varset)))
2053 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
2054 lap0 lap1 lap0 lap0 lap1)
2055 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
2056 (setcar (cdr rest) (cons 'byte-dup 0))
2057 (setq add-depth 1))
2058 ;;
2059 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
2060 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
2061 ;;
2062 ((memq (car lap0) '(byte-constant byte-varref))
2063 (setq tmp rest
2064 tmp2 nil)
2065 (while (progn
2066 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
2067 (and (eq (cdr lap0) (cdr (car tmp)))
2068 (eq (car lap0) (car (car tmp)))))
2069 (setcar tmp (cons 'byte-dup 0))
2070 (setq tmp2 t))
2071 (if tmp2
2072 (byte-compile-log-lap
2073 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
2074 ;;
2075 ;; unbind-N unbind-M --> unbind-(N+M)
2076 ;;
2077 ((and (eq 'byte-unbind (car lap0))
2078 (eq 'byte-unbind (car lap1)))
2079 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
2080 (cons 'byte-unbind
2081 (+ (cdr lap0) (cdr lap1))))
2082 (setq lap (delq lap0 lap))
2083 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
2084
2085 ;;
2086 ;; stack-set-M [discard/discardN ...] --> discardN-preserve-tos
2087 ;; stack-set-M [discard/discardN ...] --> discardN
2088 ;;
2089 ((and (eq (car lap0) 'byte-stack-set)
2090 (memq (car lap1) '(byte-discard byte-discardN))
2091 (progn
2092 ;; See if enough discard operations follow to expose or
2093 ;; destroy the value stored by the stack-set.
2094 (setq tmp (cdr rest))
2095 (setq tmp2 (- stack-depth 2 (cdr lap0)))
2096 (setq tmp3 0)
2097 (while (memq (car (car tmp)) '(byte-discard byte-discardN))
2098 (if (eq (car (car tmp)) 'byte-discard)
2099 (setq tmp3 (1+ tmp3))
2100 (setq tmp3 (+ tmp3 (cdr (car tmp)))))
2101 (setq tmp (cdr tmp)))
2102 (>= tmp3 tmp2)))
2103 ;; Do the optimization
2104 (setq lap (delq lap0 lap))
2105 (cond ((= tmp2 tmp3)
2106 ;; The value stored is the new TOS, so pop one more value
2107 ;; (to get rid of the old value) using the TOS-preserving
2108 ;; discard operator.
2109 (setcar lap1 'byte-discardN-preserve-tos)
2110 (setcdr lap1 (1+ tmp3)))
2111 (t
2112 ;; Otherwise, the value stored is lost, so just use a
2113 ;; normal discard.
2114 (setcar lap1 'byte-discardN)
2115 (setcdr lap1 tmp3)))
2116 (setcdr (cdr rest) tmp)
2117 (setq stack-adjust 0)
2118 (byte-compile-log-lap " %s [discard/discardN]...\t-->\t%s"
2119 lap0 lap1))
2120
2121 ;;
2122 ;; discard/discardN/discardN-preserve-tos-X discard/discardN-Y -->
2123 ;; discardN-(X+Y)
2124 ;;
2125 ((and (memq (car lap0)
2126 '(byte-discard
2127 byte-discardN
2128 byte-discardN-preserve-tos))
2129 (memq (car lap1) '(byte-discard byte-discardN)))
2130 (setq lap (delq lap0 lap))
2131 (byte-compile-log-lap
2132 " %s %s\t-->\t(discardN %s)"
2133 lap0 lap1
2134 (+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
2135 (if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
2136 (setcdr lap1 (+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
2137 (if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
2138 (setcar lap1 'byte-discardN)
2139 (setq stack-adjust 0))
2140
2141 ;;
2142 ;; discardN-preserve-tos-X discardN-preserve-tos-Y -->
2143 ;; discardN-preserve-tos-(X+Y)
2144 ;;
2145 ((and (eq (car lap0) 'byte-discardN-preserve-tos)
2146 (eq (car lap1) 'byte-discardN-preserve-tos))
2147 (setq lap (delq lap0 lap))
2148 (setcdr lap1 (+ (cdr lap0) (cdr lap1)))
2149 (setq stack-adjust 0)
2150 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 (car rest)))
2151
2152 ;;
2153 ;; discardN-preserve-tos return --> return
2154 ;; dup return --> return
2155 ;; stack-set-N return --> return ; where N is TOS-1
2156 ;;
2157 ((and (eq (car lap1) 'byte-return)
2158 (or (memq (car lap0) '(byte-discardN-preserve-tos byte-dup))
2159 (and (eq (car lap0) 'byte-stack-set)
2160 (= (cdr lap0) (- stack-depth 2)))))
2161 ;; the byte-code interpreter will pop the stack for us, so
2162 ;; we can just leave stuff on it
2163 (setq lap (delq lap0 lap))
2164 (setq stack-adjust 0)
2165 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 lap1))
2166
2167 ;;
2168 ;; dup stack-set-N return --> return ; where N is TOS
2169 ;;
2170 ((and (eq (car lap0) 'byte-dup)
2171 (eq (car lap1) 'byte-stack-set)
2172 (eq (car (car (cdr (cdr rest)))) 'byte-return)
2173 (= (cdr lap1) (1- stack-depth)))
2174 (setq lap (delq lap0 (delq lap1 lap)))
2175 (setq rest (cdr rest))
2176 (setq stack-adjust 0)
2177 (byte-compile-log-lap " dup %s return\t-->\treturn" lap1))
2178 )
2179
2180 (setq stack-depth
2181 (and stack-depth stack-adjust (+ stack-depth stack-adjust)))
2182 (setq rest (cdr rest)))
2183
2184 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
2185 lap)
2186
2187 (provide 'byte-opt)
2188
2189 \f
2190 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2191 ;; itself, compile some of its most used recursive functions (at load time).
2192 ;;
2193 (eval-when-compile
2194 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
2195 (assq 'byte-code (symbol-function 'byte-optimize-form))
2196 (let ((byte-optimize nil)
2197 (byte-compile-warnings nil))
2198 (mapc (lambda (x)
2199 (or noninteractive (message "compiling %s..." x))
2200 (byte-compile x)
2201 (or noninteractive (message "compiling %s...done" x)))
2202 '(byte-optimize-form
2203 byte-optimize-body
2204 byte-optimize-predicate
2205 byte-optimize-binary-predicate
2206 ;; Inserted some more than necessary, to speed it up.
2207 byte-optimize-form-code-walker
2208 byte-optimize-lapcode))))
2209 nil)
2210
2211 ;; arch-tag: 0f14076b-737e-4bef-aae6-908826ec1ff1
2212 ;;; byte-opt.el ends here