New branch for lexbind, losing all history.
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
CommitLineData
55535639 1;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
3eac9910 2
ba661bf0 3;; Copyright (C) 1991, 1994, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
114f9c96 4;; 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3eac9910
JB
5
6;; Author: Jamie Zawinski <jwz@lucid.com>
7;; Hallvard Furuseth <hbf@ulrik.uio.no>
e1f0df62 8;; Maintainer: FSF
3eac9910 9;; Keywords: internal
1c393159
JB
10
11;; This file is part of GNU Emacs.
12
d6cba7ae 13;; GNU Emacs is free software: you can redistribute it and/or modify
1c393159 14;; it under the terms of the GNU General Public License as published by
d6cba7ae
GM
15;; the Free Software Foundation, either version 3 of the License, or
16;; (at your option) any later version.
1c393159
JB
17
18;; GNU Emacs is distributed in the hope that it will be useful,
19;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21;; GNU General Public License for more details.
22
23;; You should have received a copy of the GNU General Public License
d6cba7ae 24;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
1c393159 25
3eac9910
JB
26;;; Commentary:
27
b578f267
EN
28;; ========================================================================
29;; "No matter how hard you try, you can't make a racehorse out of a pig.
30;; You can, however, make a faster pig."
31;;
40fafc21 32;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
a1506d29 33;; makes it be a VW Bug with fuel injection and a turbocharger... You're
b578f267
EN
34;; still not going to make it go faster than 70 mph, but it might be easier
35;; to get it there.
36;;
1c393159 37
b578f267
EN
38;; TO DO:
39;;
72d8b544 40;; (apply (lambda (x &rest y) ...) 1 (foo))
b578f267
EN
41;;
42;; maintain a list of functions known not to access any global variables
43;; (actually, give them a 'dynamically-safe property) and then
44;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
45;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
46;; by recursing on this, we might be able to eliminate the entire let.
47;; However certain variables should never have their bindings optimized
48;; away, because they affect everything.
49;; (put 'debug-on-error 'binding-is-magic t)
50;; (put 'debug-on-abort 'binding-is-magic t)
51;; (put 'debug-on-next-call 'binding-is-magic t)
b578f267
EN
52;; (put 'inhibit-quit 'binding-is-magic t)
53;; (put 'quit-flag 'binding-is-magic t)
54;; (put 't 'binding-is-magic t)
55;; (put 'nil 'binding-is-magic t)
56;; possibly also
57;; (put 'gc-cons-threshold 'binding-is-magic t)
58;; (put 'track-mouse 'binding-is-magic t)
59;; others?
60;;
61;; Simple defsubsts often produce forms like
62;; (let ((v1 (f1)) (v2 (f2)) ...)
63;; (FN v1 v2 ...))
a1506d29 64;; It would be nice if we could optimize this to
b578f267
EN
65;; (FN (f1) (f2) ...)
66;; but we can't unless FN is dynamically-safe (it might be dynamically
67;; referring to the bindings that the lambda arglist established.)
68;; One of the uncountable lossages introduced by dynamic scope...
69;;
a1506d29 70;; Maybe there should be a control-structure that says "turn on
b578f267
EN
71;; fast-and-loose type-assumptive optimizations here." Then when
72;; we see a form like (car foo) we can from then on assume that
73;; the variable foo is of type cons, and optimize based on that.
a1506d29 74;; But, this won't win much because of (you guessed it) dynamic
b578f267
EN
75;; scope. Anything down the stack could change the value.
76;; (Another reason it doesn't work is that it is perfectly valid
77;; to call car with a null argument.) A better approach might
78;; be to allow type-specification of the form
79;; (put 'foo 'arg-types '(float (list integer) dynamic))
80;; (put 'foo 'result-type 'bool)
81;; It should be possible to have these types checked to a certain
82;; degree.
83;;
84;; collapse common subexpressions
85;;
86;; It would be nice if redundant sequences could be factored out as well,
87;; when they are known to have no side-effects:
88;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
89;; but beware of traps like
90;; (cons (list x y) (list x y))
91;;
92;; Tail-recursion elimination is not really possible in Emacs Lisp.
93;; Tail-recursion elimination is almost always impossible when all variables
94;; have dynamic scope, but given that the "return" byteop requires the
95;; binding stack to be empty (rather than emptying it itself), there can be
96;; no truly tail-recursive Emacs Lisp functions that take any arguments or
97;; make any bindings.
98;;
99;; Here is an example of an Emacs Lisp function which could safely be
100;; byte-compiled tail-recursively:
101;;
102;; (defun tail-map (fn list)
103;; (cond (list
104;; (funcall fn (car list))
105;; (tail-map fn (cdr list)))))
106;;
107;; However, if there was even a single let-binding around the COND,
108;; it could not be byte-compiled, because there would be an "unbind"
a1506d29 109;; byte-op between the final "call" and "return." Adding a
b578f267
EN
110;; Bunbind_all byteop would fix this.
111;;
112;; (defun foo (x y z) ... (foo a b c))
113;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
114;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
115;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
116;;
117;; this also can be considered tail recursion:
118;;
119;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
120;; could generalize this by doing the optimization
121;; (goto X) ... X: (return) --> (return)
122;;
123;; But this doesn't solve all of the problems: although by doing tail-
124;; recursion elimination in this way, the call-stack does not grow, the
125;; binding-stack would grow with each recursive step, and would eventually
126;; overflow. I don't believe there is any way around this without lexical
127;; scope.
128;;
129;; Wouldn't it be nice if Emacs Lisp had lexical scope.
130;;
a1506d29
JB
131;; Idea: the form (lexical-scope) in a file means that the file may be
132;; compiled lexically. This proclamation is file-local. Then, within
b578f267
EN
133;; that file, "let" would establish lexical bindings, and "let-dynamic"
134;; would do things the old way. (Or we could use CL "declare" forms.)
135;; We'd have to notice defvars and defconsts, since those variables should
136;; always be dynamic, and attempting to do a lexical binding of them
137;; should simply do a dynamic binding instead.
138;; But! We need to know about variables that were not necessarily defvarred
139;; in the file being compiled (doing a boundp check isn't good enough.)
140;; Fdefvar() would have to be modified to add something to the plist.
141;;
a1506d29
JB
142;; A major disadvantage of this scheme is that the interpreter and compiler
143;; would have different semantics for files compiled with (dynamic-scope).
b578f267 144;; Since this would be a file-local optimization, there would be no way to
a1506d29 145;; modify the interpreter to obey this (unless the loader was hacked
b578f267 146;; in some grody way, but that's a really bad idea.)
97e6527f
KH
147
148;; Other things to consider:
149
6b61353c
KH
150;; ;; Associative math should recognize subcalls to identical function:
151;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
152;; ;; This should generate the same as (1+ x) and (1- x)
c1fe6512 153
6b61353c
KH
154;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
155;; ;; An awful lot of functions always return a non-nil value. If they're
156;; ;; error free also they may act as true-constants.
c1fe6512 157
6b61353c
KH
158;; (disassemble (lambda (x) (and (point) (foo))))
159;; ;; When
160;; ;; - all but one arguments to a function are constant
161;; ;; - the non-constant argument is an if-expression (cond-expression?)
162;; ;; then the outer function can be distributed. If the guarding
163;; ;; condition is side-effect-free [assignment-free] then the other
164;; ;; arguments may be any expressions. Since, however, the code size
165;; ;; can increase this way they should be "simple". Compare:
c1fe6512 166
6b61353c
KH
167;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
168;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
c1fe6512 169
6b61353c
KH
170;; ;; (car (cons A B)) -> (prog1 A B)
171;; (disassemble (lambda (x) (car (cons (foo) 42))))
c1fe6512 172
6b61353c
KH
173;; ;; (cdr (cons A B)) -> (progn A B)
174;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
c1fe6512 175
6b61353c
KH
176;; ;; (car (list A B ...)) -> (prog1 A B ...)
177;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
c1fe6512 178
6b61353c
KH
179;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
180;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
97e6527f 181
1c393159 182
3eac9910 183;;; Code:
1c393159 184
c144230d 185(require 'bytecomp)
d8947b79 186(eval-when-compile (require 'cl))
c144230d 187
1c393159 188(defun byte-compile-log-lap-1 (format &rest args)
b9598260
SM
189;; (if (aref byte-code-vector 0)
190;; (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
1c393159
JB
191 (byte-compile-log-1
192 (apply 'format format
193 (let (c a)
72d8b544 194 (mapcar (lambda (arg)
1c393159
JB
195 (if (not (consp arg))
196 (if (and (symbolp arg)
197 (string-match "^byte-" (symbol-name arg)))
198 (intern (substring (symbol-name arg) 5))
199 arg)
200 (if (integerp (setq c (car arg)))
201 (error "non-symbolic byte-op %s" c))
202 (if (eq c 'TAG)
203 (setq c arg)
204 (setq a (cond ((memq c byte-goto-ops)
205 (car (cdr (cdr arg))))
206 ((memq c byte-constref-ops)
207 (car (cdr arg)))
208 (t (cdr arg))))
209 (setq c (symbol-name c))
210 (if (string-match "^byte-." c)
211 (setq c (intern (substring c 5)))))
212 (if (eq c 'constant) (setq c 'const))
213 (if (and (eq (cdr arg) 0)
214 (not (memq c '(unbind call const))))
215 c
216 (format "(%s %s)" c a))))
217 args)))))
218
219(defmacro byte-compile-log-lap (format-string &rest args)
6b61353c
KH
220 `(and (memq byte-optimize-log '(t byte))
221 (byte-compile-log-lap-1 ,format-string ,@args)))
1c393159
JB
222
223\f
224;;; byte-compile optimizers to support inlining
225
226(put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
227
228(defun byte-optimize-inline-handler (form)
229 "byte-optimize-handler for the `inline' special-form."
230 (cons 'progn
231 (mapcar
72d8b544 232 (lambda (sexp)
08d72d13
SM
233 (let ((f (car-safe sexp)))
234 (if (and (symbolp f)
235 (or (cdr (assq f byte-compile-function-environment))
236 (not (or (not (fboundp f))
237 (cdr (assq f byte-compile-macro-environment))
238 (and (consp (setq f (symbol-function f)))
239 (eq (car f) 'macro))
240 (subrp f)))))
241 (byte-compile-inline-expand sexp)
242 sexp)))
1c393159
JB
243 (cdr form))))
244
245
70e1dad8
RS
246;; Splice the given lap code into the current instruction stream.
247;; If it has any labels in it, you're responsible for making sure there
248;; are no collisions, and that byte-compile-tag-number is reasonable
249;; after this is spliced in. The provided list is destroyed.
1c393159 250(defun byte-inline-lapcode (lap)
1c393159
JB
251 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
252
1c393159
JB
253(defun byte-compile-inline-expand (form)
254 (let* ((name (car form))
255 (fn (or (cdr (assq name byte-compile-function-environment))
256 (and (fboundp name) (symbol-function name)))))
257 (if (null fn)
258 (progn
244bbdc5 259 (byte-compile-warn "attempt to inline `%s' before it was defined"
c59a4192 260 name)
1c393159
JB
261 form)
262 ;; else
78ecf55a 263 (when (and (consp fn) (eq (car fn) 'autoload))
28881a56 264 (load (nth 1 fn))
78ecf55a
GM
265 (setq fn (or (and (fboundp name) (symbol-function name))
266 (cdr (assq name byte-compile-function-environment)))))
1c393159 267 (if (and (consp fn) (eq (car fn) 'autoload))
0abfa90d 268 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
f61b7b7f 269 (if (and (symbolp fn) (not (eq fn t)))
1c393159 270 (byte-compile-inline-expand (cons fn (cdr form)))
96d699f3 271 (if (byte-code-function-p fn)
70b40ea1 272 (let (string)
2b29a376 273 (fetch-bytecode fn)
70b40ea1 274 (setq string (aref fn 1))
6b61353c 275 ;; Isn't it an error for `string' not to be unibyte?? --stef
70b40ea1
RS
276 (if (fboundp 'string-as-unibyte)
277 (setq string (string-as-unibyte string)))
b1dfec55
RS
278 ;; `byte-compile-splice-in-already-compiled-code'
279 ;; takes care of inlining the body.
6b61353c
KH
280 (cons `(lambda ,(aref fn 0)
281 (byte-code ,string ,(aref fn 2) ,(aref fn 3)))
2b29a376 282 (cdr form)))
223a2a62 283 (if (eq (car-safe fn) 'lambda)
b9598260
SM
284 (macroexpand-all (cons fn (cdr form))
285 byte-compile-macro-environment)
223a2a62
KH
286 ;; Give up on inlining.
287 form))))))
1c393159 288
6b61353c 289;; ((lambda ...) ...)
1c393159
JB
290(defun byte-compile-unfold-lambda (form &optional name)
291 (or name (setq name "anonymous lambda"))
292 (let ((lambda (car form))
293 (values (cdr form)))
96d699f3 294 (if (byte-code-function-p lambda)
7e1dae73
JB
295 (setq lambda (list 'lambda (aref lambda 0)
296 (list 'byte-code (aref lambda 1)
297 (aref lambda 2) (aref lambda 3)))))
1c393159
JB
298 (let ((arglist (nth 1 lambda))
299 (body (cdr (cdr lambda)))
300 optionalp restp
301 bindings)
302 (if (and (stringp (car body)) (cdr body))
303 (setq body (cdr body)))
304 (if (and (consp (car body)) (eq 'interactive (car (car body))))
305 (setq body (cdr body)))
306 (while arglist
307 (cond ((eq (car arglist) '&optional)
308 ;; ok, I'll let this slide because funcall_lambda() does...
309 ;; (if optionalp (error "multiple &optional keywords in %s" name))
310 (if restp (error "&optional found after &rest in %s" name))
311 (if (null (cdr arglist))
312 (error "nothing after &optional in %s" name))
313 (setq optionalp t))
314 ((eq (car arglist) '&rest)
315 ;; ...but it is by no stretch of the imagination a reasonable
316 ;; thing that funcall_lambda() allows (&rest x y) and
317 ;; (&rest x &optional y) in arglists.
318 (if (null (cdr arglist))
319 (error "nothing after &rest in %s" name))
320 (if (cdr (cdr arglist))
321 (error "multiple vars after &rest in %s" name))
322 (setq restp t))
323 (restp
324 (setq bindings (cons (list (car arglist)
325 (and values (cons 'list values)))
326 bindings)
327 values nil))
328 ((and (not optionalp) (null values))
244bbdc5 329 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
1c393159
JB
330 (setq arglist nil values 'too-few))
331 (t
332 (setq bindings (cons (list (car arglist) (car values))
333 bindings)
334 values (cdr values))))
335 (setq arglist (cdr arglist)))
336 (if values
337 (progn
338 (or (eq values 'too-few)
339 (byte-compile-warn
244bbdc5 340 "attempt to open-code `%s' with too many arguments" name))
1c393159 341 form)
a1506d29 342
936ae731
GM
343 ;; The following leads to infinite recursion when loading a
344 ;; file containing `(defsubst f () (f))', and then trying to
345 ;; byte-compile that file.
346 ;(setq body (mapcar 'byte-optimize-form body)))
a1506d29
JB
347
348 (let ((newform
1c393159
JB
349 (if bindings
350 (cons 'let (cons (nreverse bindings) body))
351 (cons 'progn body))))
352 (byte-compile-log " %s\t==>\t%s" form newform)
353 newform)))))
354
355\f
356;;; implementing source-level optimizers
357
358(defun byte-optimize-form-code-walker (form for-effect)
359 ;;
360 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
361 ;; we need to have special knowledge of the syntax of the special forms
362 ;; like let and defun (that's why they're special forms :-). (Actually,
363 ;; the important aspect is that they are subrs that don't evaluate all of
364 ;; their args.)
365 ;;
366 (let ((fn (car-safe form))
367 tmp)
368 (cond ((not (consp form))
369 (if (not (and for-effect
370 (or byte-compile-delete-errors
371 (not (symbolp form))
372 (eq form t))))
373 form))
374 ((eq fn 'quote)
375 (if (cdr (cdr form))
244bbdc5 376 (byte-compile-warn "malformed quote form: `%s'"
1c393159
JB
377 (prin1-to-string form)))
378 ;; map (quote nil) to nil to simplify optimizer logic.
379 ;; map quoted constants to nil if for-effect (just because).
380 (and (nth 1 form)
381 (not for-effect)
382 form))
96d699f3 383 ((or (byte-code-function-p fn)
1c393159 384 (eq 'lambda (car-safe fn)))
42521cd4
SM
385 (byte-optimize-form-code-walker
386 (byte-compile-unfold-lambda form)
387 for-effect))
1c393159
JB
388 ((memq fn '(let let*))
389 ;; recursively enter the optimizer for the bindings and body
390 ;; of a let or let*. This for depth-firstness: forms that
391 ;; are more deeply nested are optimized first.
392 (cons fn
393 (cons
72d8b544 394 (mapcar (lambda (binding)
1c393159
JB
395 (if (symbolp binding)
396 binding
397 (if (cdr (cdr binding))
244bbdc5 398 (byte-compile-warn "malformed let binding: `%s'"
1c393159
JB
399 (prin1-to-string binding)))
400 (list (car binding)
401 (byte-optimize-form (nth 1 binding) nil))))
402 (nth 1 form))
403 (byte-optimize-body (cdr (cdr form)) for-effect))))
404 ((eq fn 'cond)
405 (cons fn
72d8b544 406 (mapcar (lambda (clause)
1c393159
JB
407 (if (consp clause)
408 (cons
409 (byte-optimize-form (car clause) nil)
410 (byte-optimize-body (cdr clause) for-effect))
244bbdc5 411 (byte-compile-warn "malformed cond form: `%s'"
1c393159
JB
412 (prin1-to-string clause))
413 clause))
414 (cdr form))))
415 ((eq fn 'progn)
416 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
417 (if (cdr (cdr form))
418 (progn
419 (setq tmp (byte-optimize-body (cdr form) for-effect))
420 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
421 (byte-optimize-form (nth 1 form) for-effect)))
422 ((eq fn 'prog1)
423 (if (cdr (cdr form))
424 (cons 'prog1
425 (cons (byte-optimize-form (nth 1 form) for-effect)
426 (byte-optimize-body (cdr (cdr form)) t)))
427 (byte-optimize-form (nth 1 form) for-effect)))
428 ((eq fn 'prog2)
429 (cons 'prog2
430 (cons (byte-optimize-form (nth 1 form) t)
431 (cons (byte-optimize-form (nth 2 form) for-effect)
432 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
a1506d29 433
2754fefa 434 ((memq fn '(save-excursion save-restriction save-current-buffer))
1c393159
JB
435 ;; those subrs which have an implicit progn; it's not quite good
436 ;; enough to treat these like normal function calls.
437 ;; This can turn (save-excursion ...) into (save-excursion) which
438 ;; will be optimized away in the lap-optimize pass.
439 (cons fn (byte-optimize-body (cdr form) for-effect)))
a1506d29 440
1c393159
JB
441 ((eq fn 'with-output-to-temp-buffer)
442 ;; this is just like the above, except for the first argument.
443 (cons fn
444 (cons
445 (byte-optimize-form (nth 1 form) nil)
446 (byte-optimize-body (cdr (cdr form)) for-effect))))
a1506d29 447
1c393159 448 ((eq fn 'if)
aefd695a 449 (when (< (length form) 3)
244bbdc5 450 (byte-compile-warn "too few arguments for `if'"))
1c393159
JB
451 (cons fn
452 (cons (byte-optimize-form (nth 1 form) nil)
453 (cons
454 (byte-optimize-form (nth 2 form) for-effect)
455 (byte-optimize-body (nthcdr 3 form) for-effect)))))
a1506d29 456
1c393159
JB
457 ((memq fn '(and or)) ; remember, and/or are control structures.
458 ;; take forms off the back until we can't any more.
eb8c3be9 459 ;; In the future it could conceivably be a problem that the
1c393159
JB
460 ;; subexpressions of these forms are optimized in the reverse
461 ;; order, but it's ok for now.
462 (if for-effect
463 (let ((backwards (reverse (cdr form))))
464 (while (and backwards
465 (null (setcar backwards
466 (byte-optimize-form (car backwards)
467 for-effect))))
468 (setq backwards (cdr backwards)))
469 (if (and (cdr form) (null backwards))
470 (byte-compile-log
471 " all subforms of %s called for effect; deleted" form))
472 (and backwards
e8f3c355 473 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
1c393159
JB
474 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
475
476 ((eq fn 'interactive)
244bbdc5 477 (byte-compile-warn "misplaced interactive spec: `%s'"
1c393159
JB
478 (prin1-to-string form))
479 nil)
a1506d29 480
1c393159
JB
481 ((memq fn '(defun defmacro function
482 condition-case save-window-excursion))
483 ;; These forms are compiled as constants or by breaking out
484 ;; all the subexpressions and compiling them separately.
485 form)
486
487 ((eq fn 'unwind-protect)
488 ;; the "protected" part of an unwind-protect is compiled (and thus
489 ;; optimized) as a top-level form, so don't do it here. But the
490 ;; non-protected part has the same for-effect status as the
491 ;; unwind-protect itself. (The protected part is always for effect,
492 ;; but that isn't handled properly yet.)
493 (cons fn
494 (cons (byte-optimize-form (nth 1 form) for-effect)
495 (cdr (cdr form)))))
a1506d29 496
1c393159
JB
497 ((eq fn 'catch)
498 ;; the body of a catch is compiled (and thus optimized) as a
499 ;; top-level form, so don't do it here. The tag is never
500 ;; for-effect. The body should have the same for-effect status
501 ;; as the catch form itself, but that isn't handled properly yet.
502 (cons fn
503 (cons (byte-optimize-form (nth 1 form) nil)
504 (cdr (cdr form)))))
505
8c26d7b3
RS
506 ((eq fn 'ignore)
507 ;; Don't treat the args to `ignore' as being
508 ;; computed for effect. We want to avoid the warnings
509 ;; that might occur if they were treated that way.
510 ;; However, don't actually bother calling `ignore'.
511 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
512
1c393159
JB
513 ;; If optimization is on, this is the only place that macros are
514 ;; expanded. If optimization is off, then macroexpansion happens
515 ;; in byte-compile-form. Otherwise, the macros are already expanded
516 ;; by the time that is reached.
517 ((not (eq form
518 (setq form (macroexpand form
519 byte-compile-macro-environment))))
520 (byte-optimize-form form for-effect))
5428ee02
RS
521
522 ;; Support compiler macros as in cl.el.
523 ((and (fboundp 'compiler-macroexpand)
4f493b7c
RS
524 (symbolp (car-safe form))
525 (get (car-safe form) 'cl-compiler-macro)
5428ee02 526 (not (eq form
4cead7a2
RS
527 (with-no-warnings
528 (setq form (compiler-macroexpand form))))))
5428ee02 529 (byte-optimize-form form for-effect))
a1506d29 530
1c393159 531 ((not (symbolp fn))
5f11d42c
PJ
532 (byte-compile-warn "`%s' is a malformed function"
533 (prin1-to-string fn))
1c393159
JB
534 form)
535
536 ((and for-effect (setq tmp (get fn 'side-effect-free))
537 (or byte-compile-delete-errors
538 (eq tmp 'error-free)
8c26d7b3
RS
539 ;; Detect the expansion of (pop foo).
540 ;; There is no need to compile the call to `car' there.
541 (and (eq fn 'car)
542 (eq (car-safe (cadr form)) 'prog1)
543 (let ((var (cadr (cadr form)))
544 (last (nth 2 (cadr form))))
545 (and (symbolp var)
546 (null (nthcdr 3 (cadr form)))
547 (eq (car-safe last) 'setq)
548 (eq (cadr last) var)
549 (eq (car-safe (nth 2 last)) 'cdr)
550 (eq (cadr (nth 2 last)) var))))
1c393159 551 (progn
1fbb84da
CY
552 (byte-compile-warn "value returned from %s is unused"
553 (prin1-to-string form))
1c393159
JB
554 nil)))
555 (byte-compile-log " %s called for effect; deleted" fn)
556 ;; appending a nil here might not be necessary, but it can't hurt.
557 (byte-optimize-form
558 (cons 'progn (append (cdr form) '(nil))) t))
a1506d29 559
1c393159
JB
560 (t
561 ;; Otherwise, no args can be considered to be for-effect,
562 ;; even if the called function is for-effect, because we
563 ;; don't know anything about that function.
fb67ebdf
CY
564 (let ((args (mapcar #'byte-optimize-form (cdr form))))
565 (if (and (get fn 'pure)
566 (byte-optimize-all-constp args))
567 (list 'quote (apply fn (mapcar #'eval args)))
568 (cons fn args)))))))
569
570(defun byte-optimize-all-constp (list)
ab2d877d 571 "Non-nil if all elements of LIST satisfy `byte-compile-constp'."
fb67ebdf
CY
572 (let ((constant t))
573 (while (and list constant)
574 (unless (byte-compile-constp (car list))
575 (setq constant nil))
576 (setq list (cdr list)))
577 constant))
1c393159
JB
578
579(defun byte-optimize-form (form &optional for-effect)
580 "The source-level pass of the optimizer."
581 ;;
582 ;; First, optimize all sub-forms of this one.
583 (setq form (byte-optimize-form-code-walker form for-effect))
584 ;;
585 ;; after optimizing all subforms, optimize this form until it doesn't
586 ;; optimize any further. This means that some forms will be passed through
587 ;; the optimizer many times, but that's necessary to make the for-effect
588 ;; processing do as much as possible.
589 ;;
590 (let (opt new)
591 (if (and (consp form)
592 (symbolp (car form))
593 (or (and for-effect
594 ;; we don't have any of these yet, but we might.
595 (setq opt (get (car form) 'byte-for-effect-optimizer)))
596 (setq opt (get (car form) 'byte-optimizer)))
597 (not (eq form (setq new (funcall opt form)))))
598 (progn
599;; (if (equal form new) (error "bogus optimizer -- %s" opt))
600 (byte-compile-log " %s\t==>\t%s" form new)
601 (setq new (byte-optimize-form new for-effect))
602 new)
603 form)))
604
605
606(defun byte-optimize-body (forms all-for-effect)
607 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
608 ;; forms, all but the last of which are optimized with the assumption that
609 ;; they are being called for effect. the last is for-effect as well if
610 ;; all-for-effect is true. returns a new list of forms.
611 (let ((rest forms)
612 (result nil)
613 fe new)
614 (while rest
615 (setq fe (or all-for-effect (cdr rest)))
616 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
617 (if (or new (not fe))
618 (setq result (cons new result)))
619 (setq rest (cdr rest)))
620 (nreverse result)))
621
622\f
6b61353c
KH
623;; some source-level optimizers
624;;
625;; when writing optimizers, be VERY careful that the optimizer returns
626;; something not EQ to its argument if and ONLY if it has made a change.
627;; This implies that you cannot simply destructively modify the list;
628;; you must return something not EQ to it if you make an optimization.
629;;
630;; It is now safe to optimize code such that it introduces new bindings.
1c393159 631
d8947b79
DN
632(defsubst byte-compile-trueconstp (form)
633 "Return non-nil if FORM always evaluates to a non-nil value."
20ce031c
SM
634 (while (eq (car-safe form) 'progn)
635 (setq form (car (last (cdr form)))))
d8947b79
DN
636 (cond ((consp form)
637 (case (car form)
638 (quote (cadr form))
20ce031c
SM
639 ;; Can't use recursion in a defsubst.
640 ;; (progn (byte-compile-trueconstp (car (last (cdr form)))))
641 ))
d8947b79
DN
642 ((not (symbolp form)))
643 ((eq form t))
644 ((keywordp form))))
645
646(defsubst byte-compile-nilconstp (form)
647 "Return non-nil if FORM always evaluates to a nil value."
20ce031c
SM
648 (while (eq (car-safe form) 'progn)
649 (setq form (car (last (cdr form)))))
d8947b79
DN
650 (cond ((consp form)
651 (case (car form)
652 (quote (null (cadr form)))
20ce031c
SM
653 ;; Can't use recursion in a defsubst.
654 ;; (progn (byte-compile-nilconstp (car (last (cdr form)))))
655 ))
d8947b79
DN
656 ((not (symbolp form)) nil)
657 ((null form))))
1c393159 658
70e1dad8 659;; If the function is being called with constant numeric args,
a1506d29 660;; evaluate as much as possible at compile-time. This optimizer
70e1dad8 661;; assumes that the function is associative, like + or *.
1c393159 662(defun byte-optimize-associative-math (form)
1c393159
JB
663 (let ((args nil)
664 (constants nil)
665 (rest (cdr form)))
666 (while rest
667 (if (numberp (car rest))
668 (setq constants (cons (car rest) constants))
669 (setq args (cons (car rest) args)))
670 (setq rest (cdr rest)))
671 (if (cdr constants)
672 (if args
673 (list (car form)
674 (apply (car form) constants)
675 (if (cdr args)
676 (cons (car form) (nreverse args))
677 (car args)))
678 (apply (car form) constants))
679 form)))
680
70e1dad8 681;; If the function is being called with constant numeric args,
97e6527f
KH
682;; evaluate as much as possible at compile-time. This optimizer
683;; assumes that the function satisfies
684;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
685;; like - and /.
1c393159 686(defun byte-optimize-nonassociative-math (form)
1c393159
JB
687 (if (or (not (numberp (car (cdr form))))
688 (not (numberp (car (cdr (cdr form))))))
689 form
690 (let ((constant (car (cdr form)))
691 (rest (cdr (cdr form))))
692 (while (numberp (car rest))
693 (setq constant (funcall (car form) constant (car rest))
694 rest (cdr rest)))
695 (if rest
696 (cons (car form) (cons constant rest))
697 constant))))
698
699;;(defun byte-optimize-associative-two-args-math (form)
700;; (setq form (byte-optimize-associative-math form))
701;; (if (consp form)
702;; (byte-optimize-two-args-left form)
703;; form))
704
705;;(defun byte-optimize-nonassociative-two-args-math (form)
706;; (setq form (byte-optimize-nonassociative-math form))
707;; (if (consp form)
708;; (byte-optimize-two-args-right form)
709;; form))
710
97e6527f 711(defun byte-optimize-approx-equal (x y)
1fa68f21 712 (<= (* (abs (- x y)) 100) (abs (+ x y))))
97e6527f
KH
713
714;; Collect all the constants from FORM, after the STARTth arg,
715;; and apply FUN to them to make one argument at the end.
716;; For functions that can handle floats, that optimization
717;; can be incorrect because reordering can cause an overflow
718;; that would otherwise be avoided by encountering an arg that is a float.
719;; We avoid this problem by (1) not moving float constants and
720;; (2) not moving anything if it would cause an overflow.
1c393159
JB
721(defun byte-optimize-delay-constants-math (form start fun)
722 ;; Merge all FORM's constants from number START, call FUN on them
723 ;; and put the result at the end.
97e6527f
KH
724 (let ((rest (nthcdr (1- start) form))
725 (orig form)
726 ;; t means we must check for overflow.
727 (overflow (memq fun '(+ *))))
1c393159 728 (while (cdr (setq rest (cdr rest)))
97e6527f 729 (if (integerp (car rest))
1c393159
JB
730 (let (constants)
731 (setq form (copy-sequence form)
732 rest (nthcdr (1- start) form))
733 (while (setq rest (cdr rest))
97e6527f 734 (cond ((integerp (car rest))
1c393159
JB
735 (setq constants (cons (car rest) constants))
736 (setcar rest nil))))
97e6527f
KH
737 ;; If necessary, check now for overflow
738 ;; that might be caused by reordering.
739 (if (and overflow
740 ;; We have overflow if the result of doing the arithmetic
741 ;; on floats is not even close to the result
742 ;; of doing it on integers.
743 (not (byte-optimize-approx-equal
744 (apply fun (mapcar 'float constants))
745 (float (apply fun constants)))))
746 (setq form orig)
747 (setq form (nconc (delq nil form)
748 (list (apply fun (nreverse constants)))))))))
1c393159
JB
749 form))
750
cbe5b0eb
CY
751(defsubst byte-compile-butlast (form)
752 (nreverse (cdr (reverse form))))
753
1c393159 754(defun byte-optimize-plus (form)
cbe5b0eb
CY
755 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
756 ;;(setq form (byte-optimize-delay-constants-math form 1 '+))
1c393159 757 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
cbe5b0eb
CY
758 ;; For (+ constants...), byte-optimize-predicate does the work.
759 (when (memq nil (mapcar 'numberp (cdr form)))
760 (cond
761 ;; (+ x 1) --> (1+ x) and (+ x -1) --> (1- x).
762 ((and (= (length form) 3)
763 (or (memq (nth 1 form) '(1 -1))
764 (memq (nth 2 form) '(1 -1))))
765 (let (integer other)
766 (if (memq (nth 1 form) '(1 -1))
767 (setq integer (nth 1 form) other (nth 2 form))
768 (setq integer (nth 2 form) other (nth 1 form)))
769 (setq form
770 (list (if (eq integer 1) '1+ '1-) other))))
771 ;; Here, we could also do
772 ;; (+ x y ... 1) --> (1+ (+ x y ...))
773 ;; (+ x y ... -1) --> (1- (+ x y ...))
774 ;; The resulting bytecode is smaller, but is it faster? -- cyd
775 ))
776 (byte-optimize-predicate form))
1c393159
JB
777
778(defun byte-optimize-minus (form)
cbe5b0eb
CY
779 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
780 ;;(setq form (byte-optimize-delay-constants-math form 2 '+))
781 ;; Remove zeros.
782 (when (and (nthcdr 3 form)
783 (memq 0 (cddr form)))
784 (setq form (nconc (list (car form) (cadr form))
785 (delq 0 (copy-sequence (cddr form)))))
786 ;; After the above, we must turn (- x) back into (- x 0)
787 (or (cddr form)
788 (setq form (nconc form (list 0)))))
789 ;; For (- constants..), byte-optimize-predicate does the work.
790 (when (memq nil (mapcar 'numberp (cdr form)))
791 (cond
792 ;; (- x 1) --> (1- x)
793 ((equal (nthcdr 2 form) '(1))
794 (setq form (list '1- (nth 1 form))))
795 ;; (- x -1) --> (1+ x)
796 ((equal (nthcdr 2 form) '(-1))
797 (setq form (list '1+ (nth 1 form))))
798 ;; (- 0 x) --> (- x)
799 ((and (eq (nth 1 form) 0)
800 (= (length form) 3))
801 (setq form (list '- (nth 2 form))))
802 ;; Here, we could also do
803 ;; (- x y ... 1) --> (1- (- x y ...))
804 ;; (- x y ... -1) --> (1+ (- x y ...))
805 ;; The resulting bytecode is smaller, but is it faster? -- cyd
806 ))
807 (byte-optimize-predicate form))
1c393159
JB
808
809(defun byte-optimize-multiply (form)
810 (setq form (byte-optimize-delay-constants-math form 1 '*))
cbe5b0eb
CY
811 ;; For (* constants..), byte-optimize-predicate does the work.
812 (when (memq nil (mapcar 'numberp (cdr form)))
813 ;; After `byte-optimize-predicate', if there is a INTEGER constant
814 ;; in FORM, it is in the last element.
815 (let ((last (car (reverse (cdr form)))))
816 (cond
817 ;; Would handling (* ... 0) here cause floating point errors?
818 ;; See bug#1334.
819 ((eq 1 last) (setq form (byte-compile-butlast form)))
820 ((eq -1 last)
821 (setq form (list '- (if (nthcdr 3 form)
822 (byte-compile-butlast form)
823 (nth 1 form))))))))
824 (byte-optimize-predicate form))
1c393159
JB
825
826(defun byte-optimize-divide (form)
827 (setq form (byte-optimize-delay-constants-math form 2 '*))
cbe5b0eb
CY
828 ;; After `byte-optimize-predicate', if there is a INTEGER constant
829 ;; in FORM, it is in the last element.
1c393159 830 (let ((last (car (reverse (cdr (cdr form))))))
a1506d29 831 (cond
cbe5b0eb
CY
832 ;; Runtime error (leave it intact).
833 ((or (null last)
834 (eq last 0)
835 (memql 0.0 (cddr form))))
836 ;; No constants in expression
837 ((not (numberp last)))
838 ;; For (* constants..), byte-optimize-predicate does the work.
839 ((null (memq nil (mapcar 'numberp (cdr form)))))
840 ;; (/ x y.. 1) --> (/ x y..)
841 ((and (eq last 1) (nthcdr 3 form))
842 (setq form (byte-compile-butlast form)))
843 ;; (/ x -1), (/ x .. -1) --> (- x), (- (/ x ..))
844 ((eq last -1)
845 (setq form (list '- (if (nthcdr 3 form)
846 (byte-compile-butlast form)
847 (nth 1 form)))))))
848 (byte-optimize-predicate form))
1c393159
JB
849
850(defun byte-optimize-logmumble (form)
851 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
852 (byte-optimize-predicate
853 (cond ((memq 0 form)
854 (setq form (if (eq (car form) 'logand)
855 (cons 'progn (cdr form))
856 (delq 0 (copy-sequence form)))))
857 ((and (eq (car-safe form) 'logior)
858 (memq -1 form))
97e6527f 859 (cons 'progn (cdr form)))
1c393159
JB
860 (form))))
861
862
863(defun byte-optimize-binary-predicate (form)
864 (if (byte-compile-constp (nth 1 form))
865 (if (byte-compile-constp (nth 2 form))
866 (condition-case ()
867 (list 'quote (eval form))
868 (error form))
869 ;; This can enable some lapcode optimizations.
870 (list (car form) (nth 2 form) (nth 1 form)))
871 form))
872
873(defun byte-optimize-predicate (form)
874 (let ((ok t)
875 (rest (cdr form)))
876 (while (and rest ok)
877 (setq ok (byte-compile-constp (car rest))
878 rest (cdr rest)))
879 (if ok
880 (condition-case ()
881 (list 'quote (eval form))
882 (error form))
883 form)))
884
885(defun byte-optimize-identity (form)
886 (if (and (cdr form) (null (cdr (cdr form))))
887 (nth 1 form)
244bbdc5 888 (byte-compile-warn "identity called with %d arg%s, but requires 1"
1c393159
JB
889 (length (cdr form))
890 (if (= 1 (length (cdr form))) "" "s"))
891 form))
892
893(put 'identity 'byte-optimizer 'byte-optimize-identity)
894
895(put '+ 'byte-optimizer 'byte-optimize-plus)
896(put '* 'byte-optimizer 'byte-optimize-multiply)
897(put '- 'byte-optimizer 'byte-optimize-minus)
898(put '/ 'byte-optimizer 'byte-optimize-divide)
899(put 'max 'byte-optimizer 'byte-optimize-associative-math)
900(put 'min 'byte-optimizer 'byte-optimize-associative-math)
901
902(put '= 'byte-optimizer 'byte-optimize-binary-predicate)
903(put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
1c393159
JB
904(put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
905(put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
906(put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
907
908(put '< 'byte-optimizer 'byte-optimize-predicate)
909(put '> 'byte-optimizer 'byte-optimize-predicate)
910(put '<= 'byte-optimizer 'byte-optimize-predicate)
911(put '>= 'byte-optimizer 'byte-optimize-predicate)
912(put '1+ 'byte-optimizer 'byte-optimize-predicate)
913(put '1- 'byte-optimizer 'byte-optimize-predicate)
914(put 'not 'byte-optimizer 'byte-optimize-predicate)
915(put 'null 'byte-optimizer 'byte-optimize-predicate)
916(put 'memq 'byte-optimizer 'byte-optimize-predicate)
917(put 'consp 'byte-optimizer 'byte-optimize-predicate)
918(put 'listp 'byte-optimizer 'byte-optimize-predicate)
919(put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
920(put 'stringp 'byte-optimizer 'byte-optimize-predicate)
921(put 'string< 'byte-optimizer 'byte-optimize-predicate)
922(put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
923
924(put 'logand 'byte-optimizer 'byte-optimize-logmumble)
925(put 'logior 'byte-optimizer 'byte-optimize-logmumble)
926(put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
927(put 'lognot 'byte-optimizer 'byte-optimize-predicate)
928
929(put 'car 'byte-optimizer 'byte-optimize-predicate)
930(put 'cdr 'byte-optimizer 'byte-optimize-predicate)
931(put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
932(put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
933
934
a1506d29 935;; I'm not convinced that this is necessary. Doesn't the optimizer loop
1c393159
JB
936;; take care of this? - Jamie
937;; I think this may some times be necessary to reduce ie (quote 5) to 5,
eb8c3be9 938;; so arithmetic optimizers recognize the numeric constant. - Hallvard
1c393159
JB
939(put 'quote 'byte-optimizer 'byte-optimize-quote)
940(defun byte-optimize-quote (form)
941 (if (or (consp (nth 1 form))
942 (and (symbolp (nth 1 form))
e1f0df62 943 (not (byte-compile-const-symbol-p form))))
1c393159
JB
944 form
945 (nth 1 form)))
946
947(defun byte-optimize-zerop (form)
948 (cond ((numberp (nth 1 form))
949 (eval form))
950 (byte-compile-delete-errors
951 (list '= (nth 1 form) 0))
952 (form)))
953
954(put 'zerop 'byte-optimizer 'byte-optimize-zerop)
955
956(defun byte-optimize-and (form)
957 ;; Simplify if less than 2 args.
958 ;; if there is a literal nil in the args to `and', throw it and following
959 ;; forms away, and surround the `and' with (progn ... nil).
960 (cond ((null (cdr form)))
961 ((memq nil form)
962 (list 'progn
963 (byte-optimize-and
964 (prog1 (setq form (copy-sequence form))
965 (while (nth 1 form)
966 (setq form (cdr form)))
967 (setcdr form nil)))
968 nil))
969 ((null (cdr (cdr form)))
970 (nth 1 form))
971 ((byte-optimize-predicate form))))
972
973(defun byte-optimize-or (form)
974 ;; Throw away nil's, and simplify if less than 2 args.
975 ;; If there is a literal non-nil constant in the args to `or', throw away all
976 ;; following forms.
977 (if (memq nil form)
978 (setq form (delq nil (copy-sequence form))))
979 (let ((rest form))
980 (while (cdr (setq rest (cdr rest)))
981 (if (byte-compile-trueconstp (car rest))
982 (setq form (copy-sequence form)
983 rest (setcdr (memq (car rest) form) nil))))
984 (if (cdr (cdr form))
985 (byte-optimize-predicate form)
986 (nth 1 form))))
987
988(defun byte-optimize-cond (form)
989 ;; if any clauses have a literal nil as their test, throw them away.
990 ;; if any clause has a literal non-nil constant as its test, throw
991 ;; away all following clauses.
992 (let (rest)
993 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
994 (while (setq rest (assq nil (cdr form)))
995 (setq form (delq rest (copy-sequence form))))
996 (if (memq nil (cdr form))
997 (setq form (delq nil (copy-sequence form))))
998 (setq rest form)
999 (while (setq rest (cdr rest))
1000 (cond ((byte-compile-trueconstp (car-safe (car rest)))
d8947b79
DN
1001 ;; This branch will always be taken: kill the subsequent ones.
1002 (cond ((eq rest (cdr form)) ;First branch of `cond'.
1003 (setq form `(progn ,@(car rest))))
1c393159
JB
1004 ((cdr rest)
1005 (setq form (copy-sequence form))
1006 (setcdr (memq (car rest) form) nil)))
d8947b79
DN
1007 (setq rest nil))
1008 ((and (consp (car rest))
1009 (byte-compile-nilconstp (caar rest)))
1010 ;; This branch will never be taken: kill its body.
1011 (setcdr (car rest) nil)))))
1c393159
JB
1012 ;;
1013 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
1014 (if (eq 'cond (car-safe form))
1015 (let ((clauses (cdr form)))
1016 (if (and (consp (car clauses))
1017 (null (cdr (car clauses))))
1018 (list 'or (car (car clauses))
1019 (byte-optimize-cond
1020 (cons (car form) (cdr (cdr form)))))
1021 form))
1022 form))
1023
1024(defun byte-optimize-if (form)
40fafc21 1025 ;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
1c393159
JB
1026 ;; (if <true-constant> <then> <else...>) ==> <then>
1027 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1028 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1029 ;; (if <test> <then> nil) ==> (if <test> <then>)
1030 (let ((clause (nth 1 form)))
9d693d80
SM
1031 (cond ((and (eq (car-safe clause) 'progn)
1032 ;; `clause' is a proper list.
1033 (null (cdr (last clause))))
40fafc21
SM
1034 (if (null (cddr clause))
1035 ;; A trivial `progn'.
1036 (byte-optimize-if `(if ,(cadr clause) ,@(nthcdr 2 form)))
1037 (nconc (butlast clause)
1038 (list
1039 (byte-optimize-if
1040 `(if ,(car (last clause)) ,@(nthcdr 2 form)))))))
1041 ((byte-compile-trueconstp clause)
d8947b79
DN
1042 `(progn ,clause ,(nth 2 form)))
1043 ((byte-compile-nilconstp clause)
1044 `(progn ,clause ,@(nthcdr 3 form)))
1c393159
JB
1045 ((nth 2 form)
1046 (if (equal '(nil) (nthcdr 3 form))
1047 (list 'if clause (nth 2 form))
1048 form))
1049 ((or (nth 3 form) (nthcdr 4 form))
97e6527f
KH
1050 (list 'if
1051 ;; Don't make a double negative;
1052 ;; instead, take away the one that is there.
1053 (if (and (consp clause) (memq (car clause) '(not null))
1054 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1055 (nth 1 clause)
1056 (list 'not clause))
1c393159
JB
1057 (if (nthcdr 4 form)
1058 (cons 'progn (nthcdr 3 form))
1059 (nth 3 form))))
1060 (t
1061 (list 'progn clause nil)))))
1062
1063(defun byte-optimize-while (form)
aefd695a 1064 (when (< (length form) 2)
244bbdc5 1065 (byte-compile-warn "too few arguments for `while'"))
1c393159
JB
1066 (if (nth 1 form)
1067 form))
1068
1069(put 'and 'byte-optimizer 'byte-optimize-and)
1070(put 'or 'byte-optimizer 'byte-optimize-or)
1071(put 'cond 'byte-optimizer 'byte-optimize-cond)
1072(put 'if 'byte-optimizer 'byte-optimize-if)
1073(put 'while 'byte-optimizer 'byte-optimize-while)
1074
1075;; byte-compile-negation-optimizer lives in bytecomp.el
1076(put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1077(put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1078(put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1079
1080
1081(defun byte-optimize-funcall (form)
72d8b544
SM
1082 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1083 ;; (funcall foo ...) ==> (foo ...)
1c393159
JB
1084 (let ((fn (nth 1 form)))
1085 (if (memq (car-safe fn) '(quote function))
1086 (cons (nth 1 fn) (cdr (cdr form)))
1087 form)))
1088
1089(defun byte-optimize-apply (form)
1090 ;; If the last arg is a literal constant, turn this into a funcall.
1091 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1092 (let ((fn (nth 1 form))
1093 (last (nth (1- (length form)) form))) ; I think this really is fastest
1094 (or (if (or (null last)
1095 (eq (car-safe last) 'quote))
1096 (if (listp (nth 1 last))
1097 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
7e1dae73 1098 (nconc (list 'funcall fn) butlast
72d8b544 1099 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1c393159 1100 (byte-compile-warn
244bbdc5 1101 "last arg to apply can't be a literal atom: `%s'"
1c393159
JB
1102 (prin1-to-string last))
1103 nil))
1104 form)))
1105
1106(put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1107(put 'apply 'byte-optimizer 'byte-optimize-apply)
1108
1109
1110(put 'let 'byte-optimizer 'byte-optimize-letX)
1111(put 'let* 'byte-optimizer 'byte-optimize-letX)
1112(defun byte-optimize-letX (form)
1113 (cond ((null (nth 1 form))
1114 ;; No bindings
1115 (cons 'progn (cdr (cdr form))))
1116 ((or (nth 2 form) (nthcdr 3 form))
1117 form)
1118 ;; The body is nil
1119 ((eq (car form) 'let)
5d265171
RS
1120 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1121 '(nil)))
1c393159
JB
1122 (t
1123 (let ((binds (reverse (nth 1 form))))
1124 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1125
1126
1127(put 'nth 'byte-optimizer 'byte-optimize-nth)
1128(defun byte-optimize-nth (form)
56cfa244
DL
1129 (if (= (safe-length form) 3)
1130 (if (memq (nth 1 form) '(0 1))
1131 (list 'car (if (zerop (nth 1 form))
1132 (nth 2 form)
1133 (list 'cdr (nth 2 form))))
1134 (byte-optimize-predicate form))
1135 form))
1c393159
JB
1136
1137(put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1138(defun byte-optimize-nthcdr (form)
56cfa244
DL
1139 (if (= (safe-length form) 3)
1140 (if (memq (nth 1 form) '(0 1 2))
1141 (let ((count (nth 1 form)))
1142 (setq form (nth 2 form))
1143 (while (>= (setq count (1- count)) 0)
1144 (setq form (list 'cdr form)))
1145 form)
1146 (byte-optimize-predicate form))
1147 form))
79d137ff 1148
e5c230f4
DL
1149;; Fixme: delete-char -> delete-region (byte-coded)
1150;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1151;; string-make-multibyte for constant args.
1152
1153(put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1154(defun byte-optimize-featurep (form)
5ebfbcdc
SM
1155 ;; Emacs-21's byte-code doesn't run under XEmacs or SXEmacs anyway, so we
1156 ;; can safely optimize away this test.
538a93d8 1157 (if (member (cdr-safe form) '(((quote xemacs)) ((quote sxemacs))))
e5c230f4 1158 nil
70f41945
DN
1159 (if (member (cdr-safe form) '(((quote emacs))))
1160 t
1161 form)))
66ff2893
SM
1162
1163(put 'set 'byte-optimizer 'byte-optimize-set)
1164(defun byte-optimize-set (form)
1165 (let ((var (car-safe (cdr-safe form))))
1166 (cond
1167 ((and (eq (car-safe var) 'quote) (consp (cdr var)))
e64e9e6a 1168 `(setq ,(cadr var) ,@(cddr form)))
66ff2893
SM
1169 ((and (eq (car-safe var) 'make-local-variable)
1170 (eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
1171 (consp (cdr var)))
1172 `(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
1173 (t form))))
1c393159 1174\f
6b61353c
KH
1175;; enumerating those functions which need not be called if the returned
1176;; value is not used. That is, something like
1177;; (progn (list (something-with-side-effects) (yow))
1178;; (foo))
1179;; may safely be turned into
1180;; (progn (progn (something-with-side-effects) (yow))
1181;; (foo))
1182;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1183
1184;; Some of these functions have the side effect of allocating memory
1185;; and it would be incorrect to replace two calls with one.
1186;; But we don't try to do those kinds of optimizations,
1187;; so it is safe to list such functions here.
1188;; Some of these functions return values that depend on environment
1189;; state, so that constant folding them would be wrong,
1190;; but we don't do constant folding based on this list.
1191
1192;; However, at present the only optimization we normally do
1193;; is delete calls that need not occur, and we only do that
1194;; with the error-free functions.
1195
1196;; I wonder if I missed any :-\)
1c393159 1197(let ((side-effect-free-fns
c20a77cc
RS
1198 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1199 assoc assq
1200 boundp buffer-file-name buffer-local-variables buffer-modified-p
1fc9ee97 1201 buffer-substring byte-code-function-p
049a65a3 1202 capitalize car-less-than-car car cdr ceiling char-after char-before
1fc9ee97
RS
1203 char-equal char-to-string char-width
1204 compare-strings concat coordinates-in-window-p
1205 copy-alist copy-sequence copy-marker cos count-lines
9e60aa0b 1206 decode-char
1fc9ee97 1207 decode-time default-boundp default-value documentation downcase
8f924df7 1208 elt encode-char exp expt encode-time error-message-string
1fc9ee97 1209 fboundp fceiling featurep ffloor
1c393159
JB
1210 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1211 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1fc9ee97
RS
1212 float float-time floor format format-time-string frame-visible-p
1213 fround ftruncate
2412aadb
DL
1214 get gethash get-buffer get-buffer-window getenv get-file-buffer
1215 hash-table-count
1fc9ee97 1216 int-to-string intern-soft
f34bba69 1217 keymap-parent
e1f0df62 1218 length local-variable-if-set-p local-variable-p log log10 logand
f9cbd456 1219 logb logior lognot logxor lsh langinfo
1fc9ee97 1220 make-list make-string make-symbol
d9881cf1 1221 marker-buffer max member memq min mod multibyte-char-to-unibyte
c20a77cc 1222 next-window nth nthcdr number-to-string
1fc9ee97
RS
1223 parse-colon-path plist-get plist-member
1224 prefix-numeric-value previous-window prin1-to-string propertize
ba661bf0 1225 degrees-to-radians
1fc9ee97
RS
1226 radians-to-degrees rassq rassoc read-from-string regexp-quote
1227 region-beginning region-end reverse round
049a65a3 1228 sin sqrt string string< string= string-equal string-lessp string-to-char
1fc9ee97 1229 string-to-int string-to-number substring sxhash symbol-function
d9881cf1
DL
1230 symbol-name symbol-plist symbol-value string-make-unibyte
1231 string-make-multibyte string-as-multibyte string-as-unibyte
8f924df7 1232 string-to-multibyte
1fc9ee97
RS
1233 tan truncate
1234 unibyte-char-to-multibyte upcase user-full-name
1235 user-login-name user-original-login-name user-variable-p
1236 vconcat
c20a77cc
RS
1237 window-buffer window-dedicated-p window-edges window-height
1238 window-hscroll window-minibuffer-p window-width
1c393159 1239 zerop))
1c393159 1240 (side-effect-and-error-free-fns
c20a77cc 1241 '(arrayp atom
a1506d29 1242 bobp bolp bool-vector-p
1fc9ee97 1243 buffer-end buffer-list buffer-size buffer-string bufferp
354a6a95 1244 car-safe case-table-p cdr-safe char-or-string-p characterp
85eb6576 1245 charsetp commandp cons consp
f34bba69 1246 current-buffer current-global-map current-indentation
1fc9ee97
RS
1247 current-local-map current-minor-mode-maps current-time
1248 current-time-string current-time-zone
1249 eobp eolp eq equal eventp
049a65a3 1250 floatp following-char framep
c20a77cc 1251 get-largest-window get-lru-window
2412aadb 1252 hash-table-p
c20a77cc
RS
1253 identity ignore integerp integer-or-marker-p interactive-p
1254 invocation-directory invocation-name
f34bba69
DL
1255 keymapp
1256 line-beginning-position line-end-position list listp
8f924df7
KH
1257 make-marker mark mark-marker markerp max-char
1258 memory-limit minibuffer-window
c20a77cc
RS
1259 mouse-movement-p
1260 natnump nlistp not null number-or-marker-p numberp
1261 one-window-p overlayp
85eb6576
DL
1262 point point-marker point-min point-max preceding-char primary-charset
1263 processp
f34bba69 1264 recent-keys recursion-depth
1fc9ee97
RS
1265 safe-length selected-frame selected-window sequencep
1266 standard-case-table standard-syntax-table stringp subrp symbolp
1267 syntax-table syntax-table-p
f34bba69
DL
1268 this-command-keys this-command-keys-vector this-single-command-keys
1269 this-single-command-raw-keys
c20a77cc 1270 user-real-login-name user-real-uid user-uid
f34bba69 1271 vector vectorp visible-frame-list
1fc9ee97 1272 wholenump window-configuration-p window-live-p windowp)))
1c393159
JB
1273 (while side-effect-free-fns
1274 (put (car side-effect-free-fns) 'side-effect-free t)
1275 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1276 (while side-effect-and-error-free-fns
1277 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1278 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1279 nil)
1280
fb67ebdf
CY
1281\f
1282;; pure functions are side-effect free functions whose values depend
1283;; only on their arguments. For these functions, calls with constant
1284;; arguments can be evaluated at compile time. This may shift run time
1285;; errors to compile time.
1286
1287(let ((pure-fns
1288 '(concat symbol-name regexp-opt regexp-quote string-to-syntax)))
1289 (while pure-fns
1290 (put (car pure-fns) 'pure t)
1291 (setq pure-fns (cdr pure-fns)))
1292 nil)
1c393159
JB
1293
1294(defun byte-compile-splice-in-already-compiled-code (form)
1295 ;; form is (byte-code "..." [...] n)
1296 (if (not (memq byte-optimize '(t lap)))
1297 (byte-compile-normal-call form)
1298 (byte-inline-lapcode
1299 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1300 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1301 byte-compile-maxdepth))
1302 (setq byte-compile-depth (1+ byte-compile-depth))))
1303
1304(put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1305
1306\f
1307(defconst byte-constref-ops
1308 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1309
6b61353c
KH
1310;; This function extracts the bitfields from variable-length opcodes.
1311;; Originally defined in disass.el (which no longer uses it.)
1c393159
JB
1312
1313(defun disassemble-offset ()
1314 "Don't call this!"
1315 ;; fetch and return the offset for the current opcode.
f0529b5b 1316 ;; return nil if this opcode has no offset
1c393159
JB
1317 ;; OP, PTR and BYTES are used and set dynamically
1318 (defvar op)
1319 (defvar ptr)
1320 (defvar bytes)
1321 (cond ((< op byte-nth)
1322 (let ((tem (logand op 7)))
1323 (setq op (logand op 248))
1324 (cond ((eq tem 6)
1325 (setq ptr (1+ ptr)) ;offset in next byte
1326 (aref bytes ptr))
1327 ((eq tem 7)
1328 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1329 (+ (aref bytes ptr)
1330 (progn (setq ptr (1+ ptr))
1331 (lsh (aref bytes ptr) 8))))
1332 (t tem)))) ;offset was in opcode
1333 ((>= op byte-constant)
1334 (prog1 (- op byte-constant) ;offset in opcode
1335 (setq op byte-constant)))
b9598260
SM
1336 ((or (and (>= op byte-constant2)
1337 (<= op byte-goto-if-not-nil-else-pop))
1338 (= op byte-stack-set2))
1c393159
JB
1339 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1340 (+ (aref bytes ptr)
1341 (progn (setq ptr (1+ ptr))
1342 (lsh (aref bytes ptr) 8))))
3eac9910 1343 ((and (>= op byte-listN)
b9598260 1344 (<= op byte-discardN))
1c393159
JB
1345 (setq ptr (1+ ptr)) ;offset in next byte
1346 (aref bytes ptr))))
1347
1348
6b61353c
KH
1349;; This de-compiler is used for inline expansion of compiled functions,
1350;; and by the disassembler.
1351;;
1352;; This list contains numbers, which are pc values,
1353;; before each instruction.
1c393159 1354(defun byte-decompile-bytecode (bytes constvec)
40fafc21 1355 "Turn BYTECODE into lapcode, referring to CONSTVEC."
1c393159
JB
1356 (let ((byte-compile-constants nil)
1357 (byte-compile-variables nil)
1358 (byte-compile-tag-number 0))
1359 (byte-decompile-bytecode-1 bytes constvec)))
1360
70e1dad8
RS
1361;; As byte-decompile-bytecode, but updates
1362;; byte-compile-{constants, variables, tag-number}.
cffcfe66 1363;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
70e1dad8 1364;; with `goto's destined for the end of the code.
cffcfe66
RS
1365;; That is for use by the compiler.
1366;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1367;; In that case, we put a pc value into the list
1368;; before each insn (or its label).
1369(defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1c393159 1370 (let ((length (length bytes))
08d72d13 1371 (ptr 0) optr tags op offset
1c393159 1372 lap tmp
08d72d13 1373 endtag)
1c393159 1374 (while (not (= ptr length))
cffcfe66
RS
1375 (or make-spliceable
1376 (setq lap (cons ptr lap)))
1c393159
JB
1377 (setq op (aref bytes ptr)
1378 optr ptr
1379 offset (disassemble-offset)) ; this does dynamic-scope magic
1380 (setq op (aref byte-code-vector op))
3eac9910 1381 (cond ((memq op byte-goto-ops)
1c393159
JB
1382 ;; it's a pc
1383 (setq offset
1384 (cdr (or (assq offset tags)
1385 (car (setq tags
1386 (cons (cons offset
1387 (byte-compile-make-tag))
1388 tags)))))))
1389 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1390 ((memq op byte-constref-ops)))
6ebe9f82
RS
1391 (setq tmp (if (>= offset (length constvec))
1392 (list 'out-of-range offset)
1393 (aref constvec offset))
1c393159
JB
1394 offset (if (eq op 'byte-constant)
1395 (byte-compile-get-constant tmp)
1396 (or (assq tmp byte-compile-variables)
1397 (car (setq byte-compile-variables
1398 (cons (list tmp)
1399 byte-compile-variables)))))))
cffcfe66 1400 ((and make-spliceable
1c393159
JB
1401 (eq op 'byte-return))
1402 (if (= ptr (1- length))
1403 (setq op nil)
1404 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
b9598260
SM
1405 op 'byte-goto)))
1406 ((eq op 'byte-stack-set2)
1407 (setq op 'byte-stack-set))
1408 ((and (eq op 'byte-discardN) (>= offset #x80))
1409 ;; The top bit of the operand for byte-discardN is a flag,
1410 ;; saying whether the top-of-stack is preserved. In
1411 ;; lapcode, we represent this by using a different opcode
1412 ;; (with the flag removed from the operand).
1413 (setq op 'byte-discardN-preserve-tos)
1414 (setq offset (- offset #x80))))
1c393159
JB
1415 ;; lap = ( [ (pc . (op . arg)) ]* )
1416 (setq lap (cons (cons optr (cons op (or offset 0)))
1417 lap))
1418 (setq ptr (1+ ptr)))
1419 ;; take off the dummy nil op that we replaced a trailing "return" with.
1420 (let ((rest lap))
1421 (while rest
41cf13b9
RS
1422 (cond ((numberp (car rest)))
1423 ((setq tmp (assq (car (car rest)) tags))
1c393159
JB
1424 ;; this addr is jumped to
1425 (setcdr rest (cons (cons nil (cdr tmp))
1426 (cdr rest)))
1427 (setq tags (delq tmp tags))
1428 (setq rest (cdr rest))))
1429 (setq rest (cdr rest))))
1430 (if tags (error "optimizer error: missed tags %s" tags))
1431 (if (null (car (cdr (car lap))))
1432 (setq lap (cdr lap)))
1433 (if endtag
1434 (setq lap (cons (cons nil endtag) lap)))
1435 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
41cf13b9
RS
1436 (mapcar (function (lambda (elt)
1437 (if (numberp elt)
1438 elt
1439 (cdr elt))))
1440 (nreverse lap))))
1c393159
JB
1441
1442\f
1443;;; peephole optimizer
1444
1445(defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1446
1447(defconst byte-conditional-ops
1448 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1449 byte-goto-if-not-nil-else-pop))
1450
1451(defconst byte-after-unbind-ops
1452 '(byte-constant byte-dup
1453 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
43fd1680 1454 byte-eq byte-not
1c393159 1455 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
cb88b56e
RS
1456 byte-interactive-p)
1457 ;; How about other side-effect-free-ops? Is it safe to move an
1458 ;; error invocation (such as from nth) out of an unwind-protect?
43fd1680
RS
1459 ;; No, it is not, because the unwind-protect forms can alter
1460 ;; the inside of the object to which nth would apply.
1461 ;; For the same reason, byte-equal was deleted from this list.
cb88b56e 1462 "Byte-codes that can be moved past an unbind.")
1c393159
JB
1463
1464(defconst byte-compile-side-effect-and-error-free-ops
1465 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1466 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1467 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1468 byte-point-min byte-following-char byte-preceding-char
1469 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
b9598260 1470 byte-current-buffer byte-interactive-p byte-stack-ref))
1c393159
JB
1471
1472(defconst byte-compile-side-effect-free-ops
a1506d29 1473 (nconc
1c393159
JB
1474 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1475 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1476 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1477 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1478 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
b9598260 1479 byte-member byte-assq byte-quo byte-rem byte-vec-ref)
1c393159
JB
1480 byte-compile-side-effect-and-error-free-ops))
1481
6b61353c
KH
1482;; This crock is because of the way DEFVAR_BOOL variables work.
1483;; Consider the code
1484;;
1485;; (defun foo (flag)
1486;; (let ((old-pop-ups pop-up-windows)
1487;; (pop-up-windows flag))
1488;; (cond ((not (eq pop-up-windows old-pop-ups))
1489;; (setq old-pop-ups pop-up-windows)
1490;; ...))))
1491;;
1492;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1493;; something else. But if we optimize
1494;;
1495;; varref flag
1496;; varbind pop-up-windows
1497;; varref pop-up-windows
1498;; not
1499;; to
1500;; varref flag
1501;; dup
1502;; varbind pop-up-windows
1503;; not
1504;;
1505;; we break the program, because it will appear that pop-up-windows and
1506;; old-pop-ups are not EQ when really they are. So we have to know what
1507;; the BOOL variables are, and not perform this optimization on them.
1508
1509;; The variable `byte-boolean-vars' is now primitive and updated
1510;; automatically by DEFVAR_BOOL.
1c393159 1511
b9598260
SM
1512(defmacro byte-opt-update-stack-params (stack-adjust stack-depth lap0 rest lap)
1513 "...macro used by byte-optimize-lapcode..."
1514 `(progn
1515 (byte-compile-log-lap "Before %s [depth = %s]" ,lap0 ,stack-depth)
1516 (cond ((eq (car ,lap0) 'TAG)
1517 ;; A tag can encode the expected stack depth.
1518 (when (cddr ,lap0)
1519 ;; First, check to see if our notion of the current stack
1520 ;; depth agrees with this tag. We don't check at the
1521 ;; beginning of the function, because the presence of
1522 ;; lexical arguments means the first tag will have a
1523 ;; non-zero offset.
1524 (when (and (not (eq ,rest ,lap)) ; not at first insn
1525 ,stack-depth ; not just after a goto
1526 (not (= (cddr ,lap0) ,stack-depth)))
1527 (error "Compiler error: optimizer is confused about %s:
1528 %s != %s at lapcode %s" ',stack-depth (cddr ,lap0) ,stack-depth ,lap0))
1529 ;; Now set out current depth from this tag
1530 (setq ,stack-depth (cddr ,lap0)))
1531 (setq ,stack-adjust 0))
1532 ((memq (car ,lap0) '(byte-goto byte-return))
1533 ;; These insns leave us in an unknown state
1534 (setq ,stack-adjust nil))
1535 ((car ,lap0)
1536 ;; Not a no-op, set ,stack-adjust for lap0. ,stack-adjust will
1537 ;; be added to ,stack-depth at the end of the loop, so any code
1538 ;; that modifies the instruction sequence must adjust this too.
1539 (setq ,stack-adjust
1540 (byte-compile-stack-adjustment (car ,lap0) (cdr ,lap0)))))
1541 (byte-compile-log-lap "Before %s [depth => %s, adj = %s]" ,lap0 ,stack-depth ,stack-adjust)
1542 ))
1543
1c393159 1544(defun byte-optimize-lapcode (lap &optional for-effect)
6b61353c
KH
1545 "Simple peephole optimizer. LAP is both modified and returned.
1546If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
944425c0
DL
1547 (let (lap0
1548 lap1
1549 lap2
b9598260
SM
1550 stack-adjust
1551 stack-depth
1552 (initial-stack-depth
1553 (if (and lap (eq (car (car lap)) 'TAG))
1554 (cdr (cdr (car lap)))
1555 0))
1c393159
JB
1556 (keep-going 'first-time)
1557 (add-depth 0)
1558 rest tmp tmp2 tmp3
1559 (side-effect-free (if byte-compile-delete-errors
1560 byte-compile-side-effect-free-ops
1561 byte-compile-side-effect-and-error-free-ops)))
1562 (while keep-going
1563 (or (eq keep-going 'first-time)
1564 (byte-compile-log-lap " ---- next pass"))
1565 (setq rest lap
b9598260 1566 stack-depth initial-stack-depth
1c393159
JB
1567 keep-going nil)
1568 (while rest
1569 (setq lap0 (car rest)
1570 lap1 (nth 1 rest)
1571 lap2 (nth 2 rest))
1572
b9598260
SM
1573 (byte-opt-update-stack-params stack-adjust stack-depth lap0 rest lap)
1574
1c393159
JB
1575 ;; You may notice that sequences like "dup varset discard" are
1576 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1577 ;; You may be tempted to change this; resist that temptation.
1578 (cond ;;
1579 ;; <side-effect-free> pop --> <deleted>
1580 ;; ...including:
1581 ;; const-X pop --> <deleted>
1582 ;; varref-X pop --> <deleted>
1583 ;; dup pop --> <deleted>
1584 ;;
1585 ((and (eq 'byte-discard (car lap1))
1586 (memq (car lap0) side-effect-free))
1587 (setq keep-going t)
1c393159 1588 (setq rest (cdr rest))
b9598260 1589 (cond ((= stack-adjust 1)
1c393159
JB
1590 (byte-compile-log-lap
1591 " %s discard\t-->\t<deleted>" lap0)
1592 (setq lap (delq lap0 (delq lap1 lap))))
b9598260 1593 ((= stack-adjust 0)
1c393159
JB
1594 (byte-compile-log-lap
1595 " %s discard\t-->\t<deleted> discard" lap0)
1596 (setq lap (delq lap0 lap)))
b9598260 1597 ((= stack-adjust -1)
1c393159
JB
1598 (byte-compile-log-lap
1599 " %s discard\t-->\tdiscard discard" lap0)
1600 (setcar lap0 'byte-discard)
1601 (setcdr lap0 0))
b9598260
SM
1602 ((error "Optimizer error: too much on the stack")))
1603 (setq stack-adjust (1- stack-adjust)))
1c393159
JB
1604 ;;
1605 ;; goto*-X X: --> X:
1606 ;;
1607 ((and (memq (car lap0) byte-goto-ops)
1608 (eq (cdr lap0) lap1))
1609 (cond ((eq (car lap0) 'byte-goto)
1610 (setq lap (delq lap0 lap))
1611 (setq tmp "<deleted>"))
1612 ((memq (car lap0) byte-goto-always-pop-ops)
1613 (setcar lap0 (setq tmp 'byte-discard))
1614 (setcdr lap0 0))
1615 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1616 (and (memq byte-optimize-log '(t byte))
1617 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1618 (nth 1 lap1) (nth 1 lap1)
1619 tmp (nth 1 lap1)))
1620 (setq keep-going t))
1621 ;;
1622 ;; varset-X varref-X --> dup varset-X
1623 ;; varbind-X varref-X --> dup varbind-X
1624 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1625 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1626 ;; The latter two can enable other optimizations.
1627 ;;
b9598260
SM
1628 ((or (and (eq 'byte-varref (car lap2))
1629 (eq (cdr lap1) (cdr lap2))
1630 (memq (car lap1) '(byte-varset byte-varbind)))
1631 (and (eq (car lap2) 'byte-stack-ref)
1632 (eq (car lap1) 'byte-stack-set)
1633 (eq (cdr lap1) (cdr lap2))))
1634 (if (and (eq 'byte-varref (car lap2))
1635 (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1c393159
JB
1636 (not (eq (car lap0) 'byte-constant)))
1637 nil
1638 (setq keep-going t)
1639 (if (memq (car lap0) '(byte-constant byte-dup))
1640 (progn
1641 (setq tmp (if (or (not tmp)
e1f0df62
DL
1642 (byte-compile-const-symbol-p
1643 (car (cdr lap0))))
1c393159
JB
1644 (cdr lap0)
1645 (byte-compile-get-constant t)))
1646 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1647 lap0 lap1 lap2 lap0 lap1
1648 (cons (car lap0) tmp))
1649 (setcar lap2 (car lap0))
1650 (setcdr lap2 tmp))
1651 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1652 (setcar lap2 (car lap1))
1653 (setcar lap1 'byte-dup)
1654 (setcdr lap1 0)
1655 ;; The stack depth gets locally increased, so we will
1656 ;; increase maxdepth in case depth = maxdepth here.
1657 ;; This can cause the third argument to byte-code to
1658 ;; be larger than necessary.
1659 (setq add-depth 1))))
1660 ;;
1661 ;; dup varset-X discard --> varset-X
1662 ;; dup varbind-X discard --> varbind-X
1663 ;; (the varbind variant can emerge from other optimizations)
1664 ;;
1665 ((and (eq 'byte-dup (car lap0))
1666 (eq 'byte-discard (car lap2))
b9598260 1667 (memq (car lap1) '(byte-varset byte-varbind byte-stack-set byte-vec-set)))
1c393159
JB
1668 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1669 (setq keep-going t
b9598260
SM
1670 rest (cdr rest)
1671 stack-adjust -1)
1c393159
JB
1672 (setq lap (delq lap0 (delq lap2 lap))))
1673 ;;
1674 ;; not goto-X-if-nil --> goto-X-if-non-nil
1675 ;; not goto-X-if-non-nil --> goto-X-if-nil
1676 ;;
1677 ;; it is wrong to do the same thing for the -else-pop variants.
1678 ;;
1679 ((and (eq 'byte-not (car lap0))
1680 (or (eq 'byte-goto-if-nil (car lap1))
1681 (eq 'byte-goto-if-not-nil (car lap1))))
1682 (byte-compile-log-lap " not %s\t-->\t%s"
1683 lap1
1684 (cons
1685 (if (eq (car lap1) 'byte-goto-if-nil)
1686 'byte-goto-if-not-nil
1687 'byte-goto-if-nil)
1688 (cdr lap1)))
1689 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1690 'byte-goto-if-not-nil
1691 'byte-goto-if-nil))
1692 (setq lap (delq lap0 lap))
b9598260
SM
1693 (setq keep-going t
1694 stack-adjust 0))
1c393159
JB
1695 ;;
1696 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1697 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1698 ;;
1699 ;; it is wrong to do the same thing for the -else-pop variants.
a1506d29 1700 ;;
1c393159
JB
1701 ((and (or (eq 'byte-goto-if-nil (car lap0))
1702 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1703 (eq 'byte-goto (car lap1)) ; gotoY
1704 (eq (cdr lap0) lap2)) ; TAG X
1705 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1706 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1707 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1708 lap0 lap1 lap2
1709 (cons inverse (cdr lap1)) lap2)
b9598260
SM
1710 (setq lap (delq lap0 lap)
1711 stack-adjust 0)
1c393159
JB
1712 (setcar lap1 inverse)
1713 (setq keep-going t)))
1714 ;;
1715 ;; const goto-if-* --> whatever
1716 ;;
1717 ((and (eq 'byte-constant (car lap0))
1718 (memq (car lap1) byte-conditional-ops))
1719 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1720 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1721 (car (cdr lap0))
1722 (not (car (cdr lap0))))
1723 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1724 lap0 lap1)
1725 (setq rest (cdr rest)
1726 lap (delq lap0 (delq lap1 lap))))
1727 (t
b9598260
SM
1728 (byte-compile-log-lap " %s %s\t-->\t%s"
1729 lap0 lap1
1730 (cons 'byte-goto (cdr lap1)))
1731 (when (memq (car lap1) byte-goto-always-pop-ops)
1732 (setq lap (delq lap0 lap)))
1c393159 1733 (setcar lap1 'byte-goto)))
b9598260
SM
1734 (setq keep-going t
1735 stack-adjust 0))
1c393159
JB
1736 ;;
1737 ;; varref-X varref-X --> varref-X dup
1738 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1739 ;; We don't optimize the const-X variations on this here,
1740 ;; because that would inhibit some goto optimizations; we
1741 ;; optimize the const-X case after all other optimizations.
1742 ;;
b9598260 1743 ((and (memq (car lap0) '(byte-varref byte-stack-ref))
1c393159 1744 (progn
b9598260 1745 (setq tmp (cdr rest) tmp2 0)
1c393159 1746 (while (eq (car (car tmp)) 'byte-dup)
b9598260 1747 (setq tmp (cdr tmp) tmp2 (1+ tmp2)))
1c393159 1748 t)
b9598260
SM
1749 (eq (car lap0) (car (car tmp)))
1750 (eq (cdr lap0) (cdr (car tmp))))
1c393159
JB
1751 (if (memq byte-optimize-log '(t byte))
1752 (let ((str ""))
1753 (setq tmp2 (cdr rest))
1754 (while (not (eq tmp tmp2))
1755 (setq tmp2 (cdr tmp2)
1756 str (concat str " dup")))
1757 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1758 lap0 str lap0 lap0 str)))
1759 (setq keep-going t)
1760 (setcar (car tmp) 'byte-dup)
1761 (setcdr (car tmp) 0)
b9598260
SM
1762 (setq rest tmp
1763 stack-adjust (+ 2 tmp2)))
1c393159
JB
1764 ;;
1765 ;; TAG1: TAG2: --> TAG1: <deleted>
1766 ;; (and other references to TAG2 are replaced with TAG1)
1767 ;;
1768 ((and (eq (car lap0) 'TAG)
1769 (eq (car lap1) 'TAG))
1770 (and (memq byte-optimize-log '(t byte))
eb8c3be9 1771 (byte-compile-log " adjacent tags %d and %d merged"
1c393159
JB
1772 (nth 1 lap1) (nth 1 lap0)))
1773 (setq tmp3 lap)
1774 (while (setq tmp2 (rassq lap0 tmp3))
1775 (setcdr tmp2 lap1)
1776 (setq tmp3 (cdr (memq tmp2 tmp3))))
1777 (setq lap (delq lap0 lap)
1778 keep-going t))
1779 ;;
1780 ;; unused-TAG: --> <deleted>
1781 ;;
1782 ((and (eq 'TAG (car lap0))
1783 (not (rassq lap0 lap)))
1784 (and (memq byte-optimize-log '(t byte))
1785 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1786 (setq lap (delq lap0 lap)
1787 keep-going t))
1788 ;;
1789 ;; goto ... --> goto <delete until TAG or end>
1790 ;; return ... --> return <delete until TAG or end>
1791 ;;
1792 ((and (memq (car lap0) '(byte-goto byte-return))
1793 (not (memq (car lap1) '(TAG nil))))
1794 (setq tmp rest)
1795 (let ((i 0)
1796 (opt-p (memq byte-optimize-log '(t lap)))
1797 str deleted)
1798 (while (and (setq tmp (cdr tmp))
1799 (not (eq 'TAG (car (car tmp)))))
1800 (if opt-p (setq deleted (cons (car tmp) deleted)
1801 str (concat str " %s")
1802 i (1+ i))))
1803 (if opt-p
a1506d29 1804 (let ((tagstr
1c393159 1805 (if (eq 'TAG (car (car tmp)))
dec4e22e 1806 (format "%d:" (car (cdr (car tmp))))
1c393159
JB
1807 (or (car tmp) ""))))
1808 (if (< i 6)
1809 (apply 'byte-compile-log-lap-1
1810 (concat " %s" str
1811 " %s\t-->\t%s <deleted> %s")
1812 lap0
1813 (nconc (nreverse deleted)
1814 (list tagstr lap0 tagstr)))
1815 (byte-compile-log-lap
1816 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1817 lap0 i (if (= i 1) "" "s")
1818 tagstr lap0 tagstr))))
1819 (rplacd rest tmp))
1820 (setq keep-going t))
1821 ;;
1822 ;; <safe-op> unbind --> unbind <safe-op>
1823 ;; (this may enable other optimizations.)
1824 ;;
1825 ((and (eq 'byte-unbind (car lap1))
1826 (memq (car lap0) byte-after-unbind-ops))
1827 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1828 (setcar rest lap1)
1829 (setcar (cdr rest) lap0)
b9598260
SM
1830 (setq keep-going t
1831 stack-adjust 0))
1c393159
JB
1832 ;;
1833 ;; varbind-X unbind-N --> discard unbind-(N-1)
1834 ;; save-excursion unbind-N --> unbind-(N-1)
1835 ;; save-restriction unbind-N --> unbind-(N-1)
1836 ;;
1837 ((and (eq 'byte-unbind (car lap1))
1838 (memq (car lap0) '(byte-varbind byte-save-excursion
1839 byte-save-restriction))
1840 (< 0 (cdr lap1)))
1841 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1842 (delq lap1 rest))
1843 (if (eq (car lap0) 'byte-varbind)
1844 (setcar rest (cons 'byte-discard 0))
1845 (setq lap (delq lap0 lap)))
1846 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1847 lap0 (cons (car lap1) (1+ (cdr lap1)))
1848 (if (eq (car lap0) 'byte-varbind)
1849 (car rest)
1850 (car (cdr rest)))
1851 (if (and (/= 0 (cdr lap1))
1852 (eq (car lap0) 'byte-varbind))
1853 (car (cdr rest))
1854 ""))
1855 (setq keep-going t))
1856 ;;
b9598260
SM
1857 ;; stack-ref-N --> dup ; where N is TOS
1858 ;;
1859 ((and (eq (car lap0) 'byte-stack-ref)
1860 (= (cdr lap0) (1- stack-depth)))
1861 (setcar lap0 'byte-dup)
1862 (setcdr lap0 nil)
1863 (setq keep-going t))
1864 ;;
1c393159
JB
1865 ;; goto*-X ... X: goto-Y --> goto*-Y
1866 ;; goto-X ... X: return --> return
1867 ;;
1868 ((and (memq (car lap0) byte-goto-ops)
1869 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1870 '(byte-goto byte-return)))
1871 (cond ((and (not (eq tmp lap0))
1872 (or (eq (car lap0) 'byte-goto)
1873 (eq (car tmp) 'byte-goto)))
1874 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1875 (car lap0) tmp tmp)
1876 (if (eq (car tmp) 'byte-return)
1877 (setcar lap0 'byte-return))
1878 (setcdr lap0 (cdr tmp))
1879 (setq keep-going t))))
1880 ;;
1881 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1882 ;; goto-*-else-pop X ... X: discard --> whatever
1883 ;;
1884 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1885 byte-goto-if-not-nil-else-pop))
1886 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1887 (eval-when-compile
1888 (cons 'byte-discard byte-conditional-ops)))
1889 (not (eq lap0 (car tmp))))
1890 (setq tmp2 (car tmp))
1891 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1892 byte-goto-if-nil)
1893 (byte-goto-if-not-nil-else-pop
1894 byte-goto-if-not-nil))))
1895 (if (memq (car tmp2) tmp3)
1896 (progn (setcar lap0 (car tmp2))
1897 (setcdr lap0 (cdr tmp2))
1898 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1899 (car lap0) tmp2 lap0))
1900 ;; Get rid of the -else-pop's and jump one step further.
1901 (or (eq 'TAG (car (nth 1 tmp)))
1902 (setcdr tmp (cons (byte-compile-make-tag)
1903 (cdr tmp))))
1904 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1905 (car lap0) tmp2 (nth 1 tmp3))
1906 (setcar lap0 (nth 1 tmp3))
1907 (setcdr lap0 (nth 1 tmp)))
1908 (setq keep-going t))
1909 ;;
1910 ;; const goto-X ... X: goto-if-* --> whatever
1911 ;; const goto-X ... X: discard --> whatever
1912 ;;
1913 ((and (eq (car lap0) 'byte-constant)
1914 (eq (car lap1) 'byte-goto)
1915 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1916 (eval-when-compile
1917 (cons 'byte-discard byte-conditional-ops)))
1918 (not (eq lap1 (car tmp))))
1919 (setq tmp2 (car tmp))
1920 (cond ((memq (car tmp2)
1921 (if (null (car (cdr lap0)))
1922 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1923 '(byte-goto-if-not-nil
1924 byte-goto-if-not-nil-else-pop)))
1925 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1926 lap0 tmp2 lap0 tmp2)
1927 (setcar lap1 (car tmp2))
1928 (setcdr lap1 (cdr tmp2))
1929 ;; Let next step fix the (const,goto-if*) sequence.
1930 (setq rest (cons nil rest)))
1931 (t
1932 ;; Jump one step further
1933 (byte-compile-log-lap
1934 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1935 lap0 tmp2)
1936 (or (eq 'TAG (car (nth 1 tmp)))
1937 (setcdr tmp (cons (byte-compile-make-tag)
1938 (cdr tmp))))
1939 (setcdr lap1 (car (cdr tmp)))
1940 (setq lap (delq lap0 lap))))
b9598260
SM
1941 (setq keep-going t
1942 stack-adjust 0))
1c393159
JB
1943 ;;
1944 ;; X: varref-Y ... varset-Y goto-X -->
1945 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1946 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1947 ;; (This is so usual for while loops that it is worth handling).
1948 ;;
b9598260 1949 ((and (memq (car lap1) '(byte-varset byte-stack-set))
1c393159
JB
1950 (eq (car lap2) 'byte-goto)
1951 (not (memq (cdr lap2) rest)) ;Backwards jump
1952 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
b9598260 1953 (if (eq (car lap1) 'byte-varset) 'byte-varref 'byte-stack-ref))
1c393159 1954 (eq (cdr (car tmp)) (cdr lap1))
b9598260
SM
1955 (not (and (eq (car lap1) 'byte-varref)
1956 (memq (car (cdr lap1)) byte-boolean-vars))))
1c393159
JB
1957 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1958 (let ((newtag (byte-compile-make-tag)))
1959 (byte-compile-log-lap
1960 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1961 (nth 1 (cdr lap2)) (car tmp)
1962 lap1 lap2
1963 (nth 1 (cdr lap2)) (car tmp)
1964 (nth 1 newtag) 'byte-dup lap1
1965 (cons 'byte-goto newtag)
1966 )
1967 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1968 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1969 (setq add-depth 1)
1970 (setq keep-going t))
1971 ;;
1972 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1973 ;; (This can pull the loop test to the end of the loop)
1974 ;;
1975 ((and (eq (car lap0) 'byte-goto)
1976 (eq (car lap1) 'TAG)
1977 (eq lap1
1978 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1979 (memq (car (car tmp))
1980 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1981 byte-goto-if-nil-else-pop)))
1982;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1983;; lap0 lap1 (cdr lap0) (car tmp))
1984 (let ((newtag (byte-compile-make-tag)))
1985 (byte-compile-log-lap
1986 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1987 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1988 (cons (cdr (assq (car (car tmp))
1989 '((byte-goto-if-nil . byte-goto-if-not-nil)
1990 (byte-goto-if-not-nil . byte-goto-if-nil)
1991 (byte-goto-if-nil-else-pop .
1992 byte-goto-if-not-nil-else-pop)
1993 (byte-goto-if-not-nil-else-pop .
1994 byte-goto-if-nil-else-pop))))
1995 newtag)
a1506d29 1996
1c393159
JB
1997 (nth 1 newtag)
1998 )
1999 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
2000 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
2001 ;; We can handle this case but not the -if-not-nil case,
2002 ;; because we won't know which non-nil constant to push.
2003 (setcdr rest (cons (cons 'byte-constant
2004 (byte-compile-get-constant nil))
2005 (cdr rest))))
2006 (setcar lap0 (nth 1 (memq (car (car tmp))
2007 '(byte-goto-if-nil-else-pop
2008 byte-goto-if-not-nil
2009 byte-goto-if-nil
2010 byte-goto-if-not-nil
2011 byte-goto byte-goto))))
2012 )
b9598260
SM
2013 (setq keep-going t
2014 stack-adjust (and (not (eq (car lap0) 'byte-goto)) -1)))
1c393159 2015 )
b9598260
SM
2016
2017 (setq stack-depth
2018 (and stack-depth stack-adjust (+ stack-depth stack-adjust)))
1c393159
JB
2019 (setq rest (cdr rest)))
2020 )
b9598260 2021
1c393159
JB
2022 ;; Cleanup stage:
2023 ;; Rebuild byte-compile-constants / byte-compile-variables.
2024 ;; Simple optimizations that would inhibit other optimizations if they
2025 ;; were done in the optimizing loop, and optimizations which there is no
2026 ;; need to do more than once.
2027 (setq byte-compile-constants nil
2028 byte-compile-variables nil)
b9598260
SM
2029 (setq rest lap
2030 stack-depth initial-stack-depth)
2031 (byte-compile-log-lap " ---- final pass")
1c393159
JB
2032 (while rest
2033 (setq lap0 (car rest)
2034 lap1 (nth 1 rest))
b9598260 2035 (byte-opt-update-stack-params stack-adjust stack-depth lap0 rest lap)
1c393159 2036 (if (memq (car lap0) byte-constref-ops)
3ecf67a1
GM
2037 (if (or (eq (car lap0) 'byte-constant)
2038 (eq (car lap0) 'byte-constant2))
2039 (unless (memq (cdr lap0) byte-compile-constants)
1c393159 2040 (setq byte-compile-constants (cons (cdr lap0)
3ecf67a1
GM
2041 byte-compile-constants)))
2042 (unless (memq (cdr lap0) byte-compile-variables)
2043 (setq byte-compile-variables (cons (cdr lap0)
2044 byte-compile-variables)))))
1c393159
JB
2045 (cond (;;
2046 ;; const-C varset-X const-C --> const-C dup varset-X
2047 ;; const-C varbind-X const-C --> const-C dup varbind-X
2048 ;;
2049 (and (eq (car lap0) 'byte-constant)
2050 (eq (car (nth 2 rest)) 'byte-constant)
3ecf67a1 2051 (eq (cdr lap0) (cdr (nth 2 rest)))
1c393159
JB
2052 (memq (car lap1) '(byte-varbind byte-varset)))
2053 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
2054 lap0 lap1 lap0 lap0 lap1)
2055 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
2056 (setcar (cdr rest) (cons 'byte-dup 0))
2057 (setq add-depth 1))
2058 ;;
2059 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
2060 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
2061 ;;
2062 ((memq (car lap0) '(byte-constant byte-varref))
2063 (setq tmp rest
2064 tmp2 nil)
2065 (while (progn
2066 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
2067 (and (eq (cdr lap0) (cdr (car tmp)))
2068 (eq (car lap0) (car (car tmp)))))
2069 (setcar tmp (cons 'byte-dup 0))
2070 (setq tmp2 t))
2071 (if tmp2
2072 (byte-compile-log-lap
dec4e22e 2073 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1c393159
JB
2074 ;;
2075 ;; unbind-N unbind-M --> unbind-(N+M)
2076 ;;
2077 ((and (eq 'byte-unbind (car lap0))
2078 (eq 'byte-unbind (car lap1)))
2079 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
2080 (cons 'byte-unbind
2081 (+ (cdr lap0) (cdr lap1))))
1c393159
JB
2082 (setq lap (delq lap0 lap))
2083 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
b9598260
SM
2084
2085 ;;
2086 ;; stack-set-M [discard/discardN ...] --> discardN-preserve-tos
2087 ;; stack-set-M [discard/discardN ...] --> discardN
2088 ;;
2089 ((and (eq (car lap0) 'byte-stack-set)
2090 (memq (car lap1) '(byte-discard byte-discardN))
2091 (progn
2092 ;; See if enough discard operations follow to expose or
2093 ;; destroy the value stored by the stack-set.
2094 (setq tmp (cdr rest))
2095 (setq tmp2 (- stack-depth 2 (cdr lap0)))
2096 (setq tmp3 0)
2097 (while (memq (car (car tmp)) '(byte-discard byte-discardN))
2098 (if (eq (car (car tmp)) 'byte-discard)
2099 (setq tmp3 (1+ tmp3))
2100 (setq tmp3 (+ tmp3 (cdr (car tmp)))))
2101 (setq tmp (cdr tmp)))
2102 (>= tmp3 tmp2)))
2103 ;; Do the optimization
2104 (setq lap (delq lap0 lap))
2105 (cond ((= tmp2 tmp3)
2106 ;; The value stored is the new TOS, so pop one more value
2107 ;; (to get rid of the old value) using the TOS-preserving
2108 ;; discard operator.
2109 (setcar lap1 'byte-discardN-preserve-tos)
2110 (setcdr lap1 (1+ tmp3)))
2111 (t
2112 ;; Otherwise, the value stored is lost, so just use a
2113 ;; normal discard.
2114 (setcar lap1 'byte-discardN)
2115 (setcdr lap1 tmp3)))
2116 (setcdr (cdr rest) tmp)
2117 (setq stack-adjust 0)
2118 (byte-compile-log-lap " %s [discard/discardN]...\t-->\t%s"
2119 lap0 lap1))
2120
2121 ;;
2122 ;; discard/discardN/discardN-preserve-tos-X discard/discardN-Y -->
2123 ;; discardN-(X+Y)
2124 ;;
2125 ((and (memq (car lap0)
2126 '(byte-discard
2127 byte-discardN
2128 byte-discardN-preserve-tos))
2129 (memq (car lap1) '(byte-discard byte-discardN)))
2130 (setq lap (delq lap0 lap))
2131 (byte-compile-log-lap
2132 " %s %s\t-->\t(discardN %s)"
2133 lap0 lap1
2134 (+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
2135 (if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
2136 (setcdr lap1 (+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
2137 (if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
2138 (setcar lap1 'byte-discardN)
2139 (setq stack-adjust 0))
2140
2141 ;;
2142 ;; discardN-preserve-tos-X discardN-preserve-tos-Y -->
2143 ;; discardN-preserve-tos-(X+Y)
2144 ;;
2145 ((and (eq (car lap0) 'byte-discardN-preserve-tos)
2146 (eq (car lap1) 'byte-discardN-preserve-tos))
2147 (setq lap (delq lap0 lap))
2148 (setcdr lap1 (+ (cdr lap0) (cdr lap1)))
2149 (setq stack-adjust 0)
2150 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 (car rest)))
2151
2152 ;;
2153 ;; discardN-preserve-tos return --> return
2154 ;; dup return --> return
2155 ;; stack-set-N return --> return ; where N is TOS-1
2156 ;;
2157 ((and (eq (car lap1) 'byte-return)
2158 (or (memq (car lap0) '(byte-discardN-preserve-tos byte-dup))
2159 (and (eq (car lap0) 'byte-stack-set)
2160 (= (cdr lap0) (- stack-depth 2)))))
2161 ;; the byte-code interpreter will pop the stack for us, so
2162 ;; we can just leave stuff on it
2163 (setq lap (delq lap0 lap))
2164 (setq stack-adjust 0)
2165 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 lap1))
2166
2167 ;;
2168 ;; dup stack-set-N return --> return ; where N is TOS
2169 ;;
2170 ((and (eq (car lap0) 'byte-dup)
2171 (eq (car lap1) 'byte-stack-set)
2172 (eq (car (car (cdr (cdr rest)))) 'byte-return)
2173 (= (cdr lap1) (1- stack-depth)))
2174 (setq lap (delq lap0 (delq lap1 lap)))
2175 (setq rest (cdr rest))
2176 (setq stack-adjust 0)
2177 (byte-compile-log-lap " dup %s return\t-->\treturn" lap1))
1c393159 2178 )
b9598260
SM
2179
2180 (setq stack-depth
2181 (and stack-depth stack-adjust (+ stack-depth stack-adjust)))
1c393159 2182 (setq rest (cdr rest)))
b9598260 2183
1c393159
JB
2184 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
2185 lap)
2186
1ffa4286 2187(provide 'byte-opt)
1c393159
JB
2188
2189\f
2190;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2191;; itself, compile some of its most used recursive functions (at load time).
2192;;
2193(eval-when-compile
96d699f3 2194 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1c393159
JB
2195 (assq 'byte-code (symbol-function 'byte-optimize-form))
2196 (let ((byte-optimize nil)
2197 (byte-compile-warnings nil))
988e2906
GM
2198 (mapc (lambda (x)
2199 (or noninteractive (message "compiling %s..." x))
2200 (byte-compile x)
2201 (or noninteractive (message "compiling %s...done" x)))
2202 '(byte-optimize-form
2203 byte-optimize-body
2204 byte-optimize-predicate
2205 byte-optimize-binary-predicate
2206 ;; Inserted some more than necessary, to speed it up.
2207 byte-optimize-form-code-walker
2208 byte-optimize-lapcode))))
1c393159 2209 nil)
3eac9910 2210
f61b7b7f 2211;; arch-tag: 0f14076b-737e-4bef-aae6-908826ec1ff1
3eac9910 2212;;; byte-opt.el ends here