Minor fixes for Lisp manual.
[bpt/emacs.git] / doc / lispref / lists.texi
CommitLineData
b8d4c8d0
GM
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
1e103a7c 3@c Copyright (C) 1990-1995, 1998-1999, 2001-2012 Free Software Foundation, Inc.
b8d4c8d0 4@c See the file elisp.texi for copying conditions.
ecc6530d 5@node Lists
b8d4c8d0
GM
6@chapter Lists
7@cindex lists
8@cindex element (of list)
9
10 A @dfn{list} represents a sequence of zero or more elements (which may
11be any Lisp objects). The important difference between lists and
12vectors is that two or more lists can share part of their structure; in
13addition, you can insert or delete elements in a list without copying
14the whole list.
15
16@menu
17* Cons Cells:: How lists are made out of cons cells.
18* List-related Predicates:: Is this object a list? Comparing two lists.
19* List Elements:: Extracting the pieces of a list.
20* Building Lists:: Creating list structure.
21* List Variables:: Modifying lists stored in variables.
22* Modifying Lists:: Storing new pieces into an existing list.
23* Sets And Lists:: A list can represent a finite mathematical set.
24* Association Lists:: A list can represent a finite relation or mapping.
f02f19bd 25* Property Lists:: A list of paired elements.
b8d4c8d0
GM
26@end menu
27
28@node Cons Cells
29@section Lists and Cons Cells
30@cindex lists and cons cells
31
32 Lists in Lisp are not a primitive data type; they are built up from
31cbea1d
CY
33@dfn{cons cells} (@pxref{Cons Cell Type}). A cons cell is a data
34object that represents an ordered pair. That is, it has two slots,
35and each slot @dfn{holds}, or @dfn{refers to}, some Lisp object. One
36slot is known as the @sc{car}, and the other is known as the @sc{cdr}.
37(These names are traditional; see @ref{Cons Cell Type}.) @sc{cdr} is
16152b76 38pronounced ``could-er''.
b8d4c8d0
GM
39
40 We say that ``the @sc{car} of this cons cell is'' whatever object
41its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
42
16152b76 43 A list is a series of cons cells ``chained together'', so that each
31cbea1d
CY
44cell refers to the next one. There is one cons cell for each element
45of the list. By convention, the @sc{car}s of the cons cells hold the
46elements of the list, and the @sc{cdr}s are used to chain the list
47(this asymmetry between @sc{car} and @sc{cdr} is entirely a matter of
48convention; at the level of cons cells, the @sc{car} and @sc{cdr}
49slots have similar properties). Hence, the @sc{cdr} slot of each cons
50cell in a list refers to the following cons cell.
b8d4c8d0
GM
51
52@cindex true list
31cbea1d
CY
53 Also by convention, the @sc{cdr} of the last cons cell in a list is
54@code{nil}. We call such a @code{nil}-terminated structure a
55@dfn{true list}. In Emacs Lisp, the symbol @code{nil} is both a
56symbol and a list with no elements. For convenience, the symbol
b8d4c8d0 57@code{nil} is considered to have @code{nil} as its @sc{cdr} (and also
31cbea1d
CY
58as its @sc{car}).
59
60 Hence, the @sc{cdr} of a true list is always a true list. The
61@sc{cdr} of a nonempty true list is a true list containing all the
62elements except the first.
b8d4c8d0
GM
63
64@cindex dotted list
65@cindex circular list
31cbea1d
CY
66 If the @sc{cdr} of a list's last cons cell is some value other than
67@code{nil}, we call the structure a @dfn{dotted list}, since its
68printed representation would use dotted pair notation (@pxref{Dotted
69Pair Notation}). There is one other possibility: some cons cell's
70@sc{cdr} could point to one of the previous cons cells in the list.
71We call that structure a @dfn{circular list}.
b8d4c8d0
GM
72
73 For some purposes, it does not matter whether a list is true,
31cbea1d 74circular or dotted. If a program doesn't look far enough down the
b8d4c8d0
GM
75list to see the @sc{cdr} of the final cons cell, it won't care.
76However, some functions that operate on lists demand true lists and
77signal errors if given a dotted list. Most functions that try to find
78the end of a list enter infinite loops if given a circular list.
79
80@cindex list structure
31cbea1d
CY
81 Because most cons cells are used as part of lists, we refer to any
82structure made out of cons cells as a @dfn{list structure}.
b8d4c8d0
GM
83
84@node List-related Predicates
85@section Predicates on Lists
86
87 The following predicates test whether a Lisp object is an atom,
88whether it is a cons cell or is a list, or whether it is the
89distinguished object @code{nil}. (Many of these predicates can be
90defined in terms of the others, but they are used so often that it is
eceeb5fc 91worth having them.)
b8d4c8d0
GM
92
93@defun consp object
94This function returns @code{t} if @var{object} is a cons cell, @code{nil}
95otherwise. @code{nil} is not a cons cell, although it @emph{is} a list.
96@end defun
97
98@defun atom object
99This function returns @code{t} if @var{object} is an atom, @code{nil}
100otherwise. All objects except cons cells are atoms. The symbol
101@code{nil} is an atom and is also a list; it is the only Lisp object
102that is both.
103
104@example
105(atom @var{object}) @equiv{} (not (consp @var{object}))
106@end example
107@end defun
108
109@defun listp object
110This function returns @code{t} if @var{object} is a cons cell or
111@code{nil}. Otherwise, it returns @code{nil}.
112
113@example
114@group
115(listp '(1))
116 @result{} t
117@end group
118@group
119(listp '())
120 @result{} t
121@end group
122@end example
123@end defun
124
125@defun nlistp object
126This function is the opposite of @code{listp}: it returns @code{t} if
127@var{object} is not a list. Otherwise, it returns @code{nil}.
128
129@example
130(listp @var{object}) @equiv{} (not (nlistp @var{object}))
131@end example
132@end defun
133
134@defun null object
135This function returns @code{t} if @var{object} is @code{nil}, and
136returns @code{nil} otherwise. This function is identical to @code{not},
137but as a matter of clarity we use @code{null} when @var{object} is
138considered a list and @code{not} when it is considered a truth value
139(see @code{not} in @ref{Combining Conditions}).
140
141@example
142@group
143(null '(1))
144 @result{} nil
145@end group
146@group
147(null '())
148 @result{} t
149@end group
150@end example
151@end defun
152
153
154@node List Elements
155@section Accessing Elements of Lists
156@cindex list elements
157
158@defun car cons-cell
159This function returns the value referred to by the first slot of the
b6a5263f
CY
160cons cell @var{cons-cell}. In other words, it returns the @sc{car} of
161@var{cons-cell}.
b8d4c8d0 162
b6a5263f
CY
163As a special case, if @var{cons-cell} is @code{nil}, this function
164returns @code{nil}. Therefore, any list is a valid argument. An
165error is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
166
167@example
168@group
169(car '(a b c))
170 @result{} a
171@end group
172@group
173(car '())
174 @result{} nil
175@end group
176@end example
177@end defun
178
179@defun cdr cons-cell
b6a5263f
CY
180This function returns the value referred to by the second slot of the
181cons cell @var{cons-cell}. In other words, it returns the @sc{cdr} of
182@var{cons-cell}.
183
184As a special case, if @var{cons-cell} is @code{nil}, this function
185returns @code{nil}; therefore, any list is a valid argument. An error
186is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
187
188@example
189@group
190(cdr '(a b c))
191 @result{} (b c)
192@end group
193@group
194(cdr '())
195 @result{} nil
196@end group
197@end example
198@end defun
199
200@defun car-safe object
201This function lets you take the @sc{car} of a cons cell while avoiding
202errors for other data types. It returns the @sc{car} of @var{object} if
203@var{object} is a cons cell, @code{nil} otherwise. This is in contrast
204to @code{car}, which signals an error if @var{object} is not a list.
205
206@example
207@group
208(car-safe @var{object})
209@equiv{}
210(let ((x @var{object}))
211 (if (consp x)
212 (car x)
213 nil))
214@end group
215@end example
216@end defun
217
218@defun cdr-safe object
219This function lets you take the @sc{cdr} of a cons cell while
220avoiding errors for other data types. It returns the @sc{cdr} of
221@var{object} if @var{object} is a cons cell, @code{nil} otherwise.
222This is in contrast to @code{cdr}, which signals an error if
223@var{object} is not a list.
224
225@example
226@group
227(cdr-safe @var{object})
228@equiv{}
229(let ((x @var{object}))
230 (if (consp x)
231 (cdr x)
232 nil))
233@end group
234@end example
235@end defun
236
237@defmac pop listname
7c08f8ba
CY
238This macro provides a convenient way to examine the @sc{car} of a
239list, and take it off the list, all at once. It operates on the list
240stored in @var{listname}. It removes the first element from the list,
241saves the @sc{cdr} into @var{listname}, then returns the removed
242element.
243
244In the simplest case, @var{listname} is an unquoted symbol naming a
245list; in that case, this macro is equivalent to @w{@code{(prog1
246(car listname) (setq listname (cdr listname)))}}.
b8d4c8d0
GM
247
248@example
249x
250 @result{} (a b c)
251(pop x)
252 @result{} a
253x
254 @result{} (b c)
255@end example
31cbea1d 256
7c08f8ba
CY
257More generally, @var{listname} can be a generalized variable. In that
258case, this macro saves into @var{listname} using @code{setf}.
259@xref{Generalized Variables}.
260
5b6887ad 261For the @code{push} macro, which adds an element to a list,
31cbea1d 262@xref{List Variables}.
b8d4c8d0
GM
263@end defmac
264
265@defun nth n list
266@anchor{Definition of nth}
267This function returns the @var{n}th element of @var{list}. Elements
268are numbered starting with zero, so the @sc{car} of @var{list} is
269element number zero. If the length of @var{list} is @var{n} or less,
270the value is @code{nil}.
271
272If @var{n} is negative, @code{nth} returns the first element of
273@var{list}.
274
275@example
276@group
277(nth 2 '(1 2 3 4))
278 @result{} 3
279@end group
280@group
281(nth 10 '(1 2 3 4))
282 @result{} nil
283@end group
284@group
285(nth -3 '(1 2 3 4))
286 @result{} 1
287
288(nth n x) @equiv{} (car (nthcdr n x))
289@end group
290@end example
291
292The function @code{elt} is similar, but applies to any kind of sequence.
293For historical reasons, it takes its arguments in the opposite order.
294@xref{Sequence Functions}.
295@end defun
296
297@defun nthcdr n list
298This function returns the @var{n}th @sc{cdr} of @var{list}. In other
299words, it skips past the first @var{n} links of @var{list} and returns
300what follows.
301
302If @var{n} is zero or negative, @code{nthcdr} returns all of
303@var{list}. If the length of @var{list} is @var{n} or less,
304@code{nthcdr} returns @code{nil}.
305
306@example
307@group
308(nthcdr 1 '(1 2 3 4))
309 @result{} (2 3 4)
310@end group
311@group
312(nthcdr 10 '(1 2 3 4))
313 @result{} nil
314@end group
315@group
316(nthcdr -3 '(1 2 3 4))
317 @result{} (1 2 3 4)
318@end group
319@end example
320@end defun
321
322@defun last list &optional n
323This function returns the last link of @var{list}. The @code{car} of
324this link is the list's last element. If @var{list} is null,
325@code{nil} is returned. If @var{n} is non-@code{nil}, the
326@var{n}th-to-last link is returned instead, or the whole of @var{list}
327if @var{n} is bigger than @var{list}'s length.
328@end defun
329
330@defun safe-length list
331@anchor{Definition of safe-length}
332This function returns the length of @var{list}, with no risk of either
333an error or an infinite loop. It generally returns the number of
334distinct cons cells in the list. However, for circular lists,
335the value is just an upper bound; it is often too large.
336
337If @var{list} is not @code{nil} or a cons cell, @code{safe-length}
338returns 0.
339@end defun
340
341 The most common way to compute the length of a list, when you are not
342worried that it may be circular, is with @code{length}. @xref{Sequence
343Functions}.
344
345@defun caar cons-cell
346This is the same as @code{(car (car @var{cons-cell}))}.
347@end defun
348
349@defun cadr cons-cell
350This is the same as @code{(car (cdr @var{cons-cell}))}
351or @code{(nth 1 @var{cons-cell})}.
352@end defun
353
354@defun cdar cons-cell
355This is the same as @code{(cdr (car @var{cons-cell}))}.
356@end defun
357
358@defun cddr cons-cell
359This is the same as @code{(cdr (cdr @var{cons-cell}))}
360or @code{(nthcdr 2 @var{cons-cell})}.
361@end defun
362
363@defun butlast x &optional n
364This function returns the list @var{x} with the last element,
365or the last @var{n} elements, removed. If @var{n} is greater
366than zero it makes a copy of the list so as not to damage the
367original list. In general, @code{(append (butlast @var{x} @var{n})
368(last @var{x} @var{n}))} will return a list equal to @var{x}.
369@end defun
370
371@defun nbutlast x &optional n
372This is a version of @code{butlast} that works by destructively
373modifying the @code{cdr} of the appropriate element, rather than
374making a copy of the list.
375@end defun
376
377@node Building Lists
b8d4c8d0
GM
378@section Building Cons Cells and Lists
379@cindex cons cells
380@cindex building lists
381
382 Many functions build lists, as lists reside at the very heart of Lisp.
383@code{cons} is the fundamental list-building function; however, it is
384interesting to note that @code{list} is used more times in the source
385code for Emacs than @code{cons}.
386
387@defun cons object1 object2
388This function is the most basic function for building new list
389structure. It creates a new cons cell, making @var{object1} the
390@sc{car}, and @var{object2} the @sc{cdr}. It then returns the new
391cons cell. The arguments @var{object1} and @var{object2} may be any
392Lisp objects, but most often @var{object2} is a list.
393
394@example
395@group
396(cons 1 '(2))
397 @result{} (1 2)
398@end group
399@group
400(cons 1 '())
401 @result{} (1)
402@end group
403@group
404(cons 1 2)
405 @result{} (1 . 2)
406@end group
407@end example
408
409@cindex consing
410@code{cons} is often used to add a single element to the front of a
411list. This is called @dfn{consing the element onto the list}.
412@footnote{There is no strictly equivalent way to add an element to
413the end of a list. You can use @code{(append @var{listname} (list
414@var{newelt}))}, which creates a whole new list by copying @var{listname}
415and adding @var{newelt} to its end. Or you can use @code{(nconc
416@var{listname} (list @var{newelt}))}, which modifies @var{listname}
417by following all the @sc{cdr}s and then replacing the terminating
418@code{nil}. Compare this to adding an element to the beginning of a
419list with @code{cons}, which neither copies nor modifies the list.}
420For example:
421
422@example
423(setq list (cons newelt list))
424@end example
425
426Note that there is no conflict between the variable named @code{list}
427used in this example and the function named @code{list} described below;
428any symbol can serve both purposes.
429@end defun
430
431@defun list &rest objects
432This function creates a list with @var{objects} as its elements. The
433resulting list is always @code{nil}-terminated. If no @var{objects}
434are given, the empty list is returned.
435
436@example
437@group
438(list 1 2 3 4 5)
439 @result{} (1 2 3 4 5)
440@end group
441@group
442(list 1 2 '(3 4 5) 'foo)
443 @result{} (1 2 (3 4 5) foo)
444@end group
445@group
446(list)
447 @result{} nil
448@end group
449@end example
450@end defun
451
452@defun make-list length object
453This function creates a list of @var{length} elements, in which each
454element is @var{object}. Compare @code{make-list} with
455@code{make-string} (@pxref{Creating Strings}).
456
457@example
458@group
459(make-list 3 'pigs)
460 @result{} (pigs pigs pigs)
461@end group
462@group
463(make-list 0 'pigs)
464 @result{} nil
465@end group
466@group
1f403cb9 467(setq l (make-list 3 '(a b)))
b8d4c8d0
GM
468 @result{} ((a b) (a b) (a b))
469(eq (car l) (cadr l))
470 @result{} t
471@end group
472@end example
473@end defun
474
475@defun append &rest sequences
476@cindex copying lists
477This function returns a list containing all the elements of
478@var{sequences}. The @var{sequences} may be lists, vectors,
479bool-vectors, or strings, but the last one should usually be a list.
480All arguments except the last one are copied, so none of the arguments
481is altered. (See @code{nconc} in @ref{Rearrangement}, for a way to join
482lists with no copying.)
483
484More generally, the final argument to @code{append} may be any Lisp
485object. The final argument is not copied or converted; it becomes the
486@sc{cdr} of the last cons cell in the new list. If the final argument
487is itself a list, then its elements become in effect elements of the
488result list. If the final element is not a list, the result is a
489dotted list since its final @sc{cdr} is not @code{nil} as required
490in a true list.
b8d4c8d0
GM
491@end defun
492
493 Here is an example of using @code{append}:
494
495@example
496@group
497(setq trees '(pine oak))
498 @result{} (pine oak)
499(setq more-trees (append '(maple birch) trees))
500 @result{} (maple birch pine oak)
501@end group
502
503@group
504trees
505 @result{} (pine oak)
506more-trees
507 @result{} (maple birch pine oak)
508@end group
509@group
510(eq trees (cdr (cdr more-trees)))
511 @result{} t
512@end group
513@end example
514
515 You can see how @code{append} works by looking at a box diagram. The
516variable @code{trees} is set to the list @code{(pine oak)} and then the
517variable @code{more-trees} is set to the list @code{(maple birch pine
518oak)}. However, the variable @code{trees} continues to refer to the
519original list:
520
521@smallexample
522@group
523more-trees trees
524| |
525| --- --- --- --- -> --- --- --- ---
526 --> | | |--> | | |--> | | |--> | | |--> nil
527 --- --- --- --- --- --- --- ---
528 | | | |
529 | | | |
530 --> maple -->birch --> pine --> oak
531@end group
532@end smallexample
533
534 An empty sequence contributes nothing to the value returned by
535@code{append}. As a consequence of this, a final @code{nil} argument
536forces a copy of the previous argument:
537
538@example
539@group
540trees
541 @result{} (pine oak)
542@end group
543@group
544(setq wood (append trees nil))
545 @result{} (pine oak)
546@end group
547@group
548wood
549 @result{} (pine oak)
550@end group
551@group
552(eq wood trees)
553 @result{} nil
554@end group
555@end example
556
557@noindent
558This once was the usual way to copy a list, before the function
559@code{copy-sequence} was invented. @xref{Sequences Arrays Vectors}.
560
561 Here we show the use of vectors and strings as arguments to @code{append}:
562
563@example
564@group
565(append [a b] "cd" nil)
566 @result{} (a b 99 100)
567@end group
568@end example
569
570 With the help of @code{apply} (@pxref{Calling Functions}), we can append
571all the lists in a list of lists:
572
573@example
574@group
575(apply 'append '((a b c) nil (x y z) nil))
576 @result{} (a b c x y z)
577@end group
578@end example
579
580 If no @var{sequences} are given, @code{nil} is returned:
581
582@example
583@group
584(append)
585 @result{} nil
586@end group
587@end example
588
589 Here are some examples where the final argument is not a list:
590
591@example
592(append '(x y) 'z)
593 @result{} (x y . z)
594(append '(x y) [z])
595 @result{} (x y . [z])
596@end example
597
598@noindent
599The second example shows that when the final argument is a sequence but
600not a list, the sequence's elements do not become elements of the
601resulting list. Instead, the sequence becomes the final @sc{cdr}, like
602any other non-list final argument.
603
604@defun reverse list
605This function creates a new list whose elements are the elements of
606@var{list}, but in reverse order. The original argument @var{list} is
607@emph{not} altered.
608
609@example
610@group
611(setq x '(1 2 3 4))
612 @result{} (1 2 3 4)
613@end group
614@group
615(reverse x)
616 @result{} (4 3 2 1)
617x
618 @result{} (1 2 3 4)
619@end group
620@end example
621@end defun
622
623@defun copy-tree tree &optional vecp
624This function returns a copy of the tree @code{tree}. If @var{tree} is a
625cons cell, this makes a new cons cell with the same @sc{car} and
626@sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
627same way.
628
629Normally, when @var{tree} is anything other than a cons cell,
630@code{copy-tree} simply returns @var{tree}. However, if @var{vecp} is
631non-@code{nil}, it copies vectors too (and operates recursively on
632their elements).
633@end defun
634
635@defun number-sequence from &optional to separation
636This returns a list of numbers starting with @var{from} and
637incrementing by @var{separation}, and ending at or just before
638@var{to}. @var{separation} can be positive or negative and defaults
639to 1. If @var{to} is @code{nil} or numerically equal to @var{from},
640the value is the one-element list @code{(@var{from})}. If @var{to} is
641less than @var{from} with a positive @var{separation}, or greater than
642@var{from} with a negative @var{separation}, the value is @code{nil}
643because those arguments specify an empty sequence.
644
645If @var{separation} is 0 and @var{to} is neither @code{nil} nor
646numerically equal to @var{from}, @code{number-sequence} signals an
647error, since those arguments specify an infinite sequence.
648
649All arguments can be integers or floating point numbers. However,
650floating point arguments can be tricky, because floating point
651arithmetic is inexact. For instance, depending on the machine, it may
652quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
653the one element list @code{(0.4)}, whereas
654@code{(number-sequence 0.4 0.8 0.2)} returns a list with three
655elements. The @var{n}th element of the list is computed by the exact
656formula @code{(+ @var{from} (* @var{n} @var{separation}))}. Thus, if
657one wants to make sure that @var{to} is included in the list, one can
658pass an expression of this exact type for @var{to}. Alternatively,
659one can replace @var{to} with a slightly larger value (or a slightly
660more negative value if @var{separation} is negative).
661
662Some examples:
663
664@example
665(number-sequence 4 9)
666 @result{} (4 5 6 7 8 9)
667(number-sequence 9 4 -1)
668 @result{} (9 8 7 6 5 4)
669(number-sequence 9 4 -2)
670 @result{} (9 7 5)
671(number-sequence 8)
672 @result{} (8)
673(number-sequence 8 5)
674 @result{} nil
675(number-sequence 5 8 -1)
676 @result{} nil
677(number-sequence 1.5 6 2)
678 @result{} (1.5 3.5 5.5)
679@end example
680@end defun
681
682@node List Variables
683@section Modifying List Variables
684
685 These functions, and one macro, provide convenient ways
686to modify a list which is stored in a variable.
687
7c08f8ba
CY
688@defmac push element listname
689This macro creates a new list whose @sc{car} is @var{element} and
690whose @sc{cdr} is the list specified by @var{listname}, and saves that
691list in @var{listname}. In the simplest case, @var{listname} is an
692unquoted symbol naming a list, and this macro is equivalent
693to @w{@code{(setq @var{listname} (cons @var{element} @var{listname}))}}.
b8d4c8d0
GM
694
695@example
696(setq l '(a b))
697 @result{} (a b)
698(push 'c l)
699 @result{} (c a b)
700l
701 @result{} (c a b)
702@end example
31cbea1d 703
7c08f8ba
CY
704More generally, @code{listname} can be a generalized variable. In
705that case, this macro does the equivalent of @w{@code{(setf
706@var{listname} (cons @var{element} @var{listname}))}}.
707@xref{Generalized Variables}.
708
31cbea1d
CY
709For the @code{pop} macro, which removes the first element from a list,
710@xref{List Elements}.
b8d4c8d0
GM
711@end defmac
712
713 Two functions modify lists that are the values of variables.
714
715@defun add-to-list symbol element &optional append compare-fn
716This function sets the variable @var{symbol} by consing @var{element}
717onto the old value, if @var{element} is not already a member of that
718value. It returns the resulting list, whether updated or not. The
719value of @var{symbol} had better be a list already before the call.
720@code{add-to-list} uses @var{compare-fn} to compare @var{element}
721against existing list members; if @var{compare-fn} is @code{nil}, it
722uses @code{equal}.
723
724Normally, if @var{element} is added, it is added to the front of
725@var{symbol}, but if the optional argument @var{append} is
726non-@code{nil}, it is added at the end.
727
728The argument @var{symbol} is not implicitly quoted; @code{add-to-list}
729is an ordinary function, like @code{set} and unlike @code{setq}. Quote
730the argument yourself if that is what you want.
731@end defun
732
733Here's a scenario showing how to use @code{add-to-list}:
734
735@example
736(setq foo '(a b))
737 @result{} (a b)
738
739(add-to-list 'foo 'c) ;; @r{Add @code{c}.}
740 @result{} (c a b)
741
742(add-to-list 'foo 'b) ;; @r{No effect.}
743 @result{} (c a b)
744
745foo ;; @r{@code{foo} was changed.}
746 @result{} (c a b)
747@end example
748
749 An equivalent expression for @code{(add-to-list '@var{var}
750@var{value})} is this:
751
752@example
753(or (member @var{value} @var{var})
754 (setq @var{var} (cons @var{value} @var{var})))
755@end example
756
757@defun add-to-ordered-list symbol element &optional order
758This function sets the variable @var{symbol} by inserting
759@var{element} into the old value, which must be a list, at the
760position specified by @var{order}. If @var{element} is already a
761member of the list, its position in the list is adjusted according
762to @var{order}. Membership is tested using @code{eq}.
763This function returns the resulting list, whether updated or not.
764
765The @var{order} is typically a number (integer or float), and the
766elements of the list are sorted in non-decreasing numerical order.
767
768@var{order} may also be omitted or @code{nil}. Then the numeric order
769of @var{element} stays unchanged if it already has one; otherwise,
770@var{element} has no numeric order. Elements without a numeric list
771order are placed at the end of the list, in no particular order.
772
773Any other value for @var{order} removes the numeric order of @var{element}
774if it already has one; otherwise, it is equivalent to @code{nil}.
775
776The argument @var{symbol} is not implicitly quoted;
777@code{add-to-ordered-list} is an ordinary function, like @code{set}
eceeb5fc 778and unlike @code{setq}. Quote the argument yourself if necessary.
b8d4c8d0
GM
779
780The ordering information is stored in a hash table on @var{symbol}'s
781@code{list-order} property.
782@end defun
783
784Here's a scenario showing how to use @code{add-to-ordered-list}:
785
786@example
787(setq foo '())
788 @result{} nil
789
790(add-to-ordered-list 'foo 'a 1) ;; @r{Add @code{a}.}
791 @result{} (a)
792
793(add-to-ordered-list 'foo 'c 3) ;; @r{Add @code{c}.}
794 @result{} (a c)
795
796(add-to-ordered-list 'foo 'b 2) ;; @r{Add @code{b}.}
797 @result{} (a b c)
798
799(add-to-ordered-list 'foo 'b 4) ;; @r{Move @code{b}.}
800 @result{} (a c b)
801
802(add-to-ordered-list 'foo 'd) ;; @r{Append @code{d}.}
803 @result{} (a c b d)
804
805(add-to-ordered-list 'foo 'e) ;; @r{Add @code{e}}.
806 @result{} (a c b e d)
807
808foo ;; @r{@code{foo} was changed.}
809 @result{} (a c b e d)
810@end example
811
812@node Modifying Lists
813@section Modifying Existing List Structure
814@cindex destructive list operations
815
816 You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
817primitives @code{setcar} and @code{setcdr}. We call these ``destructive''
818operations because they change existing list structure.
819
820@cindex CL note---@code{rplaca} vs @code{setcar}
821@quotation
822@findex rplaca
823@findex rplacd
824@b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
825@code{rplacd} to alter list structure; they change structure the same
826way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
827return the cons cell while @code{setcar} and @code{setcdr} return the
828new @sc{car} or @sc{cdr}.
829@end quotation
830
831@menu
832* Setcar:: Replacing an element in a list.
833* Setcdr:: Replacing part of the list backbone.
834 This can be used to remove or add elements.
835* Rearrangement:: Reordering the elements in a list; combining lists.
836@end menu
837
838@node Setcar
839@subsection Altering List Elements with @code{setcar}
840
841 Changing the @sc{car} of a cons cell is done with @code{setcar}. When
842used on a list, @code{setcar} replaces one element of a list with a
843different element.
844
845@defun setcar cons object
846This function stores @var{object} as the new @sc{car} of @var{cons},
847replacing its previous @sc{car}. In other words, it changes the
848@sc{car} slot of @var{cons} to refer to @var{object}. It returns the
849value @var{object}. For example:
850
851@example
852@group
853(setq x '(1 2))
854 @result{} (1 2)
855@end group
856@group
857(setcar x 4)
858 @result{} 4
859@end group
860@group
861x
862 @result{} (4 2)
863@end group
864@end example
865@end defun
866
867 When a cons cell is part of the shared structure of several lists,
868storing a new @sc{car} into the cons changes one element of each of
869these lists. Here is an example:
870
871@example
872@group
873;; @r{Create two lists that are partly shared.}
874(setq x1 '(a b c))
875 @result{} (a b c)
876(setq x2 (cons 'z (cdr x1)))
877 @result{} (z b c)
878@end group
879
880@group
881;; @r{Replace the @sc{car} of a shared link.}
882(setcar (cdr x1) 'foo)
883 @result{} foo
884x1 ; @r{Both lists are changed.}
885 @result{} (a foo c)
886x2
887 @result{} (z foo c)
888@end group
889
890@group
891;; @r{Replace the @sc{car} of a link that is not shared.}
892(setcar x1 'baz)
893 @result{} baz
894x1 ; @r{Only one list is changed.}
895 @result{} (baz foo c)
896x2
897 @result{} (z foo c)
898@end group
899@end example
900
901 Here is a graphical depiction of the shared structure of the two lists
902in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
903changes them both:
904
905@example
906@group
907 --- --- --- --- --- ---
908x1---> | | |----> | | |--> | | |--> nil
909 --- --- --- --- --- ---
910 | --> | |
911 | | | |
912 --> a | --> b --> c
913 |
914 --- --- |
915x2--> | | |--
916 --- ---
917 |
918 |
919 --> z
920@end group
921@end example
922
923 Here is an alternative form of box diagram, showing the same relationship:
924
925@example
926@group
927x1:
928 -------------- -------------- --------------
929| car | cdr | | car | cdr | | car | cdr |
930| a | o------->| b | o------->| c | nil |
931| | | -->| | | | | |
932 -------------- | -------------- --------------
933 |
934x2: |
935 -------------- |
936| car | cdr | |
937| z | o----
938| | |
939 --------------
940@end group
941@end example
942
943@node Setcdr
944@subsection Altering the CDR of a List
945
946 The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
947
948@defun setcdr cons object
949This function stores @var{object} as the new @sc{cdr} of @var{cons},
950replacing its previous @sc{cdr}. In other words, it changes the
951@sc{cdr} slot of @var{cons} to refer to @var{object}. It returns the
952value @var{object}.
953@end defun
954
955 Here is an example of replacing the @sc{cdr} of a list with a
956different list. All but the first element of the list are removed in
957favor of a different sequence of elements. The first element is
958unchanged, because it resides in the @sc{car} of the list, and is not
959reached via the @sc{cdr}.
960
961@example
962@group
963(setq x '(1 2 3))
964 @result{} (1 2 3)
965@end group
966@group
967(setcdr x '(4))
968 @result{} (4)
969@end group
970@group
971x
972 @result{} (1 4)
973@end group
974@end example
975
976 You can delete elements from the middle of a list by altering the
977@sc{cdr}s of the cons cells in the list. For example, here we delete
978the second element, @code{b}, from the list @code{(a b c)}, by changing
979the @sc{cdr} of the first cons cell:
980
981@example
982@group
983(setq x1 '(a b c))
984 @result{} (a b c)
985(setcdr x1 (cdr (cdr x1)))
986 @result{} (c)
987x1
988 @result{} (a c)
989@end group
990@end example
991
992 Here is the result in box notation:
993
994@smallexample
995@group
996 --------------------
997 | |
998 -------------- | -------------- | --------------
999| car | cdr | | | car | cdr | -->| car | cdr |
1000| a | o----- | b | o-------->| c | nil |
1001| | | | | | | | |
1002 -------------- -------------- --------------
1003@end group
1004@end smallexample
1005
1006@noindent
1007The second cons cell, which previously held the element @code{b}, still
1008exists and its @sc{car} is still @code{b}, but it no longer forms part
1009of this list.
1010
1011 It is equally easy to insert a new element by changing @sc{cdr}s:
1012
1013@example
1014@group
1015(setq x1 '(a b c))
1016 @result{} (a b c)
1017(setcdr x1 (cons 'd (cdr x1)))
1018 @result{} (d b c)
1019x1
1020 @result{} (a d b c)
1021@end group
1022@end example
1023
1024 Here is this result in box notation:
1025
1026@smallexample
1027@group
1028 -------------- ------------- -------------
1029| car | cdr | | car | cdr | | car | cdr |
1030| a | o | -->| b | o------->| c | nil |
1031| | | | | | | | | | |
1032 --------- | -- | ------------- -------------
1033 | |
1034 ----- --------
1035 | |
1036 | --------------- |
1037 | | car | cdr | |
1038 -->| d | o------
1039 | | |
1040 ---------------
1041@end group
1042@end smallexample
1043
1044@node Rearrangement
1045@subsection Functions that Rearrange Lists
1046@cindex rearrangement of lists
1047@cindex modification of lists
1048
1049 Here are some functions that rearrange lists ``destructively'' by
1050modifying the @sc{cdr}s of their component cons cells. We call these
1051functions ``destructive'' because they chew up the original lists passed
1052to them as arguments, relinking their cons cells to form a new list that
1053is the returned value.
1054
1055@ifnottex
1056 See @code{delq}, in @ref{Sets And Lists}, for another function
1057that modifies cons cells.
1058@end ifnottex
1059@iftex
1060 The function @code{delq} in the following section is another example
1061of destructive list manipulation.
1062@end iftex
1063
1064@defun nconc &rest lists
1065@cindex concatenating lists
1066@cindex joining lists
1067This function returns a list containing all the elements of @var{lists}.
1068Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
1069@emph{not} copied. Instead, the last @sc{cdr} of each of the
1070@var{lists} is changed to refer to the following list. The last of the
1071@var{lists} is not altered. For example:
1072
1073@example
1074@group
1075(setq x '(1 2 3))
1076 @result{} (1 2 3)
1077@end group
1078@group
1079(nconc x '(4 5))
1080 @result{} (1 2 3 4 5)
1081@end group
1082@group
1083x
1084 @result{} (1 2 3 4 5)
1085@end group
1086@end example
1087
1088 Since the last argument of @code{nconc} is not itself modified, it is
1089reasonable to use a constant list, such as @code{'(4 5)}, as in the
1090above example. For the same reason, the last argument need not be a
1091list:
1092
1093@example
1094@group
1095(setq x '(1 2 3))
1096 @result{} (1 2 3)
1097@end group
1098@group
1099(nconc x 'z)
1100 @result{} (1 2 3 . z)
1101@end group
1102@group
1103x
1104 @result{} (1 2 3 . z)
1105@end group
1106@end example
1107
1108However, the other arguments (all but the last) must be lists.
1109
1110A common pitfall is to use a quoted constant list as a non-last
1111argument to @code{nconc}. If you do this, your program will change
1112each time you run it! Here is what happens:
1113
1114@smallexample
1115@group
1116(defun add-foo (x) ; @r{We want this function to add}
1117 (nconc '(foo) x)) ; @r{@code{foo} to the front of its arg.}
1118@end group
1119
1120@group
1121(symbol-function 'add-foo)
1122 @result{} (lambda (x) (nconc (quote (foo)) x))
1123@end group
1124
1125@group
1126(setq xx (add-foo '(1 2))) ; @r{It seems to work.}
1127 @result{} (foo 1 2)
1128@end group
1129@group
1130(setq xy (add-foo '(3 4))) ; @r{What happened?}
1131 @result{} (foo 1 2 3 4)
1132@end group
1133@group
1134(eq xx xy)
1135 @result{} t
1136@end group
1137
1138@group
1139(symbol-function 'add-foo)
1140 @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
1141@end group
1142@end smallexample
1143@end defun
1144
1145@defun nreverse list
1146@cindex reversing a list
1147 This function reverses the order of the elements of @var{list}.
1148Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1149the @sc{cdr}s in the cons cells forming the list. The cons cell that
1150used to be the last one in @var{list} becomes the first cons cell of the
1151value.
1152
1153 For example:
1154
1155@example
1156@group
1157(setq x '(a b c))
1158 @result{} (a b c)
1159@end group
1160@group
1161x
1162 @result{} (a b c)
1163(nreverse x)
1164 @result{} (c b a)
1165@end group
1166@group
1167;; @r{The cons cell that was first is now last.}
1168x
1169 @result{} (a)
1170@end group
1171@end example
1172
1173 To avoid confusion, we usually store the result of @code{nreverse}
1174back in the same variable which held the original list:
1175
1176@example
1177(setq x (nreverse x))
1178@end example
1179
1180 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1181presented graphically:
1182
1183@smallexample
1184@group
1185@r{Original list head:} @r{Reversed list:}
1186 ------------- ------------- ------------
1187| car | cdr | | car | cdr | | car | cdr |
1188| a | nil |<-- | b | o |<-- | c | o |
1189| | | | | | | | | | | | |
1190 ------------- | --------- | - | -------- | -
1191 | | | |
1192 ------------- ------------
1193@end group
1194@end smallexample
1195@end defun
1196
1197@defun sort list predicate
1198@cindex stable sort
1199@cindex sorting lists
1200This function sorts @var{list} stably, though destructively, and
1201returns the sorted list. It compares elements using @var{predicate}. A
1202stable sort is one in which elements with equal sort keys maintain their
1203relative order before and after the sort. Stability is important when
1204successive sorts are used to order elements according to different
1205criteria.
1206
1207The argument @var{predicate} must be a function that accepts two
1208arguments. It is called with two elements of @var{list}. To get an
1209increasing order sort, the @var{predicate} should return non-@code{nil} if the
1210first element is ``less than'' the second, or @code{nil} if not.
1211
1212The comparison function @var{predicate} must give reliable results for
1213any given pair of arguments, at least within a single call to
1214@code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
1215less than @var{b}, @var{b} must not be less than @var{a}. It must be
1216@dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1217is less than @var{c}, then @var{a} must be less than @var{c}. If you
1218use a comparison function which does not meet these requirements, the
1219result of @code{sort} is unpredictable.
1220
1221The destructive aspect of @code{sort} is that it rearranges the cons
1222cells forming @var{list} by changing @sc{cdr}s. A nondestructive sort
1223function would create new cons cells to store the elements in their
1224sorted order. If you wish to make a sorted copy without destroying the
1225original, copy it first with @code{copy-sequence} and then sort.
1226
1227Sorting does not change the @sc{car}s of the cons cells in @var{list};
1228the cons cell that originally contained the element @code{a} in
1229@var{list} still has @code{a} in its @sc{car} after sorting, but it now
1230appears in a different position in the list due to the change of
1231@sc{cdr}s. For example:
1232
1233@example
1234@group
1235(setq nums '(1 3 2 6 5 4 0))
1236 @result{} (1 3 2 6 5 4 0)
1237@end group
1238@group
1239(sort nums '<)
1240 @result{} (0 1 2 3 4 5 6)
1241@end group
1242@group
1243nums
1244 @result{} (1 2 3 4 5 6)
1245@end group
1246@end example
1247
1248@noindent
1249@strong{Warning}: Note that the list in @code{nums} no longer contains
12500; this is the same cons cell that it was before, but it is no longer
1251the first one in the list. Don't assume a variable that formerly held
1252the argument now holds the entire sorted list! Instead, save the result
1253of @code{sort} and use that. Most often we store the result back into
1254the variable that held the original list:
1255
1256@example
1257(setq nums (sort nums '<))
1258@end example
1259
1260@xref{Sorting}, for more functions that perform sorting.
1261See @code{documentation} in @ref{Accessing Documentation}, for a
1262useful example of @code{sort}.
1263@end defun
1264
1265@node Sets And Lists
1266@section Using Lists as Sets
1267@cindex lists as sets
1268@cindex sets
1269
1270 A list can represent an unordered mathematical set---simply consider a
1271value an element of a set if it appears in the list, and ignore the
1272order of the list. To form the union of two sets, use @code{append} (as
1273long as you don't mind having duplicate elements). You can remove
1274@code{equal} duplicates using @code{delete-dups}. Other useful
1275functions for sets include @code{memq} and @code{delq}, and their
1276@code{equal} versions, @code{member} and @code{delete}.
1277
1278@cindex CL note---lack @code{union}, @code{intersection}
1279@quotation
1280@b{Common Lisp note:} Common Lisp has functions @code{union} (which
bc8410af 1281avoids duplicate elements) and @code{intersection} for set operations.
4ee87740 1282Although standard GNU Emacs Lisp does not have them, the @file{cl-lib}
aec5e6f9
GM
1283library provides versions.
1284@xref{Lists as Sets,,, cl, Common Lisp Extensions}.
b8d4c8d0
GM
1285@end quotation
1286
1287@defun memq object list
1288@cindex membership in a list
1289This function tests to see whether @var{object} is a member of
1290@var{list}. If it is, @code{memq} returns a list starting with the
1291first occurrence of @var{object}. Otherwise, it returns @code{nil}.
1292The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1293compare @var{object} against the elements of the list. For example:
1294
1295@example
1296@group
1297(memq 'b '(a b c b a))
1298 @result{} (b c b a)
1299@end group
1300@group
1301(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1302 @result{} nil
1303@end group
1304@end example
1305@end defun
1306
1307@defun delq object list
1308@cindex deleting list elements
1309This function destructively removes all elements @code{eq} to
bb6b0efc
CY
1310@var{object} from @var{list}, and returns the resulting list. The
1311letter @samp{q} in @code{delq} says that it uses @code{eq} to compare
1312@var{object} against the elements of the list, like @code{memq} and
1313@code{remq}.
1314
1315Typically, when you invoke @code{delq}, you should use the return
1316value by assigning it to the variable which held the original list.
1317The reason for this is explained below.
b8d4c8d0
GM
1318@end defun
1319
bb6b0efc
CY
1320The @code{delq} function deletes elements from the front of the list
1321by simply advancing down the list, and returning a sublist that starts
1322after those elements. For example:
b8d4c8d0
GM
1323
1324@example
1325@group
1326(delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1327@end group
1328@end example
1329
bb6b0efc 1330@noindent
b8d4c8d0
GM
1331When an element to be deleted appears in the middle of the list,
1332removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1333
1334@example
1335@group
1336(setq sample-list '(a b c (4)))
1337 @result{} (a b c (4))
1338@end group
1339@group
1340(delq 'a sample-list)
1341 @result{} (b c (4))
1342@end group
1343@group
1344sample-list
1345 @result{} (a b c (4))
1346@end group
1347@group
1348(delq 'c sample-list)
1349 @result{} (a b (4))
1350@end group
1351@group
1352sample-list
1353 @result{} (a b (4))
1354@end group
1355@end example
1356
1357Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1358splice out the third element, but @code{(delq 'a sample-list)} does not
1359splice anything---it just returns a shorter list. Don't assume that a
1360variable which formerly held the argument @var{list} now has fewer
1361elements, or that it still holds the original list! Instead, save the
1362result of @code{delq} and use that. Most often we store the result back
1363into the variable that held the original list:
1364
1365@example
1366(setq flowers (delq 'rose flowers))
1367@end example
1368
1369In the following example, the @code{(4)} that @code{delq} attempts to match
1370and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1371
1372@example
1373@group
1374(delq '(4) sample-list)
1375 @result{} (a c (4))
1376@end group
049bcbcb 1377@end example
b8d4c8d0
GM
1378
1379If you want to delete elements that are @code{equal} to a given value,
1380use @code{delete} (see below).
b8d4c8d0
GM
1381
1382@defun remq object list
1383This function returns a copy of @var{list}, with all elements removed
1384which are @code{eq} to @var{object}. The letter @samp{q} in @code{remq}
1385says that it uses @code{eq} to compare @var{object} against the elements
1386of @code{list}.
1387
1388@example
1389@group
1390(setq sample-list '(a b c a b c))
1391 @result{} (a b c a b c)
1392@end group
1393@group
1394(remq 'a sample-list)
1395 @result{} (b c b c)
1396@end group
1397@group
1398sample-list
1399 @result{} (a b c a b c)
1400@end group
1401@end example
1402@end defun
1403
1404@defun memql object list
1405The function @code{memql} tests to see whether @var{object} is a member
1406of @var{list}, comparing members with @var{object} using @code{eql},
1407so floating point elements are compared by value.
1408If @var{object} is a member, @code{memql} returns a list starting with
1409its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1410
1411Compare this with @code{memq}:
1412
1413@example
1414@group
1415(memql 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are @code{eql}.}
1416 @result{} (1.2 1.3)
1417@end group
1418@group
1419(memq 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are not @code{eq}.}
1420 @result{} nil
1421@end group
1422@end example
1423@end defun
1424
1425The following three functions are like @code{memq}, @code{delq} and
1426@code{remq}, but use @code{equal} rather than @code{eq} to compare
1427elements. @xref{Equality Predicates}.
1428
1429@defun member object list
1430The function @code{member} tests to see whether @var{object} is a member
1431of @var{list}, comparing members with @var{object} using @code{equal}.
1432If @var{object} is a member, @code{member} returns a list starting with
1433its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1434
1435Compare this with @code{memq}:
1436
1437@example
1438@group
1439(member '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1440 @result{} ((2))
1441@end group
1442@group
1443(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1444 @result{} nil
1445@end group
1446@group
1447;; @r{Two strings with the same contents are @code{equal}.}
1448(member "foo" '("foo" "bar"))
1449 @result{} ("foo" "bar")
1450@end group
1451@end example
1452@end defun
1453
1454@defun delete object sequence
bb6b0efc
CY
1455This function removes all elements @code{equal} to @var{object} from
1456@var{sequence}, and returns the resulting sequence.
1457
1458If @var{sequence} is a list, @code{delete} is to @code{delq} as
1459@code{member} is to @code{memq}: it uses @code{equal} to compare
1460elements with @var{object}, like @code{member}; when it finds an
1461element that matches, it cuts the element out just as @code{delq}
1462would. As with @code{delq}, you should typically use the return value
1463by assigning it to the variable which held the original list.
b8d4c8d0
GM
1464
1465If @code{sequence} is a vector or string, @code{delete} returns a copy
1466of @code{sequence} with all elements @code{equal} to @code{object}
1467removed.
1468
1469For example:
1470
1471@example
1472@group
1473(setq l '((2) (1) (2)))
1474(delete '(2) l)
1475 @result{} ((1))
1476l
1477 @result{} ((2) (1))
1478;; @r{If you want to change @code{l} reliably,}
bf1af6c7 1479;; @r{write @code{(setq l (delete '(2) l))}.}
b8d4c8d0
GM
1480@end group
1481@group
1482(setq l '((2) (1) (2)))
1483(delete '(1) l)
1484 @result{} ((2) (2))
1485l
1486 @result{} ((2) (2))
1487;; @r{In this case, it makes no difference whether you set @code{l},}
1488;; @r{but you should do so for the sake of the other case.}
1489@end group
1490@group
1491(delete '(2) [(2) (1) (2)])
1492 @result{} [(1)]
1493@end group
1494@end example
1495@end defun
1496
1497@defun remove object sequence
1498This function is the non-destructive counterpart of @code{delete}. It
1499returns a copy of @code{sequence}, a list, vector, or string, with
1500elements @code{equal} to @code{object} removed. For example:
1501
1502@example
1503@group
1504(remove '(2) '((2) (1) (2)))
1505 @result{} ((1))
1506@end group
1507@group
1508(remove '(2) [(2) (1) (2)])
1509 @result{} [(1)]
1510@end group
1511@end example
1512@end defun
1513
1514@quotation
1515@b{Common Lisp note:} The functions @code{member}, @code{delete} and
1516@code{remove} in GNU Emacs Lisp are derived from Maclisp, not Common
1517Lisp. The Common Lisp versions do not use @code{equal} to compare
1518elements.
1519@end quotation
1520
1521@defun member-ignore-case object list
1522This function is like @code{member}, except that @var{object} should
1523be a string and that it ignores differences in letter-case and text
1524representation: upper-case and lower-case letters are treated as
1525equal, and unibyte strings are converted to multibyte prior to
1526comparison.
1527@end defun
1528
1529@defun delete-dups list
1530This function destructively removes all @code{equal} duplicates from
1531@var{list}, stores the result in @var{list} and returns it. Of
1532several @code{equal} occurrences of an element in @var{list},
1533@code{delete-dups} keeps the first one.
1534@end defun
1535
1536 See also the function @code{add-to-list}, in @ref{List Variables},
1537for a way to add an element to a list stored in a variable and used as a
1538set.
1539
1540@node Association Lists
1541@section Association Lists
1542@cindex association list
1543@cindex alist
1544
1545 An @dfn{association list}, or @dfn{alist} for short, records a mapping
1546from keys to values. It is a list of cons cells called
1547@dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
1548@sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1549is not related to the term ``key sequence''; it means a value used to
1550look up an item in a table. In this case, the table is the alist, and
1551the alist associations are the items.}
1552
1553 Here is an example of an alist. The key @code{pine} is associated with
1554the value @code{cones}; the key @code{oak} is associated with
1555@code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1556
1557@example
1558@group
1559((pine . cones)
1560 (oak . acorns)
1561 (maple . seeds))
1562@end group
1563@end example
1564
1565 Both the values and the keys in an alist may be any Lisp objects.
1566For example, in the following alist, the symbol @code{a} is
1567associated with the number @code{1}, and the string @code{"b"} is
1568associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1569the alist element:
1570
1571@example
1572((a . 1) ("b" 2 3))
1573@end example
1574
1575 Sometimes it is better to design an alist to store the associated
1576value in the @sc{car} of the @sc{cdr} of the element. Here is an
1577example of such an alist:
1578
1579@example
1580((rose red) (lily white) (buttercup yellow))
1581@end example
1582
1583@noindent
1584Here we regard @code{red} as the value associated with @code{rose}. One
1585advantage of this kind of alist is that you can store other related
1586information---even a list of other items---in the @sc{cdr} of the
1587@sc{cdr}. One disadvantage is that you cannot use @code{rassq} (see
1588below) to find the element containing a given value. When neither of
1589these considerations is important, the choice is a matter of taste, as
1590long as you are consistent about it for any given alist.
1591
1592 The same alist shown above could be regarded as having the
1593associated value in the @sc{cdr} of the element; the value associated
1594with @code{rose} would be the list @code{(red)}.
1595
1596 Association lists are often used to record information that you might
1597otherwise keep on a stack, since new associations may be added easily to
1598the front of the list. When searching an association list for an
1599association with a given key, the first one found is returned, if there
1600is more than one.
1601
1602 In Emacs Lisp, it is @emph{not} an error if an element of an
1603association list is not a cons cell. The alist search functions simply
1604ignore such elements. Many other versions of Lisp signal errors in such
1605cases.
1606
1607 Note that property lists are similar to association lists in several
1608respects. A property list behaves like an association list in which
1609each key can occur only once. @xref{Property Lists}, for a comparison
1610of property lists and association lists.
1611
1612@defun assoc key alist
1613This function returns the first association for @var{key} in
1614@var{alist}, comparing @var{key} against the alist elements using
1615@code{equal} (@pxref{Equality Predicates}). It returns @code{nil} if no
1616association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1617For example:
1618
1619@smallexample
1620(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1621 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1622(assoc 'oak trees)
1623 @result{} (oak . acorns)
1624(cdr (assoc 'oak trees))
1625 @result{} acorns
1626(assoc 'birch trees)
1627 @result{} nil
1628@end smallexample
1629
1630Here is another example, in which the keys and values are not symbols:
1631
1632@smallexample
1633(setq needles-per-cluster
1634 '((2 "Austrian Pine" "Red Pine")
1635 (3 "Pitch Pine")
1636 (5 "White Pine")))
1637
1638(cdr (assoc 3 needles-per-cluster))
1639 @result{} ("Pitch Pine")
1640(cdr (assoc 2 needles-per-cluster))
1641 @result{} ("Austrian Pine" "Red Pine")
1642@end smallexample
1643@end defun
1644
1645 The function @code{assoc-string} is much like @code{assoc} except
1646that it ignores certain differences between strings. @xref{Text
1647Comparison}.
1648
1649@defun rassoc value alist
1650This function returns the first association with value @var{value} in
1651@var{alist}. It returns @code{nil} if no association in @var{alist} has
1652a @sc{cdr} @code{equal} to @var{value}.
1653
1654@code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1655each @var{alist} association instead of the @sc{car}. You can think of
16152b76 1656this as ``reverse @code{assoc}'', finding the key for a given value.
b8d4c8d0
GM
1657@end defun
1658
1659@defun assq key alist
1660This function is like @code{assoc} in that it returns the first
1661association for @var{key} in @var{alist}, but it makes the comparison
1662using @code{eq} instead of @code{equal}. @code{assq} returns @code{nil}
1663if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1664This function is used more often than @code{assoc}, since @code{eq} is
1665faster than @code{equal} and most alists use symbols as keys.
1666@xref{Equality Predicates}.
1667
1668@smallexample
1669(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1670 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1671(assq 'pine trees)
1672 @result{} (pine . cones)
1673@end smallexample
1674
1675On the other hand, @code{assq} is not usually useful in alists where the
1676keys may not be symbols:
1677
1678@smallexample
1679(setq leaves
1680 '(("simple leaves" . oak)
1681 ("compound leaves" . horsechestnut)))
1682
1683(assq "simple leaves" leaves)
1684 @result{} nil
1685(assoc "simple leaves" leaves)
1686 @result{} ("simple leaves" . oak)
1687@end smallexample
1688@end defun
1689
1690@defun rassq value alist
1691This function returns the first association with value @var{value} in
1692@var{alist}. It returns @code{nil} if no association in @var{alist} has
1693a @sc{cdr} @code{eq} to @var{value}.
1694
1695@code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1696each @var{alist} association instead of the @sc{car}. You can think of
16152b76 1697this as ``reverse @code{assq}'', finding the key for a given value.
b8d4c8d0
GM
1698
1699For example:
1700
1701@smallexample
1702(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1703
1704(rassq 'acorns trees)
1705 @result{} (oak . acorns)
1706(rassq 'spores trees)
1707 @result{} nil
1708@end smallexample
1709
1710@code{rassq} cannot search for a value stored in the @sc{car}
1711of the @sc{cdr} of an element:
1712
1713@smallexample
1714(setq colors '((rose red) (lily white) (buttercup yellow)))
1715
1716(rassq 'white colors)
1717 @result{} nil
1718@end smallexample
1719
1720In this case, the @sc{cdr} of the association @code{(lily white)} is not
1721the symbol @code{white}, but rather the list @code{(white)}. This
1722becomes clearer if the association is written in dotted pair notation:
1723
1724@smallexample
1725(lily white) @equiv{} (lily . (white))
1726@end smallexample
1727@end defun
1728
1729@defun assoc-default key alist &optional test default
1730This function searches @var{alist} for a match for @var{key}. For each
1731element of @var{alist}, it compares the element (if it is an atom) or
1732the element's @sc{car} (if it is a cons) against @var{key}, by calling
1733@var{test} with two arguments: the element or its @sc{car}, and
1734@var{key}. The arguments are passed in that order so that you can get
1735useful results using @code{string-match} with an alist that contains
1736regular expressions (@pxref{Regexp Search}). If @var{test} is omitted
1737or @code{nil}, @code{equal} is used for comparison.
1738
1739If an alist element matches @var{key} by this criterion,
1740then @code{assoc-default} returns a value based on this element.
1741If the element is a cons, then the value is the element's @sc{cdr}.
1742Otherwise, the return value is @var{default}.
1743
1744If no alist element matches @var{key}, @code{assoc-default} returns
1745@code{nil}.
1746@end defun
1747
1748@defun copy-alist alist
1749@cindex copying alists
1750This function returns a two-level deep copy of @var{alist}: it creates a
1751new copy of each association, so that you can alter the associations of
1752the new alist without changing the old one.
1753
1754@smallexample
1755@group
1756(setq needles-per-cluster
1757 '((2 . ("Austrian Pine" "Red Pine"))
1758 (3 . ("Pitch Pine"))
1759@end group
1760 (5 . ("White Pine"))))
1761@result{}
1762((2 "Austrian Pine" "Red Pine")
1763 (3 "Pitch Pine")
1764 (5 "White Pine"))
1765
1766(setq copy (copy-alist needles-per-cluster))
1767@result{}
1768((2 "Austrian Pine" "Red Pine")
1769 (3 "Pitch Pine")
1770 (5 "White Pine"))
1771
1772(eq needles-per-cluster copy)
1773 @result{} nil
1774(equal needles-per-cluster copy)
1775 @result{} t
1776(eq (car needles-per-cluster) (car copy))
1777 @result{} nil
1778(cdr (car (cdr needles-per-cluster)))
1779 @result{} ("Pitch Pine")
1780@group
1781(eq (cdr (car (cdr needles-per-cluster)))
1782 (cdr (car (cdr copy))))
1783 @result{} t
1784@end group
1785@end smallexample
1786
1787 This example shows how @code{copy-alist} makes it possible to change
1788the associations of one copy without affecting the other:
1789
1790@smallexample
1791@group
1792(setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1793(cdr (assq 3 needles-per-cluster))
1794 @result{} ("Pitch Pine")
1795@end group
1796@end smallexample
1797@end defun
1798
1799@defun assq-delete-all key alist
1800This function deletes from @var{alist} all the elements whose @sc{car}
1801is @code{eq} to @var{key}, much as if you used @code{delq} to delete
1802each such element one by one. It returns the shortened alist, and
1803often modifies the original list structure of @var{alist}. For
1804correct results, use the return value of @code{assq-delete-all} rather
1805than looking at the saved value of @var{alist}.
1806
1807@example
1808(setq alist '((foo 1) (bar 2) (foo 3) (lose 4)))
1809 @result{} ((foo 1) (bar 2) (foo 3) (lose 4))
1810(assq-delete-all 'foo alist)
1811 @result{} ((bar 2) (lose 4))
1812alist
1813 @result{} ((foo 1) (bar 2) (lose 4))
1814@end example
1815@end defun
1816
1817@defun rassq-delete-all value alist
1818This function deletes from @var{alist} all the elements whose @sc{cdr}
1819is @code{eq} to @var{value}. It returns the shortened alist, and
1820often modifies the original list structure of @var{alist}.
1821@code{rassq-delete-all} is like @code{assq-delete-all} except that it
1822compares the @sc{cdr} of each @var{alist} association instead of the
1823@sc{car}.
1824@end defun
f02f19bd
CY
1825
1826@node Property Lists
1827@section Property Lists
1828@cindex property list
1829@cindex plist
1830
1831 A @dfn{property list} (@dfn{plist} for short) is a list of paired
1832elements. Each of the pairs associates a property name (usually a
1833symbol) with a property or value. Here is an example of a property
1834list:
1835
1836@example
1837(pine cones numbers (1 2 3) color "blue")
1838@end example
1839
1840@noindent
1841This property list associates @code{pine} with @code{cones},
1842@code{numbers} with @code{(1 2 3)}, and @code{color} with
1843@code{"blue"}. The property names and values can be any Lisp objects,
1844but the names are usually symbols (as they are in this example).
1845
1846 Property lists are used in several contexts. For instance, the
1847function @code{put-text-property} takes an argument which is a
1848property list, specifying text properties and associated values which
1849are to be applied to text in a string or buffer. @xref{Text
1850Properties}.
1851
1852 Another prominent use of property lists is for storing symbol
1853properties. Every symbol possesses a list of properties, used to
1854record miscellaneous information about the symbol; these properties
1855are stored in the form of a property list. @xref{Symbol Properties}.
1856
1857@menu
1858* Plists and Alists:: Comparison of the advantages of property
1859 lists and association lists.
1860* Plist Access:: Accessing property lists stored elsewhere.
1861@end menu
1862
1863@node Plists and Alists
1864@subsection Property Lists and Association Lists
1865@cindex plist vs. alist
1866@cindex alist vs. plist
1867
1868@cindex property lists vs association lists
1869 Association lists (@pxref{Association Lists}) are very similar to
1870property lists. In contrast to association lists, the order of the
1871pairs in the property list is not significant, since the property
1872names must be distinct.
1873
1874 Property lists are better than association lists for attaching
1875information to various Lisp function names or variables. If your
1876program keeps all such information in one association list, it will
1877typically need to search that entire list each time it checks for an
1878association for a particular Lisp function name or variable, which
1879could be slow. By contrast, if you keep the same information in the
1880property lists of the function names or variables themselves, each
1881search will scan only the length of one property list, which is
1882usually short. This is why the documentation for a variable is
1883recorded in a property named @code{variable-documentation}. The byte
1884compiler likewise uses properties to record those functions needing
1885special treatment.
1886
1887 However, association lists have their own advantages. Depending on
1888your application, it may be faster to add an association to the front of
1889an association list than to update a property. All properties for a
1890symbol are stored in the same property list, so there is a possibility
1891of a conflict between different uses of a property name. (For this
1892reason, it is a good idea to choose property names that are probably
1893unique, such as by beginning the property name with the program's usual
1894name-prefix for variables and functions.) An association list may be
1895used like a stack where associations are pushed on the front of the list
1896and later discarded; this is not possible with a property list.
1897
1898@node Plist Access
1899@subsection Property Lists Outside Symbols
1900
1901 The following functions can be used to manipulate property lists.
1902They all compare property names using @code{eq}.
1903
1904@defun plist-get plist property
1905This returns the value of the @var{property} property stored in the
1906property list @var{plist}. It accepts a malformed @var{plist}
1907argument. If @var{property} is not found in the @var{plist}, it
1908returns @code{nil}. For example,
1909
1910@example
1911(plist-get '(foo 4) 'foo)
1912 @result{} 4
1913(plist-get '(foo 4 bad) 'foo)
1914 @result{} 4
1915(plist-get '(foo 4 bad) 'bad)
1916 @result{} nil
1917(plist-get '(foo 4 bad) 'bar)
1918 @result{} nil
1919@end example
1920@end defun
1921
1922@defun plist-put plist property value
1923This stores @var{value} as the value of the @var{property} property in
1924the property list @var{plist}. It may modify @var{plist} destructively,
1925or it may construct a new list structure without altering the old. The
1926function returns the modified property list, so you can store that back
1927in the place where you got @var{plist}. For example,
1928
1929@example
1930(setq my-plist '(bar t foo 4))
1931 @result{} (bar t foo 4)
1932(setq my-plist (plist-put my-plist 'foo 69))
1933 @result{} (bar t foo 69)
1934(setq my-plist (plist-put my-plist 'quux '(a)))
1935 @result{} (bar t foo 69 quux (a))
1936@end example
1937@end defun
1938
f02f19bd
CY
1939@defun lax-plist-get plist property
1940Like @code{plist-get} except that it compares properties
1941using @code{equal} instead of @code{eq}.
1942@end defun
1943
1944@defun lax-plist-put plist property value
1945Like @code{plist-put} except that it compares properties
1946using @code{equal} instead of @code{eq}.
1947@end defun
1948
1949@defun plist-member plist property
1950This returns non-@code{nil} if @var{plist} contains the given
1951@var{property}. Unlike @code{plist-get}, this allows you to distinguish
1952between a missing property and a property with the value @code{nil}.
1953The value is actually the tail of @var{plist} whose @code{car} is
1954@var{property}.
1955@end defun