Small doc updates for generalized variables
[bpt/emacs.git] / doc / lispref / lists.texi
CommitLineData
b8d4c8d0
GM
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
1e103a7c 3@c Copyright (C) 1990-1995, 1998-1999, 2001-2012 Free Software Foundation, Inc.
b8d4c8d0 4@c See the file elisp.texi for copying conditions.
ecc6530d 5@node Lists
b8d4c8d0
GM
6@chapter Lists
7@cindex lists
8@cindex element (of list)
9
10 A @dfn{list} represents a sequence of zero or more elements (which may
11be any Lisp objects). The important difference between lists and
12vectors is that two or more lists can share part of their structure; in
13addition, you can insert or delete elements in a list without copying
14the whole list.
15
16@menu
17* Cons Cells:: How lists are made out of cons cells.
18* List-related Predicates:: Is this object a list? Comparing two lists.
19* List Elements:: Extracting the pieces of a list.
20* Building Lists:: Creating list structure.
21* List Variables:: Modifying lists stored in variables.
22* Modifying Lists:: Storing new pieces into an existing list.
23* Sets And Lists:: A list can represent a finite mathematical set.
24* Association Lists:: A list can represent a finite relation or mapping.
b8d4c8d0
GM
25@end menu
26
27@node Cons Cells
28@section Lists and Cons Cells
29@cindex lists and cons cells
30
31 Lists in Lisp are not a primitive data type; they are built up from
31cbea1d
CY
32@dfn{cons cells} (@pxref{Cons Cell Type}). A cons cell is a data
33object that represents an ordered pair. That is, it has two slots,
34and each slot @dfn{holds}, or @dfn{refers to}, some Lisp object. One
35slot is known as the @sc{car}, and the other is known as the @sc{cdr}.
36(These names are traditional; see @ref{Cons Cell Type}.) @sc{cdr} is
16152b76 37pronounced ``could-er''.
b8d4c8d0
GM
38
39 We say that ``the @sc{car} of this cons cell is'' whatever object
40its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
41
16152b76 42 A list is a series of cons cells ``chained together'', so that each
31cbea1d
CY
43cell refers to the next one. There is one cons cell for each element
44of the list. By convention, the @sc{car}s of the cons cells hold the
45elements of the list, and the @sc{cdr}s are used to chain the list
46(this asymmetry between @sc{car} and @sc{cdr} is entirely a matter of
47convention; at the level of cons cells, the @sc{car} and @sc{cdr}
48slots have similar properties). Hence, the @sc{cdr} slot of each cons
49cell in a list refers to the following cons cell.
b8d4c8d0
GM
50
51@cindex true list
31cbea1d
CY
52 Also by convention, the @sc{cdr} of the last cons cell in a list is
53@code{nil}. We call such a @code{nil}-terminated structure a
54@dfn{true list}. In Emacs Lisp, the symbol @code{nil} is both a
55symbol and a list with no elements. For convenience, the symbol
b8d4c8d0 56@code{nil} is considered to have @code{nil} as its @sc{cdr} (and also
31cbea1d
CY
57as its @sc{car}).
58
59 Hence, the @sc{cdr} of a true list is always a true list. The
60@sc{cdr} of a nonempty true list is a true list containing all the
61elements except the first.
b8d4c8d0
GM
62
63@cindex dotted list
64@cindex circular list
31cbea1d
CY
65 If the @sc{cdr} of a list's last cons cell is some value other than
66@code{nil}, we call the structure a @dfn{dotted list}, since its
67printed representation would use dotted pair notation (@pxref{Dotted
68Pair Notation}). There is one other possibility: some cons cell's
69@sc{cdr} could point to one of the previous cons cells in the list.
70We call that structure a @dfn{circular list}.
b8d4c8d0
GM
71
72 For some purposes, it does not matter whether a list is true,
31cbea1d 73circular or dotted. If a program doesn't look far enough down the
b8d4c8d0
GM
74list to see the @sc{cdr} of the final cons cell, it won't care.
75However, some functions that operate on lists demand true lists and
76signal errors if given a dotted list. Most functions that try to find
77the end of a list enter infinite loops if given a circular list.
78
79@cindex list structure
31cbea1d
CY
80 Because most cons cells are used as part of lists, we refer to any
81structure made out of cons cells as a @dfn{list structure}.
b8d4c8d0
GM
82
83@node List-related Predicates
84@section Predicates on Lists
85
86 The following predicates test whether a Lisp object is an atom,
87whether it is a cons cell or is a list, or whether it is the
88distinguished object @code{nil}. (Many of these predicates can be
89defined in terms of the others, but they are used so often that it is
eceeb5fc 90worth having them.)
b8d4c8d0
GM
91
92@defun consp object
93This function returns @code{t} if @var{object} is a cons cell, @code{nil}
94otherwise. @code{nil} is not a cons cell, although it @emph{is} a list.
95@end defun
96
97@defun atom object
98This function returns @code{t} if @var{object} is an atom, @code{nil}
99otherwise. All objects except cons cells are atoms. The symbol
100@code{nil} is an atom and is also a list; it is the only Lisp object
101that is both.
102
103@example
104(atom @var{object}) @equiv{} (not (consp @var{object}))
105@end example
106@end defun
107
108@defun listp object
109This function returns @code{t} if @var{object} is a cons cell or
110@code{nil}. Otherwise, it returns @code{nil}.
111
112@example
113@group
114(listp '(1))
115 @result{} t
116@end group
117@group
118(listp '())
119 @result{} t
120@end group
121@end example
122@end defun
123
124@defun nlistp object
125This function is the opposite of @code{listp}: it returns @code{t} if
126@var{object} is not a list. Otherwise, it returns @code{nil}.
127
128@example
129(listp @var{object}) @equiv{} (not (nlistp @var{object}))
130@end example
131@end defun
132
133@defun null object
134This function returns @code{t} if @var{object} is @code{nil}, and
135returns @code{nil} otherwise. This function is identical to @code{not},
136but as a matter of clarity we use @code{null} when @var{object} is
137considered a list and @code{not} when it is considered a truth value
138(see @code{not} in @ref{Combining Conditions}).
139
140@example
141@group
142(null '(1))
143 @result{} nil
144@end group
145@group
146(null '())
147 @result{} t
148@end group
149@end example
150@end defun
151
152
153@node List Elements
154@section Accessing Elements of Lists
155@cindex list elements
156
157@defun car cons-cell
158This function returns the value referred to by the first slot of the
b6a5263f
CY
159cons cell @var{cons-cell}. In other words, it returns the @sc{car} of
160@var{cons-cell}.
b8d4c8d0 161
b6a5263f
CY
162As a special case, if @var{cons-cell} is @code{nil}, this function
163returns @code{nil}. Therefore, any list is a valid argument. An
164error is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
165
166@example
167@group
168(car '(a b c))
169 @result{} a
170@end group
171@group
172(car '())
173 @result{} nil
174@end group
175@end example
176@end defun
177
178@defun cdr cons-cell
b6a5263f
CY
179This function returns the value referred to by the second slot of the
180cons cell @var{cons-cell}. In other words, it returns the @sc{cdr} of
181@var{cons-cell}.
182
183As a special case, if @var{cons-cell} is @code{nil}, this function
184returns @code{nil}; therefore, any list is a valid argument. An error
185is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
186
187@example
188@group
189(cdr '(a b c))
190 @result{} (b c)
191@end group
192@group
193(cdr '())
194 @result{} nil
195@end group
196@end example
197@end defun
198
199@defun car-safe object
200This function lets you take the @sc{car} of a cons cell while avoiding
201errors for other data types. It returns the @sc{car} of @var{object} if
202@var{object} is a cons cell, @code{nil} otherwise. This is in contrast
203to @code{car}, which signals an error if @var{object} is not a list.
204
205@example
206@group
207(car-safe @var{object})
208@equiv{}
209(let ((x @var{object}))
210 (if (consp x)
211 (car x)
212 nil))
213@end group
214@end example
215@end defun
216
217@defun cdr-safe object
218This function lets you take the @sc{cdr} of a cons cell while
219avoiding errors for other data types. It returns the @sc{cdr} of
220@var{object} if @var{object} is a cons cell, @code{nil} otherwise.
221This is in contrast to @code{cdr}, which signals an error if
222@var{object} is not a list.
223
224@example
225@group
226(cdr-safe @var{object})
227@equiv{}
228(let ((x @var{object}))
229 (if (consp x)
230 (cdr x)
231 nil))
232@end group
233@end example
234@end defun
235
236@defmac pop listname
237This macro is a way of examining the @sc{car} of a list,
238and taking it off the list, all at once.
5887564d
GM
239@c FIXME I don't think is a particularly good way to do it,
240@c but generalized variables have not been introduced yet.
241(In fact, this macro can act on generalized variables, not just lists.
242@xref{Generalized Variables}.)
b8d4c8d0
GM
243
244It operates on the list which is stored in the symbol @var{listname}.
245It removes this element from the list by setting @var{listname}
246to the @sc{cdr} of its old value---but it also returns the @sc{car}
247of that list, which is the element being removed.
248
249@example
250x
251 @result{} (a b c)
252(pop x)
253 @result{} a
254x
255 @result{} (b c)
256@end example
31cbea1d
CY
257
258@noindent
5b6887ad 259For the @code{push} macro, which adds an element to a list,
31cbea1d 260@xref{List Variables}.
b8d4c8d0
GM
261@end defmac
262
263@defun nth n list
264@anchor{Definition of nth}
265This function returns the @var{n}th element of @var{list}. Elements
266are numbered starting with zero, so the @sc{car} of @var{list} is
267element number zero. If the length of @var{list} is @var{n} or less,
268the value is @code{nil}.
269
270If @var{n} is negative, @code{nth} returns the first element of
271@var{list}.
272
273@example
274@group
275(nth 2 '(1 2 3 4))
276 @result{} 3
277@end group
278@group
279(nth 10 '(1 2 3 4))
280 @result{} nil
281@end group
282@group
283(nth -3 '(1 2 3 4))
284 @result{} 1
285
286(nth n x) @equiv{} (car (nthcdr n x))
287@end group
288@end example
289
290The function @code{elt} is similar, but applies to any kind of sequence.
291For historical reasons, it takes its arguments in the opposite order.
292@xref{Sequence Functions}.
293@end defun
294
295@defun nthcdr n list
296This function returns the @var{n}th @sc{cdr} of @var{list}. In other
297words, it skips past the first @var{n} links of @var{list} and returns
298what follows.
299
300If @var{n} is zero or negative, @code{nthcdr} returns all of
301@var{list}. If the length of @var{list} is @var{n} or less,
302@code{nthcdr} returns @code{nil}.
303
304@example
305@group
306(nthcdr 1 '(1 2 3 4))
307 @result{} (2 3 4)
308@end group
309@group
310(nthcdr 10 '(1 2 3 4))
311 @result{} nil
312@end group
313@group
314(nthcdr -3 '(1 2 3 4))
315 @result{} (1 2 3 4)
316@end group
317@end example
318@end defun
319
320@defun last list &optional n
321This function returns the last link of @var{list}. The @code{car} of
322this link is the list's last element. If @var{list} is null,
323@code{nil} is returned. If @var{n} is non-@code{nil}, the
324@var{n}th-to-last link is returned instead, or the whole of @var{list}
325if @var{n} is bigger than @var{list}'s length.
326@end defun
327
328@defun safe-length list
329@anchor{Definition of safe-length}
330This function returns the length of @var{list}, with no risk of either
331an error or an infinite loop. It generally returns the number of
332distinct cons cells in the list. However, for circular lists,
333the value is just an upper bound; it is often too large.
334
335If @var{list} is not @code{nil} or a cons cell, @code{safe-length}
336returns 0.
337@end defun
338
339 The most common way to compute the length of a list, when you are not
340worried that it may be circular, is with @code{length}. @xref{Sequence
341Functions}.
342
343@defun caar cons-cell
344This is the same as @code{(car (car @var{cons-cell}))}.
345@end defun
346
347@defun cadr cons-cell
348This is the same as @code{(car (cdr @var{cons-cell}))}
349or @code{(nth 1 @var{cons-cell})}.
350@end defun
351
352@defun cdar cons-cell
353This is the same as @code{(cdr (car @var{cons-cell}))}.
354@end defun
355
356@defun cddr cons-cell
357This is the same as @code{(cdr (cdr @var{cons-cell}))}
358or @code{(nthcdr 2 @var{cons-cell})}.
359@end defun
360
361@defun butlast x &optional n
362This function returns the list @var{x} with the last element,
363or the last @var{n} elements, removed. If @var{n} is greater
364than zero it makes a copy of the list so as not to damage the
365original list. In general, @code{(append (butlast @var{x} @var{n})
366(last @var{x} @var{n}))} will return a list equal to @var{x}.
367@end defun
368
369@defun nbutlast x &optional n
370This is a version of @code{butlast} that works by destructively
371modifying the @code{cdr} of the appropriate element, rather than
372making a copy of the list.
373@end defun
374
375@node Building Lists
b8d4c8d0
GM
376@section Building Cons Cells and Lists
377@cindex cons cells
378@cindex building lists
379
380 Many functions build lists, as lists reside at the very heart of Lisp.
381@code{cons} is the fundamental list-building function; however, it is
382interesting to note that @code{list} is used more times in the source
383code for Emacs than @code{cons}.
384
385@defun cons object1 object2
386This function is the most basic function for building new list
387structure. It creates a new cons cell, making @var{object1} the
388@sc{car}, and @var{object2} the @sc{cdr}. It then returns the new
389cons cell. The arguments @var{object1} and @var{object2} may be any
390Lisp objects, but most often @var{object2} is a list.
391
392@example
393@group
394(cons 1 '(2))
395 @result{} (1 2)
396@end group
397@group
398(cons 1 '())
399 @result{} (1)
400@end group
401@group
402(cons 1 2)
403 @result{} (1 . 2)
404@end group
405@end example
406
407@cindex consing
408@code{cons} is often used to add a single element to the front of a
409list. This is called @dfn{consing the element onto the list}.
410@footnote{There is no strictly equivalent way to add an element to
411the end of a list. You can use @code{(append @var{listname} (list
412@var{newelt}))}, which creates a whole new list by copying @var{listname}
413and adding @var{newelt} to its end. Or you can use @code{(nconc
414@var{listname} (list @var{newelt}))}, which modifies @var{listname}
415by following all the @sc{cdr}s and then replacing the terminating
416@code{nil}. Compare this to adding an element to the beginning of a
417list with @code{cons}, which neither copies nor modifies the list.}
418For example:
419
420@example
421(setq list (cons newelt list))
422@end example
423
424Note that there is no conflict between the variable named @code{list}
425used in this example and the function named @code{list} described below;
426any symbol can serve both purposes.
427@end defun
428
429@defun list &rest objects
430This function creates a list with @var{objects} as its elements. The
431resulting list is always @code{nil}-terminated. If no @var{objects}
432are given, the empty list is returned.
433
434@example
435@group
436(list 1 2 3 4 5)
437 @result{} (1 2 3 4 5)
438@end group
439@group
440(list 1 2 '(3 4 5) 'foo)
441 @result{} (1 2 (3 4 5) foo)
442@end group
443@group
444(list)
445 @result{} nil
446@end group
447@end example
448@end defun
449
450@defun make-list length object
451This function creates a list of @var{length} elements, in which each
452element is @var{object}. Compare @code{make-list} with
453@code{make-string} (@pxref{Creating Strings}).
454
455@example
456@group
457(make-list 3 'pigs)
458 @result{} (pigs pigs pigs)
459@end group
460@group
461(make-list 0 'pigs)
462 @result{} nil
463@end group
464@group
1f403cb9 465(setq l (make-list 3 '(a b)))
b8d4c8d0
GM
466 @result{} ((a b) (a b) (a b))
467(eq (car l) (cadr l))
468 @result{} t
469@end group
470@end example
471@end defun
472
473@defun append &rest sequences
474@cindex copying lists
475This function returns a list containing all the elements of
476@var{sequences}. The @var{sequences} may be lists, vectors,
477bool-vectors, or strings, but the last one should usually be a list.
478All arguments except the last one are copied, so none of the arguments
479is altered. (See @code{nconc} in @ref{Rearrangement}, for a way to join
480lists with no copying.)
481
482More generally, the final argument to @code{append} may be any Lisp
483object. The final argument is not copied or converted; it becomes the
484@sc{cdr} of the last cons cell in the new list. If the final argument
485is itself a list, then its elements become in effect elements of the
486result list. If the final element is not a list, the result is a
487dotted list since its final @sc{cdr} is not @code{nil} as required
488in a true list.
b8d4c8d0
GM
489@end defun
490
491 Here is an example of using @code{append}:
492
493@example
494@group
495(setq trees '(pine oak))
496 @result{} (pine oak)
497(setq more-trees (append '(maple birch) trees))
498 @result{} (maple birch pine oak)
499@end group
500
501@group
502trees
503 @result{} (pine oak)
504more-trees
505 @result{} (maple birch pine oak)
506@end group
507@group
508(eq trees (cdr (cdr more-trees)))
509 @result{} t
510@end group
511@end example
512
513 You can see how @code{append} works by looking at a box diagram. The
514variable @code{trees} is set to the list @code{(pine oak)} and then the
515variable @code{more-trees} is set to the list @code{(maple birch pine
516oak)}. However, the variable @code{trees} continues to refer to the
517original list:
518
519@smallexample
520@group
521more-trees trees
522| |
523| --- --- --- --- -> --- --- --- ---
524 --> | | |--> | | |--> | | |--> | | |--> nil
525 --- --- --- --- --- --- --- ---
526 | | | |
527 | | | |
528 --> maple -->birch --> pine --> oak
529@end group
530@end smallexample
531
532 An empty sequence contributes nothing to the value returned by
533@code{append}. As a consequence of this, a final @code{nil} argument
534forces a copy of the previous argument:
535
536@example
537@group
538trees
539 @result{} (pine oak)
540@end group
541@group
542(setq wood (append trees nil))
543 @result{} (pine oak)
544@end group
545@group
546wood
547 @result{} (pine oak)
548@end group
549@group
550(eq wood trees)
551 @result{} nil
552@end group
553@end example
554
555@noindent
556This once was the usual way to copy a list, before the function
557@code{copy-sequence} was invented. @xref{Sequences Arrays Vectors}.
558
559 Here we show the use of vectors and strings as arguments to @code{append}:
560
561@example
562@group
563(append [a b] "cd" nil)
564 @result{} (a b 99 100)
565@end group
566@end example
567
568 With the help of @code{apply} (@pxref{Calling Functions}), we can append
569all the lists in a list of lists:
570
571@example
572@group
573(apply 'append '((a b c) nil (x y z) nil))
574 @result{} (a b c x y z)
575@end group
576@end example
577
578 If no @var{sequences} are given, @code{nil} is returned:
579
580@example
581@group
582(append)
583 @result{} nil
584@end group
585@end example
586
587 Here are some examples where the final argument is not a list:
588
589@example
590(append '(x y) 'z)
591 @result{} (x y . z)
592(append '(x y) [z])
593 @result{} (x y . [z])
594@end example
595
596@noindent
597The second example shows that when the final argument is a sequence but
598not a list, the sequence's elements do not become elements of the
599resulting list. Instead, the sequence becomes the final @sc{cdr}, like
600any other non-list final argument.
601
602@defun reverse list
603This function creates a new list whose elements are the elements of
604@var{list}, but in reverse order. The original argument @var{list} is
605@emph{not} altered.
606
607@example
608@group
609(setq x '(1 2 3 4))
610 @result{} (1 2 3 4)
611@end group
612@group
613(reverse x)
614 @result{} (4 3 2 1)
615x
616 @result{} (1 2 3 4)
617@end group
618@end example
619@end defun
620
621@defun copy-tree tree &optional vecp
622This function returns a copy of the tree @code{tree}. If @var{tree} is a
623cons cell, this makes a new cons cell with the same @sc{car} and
624@sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
625same way.
626
627Normally, when @var{tree} is anything other than a cons cell,
628@code{copy-tree} simply returns @var{tree}. However, if @var{vecp} is
629non-@code{nil}, it copies vectors too (and operates recursively on
630their elements).
631@end defun
632
633@defun number-sequence from &optional to separation
634This returns a list of numbers starting with @var{from} and
635incrementing by @var{separation}, and ending at or just before
636@var{to}. @var{separation} can be positive or negative and defaults
637to 1. If @var{to} is @code{nil} or numerically equal to @var{from},
638the value is the one-element list @code{(@var{from})}. If @var{to} is
639less than @var{from} with a positive @var{separation}, or greater than
640@var{from} with a negative @var{separation}, the value is @code{nil}
641because those arguments specify an empty sequence.
642
643If @var{separation} is 0 and @var{to} is neither @code{nil} nor
644numerically equal to @var{from}, @code{number-sequence} signals an
645error, since those arguments specify an infinite sequence.
646
647All arguments can be integers or floating point numbers. However,
648floating point arguments can be tricky, because floating point
649arithmetic is inexact. For instance, depending on the machine, it may
650quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
651the one element list @code{(0.4)}, whereas
652@code{(number-sequence 0.4 0.8 0.2)} returns a list with three
653elements. The @var{n}th element of the list is computed by the exact
654formula @code{(+ @var{from} (* @var{n} @var{separation}))}. Thus, if
655one wants to make sure that @var{to} is included in the list, one can
656pass an expression of this exact type for @var{to}. Alternatively,
657one can replace @var{to} with a slightly larger value (or a slightly
658more negative value if @var{separation} is negative).
659
660Some examples:
661
662@example
663(number-sequence 4 9)
664 @result{} (4 5 6 7 8 9)
665(number-sequence 9 4 -1)
666 @result{} (9 8 7 6 5 4)
667(number-sequence 9 4 -2)
668 @result{} (9 7 5)
669(number-sequence 8)
670 @result{} (8)
671(number-sequence 8 5)
672 @result{} nil
673(number-sequence 5 8 -1)
674 @result{} nil
675(number-sequence 1.5 6 2)
676 @result{} (1.5 3.5 5.5)
677@end example
678@end defun
679
680@node List Variables
681@section Modifying List Variables
682
683 These functions, and one macro, provide convenient ways
684to modify a list which is stored in a variable.
685
686@defmac push newelt listname
687This macro provides an alternative way to write
688@code{(setq @var{listname} (cons @var{newelt} @var{listname}))}.
5887564d
GM
689@c FIXME I don't think is a particularly good way to do it,
690@c but generalized variables have not been introduced yet.
691(In fact, this macro can act on generalized variables, not just lists.
692@xref{Generalized Variables}.)
b8d4c8d0
GM
693
694@example
695(setq l '(a b))
696 @result{} (a b)
697(push 'c l)
698 @result{} (c a b)
699l
700 @result{} (c a b)
701@end example
31cbea1d
CY
702
703@noindent
704For the @code{pop} macro, which removes the first element from a list,
705@xref{List Elements}.
b8d4c8d0
GM
706@end defmac
707
708 Two functions modify lists that are the values of variables.
709
710@defun add-to-list symbol element &optional append compare-fn
711This function sets the variable @var{symbol} by consing @var{element}
712onto the old value, if @var{element} is not already a member of that
713value. It returns the resulting list, whether updated or not. The
714value of @var{symbol} had better be a list already before the call.
715@code{add-to-list} uses @var{compare-fn} to compare @var{element}
716against existing list members; if @var{compare-fn} is @code{nil}, it
717uses @code{equal}.
718
719Normally, if @var{element} is added, it is added to the front of
720@var{symbol}, but if the optional argument @var{append} is
721non-@code{nil}, it is added at the end.
722
723The argument @var{symbol} is not implicitly quoted; @code{add-to-list}
724is an ordinary function, like @code{set} and unlike @code{setq}. Quote
725the argument yourself if that is what you want.
726@end defun
727
728Here's a scenario showing how to use @code{add-to-list}:
729
730@example
731(setq foo '(a b))
732 @result{} (a b)
733
734(add-to-list 'foo 'c) ;; @r{Add @code{c}.}
735 @result{} (c a b)
736
737(add-to-list 'foo 'b) ;; @r{No effect.}
738 @result{} (c a b)
739
740foo ;; @r{@code{foo} was changed.}
741 @result{} (c a b)
742@end example
743
744 An equivalent expression for @code{(add-to-list '@var{var}
745@var{value})} is this:
746
747@example
748(or (member @var{value} @var{var})
749 (setq @var{var} (cons @var{value} @var{var})))
750@end example
751
752@defun add-to-ordered-list symbol element &optional order
753This function sets the variable @var{symbol} by inserting
754@var{element} into the old value, which must be a list, at the
755position specified by @var{order}. If @var{element} is already a
756member of the list, its position in the list is adjusted according
757to @var{order}. Membership is tested using @code{eq}.
758This function returns the resulting list, whether updated or not.
759
760The @var{order} is typically a number (integer or float), and the
761elements of the list are sorted in non-decreasing numerical order.
762
763@var{order} may also be omitted or @code{nil}. Then the numeric order
764of @var{element} stays unchanged if it already has one; otherwise,
765@var{element} has no numeric order. Elements without a numeric list
766order are placed at the end of the list, in no particular order.
767
768Any other value for @var{order} removes the numeric order of @var{element}
769if it already has one; otherwise, it is equivalent to @code{nil}.
770
771The argument @var{symbol} is not implicitly quoted;
772@code{add-to-ordered-list} is an ordinary function, like @code{set}
eceeb5fc 773and unlike @code{setq}. Quote the argument yourself if necessary.
b8d4c8d0
GM
774
775The ordering information is stored in a hash table on @var{symbol}'s
776@code{list-order} property.
777@end defun
778
779Here's a scenario showing how to use @code{add-to-ordered-list}:
780
781@example
782(setq foo '())
783 @result{} nil
784
785(add-to-ordered-list 'foo 'a 1) ;; @r{Add @code{a}.}
786 @result{} (a)
787
788(add-to-ordered-list 'foo 'c 3) ;; @r{Add @code{c}.}
789 @result{} (a c)
790
791(add-to-ordered-list 'foo 'b 2) ;; @r{Add @code{b}.}
792 @result{} (a b c)
793
794(add-to-ordered-list 'foo 'b 4) ;; @r{Move @code{b}.}
795 @result{} (a c b)
796
797(add-to-ordered-list 'foo 'd) ;; @r{Append @code{d}.}
798 @result{} (a c b d)
799
800(add-to-ordered-list 'foo 'e) ;; @r{Add @code{e}}.
801 @result{} (a c b e d)
802
803foo ;; @r{@code{foo} was changed.}
804 @result{} (a c b e d)
805@end example
806
807@node Modifying Lists
808@section Modifying Existing List Structure
809@cindex destructive list operations
810
811 You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
812primitives @code{setcar} and @code{setcdr}. We call these ``destructive''
813operations because they change existing list structure.
814
815@cindex CL note---@code{rplaca} vs @code{setcar}
816@quotation
817@findex rplaca
818@findex rplacd
819@b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
820@code{rplacd} to alter list structure; they change structure the same
821way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
822return the cons cell while @code{setcar} and @code{setcdr} return the
823new @sc{car} or @sc{cdr}.
824@end quotation
825
826@menu
827* Setcar:: Replacing an element in a list.
828* Setcdr:: Replacing part of the list backbone.
829 This can be used to remove or add elements.
830* Rearrangement:: Reordering the elements in a list; combining lists.
831@end menu
832
833@node Setcar
834@subsection Altering List Elements with @code{setcar}
835
836 Changing the @sc{car} of a cons cell is done with @code{setcar}. When
837used on a list, @code{setcar} replaces one element of a list with a
838different element.
839
840@defun setcar cons object
841This function stores @var{object} as the new @sc{car} of @var{cons},
842replacing its previous @sc{car}. In other words, it changes the
843@sc{car} slot of @var{cons} to refer to @var{object}. It returns the
844value @var{object}. For example:
845
846@example
847@group
848(setq x '(1 2))
849 @result{} (1 2)
850@end group
851@group
852(setcar x 4)
853 @result{} 4
854@end group
855@group
856x
857 @result{} (4 2)
858@end group
859@end example
860@end defun
861
862 When a cons cell is part of the shared structure of several lists,
863storing a new @sc{car} into the cons changes one element of each of
864these lists. Here is an example:
865
866@example
867@group
868;; @r{Create two lists that are partly shared.}
869(setq x1 '(a b c))
870 @result{} (a b c)
871(setq x2 (cons 'z (cdr x1)))
872 @result{} (z b c)
873@end group
874
875@group
876;; @r{Replace the @sc{car} of a shared link.}
877(setcar (cdr x1) 'foo)
878 @result{} foo
879x1 ; @r{Both lists are changed.}
880 @result{} (a foo c)
881x2
882 @result{} (z foo c)
883@end group
884
885@group
886;; @r{Replace the @sc{car} of a link that is not shared.}
887(setcar x1 'baz)
888 @result{} baz
889x1 ; @r{Only one list is changed.}
890 @result{} (baz foo c)
891x2
892 @result{} (z foo c)
893@end group
894@end example
895
896 Here is a graphical depiction of the shared structure of the two lists
897in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
898changes them both:
899
900@example
901@group
902 --- --- --- --- --- ---
903x1---> | | |----> | | |--> | | |--> nil
904 --- --- --- --- --- ---
905 | --> | |
906 | | | |
907 --> a | --> b --> c
908 |
909 --- --- |
910x2--> | | |--
911 --- ---
912 |
913 |
914 --> z
915@end group
916@end example
917
918 Here is an alternative form of box diagram, showing the same relationship:
919
920@example
921@group
922x1:
923 -------------- -------------- --------------
924| car | cdr | | car | cdr | | car | cdr |
925| a | o------->| b | o------->| c | nil |
926| | | -->| | | | | |
927 -------------- | -------------- --------------
928 |
929x2: |
930 -------------- |
931| car | cdr | |
932| z | o----
933| | |
934 --------------
935@end group
936@end example
937
938@node Setcdr
939@subsection Altering the CDR of a List
940
941 The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
942
943@defun setcdr cons object
944This function stores @var{object} as the new @sc{cdr} of @var{cons},
945replacing its previous @sc{cdr}. In other words, it changes the
946@sc{cdr} slot of @var{cons} to refer to @var{object}. It returns the
947value @var{object}.
948@end defun
949
950 Here is an example of replacing the @sc{cdr} of a list with a
951different list. All but the first element of the list are removed in
952favor of a different sequence of elements. The first element is
953unchanged, because it resides in the @sc{car} of the list, and is not
954reached via the @sc{cdr}.
955
956@example
957@group
958(setq x '(1 2 3))
959 @result{} (1 2 3)
960@end group
961@group
962(setcdr x '(4))
963 @result{} (4)
964@end group
965@group
966x
967 @result{} (1 4)
968@end group
969@end example
970
971 You can delete elements from the middle of a list by altering the
972@sc{cdr}s of the cons cells in the list. For example, here we delete
973the second element, @code{b}, from the list @code{(a b c)}, by changing
974the @sc{cdr} of the first cons cell:
975
976@example
977@group
978(setq x1 '(a b c))
979 @result{} (a b c)
980(setcdr x1 (cdr (cdr x1)))
981 @result{} (c)
982x1
983 @result{} (a c)
984@end group
985@end example
986
987 Here is the result in box notation:
988
989@smallexample
990@group
991 --------------------
992 | |
993 -------------- | -------------- | --------------
994| car | cdr | | | car | cdr | -->| car | cdr |
995| a | o----- | b | o-------->| c | nil |
996| | | | | | | | |
997 -------------- -------------- --------------
998@end group
999@end smallexample
1000
1001@noindent
1002The second cons cell, which previously held the element @code{b}, still
1003exists and its @sc{car} is still @code{b}, but it no longer forms part
1004of this list.
1005
1006 It is equally easy to insert a new element by changing @sc{cdr}s:
1007
1008@example
1009@group
1010(setq x1 '(a b c))
1011 @result{} (a b c)
1012(setcdr x1 (cons 'd (cdr x1)))
1013 @result{} (d b c)
1014x1
1015 @result{} (a d b c)
1016@end group
1017@end example
1018
1019 Here is this result in box notation:
1020
1021@smallexample
1022@group
1023 -------------- ------------- -------------
1024| car | cdr | | car | cdr | | car | cdr |
1025| a | o | -->| b | o------->| c | nil |
1026| | | | | | | | | | |
1027 --------- | -- | ------------- -------------
1028 | |
1029 ----- --------
1030 | |
1031 | --------------- |
1032 | | car | cdr | |
1033 -->| d | o------
1034 | | |
1035 ---------------
1036@end group
1037@end smallexample
1038
1039@node Rearrangement
1040@subsection Functions that Rearrange Lists
1041@cindex rearrangement of lists
1042@cindex modification of lists
1043
1044 Here are some functions that rearrange lists ``destructively'' by
1045modifying the @sc{cdr}s of their component cons cells. We call these
1046functions ``destructive'' because they chew up the original lists passed
1047to them as arguments, relinking their cons cells to form a new list that
1048is the returned value.
1049
1050@ifnottex
1051 See @code{delq}, in @ref{Sets And Lists}, for another function
1052that modifies cons cells.
1053@end ifnottex
1054@iftex
1055 The function @code{delq} in the following section is another example
1056of destructive list manipulation.
1057@end iftex
1058
1059@defun nconc &rest lists
1060@cindex concatenating lists
1061@cindex joining lists
1062This function returns a list containing all the elements of @var{lists}.
1063Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
1064@emph{not} copied. Instead, the last @sc{cdr} of each of the
1065@var{lists} is changed to refer to the following list. The last of the
1066@var{lists} is not altered. For example:
1067
1068@example
1069@group
1070(setq x '(1 2 3))
1071 @result{} (1 2 3)
1072@end group
1073@group
1074(nconc x '(4 5))
1075 @result{} (1 2 3 4 5)
1076@end group
1077@group
1078x
1079 @result{} (1 2 3 4 5)
1080@end group
1081@end example
1082
1083 Since the last argument of @code{nconc} is not itself modified, it is
1084reasonable to use a constant list, such as @code{'(4 5)}, as in the
1085above example. For the same reason, the last argument need not be a
1086list:
1087
1088@example
1089@group
1090(setq x '(1 2 3))
1091 @result{} (1 2 3)
1092@end group
1093@group
1094(nconc x 'z)
1095 @result{} (1 2 3 . z)
1096@end group
1097@group
1098x
1099 @result{} (1 2 3 . z)
1100@end group
1101@end example
1102
1103However, the other arguments (all but the last) must be lists.
1104
1105A common pitfall is to use a quoted constant list as a non-last
1106argument to @code{nconc}. If you do this, your program will change
1107each time you run it! Here is what happens:
1108
1109@smallexample
1110@group
1111(defun add-foo (x) ; @r{We want this function to add}
1112 (nconc '(foo) x)) ; @r{@code{foo} to the front of its arg.}
1113@end group
1114
1115@group
1116(symbol-function 'add-foo)
1117 @result{} (lambda (x) (nconc (quote (foo)) x))
1118@end group
1119
1120@group
1121(setq xx (add-foo '(1 2))) ; @r{It seems to work.}
1122 @result{} (foo 1 2)
1123@end group
1124@group
1125(setq xy (add-foo '(3 4))) ; @r{What happened?}
1126 @result{} (foo 1 2 3 4)
1127@end group
1128@group
1129(eq xx xy)
1130 @result{} t
1131@end group
1132
1133@group
1134(symbol-function 'add-foo)
1135 @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
1136@end group
1137@end smallexample
1138@end defun
1139
1140@defun nreverse list
1141@cindex reversing a list
1142 This function reverses the order of the elements of @var{list}.
1143Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1144the @sc{cdr}s in the cons cells forming the list. The cons cell that
1145used to be the last one in @var{list} becomes the first cons cell of the
1146value.
1147
1148 For example:
1149
1150@example
1151@group
1152(setq x '(a b c))
1153 @result{} (a b c)
1154@end group
1155@group
1156x
1157 @result{} (a b c)
1158(nreverse x)
1159 @result{} (c b a)
1160@end group
1161@group
1162;; @r{The cons cell that was first is now last.}
1163x
1164 @result{} (a)
1165@end group
1166@end example
1167
1168 To avoid confusion, we usually store the result of @code{nreverse}
1169back in the same variable which held the original list:
1170
1171@example
1172(setq x (nreverse x))
1173@end example
1174
1175 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1176presented graphically:
1177
1178@smallexample
1179@group
1180@r{Original list head:} @r{Reversed list:}
1181 ------------- ------------- ------------
1182| car | cdr | | car | cdr | | car | cdr |
1183| a | nil |<-- | b | o |<-- | c | o |
1184| | | | | | | | | | | | |
1185 ------------- | --------- | - | -------- | -
1186 | | | |
1187 ------------- ------------
1188@end group
1189@end smallexample
1190@end defun
1191
1192@defun sort list predicate
1193@cindex stable sort
1194@cindex sorting lists
1195This function sorts @var{list} stably, though destructively, and
1196returns the sorted list. It compares elements using @var{predicate}. A
1197stable sort is one in which elements with equal sort keys maintain their
1198relative order before and after the sort. Stability is important when
1199successive sorts are used to order elements according to different
1200criteria.
1201
1202The argument @var{predicate} must be a function that accepts two
1203arguments. It is called with two elements of @var{list}. To get an
1204increasing order sort, the @var{predicate} should return non-@code{nil} if the
1205first element is ``less than'' the second, or @code{nil} if not.
1206
1207The comparison function @var{predicate} must give reliable results for
1208any given pair of arguments, at least within a single call to
1209@code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
1210less than @var{b}, @var{b} must not be less than @var{a}. It must be
1211@dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1212is less than @var{c}, then @var{a} must be less than @var{c}. If you
1213use a comparison function which does not meet these requirements, the
1214result of @code{sort} is unpredictable.
1215
1216The destructive aspect of @code{sort} is that it rearranges the cons
1217cells forming @var{list} by changing @sc{cdr}s. A nondestructive sort
1218function would create new cons cells to store the elements in their
1219sorted order. If you wish to make a sorted copy without destroying the
1220original, copy it first with @code{copy-sequence} and then sort.
1221
1222Sorting does not change the @sc{car}s of the cons cells in @var{list};
1223the cons cell that originally contained the element @code{a} in
1224@var{list} still has @code{a} in its @sc{car} after sorting, but it now
1225appears in a different position in the list due to the change of
1226@sc{cdr}s. For example:
1227
1228@example
1229@group
1230(setq nums '(1 3 2 6 5 4 0))
1231 @result{} (1 3 2 6 5 4 0)
1232@end group
1233@group
1234(sort nums '<)
1235 @result{} (0 1 2 3 4 5 6)
1236@end group
1237@group
1238nums
1239 @result{} (1 2 3 4 5 6)
1240@end group
1241@end example
1242
1243@noindent
1244@strong{Warning}: Note that the list in @code{nums} no longer contains
12450; this is the same cons cell that it was before, but it is no longer
1246the first one in the list. Don't assume a variable that formerly held
1247the argument now holds the entire sorted list! Instead, save the result
1248of @code{sort} and use that. Most often we store the result back into
1249the variable that held the original list:
1250
1251@example
1252(setq nums (sort nums '<))
1253@end example
1254
1255@xref{Sorting}, for more functions that perform sorting.
1256See @code{documentation} in @ref{Accessing Documentation}, for a
1257useful example of @code{sort}.
1258@end defun
1259
1260@node Sets And Lists
1261@section Using Lists as Sets
1262@cindex lists as sets
1263@cindex sets
1264
1265 A list can represent an unordered mathematical set---simply consider a
1266value an element of a set if it appears in the list, and ignore the
1267order of the list. To form the union of two sets, use @code{append} (as
1268long as you don't mind having duplicate elements). You can remove
1269@code{equal} duplicates using @code{delete-dups}. Other useful
1270functions for sets include @code{memq} and @code{delq}, and their
1271@code{equal} versions, @code{member} and @code{delete}.
1272
1273@cindex CL note---lack @code{union}, @code{intersection}
1274@quotation
1275@b{Common Lisp note:} Common Lisp has functions @code{union} (which
bc8410af 1276avoids duplicate elements) and @code{intersection} for set operations.
4ee87740 1277Although standard GNU Emacs Lisp does not have them, the @file{cl-lib}
aec5e6f9
GM
1278library provides versions.
1279@xref{Lists as Sets,,, cl, Common Lisp Extensions}.
b8d4c8d0
GM
1280@end quotation
1281
1282@defun memq object list
1283@cindex membership in a list
1284This function tests to see whether @var{object} is a member of
1285@var{list}. If it is, @code{memq} returns a list starting with the
1286first occurrence of @var{object}. Otherwise, it returns @code{nil}.
1287The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1288compare @var{object} against the elements of the list. For example:
1289
1290@example
1291@group
1292(memq 'b '(a b c b a))
1293 @result{} (b c b a)
1294@end group
1295@group
1296(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1297 @result{} nil
1298@end group
1299@end example
1300@end defun
1301
1302@defun delq object list
1303@cindex deleting list elements
1304This function destructively removes all elements @code{eq} to
bb6b0efc
CY
1305@var{object} from @var{list}, and returns the resulting list. The
1306letter @samp{q} in @code{delq} says that it uses @code{eq} to compare
1307@var{object} against the elements of the list, like @code{memq} and
1308@code{remq}.
1309
1310Typically, when you invoke @code{delq}, you should use the return
1311value by assigning it to the variable which held the original list.
1312The reason for this is explained below.
b8d4c8d0
GM
1313@end defun
1314
bb6b0efc
CY
1315The @code{delq} function deletes elements from the front of the list
1316by simply advancing down the list, and returning a sublist that starts
1317after those elements. For example:
b8d4c8d0
GM
1318
1319@example
1320@group
1321(delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1322@end group
1323@end example
1324
bb6b0efc 1325@noindent
b8d4c8d0
GM
1326When an element to be deleted appears in the middle of the list,
1327removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1328
1329@example
1330@group
1331(setq sample-list '(a b c (4)))
1332 @result{} (a b c (4))
1333@end group
1334@group
1335(delq 'a sample-list)
1336 @result{} (b c (4))
1337@end group
1338@group
1339sample-list
1340 @result{} (a b c (4))
1341@end group
1342@group
1343(delq 'c sample-list)
1344 @result{} (a b (4))
1345@end group
1346@group
1347sample-list
1348 @result{} (a b (4))
1349@end group
1350@end example
1351
1352Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1353splice out the third element, but @code{(delq 'a sample-list)} does not
1354splice anything---it just returns a shorter list. Don't assume that a
1355variable which formerly held the argument @var{list} now has fewer
1356elements, or that it still holds the original list! Instead, save the
1357result of @code{delq} and use that. Most often we store the result back
1358into the variable that held the original list:
1359
1360@example
1361(setq flowers (delq 'rose flowers))
1362@end example
1363
1364In the following example, the @code{(4)} that @code{delq} attempts to match
1365and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1366
1367@example
1368@group
1369(delq '(4) sample-list)
1370 @result{} (a c (4))
1371@end group
049bcbcb 1372@end example
b8d4c8d0
GM
1373
1374If you want to delete elements that are @code{equal} to a given value,
1375use @code{delete} (see below).
b8d4c8d0
GM
1376
1377@defun remq object list
1378This function returns a copy of @var{list}, with all elements removed
1379which are @code{eq} to @var{object}. The letter @samp{q} in @code{remq}
1380says that it uses @code{eq} to compare @var{object} against the elements
1381of @code{list}.
1382
1383@example
1384@group
1385(setq sample-list '(a b c a b c))
1386 @result{} (a b c a b c)
1387@end group
1388@group
1389(remq 'a sample-list)
1390 @result{} (b c b c)
1391@end group
1392@group
1393sample-list
1394 @result{} (a b c a b c)
1395@end group
1396@end example
1397@end defun
1398
1399@defun memql object list
1400The function @code{memql} tests to see whether @var{object} is a member
1401of @var{list}, comparing members with @var{object} using @code{eql},
1402so floating point elements are compared by value.
1403If @var{object} is a member, @code{memql} returns a list starting with
1404its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1405
1406Compare this with @code{memq}:
1407
1408@example
1409@group
1410(memql 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are @code{eql}.}
1411 @result{} (1.2 1.3)
1412@end group
1413@group
1414(memq 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are not @code{eq}.}
1415 @result{} nil
1416@end group
1417@end example
1418@end defun
1419
1420The following three functions are like @code{memq}, @code{delq} and
1421@code{remq}, but use @code{equal} rather than @code{eq} to compare
1422elements. @xref{Equality Predicates}.
1423
1424@defun member object list
1425The function @code{member} tests to see whether @var{object} is a member
1426of @var{list}, comparing members with @var{object} using @code{equal}.
1427If @var{object} is a member, @code{member} returns a list starting with
1428its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1429
1430Compare this with @code{memq}:
1431
1432@example
1433@group
1434(member '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1435 @result{} ((2))
1436@end group
1437@group
1438(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1439 @result{} nil
1440@end group
1441@group
1442;; @r{Two strings with the same contents are @code{equal}.}
1443(member "foo" '("foo" "bar"))
1444 @result{} ("foo" "bar")
1445@end group
1446@end example
1447@end defun
1448
1449@defun delete object sequence
bb6b0efc
CY
1450This function removes all elements @code{equal} to @var{object} from
1451@var{sequence}, and returns the resulting sequence.
1452
1453If @var{sequence} is a list, @code{delete} is to @code{delq} as
1454@code{member} is to @code{memq}: it uses @code{equal} to compare
1455elements with @var{object}, like @code{member}; when it finds an
1456element that matches, it cuts the element out just as @code{delq}
1457would. As with @code{delq}, you should typically use the return value
1458by assigning it to the variable which held the original list.
b8d4c8d0
GM
1459
1460If @code{sequence} is a vector or string, @code{delete} returns a copy
1461of @code{sequence} with all elements @code{equal} to @code{object}
1462removed.
1463
1464For example:
1465
1466@example
1467@group
1468(setq l '((2) (1) (2)))
1469(delete '(2) l)
1470 @result{} ((1))
1471l
1472 @result{} ((2) (1))
1473;; @r{If you want to change @code{l} reliably,}
bf1af6c7 1474;; @r{write @code{(setq l (delete '(2) l))}.}
b8d4c8d0
GM
1475@end group
1476@group
1477(setq l '((2) (1) (2)))
1478(delete '(1) l)
1479 @result{} ((2) (2))
1480l
1481 @result{} ((2) (2))
1482;; @r{In this case, it makes no difference whether you set @code{l},}
1483;; @r{but you should do so for the sake of the other case.}
1484@end group
1485@group
1486(delete '(2) [(2) (1) (2)])
1487 @result{} [(1)]
1488@end group
1489@end example
1490@end defun
1491
1492@defun remove object sequence
1493This function is the non-destructive counterpart of @code{delete}. It
1494returns a copy of @code{sequence}, a list, vector, or string, with
1495elements @code{equal} to @code{object} removed. For example:
1496
1497@example
1498@group
1499(remove '(2) '((2) (1) (2)))
1500 @result{} ((1))
1501@end group
1502@group
1503(remove '(2) [(2) (1) (2)])
1504 @result{} [(1)]
1505@end group
1506@end example
1507@end defun
1508
1509@quotation
1510@b{Common Lisp note:} The functions @code{member}, @code{delete} and
1511@code{remove} in GNU Emacs Lisp are derived from Maclisp, not Common
1512Lisp. The Common Lisp versions do not use @code{equal} to compare
1513elements.
1514@end quotation
1515
1516@defun member-ignore-case object list
1517This function is like @code{member}, except that @var{object} should
1518be a string and that it ignores differences in letter-case and text
1519representation: upper-case and lower-case letters are treated as
1520equal, and unibyte strings are converted to multibyte prior to
1521comparison.
1522@end defun
1523
1524@defun delete-dups list
1525This function destructively removes all @code{equal} duplicates from
1526@var{list}, stores the result in @var{list} and returns it. Of
1527several @code{equal} occurrences of an element in @var{list},
1528@code{delete-dups} keeps the first one.
1529@end defun
1530
1531 See also the function @code{add-to-list}, in @ref{List Variables},
1532for a way to add an element to a list stored in a variable and used as a
1533set.
1534
1535@node Association Lists
1536@section Association Lists
1537@cindex association list
1538@cindex alist
1539
1540 An @dfn{association list}, or @dfn{alist} for short, records a mapping
1541from keys to values. It is a list of cons cells called
1542@dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
1543@sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1544is not related to the term ``key sequence''; it means a value used to
1545look up an item in a table. In this case, the table is the alist, and
1546the alist associations are the items.}
1547
1548 Here is an example of an alist. The key @code{pine} is associated with
1549the value @code{cones}; the key @code{oak} is associated with
1550@code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1551
1552@example
1553@group
1554((pine . cones)
1555 (oak . acorns)
1556 (maple . seeds))
1557@end group
1558@end example
1559
1560 Both the values and the keys in an alist may be any Lisp objects.
1561For example, in the following alist, the symbol @code{a} is
1562associated with the number @code{1}, and the string @code{"b"} is
1563associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1564the alist element:
1565
1566@example
1567((a . 1) ("b" 2 3))
1568@end example
1569
1570 Sometimes it is better to design an alist to store the associated
1571value in the @sc{car} of the @sc{cdr} of the element. Here is an
1572example of such an alist:
1573
1574@example
1575((rose red) (lily white) (buttercup yellow))
1576@end example
1577
1578@noindent
1579Here we regard @code{red} as the value associated with @code{rose}. One
1580advantage of this kind of alist is that you can store other related
1581information---even a list of other items---in the @sc{cdr} of the
1582@sc{cdr}. One disadvantage is that you cannot use @code{rassq} (see
1583below) to find the element containing a given value. When neither of
1584these considerations is important, the choice is a matter of taste, as
1585long as you are consistent about it for any given alist.
1586
1587 The same alist shown above could be regarded as having the
1588associated value in the @sc{cdr} of the element; the value associated
1589with @code{rose} would be the list @code{(red)}.
1590
1591 Association lists are often used to record information that you might
1592otherwise keep on a stack, since new associations may be added easily to
1593the front of the list. When searching an association list for an
1594association with a given key, the first one found is returned, if there
1595is more than one.
1596
1597 In Emacs Lisp, it is @emph{not} an error if an element of an
1598association list is not a cons cell. The alist search functions simply
1599ignore such elements. Many other versions of Lisp signal errors in such
1600cases.
1601
1602 Note that property lists are similar to association lists in several
1603respects. A property list behaves like an association list in which
1604each key can occur only once. @xref{Property Lists}, for a comparison
1605of property lists and association lists.
1606
1607@defun assoc key alist
1608This function returns the first association for @var{key} in
1609@var{alist}, comparing @var{key} against the alist elements using
1610@code{equal} (@pxref{Equality Predicates}). It returns @code{nil} if no
1611association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1612For example:
1613
1614@smallexample
1615(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1616 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1617(assoc 'oak trees)
1618 @result{} (oak . acorns)
1619(cdr (assoc 'oak trees))
1620 @result{} acorns
1621(assoc 'birch trees)
1622 @result{} nil
1623@end smallexample
1624
1625Here is another example, in which the keys and values are not symbols:
1626
1627@smallexample
1628(setq needles-per-cluster
1629 '((2 "Austrian Pine" "Red Pine")
1630 (3 "Pitch Pine")
1631 (5 "White Pine")))
1632
1633(cdr (assoc 3 needles-per-cluster))
1634 @result{} ("Pitch Pine")
1635(cdr (assoc 2 needles-per-cluster))
1636 @result{} ("Austrian Pine" "Red Pine")
1637@end smallexample
1638@end defun
1639
1640 The function @code{assoc-string} is much like @code{assoc} except
1641that it ignores certain differences between strings. @xref{Text
1642Comparison}.
1643
1644@defun rassoc value alist
1645This function returns the first association with value @var{value} in
1646@var{alist}. It returns @code{nil} if no association in @var{alist} has
1647a @sc{cdr} @code{equal} to @var{value}.
1648
1649@code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1650each @var{alist} association instead of the @sc{car}. You can think of
16152b76 1651this as ``reverse @code{assoc}'', finding the key for a given value.
b8d4c8d0
GM
1652@end defun
1653
1654@defun assq key alist
1655This function is like @code{assoc} in that it returns the first
1656association for @var{key} in @var{alist}, but it makes the comparison
1657using @code{eq} instead of @code{equal}. @code{assq} returns @code{nil}
1658if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1659This function is used more often than @code{assoc}, since @code{eq} is
1660faster than @code{equal} and most alists use symbols as keys.
1661@xref{Equality Predicates}.
1662
1663@smallexample
1664(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1665 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1666(assq 'pine trees)
1667 @result{} (pine . cones)
1668@end smallexample
1669
1670On the other hand, @code{assq} is not usually useful in alists where the
1671keys may not be symbols:
1672
1673@smallexample
1674(setq leaves
1675 '(("simple leaves" . oak)
1676 ("compound leaves" . horsechestnut)))
1677
1678(assq "simple leaves" leaves)
1679 @result{} nil
1680(assoc "simple leaves" leaves)
1681 @result{} ("simple leaves" . oak)
1682@end smallexample
1683@end defun
1684
1685@defun rassq value alist
1686This function returns the first association with value @var{value} in
1687@var{alist}. It returns @code{nil} if no association in @var{alist} has
1688a @sc{cdr} @code{eq} to @var{value}.
1689
1690@code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1691each @var{alist} association instead of the @sc{car}. You can think of
16152b76 1692this as ``reverse @code{assq}'', finding the key for a given value.
b8d4c8d0
GM
1693
1694For example:
1695
1696@smallexample
1697(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1698
1699(rassq 'acorns trees)
1700 @result{} (oak . acorns)
1701(rassq 'spores trees)
1702 @result{} nil
1703@end smallexample
1704
1705@code{rassq} cannot search for a value stored in the @sc{car}
1706of the @sc{cdr} of an element:
1707
1708@smallexample
1709(setq colors '((rose red) (lily white) (buttercup yellow)))
1710
1711(rassq 'white colors)
1712 @result{} nil
1713@end smallexample
1714
1715In this case, the @sc{cdr} of the association @code{(lily white)} is not
1716the symbol @code{white}, but rather the list @code{(white)}. This
1717becomes clearer if the association is written in dotted pair notation:
1718
1719@smallexample
1720(lily white) @equiv{} (lily . (white))
1721@end smallexample
1722@end defun
1723
1724@defun assoc-default key alist &optional test default
1725This function searches @var{alist} for a match for @var{key}. For each
1726element of @var{alist}, it compares the element (if it is an atom) or
1727the element's @sc{car} (if it is a cons) against @var{key}, by calling
1728@var{test} with two arguments: the element or its @sc{car}, and
1729@var{key}. The arguments are passed in that order so that you can get
1730useful results using @code{string-match} with an alist that contains
1731regular expressions (@pxref{Regexp Search}). If @var{test} is omitted
1732or @code{nil}, @code{equal} is used for comparison.
1733
1734If an alist element matches @var{key} by this criterion,
1735then @code{assoc-default} returns a value based on this element.
1736If the element is a cons, then the value is the element's @sc{cdr}.
1737Otherwise, the return value is @var{default}.
1738
1739If no alist element matches @var{key}, @code{assoc-default} returns
1740@code{nil}.
1741@end defun
1742
1743@defun copy-alist alist
1744@cindex copying alists
1745This function returns a two-level deep copy of @var{alist}: it creates a
1746new copy of each association, so that you can alter the associations of
1747the new alist without changing the old one.
1748
1749@smallexample
1750@group
1751(setq needles-per-cluster
1752 '((2 . ("Austrian Pine" "Red Pine"))
1753 (3 . ("Pitch Pine"))
1754@end group
1755 (5 . ("White Pine"))))
1756@result{}
1757((2 "Austrian Pine" "Red Pine")
1758 (3 "Pitch Pine")
1759 (5 "White Pine"))
1760
1761(setq copy (copy-alist needles-per-cluster))
1762@result{}
1763((2 "Austrian Pine" "Red Pine")
1764 (3 "Pitch Pine")
1765 (5 "White Pine"))
1766
1767(eq needles-per-cluster copy)
1768 @result{} nil
1769(equal needles-per-cluster copy)
1770 @result{} t
1771(eq (car needles-per-cluster) (car copy))
1772 @result{} nil
1773(cdr (car (cdr needles-per-cluster)))
1774 @result{} ("Pitch Pine")
1775@group
1776(eq (cdr (car (cdr needles-per-cluster)))
1777 (cdr (car (cdr copy))))
1778 @result{} t
1779@end group
1780@end smallexample
1781
1782 This example shows how @code{copy-alist} makes it possible to change
1783the associations of one copy without affecting the other:
1784
1785@smallexample
1786@group
1787(setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1788(cdr (assq 3 needles-per-cluster))
1789 @result{} ("Pitch Pine")
1790@end group
1791@end smallexample
1792@end defun
1793
1794@defun assq-delete-all key alist
1795This function deletes from @var{alist} all the elements whose @sc{car}
1796is @code{eq} to @var{key}, much as if you used @code{delq} to delete
1797each such element one by one. It returns the shortened alist, and
1798often modifies the original list structure of @var{alist}. For
1799correct results, use the return value of @code{assq-delete-all} rather
1800than looking at the saved value of @var{alist}.
1801
1802@example
1803(setq alist '((foo 1) (bar 2) (foo 3) (lose 4)))
1804 @result{} ((foo 1) (bar 2) (foo 3) (lose 4))
1805(assq-delete-all 'foo alist)
1806 @result{} ((bar 2) (lose 4))
1807alist
1808 @result{} ((foo 1) (bar 2) (lose 4))
1809@end example
1810@end defun
1811
1812@defun rassq-delete-all value alist
1813This function deletes from @var{alist} all the elements whose @sc{cdr}
1814is @code{eq} to @var{value}. It returns the shortened alist, and
1815often modifies the original list structure of @var{alist}.
1816@code{rassq-delete-all} is like @code{assq-delete-all} except that it
1817compares the @sc{cdr} of each @var{alist} association instead of the
1818@sc{car}.
1819@end defun