xdisp.c (try_window_reusing_current_matrix): Fix incorrect computation of loop end.
[bpt/emacs.git] / doc / lispref / lists.texi
CommitLineData
b8d4c8d0
GM
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
73b0cd50 3@c Copyright (C) 1990-1995, 1998-1999, 2001-2011 Free Software Foundation, Inc.
b8d4c8d0 4@c See the file elisp.texi for copying conditions.
6336d8c3 5@setfilename ../../info/lists
b8d4c8d0
GM
6@node Lists, Sequences Arrays Vectors, Strings and Characters, Top
7@chapter Lists
8@cindex lists
9@cindex element (of list)
10
11 A @dfn{list} represents a sequence of zero or more elements (which may
12be any Lisp objects). The important difference between lists and
13vectors is that two or more lists can share part of their structure; in
14addition, you can insert or delete elements in a list without copying
15the whole list.
16
17@menu
18* Cons Cells:: How lists are made out of cons cells.
19* List-related Predicates:: Is this object a list? Comparing two lists.
20* List Elements:: Extracting the pieces of a list.
21* Building Lists:: Creating list structure.
22* List Variables:: Modifying lists stored in variables.
23* Modifying Lists:: Storing new pieces into an existing list.
24* Sets And Lists:: A list can represent a finite mathematical set.
25* Association Lists:: A list can represent a finite relation or mapping.
26* Rings:: Managing a fixed-size ring of objects.
27@end menu
28
29@node Cons Cells
30@section Lists and Cons Cells
31@cindex lists and cons cells
32
33 Lists in Lisp are not a primitive data type; they are built up from
34@dfn{cons cells}. A cons cell is a data object that represents an
35ordered pair. That is, it has two slots, and each slot @dfn{holds}, or
36@dfn{refers to}, some Lisp object. One slot is known as the @sc{car},
37and the other is known as the @sc{cdr}. (These names are traditional;
38see @ref{Cons Cell Type}.) @sc{cdr} is pronounced ``could-er.''
39
40 We say that ``the @sc{car} of this cons cell is'' whatever object
41its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
42
43 A list is a series of cons cells ``chained together,'' so that each
44cell refers to the next one. There is one cons cell for each element of
45the list. By convention, the @sc{car}s of the cons cells hold the
46elements of the list, and the @sc{cdr}s are used to chain the list: the
47@sc{cdr} slot of each cons cell refers to the following cons cell. The
48@sc{cdr} of the last cons cell is @code{nil}. This asymmetry between
49the @sc{car} and the @sc{cdr} is entirely a matter of convention; at the
50level of cons cells, the @sc{car} and @sc{cdr} slots have the same
51characteristics.
52
53@cindex true list
54 Since @code{nil} is the conventional value to put in the @sc{cdr} of
55the last cons cell in the list, we call that case a @dfn{true list}.
56
57 In Lisp, we consider the symbol @code{nil} a list as well as a
58symbol; it is the list with no elements. For convenience, the symbol
59@code{nil} is considered to have @code{nil} as its @sc{cdr} (and also
60as its @sc{car}). Therefore, the @sc{cdr} of a true list is always a
61true list.
62
63@cindex dotted list
64@cindex circular list
65 If the @sc{cdr} of a list's last cons cell is some other value,
66neither @code{nil} nor another cons cell, we call the structure a
67@dfn{dotted list}, since its printed representation would use
68@samp{.}. There is one other possibility: some cons cell's @sc{cdr}
69could point to one of the previous cons cells in the list. We call
70that structure a @dfn{circular list}.
71
72 For some purposes, it does not matter whether a list is true,
73circular or dotted. If the program doesn't look far enough down the
74list to see the @sc{cdr} of the final cons cell, it won't care.
75However, some functions that operate on lists demand true lists and
76signal errors if given a dotted list. Most functions that try to find
77the end of a list enter infinite loops if given a circular list.
78
79@cindex list structure
80 Because most cons cells are used as part of lists, the phrase
81@dfn{list structure} has come to mean any structure made out of cons
82cells.
83
84 The @sc{cdr} of any nonempty true list @var{l} is a list containing all the
85elements of @var{l} except the first.
86
87 @xref{Cons Cell Type}, for the read and print syntax of cons cells and
88lists, and for ``box and arrow'' illustrations of lists.
89
90@node List-related Predicates
91@section Predicates on Lists
92
93 The following predicates test whether a Lisp object is an atom,
94whether it is a cons cell or is a list, or whether it is the
95distinguished object @code{nil}. (Many of these predicates can be
96defined in terms of the others, but they are used so often that it is
97worth having all of them.)
98
99@defun consp object
100This function returns @code{t} if @var{object} is a cons cell, @code{nil}
101otherwise. @code{nil} is not a cons cell, although it @emph{is} a list.
102@end defun
103
104@defun atom object
105This function returns @code{t} if @var{object} is an atom, @code{nil}
106otherwise. All objects except cons cells are atoms. The symbol
107@code{nil} is an atom and is also a list; it is the only Lisp object
108that is both.
109
110@example
111(atom @var{object}) @equiv{} (not (consp @var{object}))
112@end example
113@end defun
114
115@defun listp object
116This function returns @code{t} if @var{object} is a cons cell or
117@code{nil}. Otherwise, it returns @code{nil}.
118
119@example
120@group
121(listp '(1))
122 @result{} t
123@end group
124@group
125(listp '())
126 @result{} t
127@end group
128@end example
129@end defun
130
131@defun nlistp object
132This function is the opposite of @code{listp}: it returns @code{t} if
133@var{object} is not a list. Otherwise, it returns @code{nil}.
134
135@example
136(listp @var{object}) @equiv{} (not (nlistp @var{object}))
137@end example
138@end defun
139
140@defun null object
141This function returns @code{t} if @var{object} is @code{nil}, and
142returns @code{nil} otherwise. This function is identical to @code{not},
143but as a matter of clarity we use @code{null} when @var{object} is
144considered a list and @code{not} when it is considered a truth value
145(see @code{not} in @ref{Combining Conditions}).
146
147@example
148@group
149(null '(1))
150 @result{} nil
151@end group
152@group
153(null '())
154 @result{} t
155@end group
156@end example
157@end defun
158
159
160@node List Elements
161@section Accessing Elements of Lists
162@cindex list elements
163
164@defun car cons-cell
165This function returns the value referred to by the first slot of the
b6a5263f
CY
166cons cell @var{cons-cell}. In other words, it returns the @sc{car} of
167@var{cons-cell}.
b8d4c8d0 168
b6a5263f
CY
169As a special case, if @var{cons-cell} is @code{nil}, this function
170returns @code{nil}. Therefore, any list is a valid argument. An
171error is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
172
173@example
174@group
175(car '(a b c))
176 @result{} a
177@end group
178@group
179(car '())
180 @result{} nil
181@end group
182@end example
183@end defun
184
185@defun cdr cons-cell
b6a5263f
CY
186This function returns the value referred to by the second slot of the
187cons cell @var{cons-cell}. In other words, it returns the @sc{cdr} of
188@var{cons-cell}.
189
190As a special case, if @var{cons-cell} is @code{nil}, this function
191returns @code{nil}; therefore, any list is a valid argument. An error
192is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
193
194@example
195@group
196(cdr '(a b c))
197 @result{} (b c)
198@end group
199@group
200(cdr '())
201 @result{} nil
202@end group
203@end example
204@end defun
205
206@defun car-safe object
207This function lets you take the @sc{car} of a cons cell while avoiding
208errors for other data types. It returns the @sc{car} of @var{object} if
209@var{object} is a cons cell, @code{nil} otherwise. This is in contrast
210to @code{car}, which signals an error if @var{object} is not a list.
211
212@example
213@group
214(car-safe @var{object})
215@equiv{}
216(let ((x @var{object}))
217 (if (consp x)
218 (car x)
219 nil))
220@end group
221@end example
222@end defun
223
224@defun cdr-safe object
225This function lets you take the @sc{cdr} of a cons cell while
226avoiding errors for other data types. It returns the @sc{cdr} of
227@var{object} if @var{object} is a cons cell, @code{nil} otherwise.
228This is in contrast to @code{cdr}, which signals an error if
229@var{object} is not a list.
230
231@example
232@group
233(cdr-safe @var{object})
234@equiv{}
235(let ((x @var{object}))
236 (if (consp x)
237 (cdr x)
238 nil))
239@end group
240@end example
241@end defun
242
243@defmac pop listname
244This macro is a way of examining the @sc{car} of a list,
245and taking it off the list, all at once.
246
247It operates on the list which is stored in the symbol @var{listname}.
248It removes this element from the list by setting @var{listname}
249to the @sc{cdr} of its old value---but it also returns the @sc{car}
250of that list, which is the element being removed.
251
252@example
253x
254 @result{} (a b c)
255(pop x)
256 @result{} a
257x
258 @result{} (b c)
259@end example
260@end defmac
261
262@defun nth n list
263@anchor{Definition of nth}
264This function returns the @var{n}th element of @var{list}. Elements
265are numbered starting with zero, so the @sc{car} of @var{list} is
266element number zero. If the length of @var{list} is @var{n} or less,
267the value is @code{nil}.
268
269If @var{n} is negative, @code{nth} returns the first element of
270@var{list}.
271
272@example
273@group
274(nth 2 '(1 2 3 4))
275 @result{} 3
276@end group
277@group
278(nth 10 '(1 2 3 4))
279 @result{} nil
280@end group
281@group
282(nth -3 '(1 2 3 4))
283 @result{} 1
284
285(nth n x) @equiv{} (car (nthcdr n x))
286@end group
287@end example
288
289The function @code{elt} is similar, but applies to any kind of sequence.
290For historical reasons, it takes its arguments in the opposite order.
291@xref{Sequence Functions}.
292@end defun
293
294@defun nthcdr n list
295This function returns the @var{n}th @sc{cdr} of @var{list}. In other
296words, it skips past the first @var{n} links of @var{list} and returns
297what follows.
298
299If @var{n} is zero or negative, @code{nthcdr} returns all of
300@var{list}. If the length of @var{list} is @var{n} or less,
301@code{nthcdr} returns @code{nil}.
302
303@example
304@group
305(nthcdr 1 '(1 2 3 4))
306 @result{} (2 3 4)
307@end group
308@group
309(nthcdr 10 '(1 2 3 4))
310 @result{} nil
311@end group
312@group
313(nthcdr -3 '(1 2 3 4))
314 @result{} (1 2 3 4)
315@end group
316@end example
317@end defun
318
319@defun last list &optional n
320This function returns the last link of @var{list}. The @code{car} of
321this link is the list's last element. If @var{list} is null,
322@code{nil} is returned. If @var{n} is non-@code{nil}, the
323@var{n}th-to-last link is returned instead, or the whole of @var{list}
324if @var{n} is bigger than @var{list}'s length.
325@end defun
326
327@defun safe-length list
328@anchor{Definition of safe-length}
329This function returns the length of @var{list}, with no risk of either
330an error or an infinite loop. It generally returns the number of
331distinct cons cells in the list. However, for circular lists,
332the value is just an upper bound; it is often too large.
333
334If @var{list} is not @code{nil} or a cons cell, @code{safe-length}
335returns 0.
336@end defun
337
338 The most common way to compute the length of a list, when you are not
339worried that it may be circular, is with @code{length}. @xref{Sequence
340Functions}.
341
342@defun caar cons-cell
343This is the same as @code{(car (car @var{cons-cell}))}.
344@end defun
345
346@defun cadr cons-cell
347This is the same as @code{(car (cdr @var{cons-cell}))}
348or @code{(nth 1 @var{cons-cell})}.
349@end defun
350
351@defun cdar cons-cell
352This is the same as @code{(cdr (car @var{cons-cell}))}.
353@end defun
354
355@defun cddr cons-cell
356This is the same as @code{(cdr (cdr @var{cons-cell}))}
357or @code{(nthcdr 2 @var{cons-cell})}.
358@end defun
359
360@defun butlast x &optional n
361This function returns the list @var{x} with the last element,
362or the last @var{n} elements, removed. If @var{n} is greater
363than zero it makes a copy of the list so as not to damage the
364original list. In general, @code{(append (butlast @var{x} @var{n})
365(last @var{x} @var{n}))} will return a list equal to @var{x}.
366@end defun
367
368@defun nbutlast x &optional n
369This is a version of @code{butlast} that works by destructively
370modifying the @code{cdr} of the appropriate element, rather than
371making a copy of the list.
372@end defun
373
374@node Building Lists
375@comment node-name, next, previous, up
376@section Building Cons Cells and Lists
377@cindex cons cells
378@cindex building lists
379
380 Many functions build lists, as lists reside at the very heart of Lisp.
381@code{cons} is the fundamental list-building function; however, it is
382interesting to note that @code{list} is used more times in the source
383code for Emacs than @code{cons}.
384
385@defun cons object1 object2
386This function is the most basic function for building new list
387structure. It creates a new cons cell, making @var{object1} the
388@sc{car}, and @var{object2} the @sc{cdr}. It then returns the new
389cons cell. The arguments @var{object1} and @var{object2} may be any
390Lisp objects, but most often @var{object2} is a list.
391
392@example
393@group
394(cons 1 '(2))
395 @result{} (1 2)
396@end group
397@group
398(cons 1 '())
399 @result{} (1)
400@end group
401@group
402(cons 1 2)
403 @result{} (1 . 2)
404@end group
405@end example
406
407@cindex consing
408@code{cons} is often used to add a single element to the front of a
409list. This is called @dfn{consing the element onto the list}.
410@footnote{There is no strictly equivalent way to add an element to
411the end of a list. You can use @code{(append @var{listname} (list
412@var{newelt}))}, which creates a whole new list by copying @var{listname}
413and adding @var{newelt} to its end. Or you can use @code{(nconc
414@var{listname} (list @var{newelt}))}, which modifies @var{listname}
415by following all the @sc{cdr}s and then replacing the terminating
416@code{nil}. Compare this to adding an element to the beginning of a
417list with @code{cons}, which neither copies nor modifies the list.}
418For example:
419
420@example
421(setq list (cons newelt list))
422@end example
423
424Note that there is no conflict between the variable named @code{list}
425used in this example and the function named @code{list} described below;
426any symbol can serve both purposes.
427@end defun
428
429@defun list &rest objects
430This function creates a list with @var{objects} as its elements. The
431resulting list is always @code{nil}-terminated. If no @var{objects}
432are given, the empty list is returned.
433
434@example
435@group
436(list 1 2 3 4 5)
437 @result{} (1 2 3 4 5)
438@end group
439@group
440(list 1 2 '(3 4 5) 'foo)
441 @result{} (1 2 (3 4 5) foo)
442@end group
443@group
444(list)
445 @result{} nil
446@end group
447@end example
448@end defun
449
450@defun make-list length object
451This function creates a list of @var{length} elements, in which each
452element is @var{object}. Compare @code{make-list} with
453@code{make-string} (@pxref{Creating Strings}).
454
455@example
456@group
457(make-list 3 'pigs)
458 @result{} (pigs pigs pigs)
459@end group
460@group
461(make-list 0 'pigs)
462 @result{} nil
463@end group
464@group
1f403cb9 465(setq l (make-list 3 '(a b)))
b8d4c8d0
GM
466 @result{} ((a b) (a b) (a b))
467(eq (car l) (cadr l))
468 @result{} t
469@end group
470@end example
471@end defun
472
473@defun append &rest sequences
474@cindex copying lists
475This function returns a list containing all the elements of
476@var{sequences}. The @var{sequences} may be lists, vectors,
477bool-vectors, or strings, but the last one should usually be a list.
478All arguments except the last one are copied, so none of the arguments
479is altered. (See @code{nconc} in @ref{Rearrangement}, for a way to join
480lists with no copying.)
481
482More generally, the final argument to @code{append} may be any Lisp
483object. The final argument is not copied or converted; it becomes the
484@sc{cdr} of the last cons cell in the new list. If the final argument
485is itself a list, then its elements become in effect elements of the
486result list. If the final element is not a list, the result is a
487dotted list since its final @sc{cdr} is not @code{nil} as required
488in a true list.
b8d4c8d0
GM
489@end defun
490
491 Here is an example of using @code{append}:
492
493@example
494@group
495(setq trees '(pine oak))
496 @result{} (pine oak)
497(setq more-trees (append '(maple birch) trees))
498 @result{} (maple birch pine oak)
499@end group
500
501@group
502trees
503 @result{} (pine oak)
504more-trees
505 @result{} (maple birch pine oak)
506@end group
507@group
508(eq trees (cdr (cdr more-trees)))
509 @result{} t
510@end group
511@end example
512
513 You can see how @code{append} works by looking at a box diagram. The
514variable @code{trees} is set to the list @code{(pine oak)} and then the
515variable @code{more-trees} is set to the list @code{(maple birch pine
516oak)}. However, the variable @code{trees} continues to refer to the
517original list:
518
519@smallexample
520@group
521more-trees trees
522| |
523| --- --- --- --- -> --- --- --- ---
524 --> | | |--> | | |--> | | |--> | | |--> nil
525 --- --- --- --- --- --- --- ---
526 | | | |
527 | | | |
528 --> maple -->birch --> pine --> oak
529@end group
530@end smallexample
531
532 An empty sequence contributes nothing to the value returned by
533@code{append}. As a consequence of this, a final @code{nil} argument
534forces a copy of the previous argument:
535
536@example
537@group
538trees
539 @result{} (pine oak)
540@end group
541@group
542(setq wood (append trees nil))
543 @result{} (pine oak)
544@end group
545@group
546wood
547 @result{} (pine oak)
548@end group
549@group
550(eq wood trees)
551 @result{} nil
552@end group
553@end example
554
555@noindent
556This once was the usual way to copy a list, before the function
557@code{copy-sequence} was invented. @xref{Sequences Arrays Vectors}.
558
559 Here we show the use of vectors and strings as arguments to @code{append}:
560
561@example
562@group
563(append [a b] "cd" nil)
564 @result{} (a b 99 100)
565@end group
566@end example
567
568 With the help of @code{apply} (@pxref{Calling Functions}), we can append
569all the lists in a list of lists:
570
571@example
572@group
573(apply 'append '((a b c) nil (x y z) nil))
574 @result{} (a b c x y z)
575@end group
576@end example
577
578 If no @var{sequences} are given, @code{nil} is returned:
579
580@example
581@group
582(append)
583 @result{} nil
584@end group
585@end example
586
587 Here are some examples where the final argument is not a list:
588
589@example
590(append '(x y) 'z)
591 @result{} (x y . z)
592(append '(x y) [z])
593 @result{} (x y . [z])
594@end example
595
596@noindent
597The second example shows that when the final argument is a sequence but
598not a list, the sequence's elements do not become elements of the
599resulting list. Instead, the sequence becomes the final @sc{cdr}, like
600any other non-list final argument.
601
602@defun reverse list
603This function creates a new list whose elements are the elements of
604@var{list}, but in reverse order. The original argument @var{list} is
605@emph{not} altered.
606
607@example
608@group
609(setq x '(1 2 3 4))
610 @result{} (1 2 3 4)
611@end group
612@group
613(reverse x)
614 @result{} (4 3 2 1)
615x
616 @result{} (1 2 3 4)
617@end group
618@end example
619@end defun
620
621@defun copy-tree tree &optional vecp
622This function returns a copy of the tree @code{tree}. If @var{tree} is a
623cons cell, this makes a new cons cell with the same @sc{car} and
624@sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
625same way.
626
627Normally, when @var{tree} is anything other than a cons cell,
628@code{copy-tree} simply returns @var{tree}. However, if @var{vecp} is
629non-@code{nil}, it copies vectors too (and operates recursively on
630their elements).
631@end defun
632
633@defun number-sequence from &optional to separation
634This returns a list of numbers starting with @var{from} and
635incrementing by @var{separation}, and ending at or just before
636@var{to}. @var{separation} can be positive or negative and defaults
637to 1. If @var{to} is @code{nil} or numerically equal to @var{from},
638the value is the one-element list @code{(@var{from})}. If @var{to} is
639less than @var{from} with a positive @var{separation}, or greater than
640@var{from} with a negative @var{separation}, the value is @code{nil}
641because those arguments specify an empty sequence.
642
643If @var{separation} is 0 and @var{to} is neither @code{nil} nor
644numerically equal to @var{from}, @code{number-sequence} signals an
645error, since those arguments specify an infinite sequence.
646
647All arguments can be integers or floating point numbers. However,
648floating point arguments can be tricky, because floating point
649arithmetic is inexact. For instance, depending on the machine, it may
650quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
651the one element list @code{(0.4)}, whereas
652@code{(number-sequence 0.4 0.8 0.2)} returns a list with three
653elements. The @var{n}th element of the list is computed by the exact
654formula @code{(+ @var{from} (* @var{n} @var{separation}))}. Thus, if
655one wants to make sure that @var{to} is included in the list, one can
656pass an expression of this exact type for @var{to}. Alternatively,
657one can replace @var{to} with a slightly larger value (or a slightly
658more negative value if @var{separation} is negative).
659
660Some examples:
661
662@example
663(number-sequence 4 9)
664 @result{} (4 5 6 7 8 9)
665(number-sequence 9 4 -1)
666 @result{} (9 8 7 6 5 4)
667(number-sequence 9 4 -2)
668 @result{} (9 7 5)
669(number-sequence 8)
670 @result{} (8)
671(number-sequence 8 5)
672 @result{} nil
673(number-sequence 5 8 -1)
674 @result{} nil
675(number-sequence 1.5 6 2)
676 @result{} (1.5 3.5 5.5)
677@end example
678@end defun
679
680@node List Variables
681@section Modifying List Variables
682
683 These functions, and one macro, provide convenient ways
684to modify a list which is stored in a variable.
685
686@defmac push newelt listname
687This macro provides an alternative way to write
688@code{(setq @var{listname} (cons @var{newelt} @var{listname}))}.
689
690@example
691(setq l '(a b))
692 @result{} (a b)
693(push 'c l)
694 @result{} (c a b)
695l
696 @result{} (c a b)
697@end example
698@end defmac
699
700 Two functions modify lists that are the values of variables.
701
702@defun add-to-list symbol element &optional append compare-fn
703This function sets the variable @var{symbol} by consing @var{element}
704onto the old value, if @var{element} is not already a member of that
705value. It returns the resulting list, whether updated or not. The
706value of @var{symbol} had better be a list already before the call.
707@code{add-to-list} uses @var{compare-fn} to compare @var{element}
708against existing list members; if @var{compare-fn} is @code{nil}, it
709uses @code{equal}.
710
711Normally, if @var{element} is added, it is added to the front of
712@var{symbol}, but if the optional argument @var{append} is
713non-@code{nil}, it is added at the end.
714
715The argument @var{symbol} is not implicitly quoted; @code{add-to-list}
716is an ordinary function, like @code{set} and unlike @code{setq}. Quote
717the argument yourself if that is what you want.
718@end defun
719
720Here's a scenario showing how to use @code{add-to-list}:
721
722@example
723(setq foo '(a b))
724 @result{} (a b)
725
726(add-to-list 'foo 'c) ;; @r{Add @code{c}.}
727 @result{} (c a b)
728
729(add-to-list 'foo 'b) ;; @r{No effect.}
730 @result{} (c a b)
731
732foo ;; @r{@code{foo} was changed.}
733 @result{} (c a b)
734@end example
735
736 An equivalent expression for @code{(add-to-list '@var{var}
737@var{value})} is this:
738
739@example
740(or (member @var{value} @var{var})
741 (setq @var{var} (cons @var{value} @var{var})))
742@end example
743
744@defun add-to-ordered-list symbol element &optional order
745This function sets the variable @var{symbol} by inserting
746@var{element} into the old value, which must be a list, at the
747position specified by @var{order}. If @var{element} is already a
748member of the list, its position in the list is adjusted according
749to @var{order}. Membership is tested using @code{eq}.
750This function returns the resulting list, whether updated or not.
751
752The @var{order} is typically a number (integer or float), and the
753elements of the list are sorted in non-decreasing numerical order.
754
755@var{order} may also be omitted or @code{nil}. Then the numeric order
756of @var{element} stays unchanged if it already has one; otherwise,
757@var{element} has no numeric order. Elements without a numeric list
758order are placed at the end of the list, in no particular order.
759
760Any other value for @var{order} removes the numeric order of @var{element}
761if it already has one; otherwise, it is equivalent to @code{nil}.
762
763The argument @var{symbol} is not implicitly quoted;
764@code{add-to-ordered-list} is an ordinary function, like @code{set}
765and unlike @code{setq}. Quote the argument yourself if that is what
766you want.
767
768The ordering information is stored in a hash table on @var{symbol}'s
769@code{list-order} property.
770@end defun
771
772Here's a scenario showing how to use @code{add-to-ordered-list}:
773
774@example
775(setq foo '())
776 @result{} nil
777
778(add-to-ordered-list 'foo 'a 1) ;; @r{Add @code{a}.}
779 @result{} (a)
780
781(add-to-ordered-list 'foo 'c 3) ;; @r{Add @code{c}.}
782 @result{} (a c)
783
784(add-to-ordered-list 'foo 'b 2) ;; @r{Add @code{b}.}
785 @result{} (a b c)
786
787(add-to-ordered-list 'foo 'b 4) ;; @r{Move @code{b}.}
788 @result{} (a c b)
789
790(add-to-ordered-list 'foo 'd) ;; @r{Append @code{d}.}
791 @result{} (a c b d)
792
793(add-to-ordered-list 'foo 'e) ;; @r{Add @code{e}}.
794 @result{} (a c b e d)
795
796foo ;; @r{@code{foo} was changed.}
797 @result{} (a c b e d)
798@end example
799
800@node Modifying Lists
801@section Modifying Existing List Structure
802@cindex destructive list operations
803
804 You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
805primitives @code{setcar} and @code{setcdr}. We call these ``destructive''
806operations because they change existing list structure.
807
808@cindex CL note---@code{rplaca} vs @code{setcar}
809@quotation
810@findex rplaca
811@findex rplacd
812@b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
813@code{rplacd} to alter list structure; they change structure the same
814way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
815return the cons cell while @code{setcar} and @code{setcdr} return the
816new @sc{car} or @sc{cdr}.
817@end quotation
818
819@menu
820* Setcar:: Replacing an element in a list.
821* Setcdr:: Replacing part of the list backbone.
822 This can be used to remove or add elements.
823* Rearrangement:: Reordering the elements in a list; combining lists.
824@end menu
825
826@node Setcar
827@subsection Altering List Elements with @code{setcar}
828
829 Changing the @sc{car} of a cons cell is done with @code{setcar}. When
830used on a list, @code{setcar} replaces one element of a list with a
831different element.
832
833@defun setcar cons object
834This function stores @var{object} as the new @sc{car} of @var{cons},
835replacing its previous @sc{car}. In other words, it changes the
836@sc{car} slot of @var{cons} to refer to @var{object}. It returns the
837value @var{object}. For example:
838
839@example
840@group
841(setq x '(1 2))
842 @result{} (1 2)
843@end group
844@group
845(setcar x 4)
846 @result{} 4
847@end group
848@group
849x
850 @result{} (4 2)
851@end group
852@end example
853@end defun
854
855 When a cons cell is part of the shared structure of several lists,
856storing a new @sc{car} into the cons changes one element of each of
857these lists. Here is an example:
858
859@example
860@group
861;; @r{Create two lists that are partly shared.}
862(setq x1 '(a b c))
863 @result{} (a b c)
864(setq x2 (cons 'z (cdr x1)))
865 @result{} (z b c)
866@end group
867
868@group
869;; @r{Replace the @sc{car} of a shared link.}
870(setcar (cdr x1) 'foo)
871 @result{} foo
872x1 ; @r{Both lists are changed.}
873 @result{} (a foo c)
874x2
875 @result{} (z foo c)
876@end group
877
878@group
879;; @r{Replace the @sc{car} of a link that is not shared.}
880(setcar x1 'baz)
881 @result{} baz
882x1 ; @r{Only one list is changed.}
883 @result{} (baz foo c)
884x2
885 @result{} (z foo c)
886@end group
887@end example
888
889 Here is a graphical depiction of the shared structure of the two lists
890in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
891changes them both:
892
893@example
894@group
895 --- --- --- --- --- ---
896x1---> | | |----> | | |--> | | |--> nil
897 --- --- --- --- --- ---
898 | --> | |
899 | | | |
900 --> a | --> b --> c
901 |
902 --- --- |
903x2--> | | |--
904 --- ---
905 |
906 |
907 --> z
908@end group
909@end example
910
911 Here is an alternative form of box diagram, showing the same relationship:
912
913@example
914@group
915x1:
916 -------------- -------------- --------------
917| car | cdr | | car | cdr | | car | cdr |
918| a | o------->| b | o------->| c | nil |
919| | | -->| | | | | |
920 -------------- | -------------- --------------
921 |
922x2: |
923 -------------- |
924| car | cdr | |
925| z | o----
926| | |
927 --------------
928@end group
929@end example
930
931@node Setcdr
932@subsection Altering the CDR of a List
933
934 The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
935
936@defun setcdr cons object
937This function stores @var{object} as the new @sc{cdr} of @var{cons},
938replacing its previous @sc{cdr}. In other words, it changes the
939@sc{cdr} slot of @var{cons} to refer to @var{object}. It returns the
940value @var{object}.
941@end defun
942
943 Here is an example of replacing the @sc{cdr} of a list with a
944different list. All but the first element of the list are removed in
945favor of a different sequence of elements. The first element is
946unchanged, because it resides in the @sc{car} of the list, and is not
947reached via the @sc{cdr}.
948
949@example
950@group
951(setq x '(1 2 3))
952 @result{} (1 2 3)
953@end group
954@group
955(setcdr x '(4))
956 @result{} (4)
957@end group
958@group
959x
960 @result{} (1 4)
961@end group
962@end example
963
964 You can delete elements from the middle of a list by altering the
965@sc{cdr}s of the cons cells in the list. For example, here we delete
966the second element, @code{b}, from the list @code{(a b c)}, by changing
967the @sc{cdr} of the first cons cell:
968
969@example
970@group
971(setq x1 '(a b c))
972 @result{} (a b c)
973(setcdr x1 (cdr (cdr x1)))
974 @result{} (c)
975x1
976 @result{} (a c)
977@end group
978@end example
979
980 Here is the result in box notation:
981
982@smallexample
983@group
984 --------------------
985 | |
986 -------------- | -------------- | --------------
987| car | cdr | | | car | cdr | -->| car | cdr |
988| a | o----- | b | o-------->| c | nil |
989| | | | | | | | |
990 -------------- -------------- --------------
991@end group
992@end smallexample
993
994@noindent
995The second cons cell, which previously held the element @code{b}, still
996exists and its @sc{car} is still @code{b}, but it no longer forms part
997of this list.
998
999 It is equally easy to insert a new element by changing @sc{cdr}s:
1000
1001@example
1002@group
1003(setq x1 '(a b c))
1004 @result{} (a b c)
1005(setcdr x1 (cons 'd (cdr x1)))
1006 @result{} (d b c)
1007x1
1008 @result{} (a d b c)
1009@end group
1010@end example
1011
1012 Here is this result in box notation:
1013
1014@smallexample
1015@group
1016 -------------- ------------- -------------
1017| car | cdr | | car | cdr | | car | cdr |
1018| a | o | -->| b | o------->| c | nil |
1019| | | | | | | | | | |
1020 --------- | -- | ------------- -------------
1021 | |
1022 ----- --------
1023 | |
1024 | --------------- |
1025 | | car | cdr | |
1026 -->| d | o------
1027 | | |
1028 ---------------
1029@end group
1030@end smallexample
1031
1032@node Rearrangement
1033@subsection Functions that Rearrange Lists
1034@cindex rearrangement of lists
1035@cindex modification of lists
1036
1037 Here are some functions that rearrange lists ``destructively'' by
1038modifying the @sc{cdr}s of their component cons cells. We call these
1039functions ``destructive'' because they chew up the original lists passed
1040to them as arguments, relinking their cons cells to form a new list that
1041is the returned value.
1042
1043@ifnottex
1044 See @code{delq}, in @ref{Sets And Lists}, for another function
1045that modifies cons cells.
1046@end ifnottex
1047@iftex
1048 The function @code{delq} in the following section is another example
1049of destructive list manipulation.
1050@end iftex
1051
1052@defun nconc &rest lists
1053@cindex concatenating lists
1054@cindex joining lists
1055This function returns a list containing all the elements of @var{lists}.
1056Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
1057@emph{not} copied. Instead, the last @sc{cdr} of each of the
1058@var{lists} is changed to refer to the following list. The last of the
1059@var{lists} is not altered. For example:
1060
1061@example
1062@group
1063(setq x '(1 2 3))
1064 @result{} (1 2 3)
1065@end group
1066@group
1067(nconc x '(4 5))
1068 @result{} (1 2 3 4 5)
1069@end group
1070@group
1071x
1072 @result{} (1 2 3 4 5)
1073@end group
1074@end example
1075
1076 Since the last argument of @code{nconc} is not itself modified, it is
1077reasonable to use a constant list, such as @code{'(4 5)}, as in the
1078above example. For the same reason, the last argument need not be a
1079list:
1080
1081@example
1082@group
1083(setq x '(1 2 3))
1084 @result{} (1 2 3)
1085@end group
1086@group
1087(nconc x 'z)
1088 @result{} (1 2 3 . z)
1089@end group
1090@group
1091x
1092 @result{} (1 2 3 . z)
1093@end group
1094@end example
1095
1096However, the other arguments (all but the last) must be lists.
1097
1098A common pitfall is to use a quoted constant list as a non-last
1099argument to @code{nconc}. If you do this, your program will change
1100each time you run it! Here is what happens:
1101
1102@smallexample
1103@group
1104(defun add-foo (x) ; @r{We want this function to add}
1105 (nconc '(foo) x)) ; @r{@code{foo} to the front of its arg.}
1106@end group
1107
1108@group
1109(symbol-function 'add-foo)
1110 @result{} (lambda (x) (nconc (quote (foo)) x))
1111@end group
1112
1113@group
1114(setq xx (add-foo '(1 2))) ; @r{It seems to work.}
1115 @result{} (foo 1 2)
1116@end group
1117@group
1118(setq xy (add-foo '(3 4))) ; @r{What happened?}
1119 @result{} (foo 1 2 3 4)
1120@end group
1121@group
1122(eq xx xy)
1123 @result{} t
1124@end group
1125
1126@group
1127(symbol-function 'add-foo)
1128 @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
1129@end group
1130@end smallexample
1131@end defun
1132
1133@defun nreverse list
1134@cindex reversing a list
1135 This function reverses the order of the elements of @var{list}.
1136Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1137the @sc{cdr}s in the cons cells forming the list. The cons cell that
1138used to be the last one in @var{list} becomes the first cons cell of the
1139value.
1140
1141 For example:
1142
1143@example
1144@group
1145(setq x '(a b c))
1146 @result{} (a b c)
1147@end group
1148@group
1149x
1150 @result{} (a b c)
1151(nreverse x)
1152 @result{} (c b a)
1153@end group
1154@group
1155;; @r{The cons cell that was first is now last.}
1156x
1157 @result{} (a)
1158@end group
1159@end example
1160
1161 To avoid confusion, we usually store the result of @code{nreverse}
1162back in the same variable which held the original list:
1163
1164@example
1165(setq x (nreverse x))
1166@end example
1167
1168 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1169presented graphically:
1170
1171@smallexample
1172@group
1173@r{Original list head:} @r{Reversed list:}
1174 ------------- ------------- ------------
1175| car | cdr | | car | cdr | | car | cdr |
1176| a | nil |<-- | b | o |<-- | c | o |
1177| | | | | | | | | | | | |
1178 ------------- | --------- | - | -------- | -
1179 | | | |
1180 ------------- ------------
1181@end group
1182@end smallexample
1183@end defun
1184
1185@defun sort list predicate
1186@cindex stable sort
1187@cindex sorting lists
1188This function sorts @var{list} stably, though destructively, and
1189returns the sorted list. It compares elements using @var{predicate}. A
1190stable sort is one in which elements with equal sort keys maintain their
1191relative order before and after the sort. Stability is important when
1192successive sorts are used to order elements according to different
1193criteria.
1194
1195The argument @var{predicate} must be a function that accepts two
1196arguments. It is called with two elements of @var{list}. To get an
1197increasing order sort, the @var{predicate} should return non-@code{nil} if the
1198first element is ``less than'' the second, or @code{nil} if not.
1199
1200The comparison function @var{predicate} must give reliable results for
1201any given pair of arguments, at least within a single call to
1202@code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
1203less than @var{b}, @var{b} must not be less than @var{a}. It must be
1204@dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1205is less than @var{c}, then @var{a} must be less than @var{c}. If you
1206use a comparison function which does not meet these requirements, the
1207result of @code{sort} is unpredictable.
1208
1209The destructive aspect of @code{sort} is that it rearranges the cons
1210cells forming @var{list} by changing @sc{cdr}s. A nondestructive sort
1211function would create new cons cells to store the elements in their
1212sorted order. If you wish to make a sorted copy without destroying the
1213original, copy it first with @code{copy-sequence} and then sort.
1214
1215Sorting does not change the @sc{car}s of the cons cells in @var{list};
1216the cons cell that originally contained the element @code{a} in
1217@var{list} still has @code{a} in its @sc{car} after sorting, but it now
1218appears in a different position in the list due to the change of
1219@sc{cdr}s. For example:
1220
1221@example
1222@group
1223(setq nums '(1 3 2 6 5 4 0))
1224 @result{} (1 3 2 6 5 4 0)
1225@end group
1226@group
1227(sort nums '<)
1228 @result{} (0 1 2 3 4 5 6)
1229@end group
1230@group
1231nums
1232 @result{} (1 2 3 4 5 6)
1233@end group
1234@end example
1235
1236@noindent
1237@strong{Warning}: Note that the list in @code{nums} no longer contains
12380; this is the same cons cell that it was before, but it is no longer
1239the first one in the list. Don't assume a variable that formerly held
1240the argument now holds the entire sorted list! Instead, save the result
1241of @code{sort} and use that. Most often we store the result back into
1242the variable that held the original list:
1243
1244@example
1245(setq nums (sort nums '<))
1246@end example
1247
1248@xref{Sorting}, for more functions that perform sorting.
1249See @code{documentation} in @ref{Accessing Documentation}, for a
1250useful example of @code{sort}.
1251@end defun
1252
1253@node Sets And Lists
1254@section Using Lists as Sets
1255@cindex lists as sets
1256@cindex sets
1257
1258 A list can represent an unordered mathematical set---simply consider a
1259value an element of a set if it appears in the list, and ignore the
1260order of the list. To form the union of two sets, use @code{append} (as
1261long as you don't mind having duplicate elements). You can remove
1262@code{equal} duplicates using @code{delete-dups}. Other useful
1263functions for sets include @code{memq} and @code{delq}, and their
1264@code{equal} versions, @code{member} and @code{delete}.
1265
1266@cindex CL note---lack @code{union}, @code{intersection}
1267@quotation
1268@b{Common Lisp note:} Common Lisp has functions @code{union} (which
bc8410af 1269avoids duplicate elements) and @code{intersection} for set operations.
b28c06e8 1270Although standard GNU Emacs Lisp does not have them, the @file{cl}
bc8410af 1271library provides versions. @inforef{Top, Overview, cl}.
b8d4c8d0
GM
1272@end quotation
1273
1274@defun memq object list
1275@cindex membership in a list
1276This function tests to see whether @var{object} is a member of
1277@var{list}. If it is, @code{memq} returns a list starting with the
1278first occurrence of @var{object}. Otherwise, it returns @code{nil}.
1279The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1280compare @var{object} against the elements of the list. For example:
1281
1282@example
1283@group
1284(memq 'b '(a b c b a))
1285 @result{} (b c b a)
1286@end group
1287@group
1288(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1289 @result{} nil
1290@end group
1291@end example
1292@end defun
1293
1294@defun delq object list
1295@cindex deleting list elements
1296This function destructively removes all elements @code{eq} to
1297@var{object} from @var{list}. The letter @samp{q} in @code{delq} says
1298that it uses @code{eq} to compare @var{object} against the elements of
1299the list, like @code{memq} and @code{remq}.
1300@end defun
1301
1302When @code{delq} deletes elements from the front of the list, it does so
1303simply by advancing down the list and returning a sublist that starts
1304after those elements:
1305
1306@example
1307@group
1308(delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1309@end group
1310@end example
1311
1312When an element to be deleted appears in the middle of the list,
1313removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1314
1315@example
1316@group
1317(setq sample-list '(a b c (4)))
1318 @result{} (a b c (4))
1319@end group
1320@group
1321(delq 'a sample-list)
1322 @result{} (b c (4))
1323@end group
1324@group
1325sample-list
1326 @result{} (a b c (4))
1327@end group
1328@group
1329(delq 'c sample-list)
1330 @result{} (a b (4))
1331@end group
1332@group
1333sample-list
1334 @result{} (a b (4))
1335@end group
1336@end example
1337
1338Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1339splice out the third element, but @code{(delq 'a sample-list)} does not
1340splice anything---it just returns a shorter list. Don't assume that a
1341variable which formerly held the argument @var{list} now has fewer
1342elements, or that it still holds the original list! Instead, save the
1343result of @code{delq} and use that. Most often we store the result back
1344into the variable that held the original list:
1345
1346@example
1347(setq flowers (delq 'rose flowers))
1348@end example
1349
1350In the following example, the @code{(4)} that @code{delq} attempts to match
1351and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1352
1353@example
1354@group
1355(delq '(4) sample-list)
1356 @result{} (a c (4))
1357@end group
049bcbcb 1358@end example
b8d4c8d0
GM
1359
1360If you want to delete elements that are @code{equal} to a given value,
1361use @code{delete} (see below).
b8d4c8d0
GM
1362
1363@defun remq object list
1364This function returns a copy of @var{list}, with all elements removed
1365which are @code{eq} to @var{object}. The letter @samp{q} in @code{remq}
1366says that it uses @code{eq} to compare @var{object} against the elements
1367of @code{list}.
1368
1369@example
1370@group
1371(setq sample-list '(a b c a b c))
1372 @result{} (a b c a b c)
1373@end group
1374@group
1375(remq 'a sample-list)
1376 @result{} (b c b c)
1377@end group
1378@group
1379sample-list
1380 @result{} (a b c a b c)
1381@end group
1382@end example
1383@end defun
1384
1385@defun memql object list
1386The function @code{memql} tests to see whether @var{object} is a member
1387of @var{list}, comparing members with @var{object} using @code{eql},
1388so floating point elements are compared by value.
1389If @var{object} is a member, @code{memql} returns a list starting with
1390its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1391
1392Compare this with @code{memq}:
1393
1394@example
1395@group
1396(memql 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are @code{eql}.}
1397 @result{} (1.2 1.3)
1398@end group
1399@group
1400(memq 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are not @code{eq}.}
1401 @result{} nil
1402@end group
1403@end example
1404@end defun
1405
1406The following three functions are like @code{memq}, @code{delq} and
1407@code{remq}, but use @code{equal} rather than @code{eq} to compare
1408elements. @xref{Equality Predicates}.
1409
1410@defun member object list
1411The function @code{member} tests to see whether @var{object} is a member
1412of @var{list}, comparing members with @var{object} using @code{equal}.
1413If @var{object} is a member, @code{member} returns a list starting with
1414its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1415
1416Compare this with @code{memq}:
1417
1418@example
1419@group
1420(member '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1421 @result{} ((2))
1422@end group
1423@group
1424(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1425 @result{} nil
1426@end group
1427@group
1428;; @r{Two strings with the same contents are @code{equal}.}
1429(member "foo" '("foo" "bar"))
1430 @result{} ("foo" "bar")
1431@end group
1432@end example
1433@end defun
1434
1435@defun delete object sequence
1436If @code{sequence} is a list, this function destructively removes all
1437elements @code{equal} to @var{object} from @var{sequence}. For lists,
1438@code{delete} is to @code{delq} as @code{member} is to @code{memq}: it
1439uses @code{equal} to compare elements with @var{object}, like
1440@code{member}; when it finds an element that matches, it cuts the
1441element out just as @code{delq} would.
1442
1443If @code{sequence} is a vector or string, @code{delete} returns a copy
1444of @code{sequence} with all elements @code{equal} to @code{object}
1445removed.
1446
1447For example:
1448
1449@example
1450@group
1451(setq l '((2) (1) (2)))
1452(delete '(2) l)
1453 @result{} ((1))
1454l
1455 @result{} ((2) (1))
1456;; @r{If you want to change @code{l} reliably,}
1457;; @r{write @code{(setq l (delete elt l))}.}
1458@end group
1459@group
1460(setq l '((2) (1) (2)))
1461(delete '(1) l)
1462 @result{} ((2) (2))
1463l
1464 @result{} ((2) (2))
1465;; @r{In this case, it makes no difference whether you set @code{l},}
1466;; @r{but you should do so for the sake of the other case.}
1467@end group
1468@group
1469(delete '(2) [(2) (1) (2)])
1470 @result{} [(1)]
1471@end group
1472@end example
1473@end defun
1474
1475@defun remove object sequence
1476This function is the non-destructive counterpart of @code{delete}. It
1477returns a copy of @code{sequence}, a list, vector, or string, with
1478elements @code{equal} to @code{object} removed. For example:
1479
1480@example
1481@group
1482(remove '(2) '((2) (1) (2)))
1483 @result{} ((1))
1484@end group
1485@group
1486(remove '(2) [(2) (1) (2)])
1487 @result{} [(1)]
1488@end group
1489@end example
1490@end defun
1491
1492@quotation
1493@b{Common Lisp note:} The functions @code{member}, @code{delete} and
1494@code{remove} in GNU Emacs Lisp are derived from Maclisp, not Common
1495Lisp. The Common Lisp versions do not use @code{equal} to compare
1496elements.
1497@end quotation
1498
1499@defun member-ignore-case object list
1500This function is like @code{member}, except that @var{object} should
1501be a string and that it ignores differences in letter-case and text
1502representation: upper-case and lower-case letters are treated as
1503equal, and unibyte strings are converted to multibyte prior to
1504comparison.
1505@end defun
1506
1507@defun delete-dups list
1508This function destructively removes all @code{equal} duplicates from
1509@var{list}, stores the result in @var{list} and returns it. Of
1510several @code{equal} occurrences of an element in @var{list},
1511@code{delete-dups} keeps the first one.
1512@end defun
1513
1514 See also the function @code{add-to-list}, in @ref{List Variables},
1515for a way to add an element to a list stored in a variable and used as a
1516set.
1517
1518@node Association Lists
1519@section Association Lists
1520@cindex association list
1521@cindex alist
1522
1523 An @dfn{association list}, or @dfn{alist} for short, records a mapping
1524from keys to values. It is a list of cons cells called
1525@dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
1526@sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1527is not related to the term ``key sequence''; it means a value used to
1528look up an item in a table. In this case, the table is the alist, and
1529the alist associations are the items.}
1530
1531 Here is an example of an alist. The key @code{pine} is associated with
1532the value @code{cones}; the key @code{oak} is associated with
1533@code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1534
1535@example
1536@group
1537((pine . cones)
1538 (oak . acorns)
1539 (maple . seeds))
1540@end group
1541@end example
1542
1543 Both the values and the keys in an alist may be any Lisp objects.
1544For example, in the following alist, the symbol @code{a} is
1545associated with the number @code{1}, and the string @code{"b"} is
1546associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1547the alist element:
1548
1549@example
1550((a . 1) ("b" 2 3))
1551@end example
1552
1553 Sometimes it is better to design an alist to store the associated
1554value in the @sc{car} of the @sc{cdr} of the element. Here is an
1555example of such an alist:
1556
1557@example
1558((rose red) (lily white) (buttercup yellow))
1559@end example
1560
1561@noindent
1562Here we regard @code{red} as the value associated with @code{rose}. One
1563advantage of this kind of alist is that you can store other related
1564information---even a list of other items---in the @sc{cdr} of the
1565@sc{cdr}. One disadvantage is that you cannot use @code{rassq} (see
1566below) to find the element containing a given value. When neither of
1567these considerations is important, the choice is a matter of taste, as
1568long as you are consistent about it for any given alist.
1569
1570 The same alist shown above could be regarded as having the
1571associated value in the @sc{cdr} of the element; the value associated
1572with @code{rose} would be the list @code{(red)}.
1573
1574 Association lists are often used to record information that you might
1575otherwise keep on a stack, since new associations may be added easily to
1576the front of the list. When searching an association list for an
1577association with a given key, the first one found is returned, if there
1578is more than one.
1579
1580 In Emacs Lisp, it is @emph{not} an error if an element of an
1581association list is not a cons cell. The alist search functions simply
1582ignore such elements. Many other versions of Lisp signal errors in such
1583cases.
1584
1585 Note that property lists are similar to association lists in several
1586respects. A property list behaves like an association list in which
1587each key can occur only once. @xref{Property Lists}, for a comparison
1588of property lists and association lists.
1589
1590@defun assoc key alist
1591This function returns the first association for @var{key} in
1592@var{alist}, comparing @var{key} against the alist elements using
1593@code{equal} (@pxref{Equality Predicates}). It returns @code{nil} if no
1594association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1595For example:
1596
1597@smallexample
1598(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1599 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1600(assoc 'oak trees)
1601 @result{} (oak . acorns)
1602(cdr (assoc 'oak trees))
1603 @result{} acorns
1604(assoc 'birch trees)
1605 @result{} nil
1606@end smallexample
1607
1608Here is another example, in which the keys and values are not symbols:
1609
1610@smallexample
1611(setq needles-per-cluster
1612 '((2 "Austrian Pine" "Red Pine")
1613 (3 "Pitch Pine")
1614 (5 "White Pine")))
1615
1616(cdr (assoc 3 needles-per-cluster))
1617 @result{} ("Pitch Pine")
1618(cdr (assoc 2 needles-per-cluster))
1619 @result{} ("Austrian Pine" "Red Pine")
1620@end smallexample
1621@end defun
1622
1623 The function @code{assoc-string} is much like @code{assoc} except
1624that it ignores certain differences between strings. @xref{Text
1625Comparison}.
1626
1627@defun rassoc value alist
1628This function returns the first association with value @var{value} in
1629@var{alist}. It returns @code{nil} if no association in @var{alist} has
1630a @sc{cdr} @code{equal} to @var{value}.
1631
1632@code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1633each @var{alist} association instead of the @sc{car}. You can think of
1634this as ``reverse @code{assoc},'' finding the key for a given value.
1635@end defun
1636
1637@defun assq key alist
1638This function is like @code{assoc} in that it returns the first
1639association for @var{key} in @var{alist}, but it makes the comparison
1640using @code{eq} instead of @code{equal}. @code{assq} returns @code{nil}
1641if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1642This function is used more often than @code{assoc}, since @code{eq} is
1643faster than @code{equal} and most alists use symbols as keys.
1644@xref{Equality Predicates}.
1645
1646@smallexample
1647(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1648 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1649(assq 'pine trees)
1650 @result{} (pine . cones)
1651@end smallexample
1652
1653On the other hand, @code{assq} is not usually useful in alists where the
1654keys may not be symbols:
1655
1656@smallexample
1657(setq leaves
1658 '(("simple leaves" . oak)
1659 ("compound leaves" . horsechestnut)))
1660
1661(assq "simple leaves" leaves)
1662 @result{} nil
1663(assoc "simple leaves" leaves)
1664 @result{} ("simple leaves" . oak)
1665@end smallexample
1666@end defun
1667
1668@defun rassq value alist
1669This function returns the first association with value @var{value} in
1670@var{alist}. It returns @code{nil} if no association in @var{alist} has
1671a @sc{cdr} @code{eq} to @var{value}.
1672
1673@code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1674each @var{alist} association instead of the @sc{car}. You can think of
1675this as ``reverse @code{assq},'' finding the key for a given value.
1676
1677For example:
1678
1679@smallexample
1680(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1681
1682(rassq 'acorns trees)
1683 @result{} (oak . acorns)
1684(rassq 'spores trees)
1685 @result{} nil
1686@end smallexample
1687
1688@code{rassq} cannot search for a value stored in the @sc{car}
1689of the @sc{cdr} of an element:
1690
1691@smallexample
1692(setq colors '((rose red) (lily white) (buttercup yellow)))
1693
1694(rassq 'white colors)
1695 @result{} nil
1696@end smallexample
1697
1698In this case, the @sc{cdr} of the association @code{(lily white)} is not
1699the symbol @code{white}, but rather the list @code{(white)}. This
1700becomes clearer if the association is written in dotted pair notation:
1701
1702@smallexample
1703(lily white) @equiv{} (lily . (white))
1704@end smallexample
1705@end defun
1706
1707@defun assoc-default key alist &optional test default
1708This function searches @var{alist} for a match for @var{key}. For each
1709element of @var{alist}, it compares the element (if it is an atom) or
1710the element's @sc{car} (if it is a cons) against @var{key}, by calling
1711@var{test} with two arguments: the element or its @sc{car}, and
1712@var{key}. The arguments are passed in that order so that you can get
1713useful results using @code{string-match} with an alist that contains
1714regular expressions (@pxref{Regexp Search}). If @var{test} is omitted
1715or @code{nil}, @code{equal} is used for comparison.
1716
1717If an alist element matches @var{key} by this criterion,
1718then @code{assoc-default} returns a value based on this element.
1719If the element is a cons, then the value is the element's @sc{cdr}.
1720Otherwise, the return value is @var{default}.
1721
1722If no alist element matches @var{key}, @code{assoc-default} returns
1723@code{nil}.
1724@end defun
1725
1726@defun copy-alist alist
1727@cindex copying alists
1728This function returns a two-level deep copy of @var{alist}: it creates a
1729new copy of each association, so that you can alter the associations of
1730the new alist without changing the old one.
1731
1732@smallexample
1733@group
1734(setq needles-per-cluster
1735 '((2 . ("Austrian Pine" "Red Pine"))
1736 (3 . ("Pitch Pine"))
1737@end group
1738 (5 . ("White Pine"))))
1739@result{}
1740((2 "Austrian Pine" "Red Pine")
1741 (3 "Pitch Pine")
1742 (5 "White Pine"))
1743
1744(setq copy (copy-alist needles-per-cluster))
1745@result{}
1746((2 "Austrian Pine" "Red Pine")
1747 (3 "Pitch Pine")
1748 (5 "White Pine"))
1749
1750(eq needles-per-cluster copy)
1751 @result{} nil
1752(equal needles-per-cluster copy)
1753 @result{} t
1754(eq (car needles-per-cluster) (car copy))
1755 @result{} nil
1756(cdr (car (cdr needles-per-cluster)))
1757 @result{} ("Pitch Pine")
1758@group
1759(eq (cdr (car (cdr needles-per-cluster)))
1760 (cdr (car (cdr copy))))
1761 @result{} t
1762@end group
1763@end smallexample
1764
1765 This example shows how @code{copy-alist} makes it possible to change
1766the associations of one copy without affecting the other:
1767
1768@smallexample
1769@group
1770(setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1771(cdr (assq 3 needles-per-cluster))
1772 @result{} ("Pitch Pine")
1773@end group
1774@end smallexample
1775@end defun
1776
1777@defun assq-delete-all key alist
1778This function deletes from @var{alist} all the elements whose @sc{car}
1779is @code{eq} to @var{key}, much as if you used @code{delq} to delete
1780each such element one by one. It returns the shortened alist, and
1781often modifies the original list structure of @var{alist}. For
1782correct results, use the return value of @code{assq-delete-all} rather
1783than looking at the saved value of @var{alist}.
1784
1785@example
1786(setq alist '((foo 1) (bar 2) (foo 3) (lose 4)))
1787 @result{} ((foo 1) (bar 2) (foo 3) (lose 4))
1788(assq-delete-all 'foo alist)
1789 @result{} ((bar 2) (lose 4))
1790alist
1791 @result{} ((foo 1) (bar 2) (lose 4))
1792@end example
1793@end defun
1794
1795@defun rassq-delete-all value alist
1796This function deletes from @var{alist} all the elements whose @sc{cdr}
1797is @code{eq} to @var{value}. It returns the shortened alist, and
1798often modifies the original list structure of @var{alist}.
1799@code{rassq-delete-all} is like @code{assq-delete-all} except that it
1800compares the @sc{cdr} of each @var{alist} association instead of the
1801@sc{car}.
1802@end defun
1803
1804@node Rings
1805@section Managing a Fixed-Size Ring of Objects
1806
1807@cindex ring data structure
1808 This section describes functions for operating on rings. A
1809@dfn{ring} is a fixed-size data structure that supports insertion,
1810deletion, rotation, and modulo-indexed reference and traversal.
1811
1812@defun make-ring size
1813This returns a new ring capable of holding @var{size} objects.
1814@var{size} should be an integer.
1815@end defun
1816
1817@defun ring-p object
1818This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
1819@end defun
1820
1821@defun ring-size ring
1822This returns the maximum capacity of the @var{ring}.
1823@end defun
1824
1825@defun ring-length ring
1826This returns the number of objects that @var{ring} currently contains.
1827The value will never exceed that returned by @code{ring-size}.
1828@end defun
1829
1830@defun ring-elements ring
1831This returns a list of the objects in @var{ring}, in order, newest first.
1832@end defun
1833
1834@defun ring-copy ring
1835This returns a new ring which is a copy of @var{ring}.
1836The new ring contains the same (@code{eq}) objects as @var{ring}.
1837@end defun
1838
1839@defun ring-empty-p ring
1840This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
1841@end defun
1842
1843 The newest element in the ring always has index 0. Higher indices
1844correspond to older elements. Indices are computed modulo the ring
1845length. Index @minus{}1 corresponds to the oldest element, @minus{}2
1846to the next-oldest, and so forth.
1847
1848@defun ring-ref ring index
1849This returns the object in @var{ring} found at index @var{index}.
1850@var{index} may be negative or greater than the ring length. If
1851@var{ring} is empty, @code{ring-ref} signals an error.
1852@end defun
1853
1854@defun ring-insert ring object
1855This inserts @var{object} into @var{ring}, making it the newest
1856element, and returns @var{object}.
1857
1858If the ring is full, insertion removes the oldest element to
1859make room for the new element.
1860@end defun
1861
1862@defun ring-remove ring &optional index
1863Remove an object from @var{ring}, and return that object. The
1864argument @var{index} specifies which item to remove; if it is
1865@code{nil}, that means to remove the oldest item. If @var{ring} is
1866empty, @code{ring-remove} signals an error.
1867@end defun
1868
1869@defun ring-insert-at-beginning ring object
1870This inserts @var{object} into @var{ring}, treating it as the oldest
1871element. The return value is not significant.
1872
1873If the ring is full, this function removes the newest element to make
1874room for the inserted element.
1875@end defun
1876
1877@cindex fifo data structure
1878 If you are careful not to exceed the ring size, you can
1879use the ring as a first-in-first-out queue. For example:
1880
1881@lisp
1882(let ((fifo (make-ring 5)))
1883 (mapc (lambda (obj) (ring-insert fifo obj))
1884 '(0 one "two"))
1885 (list (ring-remove fifo) t
1886 (ring-remove fifo) t
1887 (ring-remove fifo)))
1888 @result{} (0 t one t "two")
1889@end lisp