Style fixes for floating-point doc.
[bpt/emacs.git] / doc / lispref / lists.texi
CommitLineData
b8d4c8d0
GM
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
ba318903 3@c Copyright (C) 1990-1995, 1998-1999, 2001-2014 Free Software
ab422c4d 4@c Foundation, Inc.
b8d4c8d0 5@c See the file elisp.texi for copying conditions.
ecc6530d 6@node Lists
b8d4c8d0
GM
7@chapter Lists
8@cindex lists
9@cindex element (of list)
10
11 A @dfn{list} represents a sequence of zero or more elements (which may
12be any Lisp objects). The important difference between lists and
13vectors is that two or more lists can share part of their structure; in
14addition, you can insert or delete elements in a list without copying
15the whole list.
16
17@menu
18* Cons Cells:: How lists are made out of cons cells.
19* List-related Predicates:: Is this object a list? Comparing two lists.
20* List Elements:: Extracting the pieces of a list.
21* Building Lists:: Creating list structure.
22* List Variables:: Modifying lists stored in variables.
23* Modifying Lists:: Storing new pieces into an existing list.
24* Sets And Lists:: A list can represent a finite mathematical set.
25* Association Lists:: A list can represent a finite relation or mapping.
f02f19bd 26* Property Lists:: A list of paired elements.
b8d4c8d0
GM
27@end menu
28
29@node Cons Cells
30@section Lists and Cons Cells
31@cindex lists and cons cells
32
33 Lists in Lisp are not a primitive data type; they are built up from
31cbea1d
CY
34@dfn{cons cells} (@pxref{Cons Cell Type}). A cons cell is a data
35object that represents an ordered pair. That is, it has two slots,
36and each slot @dfn{holds}, or @dfn{refers to}, some Lisp object. One
37slot is known as the @sc{car}, and the other is known as the @sc{cdr}.
38(These names are traditional; see @ref{Cons Cell Type}.) @sc{cdr} is
16152b76 39pronounced ``could-er''.
b8d4c8d0
GM
40
41 We say that ``the @sc{car} of this cons cell is'' whatever object
42its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
43
16152b76 44 A list is a series of cons cells ``chained together'', so that each
31cbea1d
CY
45cell refers to the next one. There is one cons cell for each element
46of the list. By convention, the @sc{car}s of the cons cells hold the
47elements of the list, and the @sc{cdr}s are used to chain the list
48(this asymmetry between @sc{car} and @sc{cdr} is entirely a matter of
49convention; at the level of cons cells, the @sc{car} and @sc{cdr}
50slots have similar properties). Hence, the @sc{cdr} slot of each cons
51cell in a list refers to the following cons cell.
b8d4c8d0
GM
52
53@cindex true list
31cbea1d
CY
54 Also by convention, the @sc{cdr} of the last cons cell in a list is
55@code{nil}. We call such a @code{nil}-terminated structure a
56@dfn{true list}. In Emacs Lisp, the symbol @code{nil} is both a
57symbol and a list with no elements. For convenience, the symbol
b8d4c8d0 58@code{nil} is considered to have @code{nil} as its @sc{cdr} (and also
31cbea1d
CY
59as its @sc{car}).
60
61 Hence, the @sc{cdr} of a true list is always a true list. The
62@sc{cdr} of a nonempty true list is a true list containing all the
63elements except the first.
b8d4c8d0
GM
64
65@cindex dotted list
66@cindex circular list
31cbea1d
CY
67 If the @sc{cdr} of a list's last cons cell is some value other than
68@code{nil}, we call the structure a @dfn{dotted list}, since its
69printed representation would use dotted pair notation (@pxref{Dotted
70Pair Notation}). There is one other possibility: some cons cell's
71@sc{cdr} could point to one of the previous cons cells in the list.
72We call that structure a @dfn{circular list}.
b8d4c8d0
GM
73
74 For some purposes, it does not matter whether a list is true,
31cbea1d 75circular or dotted. If a program doesn't look far enough down the
b8d4c8d0
GM
76list to see the @sc{cdr} of the final cons cell, it won't care.
77However, some functions that operate on lists demand true lists and
78signal errors if given a dotted list. Most functions that try to find
79the end of a list enter infinite loops if given a circular list.
80
81@cindex list structure
31cbea1d
CY
82 Because most cons cells are used as part of lists, we refer to any
83structure made out of cons cells as a @dfn{list structure}.
b8d4c8d0
GM
84
85@node List-related Predicates
86@section Predicates on Lists
87
88 The following predicates test whether a Lisp object is an atom,
89whether it is a cons cell or is a list, or whether it is the
90distinguished object @code{nil}. (Many of these predicates can be
91defined in terms of the others, but they are used so often that it is
eceeb5fc 92worth having them.)
b8d4c8d0
GM
93
94@defun consp object
95This function returns @code{t} if @var{object} is a cons cell, @code{nil}
96otherwise. @code{nil} is not a cons cell, although it @emph{is} a list.
97@end defun
98
99@defun atom object
100This function returns @code{t} if @var{object} is an atom, @code{nil}
101otherwise. All objects except cons cells are atoms. The symbol
102@code{nil} is an atom and is also a list; it is the only Lisp object
103that is both.
104
105@example
106(atom @var{object}) @equiv{} (not (consp @var{object}))
107@end example
108@end defun
109
110@defun listp object
111This function returns @code{t} if @var{object} is a cons cell or
112@code{nil}. Otherwise, it returns @code{nil}.
113
114@example
115@group
116(listp '(1))
117 @result{} t
118@end group
119@group
120(listp '())
121 @result{} t
122@end group
123@end example
124@end defun
125
126@defun nlistp object
127This function is the opposite of @code{listp}: it returns @code{t} if
128@var{object} is not a list. Otherwise, it returns @code{nil}.
129
130@example
131(listp @var{object}) @equiv{} (not (nlistp @var{object}))
132@end example
133@end defun
134
135@defun null object
136This function returns @code{t} if @var{object} is @code{nil}, and
137returns @code{nil} otherwise. This function is identical to @code{not},
138but as a matter of clarity we use @code{null} when @var{object} is
139considered a list and @code{not} when it is considered a truth value
140(see @code{not} in @ref{Combining Conditions}).
141
142@example
143@group
144(null '(1))
145 @result{} nil
146@end group
147@group
148(null '())
149 @result{} t
150@end group
151@end example
152@end defun
153
154
155@node List Elements
156@section Accessing Elements of Lists
157@cindex list elements
158
159@defun car cons-cell
160This function returns the value referred to by the first slot of the
b6a5263f
CY
161cons cell @var{cons-cell}. In other words, it returns the @sc{car} of
162@var{cons-cell}.
b8d4c8d0 163
b6a5263f
CY
164As a special case, if @var{cons-cell} is @code{nil}, this function
165returns @code{nil}. Therefore, any list is a valid argument. An
166error is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
167
168@example
169@group
170(car '(a b c))
171 @result{} a
172@end group
173@group
174(car '())
175 @result{} nil
176@end group
177@end example
178@end defun
179
180@defun cdr cons-cell
b6a5263f
CY
181This function returns the value referred to by the second slot of the
182cons cell @var{cons-cell}. In other words, it returns the @sc{cdr} of
183@var{cons-cell}.
184
185As a special case, if @var{cons-cell} is @code{nil}, this function
186returns @code{nil}; therefore, any list is a valid argument. An error
187is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
188
189@example
190@group
191(cdr '(a b c))
192 @result{} (b c)
193@end group
194@group
195(cdr '())
196 @result{} nil
197@end group
198@end example
199@end defun
200
201@defun car-safe object
202This function lets you take the @sc{car} of a cons cell while avoiding
203errors for other data types. It returns the @sc{car} of @var{object} if
204@var{object} is a cons cell, @code{nil} otherwise. This is in contrast
205to @code{car}, which signals an error if @var{object} is not a list.
206
207@example
208@group
209(car-safe @var{object})
210@equiv{}
211(let ((x @var{object}))
212 (if (consp x)
213 (car x)
214 nil))
215@end group
216@end example
217@end defun
218
219@defun cdr-safe object
220This function lets you take the @sc{cdr} of a cons cell while
221avoiding errors for other data types. It returns the @sc{cdr} of
222@var{object} if @var{object} is a cons cell, @code{nil} otherwise.
223This is in contrast to @code{cdr}, which signals an error if
224@var{object} is not a list.
225
226@example
227@group
228(cdr-safe @var{object})
229@equiv{}
230(let ((x @var{object}))
231 (if (consp x)
232 (cdr x)
233 nil))
234@end group
235@end example
236@end defun
237
238@defmac pop listname
7c08f8ba
CY
239This macro provides a convenient way to examine the @sc{car} of a
240list, and take it off the list, all at once. It operates on the list
241stored in @var{listname}. It removes the first element from the list,
242saves the @sc{cdr} into @var{listname}, then returns the removed
243element.
244
245In the simplest case, @var{listname} is an unquoted symbol naming a
246list; in that case, this macro is equivalent to @w{@code{(prog1
247(car listname) (setq listname (cdr listname)))}}.
b8d4c8d0
GM
248
249@example
250x
251 @result{} (a b c)
252(pop x)
253 @result{} a
254x
255 @result{} (b c)
256@end example
31cbea1d 257
7c08f8ba
CY
258More generally, @var{listname} can be a generalized variable. In that
259case, this macro saves into @var{listname} using @code{setf}.
260@xref{Generalized Variables}.
261
5b6887ad 262For the @code{push} macro, which adds an element to a list,
31cbea1d 263@xref{List Variables}.
b8d4c8d0
GM
264@end defmac
265
266@defun nth n list
267@anchor{Definition of nth}
268This function returns the @var{n}th element of @var{list}. Elements
269are numbered starting with zero, so the @sc{car} of @var{list} is
270element number zero. If the length of @var{list} is @var{n} or less,
271the value is @code{nil}.
272
3e6b67c9
GM
273@c Behavior for -ve n undefined since 2013/08; see bug#15059.
274@ignore
275If @var{n} is negative, @code{nth} returns the first element of @var{list}.
276@end ignore
b8d4c8d0
GM
277
278@example
279@group
280(nth 2 '(1 2 3 4))
281 @result{} 3
282@end group
283@group
284(nth 10 '(1 2 3 4))
285 @result{} nil
b8d4c8d0
GM
286
287(nth n x) @equiv{} (car (nthcdr n x))
288@end group
289@end example
290
291The function @code{elt} is similar, but applies to any kind of sequence.
292For historical reasons, it takes its arguments in the opposite order.
293@xref{Sequence Functions}.
294@end defun
295
296@defun nthcdr n list
297This function returns the @var{n}th @sc{cdr} of @var{list}. In other
298words, it skips past the first @var{n} links of @var{list} and returns
299what follows.
300
3e6b67c9
GM
301@c "or negative" removed 2013/08; see bug#15059.
302If @var{n} is zero, @code{nthcdr} returns all of
b8d4c8d0
GM
303@var{list}. If the length of @var{list} is @var{n} or less,
304@code{nthcdr} returns @code{nil}.
305
306@example
307@group
308(nthcdr 1 '(1 2 3 4))
309 @result{} (2 3 4)
310@end group
311@group
312(nthcdr 10 '(1 2 3 4))
313 @result{} nil
314@end group
315@group
3e6b67c9 316(nthcdr 0 '(1 2 3 4))
b8d4c8d0
GM
317 @result{} (1 2 3 4)
318@end group
319@end example
320@end defun
321
322@defun last list &optional n
323This function returns the last link of @var{list}. The @code{car} of
324this link is the list's last element. If @var{list} is null,
325@code{nil} is returned. If @var{n} is non-@code{nil}, the
326@var{n}th-to-last link is returned instead, or the whole of @var{list}
327if @var{n} is bigger than @var{list}'s length.
328@end defun
329
330@defun safe-length list
331@anchor{Definition of safe-length}
332This function returns the length of @var{list}, with no risk of either
333an error or an infinite loop. It generally returns the number of
334distinct cons cells in the list. However, for circular lists,
335the value is just an upper bound; it is often too large.
336
337If @var{list} is not @code{nil} or a cons cell, @code{safe-length}
338returns 0.
339@end defun
340
341 The most common way to compute the length of a list, when you are not
342worried that it may be circular, is with @code{length}. @xref{Sequence
343Functions}.
344
345@defun caar cons-cell
346This is the same as @code{(car (car @var{cons-cell}))}.
347@end defun
348
349@defun cadr cons-cell
350This is the same as @code{(car (cdr @var{cons-cell}))}
351or @code{(nth 1 @var{cons-cell})}.
352@end defun
353
354@defun cdar cons-cell
355This is the same as @code{(cdr (car @var{cons-cell}))}.
356@end defun
357
358@defun cddr cons-cell
359This is the same as @code{(cdr (cdr @var{cons-cell}))}
360or @code{(nthcdr 2 @var{cons-cell})}.
361@end defun
362
363@defun butlast x &optional n
364This function returns the list @var{x} with the last element,
365or the last @var{n} elements, removed. If @var{n} is greater
366than zero it makes a copy of the list so as not to damage the
367original list. In general, @code{(append (butlast @var{x} @var{n})
368(last @var{x} @var{n}))} will return a list equal to @var{x}.
369@end defun
370
371@defun nbutlast x &optional n
372This is a version of @code{butlast} that works by destructively
373modifying the @code{cdr} of the appropriate element, rather than
374making a copy of the list.
375@end defun
376
377@node Building Lists
b8d4c8d0
GM
378@section Building Cons Cells and Lists
379@cindex cons cells
380@cindex building lists
381
382 Many functions build lists, as lists reside at the very heart of Lisp.
383@code{cons} is the fundamental list-building function; however, it is
384interesting to note that @code{list} is used more times in the source
385code for Emacs than @code{cons}.
386
387@defun cons object1 object2
388This function is the most basic function for building new list
389structure. It creates a new cons cell, making @var{object1} the
390@sc{car}, and @var{object2} the @sc{cdr}. It then returns the new
391cons cell. The arguments @var{object1} and @var{object2} may be any
392Lisp objects, but most often @var{object2} is a list.
393
394@example
395@group
396(cons 1 '(2))
397 @result{} (1 2)
398@end group
399@group
400(cons 1 '())
401 @result{} (1)
402@end group
403@group
404(cons 1 2)
405 @result{} (1 . 2)
406@end group
407@end example
408
409@cindex consing
410@code{cons} is often used to add a single element to the front of a
411list. This is called @dfn{consing the element onto the list}.
412@footnote{There is no strictly equivalent way to add an element to
413the end of a list. You can use @code{(append @var{listname} (list
414@var{newelt}))}, which creates a whole new list by copying @var{listname}
415and adding @var{newelt} to its end. Or you can use @code{(nconc
416@var{listname} (list @var{newelt}))}, which modifies @var{listname}
417by following all the @sc{cdr}s and then replacing the terminating
418@code{nil}. Compare this to adding an element to the beginning of a
419list with @code{cons}, which neither copies nor modifies the list.}
420For example:
421
422@example
423(setq list (cons newelt list))
424@end example
425
426Note that there is no conflict between the variable named @code{list}
427used in this example and the function named @code{list} described below;
428any symbol can serve both purposes.
429@end defun
430
431@defun list &rest objects
432This function creates a list with @var{objects} as its elements. The
433resulting list is always @code{nil}-terminated. If no @var{objects}
434are given, the empty list is returned.
435
436@example
437@group
438(list 1 2 3 4 5)
439 @result{} (1 2 3 4 5)
440@end group
441@group
442(list 1 2 '(3 4 5) 'foo)
443 @result{} (1 2 (3 4 5) foo)
444@end group
445@group
446(list)
447 @result{} nil
448@end group
449@end example
450@end defun
451
452@defun make-list length object
453This function creates a list of @var{length} elements, in which each
454element is @var{object}. Compare @code{make-list} with
455@code{make-string} (@pxref{Creating Strings}).
456
457@example
458@group
459(make-list 3 'pigs)
460 @result{} (pigs pigs pigs)
461@end group
462@group
463(make-list 0 'pigs)
464 @result{} nil
465@end group
466@group
1f403cb9 467(setq l (make-list 3 '(a b)))
b8d4c8d0
GM
468 @result{} ((a b) (a b) (a b))
469(eq (car l) (cadr l))
470 @result{} t
471@end group
472@end example
473@end defun
474
475@defun append &rest sequences
476@cindex copying lists
477This function returns a list containing all the elements of
478@var{sequences}. The @var{sequences} may be lists, vectors,
479bool-vectors, or strings, but the last one should usually be a list.
480All arguments except the last one are copied, so none of the arguments
481is altered. (See @code{nconc} in @ref{Rearrangement}, for a way to join
482lists with no copying.)
483
484More generally, the final argument to @code{append} may be any Lisp
485object. The final argument is not copied or converted; it becomes the
486@sc{cdr} of the last cons cell in the new list. If the final argument
487is itself a list, then its elements become in effect elements of the
488result list. If the final element is not a list, the result is a
489dotted list since its final @sc{cdr} is not @code{nil} as required
490in a true list.
b8d4c8d0
GM
491@end defun
492
493 Here is an example of using @code{append}:
494
495@example
496@group
497(setq trees '(pine oak))
498 @result{} (pine oak)
499(setq more-trees (append '(maple birch) trees))
500 @result{} (maple birch pine oak)
501@end group
502
503@group
504trees
505 @result{} (pine oak)
506more-trees
507 @result{} (maple birch pine oak)
508@end group
509@group
510(eq trees (cdr (cdr more-trees)))
511 @result{} t
512@end group
513@end example
514
515 You can see how @code{append} works by looking at a box diagram. The
516variable @code{trees} is set to the list @code{(pine oak)} and then the
517variable @code{more-trees} is set to the list @code{(maple birch pine
518oak)}. However, the variable @code{trees} continues to refer to the
519original list:
520
521@smallexample
522@group
523more-trees trees
524| |
525| --- --- --- --- -> --- --- --- ---
526 --> | | |--> | | |--> | | |--> | | |--> nil
527 --- --- --- --- --- --- --- ---
528 | | | |
529 | | | |
530 --> maple -->birch --> pine --> oak
531@end group
532@end smallexample
533
534 An empty sequence contributes nothing to the value returned by
535@code{append}. As a consequence of this, a final @code{nil} argument
536forces a copy of the previous argument:
537
538@example
539@group
540trees
541 @result{} (pine oak)
542@end group
543@group
544(setq wood (append trees nil))
545 @result{} (pine oak)
546@end group
547@group
548wood
549 @result{} (pine oak)
550@end group
551@group
552(eq wood trees)
553 @result{} nil
554@end group
555@end example
556
557@noindent
558This once was the usual way to copy a list, before the function
559@code{copy-sequence} was invented. @xref{Sequences Arrays Vectors}.
560
561 Here we show the use of vectors and strings as arguments to @code{append}:
562
563@example
564@group
565(append [a b] "cd" nil)
566 @result{} (a b 99 100)
567@end group
568@end example
569
570 With the help of @code{apply} (@pxref{Calling Functions}), we can append
571all the lists in a list of lists:
572
573@example
574@group
575(apply 'append '((a b c) nil (x y z) nil))
576 @result{} (a b c x y z)
577@end group
578@end example
579
580 If no @var{sequences} are given, @code{nil} is returned:
581
582@example
583@group
584(append)
585 @result{} nil
586@end group
587@end example
588
589 Here are some examples where the final argument is not a list:
590
591@example
592(append '(x y) 'z)
593 @result{} (x y . z)
594(append '(x y) [z])
595 @result{} (x y . [z])
596@end example
597
598@noindent
599The second example shows that when the final argument is a sequence but
600not a list, the sequence's elements do not become elements of the
601resulting list. Instead, the sequence becomes the final @sc{cdr}, like
602any other non-list final argument.
603
604@defun reverse list
605This function creates a new list whose elements are the elements of
606@var{list}, but in reverse order. The original argument @var{list} is
607@emph{not} altered.
608
609@example
610@group
611(setq x '(1 2 3 4))
612 @result{} (1 2 3 4)
613@end group
614@group
615(reverse x)
616 @result{} (4 3 2 1)
617x
618 @result{} (1 2 3 4)
619@end group
620@end example
621@end defun
622
623@defun copy-tree tree &optional vecp
624This function returns a copy of the tree @code{tree}. If @var{tree} is a
625cons cell, this makes a new cons cell with the same @sc{car} and
626@sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
627same way.
628
629Normally, when @var{tree} is anything other than a cons cell,
630@code{copy-tree} simply returns @var{tree}. However, if @var{vecp} is
631non-@code{nil}, it copies vectors too (and operates recursively on
632their elements).
633@end defun
634
635@defun number-sequence from &optional to separation
636This returns a list of numbers starting with @var{from} and
637incrementing by @var{separation}, and ending at or just before
638@var{to}. @var{separation} can be positive or negative and defaults
639to 1. If @var{to} is @code{nil} or numerically equal to @var{from},
640the value is the one-element list @code{(@var{from})}. If @var{to} is
641less than @var{from} with a positive @var{separation}, or greater than
642@var{from} with a negative @var{separation}, the value is @code{nil}
643because those arguments specify an empty sequence.
644
645If @var{separation} is 0 and @var{to} is neither @code{nil} nor
646numerically equal to @var{from}, @code{number-sequence} signals an
647error, since those arguments specify an infinite sequence.
648
09b73f08
PE
649All arguments are numbers.
650Floating-point arguments can be tricky, because floating-point
b8d4c8d0
GM
651arithmetic is inexact. For instance, depending on the machine, it may
652quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
653the one element list @code{(0.4)}, whereas
654@code{(number-sequence 0.4 0.8 0.2)} returns a list with three
655elements. The @var{n}th element of the list is computed by the exact
656formula @code{(+ @var{from} (* @var{n} @var{separation}))}. Thus, if
657one wants to make sure that @var{to} is included in the list, one can
658pass an expression of this exact type for @var{to}. Alternatively,
659one can replace @var{to} with a slightly larger value (or a slightly
660more negative value if @var{separation} is negative).
661
662Some examples:
663
664@example
665(number-sequence 4 9)
666 @result{} (4 5 6 7 8 9)
667(number-sequence 9 4 -1)
668 @result{} (9 8 7 6 5 4)
669(number-sequence 9 4 -2)
670 @result{} (9 7 5)
671(number-sequence 8)
672 @result{} (8)
673(number-sequence 8 5)
674 @result{} nil
675(number-sequence 5 8 -1)
676 @result{} nil
677(number-sequence 1.5 6 2)
678 @result{} (1.5 3.5 5.5)
679@end example
680@end defun
681
682@node List Variables
683@section Modifying List Variables
684
685 These functions, and one macro, provide convenient ways
686to modify a list which is stored in a variable.
687
7c08f8ba
CY
688@defmac push element listname
689This macro creates a new list whose @sc{car} is @var{element} and
690whose @sc{cdr} is the list specified by @var{listname}, and saves that
691list in @var{listname}. In the simplest case, @var{listname} is an
692unquoted symbol naming a list, and this macro is equivalent
693to @w{@code{(setq @var{listname} (cons @var{element} @var{listname}))}}.
b8d4c8d0
GM
694
695@example
696(setq l '(a b))
697 @result{} (a b)
698(push 'c l)
699 @result{} (c a b)
700l
701 @result{} (c a b)
702@end example
31cbea1d 703
7c08f8ba
CY
704More generally, @code{listname} can be a generalized variable. In
705that case, this macro does the equivalent of @w{@code{(setf
706@var{listname} (cons @var{element} @var{listname}))}}.
707@xref{Generalized Variables}.
708
31cbea1d
CY
709For the @code{pop} macro, which removes the first element from a list,
710@xref{List Elements}.
b8d4c8d0
GM
711@end defmac
712
713 Two functions modify lists that are the values of variables.
714
715@defun add-to-list symbol element &optional append compare-fn
716This function sets the variable @var{symbol} by consing @var{element}
717onto the old value, if @var{element} is not already a member of that
718value. It returns the resulting list, whether updated or not. The
719value of @var{symbol} had better be a list already before the call.
720@code{add-to-list} uses @var{compare-fn} to compare @var{element}
721against existing list members; if @var{compare-fn} is @code{nil}, it
722uses @code{equal}.
723
724Normally, if @var{element} is added, it is added to the front of
725@var{symbol}, but if the optional argument @var{append} is
726non-@code{nil}, it is added at the end.
727
728The argument @var{symbol} is not implicitly quoted; @code{add-to-list}
729is an ordinary function, like @code{set} and unlike @code{setq}. Quote
730the argument yourself if that is what you want.
731@end defun
732
733Here's a scenario showing how to use @code{add-to-list}:
734
735@example
736(setq foo '(a b))
737 @result{} (a b)
738
739(add-to-list 'foo 'c) ;; @r{Add @code{c}.}
740 @result{} (c a b)
741
742(add-to-list 'foo 'b) ;; @r{No effect.}
743 @result{} (c a b)
744
745foo ;; @r{@code{foo} was changed.}
746 @result{} (c a b)
747@end example
748
749 An equivalent expression for @code{(add-to-list '@var{var}
750@var{value})} is this:
751
752@example
753(or (member @var{value} @var{var})
754 (setq @var{var} (cons @var{value} @var{var})))
755@end example
756
757@defun add-to-ordered-list symbol element &optional order
758This function sets the variable @var{symbol} by inserting
759@var{element} into the old value, which must be a list, at the
760position specified by @var{order}. If @var{element} is already a
761member of the list, its position in the list is adjusted according
762to @var{order}. Membership is tested using @code{eq}.
763This function returns the resulting list, whether updated or not.
764
765The @var{order} is typically a number (integer or float), and the
766elements of the list are sorted in non-decreasing numerical order.
767
768@var{order} may also be omitted or @code{nil}. Then the numeric order
769of @var{element} stays unchanged if it already has one; otherwise,
770@var{element} has no numeric order. Elements without a numeric list
771order are placed at the end of the list, in no particular order.
772
773Any other value for @var{order} removes the numeric order of @var{element}
774if it already has one; otherwise, it is equivalent to @code{nil}.
775
776The argument @var{symbol} is not implicitly quoted;
777@code{add-to-ordered-list} is an ordinary function, like @code{set}
eceeb5fc 778and unlike @code{setq}. Quote the argument yourself if necessary.
b8d4c8d0
GM
779
780The ordering information is stored in a hash table on @var{symbol}'s
781@code{list-order} property.
782@end defun
783
784Here's a scenario showing how to use @code{add-to-ordered-list}:
785
786@example
787(setq foo '())
788 @result{} nil
789
790(add-to-ordered-list 'foo 'a 1) ;; @r{Add @code{a}.}
791 @result{} (a)
792
793(add-to-ordered-list 'foo 'c 3) ;; @r{Add @code{c}.}
794 @result{} (a c)
795
796(add-to-ordered-list 'foo 'b 2) ;; @r{Add @code{b}.}
797 @result{} (a b c)
798
799(add-to-ordered-list 'foo 'b 4) ;; @r{Move @code{b}.}
800 @result{} (a c b)
801
802(add-to-ordered-list 'foo 'd) ;; @r{Append @code{d}.}
803 @result{} (a c b d)
804
805(add-to-ordered-list 'foo 'e) ;; @r{Add @code{e}}.
806 @result{} (a c b e d)
807
808foo ;; @r{@code{foo} was changed.}
809 @result{} (a c b e d)
810@end example
811
812@node Modifying Lists
813@section Modifying Existing List Structure
814@cindex destructive list operations
815
816 You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
817primitives @code{setcar} and @code{setcdr}. We call these ``destructive''
818operations because they change existing list structure.
819
820@cindex CL note---@code{rplaca} vs @code{setcar}
821@quotation
822@findex rplaca
823@findex rplacd
824@b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
825@code{rplacd} to alter list structure; they change structure the same
826way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
827return the cons cell while @code{setcar} and @code{setcdr} return the
828new @sc{car} or @sc{cdr}.
829@end quotation
830
831@menu
832* Setcar:: Replacing an element in a list.
833* Setcdr:: Replacing part of the list backbone.
834 This can be used to remove or add elements.
835* Rearrangement:: Reordering the elements in a list; combining lists.
836@end menu
837
838@node Setcar
839@subsection Altering List Elements with @code{setcar}
840
841 Changing the @sc{car} of a cons cell is done with @code{setcar}. When
842used on a list, @code{setcar} replaces one element of a list with a
843different element.
844
845@defun setcar cons object
846This function stores @var{object} as the new @sc{car} of @var{cons},
847replacing its previous @sc{car}. In other words, it changes the
848@sc{car} slot of @var{cons} to refer to @var{object}. It returns the
849value @var{object}. For example:
850
851@example
852@group
853(setq x '(1 2))
854 @result{} (1 2)
855@end group
856@group
857(setcar x 4)
858 @result{} 4
859@end group
860@group
861x
862 @result{} (4 2)
863@end group
864@end example
865@end defun
866
867 When a cons cell is part of the shared structure of several lists,
868storing a new @sc{car} into the cons changes one element of each of
869these lists. Here is an example:
870
871@example
872@group
873;; @r{Create two lists that are partly shared.}
874(setq x1 '(a b c))
875 @result{} (a b c)
876(setq x2 (cons 'z (cdr x1)))
877 @result{} (z b c)
878@end group
879
880@group
881;; @r{Replace the @sc{car} of a shared link.}
882(setcar (cdr x1) 'foo)
883 @result{} foo
884x1 ; @r{Both lists are changed.}
885 @result{} (a foo c)
886x2
887 @result{} (z foo c)
888@end group
889
890@group
891;; @r{Replace the @sc{car} of a link that is not shared.}
892(setcar x1 'baz)
893 @result{} baz
894x1 ; @r{Only one list is changed.}
895 @result{} (baz foo c)
896x2
897 @result{} (z foo c)
898@end group
899@end example
900
901 Here is a graphical depiction of the shared structure of the two lists
902in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
903changes them both:
904
905@example
906@group
907 --- --- --- --- --- ---
908x1---> | | |----> | | |--> | | |--> nil
909 --- --- --- --- --- ---
910 | --> | |
911 | | | |
912 --> a | --> b --> c
913 |
914 --- --- |
915x2--> | | |--
916 --- ---
917 |
918 |
919 --> z
920@end group
921@end example
922
923 Here is an alternative form of box diagram, showing the same relationship:
924
925@example
926@group
927x1:
928 -------------- -------------- --------------
929| car | cdr | | car | cdr | | car | cdr |
930| a | o------->| b | o------->| c | nil |
931| | | -->| | | | | |
932 -------------- | -------------- --------------
933 |
934x2: |
935 -------------- |
936| car | cdr | |
937| z | o----
938| | |
939 --------------
940@end group
941@end example
942
943@node Setcdr
944@subsection Altering the CDR of a List
945
946 The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
947
948@defun setcdr cons object
949This function stores @var{object} as the new @sc{cdr} of @var{cons},
950replacing its previous @sc{cdr}. In other words, it changes the
951@sc{cdr} slot of @var{cons} to refer to @var{object}. It returns the
952value @var{object}.
953@end defun
954
955 Here is an example of replacing the @sc{cdr} of a list with a
956different list. All but the first element of the list are removed in
957favor of a different sequence of elements. The first element is
958unchanged, because it resides in the @sc{car} of the list, and is not
959reached via the @sc{cdr}.
960
961@example
962@group
963(setq x '(1 2 3))
964 @result{} (1 2 3)
965@end group
966@group
967(setcdr x '(4))
968 @result{} (4)
969@end group
970@group
971x
972 @result{} (1 4)
973@end group
974@end example
975
976 You can delete elements from the middle of a list by altering the
977@sc{cdr}s of the cons cells in the list. For example, here we delete
978the second element, @code{b}, from the list @code{(a b c)}, by changing
979the @sc{cdr} of the first cons cell:
980
981@example
982@group
983(setq x1 '(a b c))
984 @result{} (a b c)
985(setcdr x1 (cdr (cdr x1)))
986 @result{} (c)
987x1
988 @result{} (a c)
989@end group
990@end example
991
992 Here is the result in box notation:
993
994@smallexample
995@group
996 --------------------
997 | |
998 -------------- | -------------- | --------------
999| car | cdr | | | car | cdr | -->| car | cdr |
1000| a | o----- | b | o-------->| c | nil |
1001| | | | | | | | |
1002 -------------- -------------- --------------
1003@end group
1004@end smallexample
1005
1006@noindent
1007The second cons cell, which previously held the element @code{b}, still
1008exists and its @sc{car} is still @code{b}, but it no longer forms part
1009of this list.
1010
1011 It is equally easy to insert a new element by changing @sc{cdr}s:
1012
1013@example
1014@group
1015(setq x1 '(a b c))
1016 @result{} (a b c)
1017(setcdr x1 (cons 'd (cdr x1)))
1018 @result{} (d b c)
1019x1
1020 @result{} (a d b c)
1021@end group
1022@end example
1023
1024 Here is this result in box notation:
1025
1026@smallexample
1027@group
1028 -------------- ------------- -------------
1029| car | cdr | | car | cdr | | car | cdr |
1030| a | o | -->| b | o------->| c | nil |
1031| | | | | | | | | | |
1032 --------- | -- | ------------- -------------
1033 | |
1034 ----- --------
1035 | |
1036 | --------------- |
1037 | | car | cdr | |
1038 -->| d | o------
1039 | | |
1040 ---------------
1041@end group
1042@end smallexample
1043
1044@node Rearrangement
1045@subsection Functions that Rearrange Lists
1046@cindex rearrangement of lists
c67c5132 1047@cindex reordering, of elements in lists
b8d4c8d0
GM
1048@cindex modification of lists
1049
1050 Here are some functions that rearrange lists ``destructively'' by
1051modifying the @sc{cdr}s of their component cons cells. We call these
1052functions ``destructive'' because they chew up the original lists passed
1053to them as arguments, relinking their cons cells to form a new list that
1054is the returned value.
1055
1056@ifnottex
1057 See @code{delq}, in @ref{Sets And Lists}, for another function
1058that modifies cons cells.
1059@end ifnottex
1060@iftex
1061 The function @code{delq} in the following section is another example
1062of destructive list manipulation.
1063@end iftex
1064
1065@defun nconc &rest lists
1066@cindex concatenating lists
1067@cindex joining lists
1068This function returns a list containing all the elements of @var{lists}.
1069Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
1070@emph{not} copied. Instead, the last @sc{cdr} of each of the
1071@var{lists} is changed to refer to the following list. The last of the
1072@var{lists} is not altered. For example:
1073
1074@example
1075@group
1076(setq x '(1 2 3))
1077 @result{} (1 2 3)
1078@end group
1079@group
1080(nconc x '(4 5))
1081 @result{} (1 2 3 4 5)
1082@end group
1083@group
1084x
1085 @result{} (1 2 3 4 5)
1086@end group
1087@end example
1088
1089 Since the last argument of @code{nconc} is not itself modified, it is
1090reasonable to use a constant list, such as @code{'(4 5)}, as in the
1091above example. For the same reason, the last argument need not be a
1092list:
1093
1094@example
1095@group
1096(setq x '(1 2 3))
1097 @result{} (1 2 3)
1098@end group
1099@group
1100(nconc x 'z)
1101 @result{} (1 2 3 . z)
1102@end group
1103@group
1104x
1105 @result{} (1 2 3 . z)
1106@end group
1107@end example
1108
1109However, the other arguments (all but the last) must be lists.
1110
1111A common pitfall is to use a quoted constant list as a non-last
1112argument to @code{nconc}. If you do this, your program will change
1113each time you run it! Here is what happens:
1114
1115@smallexample
1116@group
1117(defun add-foo (x) ; @r{We want this function to add}
1118 (nconc '(foo) x)) ; @r{@code{foo} to the front of its arg.}
1119@end group
1120
1121@group
1122(symbol-function 'add-foo)
1123 @result{} (lambda (x) (nconc (quote (foo)) x))
1124@end group
1125
1126@group
1127(setq xx (add-foo '(1 2))) ; @r{It seems to work.}
1128 @result{} (foo 1 2)
1129@end group
1130@group
1131(setq xy (add-foo '(3 4))) ; @r{What happened?}
1132 @result{} (foo 1 2 3 4)
1133@end group
1134@group
1135(eq xx xy)
1136 @result{} t
1137@end group
1138
1139@group
1140(symbol-function 'add-foo)
1141 @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
1142@end group
1143@end smallexample
1144@end defun
1145
1146@defun nreverse list
1147@cindex reversing a list
1148 This function reverses the order of the elements of @var{list}.
1149Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1150the @sc{cdr}s in the cons cells forming the list. The cons cell that
1151used to be the last one in @var{list} becomes the first cons cell of the
1152value.
1153
1154 For example:
1155
1156@example
1157@group
1158(setq x '(a b c))
1159 @result{} (a b c)
1160@end group
1161@group
1162x
1163 @result{} (a b c)
1164(nreverse x)
1165 @result{} (c b a)
1166@end group
1167@group
1168;; @r{The cons cell that was first is now last.}
1169x
1170 @result{} (a)
1171@end group
1172@end example
1173
1174 To avoid confusion, we usually store the result of @code{nreverse}
1175back in the same variable which held the original list:
1176
1177@example
1178(setq x (nreverse x))
1179@end example
1180
1181 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1182presented graphically:
1183
1184@smallexample
1185@group
1186@r{Original list head:} @r{Reversed list:}
1187 ------------- ------------- ------------
1188| car | cdr | | car | cdr | | car | cdr |
1189| a | nil |<-- | b | o |<-- | c | o |
1190| | | | | | | | | | | | |
1191 ------------- | --------- | - | -------- | -
1192 | | | |
1193 ------------- ------------
1194@end group
1195@end smallexample
1196@end defun
1197
1198@defun sort list predicate
1199@cindex stable sort
1200@cindex sorting lists
1201This function sorts @var{list} stably, though destructively, and
1202returns the sorted list. It compares elements using @var{predicate}. A
1203stable sort is one in which elements with equal sort keys maintain their
1204relative order before and after the sort. Stability is important when
1205successive sorts are used to order elements according to different
1206criteria.
1207
1208The argument @var{predicate} must be a function that accepts two
1209arguments. It is called with two elements of @var{list}. To get an
1210increasing order sort, the @var{predicate} should return non-@code{nil} if the
1211first element is ``less than'' the second, or @code{nil} if not.
1212
1213The comparison function @var{predicate} must give reliable results for
1214any given pair of arguments, at least within a single call to
1215@code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
1216less than @var{b}, @var{b} must not be less than @var{a}. It must be
1217@dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1218is less than @var{c}, then @var{a} must be less than @var{c}. If you
1219use a comparison function which does not meet these requirements, the
1220result of @code{sort} is unpredictable.
1221
1222The destructive aspect of @code{sort} is that it rearranges the cons
1223cells forming @var{list} by changing @sc{cdr}s. A nondestructive sort
1224function would create new cons cells to store the elements in their
1225sorted order. If you wish to make a sorted copy without destroying the
1226original, copy it first with @code{copy-sequence} and then sort.
1227
1228Sorting does not change the @sc{car}s of the cons cells in @var{list};
1229the cons cell that originally contained the element @code{a} in
1230@var{list} still has @code{a} in its @sc{car} after sorting, but it now
1231appears in a different position in the list due to the change of
1232@sc{cdr}s. For example:
1233
1234@example
1235@group
1236(setq nums '(1 3 2 6 5 4 0))
1237 @result{} (1 3 2 6 5 4 0)
1238@end group
1239@group
1240(sort nums '<)
1241 @result{} (0 1 2 3 4 5 6)
1242@end group
1243@group
1244nums
1245 @result{} (1 2 3 4 5 6)
1246@end group
1247@end example
1248
1249@noindent
1250@strong{Warning}: Note that the list in @code{nums} no longer contains
12510; this is the same cons cell that it was before, but it is no longer
1252the first one in the list. Don't assume a variable that formerly held
1253the argument now holds the entire sorted list! Instead, save the result
1254of @code{sort} and use that. Most often we store the result back into
1255the variable that held the original list:
1256
1257@example
1258(setq nums (sort nums '<))
1259@end example
1260
1261@xref{Sorting}, for more functions that perform sorting.
1262See @code{documentation} in @ref{Accessing Documentation}, for a
1263useful example of @code{sort}.
1264@end defun
1265
1266@node Sets And Lists
1267@section Using Lists as Sets
1268@cindex lists as sets
1269@cindex sets
1270
1271 A list can represent an unordered mathematical set---simply consider a
1272value an element of a set if it appears in the list, and ignore the
1273order of the list. To form the union of two sets, use @code{append} (as
1274long as you don't mind having duplicate elements). You can remove
1275@code{equal} duplicates using @code{delete-dups}. Other useful
1276functions for sets include @code{memq} and @code{delq}, and their
1277@code{equal} versions, @code{member} and @code{delete}.
1278
1279@cindex CL note---lack @code{union}, @code{intersection}
1280@quotation
1281@b{Common Lisp note:} Common Lisp has functions @code{union} (which
bc8410af 1282avoids duplicate elements) and @code{intersection} for set operations.
4ee87740 1283Although standard GNU Emacs Lisp does not have them, the @file{cl-lib}
aec5e6f9
GM
1284library provides versions.
1285@xref{Lists as Sets,,, cl, Common Lisp Extensions}.
b8d4c8d0
GM
1286@end quotation
1287
1288@defun memq object list
1289@cindex membership in a list
1290This function tests to see whether @var{object} is a member of
1291@var{list}. If it is, @code{memq} returns a list starting with the
1292first occurrence of @var{object}. Otherwise, it returns @code{nil}.
1293The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1294compare @var{object} against the elements of the list. For example:
1295
1296@example
1297@group
1298(memq 'b '(a b c b a))
1299 @result{} (b c b a)
1300@end group
1301@group
1302(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1303 @result{} nil
1304@end group
1305@end example
1306@end defun
1307
1308@defun delq object list
1309@cindex deleting list elements
1310This function destructively removes all elements @code{eq} to
bb6b0efc
CY
1311@var{object} from @var{list}, and returns the resulting list. The
1312letter @samp{q} in @code{delq} says that it uses @code{eq} to compare
1313@var{object} against the elements of the list, like @code{memq} and
1314@code{remq}.
1315
1316Typically, when you invoke @code{delq}, you should use the return
1317value by assigning it to the variable which held the original list.
1318The reason for this is explained below.
b8d4c8d0
GM
1319@end defun
1320
bb6b0efc
CY
1321The @code{delq} function deletes elements from the front of the list
1322by simply advancing down the list, and returning a sublist that starts
1323after those elements. For example:
b8d4c8d0
GM
1324
1325@example
1326@group
1327(delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1328@end group
1329@end example
1330
bb6b0efc 1331@noindent
b8d4c8d0
GM
1332When an element to be deleted appears in the middle of the list,
1333removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1334
1335@example
1336@group
1337(setq sample-list '(a b c (4)))
1338 @result{} (a b c (4))
1339@end group
1340@group
1341(delq 'a sample-list)
1342 @result{} (b c (4))
1343@end group
1344@group
1345sample-list
1346 @result{} (a b c (4))
1347@end group
1348@group
1349(delq 'c sample-list)
1350 @result{} (a b (4))
1351@end group
1352@group
1353sample-list
1354 @result{} (a b (4))
1355@end group
1356@end example
1357
1358Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1359splice out the third element, but @code{(delq 'a sample-list)} does not
1360splice anything---it just returns a shorter list. Don't assume that a
1361variable which formerly held the argument @var{list} now has fewer
1362elements, or that it still holds the original list! Instead, save the
1363result of @code{delq} and use that. Most often we store the result back
1364into the variable that held the original list:
1365
1366@example
1367(setq flowers (delq 'rose flowers))
1368@end example
1369
1370In the following example, the @code{(4)} that @code{delq} attempts to match
1371and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1372
1373@example
1374@group
1375(delq '(4) sample-list)
1376 @result{} (a c (4))
1377@end group
049bcbcb 1378@end example
b8d4c8d0
GM
1379
1380If you want to delete elements that are @code{equal} to a given value,
1381use @code{delete} (see below).
b8d4c8d0
GM
1382
1383@defun remq object list
1384This function returns a copy of @var{list}, with all elements removed
1385which are @code{eq} to @var{object}. The letter @samp{q} in @code{remq}
1386says that it uses @code{eq} to compare @var{object} against the elements
1387of @code{list}.
1388
1389@example
1390@group
1391(setq sample-list '(a b c a b c))
1392 @result{} (a b c a b c)
1393@end group
1394@group
1395(remq 'a sample-list)
1396 @result{} (b c b c)
1397@end group
1398@group
1399sample-list
1400 @result{} (a b c a b c)
1401@end group
1402@end example
1403@end defun
1404
1405@defun memql object list
1406The function @code{memql} tests to see whether @var{object} is a member
1407of @var{list}, comparing members with @var{object} using @code{eql},
09b73f08 1408so floating-point elements are compared by value.
b8d4c8d0
GM
1409If @var{object} is a member, @code{memql} returns a list starting with
1410its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1411
1412Compare this with @code{memq}:
1413
1414@example
1415@group
1416(memql 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are @code{eql}.}
1417 @result{} (1.2 1.3)
1418@end group
1419@group
1420(memq 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are not @code{eq}.}
1421 @result{} nil
1422@end group
1423@end example
1424@end defun
1425
1426The following three functions are like @code{memq}, @code{delq} and
1427@code{remq}, but use @code{equal} rather than @code{eq} to compare
1428elements. @xref{Equality Predicates}.
1429
1430@defun member object list
1431The function @code{member} tests to see whether @var{object} is a member
1432of @var{list}, comparing members with @var{object} using @code{equal}.
1433If @var{object} is a member, @code{member} returns a list starting with
1434its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1435
1436Compare this with @code{memq}:
1437
1438@example
1439@group
1440(member '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1441 @result{} ((2))
1442@end group
1443@group
1444(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1445 @result{} nil
1446@end group
1447@group
1448;; @r{Two strings with the same contents are @code{equal}.}
1449(member "foo" '("foo" "bar"))
1450 @result{} ("foo" "bar")
1451@end group
1452@end example
1453@end defun
1454
1455@defun delete object sequence
bb6b0efc
CY
1456This function removes all elements @code{equal} to @var{object} from
1457@var{sequence}, and returns the resulting sequence.
1458
1459If @var{sequence} is a list, @code{delete} is to @code{delq} as
1460@code{member} is to @code{memq}: it uses @code{equal} to compare
1461elements with @var{object}, like @code{member}; when it finds an
1462element that matches, it cuts the element out just as @code{delq}
1463would. As with @code{delq}, you should typically use the return value
1464by assigning it to the variable which held the original list.
b8d4c8d0
GM
1465
1466If @code{sequence} is a vector or string, @code{delete} returns a copy
1467of @code{sequence} with all elements @code{equal} to @code{object}
1468removed.
1469
1470For example:
1471
1472@example
1473@group
1474(setq l '((2) (1) (2)))
1475(delete '(2) l)
1476 @result{} ((1))
1477l
1478 @result{} ((2) (1))
1479;; @r{If you want to change @code{l} reliably,}
bf1af6c7 1480;; @r{write @code{(setq l (delete '(2) l))}.}
b8d4c8d0
GM
1481@end group
1482@group
1483(setq l '((2) (1) (2)))
1484(delete '(1) l)
1485 @result{} ((2) (2))
1486l
1487 @result{} ((2) (2))
1488;; @r{In this case, it makes no difference whether you set @code{l},}
1489;; @r{but you should do so for the sake of the other case.}
1490@end group
1491@group
1492(delete '(2) [(2) (1) (2)])
1493 @result{} [(1)]
1494@end group
1495@end example
1496@end defun
1497
1498@defun remove object sequence
1499This function is the non-destructive counterpart of @code{delete}. It
1500returns a copy of @code{sequence}, a list, vector, or string, with
1501elements @code{equal} to @code{object} removed. For example:
1502
1503@example
1504@group
1505(remove '(2) '((2) (1) (2)))
1506 @result{} ((1))
1507@end group
1508@group
1509(remove '(2) [(2) (1) (2)])
1510 @result{} [(1)]
1511@end group
1512@end example
1513@end defun
1514
1515@quotation
1516@b{Common Lisp note:} The functions @code{member}, @code{delete} and
1517@code{remove} in GNU Emacs Lisp are derived from Maclisp, not Common
1518Lisp. The Common Lisp versions do not use @code{equal} to compare
1519elements.
1520@end quotation
1521
1522@defun member-ignore-case object list
1523This function is like @code{member}, except that @var{object} should
1524be a string and that it ignores differences in letter-case and text
1525representation: upper-case and lower-case letters are treated as
1526equal, and unibyte strings are converted to multibyte prior to
1527comparison.
1528@end defun
1529
1530@defun delete-dups list
1531This function destructively removes all @code{equal} duplicates from
1532@var{list}, stores the result in @var{list} and returns it. Of
1533several @code{equal} occurrences of an element in @var{list},
1534@code{delete-dups} keeps the first one.
1535@end defun
1536
1537 See also the function @code{add-to-list}, in @ref{List Variables},
1538for a way to add an element to a list stored in a variable and used as a
1539set.
1540
1541@node Association Lists
1542@section Association Lists
1543@cindex association list
1544@cindex alist
1545
1546 An @dfn{association list}, or @dfn{alist} for short, records a mapping
1547from keys to values. It is a list of cons cells called
1548@dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
1549@sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1550is not related to the term ``key sequence''; it means a value used to
1551look up an item in a table. In this case, the table is the alist, and
1552the alist associations are the items.}
1553
1554 Here is an example of an alist. The key @code{pine} is associated with
1555the value @code{cones}; the key @code{oak} is associated with
1556@code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1557
1558@example
1559@group
1560((pine . cones)
1561 (oak . acorns)
1562 (maple . seeds))
1563@end group
1564@end example
1565
1566 Both the values and the keys in an alist may be any Lisp objects.
1567For example, in the following alist, the symbol @code{a} is
1568associated with the number @code{1}, and the string @code{"b"} is
1569associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1570the alist element:
1571
1572@example
1573((a . 1) ("b" 2 3))
1574@end example
1575
1576 Sometimes it is better to design an alist to store the associated
1577value in the @sc{car} of the @sc{cdr} of the element. Here is an
1578example of such an alist:
1579
1580@example
1581((rose red) (lily white) (buttercup yellow))
1582@end example
1583
1584@noindent
1585Here we regard @code{red} as the value associated with @code{rose}. One
1586advantage of this kind of alist is that you can store other related
1587information---even a list of other items---in the @sc{cdr} of the
1588@sc{cdr}. One disadvantage is that you cannot use @code{rassq} (see
1589below) to find the element containing a given value. When neither of
1590these considerations is important, the choice is a matter of taste, as
1591long as you are consistent about it for any given alist.
1592
1593 The same alist shown above could be regarded as having the
1594associated value in the @sc{cdr} of the element; the value associated
1595with @code{rose} would be the list @code{(red)}.
1596
1597 Association lists are often used to record information that you might
1598otherwise keep on a stack, since new associations may be added easily to
1599the front of the list. When searching an association list for an
1600association with a given key, the first one found is returned, if there
1601is more than one.
1602
1603 In Emacs Lisp, it is @emph{not} an error if an element of an
1604association list is not a cons cell. The alist search functions simply
1605ignore such elements. Many other versions of Lisp signal errors in such
1606cases.
1607
1608 Note that property lists are similar to association lists in several
1609respects. A property list behaves like an association list in which
1610each key can occur only once. @xref{Property Lists}, for a comparison
1611of property lists and association lists.
1612
1613@defun assoc key alist
1614This function returns the first association for @var{key} in
1615@var{alist}, comparing @var{key} against the alist elements using
1616@code{equal} (@pxref{Equality Predicates}). It returns @code{nil} if no
1617association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1618For example:
1619
1620@smallexample
1621(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1622 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1623(assoc 'oak trees)
1624 @result{} (oak . acorns)
1625(cdr (assoc 'oak trees))
1626 @result{} acorns
1627(assoc 'birch trees)
1628 @result{} nil
1629@end smallexample
1630
1631Here is another example, in which the keys and values are not symbols:
1632
1633@smallexample
1634(setq needles-per-cluster
1635 '((2 "Austrian Pine" "Red Pine")
1636 (3 "Pitch Pine")
1637 (5 "White Pine")))
1638
1639(cdr (assoc 3 needles-per-cluster))
1640 @result{} ("Pitch Pine")
1641(cdr (assoc 2 needles-per-cluster))
1642 @result{} ("Austrian Pine" "Red Pine")
1643@end smallexample
1644@end defun
1645
1646 The function @code{assoc-string} is much like @code{assoc} except
1647that it ignores certain differences between strings. @xref{Text
1648Comparison}.
1649
1650@defun rassoc value alist
1651This function returns the first association with value @var{value} in
1652@var{alist}. It returns @code{nil} if no association in @var{alist} has
1653a @sc{cdr} @code{equal} to @var{value}.
1654
1655@code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1656each @var{alist} association instead of the @sc{car}. You can think of
16152b76 1657this as ``reverse @code{assoc}'', finding the key for a given value.
b8d4c8d0
GM
1658@end defun
1659
1660@defun assq key alist
1661This function is like @code{assoc} in that it returns the first
1662association for @var{key} in @var{alist}, but it makes the comparison
1663using @code{eq} instead of @code{equal}. @code{assq} returns @code{nil}
1664if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1665This function is used more often than @code{assoc}, since @code{eq} is
1666faster than @code{equal} and most alists use symbols as keys.
1667@xref{Equality Predicates}.
1668
1669@smallexample
1670(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1671 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1672(assq 'pine trees)
1673 @result{} (pine . cones)
1674@end smallexample
1675
1676On the other hand, @code{assq} is not usually useful in alists where the
1677keys may not be symbols:
1678
1679@smallexample
1680(setq leaves
1681 '(("simple leaves" . oak)
1682 ("compound leaves" . horsechestnut)))
1683
1684(assq "simple leaves" leaves)
1685 @result{} nil
1686(assoc "simple leaves" leaves)
1687 @result{} ("simple leaves" . oak)
1688@end smallexample
1689@end defun
1690
1691@defun rassq value alist
1692This function returns the first association with value @var{value} in
1693@var{alist}. It returns @code{nil} if no association in @var{alist} has
1694a @sc{cdr} @code{eq} to @var{value}.
1695
1696@code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1697each @var{alist} association instead of the @sc{car}. You can think of
16152b76 1698this as ``reverse @code{assq}'', finding the key for a given value.
b8d4c8d0
GM
1699
1700For example:
1701
1702@smallexample
1703(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1704
1705(rassq 'acorns trees)
1706 @result{} (oak . acorns)
1707(rassq 'spores trees)
1708 @result{} nil
1709@end smallexample
1710
1711@code{rassq} cannot search for a value stored in the @sc{car}
1712of the @sc{cdr} of an element:
1713
1714@smallexample
1715(setq colors '((rose red) (lily white) (buttercup yellow)))
1716
1717(rassq 'white colors)
1718 @result{} nil
1719@end smallexample
1720
1721In this case, the @sc{cdr} of the association @code{(lily white)} is not
1722the symbol @code{white}, but rather the list @code{(white)}. This
1723becomes clearer if the association is written in dotted pair notation:
1724
1725@smallexample
1726(lily white) @equiv{} (lily . (white))
1727@end smallexample
1728@end defun
1729
1730@defun assoc-default key alist &optional test default
1731This function searches @var{alist} for a match for @var{key}. For each
1732element of @var{alist}, it compares the element (if it is an atom) or
1733the element's @sc{car} (if it is a cons) against @var{key}, by calling
1734@var{test} with two arguments: the element or its @sc{car}, and
1735@var{key}. The arguments are passed in that order so that you can get
1736useful results using @code{string-match} with an alist that contains
1737regular expressions (@pxref{Regexp Search}). If @var{test} is omitted
1738or @code{nil}, @code{equal} is used for comparison.
1739
1740If an alist element matches @var{key} by this criterion,
1741then @code{assoc-default} returns a value based on this element.
1742If the element is a cons, then the value is the element's @sc{cdr}.
1743Otherwise, the return value is @var{default}.
1744
1745If no alist element matches @var{key}, @code{assoc-default} returns
1746@code{nil}.
1747@end defun
1748
1749@defun copy-alist alist
1750@cindex copying alists
1751This function returns a two-level deep copy of @var{alist}: it creates a
1752new copy of each association, so that you can alter the associations of
1753the new alist without changing the old one.
1754
1755@smallexample
1756@group
1757(setq needles-per-cluster
1758 '((2 . ("Austrian Pine" "Red Pine"))
1759 (3 . ("Pitch Pine"))
1760@end group
1761 (5 . ("White Pine"))))
1762@result{}
1763((2 "Austrian Pine" "Red Pine")
1764 (3 "Pitch Pine")
1765 (5 "White Pine"))
1766
1767(setq copy (copy-alist needles-per-cluster))
1768@result{}
1769((2 "Austrian Pine" "Red Pine")
1770 (3 "Pitch Pine")
1771 (5 "White Pine"))
1772
1773(eq needles-per-cluster copy)
1774 @result{} nil
1775(equal needles-per-cluster copy)
1776 @result{} t
1777(eq (car needles-per-cluster) (car copy))
1778 @result{} nil
1779(cdr (car (cdr needles-per-cluster)))
1780 @result{} ("Pitch Pine")
1781@group
1782(eq (cdr (car (cdr needles-per-cluster)))
1783 (cdr (car (cdr copy))))
1784 @result{} t
1785@end group
1786@end smallexample
1787
1788 This example shows how @code{copy-alist} makes it possible to change
1789the associations of one copy without affecting the other:
1790
1791@smallexample
1792@group
1793(setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1794(cdr (assq 3 needles-per-cluster))
1795 @result{} ("Pitch Pine")
1796@end group
1797@end smallexample
1798@end defun
1799
1800@defun assq-delete-all key alist
1801This function deletes from @var{alist} all the elements whose @sc{car}
1802is @code{eq} to @var{key}, much as if you used @code{delq} to delete
1803each such element one by one. It returns the shortened alist, and
1804often modifies the original list structure of @var{alist}. For
1805correct results, use the return value of @code{assq-delete-all} rather
1806than looking at the saved value of @var{alist}.
1807
1808@example
1809(setq alist '((foo 1) (bar 2) (foo 3) (lose 4)))
1810 @result{} ((foo 1) (bar 2) (foo 3) (lose 4))
1811(assq-delete-all 'foo alist)
1812 @result{} ((bar 2) (lose 4))
1813alist
1814 @result{} ((foo 1) (bar 2) (lose 4))
1815@end example
1816@end defun
1817
1818@defun rassq-delete-all value alist
1819This function deletes from @var{alist} all the elements whose @sc{cdr}
1820is @code{eq} to @var{value}. It returns the shortened alist, and
1821often modifies the original list structure of @var{alist}.
1822@code{rassq-delete-all} is like @code{assq-delete-all} except that it
1823compares the @sc{cdr} of each @var{alist} association instead of the
1824@sc{car}.
1825@end defun
f02f19bd
CY
1826
1827@node Property Lists
1828@section Property Lists
1829@cindex property list
1830@cindex plist
1831
1832 A @dfn{property list} (@dfn{plist} for short) is a list of paired
1833elements. Each of the pairs associates a property name (usually a
1834symbol) with a property or value. Here is an example of a property
1835list:
1836
1837@example
1838(pine cones numbers (1 2 3) color "blue")
1839@end example
1840
1841@noindent
1842This property list associates @code{pine} with @code{cones},
1843@code{numbers} with @code{(1 2 3)}, and @code{color} with
1844@code{"blue"}. The property names and values can be any Lisp objects,
1845but the names are usually symbols (as they are in this example).
1846
1847 Property lists are used in several contexts. For instance, the
1848function @code{put-text-property} takes an argument which is a
1849property list, specifying text properties and associated values which
1850are to be applied to text in a string or buffer. @xref{Text
1851Properties}.
1852
1853 Another prominent use of property lists is for storing symbol
1854properties. Every symbol possesses a list of properties, used to
1855record miscellaneous information about the symbol; these properties
1856are stored in the form of a property list. @xref{Symbol Properties}.
1857
1858@menu
1859* Plists and Alists:: Comparison of the advantages of property
1860 lists and association lists.
1861* Plist Access:: Accessing property lists stored elsewhere.
1862@end menu
1863
1864@node Plists and Alists
1865@subsection Property Lists and Association Lists
1866@cindex plist vs. alist
1867@cindex alist vs. plist
1868
1869@cindex property lists vs association lists
1870 Association lists (@pxref{Association Lists}) are very similar to
1871property lists. In contrast to association lists, the order of the
1872pairs in the property list is not significant, since the property
1873names must be distinct.
1874
1875 Property lists are better than association lists for attaching
1876information to various Lisp function names or variables. If your
1877program keeps all such information in one association list, it will
1878typically need to search that entire list each time it checks for an
1879association for a particular Lisp function name or variable, which
1880could be slow. By contrast, if you keep the same information in the
1881property lists of the function names or variables themselves, each
1882search will scan only the length of one property list, which is
1883usually short. This is why the documentation for a variable is
1884recorded in a property named @code{variable-documentation}. The byte
1885compiler likewise uses properties to record those functions needing
1886special treatment.
1887
1888 However, association lists have their own advantages. Depending on
1889your application, it may be faster to add an association to the front of
1890an association list than to update a property. All properties for a
1891symbol are stored in the same property list, so there is a possibility
1892of a conflict between different uses of a property name. (For this
1893reason, it is a good idea to choose property names that are probably
1894unique, such as by beginning the property name with the program's usual
1895name-prefix for variables and functions.) An association list may be
1896used like a stack where associations are pushed on the front of the list
1897and later discarded; this is not possible with a property list.
1898
1899@node Plist Access
1900@subsection Property Lists Outside Symbols
1901
1902 The following functions can be used to manipulate property lists.
1903They all compare property names using @code{eq}.
1904
1905@defun plist-get plist property
1906This returns the value of the @var{property} property stored in the
1907property list @var{plist}. It accepts a malformed @var{plist}
1908argument. If @var{property} is not found in the @var{plist}, it
1909returns @code{nil}. For example,
1910
1911@example
1912(plist-get '(foo 4) 'foo)
1913 @result{} 4
1914(plist-get '(foo 4 bad) 'foo)
1915 @result{} 4
1916(plist-get '(foo 4 bad) 'bad)
1917 @result{} nil
1918(plist-get '(foo 4 bad) 'bar)
1919 @result{} nil
1920@end example
1921@end defun
1922
1923@defun plist-put plist property value
1924This stores @var{value} as the value of the @var{property} property in
1925the property list @var{plist}. It may modify @var{plist} destructively,
1926or it may construct a new list structure without altering the old. The
1927function returns the modified property list, so you can store that back
1928in the place where you got @var{plist}. For example,
1929
1930@example
1931(setq my-plist '(bar t foo 4))
1932 @result{} (bar t foo 4)
1933(setq my-plist (plist-put my-plist 'foo 69))
1934 @result{} (bar t foo 69)
1935(setq my-plist (plist-put my-plist 'quux '(a)))
1936 @result{} (bar t foo 69 quux (a))
1937@end example
1938@end defun
1939
f02f19bd
CY
1940@defun lax-plist-get plist property
1941Like @code{plist-get} except that it compares properties
1942using @code{equal} instead of @code{eq}.
1943@end defun
1944
1945@defun lax-plist-put plist property value
1946Like @code{plist-put} except that it compares properties
1947using @code{equal} instead of @code{eq}.
1948@end defun
1949
1950@defun plist-member plist property
1951This returns non-@code{nil} if @var{plist} contains the given
1952@var{property}. Unlike @code{plist-get}, this allows you to distinguish
1953between a missing property and a property with the value @code{nil}.
1954The value is actually the tail of @var{plist} whose @code{car} is
1955@var{property}.
1956@end defun