minor updates
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39 10
29e809e0 11#include "Robot.h"
4cff3ded 12#include "Planner.h"
3fceb8eb 13#include "Conveyor.h"
5673fe39
MM
14#include "Pin.h"
15#include "StepperMotor.h"
16#include "Gcode.h"
5647f709 17#include "PublicDataRequest.h"
928467c0 18#include "PublicData.h"
4cff3ded
AW
19#include "arm_solutions/BaseSolution.h"
20#include "arm_solutions/CartesianSolution.h"
c41d6d95 21#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 22#include "arm_solutions/LinearDeltaSolution.h"
11a39396 23#include "arm_solutions/RotaryDeltaSolution.h"
bdaaa75d 24#include "arm_solutions/HBotSolution.h"
fff1e42d 25#include "arm_solutions/CoreXZSolution.h"
1217e470 26#include "arm_solutions/MorganSCARASolution.h"
61134a65 27#include "StepTicker.h"
7af0714f
JM
28#include "checksumm.h"
29#include "utils.h"
8d54c34c 30#include "ConfigValue.h"
5966b7d0 31#include "libs/StreamOutput.h"
dd0a7cfa 32#include "StreamOutputPool.h"
928467c0 33#include "ExtruderPublicAccess.h"
0ec2f63a 34#include "GcodeDispatch.h"
13ad7234 35#include "ActuatorCoordinates.h"
0ec2f63a 36
29e809e0
JM
37#include "mbed.h" // for us_ticker_read()
38#include "mri.h"
39
40#include <fastmath.h>
41#include <string>
42#include <algorithm>
43using std::string;
38bf9a1c 44
78d0e16a
MM
45#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
46#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
47#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
48#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
49#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
83c6e067 50#define mm_max_arc_error_checksum CHECKSUM("mm_max_arc_error")
78d0e16a
MM
51#define arc_correction_checksum CHECKSUM("arc_correction")
52#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
53#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
54#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
a3e1326a 55#define segment_z_moves_checksum CHECKSUM("segment_z_moves")
3aad33c7 56#define save_g92_checksum CHECKSUM("save_g92")
43424972
JM
57
58// arm solutions
78d0e16a
MM
59#define arm_solution_checksum CHECKSUM("arm_solution")
60#define cartesian_checksum CHECKSUM("cartesian")
61#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
62#define rostock_checksum CHECKSUM("rostock")
2a06c415 63#define linear_delta_checksum CHECKSUM("linear_delta")
11a39396 64#define rotary_delta_checksum CHECKSUM("rotary_delta")
78d0e16a
MM
65#define delta_checksum CHECKSUM("delta")
66#define hbot_checksum CHECKSUM("hbot")
67#define corexy_checksum CHECKSUM("corexy")
fff1e42d 68#define corexz_checksum CHECKSUM("corexz")
78d0e16a 69#define kossel_checksum CHECKSUM("kossel")
1217e470 70#define morgan_checksum CHECKSUM("morgan")
78d0e16a 71
78d0e16a
MM
72// new-style actuator stuff
73#define actuator_checksum CHEKCSUM("actuator")
74
75#define step_pin_checksum CHECKSUM("step_pin")
76#define dir_pin_checksum CHEKCSUM("dir_pin")
77#define en_pin_checksum CHECKSUM("en_pin")
78
79#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 80#define max_rate_checksum CHECKSUM("max_rate")
29e809e0
JM
81#define acceleration_checksum CHECKSUM("acceleration")
82#define z_acceleration_checksum CHECKSUM("z_acceleration")
78d0e16a
MM
83
84#define alpha_checksum CHECKSUM("alpha")
85#define beta_checksum CHECKSUM("beta")
86#define gamma_checksum CHECKSUM("gamma")
87
29e809e0
JM
88#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7F // Float (radians)
89#define PI 3.14159265358979323846F // force to be float, do not use M_PI
5fa0c173 90
edac9072
AW
91// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
92// It takes care of cutting arcs into segments, same thing for line that are too long
93
4710532a
JM
94Robot::Robot()
95{
a1b7e9f0 96 this->inch_mode = false;
0e8b102e 97 this->absolute_mode = true;
29e809e0 98 this->e_absolute_mode = true;
4cff3ded 99 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
29e809e0
JM
100 memset(this->last_milestone, 0, sizeof last_milestone);
101 memset(this->last_machine_position, 0, sizeof last_machine_position);
0b804a41 102 this->arm_solution = NULL;
da947c62 103 seconds_per_minute = 60.0F;
fae93525 104 this->clearToolOffset();
03b01bac
JM
105 this->compensationTransform = nullptr;
106 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
107 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
a6bbe768 108 this->next_command_is_MCS = false;
778093ce 109 this->disable_segmentation= false;
29e809e0
JM
110 this->n_motors= 0;
111 this->actuators.fill(nullptr);
4cff3ded
AW
112}
113
114//Called when the module has just been loaded
4710532a
JM
115void Robot::on_module_loaded()
116{
4cff3ded
AW
117 this->register_for_event(ON_GCODE_RECEIVED);
118
119 // Configuration
807b9b57 120 this->load_config();
da24d6ae
AW
121}
122
807b9b57
JM
123#define ACTUATOR_CHECKSUMS(X) { \
124 CHECKSUM(X "_step_pin"), \
125 CHECKSUM(X "_dir_pin"), \
126 CHECKSUM(X "_en_pin"), \
127 CHECKSUM(X "_steps_per_mm"), \
29e809e0
JM
128 CHECKSUM(X "_max_rate"), \
129 CHECKSUM(X "_acceleration") \
807b9b57 130}
5984acdf 131
807b9b57
JM
132void Robot::load_config()
133{
edac9072
AW
134 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
135 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
136 // To make adding those solution easier, they have their own, separate object.
5984acdf 137 // Here we read the config to find out which arm solution to use
0b804a41 138 if (this->arm_solution) delete this->arm_solution;
eda9facc 139 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 140 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 141 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 142 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 143
fff1e42d
JJ
144 } else if(solution_checksum == corexz_checksum) {
145 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
146
2a06c415
JM
147 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
148 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 149
4710532a 150 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 151 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 152
11a39396
JM
153 } else if(solution_checksum == rotary_delta_checksum) {
154 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
c52b8675 155
1217e470
QH
156 } else if(solution_checksum == morgan_checksum) {
157 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
158
4710532a 159 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 160 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 161
4710532a 162 } else {
314ab8f7 163 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 164 }
73a4e3c0 165
6b661ab3
DP
166 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
167 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
168 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
169 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
b259f517 170 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.0f)->as_number();
4d0f60a9 171 this->mm_max_arc_error = THEKERNEL->config->value(mm_max_arc_error_checksum )->by_default( 0.01f)->as_number();
6b661ab3 172 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 173
29e809e0 174 // in mm/sec but specified in config as mm/min
6b661ab3
DP
175 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
176 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
177 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 178
a3e1326a 179 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
3aad33c7 180 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
a3e1326a 181
29e809e0
JM
182 // Make our Primary XYZ StepperMotors
183 uint16_t const checksums[][6] = {
184 ACTUATOR_CHECKSUMS("alpha"), // X
185 ACTUATOR_CHECKSUMS("beta"), // Y
186 ACTUATOR_CHECKSUMS("gamma"), // Z
807b9b57 187 };
807b9b57 188
29e809e0
JM
189 // default acceleration setting, can be overriden with newer per axis settings
190 this->default_acceleration= THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
191
192 // make each motor
193 for (size_t a = X_AXIS; a <= Z_AXIS; a++) {
807b9b57
JM
194 Pin pins[3]; //step, dir, enable
195 for (size_t i = 0; i < 3; i++) {
196 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
197 }
29e809e0
JM
198 StepperMotor *sm = new StepperMotor(pins[0], pins[1], pins[2]);
199 // register this motor (NB This must be 0,1,2) of the actuators array
200 uint8_t n= register_motor(sm);
201 if(n != a) {
202 // this is a fatal error
203 THEKERNEL->streams->printf("FATAL: motor %d does not match index %d\n", n, a);
204 __debugbreak();
205 }
78d0e16a 206
03b01bac 207 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
3702f300 208 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
29e809e0 209 actuators[a]->set_acceleration(THEKERNEL->config->value(checksums[a][5])->by_default(NAN)->as_number()); // mm/secs²
807b9b57 210 }
a84f0186 211
dd0a7cfa 212 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 213
29e809e0
JM
214 // if we have not specified a z acceleration see if the legacy config was set
215 if(isnan(actuators[Z_AXIS]->get_acceleration())) {
216 float acc= THEKERNEL->config->value(z_acceleration_checksum)->by_default(NAN)->as_number(); // disabled by default
217 if(!isnan(acc)) {
218 actuators[Z_AXIS]->set_acceleration(acc);
219 }
220 }
221
975469ad
MM
222 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
223 // so the first move can be correct if homing is not performed
807b9b57 224 ActuatorCoordinates actuator_pos;
975469ad 225 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
29e809e0 226 for (size_t i = 0; i < n_motors; i++)
975469ad 227 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
228
229 //this->clearToolOffset();
4cff3ded
AW
230}
231
29e809e0
JM
232uint8_t Robot::register_motor(StepperMotor *motor)
233{
234 // register this motor with the step ticker
235 THEKERNEL->step_ticker->register_motor(motor);
236 if(n_motors >= k_max_actuators) {
237 // this is a fatal error
238 THEKERNEL->streams->printf("FATAL: too many motors, increase k_max_actuators\n");
239 __debugbreak();
240 }
241 actuators[n_motors++]= motor;
242 return n_motors-1;
243}
244
212caccd
JM
245void Robot::push_state()
246{
03b01bac 247 bool am = this->absolute_mode;
29e809e0 248 bool em = this->e_absolute_mode;
03b01bac 249 bool im = this->inch_mode;
29e809e0 250 saved_state_t s(this->feed_rate, this->seek_rate, am, em, im, current_wcs);
212caccd
JM
251 state_stack.push(s);
252}
253
254void Robot::pop_state()
255{
03b01bac
JM
256 if(!state_stack.empty()) {
257 auto s = state_stack.top();
212caccd 258 state_stack.pop();
03b01bac
JM
259 this->feed_rate = std::get<0>(s);
260 this->seek_rate = std::get<1>(s);
261 this->absolute_mode = std::get<2>(s);
29e809e0
JM
262 this->e_absolute_mode = std::get<3>(s);
263 this->inch_mode = std::get<4>(s);
264 this->current_wcs = std::get<5>(s);
212caccd
JM
265 }
266}
267
34210908
JM
268std::vector<Robot::wcs_t> Robot::get_wcs_state() const
269{
270 std::vector<wcs_t> v;
0b8b81b6 271 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
34210908
JM
272 for(auto& i : wcs_offsets) {
273 v.push_back(i);
274 }
275 v.push_back(g92_offset);
276 v.push_back(tool_offset);
277 return v;
278}
279
e03f2747 280int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
2791c829
JM
281{
282 // M114.1 is a new way to do this (similar to how GRBL does it).
283 // it returns the realtime position based on the current step position of the actuators.
284 // this does require a FK to get a machine position from the actuator position
285 // and then invert all the transforms to get a workspace position from machine position
a3be54e3 286 // M114 just does it the old way uses last_milestone and does inversse transforms to get the requested position
2791c829 287 int n = 0;
e03f2747 288 if(subcode == 0) { // M114 print WCS
2791c829 289 wcs_t pos= mcs2wcs(last_milestone);
31c6c2c2 290 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 291
df4574e0 292 } else if(subcode == 4) { // M114.4 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
31c6c2c2 293 n = snprintf(buf, bufsize, "LMS: X:%1.4f Y:%1.4f Z:%1.4f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
2791c829 294
df4574e0 295 } else if(subcode == 5) { // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
cf6b8fd1 296 n = snprintf(buf, bufsize, "LMP: X:%1.4f Y:%1.4f Z:%1.4f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
2791c829
JM
297
298 } else {
299 // get real time positions
300 // current actuator position in mm
301 ActuatorCoordinates current_position{
302 actuators[X_AXIS]->get_current_position(),
303 actuators[Y_AXIS]->get_current_position(),
304 actuators[Z_AXIS]->get_current_position()
305 };
306
307 // get machine position from the actuator position using FK
308 float mpos[3];
309 arm_solution->actuator_to_cartesian(current_position, mpos);
310
e03f2747 311 if(subcode == 1) { // M114.1 print realtime WCS
2791c829
JM
312 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
313 wcs_t pos= mcs2wcs(mpos);
29e809e0 314 n = snprintf(buf, bufsize, "WPOS: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 315
df4574e0 316 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
31c6c2c2 317 n = snprintf(buf, bufsize, "MPOS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
2791c829 318
df4574e0 319 } else if(subcode == 3) { // M114.3 print realtime actuator position
31c6c2c2 320 n = snprintf(buf, bufsize, "APOS: A:%1.4f B:%1.4f C:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
2791c829
JM
321 }
322 }
e03f2747 323 return n;
2791c829
JM
324}
325
dc27139b 326// converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
31c6c2c2 327Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
dc27139b
JM
328{
329 return std::make_tuple(
31c6c2c2
JM
330 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
331 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
332 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
dc27139b
JM
333 );
334}
335
dd0a7cfa
JM
336// this does a sanity check that actuator speeds do not exceed steps rate capability
337// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
338void Robot::check_max_actuator_speeds()
339{
29e809e0 340 for (size_t i = 0; i < n_motors; i++) {
807b9b57
JM
341 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
342 if (step_freq > THEKERNEL->base_stepping_frequency) {
343 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
29e809e0 344 THEKERNEL->streams->printf("WARNING: actuator %d rate exceeds base_stepping_frequency * ..._steps_per_mm: %f, setting to %f\n", i, step_freq, actuators[i]->max_rate);
807b9b57 345 }
dd0a7cfa
JM
346 }
347}
348
4cff3ded 349//A GCode has been received
edac9072 350//See if the current Gcode line has some orders for us
4710532a
JM
351void Robot::on_gcode_received(void *argument)
352{
353 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 354
29e809e0 355 enum MOTION_MODE_T motion_mode= NONE;
4cff3ded 356
4710532a
JM
357 if( gcode->has_g) {
358 switch( gcode->g ) {
29e809e0
JM
359 case 0: motion_mode = SEEK; break;
360 case 1: motion_mode = LINEAR; break;
361 case 2: motion_mode = CW_ARC; break;
362 case 3: motion_mode = CCW_ARC; break;
c2f7c261 363 case 4: { // G4 pause
03b01bac 364 uint32_t delay_ms = 0;
c3df978d 365 if (gcode->has_letter('P')) {
03b01bac 366 delay_ms = gcode->get_int('P');
c3df978d
JM
367 }
368 if (gcode->has_letter('S')) {
369 delay_ms += gcode->get_int('S') * 1000;
370 }
03b01bac 371 if (delay_ms > 0) {
c3df978d
JM
372 // drain queue
373 THEKERNEL->conveyor->wait_for_empty_queue();
374 // wait for specified time
03b01bac
JM
375 uint32_t start = us_ticker_read(); // mbed call
376 while ((us_ticker_read() - start) < delay_ms * 1000) {
c3df978d 377 THEKERNEL->call_event(ON_IDLE, this);
c2f7c261 378 if(THEKERNEL->is_halted()) return;
c3df978d
JM
379 }
380 }
adba2978 381 }
6b661ab3 382 break;
807b9b57 383
a6bbe768 384 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
00e607c7 385 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
03b01bac
JM
386 size_t n = gcode->get_uint('P');
387 if(n == 0) n = current_wcs; // set current coordinate system
807b9b57 388 else --n;
0b8b81b6 389 if(n < MAX_WCS) {
807b9b57 390 float x, y, z;
03b01bac 391 std::tie(x, y, z) = wcs_offsets[n];
00e607c7 392 if(gcode->get_int('L') == 20) {
c2f7c261 393 // this makes the current machine position (less compensation transform) the offset
dc27139b
JM
394 // get current position in WCS
395 wcs_t pos= mcs2wcs(last_milestone);
396
397 if(gcode->has_letter('X')){
398 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
399 }
400
401 if(gcode->has_letter('Y')){
402 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
403 }
404 if(gcode->has_letter('Z')) {
405 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
406 }
407
a6bbe768 408 } else {
00e607c7
JM
409 // the value is the offset from machine zero
410 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
411 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
412 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
413 }
03b01bac 414 wcs_offsets[n] = wcs_t(x, y, z);
807b9b57
JM
415 }
416 }
417 break;
418
6e92ab91
JM
419 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
420 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
421 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
422 case 20: this->inch_mode = true; break;
423 case 21: this->inch_mode = false; break;
807b9b57
JM
424
425 case 54: case 55: case 56: case 57: case 58: case 59:
426 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
03b01bac 427 current_wcs = gcode->g - 54;
807b9b57
JM
428 if(gcode->g == 59 && gcode->subcode > 0) {
429 current_wcs += gcode->subcode;
0b8b81b6 430 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
807b9b57
JM
431 }
432 break;
433
29e809e0
JM
434 case 90: this->absolute_mode = true; this->e_absolute_mode = true; break;
435 case 91: this->absolute_mode = false; this->e_absolute_mode = false; break;
807b9b57 436
0b804a41 437 case 92: {
a9e8c04b 438 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
03b01bac
JM
439 // reset G92 offsets to 0
440 g92_offset = wcs_t(0, 0, 0);
441
cee8bc1d
JM
442 } else if(gcode->subcode == 3) {
443 // initialize G92 to the specified values, only used for saving it with M500
444 float x= 0, y= 0, z= 0;
445 if(gcode->has_letter('X')) x= gcode->get_value('X');
446 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
447 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
448 g92_offset = wcs_t(x, y, z);
449
4710532a 450 } else {
61a3fa99 451 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
807b9b57 452 float x, y, z;
03b01bac 453 std::tie(x, y, z) = g92_offset;
61a3fa99
JM
454 // get current position in WCS
455 wcs_t pos= mcs2wcs(last_milestone);
456
457 // adjust g92 offset to make the current wpos == the value requested
458 if(gcode->has_letter('X')){
459 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
460 }
dc27139b
JM
461 if(gcode->has_letter('Y')){
462 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
463 }
464 if(gcode->has_letter('Z')) {
465 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
466 }
03b01bac 467 g92_offset = wcs_t(x, y, z);
6bc4a00a 468 }
a6bbe768 469
13ad7234
JM
470 #if MAX_ROBOT_ACTUATORS > 3
471 if(gcode->subcode == 0 && (gcode->has_letter('E') || gcode->get_num_args() == 0)){
472 // reset the E position, legacy for 3d Printers to be reprap compatible
473 // find the selected extruder
474 for (int i = E_AXIS; i < n_motors; ++i) {
475 if(actuators[i]->is_selected()) {
476 float e= gcode->has_letter('E') ? gcode->get_value('E') : 0;
477 last_milestone[i]= last_machine_position[i]= e;
478 actuators[i]->change_last_milestone(e);
479 break;
480 }
481 }
482 }
483 #endif
484
78d0e16a 485 return;
4710532a
JM
486 }
487 }
67a649dd 488
4710532a
JM
489 } else if( gcode->has_m) {
490 switch( gcode->m ) {
20ed51b7
JM
491 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
492 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
493 // break;
01a8d21a
JM
494
495 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
496 if(!THEKERNEL->is_grbl_mode()) break;
497 // fall through to M2
807b9b57 498 case 2: // M2 end of program
03b01bac
JM
499 current_wcs = 0;
500 absolute_mode = true;
807b9b57 501 break;
9e6014a6
JM
502 case 17:
503 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
504 break;
505
506 case 18: // this used to support parameters, now it ignores them
507 case 84:
508 THEKERNEL->conveyor->wait_for_empty_queue();
509 THEKERNEL->call_event(ON_ENABLE, nullptr); // turn all enable pins off
510 break;
807b9b57 511
29e809e0
JM
512 case 82: e_absolute_mode= true; break;
513 case 83: e_absolute_mode= false; break;
514
0fb5b438 515 case 92: // M92 - set steps per mm
0fb5b438 516 if (gcode->has_letter('X'))
78d0e16a 517 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 518 if (gcode->has_letter('Y'))
78d0e16a 519 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 520 if (gcode->has_letter('Z'))
78d0e16a 521 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
78d0e16a 522
7f818fc8 523 gcode->stream->printf("X:%f Y:%f Z:%f ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
0fb5b438 524 gcode->add_nl = true;
dd0a7cfa 525 check_max_actuator_speeds();
0fb5b438 526 return;
562db364 527
e03f2747
JM
528 case 114:{
529 char buf[64];
530 int n= print_position(gcode->subcode, buf, sizeof buf);
531 if(n > 0) gcode->txt_after_ok.append(buf, n);
2791c829 532 return;
e03f2747 533 }
33e4cc02 534
212caccd
JM
535 case 120: // push state
536 push_state();
537 break;
562db364
JM
538
539 case 121: // pop state
212caccd 540 pop_state();
562db364
JM
541 break;
542
83488642
JM
543 case 203: // M203 Set maximum feedrates in mm/sec
544 if (gcode->has_letter('X'))
4710532a 545 this->max_speeds[X_AXIS] = gcode->get_value('X');
83488642 546 if (gcode->has_letter('Y'))
4710532a 547 this->max_speeds[Y_AXIS] = gcode->get_value('Y');
83488642 548 if (gcode->has_letter('Z'))
4710532a 549 this->max_speeds[Z_AXIS] = gcode->get_value('Z');
29e809e0 550 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
807b9b57
JM
551 if (gcode->has_letter('A' + i))
552 actuators[i]->set_max_rate(gcode->get_value('A' + i));
553 }
dd0a7cfa
JM
554 check_max_actuator_speeds();
555
928467c0 556 if(gcode->get_num_args() == 0) {
807b9b57 557 gcode->stream->printf("X:%g Y:%g Z:%g",
03b01bac 558 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
29e809e0 559 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
807b9b57
JM
560 gcode->stream->printf(" %c : %g", 'A' + i, actuators[i]->get_max_rate()); //xxx
561 }
928467c0
JM
562 gcode->add_nl = true;
563 }
83488642
JM
564 break;
565
29e809e0 566 case 204: // M204 Snnn - set default acceleration to nnn, Xnnn Ynnn Znnn sets axis specific acceleration
4710532a 567 if (gcode->has_letter('S')) {
4710532a 568 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 569 // enforce minimum
29e809e0
JM
570 if (acc < 1.0F) acc = 1.0F;
571 this->default_acceleration = acc;
d4ee6ee2 572 }
29e809e0
JM
573 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
574 if (gcode->has_letter(i+'X')) {
575 float acc = gcode->get_value(i+'X'); // mm/s^2
576 // enforce positive
577 if (acc <= 0.0F) acc = NAN;
578 actuators[i]->set_acceleration(acc);
579 }
c5fe1787 580 }
d4ee6ee2
JM
581 break;
582
9502f9d5 583 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed, Ynnn - set minimum step rate
4710532a
JM
584 if (gcode->has_letter('X')) {
585 float jd = gcode->get_value('X');
d4ee6ee2 586 // enforce minimum
8b69c90d
JM
587 if (jd < 0.0F)
588 jd = 0.0F;
4710532a 589 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 590 }
107df03f
JM
591 if (gcode->has_letter('Z')) {
592 float jd = gcode->get_value('Z');
593 // enforce minimum, -1 disables it and uses regular junction deviation
594 if (jd < -1.0F)
595 jd = -1.0F;
596 THEKERNEL->planner->z_junction_deviation = jd;
597 }
4710532a
JM
598 if (gcode->has_letter('S')) {
599 float mps = gcode->get_value('S');
8b69c90d
JM
600 // enforce minimum
601 if (mps < 0.0F)
602 mps = 0.0F;
4710532a 603 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 604 }
d4ee6ee2 605 break;
98761c28 606
7369629d 607 case 220: // M220 - speed override percentage
4710532a 608 if (gcode->has_letter('S')) {
1ad23cd3 609 float factor = gcode->get_value('S');
98761c28 610 // enforce minimum 10% speed
da947c62
MM
611 if (factor < 10.0F)
612 factor = 10.0F;
613 // enforce maximum 10x speed
614 if (factor > 1000.0F)
615 factor = 1000.0F;
616
617 seconds_per_minute = 6000.0F / factor;
03b01bac 618 } else {
9ef9f45b 619 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
7369629d 620 }
b4f56013 621 break;
ec4773e5 622
494dc541 623 case 400: // wait until all moves are done up to this point
314ab8f7 624 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
625 break;
626
33e4cc02 627 case 500: // M500 saves some volatile settings to config override file
b7cd847e 628 case 503: { // M503 just prints the settings
78d0e16a 629 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
df56baf2
JM
630
631 // only print XYZ if not NAN
632 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f ", default_acceleration);
633 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
634 if(!isnan(actuators[i]->get_acceleration())) gcode->stream->printf("%c%1.5f ", 'X'+i, actuators[i]->get_acceleration());
635 }
636 gcode->stream->printf("\n");
637
c9cc5e06 638 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
29e809e0
JM
639 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f A%1.5f B%1.5f C%1.5f",
640 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
641 actuators[X_AXIS]->get_max_rate(), actuators[Y_AXIS]->get_max_rate(), actuators[Z_AXIS]->get_max_rate());
807b9b57 642 gcode->stream->printf("\n");
b7cd847e
JM
643
644 // get or save any arm solution specific optional values
645 BaseSolution::arm_options_t options;
646 if(arm_solution->get_optional(options) && !options.empty()) {
647 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 648 for(auto &i : options) {
b7cd847e
JM
649 gcode->stream->printf(" %c%1.4f", i.first, i.second);
650 }
651 gcode->stream->printf("\n");
652 }
6e92ab91 653
807b9b57
JM
654 // save wcs_offsets and current_wcs
655 // TODO this may need to be done whenever they change to be compliant
656 gcode->stream->printf(";WCS settings\n");
40fd5d98 657 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
03b01bac 658 int n = 1;
807b9b57 659 for(auto &i : wcs_offsets) {
2791c829 660 if(i != wcs_t(0, 0, 0)) {
807b9b57
JM
661 float x, y, z;
662 std::tie(x, y, z) = i;
40fd5d98 663 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
2791c829 664 }
807b9b57
JM
665 ++n;
666 }
3aad33c7
JM
667 if(save_g92) {
668 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
669 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
670 if(g92_offset != wcs_t(0, 0, 0)) {
671 float x, y, z;
672 std::tie(x, y, z) = g92_offset;
673 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
674 }
67a649dd
JM
675 }
676 }
807b9b57 677 break;
33e4cc02 678
b7cd847e 679 case 665: { // M665 set optional arm solution variables based on arm solution.
ebc75fc6 680 // the parameter args could be any letter each arm solution only accepts certain ones
03b01bac 681 BaseSolution::arm_options_t options = gcode->get_args();
ebc75fc6
JM
682 options.erase('S'); // don't include the S
683 options.erase('U'); // don't include the U
684 if(options.size() > 0) {
685 // set the specified options
686 arm_solution->set_optional(options);
687 }
688 options.clear();
b7cd847e 689 if(arm_solution->get_optional(options)) {
ebc75fc6 690 // foreach optional value
4710532a 691 for(auto &i : options) {
b7cd847e
JM
692 // print all current values of supported options
693 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 694 gcode->add_nl = true;
ec4773e5
JM
695 }
696 }
ec4773e5 697
4a839bea 698 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
4710532a 699 this->delta_segments_per_second = gcode->get_value('S');
4a839bea
JM
700 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
701
03b01bac 702 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
4a839bea
JM
703 this->mm_per_line_segment = gcode->get_value('U');
704 this->delta_segments_per_second = 0;
705 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
ec29d378 706 }
4a839bea 707
ec4773e5 708 break;
b7cd847e 709 }
6989211c 710 }
494dc541
JM
711 }
712
29e809e0
JM
713 if( motion_mode != NONE) {
714 process_move(gcode, motion_mode);
00e607c7 715 }
6bc4a00a 716
c2f7c261
JM
717 next_command_is_MCS = false; // must be on same line as G0 or G1
718}
350c8a60 719
5d2319a9 720// process a G0/G1/G2/G3
29e809e0 721void Robot::process_move(Gcode *gcode, enum MOTION_MODE_T motion_mode)
c2f7c261 722{
2791c829 723 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
29e809e0
JM
724 float param[4]{NAN, NAN, NAN, NAN};
725
726 // process primary axis
350c8a60
JM
727 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
728 char letter= 'X'+i;
729 if( gcode->has_letter(letter) ) {
730 param[i] = this->to_millimeters(gcode->get_value(letter));
350c8a60
JM
731 }
732 }
6bc4a00a 733
c2f7c261 734 float offset[3]{0,0,0};
4710532a
JM
735 for(char letter = 'I'; letter <= 'K'; letter++) {
736 if( gcode->has_letter(letter) ) {
737 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
738 }
739 }
00e607c7 740
c2f7c261 741 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
29e809e0
JM
742 float target[n_motors];
743 memcpy(target, last_milestone, n_motors*sizeof(float));
744
350c8a60
JM
745 if(!next_command_is_MCS) {
746 if(this->absolute_mode) {
c2f7c261
JM
747 // apply wcs offsets and g92 offset and tool offset
748 if(!isnan(param[X_AXIS])) {
749 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
750 }
751
752 if(!isnan(param[Y_AXIS])) {
753 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
754 }
755
756 if(!isnan(param[Z_AXIS])) {
757 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
758 }
350c8a60
JM
759
760 }else{
761 // they are deltas from the last_milestone if specified
762 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
c2f7c261 763 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
a6bbe768
JM
764 }
765 }
766
350c8a60 767 }else{
c2f7c261
JM
768 // already in machine coordinates, we do not add tool offset for that
769 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
770 if(!isnan(param[i])) target[i] = param[i];
771 }
c2885de8 772 }
6bc4a00a 773
29e809e0
JM
774 // process extruder parameters, for active extruder only (only one active extruder at a time)
775 selected_extruder= 0;
776 if(gcode->has_letter('E')) {
777 for (int i = E_AXIS; i < n_motors; ++i) {
778 // find first selected extruder
779 if(actuators[i]->is_selected()) {
780 param[E_AXIS]= gcode->get_value('E');
781 selected_extruder= i;
782 break;
783 }
784 }
785 }
786
787 // do E for the selected extruder
788 float delta_e= NAN;
789 if(selected_extruder > 0 && !isnan(param[E_AXIS])) {
790 if(this->e_absolute_mode) {
791 target[selected_extruder]= param[E_AXIS];
792 delta_e= target[selected_extruder] - last_milestone[selected_extruder];
793 }else{
794 delta_e= param[E_AXIS];
795 target[selected_extruder] = delta_e + last_milestone[selected_extruder];
796 }
797 }
798
4710532a 799 if( gcode->has_letter('F') ) {
29e809e0 800 if( motion_mode == SEEK )
da947c62 801 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 802 else
da947c62 803 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 804 }
6bc4a00a 805
350c8a60 806 bool moved= false;
29e809e0
JM
807
808 // Perform any physical actions
809 switch(motion_mode) {
810 case NONE: break;
811
812 case SEEK:
813 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute, delta_e );
350c8a60 814 break;
29e809e0
JM
815
816 case LINEAR:
817 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute, delta_e );
350c8a60 818 break;
29e809e0
JM
819
820 case CW_ARC:
821 case CCW_ARC:
374d0777 822 // Note arcs are not currently supported by extruder based machines, as 3D slicers do not use arcs (G2/G3)
29e809e0 823 moved= this->compute_arc(gcode, offset, target, motion_mode);
350c8a60 824 break;
4cff3ded 825 }
13e4a3f9 826
c2f7c261
JM
827 if(moved) {
828 // set last_milestone to the calculated target
df56baf2 829 memcpy(last_milestone, target, n_motors*sizeof(float));
350c8a60 830 }
edac9072
AW
831}
832
a6bbe768 833// reset the machine position for all axis. Used for homing.
f6934849
JM
834// During homing compensation is turned off (actually not used as it drives steppers directly)
835// once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
836// so in those cases the final position is compensated.
cef9acea
JM
837void Robot::reset_axis_position(float x, float y, float z)
838{
f6934849 839 // these are set to the same as compensation was not used to get to the current position
c2f7c261
JM
840 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
841 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
842 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
cef9acea 843
a6bbe768 844 // now set the actuator positions to match
807b9b57 845 ActuatorCoordinates actuator_pos;
c2f7c261 846 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
29e809e0 847 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
cef9acea
JM
848 actuators[i]->change_last_milestone(actuator_pos[i]);
849}
850
807b9b57 851// Reset the position for an axis (used in homing)
4710532a
JM
852void Robot::reset_axis_position(float position, int axis)
853{
c2f7c261
JM
854 last_milestone[axis] = position;
855 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
4cff3ded
AW
856}
857
932a3995 858// similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
93f20a8c
JM
859// then sets the axis positions to match. currently only called from Endstops.cpp
860void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
586cc733 861{
29e809e0 862 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
93f20a8c 863 actuators[i]->change_last_milestone(ac[i]);
586cc733
JM
864
865 // now correct axis positions then recorrect actuator to account for rounding
866 reset_position_from_current_actuator_position();
867}
868
a6bbe768 869// Use FK to find out where actuator is and reset to match
728477c4
JM
870void Robot::reset_position_from_current_actuator_position()
871{
807b9b57 872 ActuatorCoordinates actuator_pos;
29e809e0 873 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
58587001 874 // NOTE actuator::current_position is curently NOT the same as actuator::last_milestone after an abrupt abort
807b9b57
JM
875 actuator_pos[i] = actuators[i]->get_current_position();
876 }
58587001
JM
877
878 // discover machine position from where actuators actually are
c2f7c261
JM
879 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
880 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
881 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
cf91d4f3 882
58587001
JM
883 // now reset actuator::last_milestone, NOTE this may lose a little precision as FK is not always entirely accurate.
884 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
932a3995 885 // to get everything in perfect sync.
7baae81a 886 arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
29e809e0 887 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
7baae81a 888 actuators[i]->change_last_milestone(actuator_pos[i]);
728477c4 889}
edac9072 890
c2f7c261
JM
891// Convert target (in machine coordinates) from millimeters to steps, and append this to the planner
892// target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
893// all transforms and is what we actually convert to actuator positions
c8bac202 894bool Robot::append_milestone(Gcode *gcode, const float target[], float rate_mm_s)
df6a30f2 895{
29e809e0
JM
896 float deltas[n_motors];
897 float transformed_target[n_motors]; // adjust target for bed compensation and WCS offsets
898 float unit_vec[N_PRIMARY_AXIS];
899 float millimeters_of_travel= 0;
df6a30f2 900
166836be
JM
901 // catch negative or zero feed rates and return the same error as GRBL does
902 if(rate_mm_s <= 0.0F) {
903 gcode->is_error= true;
904 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
905 return false;
906 }
907
3632a517 908 // unity transform by default
29e809e0 909 memcpy(transformed_target, target, n_motors*sizeof(float));
5e45206a 910
350c8a60
JM
911 // check function pointer and call if set to transform the target to compensate for bed
912 if(compensationTransform) {
913 // some compensation strategies can transform XYZ, some just change Z
914 compensationTransform(transformed_target);
00e607c7 915 }
807b9b57 916
29e809e0
JM
917 bool move= false;
918 float sos= 0;
919
a6bbe768 920 // find distance moved by each axis, use transformed target from the current machine position
ec45206d 921 for (size_t i = 0; i < n_motors; i++) {
29e809e0
JM
922 deltas[i] = transformed_target[i] - last_machine_position[i];
923 if(deltas[i] == 0) continue;
924 // at least one non zero delta
925 move = true;
926 if(i <= Z_AXIS) {
927 sos += powf(deltas[i], 2);
928 }
3632a517 929 }
aab6cbba 930
29e809e0
JM
931 // nothing moved
932 if(!move) return false;
933
934 // set if none of the primary axis is moving
935 bool auxilliary_move= false;
936 if(sos > 0.0F){
937 millimeters_of_travel= sqrtf(sos);
938
939 } else if(n_motors >= E_AXIS) { // if we have more than 3 axis/actuators (XYZE)
940 // non primary axis move (like extrude)
374d0777 941 // select the biggest one, will be the only active E
29e809e0
JM
942 auto mi= std::max_element(&deltas[E_AXIS], &deltas[n_motors], [](float a, float b){ return std::abs(a) < std::abs(b); } );
943 millimeters_of_travel= std::abs(*mi);
944 auxilliary_move= true;
945
946 }else{
947 // shouldn't happen but just in case
948 return false;
949 }
df6a30f2 950
a6bbe768
JM
951 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
952 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
350c8a60 953 if(millimeters_of_travel < 0.00001F) return false;
a6bbe768
JM
954
955 // this is the machine position
29e809e0 956 memcpy(this->last_machine_position, transformed_target, n_motors*sizeof(float));
a6bbe768 957
29e809e0
JM
958 if(!auxilliary_move) {
959 // find distance unit vector for primary axis only
960 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
961 unit_vec[i] = deltas[i] / millimeters_of_travel;
df6a30f2 962
29e809e0
JM
963 // Do not move faster than the configured cartesian limits for XYZ
964 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
965 if ( max_speeds[axis] > 0 ) {
966 float axis_speed = fabsf(unit_vec[axis] * rate_mm_s);
df6a30f2 967
29e809e0
JM
968 if (axis_speed > max_speeds[axis])
969 rate_mm_s *= ( max_speeds[axis] / axis_speed );
970 }
7b470506
AW
971 }
972 }
4cff3ded 973
c2f7c261 974 // find actuator position given the machine position, use actual adjusted target
29e809e0 975 ActuatorCoordinates actuator_pos;
c2f7c261 976 arm_solution->cartesian_to_actuator( this->last_machine_position, actuator_pos );
df6a30f2 977
13ad7234 978#if MAX_ROBOT_ACTUATORS > 3
29e809e0 979 // for the extruders just copy the position
374d0777 980 for (size_t i = E_AXIS; i < n_motors; i++) {
29e809e0
JM
981 actuator_pos[i]= last_machine_position[i];
982 if(!isnan(this->e_scale)) {
983 // NOTE this relies on the fact only one extruder is active at a time
984 // scale for volumetric or flow rate
985 // TODO is this correct? scaling the absolute target? what if the scale changes?
ec45206d 986 // for volumetric it basically converts mm³ to mm, but what about flow rate?
29e809e0
JM
987 actuator_pos[i] *= this->e_scale;
988 }
989 }
990#endif
991
992 // use default acceleration to start with
993 float acceleration = default_acceleration;
994
03b01bac 995 float isecs = rate_mm_s / millimeters_of_travel;
29e809e0 996
df6a30f2 997 // check per-actuator speed limits
29e809e0
JM
998 for (size_t actuator = 0; actuator < n_motors; actuator++) {
999 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
1000 if(d == 0 || !actuators[actuator]->is_selected()) continue; // no movement for this actuator
1001
1002 float actuator_rate= d * isecs;
03b01bac 1003 if (actuator_rate > actuators[actuator]->get_max_rate()) {
3494f3d0 1004 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
03b01bac 1005 isecs = rate_mm_s / millimeters_of_travel;
928467c0 1006 }
29e809e0 1007
df56baf2
JM
1008 // adjust acceleration to lowest found, for now just primary axis unless it is an auxiliary move
1009 // TODO we may need to do all of them, check E won't limit XYZ
1010 if(auxilliary_move || actuator <= Z_AXIS) {
1011 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1012 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
1013 float ca = fabsf((deltas[actuator]/millimeters_of_travel) * acceleration);
1014 if (ca > ma) {
1015 acceleration *= ( ma / ca );
1016 }
29e809e0
JM
1017 }
1018 }
928467c0
JM
1019 }
1020
edac9072 1021 // Append the block to the planner
374d0777 1022 THEKERNEL->planner->append_block( actuator_pos, n_motors, rate_mm_s, millimeters_of_travel, auxilliary_move? nullptr : unit_vec, acceleration );
4cff3ded 1023
350c8a60 1024 return true;
4cff3ded
AW
1025}
1026
c8bac202 1027// Used to plan a single move used by things like endstops when homing, zprobe, extruder retracts etc.
13ad7234
JM
1028// TODO this pretty much duplicates append_milestone, so try to refactor it away.
1029bool Robot::solo_move(const float *delta, float rate_mm_s, uint8_t naxis)
c8bac202
JM
1030{
1031 if(THEKERNEL->is_halted()) return false;
1032
1033 // catch negative or zero feed rates and return the same error as GRBL does
1034 if(rate_mm_s <= 0.0F) {
1035 return false;
1036 }
1037
13ad7234
JM
1038 bool move= false;
1039 float sos= 0;
1040
1041 // find distance moved by each axis
df56baf2 1042 for (size_t i = 0; i < naxis; i++) {
13ad7234
JM
1043 if(delta[i] == 0) continue;
1044 // at least one non zero delta
1045 move = true;
1046 sos += powf(delta[i], 2);
1047 }
1048
1049 // nothing moved
1050 if(!move) return false;
c8bac202
JM
1051
1052 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
1053 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
13ad7234
JM
1054 if(sos < 0.00001F) return false;
1055
1056 float millimeters_of_travel= sqrtf(sos);
c8bac202
JM
1057
1058 // this is the new machine position
df56baf2 1059 for (int axis = 0; axis < naxis; axis++) {
c8bac202
JM
1060 this->last_machine_position[axis] += delta[axis];
1061 }
df56baf2
JM
1062 // we also need to update last_milestone here which is the same as last_machine_position as there was no compensation
1063 memcpy(this->last_milestone, this->last_machine_position, naxis*sizeof(float));
c8bac202 1064
13ad7234
JM
1065 // find actuator position given the machine position
1066 ActuatorCoordinates actuator_pos;
1067 arm_solution->cartesian_to_actuator( this->last_machine_position, actuator_pos );
c8bac202 1068
374d0777
JM
1069 // for the extruders just copy the position, need to copy all actuators
1070 for (size_t i = N_PRIMARY_AXIS; i < n_motors; i++) {
13ad7234 1071 actuator_pos[i]= last_machine_position[i];
c8bac202
JM
1072 }
1073
29e809e0
JM
1074 // use default acceleration to start with
1075 float acceleration = default_acceleration;
c8bac202 1076 float isecs = rate_mm_s / millimeters_of_travel;
29e809e0 1077
c8bac202 1078 // check per-actuator speed limits
13ad7234 1079 for (size_t actuator = 0; actuator < naxis; actuator++) {
29e809e0
JM
1080 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
1081 if(d == 0) continue; // no movement for this actuator
1082
1083 float actuator_rate= d * isecs;
c8bac202
JM
1084 if (actuator_rate > actuators[actuator]->get_max_rate()) {
1085 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
1086 isecs = rate_mm_s / millimeters_of_travel;
1087 }
c8bac202 1088
29e809e0
JM
1089 // adjust acceleration to lowest found in an active axis
1090 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1091 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
1092 float ca = fabsf((d/millimeters_of_travel) * acceleration);
1093 if (ca > ma) {
1094 acceleration *= ( ma / ca );
1095 }
1096 }
1097 }
c8bac202 1098 // Append the block to the planner
374d0777 1099 THEKERNEL->planner->append_block(actuator_pos, n_motors, rate_mm_s, millimeters_of_travel, nullptr, acceleration);
c8bac202
JM
1100
1101 return true;
1102}
1103
edac9072 1104// Append a move to the queue ( cutting it into segments if needed )
29e809e0 1105bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s, float delta_e)
4710532a 1106{
374d0777 1107 // by default there is no e scaling required, but if volumetric extrusion is enabled this will be set to scale the parameter
29e809e0
JM
1108 this->e_scale= NAN;
1109
1110 // Find out the distance for this move in XYZ in MCS
1111 float millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
1112
374d0777
JM
1113 if(millimeters_of_travel < 0.00001F) {
1114 // we have no movement in XYZ, probably E only extrude or retract which is always in mm, so no E scaling required
29e809e0
JM
1115 return this->append_milestone(gcode, target, rate_mm_s);
1116 }
1117
1118 /*
374d0777
JM
1119 For extruders, we need to do some extra work...
1120 if we have volumetric limits enabled we calculate the volume for this move and limit the rate if it exceeds the stated limit.
1121 Note we need to be using volumetric extrusion for this to work as Ennn is in mm³ not mm
1122 We ask Extruder to do all the work but we need to pass in the relevant data.
1123 NOTE we need to do this before we segment the line (for deltas)
1124 This also sets any scaling due to flow rate and volumetric if a G1
29e809e0
JM
1125 */
1126 if(!isnan(delta_e) && gcode->has_g && gcode->g == 1) {
1127 float data[2]= {delta_e, rate_mm_s / millimeters_of_travel};
d2adef5e 1128 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
29e809e0
JM
1129 rate_mm_s *= data[1]; // adjust the feedrate
1130 // we may need to scale the amount moved too
1131 this->e_scale= data[0];
d2adef5e
JM
1132 }
1133 }
1134
c2f7c261 1135 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
3b4b05b8
JM
1136 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
1137 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 1138 uint16_t segments;
5984acdf 1139
a3e1326a 1140 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
778093ce
JM
1141 segments= 1;
1142
1143 } else if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
1144 // enabled if set to something > 1, it is set to 0.0 by default
1145 // segment based on current speed and requested segments per second
1146 // the faster the travel speed the fewer segments needed
1147 // NOTE rate is mm/sec and we take into account any speed override
29e809e0 1148 float seconds = millimeters_of_travel / rate_mm_s;
9502f9d5 1149 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
4a0c8e14 1150 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 1151
4710532a
JM
1152 } else {
1153 if(this->mm_per_line_segment == 0.0F) {
1154 segments = 1; // don't split it up
1155 } else {
29e809e0 1156 segments = ceilf( millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
1157 }
1158 }
5984acdf 1159
350c8a60 1160 bool moved= false;
4710532a 1161 if (segments > 1) {
2ba859c9 1162 // A vector to keep track of the endpoint of each segment
29e809e0
JM
1163 float segment_delta[n_motors];
1164 float segment_end[n_motors];
1165 memcpy(segment_end, last_milestone, n_motors*sizeof(float));
2ba859c9
MM
1166
1167 // How far do we move each segment?
29e809e0 1168 for (int i = 0; i < n_motors; i++)
2791c829 1169 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 1170
c8e0fb15
MM
1171 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
1172 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a 1173 for (int i = 1; i < segments; i++) {
350c8a60 1174 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
29e809e0
JM
1175 for (int i = 0; i < n_motors; i++)
1176 segment_end[i] += segment_delta[i];
2ba859c9
MM
1177
1178 // Append the end of this segment to the queue
350c8a60
JM
1179 bool b= this->append_milestone(gcode, segment_end, rate_mm_s);
1180 moved= moved || b;
2ba859c9 1181 }
4cff3ded 1182 }
5984acdf
MM
1183
1184 // Append the end of this full move to the queue
350c8a60 1185 if(this->append_milestone(gcode, target, rate_mm_s)) moved= true;
2134bcf2 1186
a6bbe768 1187 this->next_command_is_MCS = false; // always reset this
00e607c7 1188
350c8a60 1189 return moved;
4cff3ded
AW
1190}
1191
4cff3ded 1192
edac9072 1193// Append an arc to the queue ( cutting it into segments as needed )
350c8a60 1194bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
4710532a 1195{
aab6cbba 1196
edac9072 1197 // Scary math
2ba859c9
MM
1198 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
1199 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
1200 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
1201 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
1202 float r_axis1 = -offset[this->plane_axis_1];
1203 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
1204 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba 1205
51871fb8 1206 // Patch from GRBL Firmware - Christoph Baumann 04072015
aab6cbba 1207 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
fb4c9d09 1208 float angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
5fa0c173 1209 if (is_clockwise) { // Correct atan2 output per direction
29e809e0 1210 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= (2 * PI); }
5fa0c173 1211 } else {
29e809e0 1212 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += (2 * PI); }
4710532a 1213 }
aab6cbba 1214
edac9072 1215 // Find the distance for this gcode
29e809e0 1216 float millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
436a2cd1 1217
edac9072 1218 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
29e809e0 1219 if( millimeters_of_travel < 0.00001F ) {
350c8a60 1220 return false;
4710532a 1221 }
5dcb2ff3 1222
83c6e067
RA
1223 // limit segments by maximum arc error
1224 float arc_segment = this->mm_per_arc_segment;
4d0f60a9 1225 if ((this->mm_max_arc_error > 0) && (2 * radius > this->mm_max_arc_error)) {
83c6e067
RA
1226 float min_err_segment = 2 * sqrtf((this->mm_max_arc_error * (2 * radius - this->mm_max_arc_error)));
1227 if (this->mm_per_arc_segment < min_err_segment) {
1228 arc_segment = min_err_segment;
1229 }
1230 }
5984acdf 1231 // Figure out how many segments for this gcode
29e809e0 1232 uint16_t segments = ceilf(millimeters_of_travel / arc_segment);
aab6cbba 1233
29e809e0 1234 //printf("Radius %f - Segment Length %f - Number of Segments %d\r\n",radius,arc_segment,segments); // Testing Purposes ONLY
4710532a
JM
1235 float theta_per_segment = angular_travel / segments;
1236 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
1237
1238 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1239 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1240 r_T = [cos(phi) -sin(phi);
1241 sin(phi) cos(phi] * r ;
1242 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1243 defined from the circle center to the initial position. Each line segment is formed by successive
1244 vector rotations. This requires only two cos() and sin() computations to form the rotation
1245 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 1246 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
1247 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1248 tool precision in some cases. Therefore, arc path correction is implemented.
1249
1250 Small angle approximation may be used to reduce computation overhead further. This approximation
1251 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1252 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1253 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1254 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1255 issue for CNC machines with the single precision Arduino calculations.
1256 This approximation also allows mc_arc to immediately insert a line segment into the planner
1257 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1258 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1259 This is important when there are successive arc motions.
1260 */
1261 // Vector rotation matrix values
4710532a 1262 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 1263 float sin_T = theta_per_segment;
aab6cbba 1264
1ad23cd3
MM
1265 float arc_target[3];
1266 float sin_Ti;
1267 float cos_Ti;
1268 float r_axisi;
aab6cbba
AW
1269 uint16_t i;
1270 int8_t count = 0;
1271
1272 // Initialize the linear axis
2ba859c9 1273 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 1274
350c8a60 1275 bool moved= false;
4710532a 1276 for (i = 1; i < segments; i++) { // Increment (segments-1)
350c8a60 1277 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
aab6cbba 1278
b66fb830 1279 if (count < this->arc_correction ) {
4710532a
JM
1280 // Apply vector rotation matrix
1281 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1282 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1283 r_axis1 = r_axisi;
1284 count++;
aab6cbba 1285 } else {
4710532a
JM
1286 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1287 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1288 cos_Ti = cosf(i * theta_per_segment);
1289 sin_Ti = sinf(i * theta_per_segment);
1290 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1291 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1292 count = 0;
aab6cbba
AW
1293 }
1294
1295 // Update arc_target location
1296 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1297 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1298 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
1299
1300 // Append this segment to the queue
350c8a60
JM
1301 bool b= this->append_milestone(gcode, arc_target, this->feed_rate / seconds_per_minute);
1302 moved= moved || b;
aab6cbba 1303 }
edac9072 1304
aab6cbba 1305 // Ensure last segment arrives at target location.
350c8a60
JM
1306 if(this->append_milestone(gcode, target, this->feed_rate / seconds_per_minute)) moved= true;
1307
1308 return moved;
aab6cbba
AW
1309}
1310
edac9072 1311// Do the math for an arc and add it to the queue
29e809e0 1312bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[], enum MOTION_MODE_T motion_mode)
4710532a 1313{
aab6cbba
AW
1314
1315 // Find the radius
13addf09 1316 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
1317
1318 // Set clockwise/counter-clockwise sign for mc_arc computations
1319 bool is_clockwise = false;
29e809e0 1320 if( motion_mode == CW_ARC ) {
4710532a
JM
1321 is_clockwise = true;
1322 }
aab6cbba
AW
1323
1324 // Append arc
350c8a60 1325 return this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
1326}
1327
1328
4710532a
JM
1329float Robot::theta(float x, float y)
1330{
1331 float t = atanf(x / fabs(y));
1332 if (y > 0) {
1333 return(t);
1334 } else {
1335 if (t > 0) {
29e809e0 1336 return(PI - t);
4710532a 1337 } else {
29e809e0 1338 return(-PI - t);
4710532a
JM
1339 }
1340 }
4cff3ded
AW
1341}
1342
4710532a
JM
1343void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1344{
4cff3ded
AW
1345 this->plane_axis_0 = axis_0;
1346 this->plane_axis_1 = axis_1;
1347 this->plane_axis_2 = axis_2;
1348}
1349
fae93525 1350void Robot::clearToolOffset()
4710532a 1351{
c2f7c261 1352 this->tool_offset= wcs_t(0,0,0);
fae93525
JM
1353}
1354
1355void Robot::setToolOffset(const float offset[3])
1356{
c2f7c261 1357 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
5966b7d0
AT
1358}
1359
0ec2f63a
JM
1360float Robot::get_feed_rate() const
1361{
1362 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1363}