Fix cross-references in api-macros.texi
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
7facc08a
MW
3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007,
4@c 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
07d83abe
MV
5@c See the file guile.texi for copying conditions.
6
07d83abe
MV
7@node Simple Data Types
8@section Simple Generic Data Types
9
10This chapter describes those of Guile's simple data types which are
11primarily used for their role as items of generic data. By
12@dfn{simple} we mean data types that are not primarily used as
13containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14For the documentation of such @dfn{compound} data types, see
15@ref{Compound Data Types}.
16
17@c One of the great strengths of Scheme is that there is no straightforward
18@c distinction between ``data'' and ``functionality''. For example,
19@c Guile's support for dynamic linking could be described:
20
21@c @itemize @bullet
22@c @item
23@c either in a ``data-centric'' way, as the behaviour and properties of the
24@c ``dynamically linked object'' data type, and the operations that may be
25@c applied to instances of this type
26
27@c @item
28@c or in a ``functionality-centric'' way, as the set of procedures that
29@c constitute Guile's support for dynamic linking, in the context of the
30@c module system.
31@c @end itemize
32
33@c The contents of this chapter are, therefore, a matter of judgment. By
34@c @dfn{generic}, we mean to select those data types whose typical use as
35@c @emph{data} in a wide variety of programming contexts is more important
36@c than their use in the implementation of a particular piece of
37@c @emph{functionality}. The last section of this chapter provides
38@c references for all the data types that are documented not here but in a
39@c ``functionality-centric'' way elsewhere in the manual.
40
41@menu
42* Booleans:: True/false values.
43* Numbers:: Numerical data types.
050ab45f
MV
44* Characters:: Single characters.
45* Character Sets:: Sets of characters.
46* Strings:: Sequences of characters.
b242715b 47* Bytevectors:: Sequences of bytes.
07d83abe
MV
48* Symbols:: Symbols.
49* Keywords:: Self-quoting, customizable display keywords.
50* Other Types:: "Functionality-centric" data types.
51@end menu
52
53
54@node Booleans
55@subsection Booleans
56@tpindex Booleans
57
58The two boolean values are @code{#t} for true and @code{#f} for false.
59
60Boolean values are returned by predicate procedures, such as the general
61equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
62(@pxref{Equality}) and numerical and string comparison operators like
63@code{string=?} (@pxref{String Comparison}) and @code{<=}
64(@pxref{Comparison}).
65
66@lisp
67(<= 3 8)
68@result{} #t
69
70(<= 3 -3)
71@result{} #f
72
73(equal? "house" "houses")
74@result{} #f
75
76(eq? #f #f)
77@result{}
78#t
79@end lisp
80
9accf3d9
AW
81In test condition contexts like @code{if} and @code{cond}
82(@pxref{Conditionals}), where a group of subexpressions will be
83evaluated only if a @var{condition} expression evaluates to ``true'',
84``true'' means any value at all except @code{#f}.
07d83abe
MV
85
86@lisp
87(if #t "yes" "no")
88@result{} "yes"
89
90(if 0 "yes" "no")
91@result{} "yes"
92
93(if #f "yes" "no")
94@result{} "no"
95@end lisp
96
97A result of this asymmetry is that typical Scheme source code more often
98uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
99represent an @code{if} or @code{cond} false value, whereas @code{#t} is
100not necessary to represent an @code{if} or @code{cond} true value.
101
102It is important to note that @code{#f} is @strong{not} equivalent to any
103other Scheme value. In particular, @code{#f} is not the same as the
104number 0 (like in C and C++), and not the same as the ``empty list''
105(like in some Lisp dialects).
106
107In C, the two Scheme boolean values are available as the two constants
108@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
109Care must be taken with the false value @code{SCM_BOOL_F}: it is not
110false when used in C conditionals. In order to test for it, use
111@code{scm_is_false} or @code{scm_is_true}.
112
113@rnindex not
114@deffn {Scheme Procedure} not x
115@deffnx {C Function} scm_not (x)
116Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
117@end deffn
118
119@rnindex boolean?
120@deffn {Scheme Procedure} boolean? obj
121@deffnx {C Function} scm_boolean_p (obj)
122Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
123return @code{#f}.
124@end deffn
125
126@deftypevr {C Macro} SCM SCM_BOOL_T
127The @code{SCM} representation of the Scheme object @code{#t}.
128@end deftypevr
129
130@deftypevr {C Macro} SCM SCM_BOOL_F
131The @code{SCM} representation of the Scheme object @code{#f}.
132@end deftypevr
133
134@deftypefn {C Function} int scm_is_true (SCM obj)
135Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
136@end deftypefn
137
138@deftypefn {C Function} int scm_is_false (SCM obj)
139Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
140@end deftypefn
141
142@deftypefn {C Function} int scm_is_bool (SCM obj)
143Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
144return @code{0}.
145@end deftypefn
146
147@deftypefn {C Function} SCM scm_from_bool (int val)
148Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
149@end deftypefn
150
151@deftypefn {C Function} int scm_to_bool (SCM val)
152Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
153when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
154
155You should probably use @code{scm_is_true} instead of this function
156when you just want to test a @code{SCM} value for trueness.
157@end deftypefn
158
159@node Numbers
160@subsection Numerical data types
161@tpindex Numbers
162
163Guile supports a rich ``tower'' of numerical types --- integer,
164rational, real and complex --- and provides an extensive set of
165mathematical and scientific functions for operating on numerical
166data. This section of the manual documents those types and functions.
167
168You may also find it illuminating to read R5RS's presentation of numbers
169in Scheme, which is particularly clear and accessible: see
170@ref{Numbers,,,r5rs,R5RS}.
171
172@menu
173* Numerical Tower:: Scheme's numerical "tower".
174* Integers:: Whole numbers.
175* Reals and Rationals:: Real and rational numbers.
176* Complex Numbers:: Complex numbers.
177* Exactness:: Exactness and inexactness.
178* Number Syntax:: Read syntax for numerical data.
179* Integer Operations:: Operations on integer values.
180* Comparison:: Comparison predicates.
181* Conversion:: Converting numbers to and from strings.
182* Complex:: Complex number operations.
183* Arithmetic:: Arithmetic functions.
184* Scientific:: Scientific functions.
07d83abe
MV
185* Bitwise Operations:: Logical AND, OR, NOT, and so on.
186* Random:: Random number generation.
187@end menu
188
189
190@node Numerical Tower
191@subsubsection Scheme's Numerical ``Tower''
192@rnindex number?
193
194Scheme's numerical ``tower'' consists of the following categories of
195numbers:
196
197@table @dfn
198@item integers
199Whole numbers, positive or negative; e.g.@: --5, 0, 18.
200
201@item rationals
202The set of numbers that can be expressed as @math{@var{p}/@var{q}}
203where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
204pi (an irrational number) doesn't. These include integers
205(@math{@var{n}/1}).
206
207@item real numbers
208The set of numbers that describes all possible positions along a
209one-dimensional line. This includes rationals as well as irrational
210numbers.
211
212@item complex numbers
213The set of numbers that describes all possible positions in a two
214dimensional space. This includes real as well as imaginary numbers
215(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
216@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
217@minus{}1.)
218@end table
219
220It is called a tower because each category ``sits on'' the one that
221follows it, in the sense that every integer is also a rational, every
222rational is also real, and every real number is also a complex number
223(but with zero imaginary part).
224
225In addition to the classification into integers, rationals, reals and
226complex numbers, Scheme also distinguishes between whether a number is
227represented exactly or not. For example, the result of
9f1ba6a9
NJ
228@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
229can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
07d83abe
MV
230Instead, it stores an inexact approximation, using the C type
231@code{double}.
232
233Guile can represent exact rationals of any magnitude, inexact
234rationals that fit into a C @code{double}, and inexact complex numbers
235with @code{double} real and imaginary parts.
236
237The @code{number?} predicate may be applied to any Scheme value to
238discover whether the value is any of the supported numerical types.
239
240@deffn {Scheme Procedure} number? obj
241@deffnx {C Function} scm_number_p (obj)
242Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
243@end deffn
244
245For example:
246
247@lisp
248(number? 3)
249@result{} #t
250
251(number? "hello there!")
252@result{} #f
253
254(define pi 3.141592654)
255(number? pi)
256@result{} #t
257@end lisp
258
5615f696
MV
259@deftypefn {C Function} int scm_is_number (SCM obj)
260This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
261@end deftypefn
262
07d83abe
MV
263The next few subsections document each of Guile's numerical data types
264in detail.
265
266@node Integers
267@subsubsection Integers
268
269@tpindex Integer numbers
270
271@rnindex integer?
272
273Integers are whole numbers, that is numbers with no fractional part,
274such as 2, 83, and @minus{}3789.
275
276Integers in Guile can be arbitrarily big, as shown by the following
277example.
278
279@lisp
280(define (factorial n)
281 (let loop ((n n) (product 1))
282 (if (= n 0)
283 product
284 (loop (- n 1) (* product n)))))
285
286(factorial 3)
287@result{} 6
288
289(factorial 20)
290@result{} 2432902008176640000
291
292(- (factorial 45))
293@result{} -119622220865480194561963161495657715064383733760000000000
294@end lisp
295
296Readers whose background is in programming languages where integers are
297limited by the need to fit into just 4 or 8 bytes of memory may find
298this surprising, or suspect that Guile's representation of integers is
299inefficient. In fact, Guile achieves a near optimal balance of
300convenience and efficiency by using the host computer's native
301representation of integers where possible, and a more general
302representation where the required number does not fit in the native
303form. Conversion between these two representations is automatic and
304completely invisible to the Scheme level programmer.
305
07d83abe
MV
306C has a host of different integer types, and Guile offers a host of
307functions to convert between them and the @code{SCM} representation.
308For example, a C @code{int} can be handled with @code{scm_to_int} and
309@code{scm_from_int}. Guile also defines a few C integer types of its
310own, to help with differences between systems.
311
312C integer types that are not covered can be handled with the generic
313@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
314signed types, or with @code{scm_to_unsigned_integer} and
315@code{scm_from_unsigned_integer} for unsigned types.
316
317Scheme integers can be exact and inexact. For example, a number
318written as @code{3.0} with an explicit decimal-point is inexact, but
319it is also an integer. The functions @code{integer?} and
320@code{scm_is_integer} report true for such a number, but the functions
321@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
322allow exact integers and thus report false. Likewise, the conversion
323functions like @code{scm_to_signed_integer} only accept exact
324integers.
325
326The motivation for this behavior is that the inexactness of a number
327should not be lost silently. If you want to allow inexact integers,
877f06c3 328you can explicitly insert a call to @code{inexact->exact} or to its C
07d83abe
MV
329equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
330be converted by this call into exact integers; inexact non-integers
331will become exact fractions.)
332
333@deffn {Scheme Procedure} integer? x
334@deffnx {C Function} scm_integer_p (x)
909fcc97 335Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
336@code{#f}.
337
338@lisp
339(integer? 487)
340@result{} #t
341
342(integer? 3.0)
343@result{} #t
344
345(integer? -3.4)
346@result{} #f
347
348(integer? +inf.0)
349@result{} #t
350@end lisp
351@end deffn
352
353@deftypefn {C Function} int scm_is_integer (SCM x)
354This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
355@end deftypefn
356
357@defvr {C Type} scm_t_int8
358@defvrx {C Type} scm_t_uint8
359@defvrx {C Type} scm_t_int16
360@defvrx {C Type} scm_t_uint16
361@defvrx {C Type} scm_t_int32
362@defvrx {C Type} scm_t_uint32
363@defvrx {C Type} scm_t_int64
364@defvrx {C Type} scm_t_uint64
365@defvrx {C Type} scm_t_intmax
366@defvrx {C Type} scm_t_uintmax
367The C types are equivalent to the corresponding ISO C types but are
368defined on all platforms, with the exception of @code{scm_t_int64} and
369@code{scm_t_uint64}, which are only defined when a 64-bit type is
370available. For example, @code{scm_t_int8} is equivalent to
371@code{int8_t}.
372
373You can regard these definitions as a stop-gap measure until all
374platforms provide these types. If you know that all the platforms
375that you are interested in already provide these types, it is better
376to use them directly instead of the types provided by Guile.
377@end defvr
378
379@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
380@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
381Return @code{1} when @var{x} represents an exact integer that is
382between @var{min} and @var{max}, inclusive.
383
384These functions can be used to check whether a @code{SCM} value will
385fit into a given range, such as the range of a given C integer type.
386If you just want to convert a @code{SCM} value to a given C integer
387type, use one of the conversion functions directly.
388@end deftypefn
389
390@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
391@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
392When @var{x} represents an exact integer that is between @var{min} and
393@var{max} inclusive, return that integer. Else signal an error,
394either a `wrong-type' error when @var{x} is not an exact integer, or
395an `out-of-range' error when it doesn't fit the given range.
396@end deftypefn
397
398@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
399@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
400Return the @code{SCM} value that represents the integer @var{x}. This
401function will always succeed and will always return an exact number.
402@end deftypefn
403
404@deftypefn {C Function} char scm_to_char (SCM x)
405@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
406@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
407@deftypefnx {C Function} short scm_to_short (SCM x)
408@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
409@deftypefnx {C Function} int scm_to_int (SCM x)
410@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
411@deftypefnx {C Function} long scm_to_long (SCM x)
412@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
413@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
414@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
415@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
416@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
7facc08a 417@deftypefnx {C Function} scm_t_ptrdiff scm_to_ptrdiff_t (SCM x)
07d83abe
MV
418@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
419@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
420@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
421@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
422@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
423@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
424@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
425@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
426@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
427@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
428When @var{x} represents an exact integer that fits into the indicated
429C type, return that integer. Else signal an error, either a
430`wrong-type' error when @var{x} is not an exact integer, or an
431`out-of-range' error when it doesn't fit the given range.
432
433The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
434@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
435the corresponding types are.
436@end deftypefn
437
438@deftypefn {C Function} SCM scm_from_char (char x)
439@deftypefnx {C Function} SCM scm_from_schar (signed char x)
440@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
441@deftypefnx {C Function} SCM scm_from_short (short x)
442@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
443@deftypefnx {C Function} SCM scm_from_int (int x)
444@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
445@deftypefnx {C Function} SCM scm_from_long (long x)
446@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
447@deftypefnx {C Function} SCM scm_from_long_long (long long x)
448@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
449@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
450@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
7facc08a 451@deftypefnx {C Function} SCM scm_from_ptrdiff_t (scm_t_ptrdiff x)
07d83abe
MV
452@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
453@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
454@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
455@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
456@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
457@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
458@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
459@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
460@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
461@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
462Return the @code{SCM} value that represents the integer @var{x}.
463These functions will always succeed and will always return an exact
464number.
465@end deftypefn
466
08962922
MV
467@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
468Assign @var{val} to the multiple precision integer @var{rop}.
469@var{val} must be an exact integer, otherwise an error will be
470signalled. @var{rop} must have been initialized with @code{mpz_init}
471before this function is called. When @var{rop} is no longer needed
472the occupied space must be freed with @code{mpz_clear}.
473@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
474@end deftypefn
475
9f1ba6a9 476@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
08962922
MV
477Return the @code{SCM} value that represents @var{val}.
478@end deftypefn
479
07d83abe
MV
480@node Reals and Rationals
481@subsubsection Real and Rational Numbers
482@tpindex Real numbers
483@tpindex Rational numbers
484
485@rnindex real?
486@rnindex rational?
487
488Mathematically, the real numbers are the set of numbers that describe
489all possible points along a continuous, infinite, one-dimensional line.
490The rational numbers are the set of all numbers that can be written as
491fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
492All rational numbers are also real, but there are real numbers that
995953e5 493are not rational, for example @m{\sqrt{2}, the square root of 2}, and
34942993 494@m{\pi,pi}.
07d83abe
MV
495
496Guile can represent both exact and inexact rational numbers, but it
c960e556
MW
497cannot represent precise finite irrational numbers. Exact rationals are
498represented by storing the numerator and denominator as two exact
499integers. Inexact rationals are stored as floating point numbers using
500the C type @code{double}.
07d83abe
MV
501
502Exact rationals are written as a fraction of integers. There must be
503no whitespace around the slash:
504
505@lisp
5061/2
507-22/7
508@end lisp
509
510Even though the actual encoding of inexact rationals is in binary, it
511may be helpful to think of it as a decimal number with a limited
512number of significant figures and a decimal point somewhere, since
513this corresponds to the standard notation for non-whole numbers. For
514example:
515
516@lisp
5170.34
518-0.00000142857931198
519-5648394822220000000000.0
5204.0
521@end lisp
522
c960e556
MW
523The limited precision of Guile's encoding means that any finite ``real''
524number in Guile can be written in a rational form, by multiplying and
525then dividing by sufficient powers of 10 (or in fact, 2). For example,
526@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
527by 100000000000000000. In Guile's current incarnation, therefore, the
528@code{rational?} and @code{real?} predicates are equivalent for finite
529numbers.
07d83abe 530
07d83abe 531
c960e556
MW
532Dividing by an exact zero leads to a error message, as one might expect.
533However, dividing by an inexact zero does not produce an error.
534Instead, the result of the division is either plus or minus infinity,
535depending on the sign of the divided number and the sign of the zero
536divisor (some platforms support signed zeroes @samp{-0.0} and
537@samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
538
539Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
540value, although they are actually considered numbers by Scheme.
541Attempts to compare a @acronym{NaN} value with any number (including
542itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
543always returns @code{#f}. Although a @acronym{NaN} value is not
544@code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
545and other @acronym{NaN} values. However, the preferred way to test for
546them is by using @code{nan?}.
547
548The real @acronym{NaN} values and infinities are written @samp{+nan.0},
549@samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
550@code{read} as an extension to the usual Scheme syntax. These special
551values are considered by Scheme to be inexact real numbers but not
552rational. Note that non-real complex numbers may also contain
553infinities or @acronym{NaN} values in their real or imaginary parts. To
554test a real number to see if it is infinite, a @acronym{NaN} value, or
555neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
556Every real number in Scheme belongs to precisely one of those three
557classes.
07d83abe
MV
558
559On platforms that follow @acronym{IEEE} 754 for their floating point
560arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
561are implemented using the corresponding @acronym{IEEE} 754 values.
562They behave in arithmetic operations like @acronym{IEEE} 754 describes
563it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
564
07d83abe
MV
565@deffn {Scheme Procedure} real? obj
566@deffnx {C Function} scm_real_p (obj)
567Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
568that the sets of integer and rational values form subsets of the set
569of real numbers, so the predicate will also be fulfilled if @var{obj}
570is an integer number or a rational number.
571@end deffn
572
573@deffn {Scheme Procedure} rational? x
574@deffnx {C Function} scm_rational_p (x)
575Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
576Note that the set of integer values forms a subset of the set of
995953e5 577rational numbers, i.e.@: the predicate will also be fulfilled if
07d83abe 578@var{x} is an integer number.
07d83abe
MV
579@end deffn
580
581@deffn {Scheme Procedure} rationalize x eps
582@deffnx {C Function} scm_rationalize (x, eps)
583Returns the @emph{simplest} rational number differing
584from @var{x} by no more than @var{eps}.
585
586As required by @acronym{R5RS}, @code{rationalize} only returns an
587exact result when both its arguments are exact. Thus, you might need
588to use @code{inexact->exact} on the arguments.
589
590@lisp
591(rationalize (inexact->exact 1.2) 1/100)
592@result{} 6/5
593@end lisp
594
595@end deffn
596
d3df9759
MV
597@deffn {Scheme Procedure} inf? x
598@deffnx {C Function} scm_inf_p (x)
10391e06
AW
599Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
600@samp{-inf.0}. Otherwise return @code{#f}.
07d83abe
MV
601@end deffn
602
603@deffn {Scheme Procedure} nan? x
d3df9759 604@deffnx {C Function} scm_nan_p (x)
10391e06
AW
605Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
606@code{#f} otherwise.
07d83abe
MV
607@end deffn
608
7112615f
MW
609@deffn {Scheme Procedure} finite? x
610@deffnx {C Function} scm_finite_p (x)
10391e06
AW
611Return @code{#t} if the real number @var{x} is neither infinite nor a
612NaN, @code{#f} otherwise.
7112615f
MW
613@end deffn
614
cdf1ad3b
MV
615@deffn {Scheme Procedure} nan
616@deffnx {C Function} scm_nan ()
c960e556 617Return @samp{+nan.0}, a @acronym{NaN} value.
cdf1ad3b
MV
618@end deffn
619
620@deffn {Scheme Procedure} inf
621@deffnx {C Function} scm_inf ()
c960e556 622Return @samp{+inf.0}, positive infinity.
cdf1ad3b
MV
623@end deffn
624
d3df9759
MV
625@deffn {Scheme Procedure} numerator x
626@deffnx {C Function} scm_numerator (x)
627Return the numerator of the rational number @var{x}.
628@end deffn
629
630@deffn {Scheme Procedure} denominator x
631@deffnx {C Function} scm_denominator (x)
632Return the denominator of the rational number @var{x}.
633@end deffn
634
635@deftypefn {C Function} int scm_is_real (SCM val)
636@deftypefnx {C Function} int scm_is_rational (SCM val)
637Equivalent to @code{scm_is_true (scm_real_p (val))} and
638@code{scm_is_true (scm_rational_p (val))}, respectively.
639@end deftypefn
640
641@deftypefn {C Function} double scm_to_double (SCM val)
642Returns the number closest to @var{val} that is representable as a
643@code{double}. Returns infinity for a @var{val} that is too large in
644magnitude. The argument @var{val} must be a real number.
645@end deftypefn
646
647@deftypefn {C Function} SCM scm_from_double (double val)
be3eb25c 648Return the @code{SCM} value that represents @var{val}. The returned
d3df9759
MV
649value is inexact according to the predicate @code{inexact?}, but it
650will be exactly equal to @var{val}.
651@end deftypefn
652
07d83abe
MV
653@node Complex Numbers
654@subsubsection Complex Numbers
655@tpindex Complex numbers
656
657@rnindex complex?
658
659Complex numbers are the set of numbers that describe all possible points
660in a two-dimensional space. The two coordinates of a particular point
661in this space are known as the @dfn{real} and @dfn{imaginary} parts of
662the complex number that describes that point.
663
664In Guile, complex numbers are written in rectangular form as the sum of
665their real and imaginary parts, using the symbol @code{i} to indicate
666the imaginary part.
667
668@lisp
6693+4i
670@result{}
6713.0+4.0i
672
673(* 3-8i 2.3+0.3i)
674@result{}
6759.3-17.5i
676@end lisp
677
34942993
KR
678@cindex polar form
679@noindent
680Polar form can also be used, with an @samp{@@} between magnitude and
681angle,
682
683@lisp
6841@@3.141592 @result{} -1.0 (approx)
685-1@@1.57079 @result{} 0.0-1.0i (approx)
686@end lisp
687
c7218482
MW
688Guile represents a complex number as a pair of inexact reals, so the
689real and imaginary parts of a complex number have the same properties of
690inexactness and limited precision as single inexact real numbers.
691
692Note that each part of a complex number may contain any inexact real
693value, including the special values @samp{+nan.0}, @samp{+inf.0} and
694@samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
695@samp{-0.0}.
696
07d83abe 697
5615f696
MV
698@deffn {Scheme Procedure} complex? z
699@deffnx {C Function} scm_complex_p (z)
64de6db5 700Return @code{#t} if @var{z} is a complex number, @code{#f}
07d83abe 701otherwise. Note that the sets of real, rational and integer
679cceed 702values form subsets of the set of complex numbers, i.e.@: the
64de6db5 703predicate will also be fulfilled if @var{z} is a real,
07d83abe
MV
704rational or integer number.
705@end deffn
706
c9dc8c6c
MV
707@deftypefn {C Function} int scm_is_complex (SCM val)
708Equivalent to @code{scm_is_true (scm_complex_p (val))}.
709@end deftypefn
710
07d83abe
MV
711@node Exactness
712@subsubsection Exact and Inexact Numbers
713@tpindex Exact numbers
714@tpindex Inexact numbers
715
716@rnindex exact?
717@rnindex inexact?
718@rnindex exact->inexact
719@rnindex inexact->exact
720
654b2823
MW
721R5RS requires that, with few exceptions, a calculation involving inexact
722numbers always produces an inexact result. To meet this requirement,
723Guile distinguishes between an exact integer value such as @samp{5} and
724the corresponding inexact integer value which, to the limited precision
07d83abe
MV
725available, has no fractional part, and is printed as @samp{5.0}. Guile
726will only convert the latter value to the former when forced to do so by
727an invocation of the @code{inexact->exact} procedure.
728
654b2823
MW
729The only exception to the above requirement is when the values of the
730inexact numbers do not affect the result. For example @code{(expt n 0)}
731is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
732permitted to return an exact @samp{1}.
733
07d83abe
MV
734@deffn {Scheme Procedure} exact? z
735@deffnx {C Function} scm_exact_p (z)
736Return @code{#t} if the number @var{z} is exact, @code{#f}
737otherwise.
738
739@lisp
740(exact? 2)
741@result{} #t
742
743(exact? 0.5)
744@result{} #f
745
746(exact? (/ 2))
747@result{} #t
748@end lisp
749
750@end deffn
751
022dda69
MG
752@deftypefn {C Function} int scm_is_exact (SCM z)
753Return a @code{1} if the number @var{z} is exact, and @code{0}
754otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
755
756An alternate approch to testing the exactness of a number is to
757use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
758@end deftypefn
759
07d83abe
MV
760@deffn {Scheme Procedure} inexact? z
761@deffnx {C Function} scm_inexact_p (z)
762Return @code{#t} if the number @var{z} is inexact, @code{#f}
763else.
764@end deffn
765
022dda69
MG
766@deftypefn {C Function} int scm_is_inexact (SCM z)
767Return a @code{1} if the number @var{z} is inexact, and @code{0}
768otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
769@end deftypefn
770
07d83abe
MV
771@deffn {Scheme Procedure} inexact->exact z
772@deffnx {C Function} scm_inexact_to_exact (z)
773Return an exact number that is numerically closest to @var{z}, when
774there is one. For inexact rationals, Guile returns the exact rational
775that is numerically equal to the inexact rational. Inexact complex
776numbers with a non-zero imaginary part can not be made exact.
777
778@lisp
779(inexact->exact 0.5)
780@result{} 1/2
781@end lisp
782
783The following happens because 12/10 is not exactly representable as a
784@code{double} (on most platforms). However, when reading a decimal
785number that has been marked exact with the ``#e'' prefix, Guile is
786able to represent it correctly.
787
788@lisp
789(inexact->exact 1.2)
790@result{} 5404319552844595/4503599627370496
791
792#e1.2
793@result{} 6/5
794@end lisp
795
796@end deffn
797
798@c begin (texi-doc-string "guile" "exact->inexact")
799@deffn {Scheme Procedure} exact->inexact z
800@deffnx {C Function} scm_exact_to_inexact (z)
801Convert the number @var{z} to its inexact representation.
802@end deffn
803
804
805@node Number Syntax
806@subsubsection Read Syntax for Numerical Data
807
808The read syntax for integers is a string of digits, optionally
809preceded by a minus or plus character, a code indicating the
810base in which the integer is encoded, and a code indicating whether
811the number is exact or inexact. The supported base codes are:
812
813@table @code
814@item #b
815@itemx #B
816the integer is written in binary (base 2)
817
818@item #o
819@itemx #O
820the integer is written in octal (base 8)
821
822@item #d
823@itemx #D
824the integer is written in decimal (base 10)
825
826@item #x
827@itemx #X
828the integer is written in hexadecimal (base 16)
829@end table
830
831If the base code is omitted, the integer is assumed to be decimal. The
832following examples show how these base codes are used.
833
834@lisp
835-13
836@result{} -13
837
838#d-13
839@result{} -13
840
841#x-13
842@result{} -19
843
844#b+1101
845@result{} 13
846
847#o377
848@result{} 255
849@end lisp
850
851The codes for indicating exactness (which can, incidentally, be applied
852to all numerical values) are:
853
854@table @code
855@item #e
856@itemx #E
857the number is exact
858
859@item #i
860@itemx #I
861the number is inexact.
862@end table
863
864If the exactness indicator is omitted, the number is exact unless it
865contains a radix point. Since Guile can not represent exact complex
866numbers, an error is signalled when asking for them.
867
868@lisp
869(exact? 1.2)
870@result{} #f
871
872(exact? #e1.2)
873@result{} #t
874
875(exact? #e+1i)
876ERROR: Wrong type argument
877@end lisp
878
879Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
880plus and minus infinity, respectively. The value must be written
881exactly as shown, that is, they always must have a sign and exactly
882one zero digit after the decimal point. It also understands
883@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
884The sign is ignored for `not-a-number' and the value is always printed
885as @samp{+nan.0}.
886
887@node Integer Operations
888@subsubsection Operations on Integer Values
889@rnindex odd?
890@rnindex even?
891@rnindex quotient
892@rnindex remainder
893@rnindex modulo
894@rnindex gcd
895@rnindex lcm
896
897@deffn {Scheme Procedure} odd? n
898@deffnx {C Function} scm_odd_p (n)
899Return @code{#t} if @var{n} is an odd number, @code{#f}
900otherwise.
901@end deffn
902
903@deffn {Scheme Procedure} even? n
904@deffnx {C Function} scm_even_p (n)
905Return @code{#t} if @var{n} is an even number, @code{#f}
906otherwise.
907@end deffn
908
909@c begin (texi-doc-string "guile" "quotient")
910@c begin (texi-doc-string "guile" "remainder")
911@deffn {Scheme Procedure} quotient n d
912@deffnx {Scheme Procedure} remainder n d
913@deffnx {C Function} scm_quotient (n, d)
914@deffnx {C Function} scm_remainder (n, d)
915Return the quotient or remainder from @var{n} divided by @var{d}. The
916quotient is rounded towards zero, and the remainder will have the same
917sign as @var{n}. In all cases quotient and remainder satisfy
918@math{@var{n} = @var{q}*@var{d} + @var{r}}.
919
920@lisp
921(remainder 13 4) @result{} 1
922(remainder -13 4) @result{} -1
923@end lisp
ff62c168 924
8f9da340 925See also @code{truncate-quotient}, @code{truncate-remainder} and
ff62c168 926related operations in @ref{Arithmetic}.
07d83abe
MV
927@end deffn
928
929@c begin (texi-doc-string "guile" "modulo")
930@deffn {Scheme Procedure} modulo n d
931@deffnx {C Function} scm_modulo (n, d)
932Return the remainder from @var{n} divided by @var{d}, with the same
933sign as @var{d}.
934
935@lisp
936(modulo 13 4) @result{} 1
937(modulo -13 4) @result{} 3
938(modulo 13 -4) @result{} -3
939(modulo -13 -4) @result{} -1
940@end lisp
ff62c168 941
8f9da340 942See also @code{floor-quotient}, @code{floor-remainder} and
ff62c168 943related operations in @ref{Arithmetic}.
07d83abe
MV
944@end deffn
945
946@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 947@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
948@deffnx {C Function} scm_gcd (x, y)
949Return the greatest common divisor of all arguments.
950If called without arguments, 0 is returned.
951
952The C function @code{scm_gcd} always takes two arguments, while the
953Scheme function can take an arbitrary number.
954@end deffn
955
956@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 957@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
958@deffnx {C Function} scm_lcm (x, y)
959Return the least common multiple of the arguments.
960If called without arguments, 1 is returned.
961
962The C function @code{scm_lcm} always takes two arguments, while the
963Scheme function can take an arbitrary number.
964@end deffn
965
cdf1ad3b
MV
966@deffn {Scheme Procedure} modulo-expt n k m
967@deffnx {C Function} scm_modulo_expt (n, k, m)
968Return @var{n} raised to the integer exponent
969@var{k}, modulo @var{m}.
970
971@lisp
972(modulo-expt 2 3 5)
973 @result{} 3
974@end lisp
975@end deffn
07d83abe 976
882c8963
MW
977@deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
978@deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
979Return two exact non-negative integers @var{s} and @var{r}
980such that @math{@var{k} = @var{s}^2 + @var{r}} and
981@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
982An error is raised if @var{k} is not an exact non-negative integer.
983
984@lisp
985(exact-integer-sqrt 10) @result{} 3 and 1
986@end lisp
987@end deftypefn
988
07d83abe
MV
989@node Comparison
990@subsubsection Comparison Predicates
991@rnindex zero?
992@rnindex positive?
993@rnindex negative?
994
995The C comparison functions below always takes two arguments, while the
996Scheme functions can take an arbitrary number. Also keep in mind that
997the C functions return one of the Scheme boolean values
998@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
999is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
1000y))} when testing the two Scheme numbers @code{x} and @code{y} for
1001equality, for example.
1002
1003@c begin (texi-doc-string "guile" "=")
1004@deffn {Scheme Procedure} =
1005@deffnx {C Function} scm_num_eq_p (x, y)
1006Return @code{#t} if all parameters are numerically equal.
1007@end deffn
1008
1009@c begin (texi-doc-string "guile" "<")
1010@deffn {Scheme Procedure} <
1011@deffnx {C Function} scm_less_p (x, y)
1012Return @code{#t} if the list of parameters is monotonically
1013increasing.
1014@end deffn
1015
1016@c begin (texi-doc-string "guile" ">")
1017@deffn {Scheme Procedure} >
1018@deffnx {C Function} scm_gr_p (x, y)
1019Return @code{#t} if the list of parameters is monotonically
1020decreasing.
1021@end deffn
1022
1023@c begin (texi-doc-string "guile" "<=")
1024@deffn {Scheme Procedure} <=
1025@deffnx {C Function} scm_leq_p (x, y)
1026Return @code{#t} if the list of parameters is monotonically
1027non-decreasing.
1028@end deffn
1029
1030@c begin (texi-doc-string "guile" ">=")
1031@deffn {Scheme Procedure} >=
1032@deffnx {C Function} scm_geq_p (x, y)
1033Return @code{#t} if the list of parameters is monotonically
1034non-increasing.
1035@end deffn
1036
1037@c begin (texi-doc-string "guile" "zero?")
1038@deffn {Scheme Procedure} zero? z
1039@deffnx {C Function} scm_zero_p (z)
1040Return @code{#t} if @var{z} is an exact or inexact number equal to
1041zero.
1042@end deffn
1043
1044@c begin (texi-doc-string "guile" "positive?")
1045@deffn {Scheme Procedure} positive? x
1046@deffnx {C Function} scm_positive_p (x)
1047Return @code{#t} if @var{x} is an exact or inexact number greater than
1048zero.
1049@end deffn
1050
1051@c begin (texi-doc-string "guile" "negative?")
1052@deffn {Scheme Procedure} negative? x
1053@deffnx {C Function} scm_negative_p (x)
1054Return @code{#t} if @var{x} is an exact or inexact number less than
1055zero.
1056@end deffn
1057
1058
1059@node Conversion
1060@subsubsection Converting Numbers To and From Strings
1061@rnindex number->string
1062@rnindex string->number
1063
b89c4943
LC
1064The following procedures read and write numbers according to their
1065external representation as defined by R5RS (@pxref{Lexical structure,
1066R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
a2f00b9b 1067Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
b89c4943
LC
1068i18n)} module}, for locale-dependent number parsing.
1069
07d83abe
MV
1070@deffn {Scheme Procedure} number->string n [radix]
1071@deffnx {C Function} scm_number_to_string (n, radix)
1072Return a string holding the external representation of the
1073number @var{n} in the given @var{radix}. If @var{n} is
1074inexact, a radix of 10 will be used.
1075@end deffn
1076
1077@deffn {Scheme Procedure} string->number string [radix]
1078@deffnx {C Function} scm_string_to_number (string, radix)
1079Return a number of the maximally precise representation
1080expressed by the given @var{string}. @var{radix} must be an
1081exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1082is a default radix that may be overridden by an explicit radix
679cceed 1083prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
07d83abe
MV
1084supplied, then the default radix is 10. If string is not a
1085syntactically valid notation for a number, then
1086@code{string->number} returns @code{#f}.
1087@end deffn
1088
1b09b607
KR
1089@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1090As per @code{string->number} above, but taking a C string, as pointer
1091and length. The string characters should be in the current locale
1092encoding (@code{locale} in the name refers only to that, there's no
1093locale-dependent parsing).
1094@end deftypefn
1095
07d83abe
MV
1096
1097@node Complex
1098@subsubsection Complex Number Operations
1099@rnindex make-rectangular
1100@rnindex make-polar
1101@rnindex real-part
1102@rnindex imag-part
1103@rnindex magnitude
1104@rnindex angle
1105
3323ec06
NJ
1106@deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1107@deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1108Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
07d83abe
MV
1109@end deffn
1110
c7218482
MW
1111@deffn {Scheme Procedure} make-polar mag ang
1112@deffnx {C Function} scm_make_polar (mag, ang)
34942993 1113@cindex polar form
c7218482 1114Return the complex number @var{mag} * e^(i * @var{ang}).
07d83abe
MV
1115@end deffn
1116
1117@c begin (texi-doc-string "guile" "real-part")
1118@deffn {Scheme Procedure} real-part z
1119@deffnx {C Function} scm_real_part (z)
1120Return the real part of the number @var{z}.
1121@end deffn
1122
1123@c begin (texi-doc-string "guile" "imag-part")
1124@deffn {Scheme Procedure} imag-part z
1125@deffnx {C Function} scm_imag_part (z)
1126Return the imaginary part of the number @var{z}.
1127@end deffn
1128
1129@c begin (texi-doc-string "guile" "magnitude")
1130@deffn {Scheme Procedure} magnitude z
1131@deffnx {C Function} scm_magnitude (z)
1132Return the magnitude of the number @var{z}. This is the same as
1133@code{abs} for real arguments, but also allows complex numbers.
1134@end deffn
1135
1136@c begin (texi-doc-string "guile" "angle")
1137@deffn {Scheme Procedure} angle z
1138@deffnx {C Function} scm_angle (z)
1139Return the angle of the complex number @var{z}.
1140@end deffn
1141
5615f696
MV
1142@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1143@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1144Like @code{scm_make_rectangular} or @code{scm_make_polar},
1145respectively, but these functions take @code{double}s as their
1146arguments.
1147@end deftypefn
1148
1149@deftypefn {C Function} double scm_c_real_part (z)
1150@deftypefnx {C Function} double scm_c_imag_part (z)
1151Returns the real or imaginary part of @var{z} as a @code{double}.
1152@end deftypefn
1153
1154@deftypefn {C Function} double scm_c_magnitude (z)
1155@deftypefnx {C Function} double scm_c_angle (z)
1156Returns the magnitude or angle of @var{z} as a @code{double}.
1157@end deftypefn
1158
07d83abe
MV
1159
1160@node Arithmetic
1161@subsubsection Arithmetic Functions
1162@rnindex max
1163@rnindex min
1164@rnindex +
1165@rnindex *
1166@rnindex -
1167@rnindex /
b1f57ea4
LC
1168@findex 1+
1169@findex 1-
07d83abe
MV
1170@rnindex abs
1171@rnindex floor
1172@rnindex ceiling
1173@rnindex truncate
1174@rnindex round
ff62c168
MW
1175@rnindex euclidean/
1176@rnindex euclidean-quotient
1177@rnindex euclidean-remainder
8f9da340
MW
1178@rnindex floor/
1179@rnindex floor-quotient
1180@rnindex floor-remainder
1181@rnindex ceiling/
1182@rnindex ceiling-quotient
1183@rnindex ceiling-remainder
1184@rnindex truncate/
1185@rnindex truncate-quotient
1186@rnindex truncate-remainder
ff62c168
MW
1187@rnindex centered/
1188@rnindex centered-quotient
1189@rnindex centered-remainder
8f9da340
MW
1190@rnindex round/
1191@rnindex round-quotient
1192@rnindex round-remainder
07d83abe
MV
1193
1194The C arithmetic functions below always takes two arguments, while the
1195Scheme functions can take an arbitrary number. When you need to
1196invoke them with just one argument, for example to compute the
ecb87335 1197equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
07d83abe
MV
1198one: @code{scm_difference (x, SCM_UNDEFINED)}.
1199
1200@c begin (texi-doc-string "guile" "+")
1201@deffn {Scheme Procedure} + z1 @dots{}
1202@deffnx {C Function} scm_sum (z1, z2)
1203Return the sum of all parameter values. Return 0 if called without any
1204parameters.
1205@end deffn
1206
1207@c begin (texi-doc-string "guile" "-")
1208@deffn {Scheme Procedure} - z1 z2 @dots{}
1209@deffnx {C Function} scm_difference (z1, z2)
1210If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1211the sum of all but the first argument are subtracted from the first
1212argument.
1213@end deffn
1214
1215@c begin (texi-doc-string "guile" "*")
1216@deffn {Scheme Procedure} * z1 @dots{}
1217@deffnx {C Function} scm_product (z1, z2)
1218Return the product of all arguments. If called without arguments, 1 is
1219returned.
1220@end deffn
1221
1222@c begin (texi-doc-string "guile" "/")
1223@deffn {Scheme Procedure} / z1 z2 @dots{}
1224@deffnx {C Function} scm_divide (z1, z2)
1225Divide the first argument by the product of the remaining arguments. If
1226called with one argument @var{z1}, 1/@var{z1} is returned.
1227@end deffn
1228
b1f57ea4
LC
1229@deffn {Scheme Procedure} 1+ z
1230@deffnx {C Function} scm_oneplus (z)
1231Return @math{@var{z} + 1}.
1232@end deffn
1233
1234@deffn {Scheme Procedure} 1- z
1235@deffnx {C function} scm_oneminus (z)
1236Return @math{@var{z} - 1}.
1237@end deffn
1238
07d83abe
MV
1239@c begin (texi-doc-string "guile" "abs")
1240@deffn {Scheme Procedure} abs x
1241@deffnx {C Function} scm_abs (x)
1242Return the absolute value of @var{x}.
1243
1244@var{x} must be a number with zero imaginary part. To calculate the
1245magnitude of a complex number, use @code{magnitude} instead.
1246@end deffn
1247
1248@c begin (texi-doc-string "guile" "max")
1249@deffn {Scheme Procedure} max x1 x2 @dots{}
1250@deffnx {C Function} scm_max (x1, x2)
1251Return the maximum of all parameter values.
1252@end deffn
1253
1254@c begin (texi-doc-string "guile" "min")
1255@deffn {Scheme Procedure} min x1 x2 @dots{}
1256@deffnx {C Function} scm_min (x1, x2)
1257Return the minimum of all parameter values.
1258@end deffn
1259
1260@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1261@deffn {Scheme Procedure} truncate x
07d83abe
MV
1262@deffnx {C Function} scm_truncate_number (x)
1263Round the inexact number @var{x} towards zero.
1264@end deffn
1265
1266@c begin (texi-doc-string "guile" "round")
1267@deffn {Scheme Procedure} round x
1268@deffnx {C Function} scm_round_number (x)
1269Round the inexact number @var{x} to the nearest integer. When exactly
1270halfway between two integers, round to the even one.
1271@end deffn
1272
1273@c begin (texi-doc-string "guile" "floor")
1274@deffn {Scheme Procedure} floor x
1275@deffnx {C Function} scm_floor (x)
1276Round the number @var{x} towards minus infinity.
1277@end deffn
1278
1279@c begin (texi-doc-string "guile" "ceiling")
1280@deffn {Scheme Procedure} ceiling x
1281@deffnx {C Function} scm_ceiling (x)
1282Round the number @var{x} towards infinity.
1283@end deffn
1284
35da08ee
MV
1285@deftypefn {C Function} double scm_c_truncate (double x)
1286@deftypefnx {C Function} double scm_c_round (double x)
1287Like @code{scm_truncate_number} or @code{scm_round_number},
1288respectively, but these functions take and return @code{double}
1289values.
1290@end deftypefn
07d83abe 1291
5fbf680b
MW
1292@deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1293@deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1294@deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1295@deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1296@deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1297@deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
ff62c168
MW
1298These procedures accept two real numbers @var{x} and @var{y}, where the
1299divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1300integer @var{q} and @code{euclidean-remainder} returns the real number
1301@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
5fbf680b 1302@math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
ff62c168
MW
1303@var{r}, and is more efficient than computing each separately. Note
1304that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1305@math{floor(@var{x}/@var{y})}, otherwise it returns
1306@math{ceiling(@var{x}/@var{y})}.
1307
1308Note that these operators are equivalent to the R6RS operators
1309@code{div}, @code{mod}, and @code{div-and-mod}.
1310
1311@lisp
1312(euclidean-quotient 123 10) @result{} 12
1313(euclidean-remainder 123 10) @result{} 3
1314(euclidean/ 123 10) @result{} 12 and 3
1315(euclidean/ 123 -10) @result{} -12 and 3
1316(euclidean/ -123 10) @result{} -13 and 7
1317(euclidean/ -123 -10) @result{} 13 and 7
1318(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1319(euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1320@end lisp
5fbf680b 1321@end deftypefn
ff62c168 1322
8f9da340
MW
1323@deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1324@deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1325@deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1326@deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1327@deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1328@deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1329These procedures accept two real numbers @var{x} and @var{y}, where the
1330divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1331integer @var{q} and @code{floor-remainder} returns the real number
1332@var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1333@math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1334both @var{q} and @var{r}, and is more efficient than computing each
1335separately. Note that @var{r}, if non-zero, will have the same sign
1336as @var{y}.
1337
ce606606 1338When @var{x} and @var{y} are integers, @code{floor-remainder} is
8f9da340
MW
1339equivalent to the R5RS integer-only operator @code{modulo}.
1340
1341@lisp
1342(floor-quotient 123 10) @result{} 12
1343(floor-remainder 123 10) @result{} 3
1344(floor/ 123 10) @result{} 12 and 3
1345(floor/ 123 -10) @result{} -13 and -7
1346(floor/ -123 10) @result{} -13 and 7
1347(floor/ -123 -10) @result{} 12 and -3
1348(floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1349(floor/ 16/3 -10/7) @result{} -4 and -8/21
1350@end lisp
1351@end deftypefn
1352
1353@deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1354@deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1355@deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1356@deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1357@deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1358@deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1359These procedures accept two real numbers @var{x} and @var{y}, where the
1360divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1361integer @var{q} and @code{ceiling-remainder} returns the real number
1362@var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1363@math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1364both @var{q} and @var{r}, and is more efficient than computing each
1365separately. Note that @var{r}, if non-zero, will have the opposite sign
1366of @var{y}.
1367
1368@lisp
1369(ceiling-quotient 123 10) @result{} 13
1370(ceiling-remainder 123 10) @result{} -7
1371(ceiling/ 123 10) @result{} 13 and -7
1372(ceiling/ 123 -10) @result{} -12 and 3
1373(ceiling/ -123 10) @result{} -12 and -3
1374(ceiling/ -123 -10) @result{} 13 and 7
1375(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1376(ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1377@end lisp
1378@end deftypefn
1379
1380@deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1381@deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1382@deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1383@deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1384@deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1385@deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1386These procedures accept two real numbers @var{x} and @var{y}, where the
1387divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1388integer @var{q} and @code{truncate-remainder} returns the real number
1389@var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1390and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1391both @var{q} and @var{r}, and is more efficient than computing each
1392separately. Note that @var{r}, if non-zero, will have the same sign
1393as @var{x}.
1394
ce606606 1395When @var{x} and @var{y} are integers, these operators are
a6b087be
MW
1396equivalent to the R5RS integer-only operators @code{quotient} and
1397@code{remainder}.
8f9da340
MW
1398
1399@lisp
1400(truncate-quotient 123 10) @result{} 12
1401(truncate-remainder 123 10) @result{} 3
1402(truncate/ 123 10) @result{} 12 and 3
1403(truncate/ 123 -10) @result{} -12 and 3
1404(truncate/ -123 10) @result{} -12 and -3
1405(truncate/ -123 -10) @result{} 12 and -3
1406(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1407(truncate/ 16/3 -10/7) @result{} -3 and 22/21
1408@end lisp
1409@end deftypefn
1410
5fbf680b
MW
1411@deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1412@deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1413@deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1414@deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1415@deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1416@deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
ff62c168
MW
1417These procedures accept two real numbers @var{x} and @var{y}, where the
1418divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1419integer @var{q} and @code{centered-remainder} returns the real number
1420@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
5fbf680b 1421@math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
ff62c168
MW
1422returns both @var{q} and @var{r}, and is more efficient than computing
1423each separately.
1424
1425Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1426rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1427exactly half-way between two integers, the tie is broken according to
1428the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1429positive infinity, otherwise they are rounded toward negative infinity.
5fbf680b
MW
1430This is a consequence of the requirement that
1431@math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
ff62c168
MW
1432
1433Note that these operators are equivalent to the R6RS operators
1434@code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1435
1436@lisp
1437(centered-quotient 123 10) @result{} 12
1438(centered-remainder 123 10) @result{} 3
1439(centered/ 123 10) @result{} 12 and 3
1440(centered/ 123 -10) @result{} -12 and 3
1441(centered/ -123 10) @result{} -12 and -3
1442(centered/ -123 -10) @result{} 12 and -3
8f9da340
MW
1443(centered/ 125 10) @result{} 13 and -5
1444(centered/ 127 10) @result{} 13 and -3
1445(centered/ 135 10) @result{} 14 and -5
ff62c168
MW
1446(centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1447(centered/ 16/3 -10/7) @result{} -4 and -8/21
1448@end lisp
5fbf680b 1449@end deftypefn
ff62c168 1450
8f9da340
MW
1451@deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1452@deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1453@deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1454@deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1455@deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1456@deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1457These procedures accept two real numbers @var{x} and @var{y}, where the
1458divisor @var{y} must be non-zero. @code{round-quotient} returns the
1459integer @var{q} and @code{round-remainder} returns the real number
1460@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1461@var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1462with ties going to the nearest even integer. @code{round/}
1463returns both @var{q} and @var{r}, and is more efficient than computing
1464each separately.
1465
1466Note that @code{round/} and @code{centered/} are almost equivalent, but
1467their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1468between two integers. In this case, @code{round/} chooses the nearest
1469even integer, whereas @code{centered/} chooses in such a way to satisfy
1470the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1471is stronger than the corresponding constraint for @code{round/},
1472@math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1473when @var{x} and @var{y} are integers, the number of possible remainders
1474returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1475possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1476@var{y} is even.
1477
1478@lisp
1479(round-quotient 123 10) @result{} 12
1480(round-remainder 123 10) @result{} 3
1481(round/ 123 10) @result{} 12 and 3
1482(round/ 123 -10) @result{} -12 and 3
1483(round/ -123 10) @result{} -12 and -3
1484(round/ -123 -10) @result{} 12 and -3
1485(round/ 125 10) @result{} 12 and 5
1486(round/ 127 10) @result{} 13 and -3
1487(round/ 135 10) @result{} 14 and -5
1488(round/ -123.2 -63.5) @result{} 2.0 and 3.8
1489(round/ 16/3 -10/7) @result{} -4 and -8/21
1490@end lisp
1491@end deftypefn
1492
07d83abe
MV
1493@node Scientific
1494@subsubsection Scientific Functions
1495
1496The following procedures accept any kind of number as arguments,
1497including complex numbers.
1498
1499@rnindex sqrt
1500@c begin (texi-doc-string "guile" "sqrt")
1501@deffn {Scheme Procedure} sqrt z
40296bab 1502Return the square root of @var{z}. Of the two possible roots
ecb87335 1503(positive and negative), the one with a positive real part is
40296bab
KR
1504returned, or if that's zero then a positive imaginary part. Thus,
1505
1506@example
1507(sqrt 9.0) @result{} 3.0
1508(sqrt -9.0) @result{} 0.0+3.0i
1509(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1510(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1511@end example
07d83abe
MV
1512@end deffn
1513
1514@rnindex expt
1515@c begin (texi-doc-string "guile" "expt")
1516@deffn {Scheme Procedure} expt z1 z2
1517Return @var{z1} raised to the power of @var{z2}.
1518@end deffn
1519
1520@rnindex sin
1521@c begin (texi-doc-string "guile" "sin")
1522@deffn {Scheme Procedure} sin z
1523Return the sine of @var{z}.
1524@end deffn
1525
1526@rnindex cos
1527@c begin (texi-doc-string "guile" "cos")
1528@deffn {Scheme Procedure} cos z
1529Return the cosine of @var{z}.
1530@end deffn
1531
1532@rnindex tan
1533@c begin (texi-doc-string "guile" "tan")
1534@deffn {Scheme Procedure} tan z
1535Return the tangent of @var{z}.
1536@end deffn
1537
1538@rnindex asin
1539@c begin (texi-doc-string "guile" "asin")
1540@deffn {Scheme Procedure} asin z
1541Return the arcsine of @var{z}.
1542@end deffn
1543
1544@rnindex acos
1545@c begin (texi-doc-string "guile" "acos")
1546@deffn {Scheme Procedure} acos z
1547Return the arccosine of @var{z}.
1548@end deffn
1549
1550@rnindex atan
1551@c begin (texi-doc-string "guile" "atan")
1552@deffn {Scheme Procedure} atan z
1553@deffnx {Scheme Procedure} atan y x
1554Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1555@end deffn
1556
1557@rnindex exp
1558@c begin (texi-doc-string "guile" "exp")
1559@deffn {Scheme Procedure} exp z
1560Return e to the power of @var{z}, where e is the base of natural
1561logarithms (2.71828@dots{}).
1562@end deffn
1563
1564@rnindex log
1565@c begin (texi-doc-string "guile" "log")
1566@deffn {Scheme Procedure} log z
1567Return the natural logarithm of @var{z}.
1568@end deffn
1569
1570@c begin (texi-doc-string "guile" "log10")
1571@deffn {Scheme Procedure} log10 z
1572Return the base 10 logarithm of @var{z}.
1573@end deffn
1574
1575@c begin (texi-doc-string "guile" "sinh")
1576@deffn {Scheme Procedure} sinh z
1577Return the hyperbolic sine of @var{z}.
1578@end deffn
1579
1580@c begin (texi-doc-string "guile" "cosh")
1581@deffn {Scheme Procedure} cosh z
1582Return the hyperbolic cosine of @var{z}.
1583@end deffn
1584
1585@c begin (texi-doc-string "guile" "tanh")
1586@deffn {Scheme Procedure} tanh z
1587Return the hyperbolic tangent of @var{z}.
1588@end deffn
1589
1590@c begin (texi-doc-string "guile" "asinh")
1591@deffn {Scheme Procedure} asinh z
1592Return the hyperbolic arcsine of @var{z}.
1593@end deffn
1594
1595@c begin (texi-doc-string "guile" "acosh")
1596@deffn {Scheme Procedure} acosh z
1597Return the hyperbolic arccosine of @var{z}.
1598@end deffn
1599
1600@c begin (texi-doc-string "guile" "atanh")
1601@deffn {Scheme Procedure} atanh z
1602Return the hyperbolic arctangent of @var{z}.
1603@end deffn
1604
1605
07d83abe
MV
1606@node Bitwise Operations
1607@subsubsection Bitwise Operations
1608
1609For the following bitwise functions, negative numbers are treated as
1610infinite precision twos-complements. For instance @math{-6} is bits
1611@math{@dots{}111010}, with infinitely many ones on the left. It can
1612be seen that adding 6 (binary 110) to such a bit pattern gives all
1613zeros.
1614
1615@deffn {Scheme Procedure} logand n1 n2 @dots{}
1616@deffnx {C Function} scm_logand (n1, n2)
1617Return the bitwise @sc{and} of the integer arguments.
1618
1619@lisp
1620(logand) @result{} -1
1621(logand 7) @result{} 7
1622(logand #b111 #b011 #b001) @result{} 1
1623@end lisp
1624@end deffn
1625
1626@deffn {Scheme Procedure} logior n1 n2 @dots{}
1627@deffnx {C Function} scm_logior (n1, n2)
1628Return the bitwise @sc{or} of the integer arguments.
1629
1630@lisp
1631(logior) @result{} 0
1632(logior 7) @result{} 7
1633(logior #b000 #b001 #b011) @result{} 3
1634@end lisp
1635@end deffn
1636
1637@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1638@deffnx {C Function} scm_loxor (n1, n2)
1639Return the bitwise @sc{xor} of the integer arguments. A bit is
1640set in the result if it is set in an odd number of arguments.
1641
1642@lisp
1643(logxor) @result{} 0
1644(logxor 7) @result{} 7
1645(logxor #b000 #b001 #b011) @result{} 2
1646(logxor #b000 #b001 #b011 #b011) @result{} 1
1647@end lisp
1648@end deffn
1649
1650@deffn {Scheme Procedure} lognot n
1651@deffnx {C Function} scm_lognot (n)
1652Return the integer which is the ones-complement of the integer
1653argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1654
1655@lisp
1656(number->string (lognot #b10000000) 2)
1657 @result{} "-10000001"
1658(number->string (lognot #b0) 2)
1659 @result{} "-1"
1660@end lisp
1661@end deffn
1662
1663@deffn {Scheme Procedure} logtest j k
1664@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1665Test whether @var{j} and @var{k} have any 1 bits in common. This is
1666equivalent to @code{(not (zero? (logand j k)))}, but without actually
1667calculating the @code{logand}, just testing for non-zero.
07d83abe 1668
a46648ac 1669@lisp
07d83abe
MV
1670(logtest #b0100 #b1011) @result{} #f
1671(logtest #b0100 #b0111) @result{} #t
1672@end lisp
1673@end deffn
1674
1675@deffn {Scheme Procedure} logbit? index j
1676@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1677Test whether bit number @var{index} in @var{j} is set. @var{index}
1678starts from 0 for the least significant bit.
07d83abe 1679
a46648ac 1680@lisp
07d83abe
MV
1681(logbit? 0 #b1101) @result{} #t
1682(logbit? 1 #b1101) @result{} #f
1683(logbit? 2 #b1101) @result{} #t
1684(logbit? 3 #b1101) @result{} #t
1685(logbit? 4 #b1101) @result{} #f
1686@end lisp
1687@end deffn
1688
e08a12b5
MW
1689@deffn {Scheme Procedure} ash n count
1690@deffnx {C Function} scm_ash (n, count)
912f5f34 1691Return @math{floor(n * 2^count)}.
e08a12b5 1692@var{n} and @var{count} must be exact integers.
07d83abe 1693
e08a12b5
MW
1694With @var{n} viewed as an infinite-precision twos-complement
1695integer, @code{ash} means a left shift introducing zero bits
1696when @var{count} is positive, or a right shift dropping bits
1697when @var{count} is negative. This is an ``arithmetic'' shift.
07d83abe
MV
1698
1699@lisp
1700(number->string (ash #b1 3) 2) @result{} "1000"
1701(number->string (ash #b1010 -1) 2) @result{} "101"
1702
1703;; -23 is bits ...11101001, -6 is bits ...111010
1704(ash -23 -2) @result{} -6
1705@end lisp
1706@end deffn
1707
e08a12b5
MW
1708@deffn {Scheme Procedure} round-ash n count
1709@deffnx {C Function} scm_round_ash (n, count)
912f5f34 1710Return @math{round(n * 2^count)}.
e08a12b5
MW
1711@var{n} and @var{count} must be exact integers.
1712
1713With @var{n} viewed as an infinite-precision twos-complement
1714integer, @code{round-ash} means a left shift introducing zero
1715bits when @var{count} is positive, or a right shift rounding
1716to the nearest integer (with ties going to the nearest even
1717integer) when @var{count} is negative. This is a rounded
1718``arithmetic'' shift.
1719
1720@lisp
1721(number->string (round-ash #b1 3) 2) @result{} \"1000\"
1722(number->string (round-ash #b1010 -1) 2) @result{} \"101\"
1723(number->string (round-ash #b1010 -2) 2) @result{} \"10\"
1724(number->string (round-ash #b1011 -2) 2) @result{} \"11\"
1725(number->string (round-ash #b1101 -2) 2) @result{} \"11\"
1726(number->string (round-ash #b1110 -2) 2) @result{} \"100\"
1727@end lisp
1728@end deffn
1729
07d83abe
MV
1730@deffn {Scheme Procedure} logcount n
1731@deffnx {C Function} scm_logcount (n)
a46648ac 1732Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1733positive, the 1-bits in its binary representation are counted.
1734If negative, the 0-bits in its two's-complement binary
a46648ac 1735representation are counted. If zero, 0 is returned.
07d83abe
MV
1736
1737@lisp
1738(logcount #b10101010)
1739 @result{} 4
1740(logcount 0)
1741 @result{} 0
1742(logcount -2)
1743 @result{} 1
1744@end lisp
1745@end deffn
1746
1747@deffn {Scheme Procedure} integer-length n
1748@deffnx {C Function} scm_integer_length (n)
1749Return the number of bits necessary to represent @var{n}.
1750
1751For positive @var{n} this is how many bits to the most significant one
1752bit. For negative @var{n} it's how many bits to the most significant
1753zero bit in twos complement form.
1754
1755@lisp
1756(integer-length #b10101010) @result{} 8
1757(integer-length #b1111) @result{} 4
1758(integer-length 0) @result{} 0
1759(integer-length -1) @result{} 0
1760(integer-length -256) @result{} 8
1761(integer-length -257) @result{} 9
1762@end lisp
1763@end deffn
1764
1765@deffn {Scheme Procedure} integer-expt n k
1766@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1767Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1768integer, @var{n} can be any number.
1769
1770Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1771in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1772@math{0^0} is 1.
07d83abe
MV
1773
1774@lisp
a46648ac
KR
1775(integer-expt 2 5) @result{} 32
1776(integer-expt -3 3) @result{} -27
1777(integer-expt 5 -3) @result{} 1/125
1778(integer-expt 0 0) @result{} 1
07d83abe
MV
1779@end lisp
1780@end deffn
1781
1782@deffn {Scheme Procedure} bit-extract n start end
1783@deffnx {C Function} scm_bit_extract (n, start, end)
1784Return the integer composed of the @var{start} (inclusive)
1785through @var{end} (exclusive) bits of @var{n}. The
1786@var{start}th bit becomes the 0-th bit in the result.
1787
1788@lisp
1789(number->string (bit-extract #b1101101010 0 4) 2)
1790 @result{} "1010"
1791(number->string (bit-extract #b1101101010 4 9) 2)
1792 @result{} "10110"
1793@end lisp
1794@end deffn
1795
1796
1797@node Random
1798@subsubsection Random Number Generation
1799
1800Pseudo-random numbers are generated from a random state object, which
77b13912 1801can be created with @code{seed->random-state} or
679cceed 1802@code{datum->random-state}. An external representation (i.e.@: one
77b13912
AR
1803which can written with @code{write} and read with @code{read}) of a
1804random state object can be obtained via
1d454874 1805@code{random-state->datum}. The @var{state} parameter to the
77b13912
AR
1806various functions below is optional, it defaults to the state object
1807in the @code{*random-state*} variable.
07d83abe
MV
1808
1809@deffn {Scheme Procedure} copy-random-state [state]
1810@deffnx {C Function} scm_copy_random_state (state)
1811Return a copy of the random state @var{state}.
1812@end deffn
1813
1814@deffn {Scheme Procedure} random n [state]
1815@deffnx {C Function} scm_random (n, state)
1816Return a number in [0, @var{n}).
1817
1818Accepts a positive integer or real n and returns a
1819number of the same type between zero (inclusive) and
1820@var{n} (exclusive). The values returned have a uniform
1821distribution.
1822@end deffn
1823
1824@deffn {Scheme Procedure} random:exp [state]
1825@deffnx {C Function} scm_random_exp (state)
1826Return an inexact real in an exponential distribution with mean
18271. For an exponential distribution with mean @var{u} use @code{(*
1828@var{u} (random:exp))}.
1829@end deffn
1830
1831@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1832@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1833Fills @var{vect} with inexact real random numbers the sum of whose
1834squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1835space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1836the coordinates are uniformly distributed over the surface of the unit
1837n-sphere.
1838@end deffn
1839
1840@deffn {Scheme Procedure} random:normal [state]
1841@deffnx {C Function} scm_random_normal (state)
1842Return an inexact real in a normal distribution. The distribution
1843used has mean 0 and standard deviation 1. For a normal distribution
1844with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1845(* @var{d} (random:normal)))}.
1846@end deffn
1847
1848@deffn {Scheme Procedure} random:normal-vector! vect [state]
1849@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1850Fills @var{vect} with inexact real random numbers that are
1851independent and standard normally distributed
1852(i.e., with mean 0 and variance 1).
1853@end deffn
1854
1855@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1856@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1857Fills @var{vect} with inexact real random numbers the sum of whose
1858squares is less than 1.0. Thinking of @var{vect} as coordinates in
1859space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1860the coordinates are uniformly distributed within the unit
4497bd2f 1861@var{n}-sphere.
07d83abe
MV
1862@c FIXME: What does this mean, particularly the n-sphere part?
1863@end deffn
1864
1865@deffn {Scheme Procedure} random:uniform [state]
1866@deffnx {C Function} scm_random_uniform (state)
1867Return a uniformly distributed inexact real random number in
1868[0,1).
1869@end deffn
1870
1871@deffn {Scheme Procedure} seed->random-state seed
1872@deffnx {C Function} scm_seed_to_random_state (seed)
1873Return a new random state using @var{seed}.
1874@end deffn
1875
1d454874
AW
1876@deffn {Scheme Procedure} datum->random-state datum
1877@deffnx {C Function} scm_datum_to_random_state (datum)
1878Return a new random state from @var{datum}, which should have been
1879obtained by @code{random-state->datum}.
77b13912
AR
1880@end deffn
1881
1d454874
AW
1882@deffn {Scheme Procedure} random-state->datum state
1883@deffnx {C Function} scm_random_state_to_datum (state)
1884Return a datum representation of @var{state} that may be written out and
1885read back with the Scheme reader.
77b13912
AR
1886@end deffn
1887
d47db067
MW
1888@deffn {Scheme Procedure} random-state-from-platform
1889@deffnx {C Function} scm_random_state_from_platform ()
1890Construct a new random state seeded from a platform-specific source of
1891entropy, appropriate for use in non-security-critical applications.
1892Currently @file{/dev/urandom} is tried first, or else the seed is based
1893on the time, date, process ID, an address from a freshly allocated heap
1894cell, an address from the local stack frame, and a high-resolution timer
1895if available.
1896@end deffn
1897
07d83abe
MV
1898@defvar *random-state*
1899The global random state used by the above functions when the
1900@var{state} parameter is not given.
1901@end defvar
1902
8c726cf0
NJ
1903Note that the initial value of @code{*random-state*} is the same every
1904time Guile starts up. Therefore, if you don't pass a @var{state}
1905parameter to the above procedures, and you don't set
1906@code{*random-state*} to @code{(seed->random-state your-seed)}, where
1907@code{your-seed} is something that @emph{isn't} the same every time,
1908you'll get the same sequence of ``random'' numbers on every run.
1909
1910For example, unless the relevant source code has changed, @code{(map
1911random (cdr (iota 30)))}, if the first use of random numbers since
1912Guile started up, will always give:
1913
1914@lisp
1915(map random (cdr (iota 19)))
1916@result{}
1917(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1918@end lisp
1919
d47db067
MW
1920To seed the random state in a sensible way for non-security-critical
1921applications, do this during initialization of your program:
8c726cf0
NJ
1922
1923@lisp
d47db067 1924(set! *random-state* (random-state-from-platform))
8c726cf0
NJ
1925@end lisp
1926
07d83abe
MV
1927
1928@node Characters
1929@subsection Characters
1930@tpindex Characters
1931
3f12aedb
MG
1932In Scheme, there is a data type to describe a single character.
1933
1934Defining what exactly a character @emph{is} can be more complicated
bb15a36c
MG
1935than it seems. Guile follows the advice of R6RS and uses The Unicode
1936Standard to help define what a character is. So, for Guile, a
1937character is anything in the Unicode Character Database.
1938
1939@cindex code point
1940@cindex Unicode code point
1941
1942The Unicode Character Database is basically a table of characters
1943indexed using integers called 'code points'. Valid code points are in
1944the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1945@code{#x10FFFF} inclusive, which is about 1.1 million code points.
1946
1947@cindex designated code point
1948@cindex code point, designated
1949
1950Any code point that has been assigned to a character or that has
1951otherwise been given a meaning by Unicode is called a 'designated code
1952point'. Most of the designated code points, about 200,000 of them,
1953indicate characters, accents or other combining marks that modify
1954other characters, symbols, whitespace, and control characters. Some
1955are not characters but indicators that suggest how to format or
1956display neighboring characters.
1957
1958@cindex reserved code point
1959@cindex code point, reserved
1960
1961If a code point is not a designated code point -- if it has not been
1962assigned to a character by The Unicode Standard -- it is a 'reserved
1963code point', meaning that they are reserved for future use. Most of
1964the code points, about 800,000, are 'reserved code points'.
1965
1966By convention, a Unicode code point is written as
1967``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1968this convenient notation is not valid code. Guile does not interpret
1969``U+XXXX'' as a character.
3f12aedb 1970
050ab45f
MV
1971In Scheme, a character literal is written as @code{#\@var{name}} where
1972@var{name} is the name of the character that you want. Printable
1973characters have their usual single character name; for example,
bb15a36c
MG
1974@code{#\a} is a lower case @code{a}.
1975
1976Some of the code points are 'combining characters' that are not meant
1977to be printed by themselves but are instead meant to modify the
1978appearance of the previous character. For combining characters, an
1979alternate form of the character literal is @code{#\} followed by
1980U+25CC (a small, dotted circle), followed by the combining character.
1981This allows the combining character to be drawn on the circle, not on
1982the backslash of @code{#\}.
1983
1984Many of the non-printing characters, such as whitespace characters and
1985control characters, also have names.
07d83abe 1986
15b6a6b2
MG
1987The most commonly used non-printing characters have long character
1988names, described in the table below.
1989
1990@multitable {@code{#\backspace}} {Preferred}
1991@item Character Name @tab Codepoint
1992@item @code{#\nul} @tab U+0000
1993@item @code{#\alarm} @tab u+0007
1994@item @code{#\backspace} @tab U+0008
1995@item @code{#\tab} @tab U+0009
1996@item @code{#\linefeed} @tab U+000A
1997@item @code{#\newline} @tab U+000A
1998@item @code{#\vtab} @tab U+000B
1999@item @code{#\page} @tab U+000C
2000@item @code{#\return} @tab U+000D
2001@item @code{#\esc} @tab U+001B
2002@item @code{#\space} @tab U+0020
2003@item @code{#\delete} @tab U+007F
2004@end multitable
2005
2006There are also short names for all of the ``C0 control characters''
2007(those with code points below 32). The following table lists the short
2008name for each character.
07d83abe
MV
2009
2010@multitable @columnfractions .25 .25 .25 .25
2011@item 0 = @code{#\nul}
2012 @tab 1 = @code{#\soh}
2013 @tab 2 = @code{#\stx}
2014 @tab 3 = @code{#\etx}
2015@item 4 = @code{#\eot}
2016 @tab 5 = @code{#\enq}
2017 @tab 6 = @code{#\ack}
2018 @tab 7 = @code{#\bel}
2019@item 8 = @code{#\bs}
2020 @tab 9 = @code{#\ht}
6ea30487 2021 @tab 10 = @code{#\lf}
07d83abe 2022 @tab 11 = @code{#\vt}
3f12aedb 2023@item 12 = @code{#\ff}
07d83abe
MV
2024 @tab 13 = @code{#\cr}
2025 @tab 14 = @code{#\so}
2026 @tab 15 = @code{#\si}
2027@item 16 = @code{#\dle}
2028 @tab 17 = @code{#\dc1}
2029 @tab 18 = @code{#\dc2}
2030 @tab 19 = @code{#\dc3}
2031@item 20 = @code{#\dc4}
2032 @tab 21 = @code{#\nak}
2033 @tab 22 = @code{#\syn}
2034 @tab 23 = @code{#\etb}
2035@item 24 = @code{#\can}
2036 @tab 25 = @code{#\em}
2037 @tab 26 = @code{#\sub}
2038 @tab 27 = @code{#\esc}
2039@item 28 = @code{#\fs}
2040 @tab 29 = @code{#\gs}
2041 @tab 30 = @code{#\rs}
2042 @tab 31 = @code{#\us}
2043@item 32 = @code{#\sp}
2044@end multitable
2045
15b6a6b2
MG
2046The short name for the ``delete'' character (code point U+007F) is
2047@code{#\del}.
07d83abe 2048
15b6a6b2
MG
2049There are also a few alternative names left over for compatibility with
2050previous versions of Guile.
07d83abe 2051
3f12aedb
MG
2052@multitable {@code{#\backspace}} {Preferred}
2053@item Alternate @tab Standard
3f12aedb 2054@item @code{#\nl} @tab @code{#\newline}
15b6a6b2 2055@item @code{#\np} @tab @code{#\page}
07d83abe
MV
2056@item @code{#\null} @tab @code{#\nul}
2057@end multitable
2058
bb15a36c
MG
2059Characters may also be written using their code point values. They can
2060be written with as an octal number, such as @code{#\10} for
2061@code{#\bs} or @code{#\177} for @code{#\del}.
3f12aedb 2062
0f3a70cf
MG
2063If one prefers hex to octal, there is an additional syntax for character
2064escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2065number of one to eight digits.
6ea30487 2066
07d83abe
MV
2067@rnindex char?
2068@deffn {Scheme Procedure} char? x
2069@deffnx {C Function} scm_char_p (x)
a4b4fbbd 2070Return @code{#t} if @var{x} is a character, else @code{#f}.
07d83abe
MV
2071@end deffn
2072
bb15a36c 2073Fundamentally, the character comparison operations below are
3f12aedb
MG
2074numeric comparisons of the character's code points.
2075
07d83abe
MV
2076@rnindex char=?
2077@deffn {Scheme Procedure} char=? x y
a4b4fbbd 2078Return @code{#t} if code point of @var{x} is equal to the code point
3f12aedb 2079of @var{y}, else @code{#f}.
07d83abe
MV
2080@end deffn
2081
2082@rnindex char<?
2083@deffn {Scheme Procedure} char<? x y
a4b4fbbd 2084Return @code{#t} if the code point of @var{x} is less than the code
3f12aedb 2085point of @var{y}, else @code{#f}.
07d83abe
MV
2086@end deffn
2087
2088@rnindex char<=?
2089@deffn {Scheme Procedure} char<=? x y
a4b4fbbd 2090Return @code{#t} if the code point of @var{x} is less than or equal
3f12aedb 2091to the code point of @var{y}, else @code{#f}.
07d83abe
MV
2092@end deffn
2093
2094@rnindex char>?
2095@deffn {Scheme Procedure} char>? x y
a4b4fbbd 2096Return @code{#t} if the code point of @var{x} is greater than the
3f12aedb 2097code point of @var{y}, else @code{#f}.
07d83abe
MV
2098@end deffn
2099
2100@rnindex char>=?
2101@deffn {Scheme Procedure} char>=? x y
a4b4fbbd 2102Return @code{#t} if the code point of @var{x} is greater than or
3f12aedb 2103equal to the code point of @var{y}, else @code{#f}.
07d83abe
MV
2104@end deffn
2105
bb15a36c
MG
2106@cindex case folding
2107
2108Case-insensitive character comparisons use @emph{Unicode case
2109folding}. In case folding comparisons, if a character is lowercase
2110and has an uppercase form that can be expressed as a single character,
2111it is converted to uppercase before comparison. All other characters
2112undergo no conversion before the comparison occurs. This includes the
2113German sharp S (Eszett) which is not uppercased before conversion
2114because its uppercase form has two characters. Unicode case folding
2115is language independent: it uses rules that are generally true, but,
2116it cannot cover all cases for all languages.
3f12aedb 2117
07d83abe
MV
2118@rnindex char-ci=?
2119@deffn {Scheme Procedure} char-ci=? x y
a4b4fbbd 2120Return @code{#t} if the case-folded code point of @var{x} is the same
3f12aedb 2121as the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2122@end deffn
2123
2124@rnindex char-ci<?
2125@deffn {Scheme Procedure} char-ci<? x y
a4b4fbbd 2126Return @code{#t} if the case-folded code point of @var{x} is less
3f12aedb 2127than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2128@end deffn
2129
2130@rnindex char-ci<=?
2131@deffn {Scheme Procedure} char-ci<=? x y
a4b4fbbd 2132Return @code{#t} if the case-folded code point of @var{x} is less
3f12aedb
MG
2133than or equal to the case-folded code point of @var{y}, else
2134@code{#f}.
07d83abe
MV
2135@end deffn
2136
2137@rnindex char-ci>?
2138@deffn {Scheme Procedure} char-ci>? x y
a4b4fbbd 2139Return @code{#t} if the case-folded code point of @var{x} is greater
3f12aedb 2140than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2141@end deffn
2142
2143@rnindex char-ci>=?
2144@deffn {Scheme Procedure} char-ci>=? x y
a4b4fbbd 2145Return @code{#t} if the case-folded code point of @var{x} is greater
3f12aedb
MG
2146than or equal to the case-folded code point of @var{y}, else
2147@code{#f}.
07d83abe
MV
2148@end deffn
2149
2150@rnindex char-alphabetic?
2151@deffn {Scheme Procedure} char-alphabetic? chr
2152@deffnx {C Function} scm_char_alphabetic_p (chr)
a4b4fbbd 2153Return @code{#t} if @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
2154@end deffn
2155
2156@rnindex char-numeric?
2157@deffn {Scheme Procedure} char-numeric? chr
2158@deffnx {C Function} scm_char_numeric_p (chr)
a4b4fbbd 2159Return @code{#t} if @var{chr} is numeric, else @code{#f}.
07d83abe
MV
2160@end deffn
2161
2162@rnindex char-whitespace?
2163@deffn {Scheme Procedure} char-whitespace? chr
2164@deffnx {C Function} scm_char_whitespace_p (chr)
a4b4fbbd 2165Return @code{#t} if @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
2166@end deffn
2167
2168@rnindex char-upper-case?
2169@deffn {Scheme Procedure} char-upper-case? chr
2170@deffnx {C Function} scm_char_upper_case_p (chr)
a4b4fbbd 2171Return @code{#t} if @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
2172@end deffn
2173
2174@rnindex char-lower-case?
2175@deffn {Scheme Procedure} char-lower-case? chr
2176@deffnx {C Function} scm_char_lower_case_p (chr)
a4b4fbbd 2177Return @code{#t} if @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
2178@end deffn
2179
2180@deffn {Scheme Procedure} char-is-both? chr
2181@deffnx {C Function} scm_char_is_both_p (chr)
a4b4fbbd 2182Return @code{#t} if @var{chr} is either uppercase or lowercase, else
5676b4fa 2183@code{#f}.
07d83abe
MV
2184@end deffn
2185
0ca3a342
JG
2186@deffn {Scheme Procedure} char-general-category chr
2187@deffnx {C Function} scm_char_general_category (chr)
2188Return a symbol giving the two-letter name of the Unicode general
2189category assigned to @var{chr} or @code{#f} if no named category is
2190assigned. The following table provides a list of category names along
2191with their meanings.
2192
2193@multitable @columnfractions .1 .4 .1 .4
2194@item Lu
2195 @tab Uppercase letter
2196 @tab Pf
2197 @tab Final quote punctuation
2198@item Ll
2199 @tab Lowercase letter
2200 @tab Po
2201 @tab Other punctuation
2202@item Lt
2203 @tab Titlecase letter
2204 @tab Sm
2205 @tab Math symbol
2206@item Lm
2207 @tab Modifier letter
2208 @tab Sc
2209 @tab Currency symbol
2210@item Lo
2211 @tab Other letter
2212 @tab Sk
2213 @tab Modifier symbol
2214@item Mn
2215 @tab Non-spacing mark
2216 @tab So
2217 @tab Other symbol
2218@item Mc
2219 @tab Combining spacing mark
2220 @tab Zs
2221 @tab Space separator
2222@item Me
2223 @tab Enclosing mark
2224 @tab Zl
2225 @tab Line separator
2226@item Nd
2227 @tab Decimal digit number
2228 @tab Zp
2229 @tab Paragraph separator
2230@item Nl
2231 @tab Letter number
2232 @tab Cc
2233 @tab Control
2234@item No
2235 @tab Other number
2236 @tab Cf
2237 @tab Format
2238@item Pc
2239 @tab Connector punctuation
2240 @tab Cs
2241 @tab Surrogate
2242@item Pd
2243 @tab Dash punctuation
2244 @tab Co
2245 @tab Private use
2246@item Ps
2247 @tab Open punctuation
2248 @tab Cn
2249 @tab Unassigned
2250@item Pe
2251 @tab Close punctuation
2252 @tab
2253 @tab
2254@item Pi
2255 @tab Initial quote punctuation
2256 @tab
2257 @tab
2258@end multitable
2259@end deffn
2260
07d83abe
MV
2261@rnindex char->integer
2262@deffn {Scheme Procedure} char->integer chr
2263@deffnx {C Function} scm_char_to_integer (chr)
3f12aedb 2264Return the code point of @var{chr}.
07d83abe
MV
2265@end deffn
2266
2267@rnindex integer->char
2268@deffn {Scheme Procedure} integer->char n
2269@deffnx {C Function} scm_integer_to_char (n)
3f12aedb
MG
2270Return the character that has code point @var{n}. The integer @var{n}
2271must be a valid code point. Valid code points are in the ranges 0 to
2272@code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
07d83abe
MV
2273@end deffn
2274
2275@rnindex char-upcase
2276@deffn {Scheme Procedure} char-upcase chr
2277@deffnx {C Function} scm_char_upcase (chr)
2278Return the uppercase character version of @var{chr}.
2279@end deffn
2280
2281@rnindex char-downcase
2282@deffn {Scheme Procedure} char-downcase chr
2283@deffnx {C Function} scm_char_downcase (chr)
2284Return the lowercase character version of @var{chr}.
2285@end deffn
2286
820f33aa
JG
2287@rnindex char-titlecase
2288@deffn {Scheme Procedure} char-titlecase chr
2289@deffnx {C Function} scm_char_titlecase (chr)
2290Return the titlecase character version of @var{chr} if one exists;
2291otherwise return the uppercase version.
2292
2293For most characters these will be the same, but the Unicode Standard
2294includes certain digraph compatibility characters, such as @code{U+01F3}
2295``dz'', for which the uppercase and titlecase characters are different
2296(@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2297respectively).
2298@end deffn
2299
a1dcb961
MG
2300@tindex scm_t_wchar
2301@deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2302@deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2303@deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2304
2305These C functions take an integer representation of a Unicode
2306codepoint and return the codepoint corresponding to its uppercase,
2307lowercase, and titlecase forms respectively. The type
2308@code{scm_t_wchar} is a signed, 32-bit integer.
2309@end deftypefn
2310
050ab45f
MV
2311@node Character Sets
2312@subsection Character Sets
07d83abe 2313
050ab45f
MV
2314The features described in this section correspond directly to SRFI-14.
2315
2316The data type @dfn{charset} implements sets of characters
2317(@pxref{Characters}). Because the internal representation of
2318character sets is not visible to the user, a lot of procedures for
2319handling them are provided.
2320
2321Character sets can be created, extended, tested for the membership of a
2322characters and be compared to other character sets.
2323
050ab45f
MV
2324@menu
2325* Character Set Predicates/Comparison::
2326* Iterating Over Character Sets:: Enumerate charset elements.
2327* Creating Character Sets:: Making new charsets.
2328* Querying Character Sets:: Test charsets for membership etc.
2329* Character-Set Algebra:: Calculating new charsets.
2330* Standard Character Sets:: Variables containing predefined charsets.
2331@end menu
2332
2333@node Character Set Predicates/Comparison
2334@subsubsection Character Set Predicates/Comparison
2335
2336Use these procedures for testing whether an object is a character set,
2337or whether several character sets are equal or subsets of each other.
2338@code{char-set-hash} can be used for calculating a hash value, maybe for
2339usage in fast lookup procedures.
2340
2341@deffn {Scheme Procedure} char-set? obj
2342@deffnx {C Function} scm_char_set_p (obj)
2343Return @code{#t} if @var{obj} is a character set, @code{#f}
2344otherwise.
2345@end deffn
2346
df0a1002 2347@deffn {Scheme Procedure} char-set= char_set @dots{}
050ab45f
MV
2348@deffnx {C Function} scm_char_set_eq (char_sets)
2349Return @code{#t} if all given character sets are equal.
2350@end deffn
2351
df0a1002 2352@deffn {Scheme Procedure} char-set<= char_set @dots{}
050ab45f 2353@deffnx {C Function} scm_char_set_leq (char_sets)
64de6db5
BT
2354Return @code{#t} if every character set @var{char_set}i is a subset
2355of character set @var{char_set}i+1.
050ab45f
MV
2356@end deffn
2357
2358@deffn {Scheme Procedure} char-set-hash cs [bound]
2359@deffnx {C Function} scm_char_set_hash (cs, bound)
2360Compute a hash value for the character set @var{cs}. If
2361@var{bound} is given and non-zero, it restricts the
df0a1002 2362returned value to the range 0 @dots{} @var{bound} - 1.
050ab45f
MV
2363@end deffn
2364
2365@c ===================================================================
2366
2367@node Iterating Over Character Sets
2368@subsubsection Iterating Over Character Sets
2369
2370Character set cursors are a means for iterating over the members of a
2371character sets. After creating a character set cursor with
2372@code{char-set-cursor}, a cursor can be dereferenced with
2373@code{char-set-ref}, advanced to the next member with
2374@code{char-set-cursor-next}. Whether a cursor has passed past the last
2375element of the set can be checked with @code{end-of-char-set?}.
2376
2377Additionally, mapping and (un-)folding procedures for character sets are
2378provided.
2379
2380@deffn {Scheme Procedure} char-set-cursor cs
2381@deffnx {C Function} scm_char_set_cursor (cs)
2382Return a cursor into the character set @var{cs}.
2383@end deffn
2384
2385@deffn {Scheme Procedure} char-set-ref cs cursor
2386@deffnx {C Function} scm_char_set_ref (cs, cursor)
2387Return the character at the current cursor position
2388@var{cursor} in the character set @var{cs}. It is an error to
2389pass a cursor for which @code{end-of-char-set?} returns true.
2390@end deffn
2391
2392@deffn {Scheme Procedure} char-set-cursor-next cs cursor
2393@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2394Advance the character set cursor @var{cursor} to the next
2395character in the character set @var{cs}. It is an error if the
2396cursor given satisfies @code{end-of-char-set?}.
2397@end deffn
2398
2399@deffn {Scheme Procedure} end-of-char-set? cursor
2400@deffnx {C Function} scm_end_of_char_set_p (cursor)
2401Return @code{#t} if @var{cursor} has reached the end of a
2402character set, @code{#f} otherwise.
2403@end deffn
2404
2405@deffn {Scheme Procedure} char-set-fold kons knil cs
2406@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2407Fold the procedure @var{kons} over the character set @var{cs},
2408initializing it with @var{knil}.
2409@end deffn
2410
2411@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2412@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2413This is a fundamental constructor for character sets.
2414@itemize @bullet
2415@item @var{g} is used to generate a series of ``seed'' values
2416from the initial seed: @var{seed}, (@var{g} @var{seed}),
2417(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2418@item @var{p} tells us when to stop -- when it returns true
2419when applied to one of the seed values.
2420@item @var{f} maps each seed value to a character. These
2421characters are added to the base character set @var{base_cs} to
2422form the result; @var{base_cs} defaults to the empty set.
2423@end itemize
2424@end deffn
2425
2426@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2427@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2428This is a fundamental constructor for character sets.
2429@itemize @bullet
2430@item @var{g} is used to generate a series of ``seed'' values
2431from the initial seed: @var{seed}, (@var{g} @var{seed}),
2432(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2433@item @var{p} tells us when to stop -- when it returns true
2434when applied to one of the seed values.
2435@item @var{f} maps each seed value to a character. These
2436characters are added to the base character set @var{base_cs} to
2437form the result; @var{base_cs} defaults to the empty set.
2438@end itemize
2439@end deffn
2440
2441@deffn {Scheme Procedure} char-set-for-each proc cs
2442@deffnx {C Function} scm_char_set_for_each (proc, cs)
2443Apply @var{proc} to every character in the character set
2444@var{cs}. The return value is not specified.
2445@end deffn
2446
2447@deffn {Scheme Procedure} char-set-map proc cs
2448@deffnx {C Function} scm_char_set_map (proc, cs)
2449Map the procedure @var{proc} over every character in @var{cs}.
2450@var{proc} must be a character -> character procedure.
2451@end deffn
2452
2453@c ===================================================================
2454
2455@node Creating Character Sets
2456@subsubsection Creating Character Sets
2457
2458New character sets are produced with these procedures.
2459
2460@deffn {Scheme Procedure} char-set-copy cs
2461@deffnx {C Function} scm_char_set_copy (cs)
2462Return a newly allocated character set containing all
2463characters in @var{cs}.
2464@end deffn
2465
df0a1002
BT
2466@deffn {Scheme Procedure} char-set chr @dots{}
2467@deffnx {C Function} scm_char_set (chrs)
050ab45f
MV
2468Return a character set containing all given characters.
2469@end deffn
2470
2471@deffn {Scheme Procedure} list->char-set list [base_cs]
2472@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2473Convert the character list @var{list} to a character set. If
2474the character set @var{base_cs} is given, the character in this
2475set are also included in the result.
2476@end deffn
2477
2478@deffn {Scheme Procedure} list->char-set! list base_cs
2479@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2480Convert the character list @var{list} to a character set. The
2481characters are added to @var{base_cs} and @var{base_cs} is
2482returned.
2483@end deffn
2484
2485@deffn {Scheme Procedure} string->char-set str [base_cs]
2486@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2487Convert the string @var{str} to a character set. If the
2488character set @var{base_cs} is given, the characters in this
2489set are also included in the result.
2490@end deffn
2491
2492@deffn {Scheme Procedure} string->char-set! str base_cs
2493@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2494Convert the string @var{str} to a character set. The
2495characters from the string are added to @var{base_cs}, and
2496@var{base_cs} is returned.
2497@end deffn
2498
2499@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2500@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2501Return a character set containing every character from @var{cs}
2502so that it satisfies @var{pred}. If provided, the characters
2503from @var{base_cs} are added to the result.
2504@end deffn
2505
2506@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2507@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2508Return a character set containing every character from @var{cs}
2509so that it satisfies @var{pred}. The characters are added to
2510@var{base_cs} and @var{base_cs} is returned.
2511@end deffn
2512
2513@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2514@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2515Return a character set containing all characters whose
2516character codes lie in the half-open range
2517[@var{lower},@var{upper}).
2518
2519If @var{error} is a true value, an error is signalled if the
2520specified range contains characters which are not contained in
2521the implemented character range. If @var{error} is @code{#f},
be3eb25c 2522these characters are silently left out of the resulting
050ab45f
MV
2523character set.
2524
2525The characters in @var{base_cs} are added to the result, if
2526given.
2527@end deffn
2528
2529@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2530@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2531Return a character set containing all characters whose
2532character codes lie in the half-open range
2533[@var{lower},@var{upper}).
2534
2535If @var{error} is a true value, an error is signalled if the
2536specified range contains characters which are not contained in
2537the implemented character range. If @var{error} is @code{#f},
be3eb25c 2538these characters are silently left out of the resulting
050ab45f
MV
2539character set.
2540
2541The characters are added to @var{base_cs} and @var{base_cs} is
2542returned.
2543@end deffn
2544
2545@deffn {Scheme Procedure} ->char-set x
2546@deffnx {C Function} scm_to_char_set (x)
be3eb25c
MG
2547Coerces x into a char-set. @var{x} may be a string, character or
2548char-set. A string is converted to the set of its constituent
2549characters; a character is converted to a singleton set; a char-set is
2550returned as-is.
050ab45f
MV
2551@end deffn
2552
2553@c ===================================================================
2554
2555@node Querying Character Sets
2556@subsubsection Querying Character Sets
2557
2558Access the elements and other information of a character set with these
2559procedures.
2560
be3eb25c
MG
2561@deffn {Scheme Procedure} %char-set-dump cs
2562Returns an association list containing debugging information
2563for @var{cs}. The association list has the following entries.
2564@table @code
2565@item char-set
2566The char-set itself
2567@item len
2568The number of groups of contiguous code points the char-set
2569contains
2570@item ranges
2571A list of lists where each sublist is a range of code points
2572and their associated characters
2573@end table
2574The return value of this function cannot be relied upon to be
2575consistent between versions of Guile and should not be used in code.
2576@end deffn
2577
050ab45f
MV
2578@deffn {Scheme Procedure} char-set-size cs
2579@deffnx {C Function} scm_char_set_size (cs)
2580Return the number of elements in character set @var{cs}.
2581@end deffn
2582
2583@deffn {Scheme Procedure} char-set-count pred cs
2584@deffnx {C Function} scm_char_set_count (pred, cs)
2585Return the number of the elements int the character set
2586@var{cs} which satisfy the predicate @var{pred}.
2587@end deffn
2588
2589@deffn {Scheme Procedure} char-set->list cs
2590@deffnx {C Function} scm_char_set_to_list (cs)
2591Return a list containing the elements of the character set
2592@var{cs}.
2593@end deffn
2594
2595@deffn {Scheme Procedure} char-set->string cs
2596@deffnx {C Function} scm_char_set_to_string (cs)
2597Return a string containing the elements of the character set
2598@var{cs}. The order in which the characters are placed in the
2599string is not defined.
2600@end deffn
2601
2602@deffn {Scheme Procedure} char-set-contains? cs ch
2603@deffnx {C Function} scm_char_set_contains_p (cs, ch)
a4b4fbbd
JE
2604Return @code{#t} if the character @var{ch} is contained in the
2605character set @var{cs}, or @code{#f} otherwise.
050ab45f
MV
2606@end deffn
2607
2608@deffn {Scheme Procedure} char-set-every pred cs
2609@deffnx {C Function} scm_char_set_every (pred, cs)
2610Return a true value if every character in the character set
2611@var{cs} satisfies the predicate @var{pred}.
2612@end deffn
2613
2614@deffn {Scheme Procedure} char-set-any pred cs
2615@deffnx {C Function} scm_char_set_any (pred, cs)
2616Return a true value if any character in the character set
2617@var{cs} satisfies the predicate @var{pred}.
2618@end deffn
2619
2620@c ===================================================================
2621
2622@node Character-Set Algebra
2623@subsubsection Character-Set Algebra
2624
2625Character sets can be manipulated with the common set algebra operation,
2626such as union, complement, intersection etc. All of these procedures
2627provide side-effecting variants, which modify their character set
2628argument(s).
2629
df0a1002
BT
2630@deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
2631@deffnx {C Function} scm_char_set_adjoin (cs, chrs)
050ab45f
MV
2632Add all character arguments to the first argument, which must
2633be a character set.
2634@end deffn
2635
df0a1002
BT
2636@deffn {Scheme Procedure} char-set-delete cs chr @dots{}
2637@deffnx {C Function} scm_char_set_delete (cs, chrs)
050ab45f
MV
2638Delete all character arguments from the first argument, which
2639must be a character set.
2640@end deffn
2641
df0a1002
BT
2642@deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
2643@deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
050ab45f
MV
2644Add all character arguments to the first argument, which must
2645be a character set.
2646@end deffn
2647
df0a1002
BT
2648@deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
2649@deffnx {C Function} scm_char_set_delete_x (cs, chrs)
050ab45f
MV
2650Delete all character arguments from the first argument, which
2651must be a character set.
2652@end deffn
2653
2654@deffn {Scheme Procedure} char-set-complement cs
2655@deffnx {C Function} scm_char_set_complement (cs)
2656Return the complement of the character set @var{cs}.
2657@end deffn
2658
be3eb25c
MG
2659Note that the complement of a character set is likely to contain many
2660reserved code points (code points that are not associated with
2661characters). It may be helpful to modify the output of
2662@code{char-set-complement} by computing its intersection with the set
2663of designated code points, @code{char-set:designated}.
2664
df0a1002
BT
2665@deffn {Scheme Procedure} char-set-union cs @dots{}
2666@deffnx {C Function} scm_char_set_union (char_sets)
050ab45f
MV
2667Return the union of all argument character sets.
2668@end deffn
2669
df0a1002
BT
2670@deffn {Scheme Procedure} char-set-intersection cs @dots{}
2671@deffnx {C Function} scm_char_set_intersection (char_sets)
050ab45f
MV
2672Return the intersection of all argument character sets.
2673@end deffn
2674
df0a1002
BT
2675@deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
2676@deffnx {C Function} scm_char_set_difference (cs1, char_sets)
050ab45f
MV
2677Return the difference of all argument character sets.
2678@end deffn
2679
df0a1002
BT
2680@deffn {Scheme Procedure} char-set-xor cs @dots{}
2681@deffnx {C Function} scm_char_set_xor (char_sets)
050ab45f
MV
2682Return the exclusive-or of all argument character sets.
2683@end deffn
2684
df0a1002
BT
2685@deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
2686@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
050ab45f
MV
2687Return the difference and the intersection of all argument
2688character sets.
2689@end deffn
2690
2691@deffn {Scheme Procedure} char-set-complement! cs
2692@deffnx {C Function} scm_char_set_complement_x (cs)
2693Return the complement of the character set @var{cs}.
2694@end deffn
2695
df0a1002
BT
2696@deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
2697@deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
050ab45f
MV
2698Return the union of all argument character sets.
2699@end deffn
2700
df0a1002
BT
2701@deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
2702@deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
050ab45f
MV
2703Return the intersection of all argument character sets.
2704@end deffn
2705
df0a1002
BT
2706@deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
2707@deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
050ab45f
MV
2708Return the difference of all argument character sets.
2709@end deffn
2710
df0a1002
BT
2711@deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
2712@deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
050ab45f
MV
2713Return the exclusive-or of all argument character sets.
2714@end deffn
2715
df0a1002
BT
2716@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
2717@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
050ab45f
MV
2718Return the difference and the intersection of all argument
2719character sets.
2720@end deffn
2721
2722@c ===================================================================
2723
2724@node Standard Character Sets
2725@subsubsection Standard Character Sets
2726
2727In order to make the use of the character set data type and procedures
2728useful, several predefined character set variables exist.
2729
49dec04b
LC
2730@cindex codeset
2731@cindex charset
2732@cindex locale
2733
be3eb25c
MG
2734These character sets are locale independent and are not recomputed
2735upon a @code{setlocale} call. They contain characters from the whole
2736range of Unicode code points. For instance, @code{char-set:letter}
bf8d8454 2737contains about 100,000 characters.
49dec04b 2738
c9dc8c6c
MV
2739@defvr {Scheme Variable} char-set:lower-case
2740@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2741All lower-case characters.
c9dc8c6c 2742@end defvr
050ab45f 2743
c9dc8c6c
MV
2744@defvr {Scheme Variable} char-set:upper-case
2745@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2746All upper-case characters.
c9dc8c6c 2747@end defvr
050ab45f 2748
c9dc8c6c
MV
2749@defvr {Scheme Variable} char-set:title-case
2750@defvrx {C Variable} scm_char_set_title_case
be3eb25c
MG
2751All single characters that function as if they were an upper-case
2752letter followed by a lower-case letter.
c9dc8c6c 2753@end defvr
050ab45f 2754
c9dc8c6c
MV
2755@defvr {Scheme Variable} char-set:letter
2756@defvrx {C Variable} scm_char_set_letter
be3eb25c
MG
2757All letters. This includes @code{char-set:lower-case},
2758@code{char-set:upper-case}, @code{char-set:title-case}, and many
2759letters that have no case at all. For example, Chinese and Japanese
2760characters typically have no concept of case.
c9dc8c6c 2761@end defvr
050ab45f 2762
c9dc8c6c
MV
2763@defvr {Scheme Variable} char-set:digit
2764@defvrx {C Variable} scm_char_set_digit
050ab45f 2765All digits.
c9dc8c6c 2766@end defvr
050ab45f 2767
c9dc8c6c
MV
2768@defvr {Scheme Variable} char-set:letter+digit
2769@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2770The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2771@end defvr
050ab45f 2772
c9dc8c6c
MV
2773@defvr {Scheme Variable} char-set:graphic
2774@defvrx {C Variable} scm_char_set_graphic
050ab45f 2775All characters which would put ink on the paper.
c9dc8c6c 2776@end defvr
050ab45f 2777
c9dc8c6c
MV
2778@defvr {Scheme Variable} char-set:printing
2779@defvrx {C Variable} scm_char_set_printing
050ab45f 2780The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2781@end defvr
050ab45f 2782
c9dc8c6c
MV
2783@defvr {Scheme Variable} char-set:whitespace
2784@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2785All whitespace characters.
c9dc8c6c 2786@end defvr
050ab45f 2787
c9dc8c6c
MV
2788@defvr {Scheme Variable} char-set:blank
2789@defvrx {C Variable} scm_char_set_blank
be3eb25c
MG
2790All horizontal whitespace characters, which notably includes
2791@code{#\space} and @code{#\tab}.
c9dc8c6c 2792@end defvr
050ab45f 2793
c9dc8c6c
MV
2794@defvr {Scheme Variable} char-set:iso-control
2795@defvrx {C Variable} scm_char_set_iso_control
be3eb25c
MG
2796The ISO control characters are the C0 control characters (U+0000 to
2797U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2798U+009F).
c9dc8c6c 2799@end defvr
050ab45f 2800
c9dc8c6c
MV
2801@defvr {Scheme Variable} char-set:punctuation
2802@defvrx {C Variable} scm_char_set_punctuation
be3eb25c
MG
2803All punctuation characters, such as the characters
2804@code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2805@end defvr
050ab45f 2806
c9dc8c6c
MV
2807@defvr {Scheme Variable} char-set:symbol
2808@defvrx {C Variable} scm_char_set_symbol
be3eb25c 2809All symbol characters, such as the characters @code{$+<=>^`|~}.
c9dc8c6c 2810@end defvr
050ab45f 2811
c9dc8c6c
MV
2812@defvr {Scheme Variable} char-set:hex-digit
2813@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2814The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2815@end defvr
050ab45f 2816
c9dc8c6c
MV
2817@defvr {Scheme Variable} char-set:ascii
2818@defvrx {C Variable} scm_char_set_ascii
050ab45f 2819All ASCII characters.
c9dc8c6c 2820@end defvr
050ab45f 2821
c9dc8c6c
MV
2822@defvr {Scheme Variable} char-set:empty
2823@defvrx {C Variable} scm_char_set_empty
050ab45f 2824The empty character set.
c9dc8c6c 2825@end defvr
050ab45f 2826
be3eb25c
MG
2827@defvr {Scheme Variable} char-set:designated
2828@defvrx {C Variable} scm_char_set_designated
2829This character set contains all designated code points. This includes
2830all the code points to which Unicode has assigned a character or other
2831meaning.
2832@end defvr
2833
c9dc8c6c
MV
2834@defvr {Scheme Variable} char-set:full
2835@defvrx {C Variable} scm_char_set_full
be3eb25c
MG
2836This character set contains all possible code points. This includes
2837both designated and reserved code points.
c9dc8c6c 2838@end defvr
07d83abe
MV
2839
2840@node Strings
2841@subsection Strings
2842@tpindex Strings
2843
2844Strings are fixed-length sequences of characters. They can be created
2845by calling constructor procedures, but they can also literally get
2846entered at the @acronym{REPL} or in Scheme source files.
2847
2848@c Guile provides a rich set of string processing procedures, because text
2849@c handling is very important when Guile is used as a scripting language.
2850
2851Strings always carry the information about how many characters they are
2852composed of with them, so there is no special end-of-string character,
2853like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2854even the @samp{#\nul} character @samp{\0}.
2855
2856To use strings efficiently, you need to know a bit about how Guile
2857implements them. In Guile, a string consists of two parts, a head and
2858the actual memory where the characters are stored. When a string (or
2859a substring of it) is copied, only a new head gets created, the memory
2860is usually not copied. The two heads start out pointing to the same
2861memory.
2862
2863When one of these two strings is modified, as with @code{string-set!},
2864their common memory does get copied so that each string has its own
be3eb25c 2865memory and modifying one does not accidentally modify the other as well.
c48c62d0
MV
2866Thus, Guile's strings are `copy on write'; the actual copying of their
2867memory is delayed until one string is written to.
2868
2869This implementation makes functions like @code{substring} very
2870efficient in the common case that no modifications are done to the
2871involved strings.
2872
2873If you do know that your strings are getting modified right away, you
2874can use @code{substring/copy} instead of @code{substring}. This
2875function performs the copy immediately at the time of creation. This
2876is more efficient, especially in a multi-threaded program. Also,
2877@code{substring/copy} can avoid the problem that a short substring
2878holds on to the memory of a very large original string that could
2879otherwise be recycled.
2880
2881If you want to avoid the copy altogether, so that modifications of one
2882string show up in the other, you can use @code{substring/shared}. The
2883strings created by this procedure are called @dfn{mutation sharing
2884substrings} since the substring and the original string share
2885modifications to each other.
07d83abe 2886
05256760
MV
2887If you want to prevent modifications, use @code{substring/read-only}.
2888
c9dc8c6c
MV
2889Guile provides all procedures of SRFI-13 and a few more.
2890
07d83abe 2891@menu
5676b4fa
MV
2892* String Syntax:: Read syntax for strings.
2893* String Predicates:: Testing strings for certain properties.
2894* String Constructors:: Creating new string objects.
2895* List/String Conversion:: Converting from/to lists of characters.
2896* String Selection:: Select portions from strings.
2897* String Modification:: Modify parts or whole strings.
2898* String Comparison:: Lexicographic ordering predicates.
2899* String Searching:: Searching in strings.
2900* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2901* Reversing and Appending Strings:: Appending strings to form a new string.
2902* Mapping Folding and Unfolding:: Iterating over strings.
2903* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
f05bb849 2904* Representing Strings as Bytes:: Encoding and decoding strings.
67af975c 2905* Conversion to/from C::
5b6b22e8 2906* String Internals:: The storage strategy for strings.
07d83abe
MV
2907@end menu
2908
2909@node String Syntax
2910@subsubsection String Read Syntax
2911
2912@c In the following @code is used to get a good font in TeX etc, but
2913@c is omitted for Info format, so as not to risk any confusion over
2914@c whether surrounding ` ' quotes are part of the escape or are
2915@c special in a string (they're not).
2916
2917The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2918characters enclosed in double quotes (@nicode{"}).
07d83abe 2919
67af975c
MG
2920Backslash is an escape character and can be used to insert the following
2921special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2922next seven are R6RS standard --- notice they follow C syntax --- and the
2923remaining four are Guile extensions.
07d83abe
MV
2924
2925@table @asis
2926@item @nicode{\\}
2927Backslash character.
2928
2929@item @nicode{\"}
2930Double quote character (an unescaped @nicode{"} is otherwise the end
2931of the string).
2932
07d83abe
MV
2933@item @nicode{\a}
2934Bell character (ASCII 7).
2935
2936@item @nicode{\f}
2937Formfeed character (ASCII 12).
2938
2939@item @nicode{\n}
2940Newline character (ASCII 10).
2941
2942@item @nicode{\r}
2943Carriage return character (ASCII 13).
2944
2945@item @nicode{\t}
2946Tab character (ASCII 9).
2947
2948@item @nicode{\v}
2949Vertical tab character (ASCII 11).
2950
67a4a16d
MG
2951@item @nicode{\b}
2952Backspace character (ASCII 8).
2953
67af975c
MG
2954@item @nicode{\0}
2955NUL character (ASCII 0).
2956
c869f0c1
AW
2957@item @nicode{\} followed by newline (ASCII 10)
2958Nothing. This way if @nicode{\} is the last character in a line, the
2959string will continue with the first character from the next line,
2960without a line break.
2961
2962If the @code{hungry-eol-escapes} reader option is enabled, which is not
2963the case by default, leading whitespace on the next line is discarded.
2964
2965@lisp
2966"foo\
2967 bar"
2968@result{} "foo bar"
2969(read-enable 'hungry-eol-escapes)
2970"foo\
2971 bar"
2972@result{} "foobar"
2973@end lisp
07d83abe
MV
2974@item @nicode{\xHH}
2975Character code given by two hexadecimal digits. For example
2976@nicode{\x7f} for an ASCII DEL (127).
28cc8dac
MG
2977
2978@item @nicode{\uHHHH}
2979Character code given by four hexadecimal digits. For example
2980@nicode{\u0100} for a capital A with macron (U+0100).
2981
2982@item @nicode{\UHHHHHH}
2983Character code given by six hexadecimal digits. For example
2984@nicode{\U010402}.
07d83abe
MV
2985@end table
2986
2987@noindent
2988The following are examples of string literals:
2989
2990@lisp
2991"foo"
2992"bar plonk"
2993"Hello World"
2994"\"Hi\", he said."
2995@end lisp
2996
6ea30487
MG
2997The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
2998chosen to not break compatibility with code written for previous versions of
2999Guile. The R6RS specification suggests a different, incompatible syntax for hex
3000escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
3001digits terminated with a semicolon. If this escape format is desired instead,
3002it can be enabled with the reader option @code{r6rs-hex-escapes}.
3003
3004@lisp
3005(read-enable 'r6rs-hex-escapes)
3006@end lisp
3007
1518f649 3008For more on reader options, @xref{Scheme Read}.
07d83abe
MV
3009
3010@node String Predicates
3011@subsubsection String Predicates
3012
3013The following procedures can be used to check whether a given string
3014fulfills some specified property.
3015
3016@rnindex string?
3017@deffn {Scheme Procedure} string? obj
3018@deffnx {C Function} scm_string_p (obj)
3019Return @code{#t} if @var{obj} is a string, else @code{#f}.
3020@end deffn
3021
91210d62
MV
3022@deftypefn {C Function} int scm_is_string (SCM obj)
3023Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
3024@end deftypefn
3025
07d83abe
MV
3026@deffn {Scheme Procedure} string-null? str
3027@deffnx {C Function} scm_string_null_p (str)
3028Return @code{#t} if @var{str}'s length is zero, and
3029@code{#f} otherwise.
3030@lisp
3031(string-null? "") @result{} #t
3032y @result{} "foo"
3033(string-null? y) @result{} #f
3034@end lisp
3035@end deffn
3036
5676b4fa
MV
3037@deffn {Scheme Procedure} string-any char_pred s [start [end]]
3038@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 3039Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 3040
c100a12c
KR
3041@var{char_pred} can be a character to check for any equal to that, or
3042a character set (@pxref{Character Sets}) to check for any in that set,
3043or a predicate procedure to call.
5676b4fa 3044
c100a12c
KR
3045For a procedure, calls @code{(@var{char_pred} c)} are made
3046successively on the characters from @var{start} to @var{end}. If
3047@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3048stops and that return value is the return from @code{string-any}. The
3049call on the last character (ie.@: at @math{@var{end}-1}), if that
3050point is reached, is a tail call.
3051
3052If there are no characters in @var{s} (ie.@: @var{start} equals
3053@var{end}) then the return is @code{#f}.
5676b4fa
MV
3054@end deffn
3055
3056@deffn {Scheme Procedure} string-every char_pred s [start [end]]
3057@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
3058Check if @var{char_pred} is true for every character in string
3059@var{s}.
5676b4fa 3060
c100a12c
KR
3061@var{char_pred} can be a character to check for every character equal
3062to that, or a character set (@pxref{Character Sets}) to check for
3063every character being in that set, or a predicate procedure to call.
3064
3065For a procedure, calls @code{(@var{char_pred} c)} are made
3066successively on the characters from @var{start} to @var{end}. If
3067@var{char_pred} returns @code{#f}, @code{string-every} stops and
3068returns @code{#f}. The call on the last character (ie.@: at
3069@math{@var{end}-1}), if that point is reached, is a tail call and the
3070return from that call is the return from @code{string-every}.
5676b4fa
MV
3071
3072If there are no characters in @var{s} (ie.@: @var{start} equals
3073@var{end}) then the return is @code{#t}.
5676b4fa
MV
3074@end deffn
3075
07d83abe
MV
3076@node String Constructors
3077@subsubsection String Constructors
3078
3079The string constructor procedures create new string objects, possibly
c48c62d0
MV
3080initializing them with some specified character data. See also
3081@xref{String Selection}, for ways to create strings from existing
3082strings.
07d83abe
MV
3083
3084@c FIXME::martin: list->string belongs into `List/String Conversion'
3085
bba26c32 3086@deffn {Scheme Procedure} string char@dots{}
07d83abe 3087@rnindex string
bba26c32
KR
3088Return a newly allocated string made from the given character
3089arguments.
3090
3091@example
3092(string #\x #\y #\z) @result{} "xyz"
3093(string) @result{} ""
3094@end example
3095@end deffn
3096
3097@deffn {Scheme Procedure} list->string lst
3098@deffnx {C Function} scm_string (lst)
07d83abe 3099@rnindex list->string
bba26c32
KR
3100Return a newly allocated string made from a list of characters.
3101
3102@example
3103(list->string '(#\a #\b #\c)) @result{} "abc"
3104@end example
3105@end deffn
3106
3107@deffn {Scheme Procedure} reverse-list->string lst
3108@deffnx {C Function} scm_reverse_list_to_string (lst)
3109Return a newly allocated string made from a list of characters, in
3110reverse order.
3111
3112@example
3113(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3114@end example
07d83abe
MV
3115@end deffn
3116
3117@rnindex make-string
3118@deffn {Scheme Procedure} make-string k [chr]
3119@deffnx {C Function} scm_make_string (k, chr)
3120Return a newly allocated string of
3121length @var{k}. If @var{chr} is given, then all elements of
3122the string are initialized to @var{chr}, otherwise the contents
64de6db5 3123of the string are unspecified.
07d83abe
MV
3124@end deffn
3125
c48c62d0
MV
3126@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3127Like @code{scm_make_string}, but expects the length as a
3128@code{size_t}.
3129@end deftypefn
3130
5676b4fa
MV
3131@deffn {Scheme Procedure} string-tabulate proc len
3132@deffnx {C Function} scm_string_tabulate (proc, len)
3133@var{proc} is an integer->char procedure. Construct a string
3134of size @var{len} by applying @var{proc} to each index to
3135produce the corresponding string element. The order in which
3136@var{proc} is applied to the indices is not specified.
3137@end deffn
3138
5676b4fa
MV
3139@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3140@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3141Append the string in the string list @var{ls}, using the string
64de6db5 3142@var{delimiter} as a delimiter between the elements of @var{ls}.
5676b4fa
MV
3143@var{grammar} is a symbol which specifies how the delimiter is
3144placed between the strings, and defaults to the symbol
3145@code{infix}.
3146
3147@table @code
3148@item infix
3149Insert the separator between list elements. An empty string
3150will produce an empty list.
3b80c358 3151@item strict-infix
5676b4fa
MV
3152Like @code{infix}, but will raise an error if given the empty
3153list.
3154@item suffix
3155Insert the separator after every list element.
3156@item prefix
3157Insert the separator before each list element.
3158@end table
3159@end deffn
3160
07d83abe
MV
3161@node List/String Conversion
3162@subsubsection List/String conversion
3163
3164When processing strings, it is often convenient to first convert them
3165into a list representation by using the procedure @code{string->list},
3166work with the resulting list, and then convert it back into a string.
3167These procedures are useful for similar tasks.
3168
3169@rnindex string->list
5676b4fa
MV
3170@deffn {Scheme Procedure} string->list str [start [end]]
3171@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 3172@deffnx {C Function} scm_string_to_list (str)
5676b4fa 3173Convert the string @var{str} into a list of characters.
07d83abe
MV
3174@end deffn
3175
5f085775
DH
3176@deffn {Scheme Procedure} string-split str char_pred
3177@deffnx {C Function} scm_string_split (str, char_pred)
ecb87335 3178Split the string @var{str} into a list of substrings delimited
5f085775
DH
3179by appearances of characters that
3180
3181@itemize @bullet
3182@item
3183equal @var{char_pred}, if it is a character,
3184
3185@item
3186satisfy the predicate @var{char_pred}, if it is a procedure,
3187
3188@item
3189are in the set @var{char_pred}, if it is a character set.
3190@end itemize
3191
3192Note that an empty substring between separator characters will result in
3193an empty string in the result list.
07d83abe
MV
3194
3195@lisp
3196(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3197@result{}
3198("root" "x" "0" "0" "root" "/root" "/bin/bash")
3199
3200(string-split "::" #\:)
3201@result{}
3202("" "" "")
3203
3204(string-split "" #\:)
3205@result{}
3206("")
3207@end lisp
3208@end deffn
3209
3210
3211@node String Selection
3212@subsubsection String Selection
3213
3214Portions of strings can be extracted by these procedures.
3215@code{string-ref} delivers individual characters whereas
3216@code{substring} can be used to extract substrings from longer strings.
3217
3218@rnindex string-length
3219@deffn {Scheme Procedure} string-length string
3220@deffnx {C Function} scm_string_length (string)
3221Return the number of characters in @var{string}.
3222@end deffn
3223
c48c62d0
MV
3224@deftypefn {C Function} size_t scm_c_string_length (SCM str)
3225Return the number of characters in @var{str} as a @code{size_t}.
3226@end deftypefn
3227
07d83abe
MV
3228@rnindex string-ref
3229@deffn {Scheme Procedure} string-ref str k
3230@deffnx {C Function} scm_string_ref (str, k)
3231Return character @var{k} of @var{str} using zero-origin
3232indexing. @var{k} must be a valid index of @var{str}.
3233@end deffn
3234
c48c62d0
MV
3235@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3236Return character @var{k} of @var{str} using zero-origin
3237indexing. @var{k} must be a valid index of @var{str}.
3238@end deftypefn
3239
07d83abe 3240@rnindex string-copy
5676b4fa
MV
3241@deffn {Scheme Procedure} string-copy str [start [end]]
3242@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 3243@deffnx {C Function} scm_string_copy (str)
5676b4fa 3244Return a copy of the given string @var{str}.
c48c62d0
MV
3245
3246The returned string shares storage with @var{str} initially, but it is
3247copied as soon as one of the two strings is modified.
07d83abe
MV
3248@end deffn
3249
3250@rnindex substring
3251@deffn {Scheme Procedure} substring str start [end]
3252@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 3253Return a new string formed from the characters
07d83abe
MV
3254of @var{str} beginning with index @var{start} (inclusive) and
3255ending with index @var{end} (exclusive).
3256@var{str} must be a string, @var{start} and @var{end} must be
3257exact integers satisfying:
3258
32590 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
3260
3261The returned string shares storage with @var{str} initially, but it is
3262copied as soon as one of the two strings is modified.
3263@end deffn
3264
3265@deffn {Scheme Procedure} substring/shared str start [end]
3266@deffnx {C Function} scm_substring_shared (str, start, end)
3267Like @code{substring}, but the strings continue to share their storage
3268even if they are modified. Thus, modifications to @var{str} show up
3269in the new string, and vice versa.
3270@end deffn
3271
3272@deffn {Scheme Procedure} substring/copy str start [end]
3273@deffnx {C Function} scm_substring_copy (str, start, end)
3274Like @code{substring}, but the storage for the new string is copied
3275immediately.
07d83abe
MV
3276@end deffn
3277
05256760
MV
3278@deffn {Scheme Procedure} substring/read-only str start [end]
3279@deffnx {C Function} scm_substring_read_only (str, start, end)
3280Like @code{substring}, but the resulting string can not be modified.
3281@end deffn
3282
c48c62d0
MV
3283@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3284@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3285@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 3286@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
3287Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3288@end deftypefn
3289
5676b4fa
MV
3290@deffn {Scheme Procedure} string-take s n
3291@deffnx {C Function} scm_string_take (s, n)
3292Return the @var{n} first characters of @var{s}.
3293@end deffn
3294
3295@deffn {Scheme Procedure} string-drop s n
3296@deffnx {C Function} scm_string_drop (s, n)
3297Return all but the first @var{n} characters of @var{s}.
3298@end deffn
3299
3300@deffn {Scheme Procedure} string-take-right s n
3301@deffnx {C Function} scm_string_take_right (s, n)
3302Return the @var{n} last characters of @var{s}.
3303@end deffn
3304
3305@deffn {Scheme Procedure} string-drop-right s n
3306@deffnx {C Function} scm_string_drop_right (s, n)
3307Return all but the last @var{n} characters of @var{s}.
3308@end deffn
3309
3310@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 3311@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 3312@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 3313@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb 3314Take characters @var{start} to @var{end} from the string @var{s} and
64de6db5 3315either pad with @var{chr} or truncate them to give @var{len}
6337e7fb
KR
3316characters.
3317
3318@code{string-pad} pads or truncates on the left, so for example
3319
3320@example
3321(string-pad "x" 3) @result{} " x"
3322(string-pad "abcde" 3) @result{} "cde"
3323@end example
3324
3325@code{string-pad-right} pads or truncates on the right, so for example
3326
3327@example
3328(string-pad-right "x" 3) @result{} "x "
3329(string-pad-right "abcde" 3) @result{} "abc"
3330@end example
5676b4fa
MV
3331@end deffn
3332
3333@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
dc297bb7
KR
3334@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3335@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
5676b4fa 3336@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
5676b4fa 3337@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
5676b4fa 3338@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
be3eb25c 3339Trim occurrences of @var{char_pred} from the ends of @var{s}.
5676b4fa 3340
dc297bb7
KR
3341@code{string-trim} trims @var{char_pred} characters from the left
3342(start) of the string, @code{string-trim-right} trims them from the
3343right (end) of the string, @code{string-trim-both} trims from both
3344ends.
5676b4fa 3345
dc297bb7
KR
3346@var{char_pred} can be a character, a character set, or a predicate
3347procedure to call on each character. If @var{char_pred} is not given
3348the default is whitespace as per @code{char-set:whitespace}
3349(@pxref{Standard Character Sets}).
5676b4fa 3350
dc297bb7
KR
3351@example
3352(string-trim " x ") @result{} "x "
3353(string-trim-right "banana" #\a) @result{} "banan"
3354(string-trim-both ".,xy:;" char-set:punctuation)
3355 @result{} "xy"
3356(string-trim-both "xyzzy" (lambda (c)
3357 (or (eqv? c #\x)
3358 (eqv? c #\y))))
3359 @result{} "zz"
3360@end example
5676b4fa
MV
3361@end deffn
3362
07d83abe
MV
3363@node String Modification
3364@subsubsection String Modification
3365
3366These procedures are for modifying strings in-place. This means that the
3367result of the operation is not a new string; instead, the original string's
3368memory representation is modified.
3369
3370@rnindex string-set!
3371@deffn {Scheme Procedure} string-set! str k chr
3372@deffnx {C Function} scm_string_set_x (str, k, chr)
3373Store @var{chr} in element @var{k} of @var{str} and return
3374an unspecified value. @var{k} must be a valid index of
3375@var{str}.
3376@end deffn
3377
c48c62d0
MV
3378@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3379Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3380@end deftypefn
3381
07d83abe 3382@rnindex string-fill!
5676b4fa
MV
3383@deffn {Scheme Procedure} string-fill! str chr [start [end]]
3384@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 3385@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
3386Stores @var{chr} in every element of the given @var{str} and
3387returns an unspecified value.
07d83abe
MV
3388@end deffn
3389
3390@deffn {Scheme Procedure} substring-fill! str start end fill
3391@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3392Change every character in @var{str} between @var{start} and
3393@var{end} to @var{fill}.
3394
3395@lisp
4dbd29a9 3396(define y (string-copy "abcdefg"))
07d83abe
MV
3397(substring-fill! y 1 3 #\r)
3398y
3399@result{} "arrdefg"
3400@end lisp
3401@end deffn
3402
3403@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3404@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3405Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3406into @var{str2} beginning at position @var{start2}.
3407@var{str1} and @var{str2} can be the same string.
3408@end deffn
3409
5676b4fa
MV
3410@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3411@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3412Copy the sequence of characters from index range [@var{start},
3413@var{end}) in string @var{s} to string @var{target}, beginning
3414at index @var{tstart}. The characters are copied left-to-right
3415or right-to-left as needed -- the copy is guaranteed to work,
3416even if @var{target} and @var{s} are the same string. It is an
3417error if the copy operation runs off the end of the target
3418string.
3419@end deffn
3420
07d83abe
MV
3421
3422@node String Comparison
3423@subsubsection String Comparison
3424
3425The procedures in this section are similar to the character ordering
3426predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 3427
5676b4fa 3428The first set is specified in R5RS and has names that end in @code{?}.
28cc8dac 3429The second set is specified in SRFI-13 and the names have not ending
67af975c 3430@code{?}.
28cc8dac
MG
3431
3432The predicates ending in @code{-ci} ignore the character case
3433when comparing strings. For now, case-insensitive comparison is done
3434using the R5RS rules, where every lower-case character that has a
3435single character upper-case form is converted to uppercase before
3436comparison. See @xref{Text Collation, the @code{(ice-9
b89c4943 3437i18n)} module}, for locale-dependent string comparison.
07d83abe
MV
3438
3439@rnindex string=?
df0a1002 3440@deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
df0a1002
BT
3441Lexicographic equality predicate; return @code{#t} if all strings are
3442the same length and contain the same characters in the same positions,
3443otherwise return @code{#f}.
07d83abe
MV
3444
3445The procedure @code{string-ci=?} treats upper and lower case
3446letters as though they were the same character, but
3447@code{string=?} treats upper and lower case as distinct
3448characters.
3449@end deffn
3450
3451@rnindex string<?
df0a1002 3452@deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
df0a1002
BT
3453Lexicographic ordering predicate; return @code{#t} if, for every pair of
3454consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3455lexicographically less than @var{str_i+1}.
07d83abe
MV
3456@end deffn
3457
3458@rnindex string<=?
df0a1002 3459@deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
df0a1002
BT
3460Lexicographic ordering predicate; return @code{#t} if, for every pair of
3461consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3462lexicographically less than or equal to @var{str_i+1}.
07d83abe
MV
3463@end deffn
3464
3465@rnindex string>?
df0a1002 3466@deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
df0a1002
BT
3467Lexicographic ordering predicate; return @code{#t} if, for every pair of
3468consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3469lexicographically greater than @var{str_i+1}.
07d83abe
MV
3470@end deffn
3471
3472@rnindex string>=?
df0a1002 3473@deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
df0a1002
BT
3474Lexicographic ordering predicate; return @code{#t} if, for every pair of
3475consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3476lexicographically greater than or equal to @var{str_i+1}.
07d83abe
MV
3477@end deffn
3478
3479@rnindex string-ci=?
df0a1002 3480@deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
07d83abe 3481Case-insensitive string equality predicate; return @code{#t} if
df0a1002 3482all strings are the same length and their component
07d83abe
MV
3483characters match (ignoring case) at each position; otherwise
3484return @code{#f}.
3485@end deffn
3486
5676b4fa 3487@rnindex string-ci<?
df0a1002 3488@deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
df0a1002
BT
3489Case insensitive lexicographic ordering predicate; return @code{#t} if,
3490for every pair of consecutive string arguments @var{str_i} and
3491@var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
07d83abe
MV
3492regardless of case.
3493@end deffn
3494
3495@rnindex string<=?
df0a1002 3496@deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
df0a1002
BT
3497Case insensitive lexicographic ordering predicate; return @code{#t} if,
3498for every pair of consecutive string arguments @var{str_i} and
3499@var{str_i+1}, @var{str_i} is lexicographically less than or equal to
3500@var{str_i+1} regardless of case.
07d83abe
MV
3501@end deffn
3502
3503@rnindex string-ci>?
df0a1002 3504@deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
df0a1002
BT
3505Case insensitive lexicographic ordering predicate; return @code{#t} if,
3506for every pair of consecutive string arguments @var{str_i} and
3507@var{str_i+1}, @var{str_i} is lexicographically greater than
3508@var{str_i+1} regardless of case.
07d83abe
MV
3509@end deffn
3510
3511@rnindex string-ci>=?
df0a1002 3512@deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
df0a1002
BT
3513Case insensitive lexicographic ordering predicate; return @code{#t} if,
3514for every pair of consecutive string arguments @var{str_i} and
3515@var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
3516@var{str_i+1} regardless of case.
07d83abe
MV
3517@end deffn
3518
5676b4fa
MV
3519@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3520@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3521Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3522mismatch index, depending upon whether @var{s1} is less than,
3523equal to, or greater than @var{s2}. The mismatch index is the
3524largest index @var{i} such that for every 0 <= @var{j} <
3525@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3526@var{i} is the first position that does not match.
3527@end deffn
3528
3529@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3530@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3531Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3532mismatch index, depending upon whether @var{s1} is less than,
3533equal to, or greater than @var{s2}. The mismatch index is the
3534largest index @var{i} such that for every 0 <= @var{j} <
3535@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3323ec06
NJ
3536@var{i} is the first position where the lowercased letters
3537do not match.
3538
5676b4fa
MV
3539@end deffn
3540
3541@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3542@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3543Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3544value otherwise.
3545@end deffn
3546
3547@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3548@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3549Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3550value otherwise.
3551@end deffn
3552
3553@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3554@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3555Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3556true value otherwise.
3557@end deffn
3558
3559@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3560@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3561Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3562true value otherwise.
3563@end deffn
3564
3565@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3566@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3567Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3568value otherwise.
3569@end deffn
3570
3571@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3572@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3573Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3574otherwise.
3575@end deffn
3576
3577@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3578@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3579Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3580value otherwise. The character comparison is done
3581case-insensitively.
3582@end deffn
3583
3584@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3585@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3586Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3587value otherwise. The character comparison is done
3588case-insensitively.
3589@end deffn
3590
3591@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3592@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3593Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3594true value otherwise. The character comparison is done
3595case-insensitively.
3596@end deffn
3597
3598@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3599@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3600Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3601true value otherwise. The character comparison is done
3602case-insensitively.
3603@end deffn
3604
3605@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3606@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3607Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3608value otherwise. The character comparison is done
3609case-insensitively.
3610@end deffn
3611
3612@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3613@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3614Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3615otherwise. The character comparison is done
3616case-insensitively.
3617@end deffn
3618
3619@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3620@deffnx {C Function} scm_substring_hash (s, bound, start, end)
64de6db5 3621Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
5676b4fa
MV
3622@end deffn
3623
3624@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3625@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
64de6db5 3626Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
5676b4fa 3627@end deffn
07d83abe 3628
edb7bb47
JG
3629Because the same visual appearance of an abstract Unicode character can
3630be obtained via multiple sequences of Unicode characters, even the
3631case-insensitive string comparison functions described above may return
3632@code{#f} when presented with strings containing different
3633representations of the same character. For example, the Unicode
3634character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3635represented with a single character (U+1E69) or by the character ``LATIN
3636SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3637DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3638
3639For this reason, it is often desirable to ensure that the strings
3640to be compared are using a mutually consistent representation for every
3641character. The Unicode standard defines two methods of normalizing the
3642contents of strings: Decomposition, which breaks composite characters
3643into a set of constituent characters with an ordering defined by the
3644Unicode Standard; and composition, which performs the converse.
3645
3646There are two decomposition operations. ``Canonical decomposition''
3647produces character sequences that share the same visual appearance as
ecb87335 3648the original characters, while ``compatibility decomposition'' produces
edb7bb47
JG
3649ones whose visual appearances may differ from the originals but which
3650represent the same abstract character.
3651
3652These operations are encapsulated in the following set of normalization
3653forms:
3654
3655@table @dfn
3656@item NFD
3657Characters are decomposed to their canonical forms.
3658
3659@item NFKD
3660Characters are decomposed to their compatibility forms.
3661
3662@item NFC
3663Characters are decomposed to their canonical forms, then composed.
3664
3665@item NFKC
3666Characters are decomposed to their compatibility forms, then composed.
3667
3668@end table
3669
3670The functions below put their arguments into one of the forms described
3671above.
3672
3673@deffn {Scheme Procedure} string-normalize-nfd s
3674@deffnx {C Function} scm_string_normalize_nfd (s)
3675Return the @code{NFD} normalized form of @var{s}.
3676@end deffn
3677
3678@deffn {Scheme Procedure} string-normalize-nfkd s
3679@deffnx {C Function} scm_string_normalize_nfkd (s)
3680Return the @code{NFKD} normalized form of @var{s}.
3681@end deffn
3682
3683@deffn {Scheme Procedure} string-normalize-nfc s
3684@deffnx {C Function} scm_string_normalize_nfc (s)
3685Return the @code{NFC} normalized form of @var{s}.
3686@end deffn
3687
3688@deffn {Scheme Procedure} string-normalize-nfkc s
3689@deffnx {C Function} scm_string_normalize_nfkc (s)
3690Return the @code{NFKC} normalized form of @var{s}.
3691@end deffn
3692
07d83abe
MV
3693@node String Searching
3694@subsubsection String Searching
3695
5676b4fa
MV
3696@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3697@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3698Search through the string @var{s} from left to right, returning
be3eb25c 3699the index of the first occurrence of a character which
07d83abe 3700
5676b4fa
MV
3701@itemize @bullet
3702@item
3703equals @var{char_pred}, if it is character,
07d83abe 3704
5676b4fa 3705@item
be3eb25c 3706satisfies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3707
5676b4fa
MV
3708@item
3709is in the set @var{char_pred}, if it is a character set.
3710@end itemize
bf7c2e96
LC
3711
3712Return @code{#f} if no match is found.
5676b4fa 3713@end deffn
07d83abe 3714
5676b4fa
MV
3715@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3716@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3717Search through the string @var{s} from right to left, returning
be3eb25c 3718the index of the last occurrence of a character which
5676b4fa
MV
3719
3720@itemize @bullet
3721@item
3722equals @var{char_pred}, if it is character,
3723
3724@item
be3eb25c 3725satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3726
3727@item
3728is in the set if @var{char_pred} is a character set.
3729@end itemize
bf7c2e96
LC
3730
3731Return @code{#f} if no match is found.
07d83abe
MV
3732@end deffn
3733
5676b4fa
MV
3734@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3735@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3736Return the length of the longest common prefix of the two
3737strings.
3738@end deffn
07d83abe 3739
5676b4fa
MV
3740@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3741@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3742Return the length of the longest common prefix of the two
3743strings, ignoring character case.
3744@end deffn
07d83abe 3745
5676b4fa
MV
3746@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3747@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3748Return the length of the longest common suffix of the two
3749strings.
3750@end deffn
07d83abe 3751
5676b4fa
MV
3752@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3753@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3754Return the length of the longest common suffix of the two
3755strings, ignoring character case.
3756@end deffn
3757
3758@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3759@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3760Is @var{s1} a prefix of @var{s2}?
3761@end deffn
3762
3763@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3764@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3765Is @var{s1} a prefix of @var{s2}, ignoring character case?
3766@end deffn
3767
3768@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3769@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3770Is @var{s1} a suffix of @var{s2}?
3771@end deffn
3772
3773@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3774@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3775Is @var{s1} a suffix of @var{s2}, ignoring character case?
3776@end deffn
3777
3778@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3779@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3780Search through the string @var{s} from right to left, returning
be3eb25c 3781the index of the last occurrence of a character which
5676b4fa
MV
3782
3783@itemize @bullet
3784@item
3785equals @var{char_pred}, if it is character,
3786
3787@item
be3eb25c 3788satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3789
3790@item
3791is in the set if @var{char_pred} is a character set.
3792@end itemize
bf7c2e96
LC
3793
3794Return @code{#f} if no match is found.
5676b4fa
MV
3795@end deffn
3796
3797@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3798@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3799Search through the string @var{s} from left to right, returning
be3eb25c 3800the index of the first occurrence of a character which
5676b4fa
MV
3801
3802@itemize @bullet
3803@item
3804does not equal @var{char_pred}, if it is character,
3805
3806@item
be3eb25c 3807does not satisfy the predicate @var{char_pred}, if it is a
5676b4fa
MV
3808procedure,
3809
3810@item
3811is not in the set if @var{char_pred} is a character set.
3812@end itemize
3813@end deffn
3814
3815@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3816@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3817Search through the string @var{s} from right to left, returning
be3eb25c 3818the index of the last occurrence of a character which
5676b4fa
MV
3819
3820@itemize @bullet
3821@item
3822does not equal @var{char_pred}, if it is character,
3823
3824@item
3825does not satisfy the predicate @var{char_pred}, if it is a
3826procedure,
3827
3828@item
3829is not in the set if @var{char_pred} is a character set.
3830@end itemize
3831@end deffn
3832
3833@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3834@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3835Return the count of the number of characters in the string
3836@var{s} which
3837
3838@itemize @bullet
3839@item
3840equals @var{char_pred}, if it is character,
3841
3842@item
be3eb25c 3843satisfies the predicate @var{char_pred}, if it is a procedure.
5676b4fa
MV
3844
3845@item
3846is in the set @var{char_pred}, if it is a character set.
3847@end itemize
3848@end deffn
3849
3850@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3851@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3852Does string @var{s1} contain string @var{s2}? Return the index
3853in @var{s1} where @var{s2} occurs as a substring, or false.
3854The optional start/end indices restrict the operation to the
3855indicated substrings.
3856@end deffn
3857
3858@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3859@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3860Does string @var{s1} contain string @var{s2}? Return the index
3861in @var{s1} where @var{s2} occurs as a substring, or false.
3862The optional start/end indices restrict the operation to the
3863indicated substrings. Character comparison is done
3864case-insensitively.
07d83abe
MV
3865@end deffn
3866
3867@node Alphabetic Case Mapping
3868@subsubsection Alphabetic Case Mapping
3869
3870These are procedures for mapping strings to their upper- or lower-case
3871equivalents, respectively, or for capitalizing strings.
3872
67af975c
MG
3873They use the basic case mapping rules for Unicode characters. No
3874special language or context rules are considered. The resulting strings
3875are guaranteed to be the same length as the input strings.
3876
3877@xref{Character Case Mapping, the @code{(ice-9
3878i18n)} module}, for locale-dependent case conversions.
3879
5676b4fa
MV
3880@deffn {Scheme Procedure} string-upcase str [start [end]]
3881@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3882@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3883Upcase every character in @code{str}.
07d83abe
MV
3884@end deffn
3885
5676b4fa
MV
3886@deffn {Scheme Procedure} string-upcase! str [start [end]]
3887@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3888@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3889Destructively upcase every character in @code{str}.
3890
07d83abe 3891@lisp
5676b4fa
MV
3892(string-upcase! y)
3893@result{} "ARRDEFG"
3894y
3895@result{} "ARRDEFG"
07d83abe
MV
3896@end lisp
3897@end deffn
3898
5676b4fa
MV
3899@deffn {Scheme Procedure} string-downcase str [start [end]]
3900@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3901@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3902Downcase every character in @var{str}.
07d83abe
MV
3903@end deffn
3904
5676b4fa
MV
3905@deffn {Scheme Procedure} string-downcase! str [start [end]]
3906@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3907@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3908Destructively downcase every character in @var{str}.
3909
07d83abe 3910@lisp
5676b4fa
MV
3911y
3912@result{} "ARRDEFG"
3913(string-downcase! y)
3914@result{} "arrdefg"
3915y
3916@result{} "arrdefg"
07d83abe
MV
3917@end lisp
3918@end deffn
3919
3920@deffn {Scheme Procedure} string-capitalize str
3921@deffnx {C Function} scm_string_capitalize (str)
3922Return a freshly allocated string with the characters in
3923@var{str}, where the first character of every word is
3924capitalized.
3925@end deffn
3926
3927@deffn {Scheme Procedure} string-capitalize! str
3928@deffnx {C Function} scm_string_capitalize_x (str)
3929Upcase the first character of every word in @var{str}
3930destructively and return @var{str}.
3931
3932@lisp
3933y @result{} "hello world"
3934(string-capitalize! y) @result{} "Hello World"
3935y @result{} "Hello World"
3936@end lisp
3937@end deffn
3938
5676b4fa
MV
3939@deffn {Scheme Procedure} string-titlecase str [start [end]]
3940@deffnx {C Function} scm_string_titlecase (str, start, end)
3941Titlecase every first character in a word in @var{str}.
3942@end deffn
07d83abe 3943
5676b4fa
MV
3944@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3945@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3946Destructively titlecase every first character in a word in
3947@var{str}.
3948@end deffn
3949
3950@node Reversing and Appending Strings
3951@subsubsection Reversing and Appending Strings
07d83abe 3952
5676b4fa
MV
3953@deffn {Scheme Procedure} string-reverse str [start [end]]
3954@deffnx {C Function} scm_string_reverse (str, start, end)
3955Reverse the string @var{str}. The optional arguments
3956@var{start} and @var{end} delimit the region of @var{str} to
3957operate on.
3958@end deffn
3959
3960@deffn {Scheme Procedure} string-reverse! str [start [end]]
3961@deffnx {C Function} scm_string_reverse_x (str, start, end)
3962Reverse the string @var{str} in-place. The optional arguments
3963@var{start} and @var{end} delimit the region of @var{str} to
3964operate on. The return value is unspecified.
3965@end deffn
07d83abe
MV
3966
3967@rnindex string-append
df0a1002 3968@deffn {Scheme Procedure} string-append arg @dots{}
07d83abe
MV
3969@deffnx {C Function} scm_string_append (args)
3970Return a newly allocated string whose characters form the
df0a1002 3971concatenation of the given strings, @var{arg} @enddots{}.
07d83abe
MV
3972
3973@example
3974(let ((h "hello "))
3975 (string-append h "world"))
3976@result{} "hello world"
3977@end example
3978@end deffn
3979
df0a1002
BT
3980@deffn {Scheme Procedure} string-append/shared arg @dots{}
3981@deffnx {C Function} scm_string_append_shared (args)
5676b4fa
MV
3982Like @code{string-append}, but the result may share memory
3983with the argument strings.
3984@end deffn
3985
3986@deffn {Scheme Procedure} string-concatenate ls
3987@deffnx {C Function} scm_string_concatenate (ls)
df0a1002
BT
3988Append the elements (which must be strings) of @var{ls} together into a
3989single string. Guaranteed to return a freshly allocated string.
5676b4fa
MV
3990@end deffn
3991
3992@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3993@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3994Without optional arguments, this procedure is equivalent to
3995
aba0dff5 3996@lisp
5676b4fa 3997(string-concatenate (reverse ls))
aba0dff5 3998@end lisp
5676b4fa
MV
3999
4000If the optional argument @var{final_string} is specified, it is
4001consed onto the beginning to @var{ls} before performing the
4002list-reverse and string-concatenate operations. If @var{end}
4003is given, only the characters of @var{final_string} up to index
4004@var{end} are used.
4005
4006Guaranteed to return a freshly allocated string.
4007@end deffn
4008
4009@deffn {Scheme Procedure} string-concatenate/shared ls
4010@deffnx {C Function} scm_string_concatenate_shared (ls)
4011Like @code{string-concatenate}, but the result may share memory
4012with the strings in the list @var{ls}.
4013@end deffn
4014
4015@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
4016@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
4017Like @code{string-concatenate-reverse}, but the result may
72b3aa56 4018share memory with the strings in the @var{ls} arguments.
5676b4fa
MV
4019@end deffn
4020
4021@node Mapping Folding and Unfolding
4022@subsubsection Mapping, Folding, and Unfolding
4023
4024@deffn {Scheme Procedure} string-map proc s [start [end]]
4025@deffnx {C Function} scm_string_map (proc, s, start, end)
4026@var{proc} is a char->char procedure, it is mapped over
4027@var{s}. The order in which the procedure is applied to the
4028string elements is not specified.
4029@end deffn
4030
4031@deffn {Scheme Procedure} string-map! proc s [start [end]]
4032@deffnx {C Function} scm_string_map_x (proc, s, start, end)
4033@var{proc} is a char->char procedure, it is mapped over
4034@var{s}. The order in which the procedure is applied to the
4035string elements is not specified. The string @var{s} is
4036modified in-place, the return value is not specified.
4037@end deffn
4038
4039@deffn {Scheme Procedure} string-for-each proc s [start [end]]
4040@deffnx {C Function} scm_string_for_each (proc, s, start, end)
4041@var{proc} is mapped over @var{s} in left-to-right order. The
4042return value is not specified.
4043@end deffn
4044
4045@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
4046@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
4047Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
4048right.
4049
4050For example, to change characters to alternately upper and lower case,
4051
4052@example
4053(define str (string-copy "studly"))
45867c2a
NJ
4054(string-for-each-index
4055 (lambda (i)
4056 (string-set! str i
4057 ((if (even? i) char-upcase char-downcase)
4058 (string-ref str i))))
4059 str)
2a7820f2
KR
4060str @result{} "StUdLy"
4061@end example
5676b4fa
MV
4062@end deffn
4063
4064@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4065@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4066Fold @var{kons} over the characters of @var{s}, with @var{knil}
4067as the terminating element, from left to right. @var{kons}
4068must expect two arguments: The actual character and the last
4069result of @var{kons}' application.
4070@end deffn
4071
4072@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4073@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4074Fold @var{kons} over the characters of @var{s}, with @var{knil}
4075as the terminating element, from right to left. @var{kons}
4076must expect two arguments: The actual character and the last
4077result of @var{kons}' application.
4078@end deffn
4079
4080@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4081@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4082@itemize @bullet
4083@item @var{g} is used to generate a series of @emph{seed}
4084values from the initial @var{seed}: @var{seed}, (@var{g}
4085@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4086@dots{}
4087@item @var{p} tells us when to stop -- when it returns true
4088when applied to one of these seed values.
4089@item @var{f} maps each seed value to the corresponding
4090character in the result string. These chars are assembled
4091into the string in a left-to-right order.
4092@item @var{base} is the optional initial/leftmost portion
4093of the constructed string; it default to the empty
4094string.
4095@item @var{make_final} is applied to the terminal seed
4096value (on which @var{p} returns true) to produce
4097the final/rightmost portion of the constructed string.
9a18d8d4 4098The default is nothing extra.
5676b4fa
MV
4099@end itemize
4100@end deffn
4101
4102@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4103@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4104@itemize @bullet
4105@item @var{g} is used to generate a series of @emph{seed}
4106values from the initial @var{seed}: @var{seed}, (@var{g}
4107@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4108@dots{}
4109@item @var{p} tells us when to stop -- when it returns true
4110when applied to one of these seed values.
4111@item @var{f} maps each seed value to the corresponding
4112character in the result string. These chars are assembled
4113into the string in a right-to-left order.
4114@item @var{base} is the optional initial/rightmost portion
4115of the constructed string; it default to the empty
4116string.
4117@item @var{make_final} is applied to the terminal seed
4118value (on which @var{p} returns true) to produce
4119the final/leftmost portion of the constructed string.
4120It defaults to @code{(lambda (x) )}.
4121@end itemize
4122@end deffn
4123
4124@node Miscellaneous String Operations
4125@subsubsection Miscellaneous String Operations
4126
4127@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4128@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4129This is the @emph{extended substring} procedure that implements
4130replicated copying of a substring of some string.
4131
4132@var{s} is a string, @var{start} and @var{end} are optional
4133arguments that demarcate a substring of @var{s}, defaulting to
41340 and the length of @var{s}. Replicate this substring up and
4135down index space, in both the positive and negative directions.
4136@code{xsubstring} returns the substring of this string
4137beginning at index @var{from}, and ending at @var{to}, which
4138defaults to @var{from} + (@var{end} - @var{start}).
4139@end deffn
4140
4141@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4142@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4143Exactly the same as @code{xsubstring}, but the extracted text
4144is written into the string @var{target} starting at index
4145@var{tstart}. The operation is not defined if @code{(eq?
4146@var{target} @var{s})} or these arguments share storage -- you
4147cannot copy a string on top of itself.
4148@end deffn
4149
4150@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4151@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4152Return the string @var{s1}, but with the characters
4153@var{start1} @dots{} @var{end1} replaced by the characters
4154@var{start2} @dots{} @var{end2} from @var{s2}.
4155@end deffn
4156
4157@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4158@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4159Split the string @var{s} into a list of substrings, where each
4160substring is a maximal non-empty contiguous sequence of
4161characters from the character set @var{token_set}, which
4162defaults to @code{char-set:graphic}.
4163If @var{start} or @var{end} indices are provided, they restrict
4164@code{string-tokenize} to operating on the indicated substring
4165of @var{s}.
4166@end deffn
4167
9fe717e2
AW
4168@deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4169@deffnx {C Function} scm_string_filter (char_pred, s, start, end)
08de3e24 4170Filter the string @var{s}, retaining only those characters which
a88e2a96 4171satisfy @var{char_pred}.
08de3e24
KR
4172
4173If @var{char_pred} is a procedure, it is applied to each character as
4174a predicate, if it is a character, it is tested for equality and if it
4175is a character set, it is tested for membership.
5676b4fa
MV
4176@end deffn
4177
9fe717e2
AW
4178@deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4179@deffnx {C Function} scm_string_delete (char_pred, s, start, end)
a88e2a96 4180Delete characters satisfying @var{char_pred} from @var{s}.
08de3e24
KR
4181
4182If @var{char_pred} is a procedure, it is applied to each character as
4183a predicate, if it is a character, it is tested for equality and if it
4184is a character set, it is tested for membership.
5676b4fa
MV
4185@end deffn
4186
f05bb849
AW
4187@node Representing Strings as Bytes
4188@subsubsection Representing Strings as Bytes
4189
4190Out in the cold world outside of Guile, not all strings are treated in
4191the same way. Out there there are only bytes, and there are many ways
4192of representing a strings (sequences of characters) as binary data
4193(sequences of bytes).
4194
4195As a user, usually you don't have to think about this very much. When
4196you type on your keyboard, your system encodes your keystrokes as bytes
4197according to the locale that you have configured on your computer.
4198Guile uses the locale to decode those bytes back into characters --
4199hopefully the same characters that you typed in.
4200
4201All is not so clear when dealing with a system with multiple users, such
4202as a web server. Your web server might get a request from one user for
4203data encoded in the ISO-8859-1 character set, and then another request
4204from a different user for UTF-8 data.
4205
4206@cindex iconv
4207@cindex character encoding
4208Guile provides an @dfn{iconv} module for converting between strings and
4209sequences of bytes. @xref{Bytevectors}, for more on how Guile
4210represents raw byte sequences. This module gets its name from the
4211common @sc{unix} command of the same name.
4212
5ed4ea90
AW
4213Note that often it is sufficient to just read and write strings from
4214ports instead of using these functions. To do this, specify the port
4215encoding using @code{set-port-encoding!}. @xref{Ports}, for more on
4216ports and character encodings.
4217
f05bb849
AW
4218Unlike the rest of the procedures in this section, you have to load the
4219@code{iconv} module before having access to these procedures:
4220
4221@example
4222(use-modules (ice-9 iconv))
4223@end example
4224
36929486 4225@deffn {Scheme Procedure} string->bytevector string encoding [conversion-strategy]
f05bb849
AW
4226Encode @var{string} as a sequence of bytes.
4227
4228The string will be encoded in the character set specified by the
4229@var{encoding} string. If the string has characters that cannot be
4230represented in the encoding, by default this procedure raises an
5ed4ea90
AW
4231@code{encoding-error}. Pass a @var{conversion-strategy} argument to
4232specify other behaviors.
f05bb849
AW
4233
4234The return value is a bytevector. @xref{Bytevectors}, for more on
4235bytevectors. @xref{Ports}, for more on character encodings and
4236conversion strategies.
4237@end deffn
4238
36929486 4239@deffn {Scheme Procedure} bytevector->string bytevector encoding [conversion-strategy]
f05bb849
AW
4240Decode @var{bytevector} into a string.
4241
4242The bytes will be decoded from the character set by the @var{encoding}
4243string. If the bytes do not form a valid encoding, by default this
5ed4ea90
AW
4244procedure raises an @code{decoding-error}. As with
4245@code{string->bytevector}, pass the optional @var{conversion-strategy}
4246argument to modify this behavior. @xref{Ports}, for more on character
4247encodings and conversion strategies.
f05bb849
AW
4248@end deffn
4249
36929486 4250@deffn {Scheme Procedure} call-with-output-encoded-string encoding proc [conversion-strategy]
f05bb849
AW
4251Like @code{call-with-output-string}, but instead of returning a string,
4252returns a encoding of the string according to @var{encoding}, as a
4253bytevector. This procedure can be more efficient than collecting a
4254string and then converting it via @code{string->bytevector}.
4255@end deffn
4256
91210d62
MV
4257@node Conversion to/from C
4258@subsubsection Conversion to/from C
4259
4260When creating a Scheme string from a C string or when converting a
4261Scheme string to a C string, the concept of character encoding becomes
4262important.
4263
4264In C, a string is just a sequence of bytes, and the character encoding
4265describes the relation between these bytes and the actual characters
f05bb849
AW
4266that make up the string. For Scheme strings, character encoding is not
4267an issue (most of the time), since in Scheme you usually treat strings
4268as character sequences, not byte sequences.
91210d62 4269
67af975c
MG
4270Converting to C and converting from C each have their own challenges.
4271
4272When converting from C to Scheme, it is important that the sequence of
4273bytes in the C string be valid with respect to its encoding. ASCII
4274strings, for example, can't have any bytes greater than 127. An ASCII
4275byte greater than 127 is considered @emph{ill-formed} and cannot be
4276converted into a Scheme character.
4277
4278Problems can occur in the reverse operation as well. Not all character
4279encodings can hold all possible Scheme characters. Some encodings, like
4280ASCII for example, can only describe a small subset of all possible
4281characters. So, when converting to C, one must first decide what to do
4282with Scheme characters that can't be represented in the C string.
91210d62 4283
c88453e8
MV
4284Converting a Scheme string to a C string will often allocate fresh
4285memory to hold the result. You must take care that this memory is
4286properly freed eventually. In many cases, this can be achieved by
661ae7ab
MV
4287using @code{scm_dynwind_free} inside an appropriate dynwind context,
4288@xref{Dynamic Wind}.
91210d62
MV
4289
4290@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4291@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
67af975c 4292Creates a new Scheme string that has the same contents as @var{str} when
95f5e303 4293interpreted in the character encoding of the current locale.
91210d62
MV
4294
4295For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4296
4297For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4298@var{str} in bytes, and @var{str} does not need to be null-terminated.
4299If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4300null-terminated and the real length will be found with @code{strlen}.
67af975c
MG
4301
4302If the C string is ill-formed, an error will be raised.
ce3ce21c
MW
4303
4304Note that these functions should @emph{not} be used to convert C string
4305constants, because there is no guarantee that the current locale will
a71e79c3
MW
4306match that of the execution character set, used for string and character
4307constants. Most modern C compilers use UTF-8 by default, so to convert
4308C string constants we recommend @code{scm_from_utf8_string}.
91210d62
MV
4309@end deftypefn
4310
4311@deftypefn {C Function} SCM scm_take_locale_string (char *str)
4312@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4313Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4314respectively, but also frees @var{str} with @code{free} eventually.
4315Thus, you can use this function when you would free @var{str} anyway
4316immediately after creating the Scheme string. In certain cases, Guile
4317can then use @var{str} directly as its internal representation.
4318@end deftypefn
4319
4846ae2c
KR
4320@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4321@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
95f5e303
AW
4322Returns a C string with the same contents as @var{str} in the character
4323encoding of the current locale. The C string must be freed with
4324@code{free} eventually, maybe by using @code{scm_dynwind_free},
67af975c 4325@xref{Dynamic Wind}.
91210d62
MV
4326
4327For @code{scm_to_locale_string}, the returned string is
4328null-terminated and an error is signalled when @var{str} contains
4329@code{#\nul} characters.
4330
4331For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4332@var{str} might contain @code{#\nul} characters and the length of the
4333returned string in bytes is stored in @code{*@var{lenp}}. The
4334returned string will not be null-terminated in this case. If
4335@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4336@code{scm_to_locale_string}.
67af975c 4337
95f5e303
AW
4338If a character in @var{str} cannot be represented in the character
4339encoding of the current locale, the default port conversion strategy is
4340used. @xref{Ports}, for more on conversion strategies.
4341
4342If the conversion strategy is @code{error}, an error will be raised. If
4343it is @code{substitute}, a replacement character, such as a question
4344mark, will be inserted in its place. If it is @code{escape}, a hex
4345escape will be inserted in its place.
91210d62
MV
4346@end deftypefn
4347
4348@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4349Puts @var{str} as a C string in the current locale encoding into the
4350memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4351@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4352more than that. No terminating @code{'\0'} will be stored.
4353
4354The return value of @code{scm_to_locale_stringbuf} is the number of
4355bytes that are needed for all of @var{str}, regardless of whether
4356@var{buf} was large enough to hold them. Thus, when the return value
4357is larger than @var{max_len}, only @var{max_len} bytes have been
4358stored and you probably need to try again with a larger buffer.
4359@end deftypefn
cf313a94
MG
4360
4361For most situations, string conversion should occur using the current
4362locale, such as with the functions above. But there may be cases where
4363one wants to convert strings from a character encoding other than the
4364locale's character encoding. For these cases, the lower-level functions
4365@code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4366functions should seldom be necessary if one is properly using locales.
4367
4368@deftp {C Type} scm_t_string_failed_conversion_handler
4369This is an enumerated type that can take one of three values:
4370@code{SCM_FAILED_CONVERSION_ERROR},
4371@code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4372@code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4373a strategy for handling characters that cannot be converted to or from a
4374given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4375that a conversion should throw an error if some characters cannot be
4376converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4377conversion should replace unconvertable characters with the question
4378mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4379requests that a conversion should replace an unconvertable character
4380with an escape sequence.
4381
4382While all three strategies apply when converting Scheme strings to C,
4383only @code{SCM_FAILED_CONVERSION_ERROR} and
4384@code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4385strings to Scheme.
4386@end deftp
4387
4388@deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4389This function returns a newly allocated C string from the Guile string
68a78738
MW
4390@var{str}. The length of the returned string in bytes will be returned in
4391@var{lenp}. The character encoding of the C string is passed as the ASCII,
cf313a94
MG
4392null-terminated C string @var{encoding}. The @var{handler} parameter
4393gives a strategy for dealing with characters that cannot be converted
4394into @var{encoding}.
4395
68a78738 4396If @var{lenp} is @code{NULL}, this function will return a null-terminated C
cf313a94
MG
4397string. It will throw an error if the string contains a null
4398character.
f05bb849 4399
5ed4ea90 4400The Scheme interface to this function is @code{string->bytevector}, from the
f05bb849 4401@code{ice-9 iconv} module. @xref{Representing Strings as Bytes}.
cf313a94
MG
4402@end deftypefn
4403
4404@deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4405This function returns a scheme string from the C string @var{str}. The
c3d8450c 4406length in bytes of the C string is input as @var{len}. The encoding of the C
cf313a94
MG
4407string is passed as the ASCII, null-terminated C string @code{encoding}.
4408The @var{handler} parameters suggests a strategy for dealing with
4409unconvertable characters.
f05bb849 4410
5ed4ea90 4411The Scheme interface to this function is @code{bytevector->string}.
f05bb849 4412@xref{Representing Strings as Bytes}.
cf313a94
MG
4413@end deftypefn
4414
ce3ce21c
MW
4415The following conversion functions are provided as a convenience for the
4416most commonly used encodings.
4417
4418@deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4419@deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4420@deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4421Return a scheme string from the null-terminated C string @var{str},
4422which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4423be used to convert hard-coded C string constants into Scheme strings.
4424@end deftypefn
cf313a94
MG
4425
4426@deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
647dc1ac
LC
4427@deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4428@deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4429Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4430UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4431of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4432@code{scm_from_utf8_stringn}; it is the number of elements (code points)
4433in @var{str} in the case of @code{scm_from_utf32_stringn}.
cf313a94
MG
4434@end deftypefn
4435
647dc1ac
LC
4436@deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4437@deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4438@deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4439Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4440from Scheme string @var{str}. An error is thrown when @var{str}
68a78738 4441cannot be converted to the specified encoding. If @var{lenp} is
cf313a94
MG
4442@code{NULL}, the returned C string will be null terminated, and an error
4443will be thrown if the C string would otherwise contain null
68a78738
MW
4444characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
4445and the length of the returned string is returned in @var{lenp}. The length
4446returned is the number of bytes for @code{scm_to_latin1_stringn} and
4447@code{scm_to_utf8_stringn}; it is the number of elements (code points)
4448for @code{scm_to_utf32_stringn}.
cf313a94 4449@end deftypefn
07d83abe 4450
08467a7e
AW
4451It is not often the case, but sometimes when you are dealing with the
4452implementation details of a port, you need to encode and decode strings
4453according to the encoding and conversion strategy of the port. There
4454are some convenience functions for that purpose as well.
4455
4456@deftypefn {C Function} SCM scm_from_port_string (const char *str, SCM port)
4457@deftypefnx {C Function} SCM scm_from_port_stringn (const char *str, size_t len, SCM port)
4458@deftypefnx {C Function} char* scm_to_port_string (SCM str, SCM port)
4459@deftypefnx {C Function} char* scm_to_port_stringn (SCM str, size_t *lenp, SCM port)
4460Like @code{scm_from_stringn} and friends, except they take their
4461encoding and conversion strategy from a given port object.
4462@end deftypefn
4463
5b6b22e8
MG
4464@node String Internals
4465@subsubsection String Internals
4466
4467Guile stores each string in memory as a contiguous array of Unicode code
4468points along with an associated set of attributes. If all of the code
4469points of a string have an integer range between 0 and 255 inclusive,
4470the code point array is stored as one byte per code point: it is stored
4471as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4472string has an integer value greater that 255, the code point array is
4473stored as four bytes per code point: it is stored as a UTF-32 string.
4474
4475Conversion between the one-byte-per-code-point and
4476four-bytes-per-code-point representations happens automatically as
4477necessary.
4478
4479No API is provided to set the internal representation of strings;
4480however, there are pair of procedures available to query it. These are
4481debugging procedures. Using them in production code is discouraged,
4482since the details of Guile's internal representation of strings may
4483change from release to release.
4484
4485@deffn {Scheme Procedure} string-bytes-per-char str
4486@deffnx {C Function} scm_string_bytes_per_char (str)
4487Return the number of bytes used to encode a Unicode code point in string
4488@var{str}. The result is one or four.
4489@end deffn
4490
4491@deffn {Scheme Procedure} %string-dump str
4492@deffnx {C Function} scm_sys_string_dump (str)
4493Returns an association list containing debugging information for
4494@var{str}. The association list has the following entries.
4495@table @code
4496
4497@item string
4498The string itself.
4499
4500@item start
4501The start index of the string into its stringbuf
4502
4503@item length
4504The length of the string
4505
4506@item shared
4507If this string is a substring, it returns its
4508parent string. Otherwise, it returns @code{#f}
4509
4510@item read-only
4511@code{#t} if the string is read-only
4512
4513@item stringbuf-chars
4514A new string containing this string's stringbuf's characters
4515
4516@item stringbuf-length
4517The number of characters in this stringbuf
4518
4519@item stringbuf-shared
4520@code{#t} if this stringbuf is shared
4521
4522@item stringbuf-wide
4523@code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4524or @code{#f} if they are stored in an 8-bit buffer
4525@end table
4526@end deffn
4527
4528
b242715b
LC
4529@node Bytevectors
4530@subsection Bytevectors
4531
4532@cindex bytevector
4533@cindex R6RS
4534
07d22c02 4535A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
b242715b 4536module provides the programming interface specified by the
5fa2deb3 4537@uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
b242715b
LC
4538Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4539interpret their contents in a number of ways: bytevector contents can be
4540accessed as signed or unsigned integer of various sizes and endianness,
4541as IEEE-754 floating point numbers, or as strings. It is a useful tool
4542to encode and decode binary data.
4543
4544The R6RS (Section 4.3.4) specifies an external representation for
4545bytevectors, whereby the octets (integers in the range 0--255) contained
4546in the bytevector are represented as a list prefixed by @code{#vu8}:
4547
4548@lisp
4549#vu8(1 53 204)
4550@end lisp
4551
4552denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4553string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4554they do not need to be quoted:
4555
4556@lisp
4557#vu8(1 53 204)
4558@result{} #vu8(1 53 204)
4559@end lisp
4560
4561Bytevectors can be used with the binary input/output primitives of the
4562R6RS (@pxref{R6RS I/O Ports}).
4563
4564@menu
4565* Bytevector Endianness:: Dealing with byte order.
4566* Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4567* Bytevectors as Integers:: Interpreting bytes as integers.
4568* Bytevectors and Integer Lists:: Converting to/from an integer list.
4569* Bytevectors as Floats:: Interpreting bytes as real numbers.
4570* Bytevectors as Strings:: Interpreting bytes as Unicode strings.
118ff892 4571* Bytevectors as Arrays:: Guile extension to the bytevector API.
27219b32 4572* Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
b242715b
LC
4573@end menu
4574
4575@node Bytevector Endianness
4576@subsubsection Endianness
4577
4578@cindex endianness
4579@cindex byte order
4580@cindex word order
4581
4582Some of the following procedures take an @var{endianness} parameter.
5fa2deb3
AW
4583The @dfn{endianness} is defined as the order of bytes in multi-byte
4584numbers: numbers encoded in @dfn{big endian} have their most
4585significant bytes written first, whereas numbers encoded in
4586@dfn{little endian} have their least significant bytes
4587first@footnote{Big-endian and little-endian are the most common
4588``endiannesses'', but others do exist. For instance, the GNU MP
4589library allows @dfn{word order} to be specified independently of
4590@dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4591Multiple Precision Arithmetic Library Manual}).}.
4592
4593Little-endian is the native endianness of the IA32 architecture and
4594its derivatives, while big-endian is native to SPARC and PowerPC,
4595among others. The @code{native-endianness} procedure returns the
4596native endianness of the machine it runs on.
b242715b
LC
4597
4598@deffn {Scheme Procedure} native-endianness
4599@deffnx {C Function} scm_native_endianness ()
4600Return a value denoting the native endianness of the host machine.
4601@end deffn
4602
4603@deffn {Scheme Macro} endianness symbol
4604Return an object denoting the endianness specified by @var{symbol}. If
5fa2deb3
AW
4605@var{symbol} is neither @code{big} nor @code{little} then an error is
4606raised at expand-time.
b242715b
LC
4607@end deffn
4608
4609@defvr {C Variable} scm_endianness_big
4610@defvrx {C Variable} scm_endianness_little
5fa2deb3 4611The objects denoting big- and little-endianness, respectively.
b242715b
LC
4612@end defvr
4613
4614
4615@node Bytevector Manipulation
4616@subsubsection Manipulating Bytevectors
4617
4618Bytevectors can be created, copied, and analyzed with the following
404bb5f8 4619procedures and C functions.
b242715b
LC
4620
4621@deffn {Scheme Procedure} make-bytevector len [fill]
4622@deffnx {C Function} scm_make_bytevector (len, fill)
2d34e924 4623@deffnx {C Function} scm_c_make_bytevector (size_t len)
b242715b 4624Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
d64fc8b0
LC
4625is given, fill it with @var{fill}; @var{fill} must be in the range
4626[-128,255].
b242715b
LC
4627@end deffn
4628
4629@deffn {Scheme Procedure} bytevector? obj
4630@deffnx {C Function} scm_bytevector_p (obj)
4631Return true if @var{obj} is a bytevector.
4632@end deffn
4633
404bb5f8
LC
4634@deftypefn {C Function} int scm_is_bytevector (SCM obj)
4635Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4636@end deftypefn
4637
b242715b
LC
4638@deffn {Scheme Procedure} bytevector-length bv
4639@deffnx {C Function} scm_bytevector_length (bv)
4640Return the length in bytes of bytevector @var{bv}.
4641@end deffn
4642
404bb5f8
LC
4643@deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4644Likewise, return the length in bytes of bytevector @var{bv}.
4645@end deftypefn
4646
b242715b
LC
4647@deffn {Scheme Procedure} bytevector=? bv1 bv2
4648@deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4649Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4650length and contents.
4651@end deffn
4652
4653@deffn {Scheme Procedure} bytevector-fill! bv fill
4654@deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4655Fill bytevector @var{bv} with @var{fill}, a byte.
4656@end deffn
4657
4658@deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4659@deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4660Copy @var{len} bytes from @var{source} into @var{target}, starting
4661reading from @var{source-start} (a positive index within @var{source})
80719649
LC
4662and start writing at @var{target-start}. It is permitted for the
4663@var{source} and @var{target} regions to overlap.
b242715b
LC
4664@end deffn
4665
4666@deffn {Scheme Procedure} bytevector-copy bv
4667@deffnx {C Function} scm_bytevector_copy (bv)
4668Return a newly allocated copy of @var{bv}.
4669@end deffn
4670
404bb5f8
LC
4671@deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4672Return the byte at @var{index} in bytevector @var{bv}.
4673@end deftypefn
4674
4675@deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4676Set the byte at @var{index} in @var{bv} to @var{value}.
4677@end deftypefn
4678
b242715b
LC
4679Low-level C macros are available. They do not perform any
4680type-checking; as such they should be used with care.
4681
4682@deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4683Return the length in bytes of bytevector @var{bv}.
4684@end deftypefn
4685
4686@deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4687Return a pointer to the contents of bytevector @var{bv}.
4688@end deftypefn
4689
4690
4691@node Bytevectors as Integers
4692@subsubsection Interpreting Bytevector Contents as Integers
4693
4694The contents of a bytevector can be interpreted as a sequence of
4695integers of any given size, sign, and endianness.
4696
4697@lisp
4698(let ((bv (make-bytevector 4)))
4699 (bytevector-u8-set! bv 0 #x12)
4700 (bytevector-u8-set! bv 1 #x34)
4701 (bytevector-u8-set! bv 2 #x56)
4702 (bytevector-u8-set! bv 3 #x78)
4703
4704 (map (lambda (number)
4705 (number->string number 16))
4706 (list (bytevector-u8-ref bv 0)
4707 (bytevector-u16-ref bv 0 (endianness big))
4708 (bytevector-u32-ref bv 0 (endianness little)))))
4709
4710@result{} ("12" "1234" "78563412")
4711@end lisp
4712
4713The most generic procedures to interpret bytevector contents as integers
4714are described below.
4715
4716@deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
b242715b 4717@deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4827afeb
NJ
4718Return the @var{size}-byte long unsigned integer at index @var{index} in
4719@var{bv}, decoded according to @var{endianness}.
4720@end deffn
4721
4722@deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
b242715b 4723@deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4827afeb
NJ
4724Return the @var{size}-byte long signed integer at index @var{index} in
4725@var{bv}, decoded according to @var{endianness}.
b242715b
LC
4726@end deffn
4727
4728@deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
b242715b 4729@deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4827afeb
NJ
4730Set the @var{size}-byte long unsigned integer at @var{index} to
4731@var{value}, encoded according to @var{endianness}.
4732@end deffn
4733
4734@deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
b242715b 4735@deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4827afeb
NJ
4736Set the @var{size}-byte long signed integer at @var{index} to
4737@var{value}, encoded according to @var{endianness}.
b242715b
LC
4738@end deffn
4739
4740The following procedures are similar to the ones above, but specialized
4741to a given integer size:
4742
4743@deffn {Scheme Procedure} bytevector-u8-ref bv index
4744@deffnx {Scheme Procedure} bytevector-s8-ref bv index
4745@deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4746@deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4747@deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4748@deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4749@deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4750@deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4751@deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4752@deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4753@deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4754@deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4755@deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4756@deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4757@deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4758@deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4759Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
476016, 32 or 64) from @var{bv} at @var{index}, decoded according to
4761@var{endianness}.
4762@end deffn
4763
4764@deffn {Scheme Procedure} bytevector-u8-set! bv index value
4765@deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4766@deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4767@deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4768@deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4769@deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4770@deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4771@deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4772@deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4773@deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4774@deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4775@deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4776@deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4777@deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4778@deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4779@deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4780Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
47818, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4782@var{endianness}.
4783@end deffn
4784
4785Finally, a variant specialized for the host's endianness is available
4786for each of these functions (with the exception of the @code{u8}
4787accessors, for obvious reasons):
4788
4789@deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4790@deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4791@deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4792@deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4793@deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4794@deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4795@deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4796@deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4797@deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4798@deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4799@deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4800@deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4801Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
480216, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4803host's native endianness.
4804@end deffn
4805
4806@deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4807@deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4808@deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4809@deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4810@deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4811@deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4812@deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4813@deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4814@deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4815@deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4816@deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4817@deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4818Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
48198, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4820host's native endianness.
4821@end deffn
4822
4823
4824@node Bytevectors and Integer Lists
4825@subsubsection Converting Bytevectors to/from Integer Lists
4826
4827Bytevector contents can readily be converted to/from lists of signed or
4828unsigned integers:
4829
4830@lisp
4831(bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4832 (endianness little) 2)
4833@result{} (-1 -1)
4834@end lisp
4835
4836@deffn {Scheme Procedure} bytevector->u8-list bv
4837@deffnx {C Function} scm_bytevector_to_u8_list (bv)
4838Return a newly allocated list of unsigned 8-bit integers from the
4839contents of @var{bv}.
4840@end deffn
4841
4842@deffn {Scheme Procedure} u8-list->bytevector lst
4843@deffnx {C Function} scm_u8_list_to_bytevector (lst)
4844Return a newly allocated bytevector consisting of the unsigned 8-bit
4845integers listed in @var{lst}.
4846@end deffn
4847
4848@deffn {Scheme Procedure} bytevector->uint-list bv endianness size
b242715b 4849@deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4827afeb
NJ
4850Return a list of unsigned integers of @var{size} bytes representing the
4851contents of @var{bv}, decoded according to @var{endianness}.
4852@end deffn
4853
4854@deffn {Scheme Procedure} bytevector->sint-list bv endianness size
b242715b 4855@deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4827afeb
NJ
4856Return a list of signed integers of @var{size} bytes representing the
4857contents of @var{bv}, decoded according to @var{endianness}.
b242715b
LC
4858@end deffn
4859
4860@deffn {Scheme Procedure} uint-list->bytevector lst endianness size
b242715b 4861@deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4827afeb
NJ
4862Return a new bytevector containing the unsigned integers listed in
4863@var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4864@end deffn
4865
4866@deffn {Scheme Procedure} sint-list->bytevector lst endianness size
b242715b 4867@deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4827afeb
NJ
4868Return a new bytevector containing the signed integers listed in
4869@var{lst} and encoded on @var{size} bytes according to @var{endianness}.
b242715b
LC
4870@end deffn
4871
4872@node Bytevectors as Floats
4873@subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4874
4875@cindex IEEE-754 floating point numbers
4876
4877Bytevector contents can also be accessed as IEEE-754 single- or
4878double-precision floating point numbers (respectively 32 and 64-bit
4879long) using the procedures described here.
4880
4881@deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4882@deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4883@deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4884@deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4885Return the IEEE-754 single-precision floating point number from @var{bv}
4886at @var{index} according to @var{endianness}.
4887@end deffn
4888
4889@deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4890@deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4891@deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4892@deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4893Store real number @var{value} in @var{bv} at @var{index} according to
4894@var{endianness}.
4895@end deffn
4896
4897Specialized procedures are also available:
4898
4899@deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4900@deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4901@deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4902@deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4903Return the IEEE-754 single-precision floating point number from @var{bv}
4904at @var{index} according to the host's native endianness.
4905@end deffn
4906
4907@deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4908@deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4909@deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4910@deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4911Store real number @var{value} in @var{bv} at @var{index} according to
4912the host's native endianness.
4913@end deffn
4914
4915
4916@node Bytevectors as Strings
4917@subsubsection Interpreting Bytevector Contents as Unicode Strings
4918
4919@cindex Unicode string encoding
4920
4921Bytevector contents can also be interpreted as Unicode strings encoded
d3b5628c 4922in one of the most commonly available encoding formats.
f05bb849 4923@xref{Representing Strings as Bytes}, for a more generic interface.
b242715b
LC
4924
4925@lisp
4926(utf8->string (u8-list->bytevector '(99 97 102 101)))
4927@result{} "cafe"
4928
4929(string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4930@result{} #vu8(99 97 102 195 169)
4931@end lisp
4932
4933@deffn {Scheme Procedure} string->utf8 str
524aa8ae
LC
4934@deffnx {Scheme Procedure} string->utf16 str [endianness]
4935@deffnx {Scheme Procedure} string->utf32 str [endianness]
b242715b 4936@deffnx {C Function} scm_string_to_utf8 (str)
524aa8ae
LC
4937@deffnx {C Function} scm_string_to_utf16 (str, endianness)
4938@deffnx {C Function} scm_string_to_utf32 (str, endianness)
b242715b 4939Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
524aa8ae
LC
4940UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4941@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4942it defaults to big endian.
b242715b
LC
4943@end deffn
4944
4945@deffn {Scheme Procedure} utf8->string utf
524aa8ae
LC
4946@deffnx {Scheme Procedure} utf16->string utf [endianness]
4947@deffnx {Scheme Procedure} utf32->string utf [endianness]
b242715b 4948@deffnx {C Function} scm_utf8_to_string (utf)
524aa8ae
LC
4949@deffnx {C Function} scm_utf16_to_string (utf, endianness)
4950@deffnx {C Function} scm_utf32_to_string (utf, endianness)
b242715b 4951Return a newly allocated string that contains from the UTF-8-, UTF-16-,
524aa8ae
LC
4952or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4953@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4954it defaults to big endian.
b242715b
LC
4955@end deffn
4956
118ff892
AW
4957@node Bytevectors as Arrays
4958@subsubsection Accessing Bytevectors with the Array API
438974d0
LC
4959
4960As an extension to the R6RS, Guile allows bytevectors to be manipulated
118ff892
AW
4961with the @dfn{array} procedures (@pxref{Arrays}). When using these
4962APIs, bytes are accessed one at a time as 8-bit unsigned integers:
438974d0
LC
4963
4964@example
4965(define bv #vu8(0 1 2 3))
4966
118ff892 4967(array? bv)
438974d0
LC
4968@result{} #t
4969
118ff892
AW
4970(array-rank bv)
4971@result{} 1
4972
4973(array-ref bv 2)
438974d0
LC
4974@result{} 2
4975
118ff892
AW
4976;; Note the different argument order on array-set!.
4977(array-set! bv 77 2)
438974d0
LC
4978(array-ref bv 2)
4979@result{} 77
4980
4981(array-type bv)
4982@result{} vu8
4983@end example
4984
b242715b 4985
27219b32
AW
4986@node Bytevectors as Uniform Vectors
4987@subsubsection Accessing Bytevectors with the SRFI-4 API
4988
4989Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
4990Bytevectors}, for more information.
4991
4992
07d83abe
MV
4993@node Symbols
4994@subsection Symbols
4995@tpindex Symbols
4996
4997Symbols in Scheme are widely used in three ways: as items of discrete
4998data, as lookup keys for alists and hash tables, and to denote variable
4999references.
5000
5001A @dfn{symbol} is similar to a string in that it is defined by a
5002sequence of characters. The sequence of characters is known as the
5003symbol's @dfn{name}. In the usual case --- that is, where the symbol's
5004name doesn't include any characters that could be confused with other
5005elements of Scheme syntax --- a symbol is written in a Scheme program by
5006writing the sequence of characters that make up the name, @emph{without}
5007any quotation marks or other special syntax. For example, the symbol
5008whose name is ``multiply-by-2'' is written, simply:
5009
5010@lisp
5011multiply-by-2
5012@end lisp
5013
5014Notice how this differs from a @emph{string} with contents
5015``multiply-by-2'', which is written with double quotation marks, like
5016this:
5017
5018@lisp
5019"multiply-by-2"
5020@end lisp
5021
5022Looking beyond how they are written, symbols are different from strings
5023in two important respects.
5024
5025The first important difference is uniqueness. If the same-looking
5026string is read twice from two different places in a program, the result
5027is two @emph{different} string objects whose contents just happen to be
5028the same. If, on the other hand, the same-looking symbol is read twice
5029from two different places in a program, the result is the @emph{same}
5030symbol object both times.
5031
5032Given two read symbols, you can use @code{eq?} to test whether they are
5033the same (that is, have the same name). @code{eq?} is the most
5034efficient comparison operator in Scheme, and comparing two symbols like
5035this is as fast as comparing, for example, two numbers. Given two
5036strings, on the other hand, you must use @code{equal?} or
5037@code{string=?}, which are much slower comparison operators, to
5038determine whether the strings have the same contents.
5039
5040@lisp
5041(define sym1 (quote hello))
5042(define sym2 (quote hello))
5043(eq? sym1 sym2) @result{} #t
5044
5045(define str1 "hello")
5046(define str2 "hello")
5047(eq? str1 str2) @result{} #f
5048(equal? str1 str2) @result{} #t
5049@end lisp
5050
5051The second important difference is that symbols, unlike strings, are not
5052self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5053example above: @code{(quote hello)} evaluates to the symbol named
5054"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5055symbol named "hello" and evaluated as a variable reference @dots{} about
5056which more below (@pxref{Symbol Variables}).
5057
5058@menu
5059* Symbol Data:: Symbols as discrete data.
5060* Symbol Keys:: Symbols as lookup keys.
5061* Symbol Variables:: Symbols as denoting variables.
5062* Symbol Primitives:: Operations related to symbols.
5063* Symbol Props:: Function slots and property lists.
5064* Symbol Read Syntax:: Extended read syntax for symbols.
5065* Symbol Uninterned:: Uninterned symbols.
5066@end menu
5067
5068
5069@node Symbol Data
5070@subsubsection Symbols as Discrete Data
5071
5072Numbers and symbols are similar to the extent that they both lend
5073themselves to @code{eq?} comparison. But symbols are more descriptive
5074than numbers, because a symbol's name can be used directly to describe
5075the concept for which that symbol stands.
5076
5077For example, imagine that you need to represent some colours in a
5078computer program. Using numbers, you would have to choose arbitrarily
5079some mapping between numbers and colours, and then take care to use that
5080mapping consistently:
5081
5082@lisp
5083;; 1=red, 2=green, 3=purple
5084
5085(if (eq? (colour-of car) 1)
5086 ...)
5087@end lisp
5088
5089@noindent
5090You can make the mapping more explicit and the code more readable by
5091defining constants:
5092
5093@lisp
5094(define red 1)
5095(define green 2)
5096(define purple 3)
5097
5098(if (eq? (colour-of car) red)
5099 ...)
5100@end lisp
5101
5102@noindent
5103But the simplest and clearest approach is not to use numbers at all, but
5104symbols whose names specify the colours that they refer to:
5105
5106@lisp
5107(if (eq? (colour-of car) 'red)
5108 ...)
5109@end lisp
5110
5111The descriptive advantages of symbols over numbers increase as the set
5112of concepts that you want to describe grows. Suppose that a car object
5113can have other properties as well, such as whether it has or uses:
5114
5115@itemize @bullet
5116@item
5117automatic or manual transmission
5118@item
5119leaded or unleaded fuel
5120@item
5121power steering (or not).
5122@end itemize
5123
5124@noindent
5125Then a car's combined property set could be naturally represented and
5126manipulated as a list of symbols:
5127
5128@lisp
5129(properties-of car1)
5130@result{}
5131(red manual unleaded power-steering)
5132
5133(if (memq 'power-steering (properties-of car1))
5134 (display "Unfit people can drive this car.\n")
5135 (display "You'll need strong arms to drive this car!\n"))
5136@print{}
5137Unfit people can drive this car.
5138@end lisp
5139
5140Remember, the fundamental property of symbols that we are relying on
5141here is that an occurrence of @code{'red} in one part of a program is an
5142@emph{indistinguishable} symbol from an occurrence of @code{'red} in
5143another part of a program; this means that symbols can usefully be
5144compared using @code{eq?}. At the same time, symbols have naturally
5145descriptive names. This combination of efficiency and descriptive power
5146makes them ideal for use as discrete data.
5147
5148
5149@node Symbol Keys
5150@subsubsection Symbols as Lookup Keys
5151
5152Given their efficiency and descriptive power, it is natural to use
5153symbols as the keys in an association list or hash table.
5154
5155To illustrate this, consider a more structured representation of the car
5156properties example from the preceding subsection. Rather than
5157mixing all the properties up together in a flat list, we could use an
5158association list like this:
5159
5160@lisp
5161(define car1-properties '((colour . red)
5162 (transmission . manual)
5163 (fuel . unleaded)
5164 (steering . power-assisted)))
5165@end lisp
5166
5167Notice how this structure is more explicit and extensible than the flat
5168list. For example it makes clear that @code{manual} refers to the
5169transmission rather than, say, the windows or the locking of the car.
5170It also allows further properties to use the same symbols among their
5171possible values without becoming ambiguous:
5172
5173@lisp
5174(define car1-properties '((colour . red)
5175 (transmission . manual)
5176 (fuel . unleaded)
5177 (steering . power-assisted)
5178 (seat-colour . red)
5179 (locking . manual)))
5180@end lisp
5181
5182With a representation like this, it is easy to use the efficient
5183@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5184extract or change individual pieces of information:
5185
5186@lisp
5187(assq-ref car1-properties 'fuel) @result{} unleaded
5188(assq-ref car1-properties 'transmission) @result{} manual
5189
5190(assq-set! car1-properties 'seat-colour 'black)
5191@result{}
5192((colour . red)
5193 (transmission . manual)
5194 (fuel . unleaded)
5195 (steering . power-assisted)
5196 (seat-colour . black)
5197 (locking . manual)))
5198@end lisp
5199
5200Hash tables also have keys, and exactly the same arguments apply to the
5201use of symbols in hash tables as in association lists. The hash value
5202that Guile uses to decide where to add a symbol-keyed entry to a hash
5203table can be obtained by calling the @code{symbol-hash} procedure:
5204
5205@deffn {Scheme Procedure} symbol-hash symbol
5206@deffnx {C Function} scm_symbol_hash (symbol)
5207Return a hash value for @var{symbol}.
5208@end deffn
5209
5210See @ref{Hash Tables} for information about hash tables in general, and
5211for why you might choose to use a hash table rather than an association
5212list.
5213
5214
5215@node Symbol Variables
5216@subsubsection Symbols as Denoting Variables
5217
5218When an unquoted symbol in a Scheme program is evaluated, it is
5219interpreted as a variable reference, and the result of the evaluation is
5220the appropriate variable's value.
5221
5222For example, when the expression @code{(string-length "abcd")} is read
5223and evaluated, the sequence of characters @code{string-length} is read
5224as the symbol whose name is "string-length". This symbol is associated
5225with a variable whose value is the procedure that implements string
5226length calculation. Therefore evaluation of the @code{string-length}
5227symbol results in that procedure.
5228
5229The details of the connection between an unquoted symbol and the
5230variable to which it refers are explained elsewhere. See @ref{Binding
5231Constructs}, for how associations between symbols and variables are
5232created, and @ref{Modules}, for how those associations are affected by
5233Guile's module system.
5234
5235
5236@node Symbol Primitives
5237@subsubsection Operations Related to Symbols
5238
5239Given any Scheme value, you can determine whether it is a symbol using
5240the @code{symbol?} primitive:
5241
5242@rnindex symbol?
5243@deffn {Scheme Procedure} symbol? obj
5244@deffnx {C Function} scm_symbol_p (obj)
5245Return @code{#t} if @var{obj} is a symbol, otherwise return
5246@code{#f}.
5247@end deffn
5248
c9dc8c6c
MV
5249@deftypefn {C Function} int scm_is_symbol (SCM val)
5250Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5251@end deftypefn
5252
07d83abe
MV
5253Once you know that you have a symbol, you can obtain its name as a
5254string by calling @code{symbol->string}. Note that Guile differs by
5255default from R5RS on the details of @code{symbol->string} as regards
5256case-sensitivity:
5257
5258@rnindex symbol->string
5259@deffn {Scheme Procedure} symbol->string s
5260@deffnx {C Function} scm_symbol_to_string (s)
5261Return the name of symbol @var{s} as a string. By default, Guile reads
5262symbols case-sensitively, so the string returned will have the same case
5263variation as the sequence of characters that caused @var{s} to be
5264created.
5265
5266If Guile is set to read symbols case-insensitively (as specified by
5267R5RS), and @var{s} comes into being as part of a literal expression
5268(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5269by a call to the @code{read} or @code{string-ci->symbol} procedures,
5270Guile converts any alphabetic characters in the symbol's name to
5271lower case before creating the symbol object, so the string returned
5272here will be in lower case.
5273
5274If @var{s} was created by @code{string->symbol}, the case of characters
5275in the string returned will be the same as that in the string that was
5276passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5277setting at the time @var{s} was created.
5278
5279It is an error to apply mutation procedures like @code{string-set!} to
5280strings returned by this procedure.
5281@end deffn
5282
5283Most symbols are created by writing them literally in code. However it
5284is also possible to create symbols programmatically using the following
c5fc8f8c
JG
5285procedures:
5286
5287@deffn {Scheme Procedure} symbol char@dots{}
5288@rnindex symbol
5289Return a newly allocated symbol made from the given character arguments.
5290
5291@example
5292(symbol #\x #\y #\z) @result{} xyz
5293@end example
5294@end deffn
5295
5296@deffn {Scheme Procedure} list->symbol lst
5297@rnindex list->symbol
5298Return a newly allocated symbol made from a list of characters.
5299
5300@example
5301(list->symbol '(#\a #\b #\c)) @result{} abc
5302@end example
5303@end deffn
5304
5305@rnindex symbol-append
df0a1002 5306@deffn {Scheme Procedure} symbol-append arg @dots{}
c5fc8f8c 5307Return a newly allocated symbol whose characters form the
df0a1002 5308concatenation of the given symbols, @var{arg} @enddots{}.
c5fc8f8c
JG
5309
5310@example
5311(let ((h 'hello))
5312 (symbol-append h 'world))
5313@result{} helloworld
5314@end example
5315@end deffn
07d83abe
MV
5316
5317@rnindex string->symbol
5318@deffn {Scheme Procedure} string->symbol string
5319@deffnx {C Function} scm_string_to_symbol (string)
5320Return the symbol whose name is @var{string}. This procedure can create
5321symbols with names containing special characters or letters in the
5322non-standard case, but it is usually a bad idea to create such symbols
5323because in some implementations of Scheme they cannot be read as
5324themselves.
5325@end deffn
5326
5327@deffn {Scheme Procedure} string-ci->symbol str
5328@deffnx {C Function} scm_string_ci_to_symbol (str)
5329Return the symbol whose name is @var{str}. If Guile is currently
5330reading symbols case-insensitively, @var{str} is converted to lowercase
5331before the returned symbol is looked up or created.
5332@end deffn
5333
5334The following examples illustrate Guile's detailed behaviour as regards
5335the case-sensitivity of symbols:
5336
5337@lisp
5338(read-enable 'case-insensitive) ; R5RS compliant behaviour
5339
5340(symbol->string 'flying-fish) @result{} "flying-fish"
5341(symbol->string 'Martin) @result{} "martin"
5342(symbol->string
5343 (string->symbol "Malvina")) @result{} "Malvina"
5344
5345(eq? 'mISSISSIppi 'mississippi) @result{} #t
5346(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5347(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5348(eq? 'LolliPop
5349 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5350(string=? "K. Harper, M.D."
5351 (symbol->string
5352 (string->symbol "K. Harper, M.D."))) @result{} #t
5353
5354(read-disable 'case-insensitive) ; Guile default behaviour
5355
5356(symbol->string 'flying-fish) @result{} "flying-fish"
5357(symbol->string 'Martin) @result{} "Martin"
5358(symbol->string
5359 (string->symbol "Malvina")) @result{} "Malvina"
5360
5361(eq? 'mISSISSIppi 'mississippi) @result{} #f
5362(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5363(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5364(eq? 'LolliPop
5365 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5366(string=? "K. Harper, M.D."
5367 (symbol->string
5368 (string->symbol "K. Harper, M.D."))) @result{} #t
5369@end lisp
5370
5371From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
5372from a C string in the current locale encoding.
5373
5374When you want to do more from C, you should convert between symbols
5375and strings using @code{scm_symbol_to_string} and
5376@code{scm_string_to_symbol} and work with the strings.
07d83abe 5377
a71e79c3
MW
5378@deftypefn {C Function} SCM scm_from_latin1_symbol (const char *name)
5379@deftypefnx {C Function} SCM scm_from_utf8_symbol (const char *name)
ce3ce21c
MW
5380Construct and return a Scheme symbol whose name is specified by the
5381null-terminated C string @var{name}. These are appropriate when
5382the C string is hard-coded in the source code.
5f6ffd66 5383@end deftypefn
ce3ce21c 5384
a71e79c3
MW
5385@deftypefn {C Function} SCM scm_from_locale_symbol (const char *name)
5386@deftypefnx {C Function} SCM scm_from_locale_symboln (const char *name, size_t len)
07d83abe 5387Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
5388@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5389terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe 5390specified explicitly by @var{len}.
ce3ce21c
MW
5391
5392Note that these functions should @emph{not} be used when @var{name} is a
5393C string constant, because there is no guarantee that the current locale
a71e79c3
MW
5394will match that of the execution character set, used for string and
5395character constants. Most modern C compilers use UTF-8 by default, so
5396in such cases we recommend @code{scm_from_utf8_symbol}.
5f6ffd66 5397@end deftypefn
07d83abe 5398
fd0a5bbc
HWN
5399@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5400@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5401Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5402respectively, but also frees @var{str} with @code{free} eventually.
5403Thus, you can use this function when you would free @var{str} anyway
5404immediately after creating the Scheme string. In certain cases, Guile
5405can then use @var{str} directly as its internal representation.
5406@end deftypefn
5407
071bb6a8
LC
5408The size of a symbol can also be obtained from C:
5409
5410@deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5411Return the number of characters in @var{sym}.
5412@end deftypefn
fd0a5bbc 5413
07d83abe
MV
5414Finally, some applications, especially those that generate new Scheme
5415code dynamically, need to generate symbols for use in the generated
5416code. The @code{gensym} primitive meets this need:
5417
5418@deffn {Scheme Procedure} gensym [prefix]
5419@deffnx {C Function} scm_gensym (prefix)
5420Create a new symbol with a name constructed from a prefix and a counter
5421value. The string @var{prefix} can be specified as an optional
5422argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5423at each call. There is no provision for resetting the counter.
5424@end deffn
5425
5426The symbols generated by @code{gensym} are @emph{likely} to be unique,
5427since their names begin with a space and it is only otherwise possible
5428to generate such symbols if a programmer goes out of their way to do
5429so. Uniqueness can be guaranteed by instead using uninterned symbols
5430(@pxref{Symbol Uninterned}), though they can't be usefully written out
5431and read back in.
5432
5433
5434@node Symbol Props
5435@subsubsection Function Slots and Property Lists
5436
5437In traditional Lisp dialects, symbols are often understood as having
5438three kinds of value at once:
5439
5440@itemize @bullet
5441@item
5442a @dfn{variable} value, which is used when the symbol appears in
5443code in a variable reference context
5444
5445@item
5446a @dfn{function} value, which is used when the symbol appears in
679cceed 5447code in a function name position (i.e.@: as the first element in an
07d83abe
MV
5448unquoted list)
5449
5450@item
5451a @dfn{property list} value, which is used when the symbol is given as
5452the first argument to Lisp's @code{put} or @code{get} functions.
5453@end itemize
5454
5455Although Scheme (as one of its simplifications with respect to Lisp)
5456does away with the distinction between variable and function namespaces,
5457Guile currently retains some elements of the traditional structure in
5458case they turn out to be useful when implementing translators for other
5459languages, in particular Emacs Lisp.
5460
ecb87335
RW
5461Specifically, Guile symbols have two extra slots, one for a symbol's
5462property list, and one for its ``function value.'' The following procedures
07d83abe
MV
5463are provided to access these slots.
5464
5465@deffn {Scheme Procedure} symbol-fref symbol
5466@deffnx {C Function} scm_symbol_fref (symbol)
5467Return the contents of @var{symbol}'s @dfn{function slot}.
5468@end deffn
5469
5470@deffn {Scheme Procedure} symbol-fset! symbol value
5471@deffnx {C Function} scm_symbol_fset_x (symbol, value)
5472Set the contents of @var{symbol}'s function slot to @var{value}.
5473@end deffn
5474
5475@deffn {Scheme Procedure} symbol-pref symbol
5476@deffnx {C Function} scm_symbol_pref (symbol)
5477Return the @dfn{property list} currently associated with @var{symbol}.
5478@end deffn
5479
5480@deffn {Scheme Procedure} symbol-pset! symbol value
5481@deffnx {C Function} scm_symbol_pset_x (symbol, value)
5482Set @var{symbol}'s property list to @var{value}.
5483@end deffn
5484
5485@deffn {Scheme Procedure} symbol-property sym prop
5486From @var{sym}'s property list, return the value for property
5487@var{prop}. The assumption is that @var{sym}'s property list is an
5488association list whose keys are distinguished from each other using
5489@code{equal?}; @var{prop} should be one of the keys in that list. If
5490the property list has no entry for @var{prop}, @code{symbol-property}
5491returns @code{#f}.
5492@end deffn
5493
5494@deffn {Scheme Procedure} set-symbol-property! sym prop val
5495In @var{sym}'s property list, set the value for property @var{prop} to
5496@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5497none already exists. For the structure of the property list, see
5498@code{symbol-property}.
5499@end deffn
5500
5501@deffn {Scheme Procedure} symbol-property-remove! sym prop
5502From @var{sym}'s property list, remove the entry for property
5503@var{prop}, if there is one. For the structure of the property list,
5504see @code{symbol-property}.
5505@end deffn
5506
5507Support for these extra slots may be removed in a future release, and it
4695789c
NJ
5508is probably better to avoid using them. For a more modern and Schemely
5509approach to properties, see @ref{Object Properties}.
07d83abe
MV
5510
5511
5512@node Symbol Read Syntax
5513@subsubsection Extended Read Syntax for Symbols
5514
5515The read syntax for a symbol is a sequence of letters, digits, and
5516@dfn{extended alphabetic characters}, beginning with a character that
5517cannot begin a number. In addition, the special cases of @code{+},
5518@code{-}, and @code{...} are read as symbols even though numbers can
5519begin with @code{+}, @code{-} or @code{.}.
5520
5521Extended alphabetic characters may be used within identifiers as if
5522they were letters. The set of extended alphabetic characters is:
5523
5524@example
5525! $ % & * + - . / : < = > ? @@ ^ _ ~
5526@end example
5527
5528In addition to the standard read syntax defined above (which is taken
5529from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5530Scheme})), Guile provides an extended symbol read syntax that allows the
5531inclusion of unusual characters such as space characters, newlines and
5532parentheses. If (for whatever reason) you need to write a symbol
5533containing characters not mentioned above, you can do so as follows.
5534
5535@itemize @bullet
5536@item
5537Begin the symbol with the characters @code{#@{},
5538
5539@item
5540write the characters of the symbol and
5541
5542@item
5543finish the symbol with the characters @code{@}#}.
5544@end itemize
5545
5546Here are a few examples of this form of read syntax. The first symbol
5547needs to use extended syntax because it contains a space character, the
5548second because it contains a line break, and the last because it looks
5549like a number.
5550
5551@lisp
5552#@{foo bar@}#
5553
5554#@{what
5555ever@}#
5556
5557#@{4242@}#
5558@end lisp
5559
5560Although Guile provides this extended read syntax for symbols,
5561widespread usage of it is discouraged because it is not portable and not
5562very readable.
5563
5564
5565@node Symbol Uninterned
5566@subsubsection Uninterned Symbols
5567
5568What makes symbols useful is that they are automatically kept unique.
5569There are no two symbols that are distinct objects but have the same
5570name. But of course, there is no rule without exception. In addition
5571to the normal symbols that have been discussed up to now, you can also
5572create special @dfn{uninterned} symbols that behave slightly
5573differently.
5574
5575To understand what is different about them and why they might be useful,
5576we look at how normal symbols are actually kept unique.
5577
5578Whenever Guile wants to find the symbol with a specific name, for
5579example during @code{read} or when executing @code{string->symbol}, it
5580first looks into a table of all existing symbols to find out whether a
5581symbol with the given name already exists. When this is the case, Guile
5582just returns that symbol. When not, a new symbol with the name is
5583created and entered into the table so that it can be found later.
5584
5585Sometimes you might want to create a symbol that is guaranteed `fresh',
679cceed 5586i.e.@: a symbol that did not exist previously. You might also want to
07d83abe
MV
5587somehow guarantee that no one else will ever unintentionally stumble
5588across your symbol in the future. These properties of a symbol are
5589often needed when generating code during macro expansion. When
5590introducing new temporary variables, you want to guarantee that they
5591don't conflict with variables in other people's code.
5592
5593The simplest way to arrange for this is to create a new symbol but
5594not enter it into the global table of all symbols. That way, no one
5595will ever get access to your symbol by chance. Symbols that are not in
5596the table are called @dfn{uninterned}. Of course, symbols that
5597@emph{are} in the table are called @dfn{interned}.
5598
5599You create new uninterned symbols with the function @code{make-symbol}.
5600You can test whether a symbol is interned or not with
5601@code{symbol-interned?}.
5602
5603Uninterned symbols break the rule that the name of a symbol uniquely
5604identifies the symbol object. Because of this, they can not be written
5605out and read back in like interned symbols. Currently, Guile has no
5606support for reading uninterned symbols. Note that the function
5607@code{gensym} does not return uninterned symbols for this reason.
5608
5609@deffn {Scheme Procedure} make-symbol name
5610@deffnx {C Function} scm_make_symbol (name)
5611Return a new uninterned symbol with the name @var{name}. The returned
5612symbol is guaranteed to be unique and future calls to
5613@code{string->symbol} will not return it.
5614@end deffn
5615
5616@deffn {Scheme Procedure} symbol-interned? symbol
5617@deffnx {C Function} scm_symbol_interned_p (symbol)
5618Return @code{#t} if @var{symbol} is interned, otherwise return
5619@code{#f}.
5620@end deffn
5621
5622For example:
5623
5624@lisp
5625(define foo-1 (string->symbol "foo"))
5626(define foo-2 (string->symbol "foo"))
5627(define foo-3 (make-symbol "foo"))
5628(define foo-4 (make-symbol "foo"))
5629
5630(eq? foo-1 foo-2)
5631@result{} #t
5632; Two interned symbols with the same name are the same object,
5633
5634(eq? foo-1 foo-3)
5635@result{} #f
5636; but a call to make-symbol with the same name returns a
5637; distinct object.
5638
5639(eq? foo-3 foo-4)
5640@result{} #f
5641; A call to make-symbol always returns a new object, even for
5642; the same name.
5643
5644foo-3
5645@result{} #<uninterned-symbol foo 8085290>
5646; Uninterned symbols print differently from interned symbols,
5647
5648(symbol? foo-3)
5649@result{} #t
5650; but they are still symbols,
5651
5652(symbol-interned? foo-3)
5653@result{} #f
5654; just not interned.
5655@end lisp
5656
5657
5658@node Keywords
5659@subsection Keywords
5660@tpindex Keywords
5661
5662Keywords are self-evaluating objects with a convenient read syntax that
5663makes them easy to type.
5664
5665Guile's keyword support conforms to R5RS, and adds a (switchable) read
5666syntax extension to permit keywords to begin with @code{:} as well as
ef4cbc08 5667@code{#:}, or to end with @code{:}.
07d83abe
MV
5668
5669@menu
5670* Why Use Keywords?:: Motivation for keyword usage.
5671* Coding With Keywords:: How to use keywords.
5672* Keyword Read Syntax:: Read syntax for keywords.
5673* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
5674@end menu
5675
5676@node Why Use Keywords?
5677@subsubsection Why Use Keywords?
5678
5679Keywords are useful in contexts where a program or procedure wants to be
5680able to accept a large number of optional arguments without making its
5681interface unmanageable.
5682
5683To illustrate this, consider a hypothetical @code{make-window}
5684procedure, which creates a new window on the screen for drawing into
5685using some graphical toolkit. There are many parameters that the caller
5686might like to specify, but which could also be sensibly defaulted, for
5687example:
5688
5689@itemize @bullet
5690@item
5691color depth -- Default: the color depth for the screen
5692
5693@item
5694background color -- Default: white
5695
5696@item
5697width -- Default: 600
5698
5699@item
5700height -- Default: 400
5701@end itemize
5702
5703If @code{make-window} did not use keywords, the caller would have to
5704pass in a value for each possible argument, remembering the correct
5705argument order and using a special value to indicate the default value
5706for that argument:
5707
5708@lisp
5709(make-window 'default ;; Color depth
5710 'default ;; Background color
5711 800 ;; Width
5712 100 ;; Height
5713 @dots{}) ;; More make-window arguments
5714@end lisp
5715
5716With keywords, on the other hand, defaulted arguments are omitted, and
5717non-default arguments are clearly tagged by the appropriate keyword. As
5718a result, the invocation becomes much clearer:
5719
5720@lisp
5721(make-window #:width 800 #:height 100)
5722@end lisp
5723
5724On the other hand, for a simpler procedure with few arguments, the use
5725of keywords would be a hindrance rather than a help. The primitive
5726procedure @code{cons}, for example, would not be improved if it had to
5727be invoked as
5728
5729@lisp
5730(cons #:car x #:cdr y)
5731@end lisp
5732
5733So the decision whether to use keywords or not is purely pragmatic: use
5734them if they will clarify the procedure invocation at point of call.
5735
5736@node Coding With Keywords
5737@subsubsection Coding With Keywords
5738
5739If a procedure wants to support keywords, it should take a rest argument
5740and then use whatever means is convenient to extract keywords and their
5741corresponding arguments from the contents of that rest argument.
5742
5743The following example illustrates the principle: the code for
5744@code{make-window} uses a helper procedure called
5745@code{get-keyword-value} to extract individual keyword arguments from
5746the rest argument.
5747
5748@lisp
5749(define (get-keyword-value args keyword default)
5750 (let ((kv (memq keyword args)))
5751 (if (and kv (>= (length kv) 2))
5752 (cadr kv)
5753 default)))
5754
5755(define (make-window . args)
5756 (let ((depth (get-keyword-value args #:depth screen-depth))
5757 (bg (get-keyword-value args #:bg "white"))
5758 (width (get-keyword-value args #:width 800))
5759 (height (get-keyword-value args #:height 100))
5760 @dots{})
5761 @dots{}))
5762@end lisp
5763
5764But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5765optargs)} module provides a set of powerful macros that you can use to
5766implement keyword-supporting procedures like this:
5767
5768@lisp
5769(use-modules (ice-9 optargs))
5770
5771(define (make-window . args)
5772 (let-keywords args #f ((depth screen-depth)
5773 (bg "white")
5774 (width 800)
5775 (height 100))
5776 ...))
5777@end lisp
5778
5779@noindent
5780Or, even more economically, like this:
5781
5782@lisp
5783(use-modules (ice-9 optargs))
5784
5785(define* (make-window #:key (depth screen-depth)
5786 (bg "white")
5787 (width 800)
5788 (height 100))
5789 ...)
5790@end lisp
5791
5792For further details on @code{let-keywords}, @code{define*} and other
5793facilities provided by the @code{(ice-9 optargs)} module, see
5794@ref{Optional Arguments}.
5795
a16d4e82
MW
5796To handle keyword arguments from procedures implemented in C,
5797use @code{scm_c_bind_keyword_arguments} (@pxref{Keyword Procedures}).
07d83abe
MV
5798
5799@node Keyword Read Syntax
5800@subsubsection Keyword Read Syntax
5801
7719ef22
MV
5802Guile, by default, only recognizes a keyword syntax that is compatible
5803with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5804same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5805external representation of the keyword named @code{NAME}. Keyword
5806objects print using this syntax as well, so values containing keyword
5807objects can be read back into Guile. When used in an expression,
5808keywords are self-quoting objects.
07d83abe
MV
5809
5810If the @code{keyword} read option is set to @code{'prefix}, Guile also
5811recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5812of the form @code{:NAME} are read as symbols, as required by R5RS.
5813
ef4cbc08
LC
5814@cindex SRFI-88 keyword syntax
5815
5816If the @code{keyword} read option is set to @code{'postfix}, Guile
189681f5
LC
5817recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5818Otherwise, tokens of this form are read as symbols.
ef4cbc08 5819
07d83abe 5820To enable and disable the alternative non-R5RS keyword syntax, you use
1518f649
AW
5821the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5822the @code{prefix} and @code{postfix} syntax are mutually exclusive.
07d83abe 5823
aba0dff5 5824@lisp
07d83abe
MV
5825(read-set! keywords 'prefix)
5826
5827#:type
5828@result{}
5829#:type
5830
5831:type
5832@result{}
5833#:type
5834
ef4cbc08
LC
5835(read-set! keywords 'postfix)
5836
5837type:
5838@result{}
5839#:type
5840
5841:type
5842@result{}
5843:type
5844
07d83abe
MV
5845(read-set! keywords #f)
5846
5847#:type
5848@result{}
5849#:type
5850
5851:type
5852@print{}
5853ERROR: In expression :type:
5854ERROR: Unbound variable: :type
5855ABORT: (unbound-variable)
aba0dff5 5856@end lisp
07d83abe
MV
5857
5858@node Keyword Procedures
5859@subsubsection Keyword Procedures
5860
07d83abe
MV
5861@deffn {Scheme Procedure} keyword? obj
5862@deffnx {C Function} scm_keyword_p (obj)
5863Return @code{#t} if the argument @var{obj} is a keyword, else
5864@code{#f}.
5865@end deffn
5866
7719ef22
MV
5867@deffn {Scheme Procedure} keyword->symbol keyword
5868@deffnx {C Function} scm_keyword_to_symbol (keyword)
5869Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5870@end deffn
5871
7719ef22
MV
5872@deffn {Scheme Procedure} symbol->keyword symbol
5873@deffnx {C Function} scm_symbol_to_keyword (symbol)
5874Return the keyword with the same name as @var{symbol}.
5875@end deffn
07d83abe 5876
7719ef22
MV
5877@deftypefn {C Function} int scm_is_keyword (SCM obj)
5878Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5879@end deftypefn
5880
c428e586
MW
5881@deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
5882@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
7719ef22 5883Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
c428e586
MW
5884(@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5885(@var{name}, @var{len}))}, respectively.
5886
5887Note that these functions should @emph{not} be used when @var{name} is a
5888C string constant, because there is no guarantee that the current locale
a71e79c3
MW
5889will match that of the execution character set, used for string and
5890character constants. Most modern C compilers use UTF-8 by default, so
5891in such cases we recommend @code{scm_from_utf8_keyword}.
c428e586
MW
5892@end deftypefn
5893
5894@deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
5895@deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
5896Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
5897(@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
5898(@var{name}))}, respectively.
7719ef22 5899@end deftypefn
07d83abe 5900
a16d4e82
MW
5901@deftypefn {C Function} void scm_c_bind_keyword_arguments (const char *subr, @
5902 SCM rest, scm_t_keyword_arguments_flags flags, @
5903 SCM keyword1, SCM *argp1, @
5904 @dots{}, @
5905 SCM keywordN, SCM *argpN, @
5906 @nicode{SCM_UNDEFINED})
5907
5908Extract the specified keyword arguments from @var{rest}, which is not
5909modified. If the keyword argument @var{keyword1} is present in
5910@var{rest} with an associated value, that value is stored in the
5911variable pointed to by @var{argp1}, otherwise the variable is left
5912unchanged. Similarly for the other keywords and argument pointers up to
5913@var{keywordN} and @var{argpN}. The argument list to
5914@code{scm_c_bind_keyword_arguments} must be terminated by
5915@code{SCM_UNDEFINED}.
5916
5917Note that since the variables pointed to by @var{argp1} through
5918@var{argpN} are left unchanged if the associated keyword argument is not
5919present, they should be initialized to their default values before
5920calling @code{scm_c_bind_keyword_arguments}. Alternatively, you can
5921initialize them to @code{SCM_UNDEFINED} before the call, and then use
5922@code{SCM_UNBNDP} after the call to see which ones were provided.
5923
5924If an unrecognized keyword argument is present in @var{rest} and
5925@var{flags} does not contain @code{SCM_ALLOW_OTHER_KEYS}, or if
5926non-keyword arguments are present and @var{flags} does not contain
5927@code{SCM_ALLOW_NON_KEYWORD_ARGUMENTS}, an exception is raised.
5928@var{subr} should be the name of the procedure receiving the keyword
5929arguments, for purposes of error reporting.
5930
5931For example:
5932
5933@example
5934SCM k_delimiter;
5935SCM k_grammar;
5936SCM sym_infix;
5937
5938SCM my_string_join (SCM strings, SCM rest)
5939@{
5940 SCM delimiter = SCM_UNDEFINED;
5941 SCM grammar = sym_infix;
5942
5943 scm_c_bind_keyword_arguments ("my-string-join", rest, 0,
5944 k_delimiter, &delimiter,
5945 k_grammar, &grammar,
5946 SCM_UNDEFINED);
5947
5948 if (SCM_UNBNDP (delimiter))
5949 delimiter = scm_from_utf8_string (" ");
5950
5951 return scm_string_join (strings, delimiter, grammar);
5952@}
5953
5954void my_init ()
5955@{
5956 k_delimiter = scm_from_utf8_keyword ("delimiter");
5957 k_grammar = scm_from_utf8_keyword ("grammar");
5958 sym_infix = scm_from_utf8_symbol ("infix");
5959 scm_c_define_gsubr ("my-string-join", 1, 0, 1, my_string_join);
5960@}
5961@end example
5962@end deftypefn
5963
5964
07d83abe
MV
5965@node Other Types
5966@subsection ``Functionality-Centric'' Data Types
5967
a136ada6 5968Procedures and macros are documented in their own sections: see
e4955559 5969@ref{Procedures} and @ref{Macros}.
07d83abe
MV
5970
5971Variable objects are documented as part of the description of Guile's
5972module system: see @ref{Variables}.
5973
a136ada6 5974Asyncs, dynamic roots and fluids are described in the section on
07d83abe
MV
5975scheduling: see @ref{Scheduling}.
5976
a136ada6 5977Hooks are documented in the section on general utility functions: see
07d83abe
MV
5978@ref{Hooks}.
5979
a136ada6 5980Ports are described in the section on I/O: see @ref{Input and Output}.
07d83abe 5981
a136ada6
NJ
5982Regular expressions are described in their own section: see @ref{Regular
5983Expressions}.
07d83abe
MV
5984
5985@c Local Variables:
5986@c TeX-master: "guile.texi"
5987@c End: