Add http-post, http-put, et cetera
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
f05bb849 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
07d83abe
MV
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
07d83abe
MV
7@node Simple Data Types
8@section Simple Generic Data Types
9
10This chapter describes those of Guile's simple data types which are
11primarily used for their role as items of generic data. By
12@dfn{simple} we mean data types that are not primarily used as
13containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14For the documentation of such @dfn{compound} data types, see
15@ref{Compound Data Types}.
16
17@c One of the great strengths of Scheme is that there is no straightforward
18@c distinction between ``data'' and ``functionality''. For example,
19@c Guile's support for dynamic linking could be described:
20
21@c @itemize @bullet
22@c @item
23@c either in a ``data-centric'' way, as the behaviour and properties of the
24@c ``dynamically linked object'' data type, and the operations that may be
25@c applied to instances of this type
26
27@c @item
28@c or in a ``functionality-centric'' way, as the set of procedures that
29@c constitute Guile's support for dynamic linking, in the context of the
30@c module system.
31@c @end itemize
32
33@c The contents of this chapter are, therefore, a matter of judgment. By
34@c @dfn{generic}, we mean to select those data types whose typical use as
35@c @emph{data} in a wide variety of programming contexts is more important
36@c than their use in the implementation of a particular piece of
37@c @emph{functionality}. The last section of this chapter provides
38@c references for all the data types that are documented not here but in a
39@c ``functionality-centric'' way elsewhere in the manual.
40
41@menu
42* Booleans:: True/false values.
43* Numbers:: Numerical data types.
050ab45f
MV
44* Characters:: Single characters.
45* Character Sets:: Sets of characters.
46* Strings:: Sequences of characters.
b242715b 47* Bytevectors:: Sequences of bytes.
07d83abe
MV
48* Symbols:: Symbols.
49* Keywords:: Self-quoting, customizable display keywords.
50* Other Types:: "Functionality-centric" data types.
51@end menu
52
53
54@node Booleans
55@subsection Booleans
56@tpindex Booleans
57
58The two boolean values are @code{#t} for true and @code{#f} for false.
59
60Boolean values are returned by predicate procedures, such as the general
61equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
62(@pxref{Equality}) and numerical and string comparison operators like
63@code{string=?} (@pxref{String Comparison}) and @code{<=}
64(@pxref{Comparison}).
65
66@lisp
67(<= 3 8)
68@result{} #t
69
70(<= 3 -3)
71@result{} #f
72
73(equal? "house" "houses")
74@result{} #f
75
76(eq? #f #f)
77@result{}
78#t
79@end lisp
80
9accf3d9
AW
81In test condition contexts like @code{if} and @code{cond}
82(@pxref{Conditionals}), where a group of subexpressions will be
83evaluated only if a @var{condition} expression evaluates to ``true'',
84``true'' means any value at all except @code{#f}.
07d83abe
MV
85
86@lisp
87(if #t "yes" "no")
88@result{} "yes"
89
90(if 0 "yes" "no")
91@result{} "yes"
92
93(if #f "yes" "no")
94@result{} "no"
95@end lisp
96
97A result of this asymmetry is that typical Scheme source code more often
98uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
99represent an @code{if} or @code{cond} false value, whereas @code{#t} is
100not necessary to represent an @code{if} or @code{cond} true value.
101
102It is important to note that @code{#f} is @strong{not} equivalent to any
103other Scheme value. In particular, @code{#f} is not the same as the
104number 0 (like in C and C++), and not the same as the ``empty list''
105(like in some Lisp dialects).
106
107In C, the two Scheme boolean values are available as the two constants
108@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
109Care must be taken with the false value @code{SCM_BOOL_F}: it is not
110false when used in C conditionals. In order to test for it, use
111@code{scm_is_false} or @code{scm_is_true}.
112
113@rnindex not
114@deffn {Scheme Procedure} not x
115@deffnx {C Function} scm_not (x)
116Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
117@end deffn
118
119@rnindex boolean?
120@deffn {Scheme Procedure} boolean? obj
121@deffnx {C Function} scm_boolean_p (obj)
122Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
123return @code{#f}.
124@end deffn
125
126@deftypevr {C Macro} SCM SCM_BOOL_T
127The @code{SCM} representation of the Scheme object @code{#t}.
128@end deftypevr
129
130@deftypevr {C Macro} SCM SCM_BOOL_F
131The @code{SCM} representation of the Scheme object @code{#f}.
132@end deftypevr
133
134@deftypefn {C Function} int scm_is_true (SCM obj)
135Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
136@end deftypefn
137
138@deftypefn {C Function} int scm_is_false (SCM obj)
139Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
140@end deftypefn
141
142@deftypefn {C Function} int scm_is_bool (SCM obj)
143Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
144return @code{0}.
145@end deftypefn
146
147@deftypefn {C Function} SCM scm_from_bool (int val)
148Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
149@end deftypefn
150
151@deftypefn {C Function} int scm_to_bool (SCM val)
152Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
153when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
154
155You should probably use @code{scm_is_true} instead of this function
156when you just want to test a @code{SCM} value for trueness.
157@end deftypefn
158
159@node Numbers
160@subsection Numerical data types
161@tpindex Numbers
162
163Guile supports a rich ``tower'' of numerical types --- integer,
164rational, real and complex --- and provides an extensive set of
165mathematical and scientific functions for operating on numerical
166data. This section of the manual documents those types and functions.
167
168You may also find it illuminating to read R5RS's presentation of numbers
169in Scheme, which is particularly clear and accessible: see
170@ref{Numbers,,,r5rs,R5RS}.
171
172@menu
173* Numerical Tower:: Scheme's numerical "tower".
174* Integers:: Whole numbers.
175* Reals and Rationals:: Real and rational numbers.
176* Complex Numbers:: Complex numbers.
177* Exactness:: Exactness and inexactness.
178* Number Syntax:: Read syntax for numerical data.
179* Integer Operations:: Operations on integer values.
180* Comparison:: Comparison predicates.
181* Conversion:: Converting numbers to and from strings.
182* Complex:: Complex number operations.
183* Arithmetic:: Arithmetic functions.
184* Scientific:: Scientific functions.
07d83abe
MV
185* Bitwise Operations:: Logical AND, OR, NOT, and so on.
186* Random:: Random number generation.
187@end menu
188
189
190@node Numerical Tower
191@subsubsection Scheme's Numerical ``Tower''
192@rnindex number?
193
194Scheme's numerical ``tower'' consists of the following categories of
195numbers:
196
197@table @dfn
198@item integers
199Whole numbers, positive or negative; e.g.@: --5, 0, 18.
200
201@item rationals
202The set of numbers that can be expressed as @math{@var{p}/@var{q}}
203where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
204pi (an irrational number) doesn't. These include integers
205(@math{@var{n}/1}).
206
207@item real numbers
208The set of numbers that describes all possible positions along a
209one-dimensional line. This includes rationals as well as irrational
210numbers.
211
212@item complex numbers
213The set of numbers that describes all possible positions in a two
214dimensional space. This includes real as well as imaginary numbers
215(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
216@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
217@minus{}1.)
218@end table
219
220It is called a tower because each category ``sits on'' the one that
221follows it, in the sense that every integer is also a rational, every
222rational is also real, and every real number is also a complex number
223(but with zero imaginary part).
224
225In addition to the classification into integers, rationals, reals and
226complex numbers, Scheme also distinguishes between whether a number is
227represented exactly or not. For example, the result of
9f1ba6a9
NJ
228@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
229can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
07d83abe
MV
230Instead, it stores an inexact approximation, using the C type
231@code{double}.
232
233Guile can represent exact rationals of any magnitude, inexact
234rationals that fit into a C @code{double}, and inexact complex numbers
235with @code{double} real and imaginary parts.
236
237The @code{number?} predicate may be applied to any Scheme value to
238discover whether the value is any of the supported numerical types.
239
240@deffn {Scheme Procedure} number? obj
241@deffnx {C Function} scm_number_p (obj)
242Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
243@end deffn
244
245For example:
246
247@lisp
248(number? 3)
249@result{} #t
250
251(number? "hello there!")
252@result{} #f
253
254(define pi 3.141592654)
255(number? pi)
256@result{} #t
257@end lisp
258
5615f696
MV
259@deftypefn {C Function} int scm_is_number (SCM obj)
260This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
261@end deftypefn
262
07d83abe
MV
263The next few subsections document each of Guile's numerical data types
264in detail.
265
266@node Integers
267@subsubsection Integers
268
269@tpindex Integer numbers
270
271@rnindex integer?
272
273Integers are whole numbers, that is numbers with no fractional part,
274such as 2, 83, and @minus{}3789.
275
276Integers in Guile can be arbitrarily big, as shown by the following
277example.
278
279@lisp
280(define (factorial n)
281 (let loop ((n n) (product 1))
282 (if (= n 0)
283 product
284 (loop (- n 1) (* product n)))))
285
286(factorial 3)
287@result{} 6
288
289(factorial 20)
290@result{} 2432902008176640000
291
292(- (factorial 45))
293@result{} -119622220865480194561963161495657715064383733760000000000
294@end lisp
295
296Readers whose background is in programming languages where integers are
297limited by the need to fit into just 4 or 8 bytes of memory may find
298this surprising, or suspect that Guile's representation of integers is
299inefficient. In fact, Guile achieves a near optimal balance of
300convenience and efficiency by using the host computer's native
301representation of integers where possible, and a more general
302representation where the required number does not fit in the native
303form. Conversion between these two representations is automatic and
304completely invisible to the Scheme level programmer.
305
07d83abe
MV
306C has a host of different integer types, and Guile offers a host of
307functions to convert between them and the @code{SCM} representation.
308For example, a C @code{int} can be handled with @code{scm_to_int} and
309@code{scm_from_int}. Guile also defines a few C integer types of its
310own, to help with differences between systems.
311
312C integer types that are not covered can be handled with the generic
313@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
314signed types, or with @code{scm_to_unsigned_integer} and
315@code{scm_from_unsigned_integer} for unsigned types.
316
317Scheme integers can be exact and inexact. For example, a number
318written as @code{3.0} with an explicit decimal-point is inexact, but
319it is also an integer. The functions @code{integer?} and
320@code{scm_is_integer} report true for such a number, but the functions
321@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
322allow exact integers and thus report false. Likewise, the conversion
323functions like @code{scm_to_signed_integer} only accept exact
324integers.
325
326The motivation for this behavior is that the inexactness of a number
327should not be lost silently. If you want to allow inexact integers,
877f06c3 328you can explicitly insert a call to @code{inexact->exact} or to its C
07d83abe
MV
329equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
330be converted by this call into exact integers; inexact non-integers
331will become exact fractions.)
332
333@deffn {Scheme Procedure} integer? x
334@deffnx {C Function} scm_integer_p (x)
909fcc97 335Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
336@code{#f}.
337
338@lisp
339(integer? 487)
340@result{} #t
341
342(integer? 3.0)
343@result{} #t
344
345(integer? -3.4)
346@result{} #f
347
348(integer? +inf.0)
349@result{} #t
350@end lisp
351@end deffn
352
353@deftypefn {C Function} int scm_is_integer (SCM x)
354This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
355@end deftypefn
356
357@defvr {C Type} scm_t_int8
358@defvrx {C Type} scm_t_uint8
359@defvrx {C Type} scm_t_int16
360@defvrx {C Type} scm_t_uint16
361@defvrx {C Type} scm_t_int32
362@defvrx {C Type} scm_t_uint32
363@defvrx {C Type} scm_t_int64
364@defvrx {C Type} scm_t_uint64
365@defvrx {C Type} scm_t_intmax
366@defvrx {C Type} scm_t_uintmax
367The C types are equivalent to the corresponding ISO C types but are
368defined on all platforms, with the exception of @code{scm_t_int64} and
369@code{scm_t_uint64}, which are only defined when a 64-bit type is
370available. For example, @code{scm_t_int8} is equivalent to
371@code{int8_t}.
372
373You can regard these definitions as a stop-gap measure until all
374platforms provide these types. If you know that all the platforms
375that you are interested in already provide these types, it is better
376to use them directly instead of the types provided by Guile.
377@end defvr
378
379@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
380@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
381Return @code{1} when @var{x} represents an exact integer that is
382between @var{min} and @var{max}, inclusive.
383
384These functions can be used to check whether a @code{SCM} value will
385fit into a given range, such as the range of a given C integer type.
386If you just want to convert a @code{SCM} value to a given C integer
387type, use one of the conversion functions directly.
388@end deftypefn
389
390@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
391@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
392When @var{x} represents an exact integer that is between @var{min} and
393@var{max} inclusive, return that integer. Else signal an error,
394either a `wrong-type' error when @var{x} is not an exact integer, or
395an `out-of-range' error when it doesn't fit the given range.
396@end deftypefn
397
398@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
399@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
400Return the @code{SCM} value that represents the integer @var{x}. This
401function will always succeed and will always return an exact number.
402@end deftypefn
403
404@deftypefn {C Function} char scm_to_char (SCM x)
405@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
406@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
407@deftypefnx {C Function} short scm_to_short (SCM x)
408@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
409@deftypefnx {C Function} int scm_to_int (SCM x)
410@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
411@deftypefnx {C Function} long scm_to_long (SCM x)
412@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
413@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
414@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
415@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
416@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
417@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
418@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
419@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
420@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
421@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
422@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
423@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
424@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
425@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
426@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
427When @var{x} represents an exact integer that fits into the indicated
428C type, return that integer. Else signal an error, either a
429`wrong-type' error when @var{x} is not an exact integer, or an
430`out-of-range' error when it doesn't fit the given range.
431
432The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
433@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
434the corresponding types are.
435@end deftypefn
436
437@deftypefn {C Function} SCM scm_from_char (char x)
438@deftypefnx {C Function} SCM scm_from_schar (signed char x)
439@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
440@deftypefnx {C Function} SCM scm_from_short (short x)
441@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
442@deftypefnx {C Function} SCM scm_from_int (int x)
443@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
444@deftypefnx {C Function} SCM scm_from_long (long x)
445@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
446@deftypefnx {C Function} SCM scm_from_long_long (long long x)
447@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
448@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
449@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
450@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
451@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
452@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
453@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
454@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
455@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
456@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
457@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
458@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
459@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
460Return the @code{SCM} value that represents the integer @var{x}.
461These functions will always succeed and will always return an exact
462number.
463@end deftypefn
464
08962922
MV
465@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
466Assign @var{val} to the multiple precision integer @var{rop}.
467@var{val} must be an exact integer, otherwise an error will be
468signalled. @var{rop} must have been initialized with @code{mpz_init}
469before this function is called. When @var{rop} is no longer needed
470the occupied space must be freed with @code{mpz_clear}.
471@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
472@end deftypefn
473
9f1ba6a9 474@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
08962922
MV
475Return the @code{SCM} value that represents @var{val}.
476@end deftypefn
477
07d83abe
MV
478@node Reals and Rationals
479@subsubsection Real and Rational Numbers
480@tpindex Real numbers
481@tpindex Rational numbers
482
483@rnindex real?
484@rnindex rational?
485
486Mathematically, the real numbers are the set of numbers that describe
487all possible points along a continuous, infinite, one-dimensional line.
488The rational numbers are the set of all numbers that can be written as
489fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
490All rational numbers are also real, but there are real numbers that
995953e5 491are not rational, for example @m{\sqrt{2}, the square root of 2}, and
34942993 492@m{\pi,pi}.
07d83abe
MV
493
494Guile can represent both exact and inexact rational numbers, but it
c960e556
MW
495cannot represent precise finite irrational numbers. Exact rationals are
496represented by storing the numerator and denominator as two exact
497integers. Inexact rationals are stored as floating point numbers using
498the C type @code{double}.
07d83abe
MV
499
500Exact rationals are written as a fraction of integers. There must be
501no whitespace around the slash:
502
503@lisp
5041/2
505-22/7
506@end lisp
507
508Even though the actual encoding of inexact rationals is in binary, it
509may be helpful to think of it as a decimal number with a limited
510number of significant figures and a decimal point somewhere, since
511this corresponds to the standard notation for non-whole numbers. For
512example:
513
514@lisp
5150.34
516-0.00000142857931198
517-5648394822220000000000.0
5184.0
519@end lisp
520
c960e556
MW
521The limited precision of Guile's encoding means that any finite ``real''
522number in Guile can be written in a rational form, by multiplying and
523then dividing by sufficient powers of 10 (or in fact, 2). For example,
524@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
525by 100000000000000000. In Guile's current incarnation, therefore, the
526@code{rational?} and @code{real?} predicates are equivalent for finite
527numbers.
07d83abe 528
07d83abe 529
c960e556
MW
530Dividing by an exact zero leads to a error message, as one might expect.
531However, dividing by an inexact zero does not produce an error.
532Instead, the result of the division is either plus or minus infinity,
533depending on the sign of the divided number and the sign of the zero
534divisor (some platforms support signed zeroes @samp{-0.0} and
535@samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
536
537Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
538value, although they are actually considered numbers by Scheme.
539Attempts to compare a @acronym{NaN} value with any number (including
540itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
541always returns @code{#f}. Although a @acronym{NaN} value is not
542@code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
543and other @acronym{NaN} values. However, the preferred way to test for
544them is by using @code{nan?}.
545
546The real @acronym{NaN} values and infinities are written @samp{+nan.0},
547@samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
548@code{read} as an extension to the usual Scheme syntax. These special
549values are considered by Scheme to be inexact real numbers but not
550rational. Note that non-real complex numbers may also contain
551infinities or @acronym{NaN} values in their real or imaginary parts. To
552test a real number to see if it is infinite, a @acronym{NaN} value, or
553neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
554Every real number in Scheme belongs to precisely one of those three
555classes.
07d83abe
MV
556
557On platforms that follow @acronym{IEEE} 754 for their floating point
558arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
559are implemented using the corresponding @acronym{IEEE} 754 values.
560They behave in arithmetic operations like @acronym{IEEE} 754 describes
561it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
562
07d83abe
MV
563@deffn {Scheme Procedure} real? obj
564@deffnx {C Function} scm_real_p (obj)
565Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
566that the sets of integer and rational values form subsets of the set
567of real numbers, so the predicate will also be fulfilled if @var{obj}
568is an integer number or a rational number.
569@end deffn
570
571@deffn {Scheme Procedure} rational? x
572@deffnx {C Function} scm_rational_p (x)
573Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
574Note that the set of integer values forms a subset of the set of
995953e5 575rational numbers, i.e.@: the predicate will also be fulfilled if
07d83abe 576@var{x} is an integer number.
07d83abe
MV
577@end deffn
578
579@deffn {Scheme Procedure} rationalize x eps
580@deffnx {C Function} scm_rationalize (x, eps)
581Returns the @emph{simplest} rational number differing
582from @var{x} by no more than @var{eps}.
583
584As required by @acronym{R5RS}, @code{rationalize} only returns an
585exact result when both its arguments are exact. Thus, you might need
586to use @code{inexact->exact} on the arguments.
587
588@lisp
589(rationalize (inexact->exact 1.2) 1/100)
590@result{} 6/5
591@end lisp
592
593@end deffn
594
d3df9759
MV
595@deffn {Scheme Procedure} inf? x
596@deffnx {C Function} scm_inf_p (x)
10391e06
AW
597Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
598@samp{-inf.0}. Otherwise return @code{#f}.
07d83abe
MV
599@end deffn
600
601@deffn {Scheme Procedure} nan? x
d3df9759 602@deffnx {C Function} scm_nan_p (x)
10391e06
AW
603Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
604@code{#f} otherwise.
07d83abe
MV
605@end deffn
606
7112615f
MW
607@deffn {Scheme Procedure} finite? x
608@deffnx {C Function} scm_finite_p (x)
10391e06
AW
609Return @code{#t} if the real number @var{x} is neither infinite nor a
610NaN, @code{#f} otherwise.
7112615f
MW
611@end deffn
612
cdf1ad3b
MV
613@deffn {Scheme Procedure} nan
614@deffnx {C Function} scm_nan ()
c960e556 615Return @samp{+nan.0}, a @acronym{NaN} value.
cdf1ad3b
MV
616@end deffn
617
618@deffn {Scheme Procedure} inf
619@deffnx {C Function} scm_inf ()
c960e556 620Return @samp{+inf.0}, positive infinity.
cdf1ad3b
MV
621@end deffn
622
d3df9759
MV
623@deffn {Scheme Procedure} numerator x
624@deffnx {C Function} scm_numerator (x)
625Return the numerator of the rational number @var{x}.
626@end deffn
627
628@deffn {Scheme Procedure} denominator x
629@deffnx {C Function} scm_denominator (x)
630Return the denominator of the rational number @var{x}.
631@end deffn
632
633@deftypefn {C Function} int scm_is_real (SCM val)
634@deftypefnx {C Function} int scm_is_rational (SCM val)
635Equivalent to @code{scm_is_true (scm_real_p (val))} and
636@code{scm_is_true (scm_rational_p (val))}, respectively.
637@end deftypefn
638
639@deftypefn {C Function} double scm_to_double (SCM val)
640Returns the number closest to @var{val} that is representable as a
641@code{double}. Returns infinity for a @var{val} that is too large in
642magnitude. The argument @var{val} must be a real number.
643@end deftypefn
644
645@deftypefn {C Function} SCM scm_from_double (double val)
be3eb25c 646Return the @code{SCM} value that represents @var{val}. The returned
d3df9759
MV
647value is inexact according to the predicate @code{inexact?}, but it
648will be exactly equal to @var{val}.
649@end deftypefn
650
07d83abe
MV
651@node Complex Numbers
652@subsubsection Complex Numbers
653@tpindex Complex numbers
654
655@rnindex complex?
656
657Complex numbers are the set of numbers that describe all possible points
658in a two-dimensional space. The two coordinates of a particular point
659in this space are known as the @dfn{real} and @dfn{imaginary} parts of
660the complex number that describes that point.
661
662In Guile, complex numbers are written in rectangular form as the sum of
663their real and imaginary parts, using the symbol @code{i} to indicate
664the imaginary part.
665
666@lisp
6673+4i
668@result{}
6693.0+4.0i
670
671(* 3-8i 2.3+0.3i)
672@result{}
6739.3-17.5i
674@end lisp
675
34942993
KR
676@cindex polar form
677@noindent
678Polar form can also be used, with an @samp{@@} between magnitude and
679angle,
680
681@lisp
6821@@3.141592 @result{} -1.0 (approx)
683-1@@1.57079 @result{} 0.0-1.0i (approx)
684@end lisp
685
c7218482
MW
686Guile represents a complex number as a pair of inexact reals, so the
687real and imaginary parts of a complex number have the same properties of
688inexactness and limited precision as single inexact real numbers.
689
690Note that each part of a complex number may contain any inexact real
691value, including the special values @samp{+nan.0}, @samp{+inf.0} and
692@samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
693@samp{-0.0}.
694
07d83abe 695
5615f696
MV
696@deffn {Scheme Procedure} complex? z
697@deffnx {C Function} scm_complex_p (z)
64de6db5 698Return @code{#t} if @var{z} is a complex number, @code{#f}
07d83abe 699otherwise. Note that the sets of real, rational and integer
679cceed 700values form subsets of the set of complex numbers, i.e.@: the
64de6db5 701predicate will also be fulfilled if @var{z} is a real,
07d83abe
MV
702rational or integer number.
703@end deffn
704
c9dc8c6c
MV
705@deftypefn {C Function} int scm_is_complex (SCM val)
706Equivalent to @code{scm_is_true (scm_complex_p (val))}.
707@end deftypefn
708
07d83abe
MV
709@node Exactness
710@subsubsection Exact and Inexact Numbers
711@tpindex Exact numbers
712@tpindex Inexact numbers
713
714@rnindex exact?
715@rnindex inexact?
716@rnindex exact->inexact
717@rnindex inexact->exact
718
654b2823
MW
719R5RS requires that, with few exceptions, a calculation involving inexact
720numbers always produces an inexact result. To meet this requirement,
721Guile distinguishes between an exact integer value such as @samp{5} and
722the corresponding inexact integer value which, to the limited precision
07d83abe
MV
723available, has no fractional part, and is printed as @samp{5.0}. Guile
724will only convert the latter value to the former when forced to do so by
725an invocation of the @code{inexact->exact} procedure.
726
654b2823
MW
727The only exception to the above requirement is when the values of the
728inexact numbers do not affect the result. For example @code{(expt n 0)}
729is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
730permitted to return an exact @samp{1}.
731
07d83abe
MV
732@deffn {Scheme Procedure} exact? z
733@deffnx {C Function} scm_exact_p (z)
734Return @code{#t} if the number @var{z} is exact, @code{#f}
735otherwise.
736
737@lisp
738(exact? 2)
739@result{} #t
740
741(exact? 0.5)
742@result{} #f
743
744(exact? (/ 2))
745@result{} #t
746@end lisp
747
748@end deffn
749
022dda69
MG
750@deftypefn {C Function} int scm_is_exact (SCM z)
751Return a @code{1} if the number @var{z} is exact, and @code{0}
752otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
753
754An alternate approch to testing the exactness of a number is to
755use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
756@end deftypefn
757
07d83abe
MV
758@deffn {Scheme Procedure} inexact? z
759@deffnx {C Function} scm_inexact_p (z)
760Return @code{#t} if the number @var{z} is inexact, @code{#f}
761else.
762@end deffn
763
022dda69
MG
764@deftypefn {C Function} int scm_is_inexact (SCM z)
765Return a @code{1} if the number @var{z} is inexact, and @code{0}
766otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
767@end deftypefn
768
07d83abe
MV
769@deffn {Scheme Procedure} inexact->exact z
770@deffnx {C Function} scm_inexact_to_exact (z)
771Return an exact number that is numerically closest to @var{z}, when
772there is one. For inexact rationals, Guile returns the exact rational
773that is numerically equal to the inexact rational. Inexact complex
774numbers with a non-zero imaginary part can not be made exact.
775
776@lisp
777(inexact->exact 0.5)
778@result{} 1/2
779@end lisp
780
781The following happens because 12/10 is not exactly representable as a
782@code{double} (on most platforms). However, when reading a decimal
783number that has been marked exact with the ``#e'' prefix, Guile is
784able to represent it correctly.
785
786@lisp
787(inexact->exact 1.2)
788@result{} 5404319552844595/4503599627370496
789
790#e1.2
791@result{} 6/5
792@end lisp
793
794@end deffn
795
796@c begin (texi-doc-string "guile" "exact->inexact")
797@deffn {Scheme Procedure} exact->inexact z
798@deffnx {C Function} scm_exact_to_inexact (z)
799Convert the number @var{z} to its inexact representation.
800@end deffn
801
802
803@node Number Syntax
804@subsubsection Read Syntax for Numerical Data
805
806The read syntax for integers is a string of digits, optionally
807preceded by a minus or plus character, a code indicating the
808base in which the integer is encoded, and a code indicating whether
809the number is exact or inexact. The supported base codes are:
810
811@table @code
812@item #b
813@itemx #B
814the integer is written in binary (base 2)
815
816@item #o
817@itemx #O
818the integer is written in octal (base 8)
819
820@item #d
821@itemx #D
822the integer is written in decimal (base 10)
823
824@item #x
825@itemx #X
826the integer is written in hexadecimal (base 16)
827@end table
828
829If the base code is omitted, the integer is assumed to be decimal. The
830following examples show how these base codes are used.
831
832@lisp
833-13
834@result{} -13
835
836#d-13
837@result{} -13
838
839#x-13
840@result{} -19
841
842#b+1101
843@result{} 13
844
845#o377
846@result{} 255
847@end lisp
848
849The codes for indicating exactness (which can, incidentally, be applied
850to all numerical values) are:
851
852@table @code
853@item #e
854@itemx #E
855the number is exact
856
857@item #i
858@itemx #I
859the number is inexact.
860@end table
861
862If the exactness indicator is omitted, the number is exact unless it
863contains a radix point. Since Guile can not represent exact complex
864numbers, an error is signalled when asking for them.
865
866@lisp
867(exact? 1.2)
868@result{} #f
869
870(exact? #e1.2)
871@result{} #t
872
873(exact? #e+1i)
874ERROR: Wrong type argument
875@end lisp
876
877Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
878plus and minus infinity, respectively. The value must be written
879exactly as shown, that is, they always must have a sign and exactly
880one zero digit after the decimal point. It also understands
881@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
882The sign is ignored for `not-a-number' and the value is always printed
883as @samp{+nan.0}.
884
885@node Integer Operations
886@subsubsection Operations on Integer Values
887@rnindex odd?
888@rnindex even?
889@rnindex quotient
890@rnindex remainder
891@rnindex modulo
892@rnindex gcd
893@rnindex lcm
894
895@deffn {Scheme Procedure} odd? n
896@deffnx {C Function} scm_odd_p (n)
897Return @code{#t} if @var{n} is an odd number, @code{#f}
898otherwise.
899@end deffn
900
901@deffn {Scheme Procedure} even? n
902@deffnx {C Function} scm_even_p (n)
903Return @code{#t} if @var{n} is an even number, @code{#f}
904otherwise.
905@end deffn
906
907@c begin (texi-doc-string "guile" "quotient")
908@c begin (texi-doc-string "guile" "remainder")
909@deffn {Scheme Procedure} quotient n d
910@deffnx {Scheme Procedure} remainder n d
911@deffnx {C Function} scm_quotient (n, d)
912@deffnx {C Function} scm_remainder (n, d)
913Return the quotient or remainder from @var{n} divided by @var{d}. The
914quotient is rounded towards zero, and the remainder will have the same
915sign as @var{n}. In all cases quotient and remainder satisfy
916@math{@var{n} = @var{q}*@var{d} + @var{r}}.
917
918@lisp
919(remainder 13 4) @result{} 1
920(remainder -13 4) @result{} -1
921@end lisp
ff62c168 922
8f9da340 923See also @code{truncate-quotient}, @code{truncate-remainder} and
ff62c168 924related operations in @ref{Arithmetic}.
07d83abe
MV
925@end deffn
926
927@c begin (texi-doc-string "guile" "modulo")
928@deffn {Scheme Procedure} modulo n d
929@deffnx {C Function} scm_modulo (n, d)
930Return the remainder from @var{n} divided by @var{d}, with the same
931sign as @var{d}.
932
933@lisp
934(modulo 13 4) @result{} 1
935(modulo -13 4) @result{} 3
936(modulo 13 -4) @result{} -3
937(modulo -13 -4) @result{} -1
938@end lisp
ff62c168 939
8f9da340 940See also @code{floor-quotient}, @code{floor-remainder} and
ff62c168 941related operations in @ref{Arithmetic}.
07d83abe
MV
942@end deffn
943
944@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 945@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
946@deffnx {C Function} scm_gcd (x, y)
947Return the greatest common divisor of all arguments.
948If called without arguments, 0 is returned.
949
950The C function @code{scm_gcd} always takes two arguments, while the
951Scheme function can take an arbitrary number.
952@end deffn
953
954@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 955@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
956@deffnx {C Function} scm_lcm (x, y)
957Return the least common multiple of the arguments.
958If called without arguments, 1 is returned.
959
960The C function @code{scm_lcm} always takes two arguments, while the
961Scheme function can take an arbitrary number.
962@end deffn
963
cdf1ad3b
MV
964@deffn {Scheme Procedure} modulo-expt n k m
965@deffnx {C Function} scm_modulo_expt (n, k, m)
966Return @var{n} raised to the integer exponent
967@var{k}, modulo @var{m}.
968
969@lisp
970(modulo-expt 2 3 5)
971 @result{} 3
972@end lisp
973@end deffn
07d83abe 974
882c8963
MW
975@deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
976@deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
977Return two exact non-negative integers @var{s} and @var{r}
978such that @math{@var{k} = @var{s}^2 + @var{r}} and
979@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
980An error is raised if @var{k} is not an exact non-negative integer.
981
982@lisp
983(exact-integer-sqrt 10) @result{} 3 and 1
984@end lisp
985@end deftypefn
986
07d83abe
MV
987@node Comparison
988@subsubsection Comparison Predicates
989@rnindex zero?
990@rnindex positive?
991@rnindex negative?
992
993The C comparison functions below always takes two arguments, while the
994Scheme functions can take an arbitrary number. Also keep in mind that
995the C functions return one of the Scheme boolean values
996@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
997is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
998y))} when testing the two Scheme numbers @code{x} and @code{y} for
999equality, for example.
1000
1001@c begin (texi-doc-string "guile" "=")
1002@deffn {Scheme Procedure} =
1003@deffnx {C Function} scm_num_eq_p (x, y)
1004Return @code{#t} if all parameters are numerically equal.
1005@end deffn
1006
1007@c begin (texi-doc-string "guile" "<")
1008@deffn {Scheme Procedure} <
1009@deffnx {C Function} scm_less_p (x, y)
1010Return @code{#t} if the list of parameters is monotonically
1011increasing.
1012@end deffn
1013
1014@c begin (texi-doc-string "guile" ">")
1015@deffn {Scheme Procedure} >
1016@deffnx {C Function} scm_gr_p (x, y)
1017Return @code{#t} if the list of parameters is monotonically
1018decreasing.
1019@end deffn
1020
1021@c begin (texi-doc-string "guile" "<=")
1022@deffn {Scheme Procedure} <=
1023@deffnx {C Function} scm_leq_p (x, y)
1024Return @code{#t} if the list of parameters is monotonically
1025non-decreasing.
1026@end deffn
1027
1028@c begin (texi-doc-string "guile" ">=")
1029@deffn {Scheme Procedure} >=
1030@deffnx {C Function} scm_geq_p (x, y)
1031Return @code{#t} if the list of parameters is monotonically
1032non-increasing.
1033@end deffn
1034
1035@c begin (texi-doc-string "guile" "zero?")
1036@deffn {Scheme Procedure} zero? z
1037@deffnx {C Function} scm_zero_p (z)
1038Return @code{#t} if @var{z} is an exact or inexact number equal to
1039zero.
1040@end deffn
1041
1042@c begin (texi-doc-string "guile" "positive?")
1043@deffn {Scheme Procedure} positive? x
1044@deffnx {C Function} scm_positive_p (x)
1045Return @code{#t} if @var{x} is an exact or inexact number greater than
1046zero.
1047@end deffn
1048
1049@c begin (texi-doc-string "guile" "negative?")
1050@deffn {Scheme Procedure} negative? x
1051@deffnx {C Function} scm_negative_p (x)
1052Return @code{#t} if @var{x} is an exact or inexact number less than
1053zero.
1054@end deffn
1055
1056
1057@node Conversion
1058@subsubsection Converting Numbers To and From Strings
1059@rnindex number->string
1060@rnindex string->number
1061
b89c4943
LC
1062The following procedures read and write numbers according to their
1063external representation as defined by R5RS (@pxref{Lexical structure,
1064R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
a2f00b9b 1065Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
b89c4943
LC
1066i18n)} module}, for locale-dependent number parsing.
1067
07d83abe
MV
1068@deffn {Scheme Procedure} number->string n [radix]
1069@deffnx {C Function} scm_number_to_string (n, radix)
1070Return a string holding the external representation of the
1071number @var{n} in the given @var{radix}. If @var{n} is
1072inexact, a radix of 10 will be used.
1073@end deffn
1074
1075@deffn {Scheme Procedure} string->number string [radix]
1076@deffnx {C Function} scm_string_to_number (string, radix)
1077Return a number of the maximally precise representation
1078expressed by the given @var{string}. @var{radix} must be an
1079exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1080is a default radix that may be overridden by an explicit radix
679cceed 1081prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
07d83abe
MV
1082supplied, then the default radix is 10. If string is not a
1083syntactically valid notation for a number, then
1084@code{string->number} returns @code{#f}.
1085@end deffn
1086
1b09b607
KR
1087@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1088As per @code{string->number} above, but taking a C string, as pointer
1089and length. The string characters should be in the current locale
1090encoding (@code{locale} in the name refers only to that, there's no
1091locale-dependent parsing).
1092@end deftypefn
1093
07d83abe
MV
1094
1095@node Complex
1096@subsubsection Complex Number Operations
1097@rnindex make-rectangular
1098@rnindex make-polar
1099@rnindex real-part
1100@rnindex imag-part
1101@rnindex magnitude
1102@rnindex angle
1103
3323ec06
NJ
1104@deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1105@deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1106Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
07d83abe
MV
1107@end deffn
1108
c7218482
MW
1109@deffn {Scheme Procedure} make-polar mag ang
1110@deffnx {C Function} scm_make_polar (mag, ang)
34942993 1111@cindex polar form
c7218482 1112Return the complex number @var{mag} * e^(i * @var{ang}).
07d83abe
MV
1113@end deffn
1114
1115@c begin (texi-doc-string "guile" "real-part")
1116@deffn {Scheme Procedure} real-part z
1117@deffnx {C Function} scm_real_part (z)
1118Return the real part of the number @var{z}.
1119@end deffn
1120
1121@c begin (texi-doc-string "guile" "imag-part")
1122@deffn {Scheme Procedure} imag-part z
1123@deffnx {C Function} scm_imag_part (z)
1124Return the imaginary part of the number @var{z}.
1125@end deffn
1126
1127@c begin (texi-doc-string "guile" "magnitude")
1128@deffn {Scheme Procedure} magnitude z
1129@deffnx {C Function} scm_magnitude (z)
1130Return the magnitude of the number @var{z}. This is the same as
1131@code{abs} for real arguments, but also allows complex numbers.
1132@end deffn
1133
1134@c begin (texi-doc-string "guile" "angle")
1135@deffn {Scheme Procedure} angle z
1136@deffnx {C Function} scm_angle (z)
1137Return the angle of the complex number @var{z}.
1138@end deffn
1139
5615f696
MV
1140@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1141@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1142Like @code{scm_make_rectangular} or @code{scm_make_polar},
1143respectively, but these functions take @code{double}s as their
1144arguments.
1145@end deftypefn
1146
1147@deftypefn {C Function} double scm_c_real_part (z)
1148@deftypefnx {C Function} double scm_c_imag_part (z)
1149Returns the real or imaginary part of @var{z} as a @code{double}.
1150@end deftypefn
1151
1152@deftypefn {C Function} double scm_c_magnitude (z)
1153@deftypefnx {C Function} double scm_c_angle (z)
1154Returns the magnitude or angle of @var{z} as a @code{double}.
1155@end deftypefn
1156
07d83abe
MV
1157
1158@node Arithmetic
1159@subsubsection Arithmetic Functions
1160@rnindex max
1161@rnindex min
1162@rnindex +
1163@rnindex *
1164@rnindex -
1165@rnindex /
b1f57ea4
LC
1166@findex 1+
1167@findex 1-
07d83abe
MV
1168@rnindex abs
1169@rnindex floor
1170@rnindex ceiling
1171@rnindex truncate
1172@rnindex round
ff62c168
MW
1173@rnindex euclidean/
1174@rnindex euclidean-quotient
1175@rnindex euclidean-remainder
8f9da340
MW
1176@rnindex floor/
1177@rnindex floor-quotient
1178@rnindex floor-remainder
1179@rnindex ceiling/
1180@rnindex ceiling-quotient
1181@rnindex ceiling-remainder
1182@rnindex truncate/
1183@rnindex truncate-quotient
1184@rnindex truncate-remainder
ff62c168
MW
1185@rnindex centered/
1186@rnindex centered-quotient
1187@rnindex centered-remainder
8f9da340
MW
1188@rnindex round/
1189@rnindex round-quotient
1190@rnindex round-remainder
07d83abe
MV
1191
1192The C arithmetic functions below always takes two arguments, while the
1193Scheme functions can take an arbitrary number. When you need to
1194invoke them with just one argument, for example to compute the
ecb87335 1195equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
07d83abe
MV
1196one: @code{scm_difference (x, SCM_UNDEFINED)}.
1197
1198@c begin (texi-doc-string "guile" "+")
1199@deffn {Scheme Procedure} + z1 @dots{}
1200@deffnx {C Function} scm_sum (z1, z2)
1201Return the sum of all parameter values. Return 0 if called without any
1202parameters.
1203@end deffn
1204
1205@c begin (texi-doc-string "guile" "-")
1206@deffn {Scheme Procedure} - z1 z2 @dots{}
1207@deffnx {C Function} scm_difference (z1, z2)
1208If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1209the sum of all but the first argument are subtracted from the first
1210argument.
1211@end deffn
1212
1213@c begin (texi-doc-string "guile" "*")
1214@deffn {Scheme Procedure} * z1 @dots{}
1215@deffnx {C Function} scm_product (z1, z2)
1216Return the product of all arguments. If called without arguments, 1 is
1217returned.
1218@end deffn
1219
1220@c begin (texi-doc-string "guile" "/")
1221@deffn {Scheme Procedure} / z1 z2 @dots{}
1222@deffnx {C Function} scm_divide (z1, z2)
1223Divide the first argument by the product of the remaining arguments. If
1224called with one argument @var{z1}, 1/@var{z1} is returned.
1225@end deffn
1226
b1f57ea4
LC
1227@deffn {Scheme Procedure} 1+ z
1228@deffnx {C Function} scm_oneplus (z)
1229Return @math{@var{z} + 1}.
1230@end deffn
1231
1232@deffn {Scheme Procedure} 1- z
1233@deffnx {C function} scm_oneminus (z)
1234Return @math{@var{z} - 1}.
1235@end deffn
1236
07d83abe
MV
1237@c begin (texi-doc-string "guile" "abs")
1238@deffn {Scheme Procedure} abs x
1239@deffnx {C Function} scm_abs (x)
1240Return the absolute value of @var{x}.
1241
1242@var{x} must be a number with zero imaginary part. To calculate the
1243magnitude of a complex number, use @code{magnitude} instead.
1244@end deffn
1245
1246@c begin (texi-doc-string "guile" "max")
1247@deffn {Scheme Procedure} max x1 x2 @dots{}
1248@deffnx {C Function} scm_max (x1, x2)
1249Return the maximum of all parameter values.
1250@end deffn
1251
1252@c begin (texi-doc-string "guile" "min")
1253@deffn {Scheme Procedure} min x1 x2 @dots{}
1254@deffnx {C Function} scm_min (x1, x2)
1255Return the minimum of all parameter values.
1256@end deffn
1257
1258@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1259@deffn {Scheme Procedure} truncate x
07d83abe
MV
1260@deffnx {C Function} scm_truncate_number (x)
1261Round the inexact number @var{x} towards zero.
1262@end deffn
1263
1264@c begin (texi-doc-string "guile" "round")
1265@deffn {Scheme Procedure} round x
1266@deffnx {C Function} scm_round_number (x)
1267Round the inexact number @var{x} to the nearest integer. When exactly
1268halfway between two integers, round to the even one.
1269@end deffn
1270
1271@c begin (texi-doc-string "guile" "floor")
1272@deffn {Scheme Procedure} floor x
1273@deffnx {C Function} scm_floor (x)
1274Round the number @var{x} towards minus infinity.
1275@end deffn
1276
1277@c begin (texi-doc-string "guile" "ceiling")
1278@deffn {Scheme Procedure} ceiling x
1279@deffnx {C Function} scm_ceiling (x)
1280Round the number @var{x} towards infinity.
1281@end deffn
1282
35da08ee
MV
1283@deftypefn {C Function} double scm_c_truncate (double x)
1284@deftypefnx {C Function} double scm_c_round (double x)
1285Like @code{scm_truncate_number} or @code{scm_round_number},
1286respectively, but these functions take and return @code{double}
1287values.
1288@end deftypefn
07d83abe 1289
5fbf680b
MW
1290@deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1291@deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1292@deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1293@deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1294@deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1295@deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
ff62c168
MW
1296These procedures accept two real numbers @var{x} and @var{y}, where the
1297divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1298integer @var{q} and @code{euclidean-remainder} returns the real number
1299@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
5fbf680b 1300@math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
ff62c168
MW
1301@var{r}, and is more efficient than computing each separately. Note
1302that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1303@math{floor(@var{x}/@var{y})}, otherwise it returns
1304@math{ceiling(@var{x}/@var{y})}.
1305
1306Note that these operators are equivalent to the R6RS operators
1307@code{div}, @code{mod}, and @code{div-and-mod}.
1308
1309@lisp
1310(euclidean-quotient 123 10) @result{} 12
1311(euclidean-remainder 123 10) @result{} 3
1312(euclidean/ 123 10) @result{} 12 and 3
1313(euclidean/ 123 -10) @result{} -12 and 3
1314(euclidean/ -123 10) @result{} -13 and 7
1315(euclidean/ -123 -10) @result{} 13 and 7
1316(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1317(euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1318@end lisp
5fbf680b 1319@end deftypefn
ff62c168 1320
8f9da340
MW
1321@deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1322@deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1323@deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1324@deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1325@deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1326@deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1327These procedures accept two real numbers @var{x} and @var{y}, where the
1328divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1329integer @var{q} and @code{floor-remainder} returns the real number
1330@var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1331@math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1332both @var{q} and @var{r}, and is more efficient than computing each
1333separately. Note that @var{r}, if non-zero, will have the same sign
1334as @var{y}.
1335
ce606606 1336When @var{x} and @var{y} are integers, @code{floor-remainder} is
8f9da340
MW
1337equivalent to the R5RS integer-only operator @code{modulo}.
1338
1339@lisp
1340(floor-quotient 123 10) @result{} 12
1341(floor-remainder 123 10) @result{} 3
1342(floor/ 123 10) @result{} 12 and 3
1343(floor/ 123 -10) @result{} -13 and -7
1344(floor/ -123 10) @result{} -13 and 7
1345(floor/ -123 -10) @result{} 12 and -3
1346(floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1347(floor/ 16/3 -10/7) @result{} -4 and -8/21
1348@end lisp
1349@end deftypefn
1350
1351@deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1352@deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1353@deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1354@deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1355@deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1356@deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1357These procedures accept two real numbers @var{x} and @var{y}, where the
1358divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1359integer @var{q} and @code{ceiling-remainder} returns the real number
1360@var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1361@math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1362both @var{q} and @var{r}, and is more efficient than computing each
1363separately. Note that @var{r}, if non-zero, will have the opposite sign
1364of @var{y}.
1365
1366@lisp
1367(ceiling-quotient 123 10) @result{} 13
1368(ceiling-remainder 123 10) @result{} -7
1369(ceiling/ 123 10) @result{} 13 and -7
1370(ceiling/ 123 -10) @result{} -12 and 3
1371(ceiling/ -123 10) @result{} -12 and -3
1372(ceiling/ -123 -10) @result{} 13 and 7
1373(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1374(ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1375@end lisp
1376@end deftypefn
1377
1378@deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1379@deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1380@deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1381@deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1382@deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1383@deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1384These procedures accept two real numbers @var{x} and @var{y}, where the
1385divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1386integer @var{q} and @code{truncate-remainder} returns the real number
1387@var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1388and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1389both @var{q} and @var{r}, and is more efficient than computing each
1390separately. Note that @var{r}, if non-zero, will have the same sign
1391as @var{x}.
1392
ce606606 1393When @var{x} and @var{y} are integers, these operators are
a6b087be
MW
1394equivalent to the R5RS integer-only operators @code{quotient} and
1395@code{remainder}.
8f9da340
MW
1396
1397@lisp
1398(truncate-quotient 123 10) @result{} 12
1399(truncate-remainder 123 10) @result{} 3
1400(truncate/ 123 10) @result{} 12 and 3
1401(truncate/ 123 -10) @result{} -12 and 3
1402(truncate/ -123 10) @result{} -12 and -3
1403(truncate/ -123 -10) @result{} 12 and -3
1404(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1405(truncate/ 16/3 -10/7) @result{} -3 and 22/21
1406@end lisp
1407@end deftypefn
1408
5fbf680b
MW
1409@deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1410@deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1411@deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1412@deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1413@deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1414@deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
ff62c168
MW
1415These procedures accept two real numbers @var{x} and @var{y}, where the
1416divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1417integer @var{q} and @code{centered-remainder} returns the real number
1418@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
5fbf680b 1419@math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
ff62c168
MW
1420returns both @var{q} and @var{r}, and is more efficient than computing
1421each separately.
1422
1423Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1424rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1425exactly half-way between two integers, the tie is broken according to
1426the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1427positive infinity, otherwise they are rounded toward negative infinity.
5fbf680b
MW
1428This is a consequence of the requirement that
1429@math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
ff62c168
MW
1430
1431Note that these operators are equivalent to the R6RS operators
1432@code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1433
1434@lisp
1435(centered-quotient 123 10) @result{} 12
1436(centered-remainder 123 10) @result{} 3
1437(centered/ 123 10) @result{} 12 and 3
1438(centered/ 123 -10) @result{} -12 and 3
1439(centered/ -123 10) @result{} -12 and -3
1440(centered/ -123 -10) @result{} 12 and -3
8f9da340
MW
1441(centered/ 125 10) @result{} 13 and -5
1442(centered/ 127 10) @result{} 13 and -3
1443(centered/ 135 10) @result{} 14 and -5
ff62c168
MW
1444(centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1445(centered/ 16/3 -10/7) @result{} -4 and -8/21
1446@end lisp
5fbf680b 1447@end deftypefn
ff62c168 1448
8f9da340
MW
1449@deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1450@deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1451@deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1452@deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1453@deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1454@deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1455These procedures accept two real numbers @var{x} and @var{y}, where the
1456divisor @var{y} must be non-zero. @code{round-quotient} returns the
1457integer @var{q} and @code{round-remainder} returns the real number
1458@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1459@var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1460with ties going to the nearest even integer. @code{round/}
1461returns both @var{q} and @var{r}, and is more efficient than computing
1462each separately.
1463
1464Note that @code{round/} and @code{centered/} are almost equivalent, but
1465their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1466between two integers. In this case, @code{round/} chooses the nearest
1467even integer, whereas @code{centered/} chooses in such a way to satisfy
1468the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1469is stronger than the corresponding constraint for @code{round/},
1470@math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1471when @var{x} and @var{y} are integers, the number of possible remainders
1472returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1473possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1474@var{y} is even.
1475
1476@lisp
1477(round-quotient 123 10) @result{} 12
1478(round-remainder 123 10) @result{} 3
1479(round/ 123 10) @result{} 12 and 3
1480(round/ 123 -10) @result{} -12 and 3
1481(round/ -123 10) @result{} -12 and -3
1482(round/ -123 -10) @result{} 12 and -3
1483(round/ 125 10) @result{} 12 and 5
1484(round/ 127 10) @result{} 13 and -3
1485(round/ 135 10) @result{} 14 and -5
1486(round/ -123.2 -63.5) @result{} 2.0 and 3.8
1487(round/ 16/3 -10/7) @result{} -4 and -8/21
1488@end lisp
1489@end deftypefn
1490
07d83abe
MV
1491@node Scientific
1492@subsubsection Scientific Functions
1493
1494The following procedures accept any kind of number as arguments,
1495including complex numbers.
1496
1497@rnindex sqrt
1498@c begin (texi-doc-string "guile" "sqrt")
1499@deffn {Scheme Procedure} sqrt z
40296bab 1500Return the square root of @var{z}. Of the two possible roots
ecb87335 1501(positive and negative), the one with a positive real part is
40296bab
KR
1502returned, or if that's zero then a positive imaginary part. Thus,
1503
1504@example
1505(sqrt 9.0) @result{} 3.0
1506(sqrt -9.0) @result{} 0.0+3.0i
1507(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1508(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1509@end example
07d83abe
MV
1510@end deffn
1511
1512@rnindex expt
1513@c begin (texi-doc-string "guile" "expt")
1514@deffn {Scheme Procedure} expt z1 z2
1515Return @var{z1} raised to the power of @var{z2}.
1516@end deffn
1517
1518@rnindex sin
1519@c begin (texi-doc-string "guile" "sin")
1520@deffn {Scheme Procedure} sin z
1521Return the sine of @var{z}.
1522@end deffn
1523
1524@rnindex cos
1525@c begin (texi-doc-string "guile" "cos")
1526@deffn {Scheme Procedure} cos z
1527Return the cosine of @var{z}.
1528@end deffn
1529
1530@rnindex tan
1531@c begin (texi-doc-string "guile" "tan")
1532@deffn {Scheme Procedure} tan z
1533Return the tangent of @var{z}.
1534@end deffn
1535
1536@rnindex asin
1537@c begin (texi-doc-string "guile" "asin")
1538@deffn {Scheme Procedure} asin z
1539Return the arcsine of @var{z}.
1540@end deffn
1541
1542@rnindex acos
1543@c begin (texi-doc-string "guile" "acos")
1544@deffn {Scheme Procedure} acos z
1545Return the arccosine of @var{z}.
1546@end deffn
1547
1548@rnindex atan
1549@c begin (texi-doc-string "guile" "atan")
1550@deffn {Scheme Procedure} atan z
1551@deffnx {Scheme Procedure} atan y x
1552Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1553@end deffn
1554
1555@rnindex exp
1556@c begin (texi-doc-string "guile" "exp")
1557@deffn {Scheme Procedure} exp z
1558Return e to the power of @var{z}, where e is the base of natural
1559logarithms (2.71828@dots{}).
1560@end deffn
1561
1562@rnindex log
1563@c begin (texi-doc-string "guile" "log")
1564@deffn {Scheme Procedure} log z
1565Return the natural logarithm of @var{z}.
1566@end deffn
1567
1568@c begin (texi-doc-string "guile" "log10")
1569@deffn {Scheme Procedure} log10 z
1570Return the base 10 logarithm of @var{z}.
1571@end deffn
1572
1573@c begin (texi-doc-string "guile" "sinh")
1574@deffn {Scheme Procedure} sinh z
1575Return the hyperbolic sine of @var{z}.
1576@end deffn
1577
1578@c begin (texi-doc-string "guile" "cosh")
1579@deffn {Scheme Procedure} cosh z
1580Return the hyperbolic cosine of @var{z}.
1581@end deffn
1582
1583@c begin (texi-doc-string "guile" "tanh")
1584@deffn {Scheme Procedure} tanh z
1585Return the hyperbolic tangent of @var{z}.
1586@end deffn
1587
1588@c begin (texi-doc-string "guile" "asinh")
1589@deffn {Scheme Procedure} asinh z
1590Return the hyperbolic arcsine of @var{z}.
1591@end deffn
1592
1593@c begin (texi-doc-string "guile" "acosh")
1594@deffn {Scheme Procedure} acosh z
1595Return the hyperbolic arccosine of @var{z}.
1596@end deffn
1597
1598@c begin (texi-doc-string "guile" "atanh")
1599@deffn {Scheme Procedure} atanh z
1600Return the hyperbolic arctangent of @var{z}.
1601@end deffn
1602
1603
07d83abe
MV
1604@node Bitwise Operations
1605@subsubsection Bitwise Operations
1606
1607For the following bitwise functions, negative numbers are treated as
1608infinite precision twos-complements. For instance @math{-6} is bits
1609@math{@dots{}111010}, with infinitely many ones on the left. It can
1610be seen that adding 6 (binary 110) to such a bit pattern gives all
1611zeros.
1612
1613@deffn {Scheme Procedure} logand n1 n2 @dots{}
1614@deffnx {C Function} scm_logand (n1, n2)
1615Return the bitwise @sc{and} of the integer arguments.
1616
1617@lisp
1618(logand) @result{} -1
1619(logand 7) @result{} 7
1620(logand #b111 #b011 #b001) @result{} 1
1621@end lisp
1622@end deffn
1623
1624@deffn {Scheme Procedure} logior n1 n2 @dots{}
1625@deffnx {C Function} scm_logior (n1, n2)
1626Return the bitwise @sc{or} of the integer arguments.
1627
1628@lisp
1629(logior) @result{} 0
1630(logior 7) @result{} 7
1631(logior #b000 #b001 #b011) @result{} 3
1632@end lisp
1633@end deffn
1634
1635@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1636@deffnx {C Function} scm_loxor (n1, n2)
1637Return the bitwise @sc{xor} of the integer arguments. A bit is
1638set in the result if it is set in an odd number of arguments.
1639
1640@lisp
1641(logxor) @result{} 0
1642(logxor 7) @result{} 7
1643(logxor #b000 #b001 #b011) @result{} 2
1644(logxor #b000 #b001 #b011 #b011) @result{} 1
1645@end lisp
1646@end deffn
1647
1648@deffn {Scheme Procedure} lognot n
1649@deffnx {C Function} scm_lognot (n)
1650Return the integer which is the ones-complement of the integer
1651argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1652
1653@lisp
1654(number->string (lognot #b10000000) 2)
1655 @result{} "-10000001"
1656(number->string (lognot #b0) 2)
1657 @result{} "-1"
1658@end lisp
1659@end deffn
1660
1661@deffn {Scheme Procedure} logtest j k
1662@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1663Test whether @var{j} and @var{k} have any 1 bits in common. This is
1664equivalent to @code{(not (zero? (logand j k)))}, but without actually
1665calculating the @code{logand}, just testing for non-zero.
07d83abe 1666
a46648ac 1667@lisp
07d83abe
MV
1668(logtest #b0100 #b1011) @result{} #f
1669(logtest #b0100 #b0111) @result{} #t
1670@end lisp
1671@end deffn
1672
1673@deffn {Scheme Procedure} logbit? index j
1674@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1675Test whether bit number @var{index} in @var{j} is set. @var{index}
1676starts from 0 for the least significant bit.
07d83abe 1677
a46648ac 1678@lisp
07d83abe
MV
1679(logbit? 0 #b1101) @result{} #t
1680(logbit? 1 #b1101) @result{} #f
1681(logbit? 2 #b1101) @result{} #t
1682(logbit? 3 #b1101) @result{} #t
1683(logbit? 4 #b1101) @result{} #f
1684@end lisp
1685@end deffn
1686
1687@deffn {Scheme Procedure} ash n cnt
1688@deffnx {C Function} scm_ash (n, cnt)
1689Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1690@var{cnt} is negative. This is an ``arithmetic'' shift.
1691
1692This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1693when @var{cnt} is negative it's a division, rounded towards negative
1694infinity. (Note that this is not the same rounding as @code{quotient}
1695does.)
1696
1697With @var{n} viewed as an infinite precision twos complement,
1698@code{ash} means a left shift introducing zero bits, or a right shift
1699dropping bits.
1700
1701@lisp
1702(number->string (ash #b1 3) 2) @result{} "1000"
1703(number->string (ash #b1010 -1) 2) @result{} "101"
1704
1705;; -23 is bits ...11101001, -6 is bits ...111010
1706(ash -23 -2) @result{} -6
1707@end lisp
1708@end deffn
1709
1710@deffn {Scheme Procedure} logcount n
1711@deffnx {C Function} scm_logcount (n)
a46648ac 1712Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1713positive, the 1-bits in its binary representation are counted.
1714If negative, the 0-bits in its two's-complement binary
a46648ac 1715representation are counted. If zero, 0 is returned.
07d83abe
MV
1716
1717@lisp
1718(logcount #b10101010)
1719 @result{} 4
1720(logcount 0)
1721 @result{} 0
1722(logcount -2)
1723 @result{} 1
1724@end lisp
1725@end deffn
1726
1727@deffn {Scheme Procedure} integer-length n
1728@deffnx {C Function} scm_integer_length (n)
1729Return the number of bits necessary to represent @var{n}.
1730
1731For positive @var{n} this is how many bits to the most significant one
1732bit. For negative @var{n} it's how many bits to the most significant
1733zero bit in twos complement form.
1734
1735@lisp
1736(integer-length #b10101010) @result{} 8
1737(integer-length #b1111) @result{} 4
1738(integer-length 0) @result{} 0
1739(integer-length -1) @result{} 0
1740(integer-length -256) @result{} 8
1741(integer-length -257) @result{} 9
1742@end lisp
1743@end deffn
1744
1745@deffn {Scheme Procedure} integer-expt n k
1746@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1747Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1748integer, @var{n} can be any number.
1749
1750Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1751in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1752@math{0^0} is 1.
07d83abe
MV
1753
1754@lisp
a46648ac
KR
1755(integer-expt 2 5) @result{} 32
1756(integer-expt -3 3) @result{} -27
1757(integer-expt 5 -3) @result{} 1/125
1758(integer-expt 0 0) @result{} 1
07d83abe
MV
1759@end lisp
1760@end deffn
1761
1762@deffn {Scheme Procedure} bit-extract n start end
1763@deffnx {C Function} scm_bit_extract (n, start, end)
1764Return the integer composed of the @var{start} (inclusive)
1765through @var{end} (exclusive) bits of @var{n}. The
1766@var{start}th bit becomes the 0-th bit in the result.
1767
1768@lisp
1769(number->string (bit-extract #b1101101010 0 4) 2)
1770 @result{} "1010"
1771(number->string (bit-extract #b1101101010 4 9) 2)
1772 @result{} "10110"
1773@end lisp
1774@end deffn
1775
1776
1777@node Random
1778@subsubsection Random Number Generation
1779
1780Pseudo-random numbers are generated from a random state object, which
77b13912 1781can be created with @code{seed->random-state} or
679cceed 1782@code{datum->random-state}. An external representation (i.e.@: one
77b13912
AR
1783which can written with @code{write} and read with @code{read}) of a
1784random state object can be obtained via
1d454874 1785@code{random-state->datum}. The @var{state} parameter to the
77b13912
AR
1786various functions below is optional, it defaults to the state object
1787in the @code{*random-state*} variable.
07d83abe
MV
1788
1789@deffn {Scheme Procedure} copy-random-state [state]
1790@deffnx {C Function} scm_copy_random_state (state)
1791Return a copy of the random state @var{state}.
1792@end deffn
1793
1794@deffn {Scheme Procedure} random n [state]
1795@deffnx {C Function} scm_random (n, state)
1796Return a number in [0, @var{n}).
1797
1798Accepts a positive integer or real n and returns a
1799number of the same type between zero (inclusive) and
1800@var{n} (exclusive). The values returned have a uniform
1801distribution.
1802@end deffn
1803
1804@deffn {Scheme Procedure} random:exp [state]
1805@deffnx {C Function} scm_random_exp (state)
1806Return an inexact real in an exponential distribution with mean
18071. For an exponential distribution with mean @var{u} use @code{(*
1808@var{u} (random:exp))}.
1809@end deffn
1810
1811@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1812@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1813Fills @var{vect} with inexact real random numbers the sum of whose
1814squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1815space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1816the coordinates are uniformly distributed over the surface of the unit
1817n-sphere.
1818@end deffn
1819
1820@deffn {Scheme Procedure} random:normal [state]
1821@deffnx {C Function} scm_random_normal (state)
1822Return an inexact real in a normal distribution. The distribution
1823used has mean 0 and standard deviation 1. For a normal distribution
1824with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1825(* @var{d} (random:normal)))}.
1826@end deffn
1827
1828@deffn {Scheme Procedure} random:normal-vector! vect [state]
1829@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1830Fills @var{vect} with inexact real random numbers that are
1831independent and standard normally distributed
1832(i.e., with mean 0 and variance 1).
1833@end deffn
1834
1835@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1836@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1837Fills @var{vect} with inexact real random numbers the sum of whose
1838squares is less than 1.0. Thinking of @var{vect} as coordinates in
1839space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1840the coordinates are uniformly distributed within the unit
4497bd2f 1841@var{n}-sphere.
07d83abe
MV
1842@c FIXME: What does this mean, particularly the n-sphere part?
1843@end deffn
1844
1845@deffn {Scheme Procedure} random:uniform [state]
1846@deffnx {C Function} scm_random_uniform (state)
1847Return a uniformly distributed inexact real random number in
1848[0,1).
1849@end deffn
1850
1851@deffn {Scheme Procedure} seed->random-state seed
1852@deffnx {C Function} scm_seed_to_random_state (seed)
1853Return a new random state using @var{seed}.
1854@end deffn
1855
1d454874
AW
1856@deffn {Scheme Procedure} datum->random-state datum
1857@deffnx {C Function} scm_datum_to_random_state (datum)
1858Return a new random state from @var{datum}, which should have been
1859obtained by @code{random-state->datum}.
77b13912
AR
1860@end deffn
1861
1d454874
AW
1862@deffn {Scheme Procedure} random-state->datum state
1863@deffnx {C Function} scm_random_state_to_datum (state)
1864Return a datum representation of @var{state} that may be written out and
1865read back with the Scheme reader.
77b13912
AR
1866@end deffn
1867
d47db067
MW
1868@deffn {Scheme Procedure} random-state-from-platform
1869@deffnx {C Function} scm_random_state_from_platform ()
1870Construct a new random state seeded from a platform-specific source of
1871entropy, appropriate for use in non-security-critical applications.
1872Currently @file{/dev/urandom} is tried first, or else the seed is based
1873on the time, date, process ID, an address from a freshly allocated heap
1874cell, an address from the local stack frame, and a high-resolution timer
1875if available.
1876@end deffn
1877
07d83abe
MV
1878@defvar *random-state*
1879The global random state used by the above functions when the
1880@var{state} parameter is not given.
1881@end defvar
1882
8c726cf0
NJ
1883Note that the initial value of @code{*random-state*} is the same every
1884time Guile starts up. Therefore, if you don't pass a @var{state}
1885parameter to the above procedures, and you don't set
1886@code{*random-state*} to @code{(seed->random-state your-seed)}, where
1887@code{your-seed} is something that @emph{isn't} the same every time,
1888you'll get the same sequence of ``random'' numbers on every run.
1889
1890For example, unless the relevant source code has changed, @code{(map
1891random (cdr (iota 30)))}, if the first use of random numbers since
1892Guile started up, will always give:
1893
1894@lisp
1895(map random (cdr (iota 19)))
1896@result{}
1897(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1898@end lisp
1899
d47db067
MW
1900To seed the random state in a sensible way for non-security-critical
1901applications, do this during initialization of your program:
8c726cf0
NJ
1902
1903@lisp
d47db067 1904(set! *random-state* (random-state-from-platform))
8c726cf0
NJ
1905@end lisp
1906
07d83abe
MV
1907
1908@node Characters
1909@subsection Characters
1910@tpindex Characters
1911
3f12aedb
MG
1912In Scheme, there is a data type to describe a single character.
1913
1914Defining what exactly a character @emph{is} can be more complicated
bb15a36c
MG
1915than it seems. Guile follows the advice of R6RS and uses The Unicode
1916Standard to help define what a character is. So, for Guile, a
1917character is anything in the Unicode Character Database.
1918
1919@cindex code point
1920@cindex Unicode code point
1921
1922The Unicode Character Database is basically a table of characters
1923indexed using integers called 'code points'. Valid code points are in
1924the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1925@code{#x10FFFF} inclusive, which is about 1.1 million code points.
1926
1927@cindex designated code point
1928@cindex code point, designated
1929
1930Any code point that has been assigned to a character or that has
1931otherwise been given a meaning by Unicode is called a 'designated code
1932point'. Most of the designated code points, about 200,000 of them,
1933indicate characters, accents or other combining marks that modify
1934other characters, symbols, whitespace, and control characters. Some
1935are not characters but indicators that suggest how to format or
1936display neighboring characters.
1937
1938@cindex reserved code point
1939@cindex code point, reserved
1940
1941If a code point is not a designated code point -- if it has not been
1942assigned to a character by The Unicode Standard -- it is a 'reserved
1943code point', meaning that they are reserved for future use. Most of
1944the code points, about 800,000, are 'reserved code points'.
1945
1946By convention, a Unicode code point is written as
1947``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1948this convenient notation is not valid code. Guile does not interpret
1949``U+XXXX'' as a character.
3f12aedb 1950
050ab45f
MV
1951In Scheme, a character literal is written as @code{#\@var{name}} where
1952@var{name} is the name of the character that you want. Printable
1953characters have their usual single character name; for example,
bb15a36c
MG
1954@code{#\a} is a lower case @code{a}.
1955
1956Some of the code points are 'combining characters' that are not meant
1957to be printed by themselves but are instead meant to modify the
1958appearance of the previous character. For combining characters, an
1959alternate form of the character literal is @code{#\} followed by
1960U+25CC (a small, dotted circle), followed by the combining character.
1961This allows the combining character to be drawn on the circle, not on
1962the backslash of @code{#\}.
1963
1964Many of the non-printing characters, such as whitespace characters and
1965control characters, also have names.
07d83abe 1966
15b6a6b2
MG
1967The most commonly used non-printing characters have long character
1968names, described in the table below.
1969
1970@multitable {@code{#\backspace}} {Preferred}
1971@item Character Name @tab Codepoint
1972@item @code{#\nul} @tab U+0000
1973@item @code{#\alarm} @tab u+0007
1974@item @code{#\backspace} @tab U+0008
1975@item @code{#\tab} @tab U+0009
1976@item @code{#\linefeed} @tab U+000A
1977@item @code{#\newline} @tab U+000A
1978@item @code{#\vtab} @tab U+000B
1979@item @code{#\page} @tab U+000C
1980@item @code{#\return} @tab U+000D
1981@item @code{#\esc} @tab U+001B
1982@item @code{#\space} @tab U+0020
1983@item @code{#\delete} @tab U+007F
1984@end multitable
1985
1986There are also short names for all of the ``C0 control characters''
1987(those with code points below 32). The following table lists the short
1988name for each character.
07d83abe
MV
1989
1990@multitable @columnfractions .25 .25 .25 .25
1991@item 0 = @code{#\nul}
1992 @tab 1 = @code{#\soh}
1993 @tab 2 = @code{#\stx}
1994 @tab 3 = @code{#\etx}
1995@item 4 = @code{#\eot}
1996 @tab 5 = @code{#\enq}
1997 @tab 6 = @code{#\ack}
1998 @tab 7 = @code{#\bel}
1999@item 8 = @code{#\bs}
2000 @tab 9 = @code{#\ht}
6ea30487 2001 @tab 10 = @code{#\lf}
07d83abe 2002 @tab 11 = @code{#\vt}
3f12aedb 2003@item 12 = @code{#\ff}
07d83abe
MV
2004 @tab 13 = @code{#\cr}
2005 @tab 14 = @code{#\so}
2006 @tab 15 = @code{#\si}
2007@item 16 = @code{#\dle}
2008 @tab 17 = @code{#\dc1}
2009 @tab 18 = @code{#\dc2}
2010 @tab 19 = @code{#\dc3}
2011@item 20 = @code{#\dc4}
2012 @tab 21 = @code{#\nak}
2013 @tab 22 = @code{#\syn}
2014 @tab 23 = @code{#\etb}
2015@item 24 = @code{#\can}
2016 @tab 25 = @code{#\em}
2017 @tab 26 = @code{#\sub}
2018 @tab 27 = @code{#\esc}
2019@item 28 = @code{#\fs}
2020 @tab 29 = @code{#\gs}
2021 @tab 30 = @code{#\rs}
2022 @tab 31 = @code{#\us}
2023@item 32 = @code{#\sp}
2024@end multitable
2025
15b6a6b2
MG
2026The short name for the ``delete'' character (code point U+007F) is
2027@code{#\del}.
07d83abe 2028
15b6a6b2
MG
2029There are also a few alternative names left over for compatibility with
2030previous versions of Guile.
07d83abe 2031
3f12aedb
MG
2032@multitable {@code{#\backspace}} {Preferred}
2033@item Alternate @tab Standard
3f12aedb 2034@item @code{#\nl} @tab @code{#\newline}
15b6a6b2 2035@item @code{#\np} @tab @code{#\page}
07d83abe
MV
2036@item @code{#\null} @tab @code{#\nul}
2037@end multitable
2038
bb15a36c
MG
2039Characters may also be written using their code point values. They can
2040be written with as an octal number, such as @code{#\10} for
2041@code{#\bs} or @code{#\177} for @code{#\del}.
3f12aedb 2042
0f3a70cf
MG
2043If one prefers hex to octal, there is an additional syntax for character
2044escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2045number of one to eight digits.
6ea30487 2046
07d83abe
MV
2047@rnindex char?
2048@deffn {Scheme Procedure} char? x
2049@deffnx {C Function} scm_char_p (x)
2050Return @code{#t} iff @var{x} is a character, else @code{#f}.
2051@end deffn
2052
bb15a36c 2053Fundamentally, the character comparison operations below are
3f12aedb
MG
2054numeric comparisons of the character's code points.
2055
07d83abe
MV
2056@rnindex char=?
2057@deffn {Scheme Procedure} char=? x y
3f12aedb
MG
2058Return @code{#t} iff code point of @var{x} is equal to the code point
2059of @var{y}, else @code{#f}.
07d83abe
MV
2060@end deffn
2061
2062@rnindex char<?
2063@deffn {Scheme Procedure} char<? x y
3f12aedb
MG
2064Return @code{#t} iff the code point of @var{x} is less than the code
2065point of @var{y}, else @code{#f}.
07d83abe
MV
2066@end deffn
2067
2068@rnindex char<=?
2069@deffn {Scheme Procedure} char<=? x y
3f12aedb
MG
2070Return @code{#t} iff the code point of @var{x} is less than or equal
2071to the code point of @var{y}, else @code{#f}.
07d83abe
MV
2072@end deffn
2073
2074@rnindex char>?
2075@deffn {Scheme Procedure} char>? x y
3f12aedb
MG
2076Return @code{#t} iff the code point of @var{x} is greater than the
2077code point of @var{y}, else @code{#f}.
07d83abe
MV
2078@end deffn
2079
2080@rnindex char>=?
2081@deffn {Scheme Procedure} char>=? x y
3f12aedb
MG
2082Return @code{#t} iff the code point of @var{x} is greater than or
2083equal to the code point of @var{y}, else @code{#f}.
07d83abe
MV
2084@end deffn
2085
bb15a36c
MG
2086@cindex case folding
2087
2088Case-insensitive character comparisons use @emph{Unicode case
2089folding}. In case folding comparisons, if a character is lowercase
2090and has an uppercase form that can be expressed as a single character,
2091it is converted to uppercase before comparison. All other characters
2092undergo no conversion before the comparison occurs. This includes the
2093German sharp S (Eszett) which is not uppercased before conversion
2094because its uppercase form has two characters. Unicode case folding
2095is language independent: it uses rules that are generally true, but,
2096it cannot cover all cases for all languages.
3f12aedb 2097
07d83abe
MV
2098@rnindex char-ci=?
2099@deffn {Scheme Procedure} char-ci=? x y
3f12aedb
MG
2100Return @code{#t} iff the case-folded code point of @var{x} is the same
2101as the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2102@end deffn
2103
2104@rnindex char-ci<?
2105@deffn {Scheme Procedure} char-ci<? x y
3f12aedb
MG
2106Return @code{#t} iff the case-folded code point of @var{x} is less
2107than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2108@end deffn
2109
2110@rnindex char-ci<=?
2111@deffn {Scheme Procedure} char-ci<=? x y
3f12aedb
MG
2112Return @code{#t} iff the case-folded code point of @var{x} is less
2113than or equal to the case-folded code point of @var{y}, else
2114@code{#f}.
07d83abe
MV
2115@end deffn
2116
2117@rnindex char-ci>?
2118@deffn {Scheme Procedure} char-ci>? x y
3f12aedb
MG
2119Return @code{#t} iff the case-folded code point of @var{x} is greater
2120than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2121@end deffn
2122
2123@rnindex char-ci>=?
2124@deffn {Scheme Procedure} char-ci>=? x y
3f12aedb
MG
2125Return @code{#t} iff the case-folded code point of @var{x} is greater
2126than or equal to the case-folded code point of @var{y}, else
2127@code{#f}.
07d83abe
MV
2128@end deffn
2129
2130@rnindex char-alphabetic?
2131@deffn {Scheme Procedure} char-alphabetic? chr
2132@deffnx {C Function} scm_char_alphabetic_p (chr)
2133Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
2134@end deffn
2135
2136@rnindex char-numeric?
2137@deffn {Scheme Procedure} char-numeric? chr
2138@deffnx {C Function} scm_char_numeric_p (chr)
2139Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
07d83abe
MV
2140@end deffn
2141
2142@rnindex char-whitespace?
2143@deffn {Scheme Procedure} char-whitespace? chr
2144@deffnx {C Function} scm_char_whitespace_p (chr)
2145Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
2146@end deffn
2147
2148@rnindex char-upper-case?
2149@deffn {Scheme Procedure} char-upper-case? chr
2150@deffnx {C Function} scm_char_upper_case_p (chr)
2151Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
2152@end deffn
2153
2154@rnindex char-lower-case?
2155@deffn {Scheme Procedure} char-lower-case? chr
2156@deffnx {C Function} scm_char_lower_case_p (chr)
2157Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
2158@end deffn
2159
2160@deffn {Scheme Procedure} char-is-both? chr
2161@deffnx {C Function} scm_char_is_both_p (chr)
2162Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
5676b4fa 2163@code{#f}.
07d83abe
MV
2164@end deffn
2165
0ca3a342
JG
2166@deffn {Scheme Procedure} char-general-category chr
2167@deffnx {C Function} scm_char_general_category (chr)
2168Return a symbol giving the two-letter name of the Unicode general
2169category assigned to @var{chr} or @code{#f} if no named category is
2170assigned. The following table provides a list of category names along
2171with their meanings.
2172
2173@multitable @columnfractions .1 .4 .1 .4
2174@item Lu
2175 @tab Uppercase letter
2176 @tab Pf
2177 @tab Final quote punctuation
2178@item Ll
2179 @tab Lowercase letter
2180 @tab Po
2181 @tab Other punctuation
2182@item Lt
2183 @tab Titlecase letter
2184 @tab Sm
2185 @tab Math symbol
2186@item Lm
2187 @tab Modifier letter
2188 @tab Sc
2189 @tab Currency symbol
2190@item Lo
2191 @tab Other letter
2192 @tab Sk
2193 @tab Modifier symbol
2194@item Mn
2195 @tab Non-spacing mark
2196 @tab So
2197 @tab Other symbol
2198@item Mc
2199 @tab Combining spacing mark
2200 @tab Zs
2201 @tab Space separator
2202@item Me
2203 @tab Enclosing mark
2204 @tab Zl
2205 @tab Line separator
2206@item Nd
2207 @tab Decimal digit number
2208 @tab Zp
2209 @tab Paragraph separator
2210@item Nl
2211 @tab Letter number
2212 @tab Cc
2213 @tab Control
2214@item No
2215 @tab Other number
2216 @tab Cf
2217 @tab Format
2218@item Pc
2219 @tab Connector punctuation
2220 @tab Cs
2221 @tab Surrogate
2222@item Pd
2223 @tab Dash punctuation
2224 @tab Co
2225 @tab Private use
2226@item Ps
2227 @tab Open punctuation
2228 @tab Cn
2229 @tab Unassigned
2230@item Pe
2231 @tab Close punctuation
2232 @tab
2233 @tab
2234@item Pi
2235 @tab Initial quote punctuation
2236 @tab
2237 @tab
2238@end multitable
2239@end deffn
2240
07d83abe
MV
2241@rnindex char->integer
2242@deffn {Scheme Procedure} char->integer chr
2243@deffnx {C Function} scm_char_to_integer (chr)
3f12aedb 2244Return the code point of @var{chr}.
07d83abe
MV
2245@end deffn
2246
2247@rnindex integer->char
2248@deffn {Scheme Procedure} integer->char n
2249@deffnx {C Function} scm_integer_to_char (n)
3f12aedb
MG
2250Return the character that has code point @var{n}. The integer @var{n}
2251must be a valid code point. Valid code points are in the ranges 0 to
2252@code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
07d83abe
MV
2253@end deffn
2254
2255@rnindex char-upcase
2256@deffn {Scheme Procedure} char-upcase chr
2257@deffnx {C Function} scm_char_upcase (chr)
2258Return the uppercase character version of @var{chr}.
2259@end deffn
2260
2261@rnindex char-downcase
2262@deffn {Scheme Procedure} char-downcase chr
2263@deffnx {C Function} scm_char_downcase (chr)
2264Return the lowercase character version of @var{chr}.
2265@end deffn
2266
820f33aa
JG
2267@rnindex char-titlecase
2268@deffn {Scheme Procedure} char-titlecase chr
2269@deffnx {C Function} scm_char_titlecase (chr)
2270Return the titlecase character version of @var{chr} if one exists;
2271otherwise return the uppercase version.
2272
2273For most characters these will be the same, but the Unicode Standard
2274includes certain digraph compatibility characters, such as @code{U+01F3}
2275``dz'', for which the uppercase and titlecase characters are different
2276(@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2277respectively).
2278@end deffn
2279
a1dcb961
MG
2280@tindex scm_t_wchar
2281@deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2282@deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2283@deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2284
2285These C functions take an integer representation of a Unicode
2286codepoint and return the codepoint corresponding to its uppercase,
2287lowercase, and titlecase forms respectively. The type
2288@code{scm_t_wchar} is a signed, 32-bit integer.
2289@end deftypefn
2290
050ab45f
MV
2291@node Character Sets
2292@subsection Character Sets
07d83abe 2293
050ab45f
MV
2294The features described in this section correspond directly to SRFI-14.
2295
2296The data type @dfn{charset} implements sets of characters
2297(@pxref{Characters}). Because the internal representation of
2298character sets is not visible to the user, a lot of procedures for
2299handling them are provided.
2300
2301Character sets can be created, extended, tested for the membership of a
2302characters and be compared to other character sets.
2303
050ab45f
MV
2304@menu
2305* Character Set Predicates/Comparison::
2306* Iterating Over Character Sets:: Enumerate charset elements.
2307* Creating Character Sets:: Making new charsets.
2308* Querying Character Sets:: Test charsets for membership etc.
2309* Character-Set Algebra:: Calculating new charsets.
2310* Standard Character Sets:: Variables containing predefined charsets.
2311@end menu
2312
2313@node Character Set Predicates/Comparison
2314@subsubsection Character Set Predicates/Comparison
2315
2316Use these procedures for testing whether an object is a character set,
2317or whether several character sets are equal or subsets of each other.
2318@code{char-set-hash} can be used for calculating a hash value, maybe for
2319usage in fast lookup procedures.
2320
2321@deffn {Scheme Procedure} char-set? obj
2322@deffnx {C Function} scm_char_set_p (obj)
2323Return @code{#t} if @var{obj} is a character set, @code{#f}
2324otherwise.
2325@end deffn
2326
df0a1002 2327@deffn {Scheme Procedure} char-set= char_set @dots{}
050ab45f
MV
2328@deffnx {C Function} scm_char_set_eq (char_sets)
2329Return @code{#t} if all given character sets are equal.
2330@end deffn
2331
df0a1002 2332@deffn {Scheme Procedure} char-set<= char_set @dots{}
050ab45f 2333@deffnx {C Function} scm_char_set_leq (char_sets)
64de6db5
BT
2334Return @code{#t} if every character set @var{char_set}i is a subset
2335of character set @var{char_set}i+1.
050ab45f
MV
2336@end deffn
2337
2338@deffn {Scheme Procedure} char-set-hash cs [bound]
2339@deffnx {C Function} scm_char_set_hash (cs, bound)
2340Compute a hash value for the character set @var{cs}. If
2341@var{bound} is given and non-zero, it restricts the
df0a1002 2342returned value to the range 0 @dots{} @var{bound} - 1.
050ab45f
MV
2343@end deffn
2344
2345@c ===================================================================
2346
2347@node Iterating Over Character Sets
2348@subsubsection Iterating Over Character Sets
2349
2350Character set cursors are a means for iterating over the members of a
2351character sets. After creating a character set cursor with
2352@code{char-set-cursor}, a cursor can be dereferenced with
2353@code{char-set-ref}, advanced to the next member with
2354@code{char-set-cursor-next}. Whether a cursor has passed past the last
2355element of the set can be checked with @code{end-of-char-set?}.
2356
2357Additionally, mapping and (un-)folding procedures for character sets are
2358provided.
2359
2360@deffn {Scheme Procedure} char-set-cursor cs
2361@deffnx {C Function} scm_char_set_cursor (cs)
2362Return a cursor into the character set @var{cs}.
2363@end deffn
2364
2365@deffn {Scheme Procedure} char-set-ref cs cursor
2366@deffnx {C Function} scm_char_set_ref (cs, cursor)
2367Return the character at the current cursor position
2368@var{cursor} in the character set @var{cs}. It is an error to
2369pass a cursor for which @code{end-of-char-set?} returns true.
2370@end deffn
2371
2372@deffn {Scheme Procedure} char-set-cursor-next cs cursor
2373@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2374Advance the character set cursor @var{cursor} to the next
2375character in the character set @var{cs}. It is an error if the
2376cursor given satisfies @code{end-of-char-set?}.
2377@end deffn
2378
2379@deffn {Scheme Procedure} end-of-char-set? cursor
2380@deffnx {C Function} scm_end_of_char_set_p (cursor)
2381Return @code{#t} if @var{cursor} has reached the end of a
2382character set, @code{#f} otherwise.
2383@end deffn
2384
2385@deffn {Scheme Procedure} char-set-fold kons knil cs
2386@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2387Fold the procedure @var{kons} over the character set @var{cs},
2388initializing it with @var{knil}.
2389@end deffn
2390
2391@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2392@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2393This is a fundamental constructor for character sets.
2394@itemize @bullet
2395@item @var{g} is used to generate a series of ``seed'' values
2396from the initial seed: @var{seed}, (@var{g} @var{seed}),
2397(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2398@item @var{p} tells us when to stop -- when it returns true
2399when applied to one of the seed values.
2400@item @var{f} maps each seed value to a character. These
2401characters are added to the base character set @var{base_cs} to
2402form the result; @var{base_cs} defaults to the empty set.
2403@end itemize
2404@end deffn
2405
2406@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2407@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2408This is a fundamental constructor for character sets.
2409@itemize @bullet
2410@item @var{g} is used to generate a series of ``seed'' values
2411from the initial seed: @var{seed}, (@var{g} @var{seed}),
2412(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2413@item @var{p} tells us when to stop -- when it returns true
2414when applied to one of the seed values.
2415@item @var{f} maps each seed value to a character. These
2416characters are added to the base character set @var{base_cs} to
2417form the result; @var{base_cs} defaults to the empty set.
2418@end itemize
2419@end deffn
2420
2421@deffn {Scheme Procedure} char-set-for-each proc cs
2422@deffnx {C Function} scm_char_set_for_each (proc, cs)
2423Apply @var{proc} to every character in the character set
2424@var{cs}. The return value is not specified.
2425@end deffn
2426
2427@deffn {Scheme Procedure} char-set-map proc cs
2428@deffnx {C Function} scm_char_set_map (proc, cs)
2429Map the procedure @var{proc} over every character in @var{cs}.
2430@var{proc} must be a character -> character procedure.
2431@end deffn
2432
2433@c ===================================================================
2434
2435@node Creating Character Sets
2436@subsubsection Creating Character Sets
2437
2438New character sets are produced with these procedures.
2439
2440@deffn {Scheme Procedure} char-set-copy cs
2441@deffnx {C Function} scm_char_set_copy (cs)
2442Return a newly allocated character set containing all
2443characters in @var{cs}.
2444@end deffn
2445
df0a1002
BT
2446@deffn {Scheme Procedure} char-set chr @dots{}
2447@deffnx {C Function} scm_char_set (chrs)
050ab45f
MV
2448Return a character set containing all given characters.
2449@end deffn
2450
2451@deffn {Scheme Procedure} list->char-set list [base_cs]
2452@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2453Convert the character list @var{list} to a character set. If
2454the character set @var{base_cs} is given, the character in this
2455set are also included in the result.
2456@end deffn
2457
2458@deffn {Scheme Procedure} list->char-set! list base_cs
2459@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2460Convert the character list @var{list} to a character set. The
2461characters are added to @var{base_cs} and @var{base_cs} is
2462returned.
2463@end deffn
2464
2465@deffn {Scheme Procedure} string->char-set str [base_cs]
2466@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2467Convert the string @var{str} to a character set. If the
2468character set @var{base_cs} is given, the characters in this
2469set are also included in the result.
2470@end deffn
2471
2472@deffn {Scheme Procedure} string->char-set! str base_cs
2473@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2474Convert the string @var{str} to a character set. The
2475characters from the string are added to @var{base_cs}, and
2476@var{base_cs} is returned.
2477@end deffn
2478
2479@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2480@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2481Return a character set containing every character from @var{cs}
2482so that it satisfies @var{pred}. If provided, the characters
2483from @var{base_cs} are added to the result.
2484@end deffn
2485
2486@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2487@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2488Return a character set containing every character from @var{cs}
2489so that it satisfies @var{pred}. The characters are added to
2490@var{base_cs} and @var{base_cs} is returned.
2491@end deffn
2492
2493@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2494@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2495Return a character set containing all characters whose
2496character codes lie in the half-open range
2497[@var{lower},@var{upper}).
2498
2499If @var{error} is a true value, an error is signalled if the
2500specified range contains characters which are not contained in
2501the implemented character range. If @var{error} is @code{#f},
be3eb25c 2502these characters are silently left out of the resulting
050ab45f
MV
2503character set.
2504
2505The characters in @var{base_cs} are added to the result, if
2506given.
2507@end deffn
2508
2509@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2510@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2511Return a character set containing all characters whose
2512character codes lie in the half-open range
2513[@var{lower},@var{upper}).
2514
2515If @var{error} is a true value, an error is signalled if the
2516specified range contains characters which are not contained in
2517the implemented character range. If @var{error} is @code{#f},
be3eb25c 2518these characters are silently left out of the resulting
050ab45f
MV
2519character set.
2520
2521The characters are added to @var{base_cs} and @var{base_cs} is
2522returned.
2523@end deffn
2524
2525@deffn {Scheme Procedure} ->char-set x
2526@deffnx {C Function} scm_to_char_set (x)
be3eb25c
MG
2527Coerces x into a char-set. @var{x} may be a string, character or
2528char-set. A string is converted to the set of its constituent
2529characters; a character is converted to a singleton set; a char-set is
2530returned as-is.
050ab45f
MV
2531@end deffn
2532
2533@c ===================================================================
2534
2535@node Querying Character Sets
2536@subsubsection Querying Character Sets
2537
2538Access the elements and other information of a character set with these
2539procedures.
2540
be3eb25c
MG
2541@deffn {Scheme Procedure} %char-set-dump cs
2542Returns an association list containing debugging information
2543for @var{cs}. The association list has the following entries.
2544@table @code
2545@item char-set
2546The char-set itself
2547@item len
2548The number of groups of contiguous code points the char-set
2549contains
2550@item ranges
2551A list of lists where each sublist is a range of code points
2552and their associated characters
2553@end table
2554The return value of this function cannot be relied upon to be
2555consistent between versions of Guile and should not be used in code.
2556@end deffn
2557
050ab45f
MV
2558@deffn {Scheme Procedure} char-set-size cs
2559@deffnx {C Function} scm_char_set_size (cs)
2560Return the number of elements in character set @var{cs}.
2561@end deffn
2562
2563@deffn {Scheme Procedure} char-set-count pred cs
2564@deffnx {C Function} scm_char_set_count (pred, cs)
2565Return the number of the elements int the character set
2566@var{cs} which satisfy the predicate @var{pred}.
2567@end deffn
2568
2569@deffn {Scheme Procedure} char-set->list cs
2570@deffnx {C Function} scm_char_set_to_list (cs)
2571Return a list containing the elements of the character set
2572@var{cs}.
2573@end deffn
2574
2575@deffn {Scheme Procedure} char-set->string cs
2576@deffnx {C Function} scm_char_set_to_string (cs)
2577Return a string containing the elements of the character set
2578@var{cs}. The order in which the characters are placed in the
2579string is not defined.
2580@end deffn
2581
2582@deffn {Scheme Procedure} char-set-contains? cs ch
2583@deffnx {C Function} scm_char_set_contains_p (cs, ch)
2584Return @code{#t} iff the character @var{ch} is contained in the
2585character set @var{cs}.
2586@end deffn
2587
2588@deffn {Scheme Procedure} char-set-every pred cs
2589@deffnx {C Function} scm_char_set_every (pred, cs)
2590Return a true value if every character in the character set
2591@var{cs} satisfies the predicate @var{pred}.
2592@end deffn
2593
2594@deffn {Scheme Procedure} char-set-any pred cs
2595@deffnx {C Function} scm_char_set_any (pred, cs)
2596Return a true value if any character in the character set
2597@var{cs} satisfies the predicate @var{pred}.
2598@end deffn
2599
2600@c ===================================================================
2601
2602@node Character-Set Algebra
2603@subsubsection Character-Set Algebra
2604
2605Character sets can be manipulated with the common set algebra operation,
2606such as union, complement, intersection etc. All of these procedures
2607provide side-effecting variants, which modify their character set
2608argument(s).
2609
df0a1002
BT
2610@deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
2611@deffnx {C Function} scm_char_set_adjoin (cs, chrs)
050ab45f
MV
2612Add all character arguments to the first argument, which must
2613be a character set.
2614@end deffn
2615
df0a1002
BT
2616@deffn {Scheme Procedure} char-set-delete cs chr @dots{}
2617@deffnx {C Function} scm_char_set_delete (cs, chrs)
050ab45f
MV
2618Delete all character arguments from the first argument, which
2619must be a character set.
2620@end deffn
2621
df0a1002
BT
2622@deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
2623@deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
050ab45f
MV
2624Add all character arguments to the first argument, which must
2625be a character set.
2626@end deffn
2627
df0a1002
BT
2628@deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
2629@deffnx {C Function} scm_char_set_delete_x (cs, chrs)
050ab45f
MV
2630Delete all character arguments from the first argument, which
2631must be a character set.
2632@end deffn
2633
2634@deffn {Scheme Procedure} char-set-complement cs
2635@deffnx {C Function} scm_char_set_complement (cs)
2636Return the complement of the character set @var{cs}.
2637@end deffn
2638
be3eb25c
MG
2639Note that the complement of a character set is likely to contain many
2640reserved code points (code points that are not associated with
2641characters). It may be helpful to modify the output of
2642@code{char-set-complement} by computing its intersection with the set
2643of designated code points, @code{char-set:designated}.
2644
df0a1002
BT
2645@deffn {Scheme Procedure} char-set-union cs @dots{}
2646@deffnx {C Function} scm_char_set_union (char_sets)
050ab45f
MV
2647Return the union of all argument character sets.
2648@end deffn
2649
df0a1002
BT
2650@deffn {Scheme Procedure} char-set-intersection cs @dots{}
2651@deffnx {C Function} scm_char_set_intersection (char_sets)
050ab45f
MV
2652Return the intersection of all argument character sets.
2653@end deffn
2654
df0a1002
BT
2655@deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
2656@deffnx {C Function} scm_char_set_difference (cs1, char_sets)
050ab45f
MV
2657Return the difference of all argument character sets.
2658@end deffn
2659
df0a1002
BT
2660@deffn {Scheme Procedure} char-set-xor cs @dots{}
2661@deffnx {C Function} scm_char_set_xor (char_sets)
050ab45f
MV
2662Return the exclusive-or of all argument character sets.
2663@end deffn
2664
df0a1002
BT
2665@deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
2666@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
050ab45f
MV
2667Return the difference and the intersection of all argument
2668character sets.
2669@end deffn
2670
2671@deffn {Scheme Procedure} char-set-complement! cs
2672@deffnx {C Function} scm_char_set_complement_x (cs)
2673Return the complement of the character set @var{cs}.
2674@end deffn
2675
df0a1002
BT
2676@deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
2677@deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
050ab45f
MV
2678Return the union of all argument character sets.
2679@end deffn
2680
df0a1002
BT
2681@deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
2682@deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
050ab45f
MV
2683Return the intersection of all argument character sets.
2684@end deffn
2685
df0a1002
BT
2686@deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
2687@deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
050ab45f
MV
2688Return the difference of all argument character sets.
2689@end deffn
2690
df0a1002
BT
2691@deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
2692@deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
050ab45f
MV
2693Return the exclusive-or of all argument character sets.
2694@end deffn
2695
df0a1002
BT
2696@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
2697@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
050ab45f
MV
2698Return the difference and the intersection of all argument
2699character sets.
2700@end deffn
2701
2702@c ===================================================================
2703
2704@node Standard Character Sets
2705@subsubsection Standard Character Sets
2706
2707In order to make the use of the character set data type and procedures
2708useful, several predefined character set variables exist.
2709
49dec04b
LC
2710@cindex codeset
2711@cindex charset
2712@cindex locale
2713
be3eb25c
MG
2714These character sets are locale independent and are not recomputed
2715upon a @code{setlocale} call. They contain characters from the whole
2716range of Unicode code points. For instance, @code{char-set:letter}
bf8d8454 2717contains about 100,000 characters.
49dec04b 2718
c9dc8c6c
MV
2719@defvr {Scheme Variable} char-set:lower-case
2720@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2721All lower-case characters.
c9dc8c6c 2722@end defvr
050ab45f 2723
c9dc8c6c
MV
2724@defvr {Scheme Variable} char-set:upper-case
2725@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2726All upper-case characters.
c9dc8c6c 2727@end defvr
050ab45f 2728
c9dc8c6c
MV
2729@defvr {Scheme Variable} char-set:title-case
2730@defvrx {C Variable} scm_char_set_title_case
be3eb25c
MG
2731All single characters that function as if they were an upper-case
2732letter followed by a lower-case letter.
c9dc8c6c 2733@end defvr
050ab45f 2734
c9dc8c6c
MV
2735@defvr {Scheme Variable} char-set:letter
2736@defvrx {C Variable} scm_char_set_letter
be3eb25c
MG
2737All letters. This includes @code{char-set:lower-case},
2738@code{char-set:upper-case}, @code{char-set:title-case}, and many
2739letters that have no case at all. For example, Chinese and Japanese
2740characters typically have no concept of case.
c9dc8c6c 2741@end defvr
050ab45f 2742
c9dc8c6c
MV
2743@defvr {Scheme Variable} char-set:digit
2744@defvrx {C Variable} scm_char_set_digit
050ab45f 2745All digits.
c9dc8c6c 2746@end defvr
050ab45f 2747
c9dc8c6c
MV
2748@defvr {Scheme Variable} char-set:letter+digit
2749@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2750The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2751@end defvr
050ab45f 2752
c9dc8c6c
MV
2753@defvr {Scheme Variable} char-set:graphic
2754@defvrx {C Variable} scm_char_set_graphic
050ab45f 2755All characters which would put ink on the paper.
c9dc8c6c 2756@end defvr
050ab45f 2757
c9dc8c6c
MV
2758@defvr {Scheme Variable} char-set:printing
2759@defvrx {C Variable} scm_char_set_printing
050ab45f 2760The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2761@end defvr
050ab45f 2762
c9dc8c6c
MV
2763@defvr {Scheme Variable} char-set:whitespace
2764@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2765All whitespace characters.
c9dc8c6c 2766@end defvr
050ab45f 2767
c9dc8c6c
MV
2768@defvr {Scheme Variable} char-set:blank
2769@defvrx {C Variable} scm_char_set_blank
be3eb25c
MG
2770All horizontal whitespace characters, which notably includes
2771@code{#\space} and @code{#\tab}.
c9dc8c6c 2772@end defvr
050ab45f 2773
c9dc8c6c
MV
2774@defvr {Scheme Variable} char-set:iso-control
2775@defvrx {C Variable} scm_char_set_iso_control
be3eb25c
MG
2776The ISO control characters are the C0 control characters (U+0000 to
2777U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2778U+009F).
c9dc8c6c 2779@end defvr
050ab45f 2780
c9dc8c6c
MV
2781@defvr {Scheme Variable} char-set:punctuation
2782@defvrx {C Variable} scm_char_set_punctuation
be3eb25c
MG
2783All punctuation characters, such as the characters
2784@code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2785@end defvr
050ab45f 2786
c9dc8c6c
MV
2787@defvr {Scheme Variable} char-set:symbol
2788@defvrx {C Variable} scm_char_set_symbol
be3eb25c 2789All symbol characters, such as the characters @code{$+<=>^`|~}.
c9dc8c6c 2790@end defvr
050ab45f 2791
c9dc8c6c
MV
2792@defvr {Scheme Variable} char-set:hex-digit
2793@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2794The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2795@end defvr
050ab45f 2796
c9dc8c6c
MV
2797@defvr {Scheme Variable} char-set:ascii
2798@defvrx {C Variable} scm_char_set_ascii
050ab45f 2799All ASCII characters.
c9dc8c6c 2800@end defvr
050ab45f 2801
c9dc8c6c
MV
2802@defvr {Scheme Variable} char-set:empty
2803@defvrx {C Variable} scm_char_set_empty
050ab45f 2804The empty character set.
c9dc8c6c 2805@end defvr
050ab45f 2806
be3eb25c
MG
2807@defvr {Scheme Variable} char-set:designated
2808@defvrx {C Variable} scm_char_set_designated
2809This character set contains all designated code points. This includes
2810all the code points to which Unicode has assigned a character or other
2811meaning.
2812@end defvr
2813
c9dc8c6c
MV
2814@defvr {Scheme Variable} char-set:full
2815@defvrx {C Variable} scm_char_set_full
be3eb25c
MG
2816This character set contains all possible code points. This includes
2817both designated and reserved code points.
c9dc8c6c 2818@end defvr
07d83abe
MV
2819
2820@node Strings
2821@subsection Strings
2822@tpindex Strings
2823
2824Strings are fixed-length sequences of characters. They can be created
2825by calling constructor procedures, but they can also literally get
2826entered at the @acronym{REPL} or in Scheme source files.
2827
2828@c Guile provides a rich set of string processing procedures, because text
2829@c handling is very important when Guile is used as a scripting language.
2830
2831Strings always carry the information about how many characters they are
2832composed of with them, so there is no special end-of-string character,
2833like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2834even the @samp{#\nul} character @samp{\0}.
2835
2836To use strings efficiently, you need to know a bit about how Guile
2837implements them. In Guile, a string consists of two parts, a head and
2838the actual memory where the characters are stored. When a string (or
2839a substring of it) is copied, only a new head gets created, the memory
2840is usually not copied. The two heads start out pointing to the same
2841memory.
2842
2843When one of these two strings is modified, as with @code{string-set!},
2844their common memory does get copied so that each string has its own
be3eb25c 2845memory and modifying one does not accidentally modify the other as well.
c48c62d0
MV
2846Thus, Guile's strings are `copy on write'; the actual copying of their
2847memory is delayed until one string is written to.
2848
2849This implementation makes functions like @code{substring} very
2850efficient in the common case that no modifications are done to the
2851involved strings.
2852
2853If you do know that your strings are getting modified right away, you
2854can use @code{substring/copy} instead of @code{substring}. This
2855function performs the copy immediately at the time of creation. This
2856is more efficient, especially in a multi-threaded program. Also,
2857@code{substring/copy} can avoid the problem that a short substring
2858holds on to the memory of a very large original string that could
2859otherwise be recycled.
2860
2861If you want to avoid the copy altogether, so that modifications of one
2862string show up in the other, you can use @code{substring/shared}. The
2863strings created by this procedure are called @dfn{mutation sharing
2864substrings} since the substring and the original string share
2865modifications to each other.
07d83abe 2866
05256760
MV
2867If you want to prevent modifications, use @code{substring/read-only}.
2868
c9dc8c6c
MV
2869Guile provides all procedures of SRFI-13 and a few more.
2870
07d83abe 2871@menu
5676b4fa
MV
2872* String Syntax:: Read syntax for strings.
2873* String Predicates:: Testing strings for certain properties.
2874* String Constructors:: Creating new string objects.
2875* List/String Conversion:: Converting from/to lists of characters.
2876* String Selection:: Select portions from strings.
2877* String Modification:: Modify parts or whole strings.
2878* String Comparison:: Lexicographic ordering predicates.
2879* String Searching:: Searching in strings.
2880* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2881* Reversing and Appending Strings:: Appending strings to form a new string.
2882* Mapping Folding and Unfolding:: Iterating over strings.
2883* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
f05bb849 2884* Representing Strings as Bytes:: Encoding and decoding strings.
67af975c 2885* Conversion to/from C::
5b6b22e8 2886* String Internals:: The storage strategy for strings.
07d83abe
MV
2887@end menu
2888
2889@node String Syntax
2890@subsubsection String Read Syntax
2891
2892@c In the following @code is used to get a good font in TeX etc, but
2893@c is omitted for Info format, so as not to risk any confusion over
2894@c whether surrounding ` ' quotes are part of the escape or are
2895@c special in a string (they're not).
2896
2897The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2898characters enclosed in double quotes (@nicode{"}).
07d83abe 2899
67af975c
MG
2900Backslash is an escape character and can be used to insert the following
2901special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2902next seven are R6RS standard --- notice they follow C syntax --- and the
2903remaining four are Guile extensions.
07d83abe
MV
2904
2905@table @asis
2906@item @nicode{\\}
2907Backslash character.
2908
2909@item @nicode{\"}
2910Double quote character (an unescaped @nicode{"} is otherwise the end
2911of the string).
2912
07d83abe
MV
2913@item @nicode{\a}
2914Bell character (ASCII 7).
2915
2916@item @nicode{\f}
2917Formfeed character (ASCII 12).
2918
2919@item @nicode{\n}
2920Newline character (ASCII 10).
2921
2922@item @nicode{\r}
2923Carriage return character (ASCII 13).
2924
2925@item @nicode{\t}
2926Tab character (ASCII 9).
2927
2928@item @nicode{\v}
2929Vertical tab character (ASCII 11).
2930
67a4a16d
MG
2931@item @nicode{\b}
2932Backspace character (ASCII 8).
2933
67af975c
MG
2934@item @nicode{\0}
2935NUL character (ASCII 0).
2936
c869f0c1
AW
2937@item @nicode{\} followed by newline (ASCII 10)
2938Nothing. This way if @nicode{\} is the last character in a line, the
2939string will continue with the first character from the next line,
2940without a line break.
2941
2942If the @code{hungry-eol-escapes} reader option is enabled, which is not
2943the case by default, leading whitespace on the next line is discarded.
2944
2945@lisp
2946"foo\
2947 bar"
2948@result{} "foo bar"
2949(read-enable 'hungry-eol-escapes)
2950"foo\
2951 bar"
2952@result{} "foobar"
2953@end lisp
07d83abe
MV
2954@item @nicode{\xHH}
2955Character code given by two hexadecimal digits. For example
2956@nicode{\x7f} for an ASCII DEL (127).
28cc8dac
MG
2957
2958@item @nicode{\uHHHH}
2959Character code given by four hexadecimal digits. For example
2960@nicode{\u0100} for a capital A with macron (U+0100).
2961
2962@item @nicode{\UHHHHHH}
2963Character code given by six hexadecimal digits. For example
2964@nicode{\U010402}.
07d83abe
MV
2965@end table
2966
2967@noindent
2968The following are examples of string literals:
2969
2970@lisp
2971"foo"
2972"bar plonk"
2973"Hello World"
2974"\"Hi\", he said."
2975@end lisp
2976
6ea30487
MG
2977The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
2978chosen to not break compatibility with code written for previous versions of
2979Guile. The R6RS specification suggests a different, incompatible syntax for hex
2980escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
2981digits terminated with a semicolon. If this escape format is desired instead,
2982it can be enabled with the reader option @code{r6rs-hex-escapes}.
2983
2984@lisp
2985(read-enable 'r6rs-hex-escapes)
2986@end lisp
2987
1518f649 2988For more on reader options, @xref{Scheme Read}.
07d83abe
MV
2989
2990@node String Predicates
2991@subsubsection String Predicates
2992
2993The following procedures can be used to check whether a given string
2994fulfills some specified property.
2995
2996@rnindex string?
2997@deffn {Scheme Procedure} string? obj
2998@deffnx {C Function} scm_string_p (obj)
2999Return @code{#t} if @var{obj} is a string, else @code{#f}.
3000@end deffn
3001
91210d62
MV
3002@deftypefn {C Function} int scm_is_string (SCM obj)
3003Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
3004@end deftypefn
3005
07d83abe
MV
3006@deffn {Scheme Procedure} string-null? str
3007@deffnx {C Function} scm_string_null_p (str)
3008Return @code{#t} if @var{str}'s length is zero, and
3009@code{#f} otherwise.
3010@lisp
3011(string-null? "") @result{} #t
3012y @result{} "foo"
3013(string-null? y) @result{} #f
3014@end lisp
3015@end deffn
3016
5676b4fa
MV
3017@deffn {Scheme Procedure} string-any char_pred s [start [end]]
3018@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 3019Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 3020
c100a12c
KR
3021@var{char_pred} can be a character to check for any equal to that, or
3022a character set (@pxref{Character Sets}) to check for any in that set,
3023or a predicate procedure to call.
5676b4fa 3024
c100a12c
KR
3025For a procedure, calls @code{(@var{char_pred} c)} are made
3026successively on the characters from @var{start} to @var{end}. If
3027@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3028stops and that return value is the return from @code{string-any}. The
3029call on the last character (ie.@: at @math{@var{end}-1}), if that
3030point is reached, is a tail call.
3031
3032If there are no characters in @var{s} (ie.@: @var{start} equals
3033@var{end}) then the return is @code{#f}.
5676b4fa
MV
3034@end deffn
3035
3036@deffn {Scheme Procedure} string-every char_pred s [start [end]]
3037@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
3038Check if @var{char_pred} is true for every character in string
3039@var{s}.
5676b4fa 3040
c100a12c
KR
3041@var{char_pred} can be a character to check for every character equal
3042to that, or a character set (@pxref{Character Sets}) to check for
3043every character being in that set, or a predicate procedure to call.
3044
3045For a procedure, calls @code{(@var{char_pred} c)} are made
3046successively on the characters from @var{start} to @var{end}. If
3047@var{char_pred} returns @code{#f}, @code{string-every} stops and
3048returns @code{#f}. The call on the last character (ie.@: at
3049@math{@var{end}-1}), if that point is reached, is a tail call and the
3050return from that call is the return from @code{string-every}.
5676b4fa
MV
3051
3052If there are no characters in @var{s} (ie.@: @var{start} equals
3053@var{end}) then the return is @code{#t}.
5676b4fa
MV
3054@end deffn
3055
07d83abe
MV
3056@node String Constructors
3057@subsubsection String Constructors
3058
3059The string constructor procedures create new string objects, possibly
c48c62d0
MV
3060initializing them with some specified character data. See also
3061@xref{String Selection}, for ways to create strings from existing
3062strings.
07d83abe
MV
3063
3064@c FIXME::martin: list->string belongs into `List/String Conversion'
3065
bba26c32 3066@deffn {Scheme Procedure} string char@dots{}
07d83abe 3067@rnindex string
bba26c32
KR
3068Return a newly allocated string made from the given character
3069arguments.
3070
3071@example
3072(string #\x #\y #\z) @result{} "xyz"
3073(string) @result{} ""
3074@end example
3075@end deffn
3076
3077@deffn {Scheme Procedure} list->string lst
3078@deffnx {C Function} scm_string (lst)
07d83abe 3079@rnindex list->string
bba26c32
KR
3080Return a newly allocated string made from a list of characters.
3081
3082@example
3083(list->string '(#\a #\b #\c)) @result{} "abc"
3084@end example
3085@end deffn
3086
3087@deffn {Scheme Procedure} reverse-list->string lst
3088@deffnx {C Function} scm_reverse_list_to_string (lst)
3089Return a newly allocated string made from a list of characters, in
3090reverse order.
3091
3092@example
3093(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3094@end example
07d83abe
MV
3095@end deffn
3096
3097@rnindex make-string
3098@deffn {Scheme Procedure} make-string k [chr]
3099@deffnx {C Function} scm_make_string (k, chr)
3100Return a newly allocated string of
3101length @var{k}. If @var{chr} is given, then all elements of
3102the string are initialized to @var{chr}, otherwise the contents
64de6db5 3103of the string are unspecified.
07d83abe
MV
3104@end deffn
3105
c48c62d0
MV
3106@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3107Like @code{scm_make_string}, but expects the length as a
3108@code{size_t}.
3109@end deftypefn
3110
5676b4fa
MV
3111@deffn {Scheme Procedure} string-tabulate proc len
3112@deffnx {C Function} scm_string_tabulate (proc, len)
3113@var{proc} is an integer->char procedure. Construct a string
3114of size @var{len} by applying @var{proc} to each index to
3115produce the corresponding string element. The order in which
3116@var{proc} is applied to the indices is not specified.
3117@end deffn
3118
5676b4fa
MV
3119@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3120@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3121Append the string in the string list @var{ls}, using the string
64de6db5 3122@var{delimiter} as a delimiter between the elements of @var{ls}.
5676b4fa
MV
3123@var{grammar} is a symbol which specifies how the delimiter is
3124placed between the strings, and defaults to the symbol
3125@code{infix}.
3126
3127@table @code
3128@item infix
3129Insert the separator between list elements. An empty string
3130will produce an empty list.
3131@item string-infix
3132Like @code{infix}, but will raise an error if given the empty
3133list.
3134@item suffix
3135Insert the separator after every list element.
3136@item prefix
3137Insert the separator before each list element.
3138@end table
3139@end deffn
3140
07d83abe
MV
3141@node List/String Conversion
3142@subsubsection List/String conversion
3143
3144When processing strings, it is often convenient to first convert them
3145into a list representation by using the procedure @code{string->list},
3146work with the resulting list, and then convert it back into a string.
3147These procedures are useful for similar tasks.
3148
3149@rnindex string->list
5676b4fa
MV
3150@deffn {Scheme Procedure} string->list str [start [end]]
3151@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 3152@deffnx {C Function} scm_string_to_list (str)
5676b4fa 3153Convert the string @var{str} into a list of characters.
07d83abe
MV
3154@end deffn
3155
5f085775
DH
3156@deffn {Scheme Procedure} string-split str char_pred
3157@deffnx {C Function} scm_string_split (str, char_pred)
ecb87335 3158Split the string @var{str} into a list of substrings delimited
5f085775
DH
3159by appearances of characters that
3160
3161@itemize @bullet
3162@item
3163equal @var{char_pred}, if it is a character,
3164
3165@item
3166satisfy the predicate @var{char_pred}, if it is a procedure,
3167
3168@item
3169are in the set @var{char_pred}, if it is a character set.
3170@end itemize
3171
3172Note that an empty substring between separator characters will result in
3173an empty string in the result list.
07d83abe
MV
3174
3175@lisp
3176(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3177@result{}
3178("root" "x" "0" "0" "root" "/root" "/bin/bash")
3179
3180(string-split "::" #\:)
3181@result{}
3182("" "" "")
3183
3184(string-split "" #\:)
3185@result{}
3186("")
3187@end lisp
3188@end deffn
3189
3190
3191@node String Selection
3192@subsubsection String Selection
3193
3194Portions of strings can be extracted by these procedures.
3195@code{string-ref} delivers individual characters whereas
3196@code{substring} can be used to extract substrings from longer strings.
3197
3198@rnindex string-length
3199@deffn {Scheme Procedure} string-length string
3200@deffnx {C Function} scm_string_length (string)
3201Return the number of characters in @var{string}.
3202@end deffn
3203
c48c62d0
MV
3204@deftypefn {C Function} size_t scm_c_string_length (SCM str)
3205Return the number of characters in @var{str} as a @code{size_t}.
3206@end deftypefn
3207
07d83abe
MV
3208@rnindex string-ref
3209@deffn {Scheme Procedure} string-ref str k
3210@deffnx {C Function} scm_string_ref (str, k)
3211Return character @var{k} of @var{str} using zero-origin
3212indexing. @var{k} must be a valid index of @var{str}.
3213@end deffn
3214
c48c62d0
MV
3215@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3216Return character @var{k} of @var{str} using zero-origin
3217indexing. @var{k} must be a valid index of @var{str}.
3218@end deftypefn
3219
07d83abe 3220@rnindex string-copy
5676b4fa
MV
3221@deffn {Scheme Procedure} string-copy str [start [end]]
3222@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 3223@deffnx {C Function} scm_string_copy (str)
5676b4fa 3224Return a copy of the given string @var{str}.
c48c62d0
MV
3225
3226The returned string shares storage with @var{str} initially, but it is
3227copied as soon as one of the two strings is modified.
07d83abe
MV
3228@end deffn
3229
3230@rnindex substring
3231@deffn {Scheme Procedure} substring str start [end]
3232@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 3233Return a new string formed from the characters
07d83abe
MV
3234of @var{str} beginning with index @var{start} (inclusive) and
3235ending with index @var{end} (exclusive).
3236@var{str} must be a string, @var{start} and @var{end} must be
3237exact integers satisfying:
3238
32390 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
3240
3241The returned string shares storage with @var{str} initially, but it is
3242copied as soon as one of the two strings is modified.
3243@end deffn
3244
3245@deffn {Scheme Procedure} substring/shared str start [end]
3246@deffnx {C Function} scm_substring_shared (str, start, end)
3247Like @code{substring}, but the strings continue to share their storage
3248even if they are modified. Thus, modifications to @var{str} show up
3249in the new string, and vice versa.
3250@end deffn
3251
3252@deffn {Scheme Procedure} substring/copy str start [end]
3253@deffnx {C Function} scm_substring_copy (str, start, end)
3254Like @code{substring}, but the storage for the new string is copied
3255immediately.
07d83abe
MV
3256@end deffn
3257
05256760
MV
3258@deffn {Scheme Procedure} substring/read-only str start [end]
3259@deffnx {C Function} scm_substring_read_only (str, start, end)
3260Like @code{substring}, but the resulting string can not be modified.
3261@end deffn
3262
c48c62d0
MV
3263@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3264@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3265@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 3266@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
3267Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3268@end deftypefn
3269
5676b4fa
MV
3270@deffn {Scheme Procedure} string-take s n
3271@deffnx {C Function} scm_string_take (s, n)
3272Return the @var{n} first characters of @var{s}.
3273@end deffn
3274
3275@deffn {Scheme Procedure} string-drop s n
3276@deffnx {C Function} scm_string_drop (s, n)
3277Return all but the first @var{n} characters of @var{s}.
3278@end deffn
3279
3280@deffn {Scheme Procedure} string-take-right s n
3281@deffnx {C Function} scm_string_take_right (s, n)
3282Return the @var{n} last characters of @var{s}.
3283@end deffn
3284
3285@deffn {Scheme Procedure} string-drop-right s n
3286@deffnx {C Function} scm_string_drop_right (s, n)
3287Return all but the last @var{n} characters of @var{s}.
3288@end deffn
3289
3290@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 3291@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 3292@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 3293@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb 3294Take characters @var{start} to @var{end} from the string @var{s} and
64de6db5 3295either pad with @var{chr} or truncate them to give @var{len}
6337e7fb
KR
3296characters.
3297
3298@code{string-pad} pads or truncates on the left, so for example
3299
3300@example
3301(string-pad "x" 3) @result{} " x"
3302(string-pad "abcde" 3) @result{} "cde"
3303@end example
3304
3305@code{string-pad-right} pads or truncates on the right, so for example
3306
3307@example
3308(string-pad-right "x" 3) @result{} "x "
3309(string-pad-right "abcde" 3) @result{} "abc"
3310@end example
5676b4fa
MV
3311@end deffn
3312
3313@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
dc297bb7
KR
3314@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3315@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
5676b4fa 3316@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
5676b4fa 3317@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
5676b4fa 3318@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
be3eb25c 3319Trim occurrences of @var{char_pred} from the ends of @var{s}.
5676b4fa 3320
dc297bb7
KR
3321@code{string-trim} trims @var{char_pred} characters from the left
3322(start) of the string, @code{string-trim-right} trims them from the
3323right (end) of the string, @code{string-trim-both} trims from both
3324ends.
5676b4fa 3325
dc297bb7
KR
3326@var{char_pred} can be a character, a character set, or a predicate
3327procedure to call on each character. If @var{char_pred} is not given
3328the default is whitespace as per @code{char-set:whitespace}
3329(@pxref{Standard Character Sets}).
5676b4fa 3330
dc297bb7
KR
3331@example
3332(string-trim " x ") @result{} "x "
3333(string-trim-right "banana" #\a) @result{} "banan"
3334(string-trim-both ".,xy:;" char-set:punctuation)
3335 @result{} "xy"
3336(string-trim-both "xyzzy" (lambda (c)
3337 (or (eqv? c #\x)
3338 (eqv? c #\y))))
3339 @result{} "zz"
3340@end example
5676b4fa
MV
3341@end deffn
3342
07d83abe
MV
3343@node String Modification
3344@subsubsection String Modification
3345
3346These procedures are for modifying strings in-place. This means that the
3347result of the operation is not a new string; instead, the original string's
3348memory representation is modified.
3349
3350@rnindex string-set!
3351@deffn {Scheme Procedure} string-set! str k chr
3352@deffnx {C Function} scm_string_set_x (str, k, chr)
3353Store @var{chr} in element @var{k} of @var{str} and return
3354an unspecified value. @var{k} must be a valid index of
3355@var{str}.
3356@end deffn
3357
c48c62d0
MV
3358@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3359Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3360@end deftypefn
3361
07d83abe 3362@rnindex string-fill!
5676b4fa
MV
3363@deffn {Scheme Procedure} string-fill! str chr [start [end]]
3364@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 3365@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
3366Stores @var{chr} in every element of the given @var{str} and
3367returns an unspecified value.
07d83abe
MV
3368@end deffn
3369
3370@deffn {Scheme Procedure} substring-fill! str start end fill
3371@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3372Change every character in @var{str} between @var{start} and
3373@var{end} to @var{fill}.
3374
3375@lisp
4dbd29a9 3376(define y (string-copy "abcdefg"))
07d83abe
MV
3377(substring-fill! y 1 3 #\r)
3378y
3379@result{} "arrdefg"
3380@end lisp
3381@end deffn
3382
3383@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3384@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3385Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3386into @var{str2} beginning at position @var{start2}.
3387@var{str1} and @var{str2} can be the same string.
3388@end deffn
3389
5676b4fa
MV
3390@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3391@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3392Copy the sequence of characters from index range [@var{start},
3393@var{end}) in string @var{s} to string @var{target}, beginning
3394at index @var{tstart}. The characters are copied left-to-right
3395or right-to-left as needed -- the copy is guaranteed to work,
3396even if @var{target} and @var{s} are the same string. It is an
3397error if the copy operation runs off the end of the target
3398string.
3399@end deffn
3400
07d83abe
MV
3401
3402@node String Comparison
3403@subsubsection String Comparison
3404
3405The procedures in this section are similar to the character ordering
3406predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 3407
5676b4fa 3408The first set is specified in R5RS and has names that end in @code{?}.
28cc8dac 3409The second set is specified in SRFI-13 and the names have not ending
67af975c 3410@code{?}.
28cc8dac
MG
3411
3412The predicates ending in @code{-ci} ignore the character case
3413when comparing strings. For now, case-insensitive comparison is done
3414using the R5RS rules, where every lower-case character that has a
3415single character upper-case form is converted to uppercase before
3416comparison. See @xref{Text Collation, the @code{(ice-9
b89c4943 3417i18n)} module}, for locale-dependent string comparison.
07d83abe
MV
3418
3419@rnindex string=?
df0a1002 3420@deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
df0a1002
BT
3421Lexicographic equality predicate; return @code{#t} if all strings are
3422the same length and contain the same characters in the same positions,
3423otherwise return @code{#f}.
07d83abe
MV
3424
3425The procedure @code{string-ci=?} treats upper and lower case
3426letters as though they were the same character, but
3427@code{string=?} treats upper and lower case as distinct
3428characters.
3429@end deffn
3430
3431@rnindex string<?
df0a1002 3432@deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
df0a1002
BT
3433Lexicographic ordering predicate; return @code{#t} if, for every pair of
3434consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3435lexicographically less than @var{str_i+1}.
07d83abe
MV
3436@end deffn
3437
3438@rnindex string<=?
df0a1002 3439@deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
df0a1002
BT
3440Lexicographic ordering predicate; return @code{#t} if, for every pair of
3441consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3442lexicographically less than or equal to @var{str_i+1}.
07d83abe
MV
3443@end deffn
3444
3445@rnindex string>?
df0a1002 3446@deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
df0a1002
BT
3447Lexicographic ordering predicate; return @code{#t} if, for every pair of
3448consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3449lexicographically greater than @var{str_i+1}.
07d83abe
MV
3450@end deffn
3451
3452@rnindex string>=?
df0a1002 3453@deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
df0a1002
BT
3454Lexicographic ordering predicate; return @code{#t} if, for every pair of
3455consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3456lexicographically greater than or equal to @var{str_i+1}.
07d83abe
MV
3457@end deffn
3458
3459@rnindex string-ci=?
df0a1002 3460@deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
07d83abe 3461Case-insensitive string equality predicate; return @code{#t} if
df0a1002 3462all strings are the same length and their component
07d83abe
MV
3463characters match (ignoring case) at each position; otherwise
3464return @code{#f}.
3465@end deffn
3466
5676b4fa 3467@rnindex string-ci<?
df0a1002 3468@deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
df0a1002
BT
3469Case insensitive lexicographic ordering predicate; return @code{#t} if,
3470for every pair of consecutive string arguments @var{str_i} and
3471@var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
07d83abe
MV
3472regardless of case.
3473@end deffn
3474
3475@rnindex string<=?
df0a1002 3476@deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
df0a1002
BT
3477Case insensitive lexicographic ordering predicate; return @code{#t} if,
3478for every pair of consecutive string arguments @var{str_i} and
3479@var{str_i+1}, @var{str_i} is lexicographically less than or equal to
3480@var{str_i+1} regardless of case.
07d83abe
MV
3481@end deffn
3482
3483@rnindex string-ci>?
df0a1002 3484@deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
df0a1002
BT
3485Case insensitive lexicographic ordering predicate; return @code{#t} if,
3486for every pair of consecutive string arguments @var{str_i} and
3487@var{str_i+1}, @var{str_i} is lexicographically greater than
3488@var{str_i+1} regardless of case.
07d83abe
MV
3489@end deffn
3490
3491@rnindex string-ci>=?
df0a1002 3492@deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
df0a1002
BT
3493Case insensitive lexicographic ordering predicate; return @code{#t} if,
3494for every pair of consecutive string arguments @var{str_i} and
3495@var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
3496@var{str_i+1} regardless of case.
07d83abe
MV
3497@end deffn
3498
5676b4fa
MV
3499@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3500@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3501Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3502mismatch index, depending upon whether @var{s1} is less than,
3503equal to, or greater than @var{s2}. The mismatch index is the
3504largest index @var{i} such that for every 0 <= @var{j} <
3505@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3506@var{i} is the first position that does not match.
3507@end deffn
3508
3509@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3510@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3511Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3512mismatch index, depending upon whether @var{s1} is less than,
3513equal to, or greater than @var{s2}. The mismatch index is the
3514largest index @var{i} such that for every 0 <= @var{j} <
3515@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3323ec06
NJ
3516@var{i} is the first position where the lowercased letters
3517do not match.
3518
5676b4fa
MV
3519@end deffn
3520
3521@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3522@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3523Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3524value otherwise.
3525@end deffn
3526
3527@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3528@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3529Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3530value otherwise.
3531@end deffn
3532
3533@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3534@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3535Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3536true value otherwise.
3537@end deffn
3538
3539@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3540@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3541Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3542true value otherwise.
3543@end deffn
3544
3545@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3546@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3547Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3548value otherwise.
3549@end deffn
3550
3551@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3552@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3553Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3554otherwise.
3555@end deffn
3556
3557@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3558@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3559Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3560value otherwise. The character comparison is done
3561case-insensitively.
3562@end deffn
3563
3564@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3565@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3566Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3567value otherwise. The character comparison is done
3568case-insensitively.
3569@end deffn
3570
3571@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3572@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3573Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3574true value otherwise. The character comparison is done
3575case-insensitively.
3576@end deffn
3577
3578@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3579@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3580Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3581true value otherwise. The character comparison is done
3582case-insensitively.
3583@end deffn
3584
3585@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3586@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3587Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3588value otherwise. The character comparison is done
3589case-insensitively.
3590@end deffn
3591
3592@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3593@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3594Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3595otherwise. The character comparison is done
3596case-insensitively.
3597@end deffn
3598
3599@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3600@deffnx {C Function} scm_substring_hash (s, bound, start, end)
64de6db5 3601Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
5676b4fa
MV
3602@end deffn
3603
3604@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3605@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
64de6db5 3606Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
5676b4fa 3607@end deffn
07d83abe 3608
edb7bb47
JG
3609Because the same visual appearance of an abstract Unicode character can
3610be obtained via multiple sequences of Unicode characters, even the
3611case-insensitive string comparison functions described above may return
3612@code{#f} when presented with strings containing different
3613representations of the same character. For example, the Unicode
3614character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3615represented with a single character (U+1E69) or by the character ``LATIN
3616SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3617DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3618
3619For this reason, it is often desirable to ensure that the strings
3620to be compared are using a mutually consistent representation for every
3621character. The Unicode standard defines two methods of normalizing the
3622contents of strings: Decomposition, which breaks composite characters
3623into a set of constituent characters with an ordering defined by the
3624Unicode Standard; and composition, which performs the converse.
3625
3626There are two decomposition operations. ``Canonical decomposition''
3627produces character sequences that share the same visual appearance as
ecb87335 3628the original characters, while ``compatibility decomposition'' produces
edb7bb47
JG
3629ones whose visual appearances may differ from the originals but which
3630represent the same abstract character.
3631
3632These operations are encapsulated in the following set of normalization
3633forms:
3634
3635@table @dfn
3636@item NFD
3637Characters are decomposed to their canonical forms.
3638
3639@item NFKD
3640Characters are decomposed to their compatibility forms.
3641
3642@item NFC
3643Characters are decomposed to their canonical forms, then composed.
3644
3645@item NFKC
3646Characters are decomposed to their compatibility forms, then composed.
3647
3648@end table
3649
3650The functions below put their arguments into one of the forms described
3651above.
3652
3653@deffn {Scheme Procedure} string-normalize-nfd s
3654@deffnx {C Function} scm_string_normalize_nfd (s)
3655Return the @code{NFD} normalized form of @var{s}.
3656@end deffn
3657
3658@deffn {Scheme Procedure} string-normalize-nfkd s
3659@deffnx {C Function} scm_string_normalize_nfkd (s)
3660Return the @code{NFKD} normalized form of @var{s}.
3661@end deffn
3662
3663@deffn {Scheme Procedure} string-normalize-nfc s
3664@deffnx {C Function} scm_string_normalize_nfc (s)
3665Return the @code{NFC} normalized form of @var{s}.
3666@end deffn
3667
3668@deffn {Scheme Procedure} string-normalize-nfkc s
3669@deffnx {C Function} scm_string_normalize_nfkc (s)
3670Return the @code{NFKC} normalized form of @var{s}.
3671@end deffn
3672
07d83abe
MV
3673@node String Searching
3674@subsubsection String Searching
3675
5676b4fa
MV
3676@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3677@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3678Search through the string @var{s} from left to right, returning
be3eb25c 3679the index of the first occurrence of a character which
07d83abe 3680
5676b4fa
MV
3681@itemize @bullet
3682@item
3683equals @var{char_pred}, if it is character,
07d83abe 3684
5676b4fa 3685@item
be3eb25c 3686satisfies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3687
5676b4fa
MV
3688@item
3689is in the set @var{char_pred}, if it is a character set.
3690@end itemize
bf7c2e96
LC
3691
3692Return @code{#f} if no match is found.
5676b4fa 3693@end deffn
07d83abe 3694
5676b4fa
MV
3695@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3696@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3697Search through the string @var{s} from right to left, returning
be3eb25c 3698the index of the last occurrence of a character which
5676b4fa
MV
3699
3700@itemize @bullet
3701@item
3702equals @var{char_pred}, if it is character,
3703
3704@item
be3eb25c 3705satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3706
3707@item
3708is in the set if @var{char_pred} is a character set.
3709@end itemize
bf7c2e96
LC
3710
3711Return @code{#f} if no match is found.
07d83abe
MV
3712@end deffn
3713
5676b4fa
MV
3714@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3715@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3716Return the length of the longest common prefix of the two
3717strings.
3718@end deffn
07d83abe 3719
5676b4fa
MV
3720@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3721@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3722Return the length of the longest common prefix of the two
3723strings, ignoring character case.
3724@end deffn
07d83abe 3725
5676b4fa
MV
3726@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3727@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3728Return the length of the longest common suffix of the two
3729strings.
3730@end deffn
07d83abe 3731
5676b4fa
MV
3732@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3733@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3734Return the length of the longest common suffix of the two
3735strings, ignoring character case.
3736@end deffn
3737
3738@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3739@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3740Is @var{s1} a prefix of @var{s2}?
3741@end deffn
3742
3743@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3744@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3745Is @var{s1} a prefix of @var{s2}, ignoring character case?
3746@end deffn
3747
3748@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3749@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3750Is @var{s1} a suffix of @var{s2}?
3751@end deffn
3752
3753@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3754@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3755Is @var{s1} a suffix of @var{s2}, ignoring character case?
3756@end deffn
3757
3758@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3759@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3760Search through the string @var{s} from right to left, returning
be3eb25c 3761the index of the last occurrence of a character which
5676b4fa
MV
3762
3763@itemize @bullet
3764@item
3765equals @var{char_pred}, if it is character,
3766
3767@item
be3eb25c 3768satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3769
3770@item
3771is in the set if @var{char_pred} is a character set.
3772@end itemize
bf7c2e96
LC
3773
3774Return @code{#f} if no match is found.
5676b4fa
MV
3775@end deffn
3776
3777@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3778@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3779Search through the string @var{s} from left to right, returning
be3eb25c 3780the index of the first occurrence of a character which
5676b4fa
MV
3781
3782@itemize @bullet
3783@item
3784does not equal @var{char_pred}, if it is character,
3785
3786@item
be3eb25c 3787does not satisfy the predicate @var{char_pred}, if it is a
5676b4fa
MV
3788procedure,
3789
3790@item
3791is not in the set if @var{char_pred} is a character set.
3792@end itemize
3793@end deffn
3794
3795@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3796@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3797Search through the string @var{s} from right to left, returning
be3eb25c 3798the index of the last occurrence of a character which
5676b4fa
MV
3799
3800@itemize @bullet
3801@item
3802does not equal @var{char_pred}, if it is character,
3803
3804@item
3805does not satisfy the predicate @var{char_pred}, if it is a
3806procedure,
3807
3808@item
3809is not in the set if @var{char_pred} is a character set.
3810@end itemize
3811@end deffn
3812
3813@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3814@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3815Return the count of the number of characters in the string
3816@var{s} which
3817
3818@itemize @bullet
3819@item
3820equals @var{char_pred}, if it is character,
3821
3822@item
be3eb25c 3823satisfies the predicate @var{char_pred}, if it is a procedure.
5676b4fa
MV
3824
3825@item
3826is in the set @var{char_pred}, if it is a character set.
3827@end itemize
3828@end deffn
3829
3830@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3831@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3832Does string @var{s1} contain string @var{s2}? Return the index
3833in @var{s1} where @var{s2} occurs as a substring, or false.
3834The optional start/end indices restrict the operation to the
3835indicated substrings.
3836@end deffn
3837
3838@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3839@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3840Does string @var{s1} contain string @var{s2}? Return the index
3841in @var{s1} where @var{s2} occurs as a substring, or false.
3842The optional start/end indices restrict the operation to the
3843indicated substrings. Character comparison is done
3844case-insensitively.
07d83abe
MV
3845@end deffn
3846
3847@node Alphabetic Case Mapping
3848@subsubsection Alphabetic Case Mapping
3849
3850These are procedures for mapping strings to their upper- or lower-case
3851equivalents, respectively, or for capitalizing strings.
3852
67af975c
MG
3853They use the basic case mapping rules for Unicode characters. No
3854special language or context rules are considered. The resulting strings
3855are guaranteed to be the same length as the input strings.
3856
3857@xref{Character Case Mapping, the @code{(ice-9
3858i18n)} module}, for locale-dependent case conversions.
3859
5676b4fa
MV
3860@deffn {Scheme Procedure} string-upcase str [start [end]]
3861@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3862@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3863Upcase every character in @code{str}.
07d83abe
MV
3864@end deffn
3865
5676b4fa
MV
3866@deffn {Scheme Procedure} string-upcase! str [start [end]]
3867@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3868@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3869Destructively upcase every character in @code{str}.
3870
07d83abe 3871@lisp
5676b4fa
MV
3872(string-upcase! y)
3873@result{} "ARRDEFG"
3874y
3875@result{} "ARRDEFG"
07d83abe
MV
3876@end lisp
3877@end deffn
3878
5676b4fa
MV
3879@deffn {Scheme Procedure} string-downcase str [start [end]]
3880@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3881@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3882Downcase every character in @var{str}.
07d83abe
MV
3883@end deffn
3884
5676b4fa
MV
3885@deffn {Scheme Procedure} string-downcase! str [start [end]]
3886@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3887@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3888Destructively downcase every character in @var{str}.
3889
07d83abe 3890@lisp
5676b4fa
MV
3891y
3892@result{} "ARRDEFG"
3893(string-downcase! y)
3894@result{} "arrdefg"
3895y
3896@result{} "arrdefg"
07d83abe
MV
3897@end lisp
3898@end deffn
3899
3900@deffn {Scheme Procedure} string-capitalize str
3901@deffnx {C Function} scm_string_capitalize (str)
3902Return a freshly allocated string with the characters in
3903@var{str}, where the first character of every word is
3904capitalized.
3905@end deffn
3906
3907@deffn {Scheme Procedure} string-capitalize! str
3908@deffnx {C Function} scm_string_capitalize_x (str)
3909Upcase the first character of every word in @var{str}
3910destructively and return @var{str}.
3911
3912@lisp
3913y @result{} "hello world"
3914(string-capitalize! y) @result{} "Hello World"
3915y @result{} "Hello World"
3916@end lisp
3917@end deffn
3918
5676b4fa
MV
3919@deffn {Scheme Procedure} string-titlecase str [start [end]]
3920@deffnx {C Function} scm_string_titlecase (str, start, end)
3921Titlecase every first character in a word in @var{str}.
3922@end deffn
07d83abe 3923
5676b4fa
MV
3924@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3925@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3926Destructively titlecase every first character in a word in
3927@var{str}.
3928@end deffn
3929
3930@node Reversing and Appending Strings
3931@subsubsection Reversing and Appending Strings
07d83abe 3932
5676b4fa
MV
3933@deffn {Scheme Procedure} string-reverse str [start [end]]
3934@deffnx {C Function} scm_string_reverse (str, start, end)
3935Reverse the string @var{str}. The optional arguments
3936@var{start} and @var{end} delimit the region of @var{str} to
3937operate on.
3938@end deffn
3939
3940@deffn {Scheme Procedure} string-reverse! str [start [end]]
3941@deffnx {C Function} scm_string_reverse_x (str, start, end)
3942Reverse the string @var{str} in-place. The optional arguments
3943@var{start} and @var{end} delimit the region of @var{str} to
3944operate on. The return value is unspecified.
3945@end deffn
07d83abe
MV
3946
3947@rnindex string-append
df0a1002 3948@deffn {Scheme Procedure} string-append arg @dots{}
07d83abe
MV
3949@deffnx {C Function} scm_string_append (args)
3950Return a newly allocated string whose characters form the
df0a1002 3951concatenation of the given strings, @var{arg} @enddots{}.
07d83abe
MV
3952
3953@example
3954(let ((h "hello "))
3955 (string-append h "world"))
3956@result{} "hello world"
3957@end example
3958@end deffn
3959
df0a1002
BT
3960@deffn {Scheme Procedure} string-append/shared arg @dots{}
3961@deffnx {C Function} scm_string_append_shared (args)
5676b4fa
MV
3962Like @code{string-append}, but the result may share memory
3963with the argument strings.
3964@end deffn
3965
3966@deffn {Scheme Procedure} string-concatenate ls
3967@deffnx {C Function} scm_string_concatenate (ls)
df0a1002
BT
3968Append the elements (which must be strings) of @var{ls} together into a
3969single string. Guaranteed to return a freshly allocated string.
5676b4fa
MV
3970@end deffn
3971
3972@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3973@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3974Without optional arguments, this procedure is equivalent to
3975
aba0dff5 3976@lisp
5676b4fa 3977(string-concatenate (reverse ls))
aba0dff5 3978@end lisp
5676b4fa
MV
3979
3980If the optional argument @var{final_string} is specified, it is
3981consed onto the beginning to @var{ls} before performing the
3982list-reverse and string-concatenate operations. If @var{end}
3983is given, only the characters of @var{final_string} up to index
3984@var{end} are used.
3985
3986Guaranteed to return a freshly allocated string.
3987@end deffn
3988
3989@deffn {Scheme Procedure} string-concatenate/shared ls
3990@deffnx {C Function} scm_string_concatenate_shared (ls)
3991Like @code{string-concatenate}, but the result may share memory
3992with the strings in the list @var{ls}.
3993@end deffn
3994
3995@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3996@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3997Like @code{string-concatenate-reverse}, but the result may
72b3aa56 3998share memory with the strings in the @var{ls} arguments.
5676b4fa
MV
3999@end deffn
4000
4001@node Mapping Folding and Unfolding
4002@subsubsection Mapping, Folding, and Unfolding
4003
4004@deffn {Scheme Procedure} string-map proc s [start [end]]
4005@deffnx {C Function} scm_string_map (proc, s, start, end)
4006@var{proc} is a char->char procedure, it is mapped over
4007@var{s}. The order in which the procedure is applied to the
4008string elements is not specified.
4009@end deffn
4010
4011@deffn {Scheme Procedure} string-map! proc s [start [end]]
4012@deffnx {C Function} scm_string_map_x (proc, s, start, end)
4013@var{proc} is a char->char procedure, it is mapped over
4014@var{s}. The order in which the procedure is applied to the
4015string elements is not specified. The string @var{s} is
4016modified in-place, the return value is not specified.
4017@end deffn
4018
4019@deffn {Scheme Procedure} string-for-each proc s [start [end]]
4020@deffnx {C Function} scm_string_for_each (proc, s, start, end)
4021@var{proc} is mapped over @var{s} in left-to-right order. The
4022return value is not specified.
4023@end deffn
4024
4025@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
4026@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
4027Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
4028right.
4029
4030For example, to change characters to alternately upper and lower case,
4031
4032@example
4033(define str (string-copy "studly"))
45867c2a
NJ
4034(string-for-each-index
4035 (lambda (i)
4036 (string-set! str i
4037 ((if (even? i) char-upcase char-downcase)
4038 (string-ref str i))))
4039 str)
2a7820f2
KR
4040str @result{} "StUdLy"
4041@end example
5676b4fa
MV
4042@end deffn
4043
4044@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4045@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4046Fold @var{kons} over the characters of @var{s}, with @var{knil}
4047as the terminating element, from left to right. @var{kons}
4048must expect two arguments: The actual character and the last
4049result of @var{kons}' application.
4050@end deffn
4051
4052@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4053@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4054Fold @var{kons} over the characters of @var{s}, with @var{knil}
4055as the terminating element, from right to left. @var{kons}
4056must expect two arguments: The actual character and the last
4057result of @var{kons}' application.
4058@end deffn
4059
4060@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4061@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4062@itemize @bullet
4063@item @var{g} is used to generate a series of @emph{seed}
4064values from the initial @var{seed}: @var{seed}, (@var{g}
4065@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4066@dots{}
4067@item @var{p} tells us when to stop -- when it returns true
4068when applied to one of these seed values.
4069@item @var{f} maps each seed value to the corresponding
4070character in the result string. These chars are assembled
4071into the string in a left-to-right order.
4072@item @var{base} is the optional initial/leftmost portion
4073of the constructed string; it default to the empty
4074string.
4075@item @var{make_final} is applied to the terminal seed
4076value (on which @var{p} returns true) to produce
4077the final/rightmost portion of the constructed string.
9a18d8d4 4078The default is nothing extra.
5676b4fa
MV
4079@end itemize
4080@end deffn
4081
4082@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4083@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4084@itemize @bullet
4085@item @var{g} is used to generate a series of @emph{seed}
4086values from the initial @var{seed}: @var{seed}, (@var{g}
4087@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4088@dots{}
4089@item @var{p} tells us when to stop -- when it returns true
4090when applied to one of these seed values.
4091@item @var{f} maps each seed value to the corresponding
4092character in the result string. These chars are assembled
4093into the string in a right-to-left order.
4094@item @var{base} is the optional initial/rightmost portion
4095of the constructed string; it default to the empty
4096string.
4097@item @var{make_final} is applied to the terminal seed
4098value (on which @var{p} returns true) to produce
4099the final/leftmost portion of the constructed string.
4100It defaults to @code{(lambda (x) )}.
4101@end itemize
4102@end deffn
4103
4104@node Miscellaneous String Operations
4105@subsubsection Miscellaneous String Operations
4106
4107@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4108@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4109This is the @emph{extended substring} procedure that implements
4110replicated copying of a substring of some string.
4111
4112@var{s} is a string, @var{start} and @var{end} are optional
4113arguments that demarcate a substring of @var{s}, defaulting to
41140 and the length of @var{s}. Replicate this substring up and
4115down index space, in both the positive and negative directions.
4116@code{xsubstring} returns the substring of this string
4117beginning at index @var{from}, and ending at @var{to}, which
4118defaults to @var{from} + (@var{end} - @var{start}).
4119@end deffn
4120
4121@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4122@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4123Exactly the same as @code{xsubstring}, but the extracted text
4124is written into the string @var{target} starting at index
4125@var{tstart}. The operation is not defined if @code{(eq?
4126@var{target} @var{s})} or these arguments share storage -- you
4127cannot copy a string on top of itself.
4128@end deffn
4129
4130@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4131@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4132Return the string @var{s1}, but with the characters
4133@var{start1} @dots{} @var{end1} replaced by the characters
4134@var{start2} @dots{} @var{end2} from @var{s2}.
4135@end deffn
4136
4137@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4138@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4139Split the string @var{s} into a list of substrings, where each
4140substring is a maximal non-empty contiguous sequence of
4141characters from the character set @var{token_set}, which
4142defaults to @code{char-set:graphic}.
4143If @var{start} or @var{end} indices are provided, they restrict
4144@code{string-tokenize} to operating on the indicated substring
4145of @var{s}.
4146@end deffn
4147
9fe717e2
AW
4148@deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4149@deffnx {C Function} scm_string_filter (char_pred, s, start, end)
08de3e24 4150Filter the string @var{s}, retaining only those characters which
a88e2a96 4151satisfy @var{char_pred}.
08de3e24
KR
4152
4153If @var{char_pred} is a procedure, it is applied to each character as
4154a predicate, if it is a character, it is tested for equality and if it
4155is a character set, it is tested for membership.
5676b4fa
MV
4156@end deffn
4157
9fe717e2
AW
4158@deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4159@deffnx {C Function} scm_string_delete (char_pred, s, start, end)
a88e2a96 4160Delete characters satisfying @var{char_pred} from @var{s}.
08de3e24
KR
4161
4162If @var{char_pred} is a procedure, it is applied to each character as
4163a predicate, if it is a character, it is tested for equality and if it
4164is a character set, it is tested for membership.
5676b4fa
MV
4165@end deffn
4166
f05bb849
AW
4167@node Representing Strings as Bytes
4168@subsubsection Representing Strings as Bytes
4169
4170Out in the cold world outside of Guile, not all strings are treated in
4171the same way. Out there there are only bytes, and there are many ways
4172of representing a strings (sequences of characters) as binary data
4173(sequences of bytes).
4174
4175As a user, usually you don't have to think about this very much. When
4176you type on your keyboard, your system encodes your keystrokes as bytes
4177according to the locale that you have configured on your computer.
4178Guile uses the locale to decode those bytes back into characters --
4179hopefully the same characters that you typed in.
4180
4181All is not so clear when dealing with a system with multiple users, such
4182as a web server. Your web server might get a request from one user for
4183data encoded in the ISO-8859-1 character set, and then another request
4184from a different user for UTF-8 data.
4185
4186@cindex iconv
4187@cindex character encoding
4188Guile provides an @dfn{iconv} module for converting between strings and
4189sequences of bytes. @xref{Bytevectors}, for more on how Guile
4190represents raw byte sequences. This module gets its name from the
4191common @sc{unix} command of the same name.
4192
4193Unlike the rest of the procedures in this section, you have to load the
4194@code{iconv} module before having access to these procedures:
4195
4196@example
4197(use-modules (ice-9 iconv))
4198@end example
4199
4200@deffn string->bytevector string encoding [#:conversion-strategy='error]
4201Encode @var{string} as a sequence of bytes.
4202
4203The string will be encoded in the character set specified by the
4204@var{encoding} string. If the string has characters that cannot be
4205represented in the encoding, by default this procedure raises an
4206@code{encoding-error}, though the @code{#:conversion-strategy} keyword
4207can specify other behaviors.
4208
4209The return value is a bytevector. @xref{Bytevectors}, for more on
4210bytevectors. @xref{Ports}, for more on character encodings and
4211conversion strategies.
4212@end deffn
4213
4214@deffn bytevector->string bytevector encoding
4215Decode @var{bytevector} into a string.
4216
4217The bytes will be decoded from the character set by the @var{encoding}
4218string. If the bytes do not form a valid encoding, by default this
4219procedure raises an @code{decoding-error}, though that may be overridden
4220with the @code{#:conversion-strategy} keyword. @xref{Ports}, for more
4221on character encodings and conversion strategies.
4222@end deffn
4223
4224@deffn call-with-output-encoded-string encoding proc [#:conversion-strategy='error]
4225Like @code{call-with-output-string}, but instead of returning a string,
4226returns a encoding of the string according to @var{encoding}, as a
4227bytevector. This procedure can be more efficient than collecting a
4228string and then converting it via @code{string->bytevector}.
4229@end deffn
4230
91210d62
MV
4231@node Conversion to/from C
4232@subsubsection Conversion to/from C
4233
4234When creating a Scheme string from a C string or when converting a
4235Scheme string to a C string, the concept of character encoding becomes
4236important.
4237
4238In C, a string is just a sequence of bytes, and the character encoding
4239describes the relation between these bytes and the actual characters
f05bb849
AW
4240that make up the string. For Scheme strings, character encoding is not
4241an issue (most of the time), since in Scheme you usually treat strings
4242as character sequences, not byte sequences.
91210d62 4243
67af975c
MG
4244Converting to C and converting from C each have their own challenges.
4245
4246When converting from C to Scheme, it is important that the sequence of
4247bytes in the C string be valid with respect to its encoding. ASCII
4248strings, for example, can't have any bytes greater than 127. An ASCII
4249byte greater than 127 is considered @emph{ill-formed} and cannot be
4250converted into a Scheme character.
4251
4252Problems can occur in the reverse operation as well. Not all character
4253encodings can hold all possible Scheme characters. Some encodings, like
4254ASCII for example, can only describe a small subset of all possible
4255characters. So, when converting to C, one must first decide what to do
4256with Scheme characters that can't be represented in the C string.
91210d62 4257
c88453e8
MV
4258Converting a Scheme string to a C string will often allocate fresh
4259memory to hold the result. You must take care that this memory is
4260properly freed eventually. In many cases, this can be achieved by
661ae7ab
MV
4261using @code{scm_dynwind_free} inside an appropriate dynwind context,
4262@xref{Dynamic Wind}.
91210d62
MV
4263
4264@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4265@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
67af975c 4266Creates a new Scheme string that has the same contents as @var{str} when
95f5e303 4267interpreted in the character encoding of the current locale.
91210d62
MV
4268
4269For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4270
4271For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4272@var{str} in bytes, and @var{str} does not need to be null-terminated.
4273If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4274null-terminated and the real length will be found with @code{strlen}.
67af975c
MG
4275
4276If the C string is ill-formed, an error will be raised.
ce3ce21c
MW
4277
4278Note that these functions should @emph{not} be used to convert C string
4279constants, because there is no guarantee that the current locale will
4280match that of the source code. To convert C string constants, use
4281@code{scm_from_latin1_string}, @code{scm_from_utf8_string} or
4282@code{scm_from_utf32_string}.
91210d62
MV
4283@end deftypefn
4284
4285@deftypefn {C Function} SCM scm_take_locale_string (char *str)
4286@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4287Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4288respectively, but also frees @var{str} with @code{free} eventually.
4289Thus, you can use this function when you would free @var{str} anyway
4290immediately after creating the Scheme string. In certain cases, Guile
4291can then use @var{str} directly as its internal representation.
4292@end deftypefn
4293
4846ae2c
KR
4294@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4295@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
95f5e303
AW
4296Returns a C string with the same contents as @var{str} in the character
4297encoding of the current locale. The C string must be freed with
4298@code{free} eventually, maybe by using @code{scm_dynwind_free},
67af975c 4299@xref{Dynamic Wind}.
91210d62
MV
4300
4301For @code{scm_to_locale_string}, the returned string is
4302null-terminated and an error is signalled when @var{str} contains
4303@code{#\nul} characters.
4304
4305For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4306@var{str} might contain @code{#\nul} characters and the length of the
4307returned string in bytes is stored in @code{*@var{lenp}}. The
4308returned string will not be null-terminated in this case. If
4309@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4310@code{scm_to_locale_string}.
67af975c 4311
95f5e303
AW
4312If a character in @var{str} cannot be represented in the character
4313encoding of the current locale, the default port conversion strategy is
4314used. @xref{Ports}, for more on conversion strategies.
4315
4316If the conversion strategy is @code{error}, an error will be raised. If
4317it is @code{substitute}, a replacement character, such as a question
4318mark, will be inserted in its place. If it is @code{escape}, a hex
4319escape will be inserted in its place.
91210d62
MV
4320@end deftypefn
4321
4322@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4323Puts @var{str} as a C string in the current locale encoding into the
4324memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4325@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4326more than that. No terminating @code{'\0'} will be stored.
4327
4328The return value of @code{scm_to_locale_stringbuf} is the number of
4329bytes that are needed for all of @var{str}, regardless of whether
4330@var{buf} was large enough to hold them. Thus, when the return value
4331is larger than @var{max_len}, only @var{max_len} bytes have been
4332stored and you probably need to try again with a larger buffer.
4333@end deftypefn
cf313a94
MG
4334
4335For most situations, string conversion should occur using the current
4336locale, such as with the functions above. But there may be cases where
4337one wants to convert strings from a character encoding other than the
4338locale's character encoding. For these cases, the lower-level functions
4339@code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4340functions should seldom be necessary if one is properly using locales.
4341
4342@deftp {C Type} scm_t_string_failed_conversion_handler
4343This is an enumerated type that can take one of three values:
4344@code{SCM_FAILED_CONVERSION_ERROR},
4345@code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4346@code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4347a strategy for handling characters that cannot be converted to or from a
4348given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4349that a conversion should throw an error if some characters cannot be
4350converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4351conversion should replace unconvertable characters with the question
4352mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4353requests that a conversion should replace an unconvertable character
4354with an escape sequence.
4355
4356While all three strategies apply when converting Scheme strings to C,
4357only @code{SCM_FAILED_CONVERSION_ERROR} and
4358@code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4359strings to Scheme.
4360@end deftp
4361
4362@deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4363This function returns a newly allocated C string from the Guile string
68a78738
MW
4364@var{str}. The length of the returned string in bytes will be returned in
4365@var{lenp}. The character encoding of the C string is passed as the ASCII,
cf313a94
MG
4366null-terminated C string @var{encoding}. The @var{handler} parameter
4367gives a strategy for dealing with characters that cannot be converted
4368into @var{encoding}.
4369
68a78738 4370If @var{lenp} is @code{NULL}, this function will return a null-terminated C
cf313a94
MG
4371string. It will throw an error if the string contains a null
4372character.
f05bb849
AW
4373
4374The Scheme interface to this function is @code{encode-string}, from the
4375@code{ice-9 iconv} module. @xref{Representing Strings as Bytes}.
cf313a94
MG
4376@end deftypefn
4377
4378@deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4379This function returns a scheme string from the C string @var{str}. The
c3d8450c 4380length in bytes of the C string is input as @var{len}. The encoding of the C
cf313a94
MG
4381string is passed as the ASCII, null-terminated C string @code{encoding}.
4382The @var{handler} parameters suggests a strategy for dealing with
4383unconvertable characters.
f05bb849
AW
4384
4385The Scheme interface to this function is @code{decode-string}.
4386@xref{Representing Strings as Bytes}.
cf313a94
MG
4387@end deftypefn
4388
ce3ce21c
MW
4389The following conversion functions are provided as a convenience for the
4390most commonly used encodings.
4391
4392@deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4393@deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4394@deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4395Return a scheme string from the null-terminated C string @var{str},
4396which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4397be used to convert hard-coded C string constants into Scheme strings.
4398@end deftypefn
cf313a94
MG
4399
4400@deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
647dc1ac
LC
4401@deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4402@deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4403Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4404UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4405of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4406@code{scm_from_utf8_stringn}; it is the number of elements (code points)
4407in @var{str} in the case of @code{scm_from_utf32_stringn}.
cf313a94
MG
4408@end deftypefn
4409
647dc1ac
LC
4410@deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4411@deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4412@deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4413Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4414from Scheme string @var{str}. An error is thrown when @var{str}
68a78738 4415cannot be converted to the specified encoding. If @var{lenp} is
cf313a94
MG
4416@code{NULL}, the returned C string will be null terminated, and an error
4417will be thrown if the C string would otherwise contain null
68a78738
MW
4418characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
4419and the length of the returned string is returned in @var{lenp}. The length
4420returned is the number of bytes for @code{scm_to_latin1_stringn} and
4421@code{scm_to_utf8_stringn}; it is the number of elements (code points)
4422for @code{scm_to_utf32_stringn}.
cf313a94 4423@end deftypefn
07d83abe 4424
5b6b22e8
MG
4425@node String Internals
4426@subsubsection String Internals
4427
4428Guile stores each string in memory as a contiguous array of Unicode code
4429points along with an associated set of attributes. If all of the code
4430points of a string have an integer range between 0 and 255 inclusive,
4431the code point array is stored as one byte per code point: it is stored
4432as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4433string has an integer value greater that 255, the code point array is
4434stored as four bytes per code point: it is stored as a UTF-32 string.
4435
4436Conversion between the one-byte-per-code-point and
4437four-bytes-per-code-point representations happens automatically as
4438necessary.
4439
4440No API is provided to set the internal representation of strings;
4441however, there are pair of procedures available to query it. These are
4442debugging procedures. Using them in production code is discouraged,
4443since the details of Guile's internal representation of strings may
4444change from release to release.
4445
4446@deffn {Scheme Procedure} string-bytes-per-char str
4447@deffnx {C Function} scm_string_bytes_per_char (str)
4448Return the number of bytes used to encode a Unicode code point in string
4449@var{str}. The result is one or four.
4450@end deffn
4451
4452@deffn {Scheme Procedure} %string-dump str
4453@deffnx {C Function} scm_sys_string_dump (str)
4454Returns an association list containing debugging information for
4455@var{str}. The association list has the following entries.
4456@table @code
4457
4458@item string
4459The string itself.
4460
4461@item start
4462The start index of the string into its stringbuf
4463
4464@item length
4465The length of the string
4466
4467@item shared
4468If this string is a substring, it returns its
4469parent string. Otherwise, it returns @code{#f}
4470
4471@item read-only
4472@code{#t} if the string is read-only
4473
4474@item stringbuf-chars
4475A new string containing this string's stringbuf's characters
4476
4477@item stringbuf-length
4478The number of characters in this stringbuf
4479
4480@item stringbuf-shared
4481@code{#t} if this stringbuf is shared
4482
4483@item stringbuf-wide
4484@code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4485or @code{#f} if they are stored in an 8-bit buffer
4486@end table
4487@end deffn
4488
4489
b242715b
LC
4490@node Bytevectors
4491@subsection Bytevectors
4492
4493@cindex bytevector
4494@cindex R6RS
4495
07d22c02 4496A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
b242715b 4497module provides the programming interface specified by the
5fa2deb3 4498@uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
b242715b
LC
4499Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4500interpret their contents in a number of ways: bytevector contents can be
4501accessed as signed or unsigned integer of various sizes and endianness,
4502as IEEE-754 floating point numbers, or as strings. It is a useful tool
4503to encode and decode binary data.
4504
4505The R6RS (Section 4.3.4) specifies an external representation for
4506bytevectors, whereby the octets (integers in the range 0--255) contained
4507in the bytevector are represented as a list prefixed by @code{#vu8}:
4508
4509@lisp
4510#vu8(1 53 204)
4511@end lisp
4512
4513denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4514string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4515they do not need to be quoted:
4516
4517@lisp
4518#vu8(1 53 204)
4519@result{} #vu8(1 53 204)
4520@end lisp
4521
4522Bytevectors can be used with the binary input/output primitives of the
4523R6RS (@pxref{R6RS I/O Ports}).
4524
4525@menu
4526* Bytevector Endianness:: Dealing with byte order.
4527* Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4528* Bytevectors as Integers:: Interpreting bytes as integers.
4529* Bytevectors and Integer Lists:: Converting to/from an integer list.
4530* Bytevectors as Floats:: Interpreting bytes as real numbers.
4531* Bytevectors as Strings:: Interpreting bytes as Unicode strings.
438974d0 4532* Bytevectors as Generalized Vectors:: Guile extension to the bytevector API.
27219b32 4533* Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
b242715b
LC
4534@end menu
4535
4536@node Bytevector Endianness
4537@subsubsection Endianness
4538
4539@cindex endianness
4540@cindex byte order
4541@cindex word order
4542
4543Some of the following procedures take an @var{endianness} parameter.
5fa2deb3
AW
4544The @dfn{endianness} is defined as the order of bytes in multi-byte
4545numbers: numbers encoded in @dfn{big endian} have their most
4546significant bytes written first, whereas numbers encoded in
4547@dfn{little endian} have their least significant bytes
4548first@footnote{Big-endian and little-endian are the most common
4549``endiannesses'', but others do exist. For instance, the GNU MP
4550library allows @dfn{word order} to be specified independently of
4551@dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4552Multiple Precision Arithmetic Library Manual}).}.
4553
4554Little-endian is the native endianness of the IA32 architecture and
4555its derivatives, while big-endian is native to SPARC and PowerPC,
4556among others. The @code{native-endianness} procedure returns the
4557native endianness of the machine it runs on.
b242715b
LC
4558
4559@deffn {Scheme Procedure} native-endianness
4560@deffnx {C Function} scm_native_endianness ()
4561Return a value denoting the native endianness of the host machine.
4562@end deffn
4563
4564@deffn {Scheme Macro} endianness symbol
4565Return an object denoting the endianness specified by @var{symbol}. If
5fa2deb3
AW
4566@var{symbol} is neither @code{big} nor @code{little} then an error is
4567raised at expand-time.
b242715b
LC
4568@end deffn
4569
4570@defvr {C Variable} scm_endianness_big
4571@defvrx {C Variable} scm_endianness_little
5fa2deb3 4572The objects denoting big- and little-endianness, respectively.
b242715b
LC
4573@end defvr
4574
4575
4576@node Bytevector Manipulation
4577@subsubsection Manipulating Bytevectors
4578
4579Bytevectors can be created, copied, and analyzed with the following
404bb5f8 4580procedures and C functions.
b242715b
LC
4581
4582@deffn {Scheme Procedure} make-bytevector len [fill]
4583@deffnx {C Function} scm_make_bytevector (len, fill)
2d34e924 4584@deffnx {C Function} scm_c_make_bytevector (size_t len)
b242715b 4585Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
d64fc8b0
LC
4586is given, fill it with @var{fill}; @var{fill} must be in the range
4587[-128,255].
b242715b
LC
4588@end deffn
4589
4590@deffn {Scheme Procedure} bytevector? obj
4591@deffnx {C Function} scm_bytevector_p (obj)
4592Return true if @var{obj} is a bytevector.
4593@end deffn
4594
404bb5f8
LC
4595@deftypefn {C Function} int scm_is_bytevector (SCM obj)
4596Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4597@end deftypefn
4598
b242715b
LC
4599@deffn {Scheme Procedure} bytevector-length bv
4600@deffnx {C Function} scm_bytevector_length (bv)
4601Return the length in bytes of bytevector @var{bv}.
4602@end deffn
4603
404bb5f8
LC
4604@deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4605Likewise, return the length in bytes of bytevector @var{bv}.
4606@end deftypefn
4607
b242715b
LC
4608@deffn {Scheme Procedure} bytevector=? bv1 bv2
4609@deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4610Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4611length and contents.
4612@end deffn
4613
4614@deffn {Scheme Procedure} bytevector-fill! bv fill
4615@deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4616Fill bytevector @var{bv} with @var{fill}, a byte.
4617@end deffn
4618
4619@deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4620@deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4621Copy @var{len} bytes from @var{source} into @var{target}, starting
4622reading from @var{source-start} (a positive index within @var{source})
80719649
LC
4623and start writing at @var{target-start}. It is permitted for the
4624@var{source} and @var{target} regions to overlap.
b242715b
LC
4625@end deffn
4626
4627@deffn {Scheme Procedure} bytevector-copy bv
4628@deffnx {C Function} scm_bytevector_copy (bv)
4629Return a newly allocated copy of @var{bv}.
4630@end deffn
4631
404bb5f8
LC
4632@deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4633Return the byte at @var{index} in bytevector @var{bv}.
4634@end deftypefn
4635
4636@deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4637Set the byte at @var{index} in @var{bv} to @var{value}.
4638@end deftypefn
4639
b242715b
LC
4640Low-level C macros are available. They do not perform any
4641type-checking; as such they should be used with care.
4642
4643@deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4644Return the length in bytes of bytevector @var{bv}.
4645@end deftypefn
4646
4647@deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4648Return a pointer to the contents of bytevector @var{bv}.
4649@end deftypefn
4650
4651
4652@node Bytevectors as Integers
4653@subsubsection Interpreting Bytevector Contents as Integers
4654
4655The contents of a bytevector can be interpreted as a sequence of
4656integers of any given size, sign, and endianness.
4657
4658@lisp
4659(let ((bv (make-bytevector 4)))
4660 (bytevector-u8-set! bv 0 #x12)
4661 (bytevector-u8-set! bv 1 #x34)
4662 (bytevector-u8-set! bv 2 #x56)
4663 (bytevector-u8-set! bv 3 #x78)
4664
4665 (map (lambda (number)
4666 (number->string number 16))
4667 (list (bytevector-u8-ref bv 0)
4668 (bytevector-u16-ref bv 0 (endianness big))
4669 (bytevector-u32-ref bv 0 (endianness little)))))
4670
4671@result{} ("12" "1234" "78563412")
4672@end lisp
4673
4674The most generic procedures to interpret bytevector contents as integers
4675are described below.
4676
4677@deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
b242715b 4678@deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4827afeb
NJ
4679Return the @var{size}-byte long unsigned integer at index @var{index} in
4680@var{bv}, decoded according to @var{endianness}.
4681@end deffn
4682
4683@deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
b242715b 4684@deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4827afeb
NJ
4685Return the @var{size}-byte long signed integer at index @var{index} in
4686@var{bv}, decoded according to @var{endianness}.
b242715b
LC
4687@end deffn
4688
4689@deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
b242715b 4690@deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4827afeb
NJ
4691Set the @var{size}-byte long unsigned integer at @var{index} to
4692@var{value}, encoded according to @var{endianness}.
4693@end deffn
4694
4695@deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
b242715b 4696@deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4827afeb
NJ
4697Set the @var{size}-byte long signed integer at @var{index} to
4698@var{value}, encoded according to @var{endianness}.
b242715b
LC
4699@end deffn
4700
4701The following procedures are similar to the ones above, but specialized
4702to a given integer size:
4703
4704@deffn {Scheme Procedure} bytevector-u8-ref bv index
4705@deffnx {Scheme Procedure} bytevector-s8-ref bv index
4706@deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4707@deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4708@deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4709@deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4710@deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4711@deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4712@deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4713@deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4714@deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4715@deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4716@deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4717@deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4718@deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4719@deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4720Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
472116, 32 or 64) from @var{bv} at @var{index}, decoded according to
4722@var{endianness}.
4723@end deffn
4724
4725@deffn {Scheme Procedure} bytevector-u8-set! bv index value
4726@deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4727@deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4728@deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4729@deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4730@deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4731@deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4732@deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4733@deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4734@deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4735@deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4736@deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4737@deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4738@deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4739@deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4740@deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4741Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
47428, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4743@var{endianness}.
4744@end deffn
4745
4746Finally, a variant specialized for the host's endianness is available
4747for each of these functions (with the exception of the @code{u8}
4748accessors, for obvious reasons):
4749
4750@deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4751@deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4752@deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4753@deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4754@deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4755@deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4756@deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4757@deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4758@deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4759@deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4760@deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4761@deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4762Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
476316, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4764host's native endianness.
4765@end deffn
4766
4767@deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4768@deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4769@deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4770@deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4771@deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4772@deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4773@deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4774@deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4775@deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4776@deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4777@deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4778@deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4779Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
47808, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4781host's native endianness.
4782@end deffn
4783
4784
4785@node Bytevectors and Integer Lists
4786@subsubsection Converting Bytevectors to/from Integer Lists
4787
4788Bytevector contents can readily be converted to/from lists of signed or
4789unsigned integers:
4790
4791@lisp
4792(bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4793 (endianness little) 2)
4794@result{} (-1 -1)
4795@end lisp
4796
4797@deffn {Scheme Procedure} bytevector->u8-list bv
4798@deffnx {C Function} scm_bytevector_to_u8_list (bv)
4799Return a newly allocated list of unsigned 8-bit integers from the
4800contents of @var{bv}.
4801@end deffn
4802
4803@deffn {Scheme Procedure} u8-list->bytevector lst
4804@deffnx {C Function} scm_u8_list_to_bytevector (lst)
4805Return a newly allocated bytevector consisting of the unsigned 8-bit
4806integers listed in @var{lst}.
4807@end deffn
4808
4809@deffn {Scheme Procedure} bytevector->uint-list bv endianness size
b242715b 4810@deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4827afeb
NJ
4811Return a list of unsigned integers of @var{size} bytes representing the
4812contents of @var{bv}, decoded according to @var{endianness}.
4813@end deffn
4814
4815@deffn {Scheme Procedure} bytevector->sint-list bv endianness size
b242715b 4816@deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4827afeb
NJ
4817Return a list of signed integers of @var{size} bytes representing the
4818contents of @var{bv}, decoded according to @var{endianness}.
b242715b
LC
4819@end deffn
4820
4821@deffn {Scheme Procedure} uint-list->bytevector lst endianness size
b242715b 4822@deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4827afeb
NJ
4823Return a new bytevector containing the unsigned integers listed in
4824@var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4825@end deffn
4826
4827@deffn {Scheme Procedure} sint-list->bytevector lst endianness size
b242715b 4828@deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4827afeb
NJ
4829Return a new bytevector containing the signed integers listed in
4830@var{lst} and encoded on @var{size} bytes according to @var{endianness}.
b242715b
LC
4831@end deffn
4832
4833@node Bytevectors as Floats
4834@subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4835
4836@cindex IEEE-754 floating point numbers
4837
4838Bytevector contents can also be accessed as IEEE-754 single- or
4839double-precision floating point numbers (respectively 32 and 64-bit
4840long) using the procedures described here.
4841
4842@deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4843@deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4844@deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4845@deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4846Return the IEEE-754 single-precision floating point number from @var{bv}
4847at @var{index} according to @var{endianness}.
4848@end deffn
4849
4850@deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4851@deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4852@deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4853@deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4854Store real number @var{value} in @var{bv} at @var{index} according to
4855@var{endianness}.
4856@end deffn
4857
4858Specialized procedures are also available:
4859
4860@deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4861@deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4862@deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4863@deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4864Return the IEEE-754 single-precision floating point number from @var{bv}
4865at @var{index} according to the host's native endianness.
4866@end deffn
4867
4868@deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4869@deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4870@deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4871@deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4872Store real number @var{value} in @var{bv} at @var{index} according to
4873the host's native endianness.
4874@end deffn
4875
4876
4877@node Bytevectors as Strings
4878@subsubsection Interpreting Bytevector Contents as Unicode Strings
4879
4880@cindex Unicode string encoding
4881
4882Bytevector contents can also be interpreted as Unicode strings encoded
d3b5628c 4883in one of the most commonly available encoding formats.
f05bb849 4884@xref{Representing Strings as Bytes}, for a more generic interface.
b242715b
LC
4885
4886@lisp
4887(utf8->string (u8-list->bytevector '(99 97 102 101)))
4888@result{} "cafe"
4889
4890(string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4891@result{} #vu8(99 97 102 195 169)
4892@end lisp
4893
4894@deffn {Scheme Procedure} string->utf8 str
524aa8ae
LC
4895@deffnx {Scheme Procedure} string->utf16 str [endianness]
4896@deffnx {Scheme Procedure} string->utf32 str [endianness]
b242715b 4897@deffnx {C Function} scm_string_to_utf8 (str)
524aa8ae
LC
4898@deffnx {C Function} scm_string_to_utf16 (str, endianness)
4899@deffnx {C Function} scm_string_to_utf32 (str, endianness)
b242715b 4900Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
524aa8ae
LC
4901UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4902@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4903it defaults to big endian.
b242715b
LC
4904@end deffn
4905
4906@deffn {Scheme Procedure} utf8->string utf
524aa8ae
LC
4907@deffnx {Scheme Procedure} utf16->string utf [endianness]
4908@deffnx {Scheme Procedure} utf32->string utf [endianness]
b242715b 4909@deffnx {C Function} scm_utf8_to_string (utf)
524aa8ae
LC
4910@deffnx {C Function} scm_utf16_to_string (utf, endianness)
4911@deffnx {C Function} scm_utf32_to_string (utf, endianness)
b242715b 4912Return a newly allocated string that contains from the UTF-8-, UTF-16-,
524aa8ae
LC
4913or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4914@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4915it defaults to big endian.
b242715b
LC
4916@end deffn
4917
438974d0
LC
4918@node Bytevectors as Generalized Vectors
4919@subsubsection Accessing Bytevectors with the Generalized Vector API
4920
4921As an extension to the R6RS, Guile allows bytevectors to be manipulated
4922with the @dfn{generalized vector} procedures (@pxref{Generalized
4923Vectors}). This also allows bytevectors to be accessed using the
4924generic @dfn{array} procedures (@pxref{Array Procedures}). When using
4925these APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4926
4927@example
4928(define bv #vu8(0 1 2 3))
4929
4930(generalized-vector? bv)
4931@result{} #t
4932
4933(generalized-vector-ref bv 2)
4934@result{} 2
4935
4936(generalized-vector-set! bv 2 77)
4937(array-ref bv 2)
4938@result{} 77
4939
4940(array-type bv)
4941@result{} vu8
4942@end example
4943
b242715b 4944
27219b32
AW
4945@node Bytevectors as Uniform Vectors
4946@subsubsection Accessing Bytevectors with the SRFI-4 API
4947
4948Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
4949Bytevectors}, for more information.
4950
4951
07d83abe
MV
4952@node Symbols
4953@subsection Symbols
4954@tpindex Symbols
4955
4956Symbols in Scheme are widely used in three ways: as items of discrete
4957data, as lookup keys for alists and hash tables, and to denote variable
4958references.
4959
4960A @dfn{symbol} is similar to a string in that it is defined by a
4961sequence of characters. The sequence of characters is known as the
4962symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4963name doesn't include any characters that could be confused with other
4964elements of Scheme syntax --- a symbol is written in a Scheme program by
4965writing the sequence of characters that make up the name, @emph{without}
4966any quotation marks or other special syntax. For example, the symbol
4967whose name is ``multiply-by-2'' is written, simply:
4968
4969@lisp
4970multiply-by-2
4971@end lisp
4972
4973Notice how this differs from a @emph{string} with contents
4974``multiply-by-2'', which is written with double quotation marks, like
4975this:
4976
4977@lisp
4978"multiply-by-2"
4979@end lisp
4980
4981Looking beyond how they are written, symbols are different from strings
4982in two important respects.
4983
4984The first important difference is uniqueness. If the same-looking
4985string is read twice from two different places in a program, the result
4986is two @emph{different} string objects whose contents just happen to be
4987the same. If, on the other hand, the same-looking symbol is read twice
4988from two different places in a program, the result is the @emph{same}
4989symbol object both times.
4990
4991Given two read symbols, you can use @code{eq?} to test whether they are
4992the same (that is, have the same name). @code{eq?} is the most
4993efficient comparison operator in Scheme, and comparing two symbols like
4994this is as fast as comparing, for example, two numbers. Given two
4995strings, on the other hand, you must use @code{equal?} or
4996@code{string=?}, which are much slower comparison operators, to
4997determine whether the strings have the same contents.
4998
4999@lisp
5000(define sym1 (quote hello))
5001(define sym2 (quote hello))
5002(eq? sym1 sym2) @result{} #t
5003
5004(define str1 "hello")
5005(define str2 "hello")
5006(eq? str1 str2) @result{} #f
5007(equal? str1 str2) @result{} #t
5008@end lisp
5009
5010The second important difference is that symbols, unlike strings, are not
5011self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5012example above: @code{(quote hello)} evaluates to the symbol named
5013"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5014symbol named "hello" and evaluated as a variable reference @dots{} about
5015which more below (@pxref{Symbol Variables}).
5016
5017@menu
5018* Symbol Data:: Symbols as discrete data.
5019* Symbol Keys:: Symbols as lookup keys.
5020* Symbol Variables:: Symbols as denoting variables.
5021* Symbol Primitives:: Operations related to symbols.
5022* Symbol Props:: Function slots and property lists.
5023* Symbol Read Syntax:: Extended read syntax for symbols.
5024* Symbol Uninterned:: Uninterned symbols.
5025@end menu
5026
5027
5028@node Symbol Data
5029@subsubsection Symbols as Discrete Data
5030
5031Numbers and symbols are similar to the extent that they both lend
5032themselves to @code{eq?} comparison. But symbols are more descriptive
5033than numbers, because a symbol's name can be used directly to describe
5034the concept for which that symbol stands.
5035
5036For example, imagine that you need to represent some colours in a
5037computer program. Using numbers, you would have to choose arbitrarily
5038some mapping between numbers and colours, and then take care to use that
5039mapping consistently:
5040
5041@lisp
5042;; 1=red, 2=green, 3=purple
5043
5044(if (eq? (colour-of car) 1)
5045 ...)
5046@end lisp
5047
5048@noindent
5049You can make the mapping more explicit and the code more readable by
5050defining constants:
5051
5052@lisp
5053(define red 1)
5054(define green 2)
5055(define purple 3)
5056
5057(if (eq? (colour-of car) red)
5058 ...)
5059@end lisp
5060
5061@noindent
5062But the simplest and clearest approach is not to use numbers at all, but
5063symbols whose names specify the colours that they refer to:
5064
5065@lisp
5066(if (eq? (colour-of car) 'red)
5067 ...)
5068@end lisp
5069
5070The descriptive advantages of symbols over numbers increase as the set
5071of concepts that you want to describe grows. Suppose that a car object
5072can have other properties as well, such as whether it has or uses:
5073
5074@itemize @bullet
5075@item
5076automatic or manual transmission
5077@item
5078leaded or unleaded fuel
5079@item
5080power steering (or not).
5081@end itemize
5082
5083@noindent
5084Then a car's combined property set could be naturally represented and
5085manipulated as a list of symbols:
5086
5087@lisp
5088(properties-of car1)
5089@result{}
5090(red manual unleaded power-steering)
5091
5092(if (memq 'power-steering (properties-of car1))
5093 (display "Unfit people can drive this car.\n")
5094 (display "You'll need strong arms to drive this car!\n"))
5095@print{}
5096Unfit people can drive this car.
5097@end lisp
5098
5099Remember, the fundamental property of symbols that we are relying on
5100here is that an occurrence of @code{'red} in one part of a program is an
5101@emph{indistinguishable} symbol from an occurrence of @code{'red} in
5102another part of a program; this means that symbols can usefully be
5103compared using @code{eq?}. At the same time, symbols have naturally
5104descriptive names. This combination of efficiency and descriptive power
5105makes them ideal for use as discrete data.
5106
5107
5108@node Symbol Keys
5109@subsubsection Symbols as Lookup Keys
5110
5111Given their efficiency and descriptive power, it is natural to use
5112symbols as the keys in an association list or hash table.
5113
5114To illustrate this, consider a more structured representation of the car
5115properties example from the preceding subsection. Rather than
5116mixing all the properties up together in a flat list, we could use an
5117association list like this:
5118
5119@lisp
5120(define car1-properties '((colour . red)
5121 (transmission . manual)
5122 (fuel . unleaded)
5123 (steering . power-assisted)))
5124@end lisp
5125
5126Notice how this structure is more explicit and extensible than the flat
5127list. For example it makes clear that @code{manual} refers to the
5128transmission rather than, say, the windows or the locking of the car.
5129It also allows further properties to use the same symbols among their
5130possible values without becoming ambiguous:
5131
5132@lisp
5133(define car1-properties '((colour . red)
5134 (transmission . manual)
5135 (fuel . unleaded)
5136 (steering . power-assisted)
5137 (seat-colour . red)
5138 (locking . manual)))
5139@end lisp
5140
5141With a representation like this, it is easy to use the efficient
5142@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5143extract or change individual pieces of information:
5144
5145@lisp
5146(assq-ref car1-properties 'fuel) @result{} unleaded
5147(assq-ref car1-properties 'transmission) @result{} manual
5148
5149(assq-set! car1-properties 'seat-colour 'black)
5150@result{}
5151((colour . red)
5152 (transmission . manual)
5153 (fuel . unleaded)
5154 (steering . power-assisted)
5155 (seat-colour . black)
5156 (locking . manual)))
5157@end lisp
5158
5159Hash tables also have keys, and exactly the same arguments apply to the
5160use of symbols in hash tables as in association lists. The hash value
5161that Guile uses to decide where to add a symbol-keyed entry to a hash
5162table can be obtained by calling the @code{symbol-hash} procedure:
5163
5164@deffn {Scheme Procedure} symbol-hash symbol
5165@deffnx {C Function} scm_symbol_hash (symbol)
5166Return a hash value for @var{symbol}.
5167@end deffn
5168
5169See @ref{Hash Tables} for information about hash tables in general, and
5170for why you might choose to use a hash table rather than an association
5171list.
5172
5173
5174@node Symbol Variables
5175@subsubsection Symbols as Denoting Variables
5176
5177When an unquoted symbol in a Scheme program is evaluated, it is
5178interpreted as a variable reference, and the result of the evaluation is
5179the appropriate variable's value.
5180
5181For example, when the expression @code{(string-length "abcd")} is read
5182and evaluated, the sequence of characters @code{string-length} is read
5183as the symbol whose name is "string-length". This symbol is associated
5184with a variable whose value is the procedure that implements string
5185length calculation. Therefore evaluation of the @code{string-length}
5186symbol results in that procedure.
5187
5188The details of the connection between an unquoted symbol and the
5189variable to which it refers are explained elsewhere. See @ref{Binding
5190Constructs}, for how associations between symbols and variables are
5191created, and @ref{Modules}, for how those associations are affected by
5192Guile's module system.
5193
5194
5195@node Symbol Primitives
5196@subsubsection Operations Related to Symbols
5197
5198Given any Scheme value, you can determine whether it is a symbol using
5199the @code{symbol?} primitive:
5200
5201@rnindex symbol?
5202@deffn {Scheme Procedure} symbol? obj
5203@deffnx {C Function} scm_symbol_p (obj)
5204Return @code{#t} if @var{obj} is a symbol, otherwise return
5205@code{#f}.
5206@end deffn
5207
c9dc8c6c
MV
5208@deftypefn {C Function} int scm_is_symbol (SCM val)
5209Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5210@end deftypefn
5211
07d83abe
MV
5212Once you know that you have a symbol, you can obtain its name as a
5213string by calling @code{symbol->string}. Note that Guile differs by
5214default from R5RS on the details of @code{symbol->string} as regards
5215case-sensitivity:
5216
5217@rnindex symbol->string
5218@deffn {Scheme Procedure} symbol->string s
5219@deffnx {C Function} scm_symbol_to_string (s)
5220Return the name of symbol @var{s} as a string. By default, Guile reads
5221symbols case-sensitively, so the string returned will have the same case
5222variation as the sequence of characters that caused @var{s} to be
5223created.
5224
5225If Guile is set to read symbols case-insensitively (as specified by
5226R5RS), and @var{s} comes into being as part of a literal expression
5227(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5228by a call to the @code{read} or @code{string-ci->symbol} procedures,
5229Guile converts any alphabetic characters in the symbol's name to
5230lower case before creating the symbol object, so the string returned
5231here will be in lower case.
5232
5233If @var{s} was created by @code{string->symbol}, the case of characters
5234in the string returned will be the same as that in the string that was
5235passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5236setting at the time @var{s} was created.
5237
5238It is an error to apply mutation procedures like @code{string-set!} to
5239strings returned by this procedure.
5240@end deffn
5241
5242Most symbols are created by writing them literally in code. However it
5243is also possible to create symbols programmatically using the following
c5fc8f8c
JG
5244procedures:
5245
5246@deffn {Scheme Procedure} symbol char@dots{}
5247@rnindex symbol
5248Return a newly allocated symbol made from the given character arguments.
5249
5250@example
5251(symbol #\x #\y #\z) @result{} xyz
5252@end example
5253@end deffn
5254
5255@deffn {Scheme Procedure} list->symbol lst
5256@rnindex list->symbol
5257Return a newly allocated symbol made from a list of characters.
5258
5259@example
5260(list->symbol '(#\a #\b #\c)) @result{} abc
5261@end example
5262@end deffn
5263
5264@rnindex symbol-append
df0a1002 5265@deffn {Scheme Procedure} symbol-append arg @dots{}
c5fc8f8c 5266Return a newly allocated symbol whose characters form the
df0a1002 5267concatenation of the given symbols, @var{arg} @enddots{}.
c5fc8f8c
JG
5268
5269@example
5270(let ((h 'hello))
5271 (symbol-append h 'world))
5272@result{} helloworld
5273@end example
5274@end deffn
07d83abe
MV
5275
5276@rnindex string->symbol
5277@deffn {Scheme Procedure} string->symbol string
5278@deffnx {C Function} scm_string_to_symbol (string)
5279Return the symbol whose name is @var{string}. This procedure can create
5280symbols with names containing special characters or letters in the
5281non-standard case, but it is usually a bad idea to create such symbols
5282because in some implementations of Scheme they cannot be read as
5283themselves.
5284@end deffn
5285
5286@deffn {Scheme Procedure} string-ci->symbol str
5287@deffnx {C Function} scm_string_ci_to_symbol (str)
5288Return the symbol whose name is @var{str}. If Guile is currently
5289reading symbols case-insensitively, @var{str} is converted to lowercase
5290before the returned symbol is looked up or created.
5291@end deffn
5292
5293The following examples illustrate Guile's detailed behaviour as regards
5294the case-sensitivity of symbols:
5295
5296@lisp
5297(read-enable 'case-insensitive) ; R5RS compliant behaviour
5298
5299(symbol->string 'flying-fish) @result{} "flying-fish"
5300(symbol->string 'Martin) @result{} "martin"
5301(symbol->string
5302 (string->symbol "Malvina")) @result{} "Malvina"
5303
5304(eq? 'mISSISSIppi 'mississippi) @result{} #t
5305(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5306(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5307(eq? 'LolliPop
5308 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5309(string=? "K. Harper, M.D."
5310 (symbol->string
5311 (string->symbol "K. Harper, M.D."))) @result{} #t
5312
5313(read-disable 'case-insensitive) ; Guile default behaviour
5314
5315(symbol->string 'flying-fish) @result{} "flying-fish"
5316(symbol->string 'Martin) @result{} "Martin"
5317(symbol->string
5318 (string->symbol "Malvina")) @result{} "Malvina"
5319
5320(eq? 'mISSISSIppi 'mississippi) @result{} #f
5321(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5322(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5323(eq? 'LolliPop
5324 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5325(string=? "K. Harper, M.D."
5326 (symbol->string
5327 (string->symbol "K. Harper, M.D."))) @result{} #t
5328@end lisp
5329
5330From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
5331from a C string in the current locale encoding.
5332
5333When you want to do more from C, you should convert between symbols
5334and strings using @code{scm_symbol_to_string} and
5335@code{scm_string_to_symbol} and work with the strings.
07d83abe 5336
5f6ffd66
BT
5337@deftypefn {C Function} scm_from_latin1_symbol (const char *name)
5338@deftypefnx {C Function} scm_from_utf8_symbol (const char *name)
ce3ce21c
MW
5339Construct and return a Scheme symbol whose name is specified by the
5340null-terminated C string @var{name}. These are appropriate when
5341the C string is hard-coded in the source code.
5f6ffd66 5342@end deftypefn
ce3ce21c 5343
5f6ffd66
BT
5344@deftypefn {C Function} scm_from_locale_symbol (const char *name)
5345@deftypefnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
07d83abe 5346Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
5347@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5348terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe 5349specified explicitly by @var{len}.
ce3ce21c
MW
5350
5351Note that these functions should @emph{not} be used when @var{name} is a
5352C string constant, because there is no guarantee that the current locale
5353will match that of the source code. In such cases, use
5354@code{scm_from_latin1_symbol} or @code{scm_from_utf8_symbol}.
5f6ffd66 5355@end deftypefn
07d83abe 5356
fd0a5bbc
HWN
5357@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5358@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5359Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5360respectively, but also frees @var{str} with @code{free} eventually.
5361Thus, you can use this function when you would free @var{str} anyway
5362immediately after creating the Scheme string. In certain cases, Guile
5363can then use @var{str} directly as its internal representation.
5364@end deftypefn
5365
071bb6a8
LC
5366The size of a symbol can also be obtained from C:
5367
5368@deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5369Return the number of characters in @var{sym}.
5370@end deftypefn
fd0a5bbc 5371
07d83abe
MV
5372Finally, some applications, especially those that generate new Scheme
5373code dynamically, need to generate symbols for use in the generated
5374code. The @code{gensym} primitive meets this need:
5375
5376@deffn {Scheme Procedure} gensym [prefix]
5377@deffnx {C Function} scm_gensym (prefix)
5378Create a new symbol with a name constructed from a prefix and a counter
5379value. The string @var{prefix} can be specified as an optional
5380argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5381at each call. There is no provision for resetting the counter.
5382@end deffn
5383
5384The symbols generated by @code{gensym} are @emph{likely} to be unique,
5385since their names begin with a space and it is only otherwise possible
5386to generate such symbols if a programmer goes out of their way to do
5387so. Uniqueness can be guaranteed by instead using uninterned symbols
5388(@pxref{Symbol Uninterned}), though they can't be usefully written out
5389and read back in.
5390
5391
5392@node Symbol Props
5393@subsubsection Function Slots and Property Lists
5394
5395In traditional Lisp dialects, symbols are often understood as having
5396three kinds of value at once:
5397
5398@itemize @bullet
5399@item
5400a @dfn{variable} value, which is used when the symbol appears in
5401code in a variable reference context
5402
5403@item
5404a @dfn{function} value, which is used when the symbol appears in
679cceed 5405code in a function name position (i.e.@: as the first element in an
07d83abe
MV
5406unquoted list)
5407
5408@item
5409a @dfn{property list} value, which is used when the symbol is given as
5410the first argument to Lisp's @code{put} or @code{get} functions.
5411@end itemize
5412
5413Although Scheme (as one of its simplifications with respect to Lisp)
5414does away with the distinction between variable and function namespaces,
5415Guile currently retains some elements of the traditional structure in
5416case they turn out to be useful when implementing translators for other
5417languages, in particular Emacs Lisp.
5418
ecb87335
RW
5419Specifically, Guile symbols have two extra slots, one for a symbol's
5420property list, and one for its ``function value.'' The following procedures
07d83abe
MV
5421are provided to access these slots.
5422
5423@deffn {Scheme Procedure} symbol-fref symbol
5424@deffnx {C Function} scm_symbol_fref (symbol)
5425Return the contents of @var{symbol}'s @dfn{function slot}.
5426@end deffn
5427
5428@deffn {Scheme Procedure} symbol-fset! symbol value
5429@deffnx {C Function} scm_symbol_fset_x (symbol, value)
5430Set the contents of @var{symbol}'s function slot to @var{value}.
5431@end deffn
5432
5433@deffn {Scheme Procedure} symbol-pref symbol
5434@deffnx {C Function} scm_symbol_pref (symbol)
5435Return the @dfn{property list} currently associated with @var{symbol}.
5436@end deffn
5437
5438@deffn {Scheme Procedure} symbol-pset! symbol value
5439@deffnx {C Function} scm_symbol_pset_x (symbol, value)
5440Set @var{symbol}'s property list to @var{value}.
5441@end deffn
5442
5443@deffn {Scheme Procedure} symbol-property sym prop
5444From @var{sym}'s property list, return the value for property
5445@var{prop}. The assumption is that @var{sym}'s property list is an
5446association list whose keys are distinguished from each other using
5447@code{equal?}; @var{prop} should be one of the keys in that list. If
5448the property list has no entry for @var{prop}, @code{symbol-property}
5449returns @code{#f}.
5450@end deffn
5451
5452@deffn {Scheme Procedure} set-symbol-property! sym prop val
5453In @var{sym}'s property list, set the value for property @var{prop} to
5454@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5455none already exists. For the structure of the property list, see
5456@code{symbol-property}.
5457@end deffn
5458
5459@deffn {Scheme Procedure} symbol-property-remove! sym prop
5460From @var{sym}'s property list, remove the entry for property
5461@var{prop}, if there is one. For the structure of the property list,
5462see @code{symbol-property}.
5463@end deffn
5464
5465Support for these extra slots may be removed in a future release, and it
4695789c
NJ
5466is probably better to avoid using them. For a more modern and Schemely
5467approach to properties, see @ref{Object Properties}.
07d83abe
MV
5468
5469
5470@node Symbol Read Syntax
5471@subsubsection Extended Read Syntax for Symbols
5472
5473The read syntax for a symbol is a sequence of letters, digits, and
5474@dfn{extended alphabetic characters}, beginning with a character that
5475cannot begin a number. In addition, the special cases of @code{+},
5476@code{-}, and @code{...} are read as symbols even though numbers can
5477begin with @code{+}, @code{-} or @code{.}.
5478
5479Extended alphabetic characters may be used within identifiers as if
5480they were letters. The set of extended alphabetic characters is:
5481
5482@example
5483! $ % & * + - . / : < = > ? @@ ^ _ ~
5484@end example
5485
5486In addition to the standard read syntax defined above (which is taken
5487from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5488Scheme})), Guile provides an extended symbol read syntax that allows the
5489inclusion of unusual characters such as space characters, newlines and
5490parentheses. If (for whatever reason) you need to write a symbol
5491containing characters not mentioned above, you can do so as follows.
5492
5493@itemize @bullet
5494@item
5495Begin the symbol with the characters @code{#@{},
5496
5497@item
5498write the characters of the symbol and
5499
5500@item
5501finish the symbol with the characters @code{@}#}.
5502@end itemize
5503
5504Here are a few examples of this form of read syntax. The first symbol
5505needs to use extended syntax because it contains a space character, the
5506second because it contains a line break, and the last because it looks
5507like a number.
5508
5509@lisp
5510#@{foo bar@}#
5511
5512#@{what
5513ever@}#
5514
5515#@{4242@}#
5516@end lisp
5517
5518Although Guile provides this extended read syntax for symbols,
5519widespread usage of it is discouraged because it is not portable and not
5520very readable.
5521
5522
5523@node Symbol Uninterned
5524@subsubsection Uninterned Symbols
5525
5526What makes symbols useful is that they are automatically kept unique.
5527There are no two symbols that are distinct objects but have the same
5528name. But of course, there is no rule without exception. In addition
5529to the normal symbols that have been discussed up to now, you can also
5530create special @dfn{uninterned} symbols that behave slightly
5531differently.
5532
5533To understand what is different about them and why they might be useful,
5534we look at how normal symbols are actually kept unique.
5535
5536Whenever Guile wants to find the symbol with a specific name, for
5537example during @code{read} or when executing @code{string->symbol}, it
5538first looks into a table of all existing symbols to find out whether a
5539symbol with the given name already exists. When this is the case, Guile
5540just returns that symbol. When not, a new symbol with the name is
5541created and entered into the table so that it can be found later.
5542
5543Sometimes you might want to create a symbol that is guaranteed `fresh',
679cceed 5544i.e.@: a symbol that did not exist previously. You might also want to
07d83abe
MV
5545somehow guarantee that no one else will ever unintentionally stumble
5546across your symbol in the future. These properties of a symbol are
5547often needed when generating code during macro expansion. When
5548introducing new temporary variables, you want to guarantee that they
5549don't conflict with variables in other people's code.
5550
5551The simplest way to arrange for this is to create a new symbol but
5552not enter it into the global table of all symbols. That way, no one
5553will ever get access to your symbol by chance. Symbols that are not in
5554the table are called @dfn{uninterned}. Of course, symbols that
5555@emph{are} in the table are called @dfn{interned}.
5556
5557You create new uninterned symbols with the function @code{make-symbol}.
5558You can test whether a symbol is interned or not with
5559@code{symbol-interned?}.
5560
5561Uninterned symbols break the rule that the name of a symbol uniquely
5562identifies the symbol object. Because of this, they can not be written
5563out and read back in like interned symbols. Currently, Guile has no
5564support for reading uninterned symbols. Note that the function
5565@code{gensym} does not return uninterned symbols for this reason.
5566
5567@deffn {Scheme Procedure} make-symbol name
5568@deffnx {C Function} scm_make_symbol (name)
5569Return a new uninterned symbol with the name @var{name}. The returned
5570symbol is guaranteed to be unique and future calls to
5571@code{string->symbol} will not return it.
5572@end deffn
5573
5574@deffn {Scheme Procedure} symbol-interned? symbol
5575@deffnx {C Function} scm_symbol_interned_p (symbol)
5576Return @code{#t} if @var{symbol} is interned, otherwise return
5577@code{#f}.
5578@end deffn
5579
5580For example:
5581
5582@lisp
5583(define foo-1 (string->symbol "foo"))
5584(define foo-2 (string->symbol "foo"))
5585(define foo-3 (make-symbol "foo"))
5586(define foo-4 (make-symbol "foo"))
5587
5588(eq? foo-1 foo-2)
5589@result{} #t
5590; Two interned symbols with the same name are the same object,
5591
5592(eq? foo-1 foo-3)
5593@result{} #f
5594; but a call to make-symbol with the same name returns a
5595; distinct object.
5596
5597(eq? foo-3 foo-4)
5598@result{} #f
5599; A call to make-symbol always returns a new object, even for
5600; the same name.
5601
5602foo-3
5603@result{} #<uninterned-symbol foo 8085290>
5604; Uninterned symbols print differently from interned symbols,
5605
5606(symbol? foo-3)
5607@result{} #t
5608; but they are still symbols,
5609
5610(symbol-interned? foo-3)
5611@result{} #f
5612; just not interned.
5613@end lisp
5614
5615
5616@node Keywords
5617@subsection Keywords
5618@tpindex Keywords
5619
5620Keywords are self-evaluating objects with a convenient read syntax that
5621makes them easy to type.
5622
5623Guile's keyword support conforms to R5RS, and adds a (switchable) read
5624syntax extension to permit keywords to begin with @code{:} as well as
ef4cbc08 5625@code{#:}, or to end with @code{:}.
07d83abe
MV
5626
5627@menu
5628* Why Use Keywords?:: Motivation for keyword usage.
5629* Coding With Keywords:: How to use keywords.
5630* Keyword Read Syntax:: Read syntax for keywords.
5631* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
5632@end menu
5633
5634@node Why Use Keywords?
5635@subsubsection Why Use Keywords?
5636
5637Keywords are useful in contexts where a program or procedure wants to be
5638able to accept a large number of optional arguments without making its
5639interface unmanageable.
5640
5641To illustrate this, consider a hypothetical @code{make-window}
5642procedure, which creates a new window on the screen for drawing into
5643using some graphical toolkit. There are many parameters that the caller
5644might like to specify, but which could also be sensibly defaulted, for
5645example:
5646
5647@itemize @bullet
5648@item
5649color depth -- Default: the color depth for the screen
5650
5651@item
5652background color -- Default: white
5653
5654@item
5655width -- Default: 600
5656
5657@item
5658height -- Default: 400
5659@end itemize
5660
5661If @code{make-window} did not use keywords, the caller would have to
5662pass in a value for each possible argument, remembering the correct
5663argument order and using a special value to indicate the default value
5664for that argument:
5665
5666@lisp
5667(make-window 'default ;; Color depth
5668 'default ;; Background color
5669 800 ;; Width
5670 100 ;; Height
5671 @dots{}) ;; More make-window arguments
5672@end lisp
5673
5674With keywords, on the other hand, defaulted arguments are omitted, and
5675non-default arguments are clearly tagged by the appropriate keyword. As
5676a result, the invocation becomes much clearer:
5677
5678@lisp
5679(make-window #:width 800 #:height 100)
5680@end lisp
5681
5682On the other hand, for a simpler procedure with few arguments, the use
5683of keywords would be a hindrance rather than a help. The primitive
5684procedure @code{cons}, for example, would not be improved if it had to
5685be invoked as
5686
5687@lisp
5688(cons #:car x #:cdr y)
5689@end lisp
5690
5691So the decision whether to use keywords or not is purely pragmatic: use
5692them if they will clarify the procedure invocation at point of call.
5693
5694@node Coding With Keywords
5695@subsubsection Coding With Keywords
5696
5697If a procedure wants to support keywords, it should take a rest argument
5698and then use whatever means is convenient to extract keywords and their
5699corresponding arguments from the contents of that rest argument.
5700
5701The following example illustrates the principle: the code for
5702@code{make-window} uses a helper procedure called
5703@code{get-keyword-value} to extract individual keyword arguments from
5704the rest argument.
5705
5706@lisp
5707(define (get-keyword-value args keyword default)
5708 (let ((kv (memq keyword args)))
5709 (if (and kv (>= (length kv) 2))
5710 (cadr kv)
5711 default)))
5712
5713(define (make-window . args)
5714 (let ((depth (get-keyword-value args #:depth screen-depth))
5715 (bg (get-keyword-value args #:bg "white"))
5716 (width (get-keyword-value args #:width 800))
5717 (height (get-keyword-value args #:height 100))
5718 @dots{})
5719 @dots{}))
5720@end lisp
5721
5722But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5723optargs)} module provides a set of powerful macros that you can use to
5724implement keyword-supporting procedures like this:
5725
5726@lisp
5727(use-modules (ice-9 optargs))
5728
5729(define (make-window . args)
5730 (let-keywords args #f ((depth screen-depth)
5731 (bg "white")
5732 (width 800)
5733 (height 100))
5734 ...))
5735@end lisp
5736
5737@noindent
5738Or, even more economically, like this:
5739
5740@lisp
5741(use-modules (ice-9 optargs))
5742
5743(define* (make-window #:key (depth screen-depth)
5744 (bg "white")
5745 (width 800)
5746 (height 100))
5747 ...)
5748@end lisp
5749
5750For further details on @code{let-keywords}, @code{define*} and other
5751facilities provided by the @code{(ice-9 optargs)} module, see
5752@ref{Optional Arguments}.
5753
5754
5755@node Keyword Read Syntax
5756@subsubsection Keyword Read Syntax
5757
7719ef22
MV
5758Guile, by default, only recognizes a keyword syntax that is compatible
5759with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5760same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5761external representation of the keyword named @code{NAME}. Keyword
5762objects print using this syntax as well, so values containing keyword
5763objects can be read back into Guile. When used in an expression,
5764keywords are self-quoting objects.
07d83abe
MV
5765
5766If the @code{keyword} read option is set to @code{'prefix}, Guile also
5767recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5768of the form @code{:NAME} are read as symbols, as required by R5RS.
5769
ef4cbc08
LC
5770@cindex SRFI-88 keyword syntax
5771
5772If the @code{keyword} read option is set to @code{'postfix}, Guile
189681f5
LC
5773recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5774Otherwise, tokens of this form are read as symbols.
ef4cbc08 5775
07d83abe 5776To enable and disable the alternative non-R5RS keyword syntax, you use
1518f649
AW
5777the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5778the @code{prefix} and @code{postfix} syntax are mutually exclusive.
07d83abe 5779
aba0dff5 5780@lisp
07d83abe
MV
5781(read-set! keywords 'prefix)
5782
5783#:type
5784@result{}
5785#:type
5786
5787:type
5788@result{}
5789#:type
5790
ef4cbc08
LC
5791(read-set! keywords 'postfix)
5792
5793type:
5794@result{}
5795#:type
5796
5797:type
5798@result{}
5799:type
5800
07d83abe
MV
5801(read-set! keywords #f)
5802
5803#:type
5804@result{}
5805#:type
5806
5807:type
5808@print{}
5809ERROR: In expression :type:
5810ERROR: Unbound variable: :type
5811ABORT: (unbound-variable)
aba0dff5 5812@end lisp
07d83abe
MV
5813
5814@node Keyword Procedures
5815@subsubsection Keyword Procedures
5816
07d83abe
MV
5817@deffn {Scheme Procedure} keyword? obj
5818@deffnx {C Function} scm_keyword_p (obj)
5819Return @code{#t} if the argument @var{obj} is a keyword, else
5820@code{#f}.
5821@end deffn
5822
7719ef22
MV
5823@deffn {Scheme Procedure} keyword->symbol keyword
5824@deffnx {C Function} scm_keyword_to_symbol (keyword)
5825Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5826@end deffn
5827
7719ef22
MV
5828@deffn {Scheme Procedure} symbol->keyword symbol
5829@deffnx {C Function} scm_symbol_to_keyword (symbol)
5830Return the keyword with the same name as @var{symbol}.
5831@end deffn
07d83abe 5832
7719ef22
MV
5833@deftypefn {C Function} int scm_is_keyword (SCM obj)
5834Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5835@end deftypefn
5836
c428e586
MW
5837@deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
5838@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
7719ef22 5839Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
c428e586
MW
5840(@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5841(@var{name}, @var{len}))}, respectively.
5842
5843Note that these functions should @emph{not} be used when @var{name} is a
5844C string constant, because there is no guarantee that the current locale
5845will match that of the source code. In such cases, use
5846@code{scm_from_latin1_keyword} or @code{scm_from_utf8_keyword}.
5847@end deftypefn
5848
5849@deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
5850@deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
5851Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
5852(@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
5853(@var{name}))}, respectively.
7719ef22 5854@end deftypefn
07d83abe
MV
5855
5856@node Other Types
5857@subsection ``Functionality-Centric'' Data Types
5858
a136ada6 5859Procedures and macros are documented in their own sections: see
e4955559 5860@ref{Procedures} and @ref{Macros}.
07d83abe
MV
5861
5862Variable objects are documented as part of the description of Guile's
5863module system: see @ref{Variables}.
5864
a136ada6 5865Asyncs, dynamic roots and fluids are described in the section on
07d83abe
MV
5866scheduling: see @ref{Scheduling}.
5867
a136ada6 5868Hooks are documented in the section on general utility functions: see
07d83abe
MV
5869@ref{Hooks}.
5870
a136ada6 5871Ports are described in the section on I/O: see @ref{Input and Output}.
07d83abe 5872
a136ada6
NJ
5873Regular expressions are described in their own section: see @ref{Regular
5874Expressions}.
07d83abe
MV
5875
5876@c Local Variables:
5877@c TeX-master: "guile.texi"
5878@c End: