Improve docs of string and symbol conversions from C strings
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
bf7c2e96 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011
07d83abe
MV
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
07d83abe
MV
7@node Simple Data Types
8@section Simple Generic Data Types
9
10This chapter describes those of Guile's simple data types which are
11primarily used for their role as items of generic data. By
12@dfn{simple} we mean data types that are not primarily used as
13containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14For the documentation of such @dfn{compound} data types, see
15@ref{Compound Data Types}.
16
17@c One of the great strengths of Scheme is that there is no straightforward
18@c distinction between ``data'' and ``functionality''. For example,
19@c Guile's support for dynamic linking could be described:
20
21@c @itemize @bullet
22@c @item
23@c either in a ``data-centric'' way, as the behaviour and properties of the
24@c ``dynamically linked object'' data type, and the operations that may be
25@c applied to instances of this type
26
27@c @item
28@c or in a ``functionality-centric'' way, as the set of procedures that
29@c constitute Guile's support for dynamic linking, in the context of the
30@c module system.
31@c @end itemize
32
33@c The contents of this chapter are, therefore, a matter of judgment. By
34@c @dfn{generic}, we mean to select those data types whose typical use as
35@c @emph{data} in a wide variety of programming contexts is more important
36@c than their use in the implementation of a particular piece of
37@c @emph{functionality}. The last section of this chapter provides
38@c references for all the data types that are documented not here but in a
39@c ``functionality-centric'' way elsewhere in the manual.
40
41@menu
42* Booleans:: True/false values.
43* Numbers:: Numerical data types.
050ab45f
MV
44* Characters:: Single characters.
45* Character Sets:: Sets of characters.
46* Strings:: Sequences of characters.
b242715b 47* Bytevectors:: Sequences of bytes.
07d83abe
MV
48* Symbols:: Symbols.
49* Keywords:: Self-quoting, customizable display keywords.
50* Other Types:: "Functionality-centric" data types.
51@end menu
52
53
54@node Booleans
55@subsection Booleans
56@tpindex Booleans
57
58The two boolean values are @code{#t} for true and @code{#f} for false.
59
60Boolean values are returned by predicate procedures, such as the general
61equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
62(@pxref{Equality}) and numerical and string comparison operators like
63@code{string=?} (@pxref{String Comparison}) and @code{<=}
64(@pxref{Comparison}).
65
66@lisp
67(<= 3 8)
68@result{} #t
69
70(<= 3 -3)
71@result{} #f
72
73(equal? "house" "houses")
74@result{} #f
75
76(eq? #f #f)
77@result{}
78#t
79@end lisp
80
81In test condition contexts like @code{if} and @code{cond} (@pxref{if
82cond case}), where a group of subexpressions will be evaluated only if a
83@var{condition} expression evaluates to ``true'', ``true'' means any
84value at all except @code{#f}.
85
86@lisp
87(if #t "yes" "no")
88@result{} "yes"
89
90(if 0 "yes" "no")
91@result{} "yes"
92
93(if #f "yes" "no")
94@result{} "no"
95@end lisp
96
97A result of this asymmetry is that typical Scheme source code more often
98uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
99represent an @code{if} or @code{cond} false value, whereas @code{#t} is
100not necessary to represent an @code{if} or @code{cond} true value.
101
102It is important to note that @code{#f} is @strong{not} equivalent to any
103other Scheme value. In particular, @code{#f} is not the same as the
104number 0 (like in C and C++), and not the same as the ``empty list''
105(like in some Lisp dialects).
106
107In C, the two Scheme boolean values are available as the two constants
108@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
109Care must be taken with the false value @code{SCM_BOOL_F}: it is not
110false when used in C conditionals. In order to test for it, use
111@code{scm_is_false} or @code{scm_is_true}.
112
113@rnindex not
114@deffn {Scheme Procedure} not x
115@deffnx {C Function} scm_not (x)
116Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
117@end deffn
118
119@rnindex boolean?
120@deffn {Scheme Procedure} boolean? obj
121@deffnx {C Function} scm_boolean_p (obj)
122Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
123return @code{#f}.
124@end deffn
125
126@deftypevr {C Macro} SCM SCM_BOOL_T
127The @code{SCM} representation of the Scheme object @code{#t}.
128@end deftypevr
129
130@deftypevr {C Macro} SCM SCM_BOOL_F
131The @code{SCM} representation of the Scheme object @code{#f}.
132@end deftypevr
133
134@deftypefn {C Function} int scm_is_true (SCM obj)
135Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
136@end deftypefn
137
138@deftypefn {C Function} int scm_is_false (SCM obj)
139Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
140@end deftypefn
141
142@deftypefn {C Function} int scm_is_bool (SCM obj)
143Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
144return @code{0}.
145@end deftypefn
146
147@deftypefn {C Function} SCM scm_from_bool (int val)
148Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
149@end deftypefn
150
151@deftypefn {C Function} int scm_to_bool (SCM val)
152Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
153when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
154
155You should probably use @code{scm_is_true} instead of this function
156when you just want to test a @code{SCM} value for trueness.
157@end deftypefn
158
159@node Numbers
160@subsection Numerical data types
161@tpindex Numbers
162
163Guile supports a rich ``tower'' of numerical types --- integer,
164rational, real and complex --- and provides an extensive set of
165mathematical and scientific functions for operating on numerical
166data. This section of the manual documents those types and functions.
167
168You may also find it illuminating to read R5RS's presentation of numbers
169in Scheme, which is particularly clear and accessible: see
170@ref{Numbers,,,r5rs,R5RS}.
171
172@menu
173* Numerical Tower:: Scheme's numerical "tower".
174* Integers:: Whole numbers.
175* Reals and Rationals:: Real and rational numbers.
176* Complex Numbers:: Complex numbers.
177* Exactness:: Exactness and inexactness.
178* Number Syntax:: Read syntax for numerical data.
179* Integer Operations:: Operations on integer values.
180* Comparison:: Comparison predicates.
181* Conversion:: Converting numbers to and from strings.
182* Complex:: Complex number operations.
183* Arithmetic:: Arithmetic functions.
184* Scientific:: Scientific functions.
07d83abe
MV
185* Bitwise Operations:: Logical AND, OR, NOT, and so on.
186* Random:: Random number generation.
187@end menu
188
189
190@node Numerical Tower
191@subsubsection Scheme's Numerical ``Tower''
192@rnindex number?
193
194Scheme's numerical ``tower'' consists of the following categories of
195numbers:
196
197@table @dfn
198@item integers
199Whole numbers, positive or negative; e.g.@: --5, 0, 18.
200
201@item rationals
202The set of numbers that can be expressed as @math{@var{p}/@var{q}}
203where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
204pi (an irrational number) doesn't. These include integers
205(@math{@var{n}/1}).
206
207@item real numbers
208The set of numbers that describes all possible positions along a
209one-dimensional line. This includes rationals as well as irrational
210numbers.
211
212@item complex numbers
213The set of numbers that describes all possible positions in a two
214dimensional space. This includes real as well as imaginary numbers
215(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
216@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
217@minus{}1.)
218@end table
219
220It is called a tower because each category ``sits on'' the one that
221follows it, in the sense that every integer is also a rational, every
222rational is also real, and every real number is also a complex number
223(but with zero imaginary part).
224
225In addition to the classification into integers, rationals, reals and
226complex numbers, Scheme also distinguishes between whether a number is
227represented exactly or not. For example, the result of
9f1ba6a9
NJ
228@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
229can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
07d83abe
MV
230Instead, it stores an inexact approximation, using the C type
231@code{double}.
232
233Guile can represent exact rationals of any magnitude, inexact
234rationals that fit into a C @code{double}, and inexact complex numbers
235with @code{double} real and imaginary parts.
236
237The @code{number?} predicate may be applied to any Scheme value to
238discover whether the value is any of the supported numerical types.
239
240@deffn {Scheme Procedure} number? obj
241@deffnx {C Function} scm_number_p (obj)
242Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
243@end deffn
244
245For example:
246
247@lisp
248(number? 3)
249@result{} #t
250
251(number? "hello there!")
252@result{} #f
253
254(define pi 3.141592654)
255(number? pi)
256@result{} #t
257@end lisp
258
5615f696
MV
259@deftypefn {C Function} int scm_is_number (SCM obj)
260This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
261@end deftypefn
262
07d83abe
MV
263The next few subsections document each of Guile's numerical data types
264in detail.
265
266@node Integers
267@subsubsection Integers
268
269@tpindex Integer numbers
270
271@rnindex integer?
272
273Integers are whole numbers, that is numbers with no fractional part,
274such as 2, 83, and @minus{}3789.
275
276Integers in Guile can be arbitrarily big, as shown by the following
277example.
278
279@lisp
280(define (factorial n)
281 (let loop ((n n) (product 1))
282 (if (= n 0)
283 product
284 (loop (- n 1) (* product n)))))
285
286(factorial 3)
287@result{} 6
288
289(factorial 20)
290@result{} 2432902008176640000
291
292(- (factorial 45))
293@result{} -119622220865480194561963161495657715064383733760000000000
294@end lisp
295
296Readers whose background is in programming languages where integers are
297limited by the need to fit into just 4 or 8 bytes of memory may find
298this surprising, or suspect that Guile's representation of integers is
299inefficient. In fact, Guile achieves a near optimal balance of
300convenience and efficiency by using the host computer's native
301representation of integers where possible, and a more general
302representation where the required number does not fit in the native
303form. Conversion between these two representations is automatic and
304completely invisible to the Scheme level programmer.
305
07d83abe
MV
306C has a host of different integer types, and Guile offers a host of
307functions to convert between them and the @code{SCM} representation.
308For example, a C @code{int} can be handled with @code{scm_to_int} and
309@code{scm_from_int}. Guile also defines a few C integer types of its
310own, to help with differences between systems.
311
312C integer types that are not covered can be handled with the generic
313@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
314signed types, or with @code{scm_to_unsigned_integer} and
315@code{scm_from_unsigned_integer} for unsigned types.
316
317Scheme integers can be exact and inexact. For example, a number
318written as @code{3.0} with an explicit decimal-point is inexact, but
319it is also an integer. The functions @code{integer?} and
320@code{scm_is_integer} report true for such a number, but the functions
321@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
322allow exact integers and thus report false. Likewise, the conversion
323functions like @code{scm_to_signed_integer} only accept exact
324integers.
325
326The motivation for this behavior is that the inexactness of a number
327should not be lost silently. If you want to allow inexact integers,
877f06c3 328you can explicitly insert a call to @code{inexact->exact} or to its C
07d83abe
MV
329equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
330be converted by this call into exact integers; inexact non-integers
331will become exact fractions.)
332
333@deffn {Scheme Procedure} integer? x
334@deffnx {C Function} scm_integer_p (x)
909fcc97 335Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
336@code{#f}.
337
338@lisp
339(integer? 487)
340@result{} #t
341
342(integer? 3.0)
343@result{} #t
344
345(integer? -3.4)
346@result{} #f
347
348(integer? +inf.0)
349@result{} #t
350@end lisp
351@end deffn
352
353@deftypefn {C Function} int scm_is_integer (SCM x)
354This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
355@end deftypefn
356
357@defvr {C Type} scm_t_int8
358@defvrx {C Type} scm_t_uint8
359@defvrx {C Type} scm_t_int16
360@defvrx {C Type} scm_t_uint16
361@defvrx {C Type} scm_t_int32
362@defvrx {C Type} scm_t_uint32
363@defvrx {C Type} scm_t_int64
364@defvrx {C Type} scm_t_uint64
365@defvrx {C Type} scm_t_intmax
366@defvrx {C Type} scm_t_uintmax
367The C types are equivalent to the corresponding ISO C types but are
368defined on all platforms, with the exception of @code{scm_t_int64} and
369@code{scm_t_uint64}, which are only defined when a 64-bit type is
370available. For example, @code{scm_t_int8} is equivalent to
371@code{int8_t}.
372
373You can regard these definitions as a stop-gap measure until all
374platforms provide these types. If you know that all the platforms
375that you are interested in already provide these types, it is better
376to use them directly instead of the types provided by Guile.
377@end defvr
378
379@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
380@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
381Return @code{1} when @var{x} represents an exact integer that is
382between @var{min} and @var{max}, inclusive.
383
384These functions can be used to check whether a @code{SCM} value will
385fit into a given range, such as the range of a given C integer type.
386If you just want to convert a @code{SCM} value to a given C integer
387type, use one of the conversion functions directly.
388@end deftypefn
389
390@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
391@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
392When @var{x} represents an exact integer that is between @var{min} and
393@var{max} inclusive, return that integer. Else signal an error,
394either a `wrong-type' error when @var{x} is not an exact integer, or
395an `out-of-range' error when it doesn't fit the given range.
396@end deftypefn
397
398@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
399@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
400Return the @code{SCM} value that represents the integer @var{x}. This
401function will always succeed and will always return an exact number.
402@end deftypefn
403
404@deftypefn {C Function} char scm_to_char (SCM x)
405@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
406@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
407@deftypefnx {C Function} short scm_to_short (SCM x)
408@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
409@deftypefnx {C Function} int scm_to_int (SCM x)
410@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
411@deftypefnx {C Function} long scm_to_long (SCM x)
412@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
413@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
414@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
415@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
416@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
417@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
418@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
419@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
420@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
421@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
422@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
423@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
424@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
425@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
426@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
427When @var{x} represents an exact integer that fits into the indicated
428C type, return that integer. Else signal an error, either a
429`wrong-type' error when @var{x} is not an exact integer, or an
430`out-of-range' error when it doesn't fit the given range.
431
432The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
433@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
434the corresponding types are.
435@end deftypefn
436
437@deftypefn {C Function} SCM scm_from_char (char x)
438@deftypefnx {C Function} SCM scm_from_schar (signed char x)
439@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
440@deftypefnx {C Function} SCM scm_from_short (short x)
441@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
442@deftypefnx {C Function} SCM scm_from_int (int x)
443@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
444@deftypefnx {C Function} SCM scm_from_long (long x)
445@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
446@deftypefnx {C Function} SCM scm_from_long_long (long long x)
447@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
448@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
449@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
450@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
451@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
452@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
453@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
454@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
455@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
456@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
457@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
458@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
459@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
460Return the @code{SCM} value that represents the integer @var{x}.
461These functions will always succeed and will always return an exact
462number.
463@end deftypefn
464
08962922
MV
465@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
466Assign @var{val} to the multiple precision integer @var{rop}.
467@var{val} must be an exact integer, otherwise an error will be
468signalled. @var{rop} must have been initialized with @code{mpz_init}
469before this function is called. When @var{rop} is no longer needed
470the occupied space must be freed with @code{mpz_clear}.
471@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
472@end deftypefn
473
9f1ba6a9 474@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
08962922
MV
475Return the @code{SCM} value that represents @var{val}.
476@end deftypefn
477
07d83abe
MV
478@node Reals and Rationals
479@subsubsection Real and Rational Numbers
480@tpindex Real numbers
481@tpindex Rational numbers
482
483@rnindex real?
484@rnindex rational?
485
486Mathematically, the real numbers are the set of numbers that describe
487all possible points along a continuous, infinite, one-dimensional line.
488The rational numbers are the set of all numbers that can be written as
489fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
490All rational numbers are also real, but there are real numbers that
995953e5 491are not rational, for example @m{\sqrt{2}, the square root of 2}, and
34942993 492@m{\pi,pi}.
07d83abe
MV
493
494Guile can represent both exact and inexact rational numbers, but it
c960e556
MW
495cannot represent precise finite irrational numbers. Exact rationals are
496represented by storing the numerator and denominator as two exact
497integers. Inexact rationals are stored as floating point numbers using
498the C type @code{double}.
07d83abe
MV
499
500Exact rationals are written as a fraction of integers. There must be
501no whitespace around the slash:
502
503@lisp
5041/2
505-22/7
506@end lisp
507
508Even though the actual encoding of inexact rationals is in binary, it
509may be helpful to think of it as a decimal number with a limited
510number of significant figures and a decimal point somewhere, since
511this corresponds to the standard notation for non-whole numbers. For
512example:
513
514@lisp
5150.34
516-0.00000142857931198
517-5648394822220000000000.0
5184.0
519@end lisp
520
c960e556
MW
521The limited precision of Guile's encoding means that any finite ``real''
522number in Guile can be written in a rational form, by multiplying and
523then dividing by sufficient powers of 10 (or in fact, 2). For example,
524@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
525by 100000000000000000. In Guile's current incarnation, therefore, the
526@code{rational?} and @code{real?} predicates are equivalent for finite
527numbers.
07d83abe 528
07d83abe 529
c960e556
MW
530Dividing by an exact zero leads to a error message, as one might expect.
531However, dividing by an inexact zero does not produce an error.
532Instead, the result of the division is either plus or minus infinity,
533depending on the sign of the divided number and the sign of the zero
534divisor (some platforms support signed zeroes @samp{-0.0} and
535@samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
536
537Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
538value, although they are actually considered numbers by Scheme.
539Attempts to compare a @acronym{NaN} value with any number (including
540itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
541always returns @code{#f}. Although a @acronym{NaN} value is not
542@code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
543and other @acronym{NaN} values. However, the preferred way to test for
544them is by using @code{nan?}.
545
546The real @acronym{NaN} values and infinities are written @samp{+nan.0},
547@samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
548@code{read} as an extension to the usual Scheme syntax. These special
549values are considered by Scheme to be inexact real numbers but not
550rational. Note that non-real complex numbers may also contain
551infinities or @acronym{NaN} values in their real or imaginary parts. To
552test a real number to see if it is infinite, a @acronym{NaN} value, or
553neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
554Every real number in Scheme belongs to precisely one of those three
555classes.
07d83abe
MV
556
557On platforms that follow @acronym{IEEE} 754 for their floating point
558arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
559are implemented using the corresponding @acronym{IEEE} 754 values.
560They behave in arithmetic operations like @acronym{IEEE} 754 describes
561it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
562
07d83abe
MV
563@deffn {Scheme Procedure} real? obj
564@deffnx {C Function} scm_real_p (obj)
565Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
566that the sets of integer and rational values form subsets of the set
567of real numbers, so the predicate will also be fulfilled if @var{obj}
568is an integer number or a rational number.
569@end deffn
570
571@deffn {Scheme Procedure} rational? x
572@deffnx {C Function} scm_rational_p (x)
573Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
574Note that the set of integer values forms a subset of the set of
995953e5 575rational numbers, i.e.@: the predicate will also be fulfilled if
07d83abe 576@var{x} is an integer number.
07d83abe
MV
577@end deffn
578
579@deffn {Scheme Procedure} rationalize x eps
580@deffnx {C Function} scm_rationalize (x, eps)
581Returns the @emph{simplest} rational number differing
582from @var{x} by no more than @var{eps}.
583
584As required by @acronym{R5RS}, @code{rationalize} only returns an
585exact result when both its arguments are exact. Thus, you might need
586to use @code{inexact->exact} on the arguments.
587
588@lisp
589(rationalize (inexact->exact 1.2) 1/100)
590@result{} 6/5
591@end lisp
592
593@end deffn
594
d3df9759
MV
595@deffn {Scheme Procedure} inf? x
596@deffnx {C Function} scm_inf_p (x)
10391e06
AW
597Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
598@samp{-inf.0}. Otherwise return @code{#f}.
07d83abe
MV
599@end deffn
600
601@deffn {Scheme Procedure} nan? x
d3df9759 602@deffnx {C Function} scm_nan_p (x)
10391e06
AW
603Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
604@code{#f} otherwise.
07d83abe
MV
605@end deffn
606
7112615f
MW
607@deffn {Scheme Procedure} finite? x
608@deffnx {C Function} scm_finite_p (x)
10391e06
AW
609Return @code{#t} if the real number @var{x} is neither infinite nor a
610NaN, @code{#f} otherwise.
7112615f
MW
611@end deffn
612
cdf1ad3b
MV
613@deffn {Scheme Procedure} nan
614@deffnx {C Function} scm_nan ()
c960e556 615Return @samp{+nan.0}, a @acronym{NaN} value.
cdf1ad3b
MV
616@end deffn
617
618@deffn {Scheme Procedure} inf
619@deffnx {C Function} scm_inf ()
c960e556 620Return @samp{+inf.0}, positive infinity.
cdf1ad3b
MV
621@end deffn
622
d3df9759
MV
623@deffn {Scheme Procedure} numerator x
624@deffnx {C Function} scm_numerator (x)
625Return the numerator of the rational number @var{x}.
626@end deffn
627
628@deffn {Scheme Procedure} denominator x
629@deffnx {C Function} scm_denominator (x)
630Return the denominator of the rational number @var{x}.
631@end deffn
632
633@deftypefn {C Function} int scm_is_real (SCM val)
634@deftypefnx {C Function} int scm_is_rational (SCM val)
635Equivalent to @code{scm_is_true (scm_real_p (val))} and
636@code{scm_is_true (scm_rational_p (val))}, respectively.
637@end deftypefn
638
639@deftypefn {C Function} double scm_to_double (SCM val)
640Returns the number closest to @var{val} that is representable as a
641@code{double}. Returns infinity for a @var{val} that is too large in
642magnitude. The argument @var{val} must be a real number.
643@end deftypefn
644
645@deftypefn {C Function} SCM scm_from_double (double val)
be3eb25c 646Return the @code{SCM} value that represents @var{val}. The returned
d3df9759
MV
647value is inexact according to the predicate @code{inexact?}, but it
648will be exactly equal to @var{val}.
649@end deftypefn
650
07d83abe
MV
651@node Complex Numbers
652@subsubsection Complex Numbers
653@tpindex Complex numbers
654
655@rnindex complex?
656
657Complex numbers are the set of numbers that describe all possible points
658in a two-dimensional space. The two coordinates of a particular point
659in this space are known as the @dfn{real} and @dfn{imaginary} parts of
660the complex number that describes that point.
661
662In Guile, complex numbers are written in rectangular form as the sum of
663their real and imaginary parts, using the symbol @code{i} to indicate
664the imaginary part.
665
666@lisp
6673+4i
668@result{}
6693.0+4.0i
670
671(* 3-8i 2.3+0.3i)
672@result{}
6739.3-17.5i
674@end lisp
675
34942993
KR
676@cindex polar form
677@noindent
678Polar form can also be used, with an @samp{@@} between magnitude and
679angle,
680
681@lisp
6821@@3.141592 @result{} -1.0 (approx)
683-1@@1.57079 @result{} 0.0-1.0i (approx)
684@end lisp
685
c7218482
MW
686Guile represents a complex number as a pair of inexact reals, so the
687real and imaginary parts of a complex number have the same properties of
688inexactness and limited precision as single inexact real numbers.
689
690Note that each part of a complex number may contain any inexact real
691value, including the special values @samp{+nan.0}, @samp{+inf.0} and
692@samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
693@samp{-0.0}.
694
07d83abe 695
5615f696
MV
696@deffn {Scheme Procedure} complex? z
697@deffnx {C Function} scm_complex_p (z)
07d83abe
MV
698Return @code{#t} if @var{x} is a complex number, @code{#f}
699otherwise. Note that the sets of real, rational and integer
679cceed 700values form subsets of the set of complex numbers, i.e.@: the
07d83abe
MV
701predicate will also be fulfilled if @var{x} is a real,
702rational or integer number.
703@end deffn
704
c9dc8c6c
MV
705@deftypefn {C Function} int scm_is_complex (SCM val)
706Equivalent to @code{scm_is_true (scm_complex_p (val))}.
707@end deftypefn
708
07d83abe
MV
709@node Exactness
710@subsubsection Exact and Inexact Numbers
711@tpindex Exact numbers
712@tpindex Inexact numbers
713
714@rnindex exact?
715@rnindex inexact?
716@rnindex exact->inexact
717@rnindex inexact->exact
718
654b2823
MW
719R5RS requires that, with few exceptions, a calculation involving inexact
720numbers always produces an inexact result. To meet this requirement,
721Guile distinguishes between an exact integer value such as @samp{5} and
722the corresponding inexact integer value which, to the limited precision
07d83abe
MV
723available, has no fractional part, and is printed as @samp{5.0}. Guile
724will only convert the latter value to the former when forced to do so by
725an invocation of the @code{inexact->exact} procedure.
726
654b2823
MW
727The only exception to the above requirement is when the values of the
728inexact numbers do not affect the result. For example @code{(expt n 0)}
729is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
730permitted to return an exact @samp{1}.
731
07d83abe
MV
732@deffn {Scheme Procedure} exact? z
733@deffnx {C Function} scm_exact_p (z)
734Return @code{#t} if the number @var{z} is exact, @code{#f}
735otherwise.
736
737@lisp
738(exact? 2)
739@result{} #t
740
741(exact? 0.5)
742@result{} #f
743
744(exact? (/ 2))
745@result{} #t
746@end lisp
747
748@end deffn
749
750@deffn {Scheme Procedure} inexact? z
751@deffnx {C Function} scm_inexact_p (z)
752Return @code{#t} if the number @var{z} is inexact, @code{#f}
753else.
754@end deffn
755
756@deffn {Scheme Procedure} inexact->exact z
757@deffnx {C Function} scm_inexact_to_exact (z)
758Return an exact number that is numerically closest to @var{z}, when
759there is one. For inexact rationals, Guile returns the exact rational
760that is numerically equal to the inexact rational. Inexact complex
761numbers with a non-zero imaginary part can not be made exact.
762
763@lisp
764(inexact->exact 0.5)
765@result{} 1/2
766@end lisp
767
768The following happens because 12/10 is not exactly representable as a
769@code{double} (on most platforms). However, when reading a decimal
770number that has been marked exact with the ``#e'' prefix, Guile is
771able to represent it correctly.
772
773@lisp
774(inexact->exact 1.2)
775@result{} 5404319552844595/4503599627370496
776
777#e1.2
778@result{} 6/5
779@end lisp
780
781@end deffn
782
783@c begin (texi-doc-string "guile" "exact->inexact")
784@deffn {Scheme Procedure} exact->inexact z
785@deffnx {C Function} scm_exact_to_inexact (z)
786Convert the number @var{z} to its inexact representation.
787@end deffn
788
789
790@node Number Syntax
791@subsubsection Read Syntax for Numerical Data
792
793The read syntax for integers is a string of digits, optionally
794preceded by a minus or plus character, a code indicating the
795base in which the integer is encoded, and a code indicating whether
796the number is exact or inexact. The supported base codes are:
797
798@table @code
799@item #b
800@itemx #B
801the integer is written in binary (base 2)
802
803@item #o
804@itemx #O
805the integer is written in octal (base 8)
806
807@item #d
808@itemx #D
809the integer is written in decimal (base 10)
810
811@item #x
812@itemx #X
813the integer is written in hexadecimal (base 16)
814@end table
815
816If the base code is omitted, the integer is assumed to be decimal. The
817following examples show how these base codes are used.
818
819@lisp
820-13
821@result{} -13
822
823#d-13
824@result{} -13
825
826#x-13
827@result{} -19
828
829#b+1101
830@result{} 13
831
832#o377
833@result{} 255
834@end lisp
835
836The codes for indicating exactness (which can, incidentally, be applied
837to all numerical values) are:
838
839@table @code
840@item #e
841@itemx #E
842the number is exact
843
844@item #i
845@itemx #I
846the number is inexact.
847@end table
848
849If the exactness indicator is omitted, the number is exact unless it
850contains a radix point. Since Guile can not represent exact complex
851numbers, an error is signalled when asking for them.
852
853@lisp
854(exact? 1.2)
855@result{} #f
856
857(exact? #e1.2)
858@result{} #t
859
860(exact? #e+1i)
861ERROR: Wrong type argument
862@end lisp
863
864Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
865plus and minus infinity, respectively. The value must be written
866exactly as shown, that is, they always must have a sign and exactly
867one zero digit after the decimal point. It also understands
868@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
869The sign is ignored for `not-a-number' and the value is always printed
870as @samp{+nan.0}.
871
872@node Integer Operations
873@subsubsection Operations on Integer Values
874@rnindex odd?
875@rnindex even?
876@rnindex quotient
877@rnindex remainder
878@rnindex modulo
879@rnindex gcd
880@rnindex lcm
881
882@deffn {Scheme Procedure} odd? n
883@deffnx {C Function} scm_odd_p (n)
884Return @code{#t} if @var{n} is an odd number, @code{#f}
885otherwise.
886@end deffn
887
888@deffn {Scheme Procedure} even? n
889@deffnx {C Function} scm_even_p (n)
890Return @code{#t} if @var{n} is an even number, @code{#f}
891otherwise.
892@end deffn
893
894@c begin (texi-doc-string "guile" "quotient")
895@c begin (texi-doc-string "guile" "remainder")
896@deffn {Scheme Procedure} quotient n d
897@deffnx {Scheme Procedure} remainder n d
898@deffnx {C Function} scm_quotient (n, d)
899@deffnx {C Function} scm_remainder (n, d)
900Return the quotient or remainder from @var{n} divided by @var{d}. The
901quotient is rounded towards zero, and the remainder will have the same
902sign as @var{n}. In all cases quotient and remainder satisfy
903@math{@var{n} = @var{q}*@var{d} + @var{r}}.
904
905@lisp
906(remainder 13 4) @result{} 1
907(remainder -13 4) @result{} -1
908@end lisp
ff62c168 909
8f9da340 910See also @code{truncate-quotient}, @code{truncate-remainder} and
ff62c168 911related operations in @ref{Arithmetic}.
07d83abe
MV
912@end deffn
913
914@c begin (texi-doc-string "guile" "modulo")
915@deffn {Scheme Procedure} modulo n d
916@deffnx {C Function} scm_modulo (n, d)
917Return the remainder from @var{n} divided by @var{d}, with the same
918sign as @var{d}.
919
920@lisp
921(modulo 13 4) @result{} 1
922(modulo -13 4) @result{} 3
923(modulo 13 -4) @result{} -3
924(modulo -13 -4) @result{} -1
925@end lisp
ff62c168 926
8f9da340 927See also @code{floor-quotient}, @code{floor-remainder} and
ff62c168 928related operations in @ref{Arithmetic}.
07d83abe
MV
929@end deffn
930
931@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 932@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
933@deffnx {C Function} scm_gcd (x, y)
934Return the greatest common divisor of all arguments.
935If called without arguments, 0 is returned.
936
937The C function @code{scm_gcd} always takes two arguments, while the
938Scheme function can take an arbitrary number.
939@end deffn
940
941@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 942@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
943@deffnx {C Function} scm_lcm (x, y)
944Return the least common multiple of the arguments.
945If called without arguments, 1 is returned.
946
947The C function @code{scm_lcm} always takes two arguments, while the
948Scheme function can take an arbitrary number.
949@end deffn
950
cdf1ad3b
MV
951@deffn {Scheme Procedure} modulo-expt n k m
952@deffnx {C Function} scm_modulo_expt (n, k, m)
953Return @var{n} raised to the integer exponent
954@var{k}, modulo @var{m}.
955
956@lisp
957(modulo-expt 2 3 5)
958 @result{} 3
959@end lisp
960@end deffn
07d83abe
MV
961
962@node Comparison
963@subsubsection Comparison Predicates
964@rnindex zero?
965@rnindex positive?
966@rnindex negative?
967
968The C comparison functions below always takes two arguments, while the
969Scheme functions can take an arbitrary number. Also keep in mind that
970the C functions return one of the Scheme boolean values
971@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
972is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
973y))} when testing the two Scheme numbers @code{x} and @code{y} for
974equality, for example.
975
976@c begin (texi-doc-string "guile" "=")
977@deffn {Scheme Procedure} =
978@deffnx {C Function} scm_num_eq_p (x, y)
979Return @code{#t} if all parameters are numerically equal.
980@end deffn
981
982@c begin (texi-doc-string "guile" "<")
983@deffn {Scheme Procedure} <
984@deffnx {C Function} scm_less_p (x, y)
985Return @code{#t} if the list of parameters is monotonically
986increasing.
987@end deffn
988
989@c begin (texi-doc-string "guile" ">")
990@deffn {Scheme Procedure} >
991@deffnx {C Function} scm_gr_p (x, y)
992Return @code{#t} if the list of parameters is monotonically
993decreasing.
994@end deffn
995
996@c begin (texi-doc-string "guile" "<=")
997@deffn {Scheme Procedure} <=
998@deffnx {C Function} scm_leq_p (x, y)
999Return @code{#t} if the list of parameters is monotonically
1000non-decreasing.
1001@end deffn
1002
1003@c begin (texi-doc-string "guile" ">=")
1004@deffn {Scheme Procedure} >=
1005@deffnx {C Function} scm_geq_p (x, y)
1006Return @code{#t} if the list of parameters is monotonically
1007non-increasing.
1008@end deffn
1009
1010@c begin (texi-doc-string "guile" "zero?")
1011@deffn {Scheme Procedure} zero? z
1012@deffnx {C Function} scm_zero_p (z)
1013Return @code{#t} if @var{z} is an exact or inexact number equal to
1014zero.
1015@end deffn
1016
1017@c begin (texi-doc-string "guile" "positive?")
1018@deffn {Scheme Procedure} positive? x
1019@deffnx {C Function} scm_positive_p (x)
1020Return @code{#t} if @var{x} is an exact or inexact number greater than
1021zero.
1022@end deffn
1023
1024@c begin (texi-doc-string "guile" "negative?")
1025@deffn {Scheme Procedure} negative? x
1026@deffnx {C Function} scm_negative_p (x)
1027Return @code{#t} if @var{x} is an exact or inexact number less than
1028zero.
1029@end deffn
1030
1031
1032@node Conversion
1033@subsubsection Converting Numbers To and From Strings
1034@rnindex number->string
1035@rnindex string->number
1036
b89c4943
LC
1037The following procedures read and write numbers according to their
1038external representation as defined by R5RS (@pxref{Lexical structure,
1039R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
a2f00b9b 1040Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
b89c4943
LC
1041i18n)} module}, for locale-dependent number parsing.
1042
07d83abe
MV
1043@deffn {Scheme Procedure} number->string n [radix]
1044@deffnx {C Function} scm_number_to_string (n, radix)
1045Return a string holding the external representation of the
1046number @var{n} in the given @var{radix}. If @var{n} is
1047inexact, a radix of 10 will be used.
1048@end deffn
1049
1050@deffn {Scheme Procedure} string->number string [radix]
1051@deffnx {C Function} scm_string_to_number (string, radix)
1052Return a number of the maximally precise representation
1053expressed by the given @var{string}. @var{radix} must be an
1054exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1055is a default radix that may be overridden by an explicit radix
679cceed 1056prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
07d83abe
MV
1057supplied, then the default radix is 10. If string is not a
1058syntactically valid notation for a number, then
1059@code{string->number} returns @code{#f}.
1060@end deffn
1061
1b09b607
KR
1062@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1063As per @code{string->number} above, but taking a C string, as pointer
1064and length. The string characters should be in the current locale
1065encoding (@code{locale} in the name refers only to that, there's no
1066locale-dependent parsing).
1067@end deftypefn
1068
07d83abe
MV
1069
1070@node Complex
1071@subsubsection Complex Number Operations
1072@rnindex make-rectangular
1073@rnindex make-polar
1074@rnindex real-part
1075@rnindex imag-part
1076@rnindex magnitude
1077@rnindex angle
1078
3323ec06
NJ
1079@deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1080@deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1081Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
07d83abe
MV
1082@end deffn
1083
c7218482
MW
1084@deffn {Scheme Procedure} make-polar mag ang
1085@deffnx {C Function} scm_make_polar (mag, ang)
34942993 1086@cindex polar form
c7218482 1087Return the complex number @var{mag} * e^(i * @var{ang}).
07d83abe
MV
1088@end deffn
1089
1090@c begin (texi-doc-string "guile" "real-part")
1091@deffn {Scheme Procedure} real-part z
1092@deffnx {C Function} scm_real_part (z)
1093Return the real part of the number @var{z}.
1094@end deffn
1095
1096@c begin (texi-doc-string "guile" "imag-part")
1097@deffn {Scheme Procedure} imag-part z
1098@deffnx {C Function} scm_imag_part (z)
1099Return the imaginary part of the number @var{z}.
1100@end deffn
1101
1102@c begin (texi-doc-string "guile" "magnitude")
1103@deffn {Scheme Procedure} magnitude z
1104@deffnx {C Function} scm_magnitude (z)
1105Return the magnitude of the number @var{z}. This is the same as
1106@code{abs} for real arguments, but also allows complex numbers.
1107@end deffn
1108
1109@c begin (texi-doc-string "guile" "angle")
1110@deffn {Scheme Procedure} angle z
1111@deffnx {C Function} scm_angle (z)
1112Return the angle of the complex number @var{z}.
1113@end deffn
1114
5615f696
MV
1115@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1116@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1117Like @code{scm_make_rectangular} or @code{scm_make_polar},
1118respectively, but these functions take @code{double}s as their
1119arguments.
1120@end deftypefn
1121
1122@deftypefn {C Function} double scm_c_real_part (z)
1123@deftypefnx {C Function} double scm_c_imag_part (z)
1124Returns the real or imaginary part of @var{z} as a @code{double}.
1125@end deftypefn
1126
1127@deftypefn {C Function} double scm_c_magnitude (z)
1128@deftypefnx {C Function} double scm_c_angle (z)
1129Returns the magnitude or angle of @var{z} as a @code{double}.
1130@end deftypefn
1131
07d83abe
MV
1132
1133@node Arithmetic
1134@subsubsection Arithmetic Functions
1135@rnindex max
1136@rnindex min
1137@rnindex +
1138@rnindex *
1139@rnindex -
1140@rnindex /
b1f57ea4
LC
1141@findex 1+
1142@findex 1-
07d83abe
MV
1143@rnindex abs
1144@rnindex floor
1145@rnindex ceiling
1146@rnindex truncate
1147@rnindex round
ff62c168
MW
1148@rnindex euclidean/
1149@rnindex euclidean-quotient
1150@rnindex euclidean-remainder
8f9da340
MW
1151@rnindex floor/
1152@rnindex floor-quotient
1153@rnindex floor-remainder
1154@rnindex ceiling/
1155@rnindex ceiling-quotient
1156@rnindex ceiling-remainder
1157@rnindex truncate/
1158@rnindex truncate-quotient
1159@rnindex truncate-remainder
ff62c168
MW
1160@rnindex centered/
1161@rnindex centered-quotient
1162@rnindex centered-remainder
8f9da340
MW
1163@rnindex round/
1164@rnindex round-quotient
1165@rnindex round-remainder
07d83abe
MV
1166
1167The C arithmetic functions below always takes two arguments, while the
1168Scheme functions can take an arbitrary number. When you need to
1169invoke them with just one argument, for example to compute the
ecb87335 1170equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
07d83abe
MV
1171one: @code{scm_difference (x, SCM_UNDEFINED)}.
1172
1173@c begin (texi-doc-string "guile" "+")
1174@deffn {Scheme Procedure} + z1 @dots{}
1175@deffnx {C Function} scm_sum (z1, z2)
1176Return the sum of all parameter values. Return 0 if called without any
1177parameters.
1178@end deffn
1179
1180@c begin (texi-doc-string "guile" "-")
1181@deffn {Scheme Procedure} - z1 z2 @dots{}
1182@deffnx {C Function} scm_difference (z1, z2)
1183If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1184the sum of all but the first argument are subtracted from the first
1185argument.
1186@end deffn
1187
1188@c begin (texi-doc-string "guile" "*")
1189@deffn {Scheme Procedure} * z1 @dots{}
1190@deffnx {C Function} scm_product (z1, z2)
1191Return the product of all arguments. If called without arguments, 1 is
1192returned.
1193@end deffn
1194
1195@c begin (texi-doc-string "guile" "/")
1196@deffn {Scheme Procedure} / z1 z2 @dots{}
1197@deffnx {C Function} scm_divide (z1, z2)
1198Divide the first argument by the product of the remaining arguments. If
1199called with one argument @var{z1}, 1/@var{z1} is returned.
1200@end deffn
1201
b1f57ea4
LC
1202@deffn {Scheme Procedure} 1+ z
1203@deffnx {C Function} scm_oneplus (z)
1204Return @math{@var{z} + 1}.
1205@end deffn
1206
1207@deffn {Scheme Procedure} 1- z
1208@deffnx {C function} scm_oneminus (z)
1209Return @math{@var{z} - 1}.
1210@end deffn
1211
07d83abe
MV
1212@c begin (texi-doc-string "guile" "abs")
1213@deffn {Scheme Procedure} abs x
1214@deffnx {C Function} scm_abs (x)
1215Return the absolute value of @var{x}.
1216
1217@var{x} must be a number with zero imaginary part. To calculate the
1218magnitude of a complex number, use @code{magnitude} instead.
1219@end deffn
1220
1221@c begin (texi-doc-string "guile" "max")
1222@deffn {Scheme Procedure} max x1 x2 @dots{}
1223@deffnx {C Function} scm_max (x1, x2)
1224Return the maximum of all parameter values.
1225@end deffn
1226
1227@c begin (texi-doc-string "guile" "min")
1228@deffn {Scheme Procedure} min x1 x2 @dots{}
1229@deffnx {C Function} scm_min (x1, x2)
1230Return the minimum of all parameter values.
1231@end deffn
1232
1233@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1234@deffn {Scheme Procedure} truncate x
07d83abe
MV
1235@deffnx {C Function} scm_truncate_number (x)
1236Round the inexact number @var{x} towards zero.
1237@end deffn
1238
1239@c begin (texi-doc-string "guile" "round")
1240@deffn {Scheme Procedure} round x
1241@deffnx {C Function} scm_round_number (x)
1242Round the inexact number @var{x} to the nearest integer. When exactly
1243halfway between two integers, round to the even one.
1244@end deffn
1245
1246@c begin (texi-doc-string "guile" "floor")
1247@deffn {Scheme Procedure} floor x
1248@deffnx {C Function} scm_floor (x)
1249Round the number @var{x} towards minus infinity.
1250@end deffn
1251
1252@c begin (texi-doc-string "guile" "ceiling")
1253@deffn {Scheme Procedure} ceiling x
1254@deffnx {C Function} scm_ceiling (x)
1255Round the number @var{x} towards infinity.
1256@end deffn
1257
35da08ee
MV
1258@deftypefn {C Function} double scm_c_truncate (double x)
1259@deftypefnx {C Function} double scm_c_round (double x)
1260Like @code{scm_truncate_number} or @code{scm_round_number},
1261respectively, but these functions take and return @code{double}
1262values.
1263@end deftypefn
07d83abe 1264
5fbf680b
MW
1265@deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1266@deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1267@deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1268@deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1269@deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1270@deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
ff62c168
MW
1271These procedures accept two real numbers @var{x} and @var{y}, where the
1272divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1273integer @var{q} and @code{euclidean-remainder} returns the real number
1274@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
5fbf680b 1275@math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
ff62c168
MW
1276@var{r}, and is more efficient than computing each separately. Note
1277that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1278@math{floor(@var{x}/@var{y})}, otherwise it returns
1279@math{ceiling(@var{x}/@var{y})}.
1280
1281Note that these operators are equivalent to the R6RS operators
1282@code{div}, @code{mod}, and @code{div-and-mod}.
1283
1284@lisp
1285(euclidean-quotient 123 10) @result{} 12
1286(euclidean-remainder 123 10) @result{} 3
1287(euclidean/ 123 10) @result{} 12 and 3
1288(euclidean/ 123 -10) @result{} -12 and 3
1289(euclidean/ -123 10) @result{} -13 and 7
1290(euclidean/ -123 -10) @result{} 13 and 7
1291(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1292(euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1293@end lisp
5fbf680b 1294@end deftypefn
ff62c168 1295
8f9da340
MW
1296@deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1297@deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1298@deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1299@deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1300@deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1301@deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1302These procedures accept two real numbers @var{x} and @var{y}, where the
1303divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1304integer @var{q} and @code{floor-remainder} returns the real number
1305@var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1306@math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1307both @var{q} and @var{r}, and is more efficient than computing each
1308separately. Note that @var{r}, if non-zero, will have the same sign
1309as @var{y}.
1310
a6b087be 1311When @var{x} and @var{y} are exact integers, @code{floor-remainder} is
8f9da340
MW
1312equivalent to the R5RS integer-only operator @code{modulo}.
1313
1314@lisp
1315(floor-quotient 123 10) @result{} 12
1316(floor-remainder 123 10) @result{} 3
1317(floor/ 123 10) @result{} 12 and 3
1318(floor/ 123 -10) @result{} -13 and -7
1319(floor/ -123 10) @result{} -13 and 7
1320(floor/ -123 -10) @result{} 12 and -3
1321(floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1322(floor/ 16/3 -10/7) @result{} -4 and -8/21
1323@end lisp
1324@end deftypefn
1325
1326@deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1327@deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1328@deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1329@deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1330@deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1331@deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1332These procedures accept two real numbers @var{x} and @var{y}, where the
1333divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1334integer @var{q} and @code{ceiling-remainder} returns the real number
1335@var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1336@math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1337both @var{q} and @var{r}, and is more efficient than computing each
1338separately. Note that @var{r}, if non-zero, will have the opposite sign
1339of @var{y}.
1340
1341@lisp
1342(ceiling-quotient 123 10) @result{} 13
1343(ceiling-remainder 123 10) @result{} -7
1344(ceiling/ 123 10) @result{} 13 and -7
1345(ceiling/ 123 -10) @result{} -12 and 3
1346(ceiling/ -123 10) @result{} -12 and -3
1347(ceiling/ -123 -10) @result{} 13 and 7
1348(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1349(ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1350@end lisp
1351@end deftypefn
1352
1353@deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1354@deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1355@deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1356@deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1357@deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1358@deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1359These procedures accept two real numbers @var{x} and @var{y}, where the
1360divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1361integer @var{q} and @code{truncate-remainder} returns the real number
1362@var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1363and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1364both @var{q} and @var{r}, and is more efficient than computing each
1365separately. Note that @var{r}, if non-zero, will have the same sign
1366as @var{x}.
1367
a6b087be
MW
1368When @var{x} and @var{y} are exact integers, these operators are
1369equivalent to the R5RS integer-only operators @code{quotient} and
1370@code{remainder}.
8f9da340
MW
1371
1372@lisp
1373(truncate-quotient 123 10) @result{} 12
1374(truncate-remainder 123 10) @result{} 3
1375(truncate/ 123 10) @result{} 12 and 3
1376(truncate/ 123 -10) @result{} -12 and 3
1377(truncate/ -123 10) @result{} -12 and -3
1378(truncate/ -123 -10) @result{} 12 and -3
1379(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1380(truncate/ 16/3 -10/7) @result{} -3 and 22/21
1381@end lisp
1382@end deftypefn
1383
5fbf680b
MW
1384@deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1385@deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1386@deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1387@deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1388@deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1389@deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
ff62c168
MW
1390These procedures accept two real numbers @var{x} and @var{y}, where the
1391divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1392integer @var{q} and @code{centered-remainder} returns the real number
1393@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
5fbf680b 1394@math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
ff62c168
MW
1395returns both @var{q} and @var{r}, and is more efficient than computing
1396each separately.
1397
1398Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1399rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1400exactly half-way between two integers, the tie is broken according to
1401the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1402positive infinity, otherwise they are rounded toward negative infinity.
5fbf680b
MW
1403This is a consequence of the requirement that
1404@math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
ff62c168
MW
1405
1406Note that these operators are equivalent to the R6RS operators
1407@code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1408
1409@lisp
1410(centered-quotient 123 10) @result{} 12
1411(centered-remainder 123 10) @result{} 3
1412(centered/ 123 10) @result{} 12 and 3
1413(centered/ 123 -10) @result{} -12 and 3
1414(centered/ -123 10) @result{} -12 and -3
1415(centered/ -123 -10) @result{} 12 and -3
8f9da340
MW
1416(centered/ 125 10) @result{} 13 and -5
1417(centered/ 127 10) @result{} 13 and -3
1418(centered/ 135 10) @result{} 14 and -5
ff62c168
MW
1419(centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1420(centered/ 16/3 -10/7) @result{} -4 and -8/21
1421@end lisp
5fbf680b 1422@end deftypefn
ff62c168 1423
8f9da340
MW
1424@deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1425@deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1426@deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1427@deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1428@deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1429@deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1430These procedures accept two real numbers @var{x} and @var{y}, where the
1431divisor @var{y} must be non-zero. @code{round-quotient} returns the
1432integer @var{q} and @code{round-remainder} returns the real number
1433@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1434@var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1435with ties going to the nearest even integer. @code{round/}
1436returns both @var{q} and @var{r}, and is more efficient than computing
1437each separately.
1438
1439Note that @code{round/} and @code{centered/} are almost equivalent, but
1440their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1441between two integers. In this case, @code{round/} chooses the nearest
1442even integer, whereas @code{centered/} chooses in such a way to satisfy
1443the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1444is stronger than the corresponding constraint for @code{round/},
1445@math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1446when @var{x} and @var{y} are integers, the number of possible remainders
1447returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1448possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1449@var{y} is even.
1450
1451@lisp
1452(round-quotient 123 10) @result{} 12
1453(round-remainder 123 10) @result{} 3
1454(round/ 123 10) @result{} 12 and 3
1455(round/ 123 -10) @result{} -12 and 3
1456(round/ -123 10) @result{} -12 and -3
1457(round/ -123 -10) @result{} 12 and -3
1458(round/ 125 10) @result{} 12 and 5
1459(round/ 127 10) @result{} 13 and -3
1460(round/ 135 10) @result{} 14 and -5
1461(round/ -123.2 -63.5) @result{} 2.0 and 3.8
1462(round/ 16/3 -10/7) @result{} -4 and -8/21
1463@end lisp
1464@end deftypefn
1465
07d83abe
MV
1466@node Scientific
1467@subsubsection Scientific Functions
1468
1469The following procedures accept any kind of number as arguments,
1470including complex numbers.
1471
1472@rnindex sqrt
1473@c begin (texi-doc-string "guile" "sqrt")
1474@deffn {Scheme Procedure} sqrt z
40296bab 1475Return the square root of @var{z}. Of the two possible roots
ecb87335 1476(positive and negative), the one with a positive real part is
40296bab
KR
1477returned, or if that's zero then a positive imaginary part. Thus,
1478
1479@example
1480(sqrt 9.0) @result{} 3.0
1481(sqrt -9.0) @result{} 0.0+3.0i
1482(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1483(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1484@end example
07d83abe
MV
1485@end deffn
1486
1487@rnindex expt
1488@c begin (texi-doc-string "guile" "expt")
1489@deffn {Scheme Procedure} expt z1 z2
1490Return @var{z1} raised to the power of @var{z2}.
1491@end deffn
1492
1493@rnindex sin
1494@c begin (texi-doc-string "guile" "sin")
1495@deffn {Scheme Procedure} sin z
1496Return the sine of @var{z}.
1497@end deffn
1498
1499@rnindex cos
1500@c begin (texi-doc-string "guile" "cos")
1501@deffn {Scheme Procedure} cos z
1502Return the cosine of @var{z}.
1503@end deffn
1504
1505@rnindex tan
1506@c begin (texi-doc-string "guile" "tan")
1507@deffn {Scheme Procedure} tan z
1508Return the tangent of @var{z}.
1509@end deffn
1510
1511@rnindex asin
1512@c begin (texi-doc-string "guile" "asin")
1513@deffn {Scheme Procedure} asin z
1514Return the arcsine of @var{z}.
1515@end deffn
1516
1517@rnindex acos
1518@c begin (texi-doc-string "guile" "acos")
1519@deffn {Scheme Procedure} acos z
1520Return the arccosine of @var{z}.
1521@end deffn
1522
1523@rnindex atan
1524@c begin (texi-doc-string "guile" "atan")
1525@deffn {Scheme Procedure} atan z
1526@deffnx {Scheme Procedure} atan y x
1527Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1528@end deffn
1529
1530@rnindex exp
1531@c begin (texi-doc-string "guile" "exp")
1532@deffn {Scheme Procedure} exp z
1533Return e to the power of @var{z}, where e is the base of natural
1534logarithms (2.71828@dots{}).
1535@end deffn
1536
1537@rnindex log
1538@c begin (texi-doc-string "guile" "log")
1539@deffn {Scheme Procedure} log z
1540Return the natural logarithm of @var{z}.
1541@end deffn
1542
1543@c begin (texi-doc-string "guile" "log10")
1544@deffn {Scheme Procedure} log10 z
1545Return the base 10 logarithm of @var{z}.
1546@end deffn
1547
1548@c begin (texi-doc-string "guile" "sinh")
1549@deffn {Scheme Procedure} sinh z
1550Return the hyperbolic sine of @var{z}.
1551@end deffn
1552
1553@c begin (texi-doc-string "guile" "cosh")
1554@deffn {Scheme Procedure} cosh z
1555Return the hyperbolic cosine of @var{z}.
1556@end deffn
1557
1558@c begin (texi-doc-string "guile" "tanh")
1559@deffn {Scheme Procedure} tanh z
1560Return the hyperbolic tangent of @var{z}.
1561@end deffn
1562
1563@c begin (texi-doc-string "guile" "asinh")
1564@deffn {Scheme Procedure} asinh z
1565Return the hyperbolic arcsine of @var{z}.
1566@end deffn
1567
1568@c begin (texi-doc-string "guile" "acosh")
1569@deffn {Scheme Procedure} acosh z
1570Return the hyperbolic arccosine of @var{z}.
1571@end deffn
1572
1573@c begin (texi-doc-string "guile" "atanh")
1574@deffn {Scheme Procedure} atanh z
1575Return the hyperbolic arctangent of @var{z}.
1576@end deffn
1577
1578
07d83abe
MV
1579@node Bitwise Operations
1580@subsubsection Bitwise Operations
1581
1582For the following bitwise functions, negative numbers are treated as
1583infinite precision twos-complements. For instance @math{-6} is bits
1584@math{@dots{}111010}, with infinitely many ones on the left. It can
1585be seen that adding 6 (binary 110) to such a bit pattern gives all
1586zeros.
1587
1588@deffn {Scheme Procedure} logand n1 n2 @dots{}
1589@deffnx {C Function} scm_logand (n1, n2)
1590Return the bitwise @sc{and} of the integer arguments.
1591
1592@lisp
1593(logand) @result{} -1
1594(logand 7) @result{} 7
1595(logand #b111 #b011 #b001) @result{} 1
1596@end lisp
1597@end deffn
1598
1599@deffn {Scheme Procedure} logior n1 n2 @dots{}
1600@deffnx {C Function} scm_logior (n1, n2)
1601Return the bitwise @sc{or} of the integer arguments.
1602
1603@lisp
1604(logior) @result{} 0
1605(logior 7) @result{} 7
1606(logior #b000 #b001 #b011) @result{} 3
1607@end lisp
1608@end deffn
1609
1610@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1611@deffnx {C Function} scm_loxor (n1, n2)
1612Return the bitwise @sc{xor} of the integer arguments. A bit is
1613set in the result if it is set in an odd number of arguments.
1614
1615@lisp
1616(logxor) @result{} 0
1617(logxor 7) @result{} 7
1618(logxor #b000 #b001 #b011) @result{} 2
1619(logxor #b000 #b001 #b011 #b011) @result{} 1
1620@end lisp
1621@end deffn
1622
1623@deffn {Scheme Procedure} lognot n
1624@deffnx {C Function} scm_lognot (n)
1625Return the integer which is the ones-complement of the integer
1626argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1627
1628@lisp
1629(number->string (lognot #b10000000) 2)
1630 @result{} "-10000001"
1631(number->string (lognot #b0) 2)
1632 @result{} "-1"
1633@end lisp
1634@end deffn
1635
1636@deffn {Scheme Procedure} logtest j k
1637@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1638Test whether @var{j} and @var{k} have any 1 bits in common. This is
1639equivalent to @code{(not (zero? (logand j k)))}, but without actually
1640calculating the @code{logand}, just testing for non-zero.
07d83abe 1641
a46648ac 1642@lisp
07d83abe
MV
1643(logtest #b0100 #b1011) @result{} #f
1644(logtest #b0100 #b0111) @result{} #t
1645@end lisp
1646@end deffn
1647
1648@deffn {Scheme Procedure} logbit? index j
1649@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1650Test whether bit number @var{index} in @var{j} is set. @var{index}
1651starts from 0 for the least significant bit.
07d83abe 1652
a46648ac 1653@lisp
07d83abe
MV
1654(logbit? 0 #b1101) @result{} #t
1655(logbit? 1 #b1101) @result{} #f
1656(logbit? 2 #b1101) @result{} #t
1657(logbit? 3 #b1101) @result{} #t
1658(logbit? 4 #b1101) @result{} #f
1659@end lisp
1660@end deffn
1661
1662@deffn {Scheme Procedure} ash n cnt
1663@deffnx {C Function} scm_ash (n, cnt)
1664Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1665@var{cnt} is negative. This is an ``arithmetic'' shift.
1666
1667This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1668when @var{cnt} is negative it's a division, rounded towards negative
1669infinity. (Note that this is not the same rounding as @code{quotient}
1670does.)
1671
1672With @var{n} viewed as an infinite precision twos complement,
1673@code{ash} means a left shift introducing zero bits, or a right shift
1674dropping bits.
1675
1676@lisp
1677(number->string (ash #b1 3) 2) @result{} "1000"
1678(number->string (ash #b1010 -1) 2) @result{} "101"
1679
1680;; -23 is bits ...11101001, -6 is bits ...111010
1681(ash -23 -2) @result{} -6
1682@end lisp
1683@end deffn
1684
1685@deffn {Scheme Procedure} logcount n
1686@deffnx {C Function} scm_logcount (n)
a46648ac 1687Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1688positive, the 1-bits in its binary representation are counted.
1689If negative, the 0-bits in its two's-complement binary
a46648ac 1690representation are counted. If zero, 0 is returned.
07d83abe
MV
1691
1692@lisp
1693(logcount #b10101010)
1694 @result{} 4
1695(logcount 0)
1696 @result{} 0
1697(logcount -2)
1698 @result{} 1
1699@end lisp
1700@end deffn
1701
1702@deffn {Scheme Procedure} integer-length n
1703@deffnx {C Function} scm_integer_length (n)
1704Return the number of bits necessary to represent @var{n}.
1705
1706For positive @var{n} this is how many bits to the most significant one
1707bit. For negative @var{n} it's how many bits to the most significant
1708zero bit in twos complement form.
1709
1710@lisp
1711(integer-length #b10101010) @result{} 8
1712(integer-length #b1111) @result{} 4
1713(integer-length 0) @result{} 0
1714(integer-length -1) @result{} 0
1715(integer-length -256) @result{} 8
1716(integer-length -257) @result{} 9
1717@end lisp
1718@end deffn
1719
1720@deffn {Scheme Procedure} integer-expt n k
1721@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1722Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1723integer, @var{n} can be any number.
1724
1725Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1726in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1727@math{0^0} is 1.
07d83abe
MV
1728
1729@lisp
a46648ac
KR
1730(integer-expt 2 5) @result{} 32
1731(integer-expt -3 3) @result{} -27
1732(integer-expt 5 -3) @result{} 1/125
1733(integer-expt 0 0) @result{} 1
07d83abe
MV
1734@end lisp
1735@end deffn
1736
1737@deffn {Scheme Procedure} bit-extract n start end
1738@deffnx {C Function} scm_bit_extract (n, start, end)
1739Return the integer composed of the @var{start} (inclusive)
1740through @var{end} (exclusive) bits of @var{n}. The
1741@var{start}th bit becomes the 0-th bit in the result.
1742
1743@lisp
1744(number->string (bit-extract #b1101101010 0 4) 2)
1745 @result{} "1010"
1746(number->string (bit-extract #b1101101010 4 9) 2)
1747 @result{} "10110"
1748@end lisp
1749@end deffn
1750
1751
1752@node Random
1753@subsubsection Random Number Generation
1754
1755Pseudo-random numbers are generated from a random state object, which
77b13912 1756can be created with @code{seed->random-state} or
679cceed 1757@code{datum->random-state}. An external representation (i.e.@: one
77b13912
AR
1758which can written with @code{write} and read with @code{read}) of a
1759random state object can be obtained via
1d454874 1760@code{random-state->datum}. The @var{state} parameter to the
77b13912
AR
1761various functions below is optional, it defaults to the state object
1762in the @code{*random-state*} variable.
07d83abe
MV
1763
1764@deffn {Scheme Procedure} copy-random-state [state]
1765@deffnx {C Function} scm_copy_random_state (state)
1766Return a copy of the random state @var{state}.
1767@end deffn
1768
1769@deffn {Scheme Procedure} random n [state]
1770@deffnx {C Function} scm_random (n, state)
1771Return a number in [0, @var{n}).
1772
1773Accepts a positive integer or real n and returns a
1774number of the same type between zero (inclusive) and
1775@var{n} (exclusive). The values returned have a uniform
1776distribution.
1777@end deffn
1778
1779@deffn {Scheme Procedure} random:exp [state]
1780@deffnx {C Function} scm_random_exp (state)
1781Return an inexact real in an exponential distribution with mean
17821. For an exponential distribution with mean @var{u} use @code{(*
1783@var{u} (random:exp))}.
1784@end deffn
1785
1786@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1787@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1788Fills @var{vect} with inexact real random numbers the sum of whose
1789squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1790space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1791the coordinates are uniformly distributed over the surface of the unit
1792n-sphere.
1793@end deffn
1794
1795@deffn {Scheme Procedure} random:normal [state]
1796@deffnx {C Function} scm_random_normal (state)
1797Return an inexact real in a normal distribution. The distribution
1798used has mean 0 and standard deviation 1. For a normal distribution
1799with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1800(* @var{d} (random:normal)))}.
1801@end deffn
1802
1803@deffn {Scheme Procedure} random:normal-vector! vect [state]
1804@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1805Fills @var{vect} with inexact real random numbers that are
1806independent and standard normally distributed
1807(i.e., with mean 0 and variance 1).
1808@end deffn
1809
1810@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1811@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1812Fills @var{vect} with inexact real random numbers the sum of whose
1813squares is less than 1.0. Thinking of @var{vect} as coordinates in
1814space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1815the coordinates are uniformly distributed within the unit
4497bd2f 1816@var{n}-sphere.
07d83abe
MV
1817@c FIXME: What does this mean, particularly the n-sphere part?
1818@end deffn
1819
1820@deffn {Scheme Procedure} random:uniform [state]
1821@deffnx {C Function} scm_random_uniform (state)
1822Return a uniformly distributed inexact real random number in
1823[0,1).
1824@end deffn
1825
1826@deffn {Scheme Procedure} seed->random-state seed
1827@deffnx {C Function} scm_seed_to_random_state (seed)
1828Return a new random state using @var{seed}.
1829@end deffn
1830
1d454874
AW
1831@deffn {Scheme Procedure} datum->random-state datum
1832@deffnx {C Function} scm_datum_to_random_state (datum)
1833Return a new random state from @var{datum}, which should have been
1834obtained by @code{random-state->datum}.
77b13912
AR
1835@end deffn
1836
1d454874
AW
1837@deffn {Scheme Procedure} random-state->datum state
1838@deffnx {C Function} scm_random_state_to_datum (state)
1839Return a datum representation of @var{state} that may be written out and
1840read back with the Scheme reader.
77b13912
AR
1841@end deffn
1842
07d83abe
MV
1843@defvar *random-state*
1844The global random state used by the above functions when the
1845@var{state} parameter is not given.
1846@end defvar
1847
8c726cf0
NJ
1848Note that the initial value of @code{*random-state*} is the same every
1849time Guile starts up. Therefore, if you don't pass a @var{state}
1850parameter to the above procedures, and you don't set
1851@code{*random-state*} to @code{(seed->random-state your-seed)}, where
1852@code{your-seed} is something that @emph{isn't} the same every time,
1853you'll get the same sequence of ``random'' numbers on every run.
1854
1855For example, unless the relevant source code has changed, @code{(map
1856random (cdr (iota 30)))}, if the first use of random numbers since
1857Guile started up, will always give:
1858
1859@lisp
1860(map random (cdr (iota 19)))
1861@result{}
1862(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1863@end lisp
1864
1865To use the time of day as the random seed, you can use code like this:
1866
1867@lisp
1868(let ((time (gettimeofday)))
1869 (set! *random-state*
1870 (seed->random-state (+ (car time)
1871 (cdr time)))))
1872@end lisp
1873
1874@noindent
1875And then (depending on the time of day, of course):
1876
1877@lisp
1878(map random (cdr (iota 19)))
1879@result{}
1880(0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
1881@end lisp
1882
1883For security applications, such as password generation, you should use
1884more bits of seed. Otherwise an open source password generator could
1885be attacked by guessing the seed@dots{} but that's a subject for
1886another manual.
1887
07d83abe
MV
1888
1889@node Characters
1890@subsection Characters
1891@tpindex Characters
1892
3f12aedb
MG
1893In Scheme, there is a data type to describe a single character.
1894
1895Defining what exactly a character @emph{is} can be more complicated
bb15a36c
MG
1896than it seems. Guile follows the advice of R6RS and uses The Unicode
1897Standard to help define what a character is. So, for Guile, a
1898character is anything in the Unicode Character Database.
1899
1900@cindex code point
1901@cindex Unicode code point
1902
1903The Unicode Character Database is basically a table of characters
1904indexed using integers called 'code points'. Valid code points are in
1905the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1906@code{#x10FFFF} inclusive, which is about 1.1 million code points.
1907
1908@cindex designated code point
1909@cindex code point, designated
1910
1911Any code point that has been assigned to a character or that has
1912otherwise been given a meaning by Unicode is called a 'designated code
1913point'. Most of the designated code points, about 200,000 of them,
1914indicate characters, accents or other combining marks that modify
1915other characters, symbols, whitespace, and control characters. Some
1916are not characters but indicators that suggest how to format or
1917display neighboring characters.
1918
1919@cindex reserved code point
1920@cindex code point, reserved
1921
1922If a code point is not a designated code point -- if it has not been
1923assigned to a character by The Unicode Standard -- it is a 'reserved
1924code point', meaning that they are reserved for future use. Most of
1925the code points, about 800,000, are 'reserved code points'.
1926
1927By convention, a Unicode code point is written as
1928``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1929this convenient notation is not valid code. Guile does not interpret
1930``U+XXXX'' as a character.
3f12aedb 1931
050ab45f
MV
1932In Scheme, a character literal is written as @code{#\@var{name}} where
1933@var{name} is the name of the character that you want. Printable
1934characters have their usual single character name; for example,
bb15a36c
MG
1935@code{#\a} is a lower case @code{a}.
1936
1937Some of the code points are 'combining characters' that are not meant
1938to be printed by themselves but are instead meant to modify the
1939appearance of the previous character. For combining characters, an
1940alternate form of the character literal is @code{#\} followed by
1941U+25CC (a small, dotted circle), followed by the combining character.
1942This allows the combining character to be drawn on the circle, not on
1943the backslash of @code{#\}.
1944
1945Many of the non-printing characters, such as whitespace characters and
1946control characters, also have names.
07d83abe 1947
15b6a6b2
MG
1948The most commonly used non-printing characters have long character
1949names, described in the table below.
1950
1951@multitable {@code{#\backspace}} {Preferred}
1952@item Character Name @tab Codepoint
1953@item @code{#\nul} @tab U+0000
1954@item @code{#\alarm} @tab u+0007
1955@item @code{#\backspace} @tab U+0008
1956@item @code{#\tab} @tab U+0009
1957@item @code{#\linefeed} @tab U+000A
1958@item @code{#\newline} @tab U+000A
1959@item @code{#\vtab} @tab U+000B
1960@item @code{#\page} @tab U+000C
1961@item @code{#\return} @tab U+000D
1962@item @code{#\esc} @tab U+001B
1963@item @code{#\space} @tab U+0020
1964@item @code{#\delete} @tab U+007F
1965@end multitable
1966
1967There are also short names for all of the ``C0 control characters''
1968(those with code points below 32). The following table lists the short
1969name for each character.
07d83abe
MV
1970
1971@multitable @columnfractions .25 .25 .25 .25
1972@item 0 = @code{#\nul}
1973 @tab 1 = @code{#\soh}
1974 @tab 2 = @code{#\stx}
1975 @tab 3 = @code{#\etx}
1976@item 4 = @code{#\eot}
1977 @tab 5 = @code{#\enq}
1978 @tab 6 = @code{#\ack}
1979 @tab 7 = @code{#\bel}
1980@item 8 = @code{#\bs}
1981 @tab 9 = @code{#\ht}
6ea30487 1982 @tab 10 = @code{#\lf}
07d83abe 1983 @tab 11 = @code{#\vt}
3f12aedb 1984@item 12 = @code{#\ff}
07d83abe
MV
1985 @tab 13 = @code{#\cr}
1986 @tab 14 = @code{#\so}
1987 @tab 15 = @code{#\si}
1988@item 16 = @code{#\dle}
1989 @tab 17 = @code{#\dc1}
1990 @tab 18 = @code{#\dc2}
1991 @tab 19 = @code{#\dc3}
1992@item 20 = @code{#\dc4}
1993 @tab 21 = @code{#\nak}
1994 @tab 22 = @code{#\syn}
1995 @tab 23 = @code{#\etb}
1996@item 24 = @code{#\can}
1997 @tab 25 = @code{#\em}
1998 @tab 26 = @code{#\sub}
1999 @tab 27 = @code{#\esc}
2000@item 28 = @code{#\fs}
2001 @tab 29 = @code{#\gs}
2002 @tab 30 = @code{#\rs}
2003 @tab 31 = @code{#\us}
2004@item 32 = @code{#\sp}
2005@end multitable
2006
15b6a6b2
MG
2007The short name for the ``delete'' character (code point U+007F) is
2008@code{#\del}.
07d83abe 2009
15b6a6b2
MG
2010There are also a few alternative names left over for compatibility with
2011previous versions of Guile.
07d83abe 2012
3f12aedb
MG
2013@multitable {@code{#\backspace}} {Preferred}
2014@item Alternate @tab Standard
3f12aedb 2015@item @code{#\nl} @tab @code{#\newline}
15b6a6b2 2016@item @code{#\np} @tab @code{#\page}
07d83abe
MV
2017@item @code{#\null} @tab @code{#\nul}
2018@end multitable
2019
bb15a36c
MG
2020Characters may also be written using their code point values. They can
2021be written with as an octal number, such as @code{#\10} for
2022@code{#\bs} or @code{#\177} for @code{#\del}.
3f12aedb 2023
0f3a70cf
MG
2024If one prefers hex to octal, there is an additional syntax for character
2025escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2026number of one to eight digits.
6ea30487 2027
07d83abe
MV
2028@rnindex char?
2029@deffn {Scheme Procedure} char? x
2030@deffnx {C Function} scm_char_p (x)
2031Return @code{#t} iff @var{x} is a character, else @code{#f}.
2032@end deffn
2033
bb15a36c 2034Fundamentally, the character comparison operations below are
3f12aedb
MG
2035numeric comparisons of the character's code points.
2036
07d83abe
MV
2037@rnindex char=?
2038@deffn {Scheme Procedure} char=? x y
3f12aedb
MG
2039Return @code{#t} iff code point of @var{x} is equal to the code point
2040of @var{y}, else @code{#f}.
07d83abe
MV
2041@end deffn
2042
2043@rnindex char<?
2044@deffn {Scheme Procedure} char<? x y
3f12aedb
MG
2045Return @code{#t} iff the code point of @var{x} is less than the code
2046point of @var{y}, else @code{#f}.
07d83abe
MV
2047@end deffn
2048
2049@rnindex char<=?
2050@deffn {Scheme Procedure} char<=? x y
3f12aedb
MG
2051Return @code{#t} iff the code point of @var{x} is less than or equal
2052to the code point of @var{y}, else @code{#f}.
07d83abe
MV
2053@end deffn
2054
2055@rnindex char>?
2056@deffn {Scheme Procedure} char>? x y
3f12aedb
MG
2057Return @code{#t} iff the code point of @var{x} is greater than the
2058code point of @var{y}, else @code{#f}.
07d83abe
MV
2059@end deffn
2060
2061@rnindex char>=?
2062@deffn {Scheme Procedure} char>=? x y
3f12aedb
MG
2063Return @code{#t} iff the code point of @var{x} is greater than or
2064equal to the code point of @var{y}, else @code{#f}.
07d83abe
MV
2065@end deffn
2066
bb15a36c
MG
2067@cindex case folding
2068
2069Case-insensitive character comparisons use @emph{Unicode case
2070folding}. In case folding comparisons, if a character is lowercase
2071and has an uppercase form that can be expressed as a single character,
2072it is converted to uppercase before comparison. All other characters
2073undergo no conversion before the comparison occurs. This includes the
2074German sharp S (Eszett) which is not uppercased before conversion
2075because its uppercase form has two characters. Unicode case folding
2076is language independent: it uses rules that are generally true, but,
2077it cannot cover all cases for all languages.
3f12aedb 2078
07d83abe
MV
2079@rnindex char-ci=?
2080@deffn {Scheme Procedure} char-ci=? x y
3f12aedb
MG
2081Return @code{#t} iff the case-folded code point of @var{x} is the same
2082as the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2083@end deffn
2084
2085@rnindex char-ci<?
2086@deffn {Scheme Procedure} char-ci<? x y
3f12aedb
MG
2087Return @code{#t} iff the case-folded code point of @var{x} is less
2088than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2089@end deffn
2090
2091@rnindex char-ci<=?
2092@deffn {Scheme Procedure} char-ci<=? x y
3f12aedb
MG
2093Return @code{#t} iff the case-folded code point of @var{x} is less
2094than or equal to the case-folded code point of @var{y}, else
2095@code{#f}.
07d83abe
MV
2096@end deffn
2097
2098@rnindex char-ci>?
2099@deffn {Scheme Procedure} char-ci>? x y
3f12aedb
MG
2100Return @code{#t} iff the case-folded code point of @var{x} is greater
2101than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2102@end deffn
2103
2104@rnindex char-ci>=?
2105@deffn {Scheme Procedure} char-ci>=? x y
3f12aedb
MG
2106Return @code{#t} iff the case-folded code point of @var{x} is greater
2107than or equal to the case-folded code point of @var{y}, else
2108@code{#f}.
07d83abe
MV
2109@end deffn
2110
2111@rnindex char-alphabetic?
2112@deffn {Scheme Procedure} char-alphabetic? chr
2113@deffnx {C Function} scm_char_alphabetic_p (chr)
2114Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
2115@end deffn
2116
2117@rnindex char-numeric?
2118@deffn {Scheme Procedure} char-numeric? chr
2119@deffnx {C Function} scm_char_numeric_p (chr)
2120Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
07d83abe
MV
2121@end deffn
2122
2123@rnindex char-whitespace?
2124@deffn {Scheme Procedure} char-whitespace? chr
2125@deffnx {C Function} scm_char_whitespace_p (chr)
2126Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
2127@end deffn
2128
2129@rnindex char-upper-case?
2130@deffn {Scheme Procedure} char-upper-case? chr
2131@deffnx {C Function} scm_char_upper_case_p (chr)
2132Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
2133@end deffn
2134
2135@rnindex char-lower-case?
2136@deffn {Scheme Procedure} char-lower-case? chr
2137@deffnx {C Function} scm_char_lower_case_p (chr)
2138Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
2139@end deffn
2140
2141@deffn {Scheme Procedure} char-is-both? chr
2142@deffnx {C Function} scm_char_is_both_p (chr)
2143Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
5676b4fa 2144@code{#f}.
07d83abe
MV
2145@end deffn
2146
0ca3a342
JG
2147@deffn {Scheme Procedure} char-general-category chr
2148@deffnx {C Function} scm_char_general_category (chr)
2149Return a symbol giving the two-letter name of the Unicode general
2150category assigned to @var{chr} or @code{#f} if no named category is
2151assigned. The following table provides a list of category names along
2152with their meanings.
2153
2154@multitable @columnfractions .1 .4 .1 .4
2155@item Lu
2156 @tab Uppercase letter
2157 @tab Pf
2158 @tab Final quote punctuation
2159@item Ll
2160 @tab Lowercase letter
2161 @tab Po
2162 @tab Other punctuation
2163@item Lt
2164 @tab Titlecase letter
2165 @tab Sm
2166 @tab Math symbol
2167@item Lm
2168 @tab Modifier letter
2169 @tab Sc
2170 @tab Currency symbol
2171@item Lo
2172 @tab Other letter
2173 @tab Sk
2174 @tab Modifier symbol
2175@item Mn
2176 @tab Non-spacing mark
2177 @tab So
2178 @tab Other symbol
2179@item Mc
2180 @tab Combining spacing mark
2181 @tab Zs
2182 @tab Space separator
2183@item Me
2184 @tab Enclosing mark
2185 @tab Zl
2186 @tab Line separator
2187@item Nd
2188 @tab Decimal digit number
2189 @tab Zp
2190 @tab Paragraph separator
2191@item Nl
2192 @tab Letter number
2193 @tab Cc
2194 @tab Control
2195@item No
2196 @tab Other number
2197 @tab Cf
2198 @tab Format
2199@item Pc
2200 @tab Connector punctuation
2201 @tab Cs
2202 @tab Surrogate
2203@item Pd
2204 @tab Dash punctuation
2205 @tab Co
2206 @tab Private use
2207@item Ps
2208 @tab Open punctuation
2209 @tab Cn
2210 @tab Unassigned
2211@item Pe
2212 @tab Close punctuation
2213 @tab
2214 @tab
2215@item Pi
2216 @tab Initial quote punctuation
2217 @tab
2218 @tab
2219@end multitable
2220@end deffn
2221
07d83abe
MV
2222@rnindex char->integer
2223@deffn {Scheme Procedure} char->integer chr
2224@deffnx {C Function} scm_char_to_integer (chr)
3f12aedb 2225Return the code point of @var{chr}.
07d83abe
MV
2226@end deffn
2227
2228@rnindex integer->char
2229@deffn {Scheme Procedure} integer->char n
2230@deffnx {C Function} scm_integer_to_char (n)
3f12aedb
MG
2231Return the character that has code point @var{n}. The integer @var{n}
2232must be a valid code point. Valid code points are in the ranges 0 to
2233@code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
07d83abe
MV
2234@end deffn
2235
2236@rnindex char-upcase
2237@deffn {Scheme Procedure} char-upcase chr
2238@deffnx {C Function} scm_char_upcase (chr)
2239Return the uppercase character version of @var{chr}.
2240@end deffn
2241
2242@rnindex char-downcase
2243@deffn {Scheme Procedure} char-downcase chr
2244@deffnx {C Function} scm_char_downcase (chr)
2245Return the lowercase character version of @var{chr}.
2246@end deffn
2247
820f33aa
JG
2248@rnindex char-titlecase
2249@deffn {Scheme Procedure} char-titlecase chr
2250@deffnx {C Function} scm_char_titlecase (chr)
2251Return the titlecase character version of @var{chr} if one exists;
2252otherwise return the uppercase version.
2253
2254For most characters these will be the same, but the Unicode Standard
2255includes certain digraph compatibility characters, such as @code{U+01F3}
2256``dz'', for which the uppercase and titlecase characters are different
2257(@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2258respectively).
2259@end deffn
2260
a1dcb961
MG
2261@tindex scm_t_wchar
2262@deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2263@deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2264@deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2265
2266These C functions take an integer representation of a Unicode
2267codepoint and return the codepoint corresponding to its uppercase,
2268lowercase, and titlecase forms respectively. The type
2269@code{scm_t_wchar} is a signed, 32-bit integer.
2270@end deftypefn
2271
050ab45f
MV
2272@node Character Sets
2273@subsection Character Sets
07d83abe 2274
050ab45f
MV
2275The features described in this section correspond directly to SRFI-14.
2276
2277The data type @dfn{charset} implements sets of characters
2278(@pxref{Characters}). Because the internal representation of
2279character sets is not visible to the user, a lot of procedures for
2280handling them are provided.
2281
2282Character sets can be created, extended, tested for the membership of a
2283characters and be compared to other character sets.
2284
050ab45f
MV
2285@menu
2286* Character Set Predicates/Comparison::
2287* Iterating Over Character Sets:: Enumerate charset elements.
2288* Creating Character Sets:: Making new charsets.
2289* Querying Character Sets:: Test charsets for membership etc.
2290* Character-Set Algebra:: Calculating new charsets.
2291* Standard Character Sets:: Variables containing predefined charsets.
2292@end menu
2293
2294@node Character Set Predicates/Comparison
2295@subsubsection Character Set Predicates/Comparison
2296
2297Use these procedures for testing whether an object is a character set,
2298or whether several character sets are equal or subsets of each other.
2299@code{char-set-hash} can be used for calculating a hash value, maybe for
2300usage in fast lookup procedures.
2301
2302@deffn {Scheme Procedure} char-set? obj
2303@deffnx {C Function} scm_char_set_p (obj)
2304Return @code{#t} if @var{obj} is a character set, @code{#f}
2305otherwise.
2306@end deffn
2307
2308@deffn {Scheme Procedure} char-set= . char_sets
2309@deffnx {C Function} scm_char_set_eq (char_sets)
2310Return @code{#t} if all given character sets are equal.
2311@end deffn
2312
2313@deffn {Scheme Procedure} char-set<= . char_sets
2314@deffnx {C Function} scm_char_set_leq (char_sets)
2315Return @code{#t} if every character set @var{cs}i is a subset
2316of character set @var{cs}i+1.
2317@end deffn
2318
2319@deffn {Scheme Procedure} char-set-hash cs [bound]
2320@deffnx {C Function} scm_char_set_hash (cs, bound)
2321Compute a hash value for the character set @var{cs}. If
2322@var{bound} is given and non-zero, it restricts the
2323returned value to the range 0 @dots{} @var{bound - 1}.
2324@end deffn
2325
2326@c ===================================================================
2327
2328@node Iterating Over Character Sets
2329@subsubsection Iterating Over Character Sets
2330
2331Character set cursors are a means for iterating over the members of a
2332character sets. After creating a character set cursor with
2333@code{char-set-cursor}, a cursor can be dereferenced with
2334@code{char-set-ref}, advanced to the next member with
2335@code{char-set-cursor-next}. Whether a cursor has passed past the last
2336element of the set can be checked with @code{end-of-char-set?}.
2337
2338Additionally, mapping and (un-)folding procedures for character sets are
2339provided.
2340
2341@deffn {Scheme Procedure} char-set-cursor cs
2342@deffnx {C Function} scm_char_set_cursor (cs)
2343Return a cursor into the character set @var{cs}.
2344@end deffn
2345
2346@deffn {Scheme Procedure} char-set-ref cs cursor
2347@deffnx {C Function} scm_char_set_ref (cs, cursor)
2348Return the character at the current cursor position
2349@var{cursor} in the character set @var{cs}. It is an error to
2350pass a cursor for which @code{end-of-char-set?} returns true.
2351@end deffn
2352
2353@deffn {Scheme Procedure} char-set-cursor-next cs cursor
2354@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2355Advance the character set cursor @var{cursor} to the next
2356character in the character set @var{cs}. It is an error if the
2357cursor given satisfies @code{end-of-char-set?}.
2358@end deffn
2359
2360@deffn {Scheme Procedure} end-of-char-set? cursor
2361@deffnx {C Function} scm_end_of_char_set_p (cursor)
2362Return @code{#t} if @var{cursor} has reached the end of a
2363character set, @code{#f} otherwise.
2364@end deffn
2365
2366@deffn {Scheme Procedure} char-set-fold kons knil cs
2367@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2368Fold the procedure @var{kons} over the character set @var{cs},
2369initializing it with @var{knil}.
2370@end deffn
2371
2372@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2373@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2374This is a fundamental constructor for character sets.
2375@itemize @bullet
2376@item @var{g} is used to generate a series of ``seed'' values
2377from the initial seed: @var{seed}, (@var{g} @var{seed}),
2378(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2379@item @var{p} tells us when to stop -- when it returns true
2380when applied to one of the seed values.
2381@item @var{f} maps each seed value to a character. These
2382characters are added to the base character set @var{base_cs} to
2383form the result; @var{base_cs} defaults to the empty set.
2384@end itemize
2385@end deffn
2386
2387@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2388@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2389This is a fundamental constructor for character sets.
2390@itemize @bullet
2391@item @var{g} is used to generate a series of ``seed'' values
2392from the initial seed: @var{seed}, (@var{g} @var{seed}),
2393(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2394@item @var{p} tells us when to stop -- when it returns true
2395when applied to one of the seed values.
2396@item @var{f} maps each seed value to a character. These
2397characters are added to the base character set @var{base_cs} to
2398form the result; @var{base_cs} defaults to the empty set.
2399@end itemize
2400@end deffn
2401
2402@deffn {Scheme Procedure} char-set-for-each proc cs
2403@deffnx {C Function} scm_char_set_for_each (proc, cs)
2404Apply @var{proc} to every character in the character set
2405@var{cs}. The return value is not specified.
2406@end deffn
2407
2408@deffn {Scheme Procedure} char-set-map proc cs
2409@deffnx {C Function} scm_char_set_map (proc, cs)
2410Map the procedure @var{proc} over every character in @var{cs}.
2411@var{proc} must be a character -> character procedure.
2412@end deffn
2413
2414@c ===================================================================
2415
2416@node Creating Character Sets
2417@subsubsection Creating Character Sets
2418
2419New character sets are produced with these procedures.
2420
2421@deffn {Scheme Procedure} char-set-copy cs
2422@deffnx {C Function} scm_char_set_copy (cs)
2423Return a newly allocated character set containing all
2424characters in @var{cs}.
2425@end deffn
2426
2427@deffn {Scheme Procedure} char-set . rest
2428@deffnx {C Function} scm_char_set (rest)
2429Return a character set containing all given characters.
2430@end deffn
2431
2432@deffn {Scheme Procedure} list->char-set list [base_cs]
2433@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2434Convert the character list @var{list} to a character set. If
2435the character set @var{base_cs} is given, the character in this
2436set are also included in the result.
2437@end deffn
2438
2439@deffn {Scheme Procedure} list->char-set! list base_cs
2440@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2441Convert the character list @var{list} to a character set. The
2442characters are added to @var{base_cs} and @var{base_cs} is
2443returned.
2444@end deffn
2445
2446@deffn {Scheme Procedure} string->char-set str [base_cs]
2447@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2448Convert the string @var{str} to a character set. If the
2449character set @var{base_cs} is given, the characters in this
2450set are also included in the result.
2451@end deffn
2452
2453@deffn {Scheme Procedure} string->char-set! str base_cs
2454@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2455Convert the string @var{str} to a character set. The
2456characters from the string are added to @var{base_cs}, and
2457@var{base_cs} is returned.
2458@end deffn
2459
2460@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2461@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2462Return a character set containing every character from @var{cs}
2463so that it satisfies @var{pred}. If provided, the characters
2464from @var{base_cs} are added to the result.
2465@end deffn
2466
2467@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2468@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2469Return a character set containing every character from @var{cs}
2470so that it satisfies @var{pred}. The characters are added to
2471@var{base_cs} and @var{base_cs} is returned.
2472@end deffn
2473
2474@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2475@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2476Return a character set containing all characters whose
2477character codes lie in the half-open range
2478[@var{lower},@var{upper}).
2479
2480If @var{error} is a true value, an error is signalled if the
2481specified range contains characters which are not contained in
2482the implemented character range. If @var{error} is @code{#f},
be3eb25c 2483these characters are silently left out of the resulting
050ab45f
MV
2484character set.
2485
2486The characters in @var{base_cs} are added to the result, if
2487given.
2488@end deffn
2489
2490@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2491@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2492Return a character set containing all characters whose
2493character codes lie in the half-open range
2494[@var{lower},@var{upper}).
2495
2496If @var{error} is a true value, an error is signalled if the
2497specified range contains characters which are not contained in
2498the implemented character range. If @var{error} is @code{#f},
be3eb25c 2499these characters are silently left out of the resulting
050ab45f
MV
2500character set.
2501
2502The characters are added to @var{base_cs} and @var{base_cs} is
2503returned.
2504@end deffn
2505
2506@deffn {Scheme Procedure} ->char-set x
2507@deffnx {C Function} scm_to_char_set (x)
be3eb25c
MG
2508Coerces x into a char-set. @var{x} may be a string, character or
2509char-set. A string is converted to the set of its constituent
2510characters; a character is converted to a singleton set; a char-set is
2511returned as-is.
050ab45f
MV
2512@end deffn
2513
2514@c ===================================================================
2515
2516@node Querying Character Sets
2517@subsubsection Querying Character Sets
2518
2519Access the elements and other information of a character set with these
2520procedures.
2521
be3eb25c
MG
2522@deffn {Scheme Procedure} %char-set-dump cs
2523Returns an association list containing debugging information
2524for @var{cs}. The association list has the following entries.
2525@table @code
2526@item char-set
2527The char-set itself
2528@item len
2529The number of groups of contiguous code points the char-set
2530contains
2531@item ranges
2532A list of lists where each sublist is a range of code points
2533and their associated characters
2534@end table
2535The return value of this function cannot be relied upon to be
2536consistent between versions of Guile and should not be used in code.
2537@end deffn
2538
050ab45f
MV
2539@deffn {Scheme Procedure} char-set-size cs
2540@deffnx {C Function} scm_char_set_size (cs)
2541Return the number of elements in character set @var{cs}.
2542@end deffn
2543
2544@deffn {Scheme Procedure} char-set-count pred cs
2545@deffnx {C Function} scm_char_set_count (pred, cs)
2546Return the number of the elements int the character set
2547@var{cs} which satisfy the predicate @var{pred}.
2548@end deffn
2549
2550@deffn {Scheme Procedure} char-set->list cs
2551@deffnx {C Function} scm_char_set_to_list (cs)
2552Return a list containing the elements of the character set
2553@var{cs}.
2554@end deffn
2555
2556@deffn {Scheme Procedure} char-set->string cs
2557@deffnx {C Function} scm_char_set_to_string (cs)
2558Return a string containing the elements of the character set
2559@var{cs}. The order in which the characters are placed in the
2560string is not defined.
2561@end deffn
2562
2563@deffn {Scheme Procedure} char-set-contains? cs ch
2564@deffnx {C Function} scm_char_set_contains_p (cs, ch)
2565Return @code{#t} iff the character @var{ch} is contained in the
2566character set @var{cs}.
2567@end deffn
2568
2569@deffn {Scheme Procedure} char-set-every pred cs
2570@deffnx {C Function} scm_char_set_every (pred, cs)
2571Return a true value if every character in the character set
2572@var{cs} satisfies the predicate @var{pred}.
2573@end deffn
2574
2575@deffn {Scheme Procedure} char-set-any pred cs
2576@deffnx {C Function} scm_char_set_any (pred, cs)
2577Return a true value if any character in the character set
2578@var{cs} satisfies the predicate @var{pred}.
2579@end deffn
2580
2581@c ===================================================================
2582
2583@node Character-Set Algebra
2584@subsubsection Character-Set Algebra
2585
2586Character sets can be manipulated with the common set algebra operation,
2587such as union, complement, intersection etc. All of these procedures
2588provide side-effecting variants, which modify their character set
2589argument(s).
2590
2591@deffn {Scheme Procedure} char-set-adjoin cs . rest
2592@deffnx {C Function} scm_char_set_adjoin (cs, rest)
2593Add all character arguments to the first argument, which must
2594be a character set.
2595@end deffn
2596
2597@deffn {Scheme Procedure} char-set-delete cs . rest
2598@deffnx {C Function} scm_char_set_delete (cs, rest)
2599Delete all character arguments from the first argument, which
2600must be a character set.
2601@end deffn
2602
2603@deffn {Scheme Procedure} char-set-adjoin! cs . rest
2604@deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2605Add all character arguments to the first argument, which must
2606be a character set.
2607@end deffn
2608
2609@deffn {Scheme Procedure} char-set-delete! cs . rest
2610@deffnx {C Function} scm_char_set_delete_x (cs, rest)
2611Delete all character arguments from the first argument, which
2612must be a character set.
2613@end deffn
2614
2615@deffn {Scheme Procedure} char-set-complement cs
2616@deffnx {C Function} scm_char_set_complement (cs)
2617Return the complement of the character set @var{cs}.
2618@end deffn
2619
be3eb25c
MG
2620Note that the complement of a character set is likely to contain many
2621reserved code points (code points that are not associated with
2622characters). It may be helpful to modify the output of
2623@code{char-set-complement} by computing its intersection with the set
2624of designated code points, @code{char-set:designated}.
2625
050ab45f
MV
2626@deffn {Scheme Procedure} char-set-union . rest
2627@deffnx {C Function} scm_char_set_union (rest)
2628Return the union of all argument character sets.
2629@end deffn
2630
2631@deffn {Scheme Procedure} char-set-intersection . rest
2632@deffnx {C Function} scm_char_set_intersection (rest)
2633Return the intersection of all argument character sets.
2634@end deffn
2635
2636@deffn {Scheme Procedure} char-set-difference cs1 . rest
2637@deffnx {C Function} scm_char_set_difference (cs1, rest)
2638Return the difference of all argument character sets.
2639@end deffn
2640
2641@deffn {Scheme Procedure} char-set-xor . rest
2642@deffnx {C Function} scm_char_set_xor (rest)
2643Return the exclusive-or of all argument character sets.
2644@end deffn
2645
2646@deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2647@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2648Return the difference and the intersection of all argument
2649character sets.
2650@end deffn
2651
2652@deffn {Scheme Procedure} char-set-complement! cs
2653@deffnx {C Function} scm_char_set_complement_x (cs)
2654Return the complement of the character set @var{cs}.
2655@end deffn
2656
2657@deffn {Scheme Procedure} char-set-union! cs1 . rest
2658@deffnx {C Function} scm_char_set_union_x (cs1, rest)
2659Return the union of all argument character sets.
2660@end deffn
2661
2662@deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2663@deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2664Return the intersection of all argument character sets.
2665@end deffn
2666
2667@deffn {Scheme Procedure} char-set-difference! cs1 . rest
2668@deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2669Return the difference of all argument character sets.
2670@end deffn
2671
2672@deffn {Scheme Procedure} char-set-xor! cs1 . rest
2673@deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2674Return the exclusive-or of all argument character sets.
2675@end deffn
2676
2677@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2678@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2679Return the difference and the intersection of all argument
2680character sets.
2681@end deffn
2682
2683@c ===================================================================
2684
2685@node Standard Character Sets
2686@subsubsection Standard Character Sets
2687
2688In order to make the use of the character set data type and procedures
2689useful, several predefined character set variables exist.
2690
49dec04b
LC
2691@cindex codeset
2692@cindex charset
2693@cindex locale
2694
be3eb25c
MG
2695These character sets are locale independent and are not recomputed
2696upon a @code{setlocale} call. They contain characters from the whole
2697range of Unicode code points. For instance, @code{char-set:letter}
2698contains about 94,000 characters.
49dec04b 2699
c9dc8c6c
MV
2700@defvr {Scheme Variable} char-set:lower-case
2701@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2702All lower-case characters.
c9dc8c6c 2703@end defvr
050ab45f 2704
c9dc8c6c
MV
2705@defvr {Scheme Variable} char-set:upper-case
2706@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2707All upper-case characters.
c9dc8c6c 2708@end defvr
050ab45f 2709
c9dc8c6c
MV
2710@defvr {Scheme Variable} char-set:title-case
2711@defvrx {C Variable} scm_char_set_title_case
be3eb25c
MG
2712All single characters that function as if they were an upper-case
2713letter followed by a lower-case letter.
c9dc8c6c 2714@end defvr
050ab45f 2715
c9dc8c6c
MV
2716@defvr {Scheme Variable} char-set:letter
2717@defvrx {C Variable} scm_char_set_letter
be3eb25c
MG
2718All letters. This includes @code{char-set:lower-case},
2719@code{char-set:upper-case}, @code{char-set:title-case}, and many
2720letters that have no case at all. For example, Chinese and Japanese
2721characters typically have no concept of case.
c9dc8c6c 2722@end defvr
050ab45f 2723
c9dc8c6c
MV
2724@defvr {Scheme Variable} char-set:digit
2725@defvrx {C Variable} scm_char_set_digit
050ab45f 2726All digits.
c9dc8c6c 2727@end defvr
050ab45f 2728
c9dc8c6c
MV
2729@defvr {Scheme Variable} char-set:letter+digit
2730@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2731The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2732@end defvr
050ab45f 2733
c9dc8c6c
MV
2734@defvr {Scheme Variable} char-set:graphic
2735@defvrx {C Variable} scm_char_set_graphic
050ab45f 2736All characters which would put ink on the paper.
c9dc8c6c 2737@end defvr
050ab45f 2738
c9dc8c6c
MV
2739@defvr {Scheme Variable} char-set:printing
2740@defvrx {C Variable} scm_char_set_printing
050ab45f 2741The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2742@end defvr
050ab45f 2743
c9dc8c6c
MV
2744@defvr {Scheme Variable} char-set:whitespace
2745@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2746All whitespace characters.
c9dc8c6c 2747@end defvr
050ab45f 2748
c9dc8c6c
MV
2749@defvr {Scheme Variable} char-set:blank
2750@defvrx {C Variable} scm_char_set_blank
be3eb25c
MG
2751All horizontal whitespace characters, which notably includes
2752@code{#\space} and @code{#\tab}.
c9dc8c6c 2753@end defvr
050ab45f 2754
c9dc8c6c
MV
2755@defvr {Scheme Variable} char-set:iso-control
2756@defvrx {C Variable} scm_char_set_iso_control
be3eb25c
MG
2757The ISO control characters are the C0 control characters (U+0000 to
2758U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2759U+009F).
c9dc8c6c 2760@end defvr
050ab45f 2761
c9dc8c6c
MV
2762@defvr {Scheme Variable} char-set:punctuation
2763@defvrx {C Variable} scm_char_set_punctuation
be3eb25c
MG
2764All punctuation characters, such as the characters
2765@code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2766@end defvr
050ab45f 2767
c9dc8c6c
MV
2768@defvr {Scheme Variable} char-set:symbol
2769@defvrx {C Variable} scm_char_set_symbol
be3eb25c 2770All symbol characters, such as the characters @code{$+<=>^`|~}.
c9dc8c6c 2771@end defvr
050ab45f 2772
c9dc8c6c
MV
2773@defvr {Scheme Variable} char-set:hex-digit
2774@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2775The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2776@end defvr
050ab45f 2777
c9dc8c6c
MV
2778@defvr {Scheme Variable} char-set:ascii
2779@defvrx {C Variable} scm_char_set_ascii
050ab45f 2780All ASCII characters.
c9dc8c6c 2781@end defvr
050ab45f 2782
c9dc8c6c
MV
2783@defvr {Scheme Variable} char-set:empty
2784@defvrx {C Variable} scm_char_set_empty
050ab45f 2785The empty character set.
c9dc8c6c 2786@end defvr
050ab45f 2787
be3eb25c
MG
2788@defvr {Scheme Variable} char-set:designated
2789@defvrx {C Variable} scm_char_set_designated
2790This character set contains all designated code points. This includes
2791all the code points to which Unicode has assigned a character or other
2792meaning.
2793@end defvr
2794
c9dc8c6c
MV
2795@defvr {Scheme Variable} char-set:full
2796@defvrx {C Variable} scm_char_set_full
be3eb25c
MG
2797This character set contains all possible code points. This includes
2798both designated and reserved code points.
c9dc8c6c 2799@end defvr
07d83abe
MV
2800
2801@node Strings
2802@subsection Strings
2803@tpindex Strings
2804
2805Strings are fixed-length sequences of characters. They can be created
2806by calling constructor procedures, but they can also literally get
2807entered at the @acronym{REPL} or in Scheme source files.
2808
2809@c Guile provides a rich set of string processing procedures, because text
2810@c handling is very important when Guile is used as a scripting language.
2811
2812Strings always carry the information about how many characters they are
2813composed of with them, so there is no special end-of-string character,
2814like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2815even the @samp{#\nul} character @samp{\0}.
2816
2817To use strings efficiently, you need to know a bit about how Guile
2818implements them. In Guile, a string consists of two parts, a head and
2819the actual memory where the characters are stored. When a string (or
2820a substring of it) is copied, only a new head gets created, the memory
2821is usually not copied. The two heads start out pointing to the same
2822memory.
2823
2824When one of these two strings is modified, as with @code{string-set!},
2825their common memory does get copied so that each string has its own
be3eb25c 2826memory and modifying one does not accidentally modify the other as well.
c48c62d0
MV
2827Thus, Guile's strings are `copy on write'; the actual copying of their
2828memory is delayed until one string is written to.
2829
2830This implementation makes functions like @code{substring} very
2831efficient in the common case that no modifications are done to the
2832involved strings.
2833
2834If you do know that your strings are getting modified right away, you
2835can use @code{substring/copy} instead of @code{substring}. This
2836function performs the copy immediately at the time of creation. This
2837is more efficient, especially in a multi-threaded program. Also,
2838@code{substring/copy} can avoid the problem that a short substring
2839holds on to the memory of a very large original string that could
2840otherwise be recycled.
2841
2842If you want to avoid the copy altogether, so that modifications of one
2843string show up in the other, you can use @code{substring/shared}. The
2844strings created by this procedure are called @dfn{mutation sharing
2845substrings} since the substring and the original string share
2846modifications to each other.
07d83abe 2847
05256760
MV
2848If you want to prevent modifications, use @code{substring/read-only}.
2849
c9dc8c6c
MV
2850Guile provides all procedures of SRFI-13 and a few more.
2851
07d83abe 2852@menu
5676b4fa
MV
2853* String Syntax:: Read syntax for strings.
2854* String Predicates:: Testing strings for certain properties.
2855* String Constructors:: Creating new string objects.
2856* List/String Conversion:: Converting from/to lists of characters.
2857* String Selection:: Select portions from strings.
2858* String Modification:: Modify parts or whole strings.
2859* String Comparison:: Lexicographic ordering predicates.
2860* String Searching:: Searching in strings.
2861* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2862* Reversing and Appending Strings:: Appending strings to form a new string.
2863* Mapping Folding and Unfolding:: Iterating over strings.
2864* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
67af975c 2865* Conversion to/from C::
5b6b22e8 2866* String Internals:: The storage strategy for strings.
07d83abe
MV
2867@end menu
2868
2869@node String Syntax
2870@subsubsection String Read Syntax
2871
2872@c In the following @code is used to get a good font in TeX etc, but
2873@c is omitted for Info format, so as not to risk any confusion over
2874@c whether surrounding ` ' quotes are part of the escape or are
2875@c special in a string (they're not).
2876
2877The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2878characters enclosed in double quotes (@nicode{"}).
07d83abe 2879
67af975c
MG
2880Backslash is an escape character and can be used to insert the following
2881special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2882next seven are R6RS standard --- notice they follow C syntax --- and the
2883remaining four are Guile extensions.
07d83abe
MV
2884
2885@table @asis
2886@item @nicode{\\}
2887Backslash character.
2888
2889@item @nicode{\"}
2890Double quote character (an unescaped @nicode{"} is otherwise the end
2891of the string).
2892
07d83abe
MV
2893@item @nicode{\a}
2894Bell character (ASCII 7).
2895
2896@item @nicode{\f}
2897Formfeed character (ASCII 12).
2898
2899@item @nicode{\n}
2900Newline character (ASCII 10).
2901
2902@item @nicode{\r}
2903Carriage return character (ASCII 13).
2904
2905@item @nicode{\t}
2906Tab character (ASCII 9).
2907
2908@item @nicode{\v}
2909Vertical tab character (ASCII 11).
2910
67a4a16d
MG
2911@item @nicode{\b}
2912Backspace character (ASCII 8).
2913
67af975c
MG
2914@item @nicode{\0}
2915NUL character (ASCII 0).
2916
c869f0c1
AW
2917@item @nicode{\} followed by newline (ASCII 10)
2918Nothing. This way if @nicode{\} is the last character in a line, the
2919string will continue with the first character from the next line,
2920without a line break.
2921
2922If the @code{hungry-eol-escapes} reader option is enabled, which is not
2923the case by default, leading whitespace on the next line is discarded.
2924
2925@lisp
2926"foo\
2927 bar"
2928@result{} "foo bar"
2929(read-enable 'hungry-eol-escapes)
2930"foo\
2931 bar"
2932@result{} "foobar"
2933@end lisp
07d83abe
MV
2934@item @nicode{\xHH}
2935Character code given by two hexadecimal digits. For example
2936@nicode{\x7f} for an ASCII DEL (127).
28cc8dac
MG
2937
2938@item @nicode{\uHHHH}
2939Character code given by four hexadecimal digits. For example
2940@nicode{\u0100} for a capital A with macron (U+0100).
2941
2942@item @nicode{\UHHHHHH}
2943Character code given by six hexadecimal digits. For example
2944@nicode{\U010402}.
07d83abe
MV
2945@end table
2946
2947@noindent
2948The following are examples of string literals:
2949
2950@lisp
2951"foo"
2952"bar plonk"
2953"Hello World"
2954"\"Hi\", he said."
2955@end lisp
2956
6ea30487
MG
2957The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
2958chosen to not break compatibility with code written for previous versions of
2959Guile. The R6RS specification suggests a different, incompatible syntax for hex
2960escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
2961digits terminated with a semicolon. If this escape format is desired instead,
2962it can be enabled with the reader option @code{r6rs-hex-escapes}.
2963
2964@lisp
2965(read-enable 'r6rs-hex-escapes)
2966@end lisp
2967
1518f649 2968For more on reader options, @xref{Scheme Read}.
07d83abe
MV
2969
2970@node String Predicates
2971@subsubsection String Predicates
2972
2973The following procedures can be used to check whether a given string
2974fulfills some specified property.
2975
2976@rnindex string?
2977@deffn {Scheme Procedure} string? obj
2978@deffnx {C Function} scm_string_p (obj)
2979Return @code{#t} if @var{obj} is a string, else @code{#f}.
2980@end deffn
2981
91210d62
MV
2982@deftypefn {C Function} int scm_is_string (SCM obj)
2983Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2984@end deftypefn
2985
07d83abe
MV
2986@deffn {Scheme Procedure} string-null? str
2987@deffnx {C Function} scm_string_null_p (str)
2988Return @code{#t} if @var{str}'s length is zero, and
2989@code{#f} otherwise.
2990@lisp
2991(string-null? "") @result{} #t
2992y @result{} "foo"
2993(string-null? y) @result{} #f
2994@end lisp
2995@end deffn
2996
5676b4fa
MV
2997@deffn {Scheme Procedure} string-any char_pred s [start [end]]
2998@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 2999Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 3000
c100a12c
KR
3001@var{char_pred} can be a character to check for any equal to that, or
3002a character set (@pxref{Character Sets}) to check for any in that set,
3003or a predicate procedure to call.
5676b4fa 3004
c100a12c
KR
3005For a procedure, calls @code{(@var{char_pred} c)} are made
3006successively on the characters from @var{start} to @var{end}. If
3007@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3008stops and that return value is the return from @code{string-any}. The
3009call on the last character (ie.@: at @math{@var{end}-1}), if that
3010point is reached, is a tail call.
3011
3012If there are no characters in @var{s} (ie.@: @var{start} equals
3013@var{end}) then the return is @code{#f}.
5676b4fa
MV
3014@end deffn
3015
3016@deffn {Scheme Procedure} string-every char_pred s [start [end]]
3017@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
3018Check if @var{char_pred} is true for every character in string
3019@var{s}.
5676b4fa 3020
c100a12c
KR
3021@var{char_pred} can be a character to check for every character equal
3022to that, or a character set (@pxref{Character Sets}) to check for
3023every character being in that set, or a predicate procedure to call.
3024
3025For a procedure, calls @code{(@var{char_pred} c)} are made
3026successively on the characters from @var{start} to @var{end}. If
3027@var{char_pred} returns @code{#f}, @code{string-every} stops and
3028returns @code{#f}. The call on the last character (ie.@: at
3029@math{@var{end}-1}), if that point is reached, is a tail call and the
3030return from that call is the return from @code{string-every}.
5676b4fa
MV
3031
3032If there are no characters in @var{s} (ie.@: @var{start} equals
3033@var{end}) then the return is @code{#t}.
5676b4fa
MV
3034@end deffn
3035
07d83abe
MV
3036@node String Constructors
3037@subsubsection String Constructors
3038
3039The string constructor procedures create new string objects, possibly
c48c62d0
MV
3040initializing them with some specified character data. See also
3041@xref{String Selection}, for ways to create strings from existing
3042strings.
07d83abe
MV
3043
3044@c FIXME::martin: list->string belongs into `List/String Conversion'
3045
bba26c32 3046@deffn {Scheme Procedure} string char@dots{}
07d83abe 3047@rnindex string
bba26c32
KR
3048Return a newly allocated string made from the given character
3049arguments.
3050
3051@example
3052(string #\x #\y #\z) @result{} "xyz"
3053(string) @result{} ""
3054@end example
3055@end deffn
3056
3057@deffn {Scheme Procedure} list->string lst
3058@deffnx {C Function} scm_string (lst)
07d83abe 3059@rnindex list->string
bba26c32
KR
3060Return a newly allocated string made from a list of characters.
3061
3062@example
3063(list->string '(#\a #\b #\c)) @result{} "abc"
3064@end example
3065@end deffn
3066
3067@deffn {Scheme Procedure} reverse-list->string lst
3068@deffnx {C Function} scm_reverse_list_to_string (lst)
3069Return a newly allocated string made from a list of characters, in
3070reverse order.
3071
3072@example
3073(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3074@end example
07d83abe
MV
3075@end deffn
3076
3077@rnindex make-string
3078@deffn {Scheme Procedure} make-string k [chr]
3079@deffnx {C Function} scm_make_string (k, chr)
3080Return a newly allocated string of
3081length @var{k}. If @var{chr} is given, then all elements of
3082the string are initialized to @var{chr}, otherwise the contents
3083of the @var{string} are unspecified.
3084@end deffn
3085
c48c62d0
MV
3086@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3087Like @code{scm_make_string}, but expects the length as a
3088@code{size_t}.
3089@end deftypefn
3090
5676b4fa
MV
3091@deffn {Scheme Procedure} string-tabulate proc len
3092@deffnx {C Function} scm_string_tabulate (proc, len)
3093@var{proc} is an integer->char procedure. Construct a string
3094of size @var{len} by applying @var{proc} to each index to
3095produce the corresponding string element. The order in which
3096@var{proc} is applied to the indices is not specified.
3097@end deffn
3098
5676b4fa
MV
3099@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3100@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3101Append the string in the string list @var{ls}, using the string
3102@var{delim} as a delimiter between the elements of @var{ls}.
3103@var{grammar} is a symbol which specifies how the delimiter is
3104placed between the strings, and defaults to the symbol
3105@code{infix}.
3106
3107@table @code
3108@item infix
3109Insert the separator between list elements. An empty string
3110will produce an empty list.
3111@item string-infix
3112Like @code{infix}, but will raise an error if given the empty
3113list.
3114@item suffix
3115Insert the separator after every list element.
3116@item prefix
3117Insert the separator before each list element.
3118@end table
3119@end deffn
3120
07d83abe
MV
3121@node List/String Conversion
3122@subsubsection List/String conversion
3123
3124When processing strings, it is often convenient to first convert them
3125into a list representation by using the procedure @code{string->list},
3126work with the resulting list, and then convert it back into a string.
3127These procedures are useful for similar tasks.
3128
3129@rnindex string->list
5676b4fa
MV
3130@deffn {Scheme Procedure} string->list str [start [end]]
3131@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 3132@deffnx {C Function} scm_string_to_list (str)
5676b4fa 3133Convert the string @var{str} into a list of characters.
07d83abe
MV
3134@end deffn
3135
3136@deffn {Scheme Procedure} string-split str chr
3137@deffnx {C Function} scm_string_split (str, chr)
ecb87335 3138Split the string @var{str} into a list of substrings delimited
07d83abe
MV
3139by appearances of the character @var{chr}. Note that an empty substring
3140between separator characters will result in an empty string in the
3141result list.
3142
3143@lisp
3144(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3145@result{}
3146("root" "x" "0" "0" "root" "/root" "/bin/bash")
3147
3148(string-split "::" #\:)
3149@result{}
3150("" "" "")
3151
3152(string-split "" #\:)
3153@result{}
3154("")
3155@end lisp
3156@end deffn
3157
3158
3159@node String Selection
3160@subsubsection String Selection
3161
3162Portions of strings can be extracted by these procedures.
3163@code{string-ref} delivers individual characters whereas
3164@code{substring} can be used to extract substrings from longer strings.
3165
3166@rnindex string-length
3167@deffn {Scheme Procedure} string-length string
3168@deffnx {C Function} scm_string_length (string)
3169Return the number of characters in @var{string}.
3170@end deffn
3171
c48c62d0
MV
3172@deftypefn {C Function} size_t scm_c_string_length (SCM str)
3173Return the number of characters in @var{str} as a @code{size_t}.
3174@end deftypefn
3175
07d83abe
MV
3176@rnindex string-ref
3177@deffn {Scheme Procedure} string-ref str k
3178@deffnx {C Function} scm_string_ref (str, k)
3179Return character @var{k} of @var{str} using zero-origin
3180indexing. @var{k} must be a valid index of @var{str}.
3181@end deffn
3182
c48c62d0
MV
3183@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3184Return character @var{k} of @var{str} using zero-origin
3185indexing. @var{k} must be a valid index of @var{str}.
3186@end deftypefn
3187
07d83abe 3188@rnindex string-copy
5676b4fa
MV
3189@deffn {Scheme Procedure} string-copy str [start [end]]
3190@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 3191@deffnx {C Function} scm_string_copy (str)
5676b4fa 3192Return a copy of the given string @var{str}.
c48c62d0
MV
3193
3194The returned string shares storage with @var{str} initially, but it is
3195copied as soon as one of the two strings is modified.
07d83abe
MV
3196@end deffn
3197
3198@rnindex substring
3199@deffn {Scheme Procedure} substring str start [end]
3200@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 3201Return a new string formed from the characters
07d83abe
MV
3202of @var{str} beginning with index @var{start} (inclusive) and
3203ending with index @var{end} (exclusive).
3204@var{str} must be a string, @var{start} and @var{end} must be
3205exact integers satisfying:
3206
32070 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
3208
3209The returned string shares storage with @var{str} initially, but it is
3210copied as soon as one of the two strings is modified.
3211@end deffn
3212
3213@deffn {Scheme Procedure} substring/shared str start [end]
3214@deffnx {C Function} scm_substring_shared (str, start, end)
3215Like @code{substring}, but the strings continue to share their storage
3216even if they are modified. Thus, modifications to @var{str} show up
3217in the new string, and vice versa.
3218@end deffn
3219
3220@deffn {Scheme Procedure} substring/copy str start [end]
3221@deffnx {C Function} scm_substring_copy (str, start, end)
3222Like @code{substring}, but the storage for the new string is copied
3223immediately.
07d83abe
MV
3224@end deffn
3225
05256760
MV
3226@deffn {Scheme Procedure} substring/read-only str start [end]
3227@deffnx {C Function} scm_substring_read_only (str, start, end)
3228Like @code{substring}, but the resulting string can not be modified.
3229@end deffn
3230
c48c62d0
MV
3231@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3232@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3233@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 3234@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
3235Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3236@end deftypefn
3237
5676b4fa
MV
3238@deffn {Scheme Procedure} string-take s n
3239@deffnx {C Function} scm_string_take (s, n)
3240Return the @var{n} first characters of @var{s}.
3241@end deffn
3242
3243@deffn {Scheme Procedure} string-drop s n
3244@deffnx {C Function} scm_string_drop (s, n)
3245Return all but the first @var{n} characters of @var{s}.
3246@end deffn
3247
3248@deffn {Scheme Procedure} string-take-right s n
3249@deffnx {C Function} scm_string_take_right (s, n)
3250Return the @var{n} last characters of @var{s}.
3251@end deffn
3252
3253@deffn {Scheme Procedure} string-drop-right s n
3254@deffnx {C Function} scm_string_drop_right (s, n)
3255Return all but the last @var{n} characters of @var{s}.
3256@end deffn
3257
3258@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 3259@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 3260@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 3261@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb
KR
3262Take characters @var{start} to @var{end} from the string @var{s} and
3263either pad with @var{char} or truncate them to give @var{len}
3264characters.
3265
3266@code{string-pad} pads or truncates on the left, so for example
3267
3268@example
3269(string-pad "x" 3) @result{} " x"
3270(string-pad "abcde" 3) @result{} "cde"
3271@end example
3272
3273@code{string-pad-right} pads or truncates on the right, so for example
3274
3275@example
3276(string-pad-right "x" 3) @result{} "x "
3277(string-pad-right "abcde" 3) @result{} "abc"
3278@end example
5676b4fa
MV
3279@end deffn
3280
3281@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
dc297bb7
KR
3282@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3283@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
5676b4fa 3284@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
5676b4fa 3285@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
5676b4fa 3286@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
be3eb25c 3287Trim occurrences of @var{char_pred} from the ends of @var{s}.
5676b4fa 3288
dc297bb7
KR
3289@code{string-trim} trims @var{char_pred} characters from the left
3290(start) of the string, @code{string-trim-right} trims them from the
3291right (end) of the string, @code{string-trim-both} trims from both
3292ends.
5676b4fa 3293
dc297bb7
KR
3294@var{char_pred} can be a character, a character set, or a predicate
3295procedure to call on each character. If @var{char_pred} is not given
3296the default is whitespace as per @code{char-set:whitespace}
3297(@pxref{Standard Character Sets}).
5676b4fa 3298
dc297bb7
KR
3299@example
3300(string-trim " x ") @result{} "x "
3301(string-trim-right "banana" #\a) @result{} "banan"
3302(string-trim-both ".,xy:;" char-set:punctuation)
3303 @result{} "xy"
3304(string-trim-both "xyzzy" (lambda (c)
3305 (or (eqv? c #\x)
3306 (eqv? c #\y))))
3307 @result{} "zz"
3308@end example
5676b4fa
MV
3309@end deffn
3310
07d83abe
MV
3311@node String Modification
3312@subsubsection String Modification
3313
3314These procedures are for modifying strings in-place. This means that the
3315result of the operation is not a new string; instead, the original string's
3316memory representation is modified.
3317
3318@rnindex string-set!
3319@deffn {Scheme Procedure} string-set! str k chr
3320@deffnx {C Function} scm_string_set_x (str, k, chr)
3321Store @var{chr} in element @var{k} of @var{str} and return
3322an unspecified value. @var{k} must be a valid index of
3323@var{str}.
3324@end deffn
3325
c48c62d0
MV
3326@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3327Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3328@end deftypefn
3329
07d83abe 3330@rnindex string-fill!
5676b4fa
MV
3331@deffn {Scheme Procedure} string-fill! str chr [start [end]]
3332@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 3333@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
3334Stores @var{chr} in every element of the given @var{str} and
3335returns an unspecified value.
07d83abe
MV
3336@end deffn
3337
3338@deffn {Scheme Procedure} substring-fill! str start end fill
3339@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3340Change every character in @var{str} between @var{start} and
3341@var{end} to @var{fill}.
3342
3343@lisp
3344(define y "abcdefg")
3345(substring-fill! y 1 3 #\r)
3346y
3347@result{} "arrdefg"
3348@end lisp
3349@end deffn
3350
3351@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3352@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3353Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3354into @var{str2} beginning at position @var{start2}.
3355@var{str1} and @var{str2} can be the same string.
3356@end deffn
3357
5676b4fa
MV
3358@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3359@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3360Copy the sequence of characters from index range [@var{start},
3361@var{end}) in string @var{s} to string @var{target}, beginning
3362at index @var{tstart}. The characters are copied left-to-right
3363or right-to-left as needed -- the copy is guaranteed to work,
3364even if @var{target} and @var{s} are the same string. It is an
3365error if the copy operation runs off the end of the target
3366string.
3367@end deffn
3368
07d83abe
MV
3369
3370@node String Comparison
3371@subsubsection String Comparison
3372
3373The procedures in this section are similar to the character ordering
3374predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 3375
5676b4fa 3376The first set is specified in R5RS and has names that end in @code{?}.
28cc8dac 3377The second set is specified in SRFI-13 and the names have not ending
67af975c 3378@code{?}.
28cc8dac
MG
3379
3380The predicates ending in @code{-ci} ignore the character case
3381when comparing strings. For now, case-insensitive comparison is done
3382using the R5RS rules, where every lower-case character that has a
3383single character upper-case form is converted to uppercase before
3384comparison. See @xref{Text Collation, the @code{(ice-9
b89c4943 3385i18n)} module}, for locale-dependent string comparison.
07d83abe
MV
3386
3387@rnindex string=?
3323ec06
NJ
3388@deffn {Scheme Procedure} string=? [s1 [s2 . rest]]
3389@deffnx {C Function} scm_i_string_equal_p (s1, s2, rest)
07d83abe
MV
3390Lexicographic equality predicate; return @code{#t} if the two
3391strings are the same length and contain the same characters in
3392the same positions, otherwise return @code{#f}.
3393
3394The procedure @code{string-ci=?} treats upper and lower case
3395letters as though they were the same character, but
3396@code{string=?} treats upper and lower case as distinct
3397characters.
3398@end deffn
3399
3400@rnindex string<?
3323ec06
NJ
3401@deffn {Scheme Procedure} string<? [s1 [s2 . rest]]
3402@deffnx {C Function} scm_i_string_less_p (s1, s2, rest)
07d83abe
MV
3403Lexicographic ordering predicate; return @code{#t} if @var{s1}
3404is lexicographically less than @var{s2}.
3405@end deffn
3406
3407@rnindex string<=?
3323ec06
NJ
3408@deffn {Scheme Procedure} string<=? [s1 [s2 . rest]]
3409@deffnx {C Function} scm_i_string_leq_p (s1, s2, rest)
07d83abe
MV
3410Lexicographic ordering predicate; return @code{#t} if @var{s1}
3411is lexicographically less than or equal to @var{s2}.
3412@end deffn
3413
3414@rnindex string>?
3323ec06
NJ
3415@deffn {Scheme Procedure} string>? [s1 [s2 . rest]]
3416@deffnx {C Function} scm_i_string_gr_p (s1, s2, rest)
07d83abe
MV
3417Lexicographic ordering predicate; return @code{#t} if @var{s1}
3418is lexicographically greater than @var{s2}.
3419@end deffn
3420
3421@rnindex string>=?
3323ec06
NJ
3422@deffn {Scheme Procedure} string>=? [s1 [s2 . rest]]
3423@deffnx {C Function} scm_i_string_geq_p (s1, s2, rest)
07d83abe
MV
3424Lexicographic ordering predicate; return @code{#t} if @var{s1}
3425is lexicographically greater than or equal to @var{s2}.
3426@end deffn
3427
3428@rnindex string-ci=?
3323ec06
NJ
3429@deffn {Scheme Procedure} string-ci=? [s1 [s2 . rest]]
3430@deffnx {C Function} scm_i_string_ci_equal_p (s1, s2, rest)
07d83abe
MV
3431Case-insensitive string equality predicate; return @code{#t} if
3432the two strings are the same length and their component
3433characters match (ignoring case) at each position; otherwise
3434return @code{#f}.
3435@end deffn
3436
5676b4fa 3437@rnindex string-ci<?
3323ec06
NJ
3438@deffn {Scheme Procedure} string-ci<? [s1 [s2 . rest]]
3439@deffnx {C Function} scm_i_string_ci_less_p (s1, s2, rest)
07d83abe
MV
3440Case insensitive lexicographic ordering predicate; return
3441@code{#t} if @var{s1} is lexicographically less than @var{s2}
3442regardless of case.
3443@end deffn
3444
3445@rnindex string<=?
3323ec06
NJ
3446@deffn {Scheme Procedure} string-ci<=? [s1 [s2 . rest]]
3447@deffnx {C Function} scm_i_string_ci_leq_p (s1, s2, rest)
07d83abe
MV
3448Case insensitive lexicographic ordering predicate; return
3449@code{#t} if @var{s1} is lexicographically less than or equal
3450to @var{s2} regardless of case.
3451@end deffn
3452
3453@rnindex string-ci>?
3323ec06
NJ
3454@deffn {Scheme Procedure} string-ci>? [s1 [s2 . rest]]
3455@deffnx {C Function} scm_i_string_ci_gr_p (s1, s2, rest)
07d83abe
MV
3456Case insensitive lexicographic ordering predicate; return
3457@code{#t} if @var{s1} is lexicographically greater than
3458@var{s2} regardless of case.
3459@end deffn
3460
3461@rnindex string-ci>=?
3323ec06
NJ
3462@deffn {Scheme Procedure} string-ci>=? [s1 [s2 . rest]]
3463@deffnx {C Function} scm_i_string_ci_geq_p (s1, s2, rest)
07d83abe
MV
3464Case insensitive lexicographic ordering predicate; return
3465@code{#t} if @var{s1} is lexicographically greater than or
3466equal to @var{s2} regardless of case.
3467@end deffn
3468
5676b4fa
MV
3469@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3470@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3471Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3472mismatch index, depending upon whether @var{s1} is less than,
3473equal to, or greater than @var{s2}. The mismatch index is the
3474largest index @var{i} such that for every 0 <= @var{j} <
3475@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3476@var{i} is the first position that does not match.
3477@end deffn
3478
3479@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3480@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3481Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3482mismatch index, depending upon whether @var{s1} is less than,
3483equal to, or greater than @var{s2}. The mismatch index is the
3484largest index @var{i} such that for every 0 <= @var{j} <
3485@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3323ec06
NJ
3486@var{i} is the first position where the lowercased letters
3487do not match.
3488
5676b4fa
MV
3489@end deffn
3490
3491@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3492@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3493Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3494value otherwise.
3495@end deffn
3496
3497@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3498@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3499Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3500value otherwise.
3501@end deffn
3502
3503@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3504@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3505Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3506true value otherwise.
3507@end deffn
3508
3509@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3510@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3511Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3512true value otherwise.
3513@end deffn
3514
3515@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3516@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3517Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3518value otherwise.
3519@end deffn
3520
3521@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3522@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3523Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3524otherwise.
3525@end deffn
3526
3527@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3528@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3529Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3530value otherwise. The character comparison is done
3531case-insensitively.
3532@end deffn
3533
3534@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3535@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3536Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3537value otherwise. The character comparison is done
3538case-insensitively.
3539@end deffn
3540
3541@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3542@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3543Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3544true value otherwise. The character comparison is done
3545case-insensitively.
3546@end deffn
3547
3548@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3549@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3550Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3551true value otherwise. The character comparison is done
3552case-insensitively.
3553@end deffn
3554
3555@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3556@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3557Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3558value otherwise. The character comparison is done
3559case-insensitively.
3560@end deffn
3561
3562@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3563@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3564Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3565otherwise. The character comparison is done
3566case-insensitively.
3567@end deffn
3568
3569@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3570@deffnx {C Function} scm_substring_hash (s, bound, start, end)
ecb87335 3571Compute a hash value for @var{S}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
5676b4fa
MV
3572@end deffn
3573
3574@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3575@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
ecb87335 3576Compute a hash value for @var{S}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
5676b4fa 3577@end deffn
07d83abe 3578
edb7bb47
JG
3579Because the same visual appearance of an abstract Unicode character can
3580be obtained via multiple sequences of Unicode characters, even the
3581case-insensitive string comparison functions described above may return
3582@code{#f} when presented with strings containing different
3583representations of the same character. For example, the Unicode
3584character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3585represented with a single character (U+1E69) or by the character ``LATIN
3586SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3587DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3588
3589For this reason, it is often desirable to ensure that the strings
3590to be compared are using a mutually consistent representation for every
3591character. The Unicode standard defines two methods of normalizing the
3592contents of strings: Decomposition, which breaks composite characters
3593into a set of constituent characters with an ordering defined by the
3594Unicode Standard; and composition, which performs the converse.
3595
3596There are two decomposition operations. ``Canonical decomposition''
3597produces character sequences that share the same visual appearance as
ecb87335 3598the original characters, while ``compatibility decomposition'' produces
edb7bb47
JG
3599ones whose visual appearances may differ from the originals but which
3600represent the same abstract character.
3601
3602These operations are encapsulated in the following set of normalization
3603forms:
3604
3605@table @dfn
3606@item NFD
3607Characters are decomposed to their canonical forms.
3608
3609@item NFKD
3610Characters are decomposed to their compatibility forms.
3611
3612@item NFC
3613Characters are decomposed to their canonical forms, then composed.
3614
3615@item NFKC
3616Characters are decomposed to their compatibility forms, then composed.
3617
3618@end table
3619
3620The functions below put their arguments into one of the forms described
3621above.
3622
3623@deffn {Scheme Procedure} string-normalize-nfd s
3624@deffnx {C Function} scm_string_normalize_nfd (s)
3625Return the @code{NFD} normalized form of @var{s}.
3626@end deffn
3627
3628@deffn {Scheme Procedure} string-normalize-nfkd s
3629@deffnx {C Function} scm_string_normalize_nfkd (s)
3630Return the @code{NFKD} normalized form of @var{s}.
3631@end deffn
3632
3633@deffn {Scheme Procedure} string-normalize-nfc s
3634@deffnx {C Function} scm_string_normalize_nfc (s)
3635Return the @code{NFC} normalized form of @var{s}.
3636@end deffn
3637
3638@deffn {Scheme Procedure} string-normalize-nfkc s
3639@deffnx {C Function} scm_string_normalize_nfkc (s)
3640Return the @code{NFKC} normalized form of @var{s}.
3641@end deffn
3642
07d83abe
MV
3643@node String Searching
3644@subsubsection String Searching
3645
5676b4fa
MV
3646@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3647@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3648Search through the string @var{s} from left to right, returning
be3eb25c 3649the index of the first occurrence of a character which
07d83abe 3650
5676b4fa
MV
3651@itemize @bullet
3652@item
3653equals @var{char_pred}, if it is character,
07d83abe 3654
5676b4fa 3655@item
be3eb25c 3656satisfies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3657
5676b4fa
MV
3658@item
3659is in the set @var{char_pred}, if it is a character set.
3660@end itemize
bf7c2e96
LC
3661
3662Return @code{#f} if no match is found.
5676b4fa 3663@end deffn
07d83abe 3664
5676b4fa
MV
3665@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3666@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3667Search through the string @var{s} from right to left, returning
be3eb25c 3668the index of the last occurrence of a character which
5676b4fa
MV
3669
3670@itemize @bullet
3671@item
3672equals @var{char_pred}, if it is character,
3673
3674@item
be3eb25c 3675satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3676
3677@item
3678is in the set if @var{char_pred} is a character set.
3679@end itemize
bf7c2e96
LC
3680
3681Return @code{#f} if no match is found.
07d83abe
MV
3682@end deffn
3683
5676b4fa
MV
3684@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3685@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3686Return the length of the longest common prefix of the two
3687strings.
3688@end deffn
07d83abe 3689
5676b4fa
MV
3690@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3691@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3692Return the length of the longest common prefix of the two
3693strings, ignoring character case.
3694@end deffn
07d83abe 3695
5676b4fa
MV
3696@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3697@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3698Return the length of the longest common suffix of the two
3699strings.
3700@end deffn
07d83abe 3701
5676b4fa
MV
3702@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3703@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3704Return the length of the longest common suffix of the two
3705strings, ignoring character case.
3706@end deffn
3707
3708@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3709@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3710Is @var{s1} a prefix of @var{s2}?
3711@end deffn
3712
3713@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3714@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3715Is @var{s1} a prefix of @var{s2}, ignoring character case?
3716@end deffn
3717
3718@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3719@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3720Is @var{s1} a suffix of @var{s2}?
3721@end deffn
3722
3723@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3724@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3725Is @var{s1} a suffix of @var{s2}, ignoring character case?
3726@end deffn
3727
3728@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3729@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3730Search through the string @var{s} from right to left, returning
be3eb25c 3731the index of the last occurrence of a character which
5676b4fa
MV
3732
3733@itemize @bullet
3734@item
3735equals @var{char_pred}, if it is character,
3736
3737@item
be3eb25c 3738satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3739
3740@item
3741is in the set if @var{char_pred} is a character set.
3742@end itemize
bf7c2e96
LC
3743
3744Return @code{#f} if no match is found.
5676b4fa
MV
3745@end deffn
3746
3747@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3748@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3749Search through the string @var{s} from left to right, returning
be3eb25c 3750the index of the first occurrence of a character which
5676b4fa
MV
3751
3752@itemize @bullet
3753@item
3754does not equal @var{char_pred}, if it is character,
3755
3756@item
be3eb25c 3757does not satisfy the predicate @var{char_pred}, if it is a
5676b4fa
MV
3758procedure,
3759
3760@item
3761is not in the set if @var{char_pred} is a character set.
3762@end itemize
3763@end deffn
3764
3765@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3766@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3767Search through the string @var{s} from right to left, returning
be3eb25c 3768the index of the last occurrence of a character which
5676b4fa
MV
3769
3770@itemize @bullet
3771@item
3772does not equal @var{char_pred}, if it is character,
3773
3774@item
3775does not satisfy the predicate @var{char_pred}, if it is a
3776procedure,
3777
3778@item
3779is not in the set if @var{char_pred} is a character set.
3780@end itemize
3781@end deffn
3782
3783@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3784@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3785Return the count of the number of characters in the string
3786@var{s} which
3787
3788@itemize @bullet
3789@item
3790equals @var{char_pred}, if it is character,
3791
3792@item
be3eb25c 3793satisfies the predicate @var{char_pred}, if it is a procedure.
5676b4fa
MV
3794
3795@item
3796is in the set @var{char_pred}, if it is a character set.
3797@end itemize
3798@end deffn
3799
3800@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3801@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3802Does string @var{s1} contain string @var{s2}? Return the index
3803in @var{s1} where @var{s2} occurs as a substring, or false.
3804The optional start/end indices restrict the operation to the
3805indicated substrings.
3806@end deffn
3807
3808@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3809@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3810Does string @var{s1} contain string @var{s2}? Return the index
3811in @var{s1} where @var{s2} occurs as a substring, or false.
3812The optional start/end indices restrict the operation to the
3813indicated substrings. Character comparison is done
3814case-insensitively.
07d83abe
MV
3815@end deffn
3816
3817@node Alphabetic Case Mapping
3818@subsubsection Alphabetic Case Mapping
3819
3820These are procedures for mapping strings to their upper- or lower-case
3821equivalents, respectively, or for capitalizing strings.
3822
67af975c
MG
3823They use the basic case mapping rules for Unicode characters. No
3824special language or context rules are considered. The resulting strings
3825are guaranteed to be the same length as the input strings.
3826
3827@xref{Character Case Mapping, the @code{(ice-9
3828i18n)} module}, for locale-dependent case conversions.
3829
5676b4fa
MV
3830@deffn {Scheme Procedure} string-upcase str [start [end]]
3831@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3832@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3833Upcase every character in @code{str}.
07d83abe
MV
3834@end deffn
3835
5676b4fa
MV
3836@deffn {Scheme Procedure} string-upcase! str [start [end]]
3837@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3838@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3839Destructively upcase every character in @code{str}.
3840
07d83abe 3841@lisp
5676b4fa
MV
3842(string-upcase! y)
3843@result{} "ARRDEFG"
3844y
3845@result{} "ARRDEFG"
07d83abe
MV
3846@end lisp
3847@end deffn
3848
5676b4fa
MV
3849@deffn {Scheme Procedure} string-downcase str [start [end]]
3850@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3851@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3852Downcase every character in @var{str}.
07d83abe
MV
3853@end deffn
3854
5676b4fa
MV
3855@deffn {Scheme Procedure} string-downcase! str [start [end]]
3856@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3857@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3858Destructively downcase every character in @var{str}.
3859
07d83abe 3860@lisp
5676b4fa
MV
3861y
3862@result{} "ARRDEFG"
3863(string-downcase! y)
3864@result{} "arrdefg"
3865y
3866@result{} "arrdefg"
07d83abe
MV
3867@end lisp
3868@end deffn
3869
3870@deffn {Scheme Procedure} string-capitalize str
3871@deffnx {C Function} scm_string_capitalize (str)
3872Return a freshly allocated string with the characters in
3873@var{str}, where the first character of every word is
3874capitalized.
3875@end deffn
3876
3877@deffn {Scheme Procedure} string-capitalize! str
3878@deffnx {C Function} scm_string_capitalize_x (str)
3879Upcase the first character of every word in @var{str}
3880destructively and return @var{str}.
3881
3882@lisp
3883y @result{} "hello world"
3884(string-capitalize! y) @result{} "Hello World"
3885y @result{} "Hello World"
3886@end lisp
3887@end deffn
3888
5676b4fa
MV
3889@deffn {Scheme Procedure} string-titlecase str [start [end]]
3890@deffnx {C Function} scm_string_titlecase (str, start, end)
3891Titlecase every first character in a word in @var{str}.
3892@end deffn
07d83abe 3893
5676b4fa
MV
3894@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3895@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3896Destructively titlecase every first character in a word in
3897@var{str}.
3898@end deffn
3899
3900@node Reversing and Appending Strings
3901@subsubsection Reversing and Appending Strings
07d83abe 3902
5676b4fa
MV
3903@deffn {Scheme Procedure} string-reverse str [start [end]]
3904@deffnx {C Function} scm_string_reverse (str, start, end)
3905Reverse the string @var{str}. The optional arguments
3906@var{start} and @var{end} delimit the region of @var{str} to
3907operate on.
3908@end deffn
3909
3910@deffn {Scheme Procedure} string-reverse! str [start [end]]
3911@deffnx {C Function} scm_string_reverse_x (str, start, end)
3912Reverse the string @var{str} in-place. The optional arguments
3913@var{start} and @var{end} delimit the region of @var{str} to
3914operate on. The return value is unspecified.
3915@end deffn
07d83abe
MV
3916
3917@rnindex string-append
3918@deffn {Scheme Procedure} string-append . args
3919@deffnx {C Function} scm_string_append (args)
3920Return a newly allocated string whose characters form the
3921concatenation of the given strings, @var{args}.
3922
3923@example
3924(let ((h "hello "))
3925 (string-append h "world"))
3926@result{} "hello world"
3927@end example
3928@end deffn
3929
3323ec06
NJ
3930@deffn {Scheme Procedure} string-append/shared . rest
3931@deffnx {C Function} scm_string_append_shared (rest)
5676b4fa
MV
3932Like @code{string-append}, but the result may share memory
3933with the argument strings.
3934@end deffn
3935
3936@deffn {Scheme Procedure} string-concatenate ls
3937@deffnx {C Function} scm_string_concatenate (ls)
3938Append the elements of @var{ls} (which must be strings)
3939together into a single string. Guaranteed to return a freshly
3940allocated string.
3941@end deffn
3942
3943@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3944@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3945Without optional arguments, this procedure is equivalent to
3946
aba0dff5 3947@lisp
5676b4fa 3948(string-concatenate (reverse ls))
aba0dff5 3949@end lisp
5676b4fa
MV
3950
3951If the optional argument @var{final_string} is specified, it is
3952consed onto the beginning to @var{ls} before performing the
3953list-reverse and string-concatenate operations. If @var{end}
3954is given, only the characters of @var{final_string} up to index
3955@var{end} are used.
3956
3957Guaranteed to return a freshly allocated string.
3958@end deffn
3959
3960@deffn {Scheme Procedure} string-concatenate/shared ls
3961@deffnx {C Function} scm_string_concatenate_shared (ls)
3962Like @code{string-concatenate}, but the result may share memory
3963with the strings in the list @var{ls}.
3964@end deffn
3965
3966@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3967@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3968Like @code{string-concatenate-reverse}, but the result may
72b3aa56 3969share memory with the strings in the @var{ls} arguments.
5676b4fa
MV
3970@end deffn
3971
3972@node Mapping Folding and Unfolding
3973@subsubsection Mapping, Folding, and Unfolding
3974
3975@deffn {Scheme Procedure} string-map proc s [start [end]]
3976@deffnx {C Function} scm_string_map (proc, s, start, end)
3977@var{proc} is a char->char procedure, it is mapped over
3978@var{s}. The order in which the procedure is applied to the
3979string elements is not specified.
3980@end deffn
3981
3982@deffn {Scheme Procedure} string-map! proc s [start [end]]
3983@deffnx {C Function} scm_string_map_x (proc, s, start, end)
3984@var{proc} is a char->char procedure, it is mapped over
3985@var{s}. The order in which the procedure is applied to the
3986string elements is not specified. The string @var{s} is
3987modified in-place, the return value is not specified.
3988@end deffn
3989
3990@deffn {Scheme Procedure} string-for-each proc s [start [end]]
3991@deffnx {C Function} scm_string_for_each (proc, s, start, end)
3992@var{proc} is mapped over @var{s} in left-to-right order. The
3993return value is not specified.
3994@end deffn
3995
3996@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3997@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
3998Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3999right.
4000
4001For example, to change characters to alternately upper and lower case,
4002
4003@example
4004(define str (string-copy "studly"))
45867c2a
NJ
4005(string-for-each-index
4006 (lambda (i)
4007 (string-set! str i
4008 ((if (even? i) char-upcase char-downcase)
4009 (string-ref str i))))
4010 str)
2a7820f2
KR
4011str @result{} "StUdLy"
4012@end example
5676b4fa
MV
4013@end deffn
4014
4015@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4016@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4017Fold @var{kons} over the characters of @var{s}, with @var{knil}
4018as the terminating element, from left to right. @var{kons}
4019must expect two arguments: The actual character and the last
4020result of @var{kons}' application.
4021@end deffn
4022
4023@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4024@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4025Fold @var{kons} over the characters of @var{s}, with @var{knil}
4026as the terminating element, from right to left. @var{kons}
4027must expect two arguments: The actual character and the last
4028result of @var{kons}' application.
4029@end deffn
4030
4031@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4032@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4033@itemize @bullet
4034@item @var{g} is used to generate a series of @emph{seed}
4035values from the initial @var{seed}: @var{seed}, (@var{g}
4036@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4037@dots{}
4038@item @var{p} tells us when to stop -- when it returns true
4039when applied to one of these seed values.
4040@item @var{f} maps each seed value to the corresponding
4041character in the result string. These chars are assembled
4042into the string in a left-to-right order.
4043@item @var{base} is the optional initial/leftmost portion
4044of the constructed string; it default to the empty
4045string.
4046@item @var{make_final} is applied to the terminal seed
4047value (on which @var{p} returns true) to produce
4048the final/rightmost portion of the constructed string.
9a18d8d4 4049The default is nothing extra.
5676b4fa
MV
4050@end itemize
4051@end deffn
4052
4053@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4054@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4055@itemize @bullet
4056@item @var{g} is used to generate a series of @emph{seed}
4057values from the initial @var{seed}: @var{seed}, (@var{g}
4058@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4059@dots{}
4060@item @var{p} tells us when to stop -- when it returns true
4061when applied to one of these seed values.
4062@item @var{f} maps each seed value to the corresponding
4063character in the result string. These chars are assembled
4064into the string in a right-to-left order.
4065@item @var{base} is the optional initial/rightmost portion
4066of the constructed string; it default to the empty
4067string.
4068@item @var{make_final} is applied to the terminal seed
4069value (on which @var{p} returns true) to produce
4070the final/leftmost portion of the constructed string.
4071It defaults to @code{(lambda (x) )}.
4072@end itemize
4073@end deffn
4074
4075@node Miscellaneous String Operations
4076@subsubsection Miscellaneous String Operations
4077
4078@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4079@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4080This is the @emph{extended substring} procedure that implements
4081replicated copying of a substring of some string.
4082
4083@var{s} is a string, @var{start} and @var{end} are optional
4084arguments that demarcate a substring of @var{s}, defaulting to
40850 and the length of @var{s}. Replicate this substring up and
4086down index space, in both the positive and negative directions.
4087@code{xsubstring} returns the substring of this string
4088beginning at index @var{from}, and ending at @var{to}, which
4089defaults to @var{from} + (@var{end} - @var{start}).
4090@end deffn
4091
4092@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4093@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4094Exactly the same as @code{xsubstring}, but the extracted text
4095is written into the string @var{target} starting at index
4096@var{tstart}. The operation is not defined if @code{(eq?
4097@var{target} @var{s})} or these arguments share storage -- you
4098cannot copy a string on top of itself.
4099@end deffn
4100
4101@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4102@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4103Return the string @var{s1}, but with the characters
4104@var{start1} @dots{} @var{end1} replaced by the characters
4105@var{start2} @dots{} @var{end2} from @var{s2}.
4106@end deffn
4107
4108@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4109@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4110Split the string @var{s} into a list of substrings, where each
4111substring is a maximal non-empty contiguous sequence of
4112characters from the character set @var{token_set}, which
4113defaults to @code{char-set:graphic}.
4114If @var{start} or @var{end} indices are provided, they restrict
4115@code{string-tokenize} to operating on the indicated substring
4116of @var{s}.
4117@end deffn
4118
9fe717e2
AW
4119@deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4120@deffnx {C Function} scm_string_filter (char_pred, s, start, end)
08de3e24 4121Filter the string @var{s}, retaining only those characters which
a88e2a96 4122satisfy @var{char_pred}.
08de3e24
KR
4123
4124If @var{char_pred} is a procedure, it is applied to each character as
4125a predicate, if it is a character, it is tested for equality and if it
4126is a character set, it is tested for membership.
5676b4fa
MV
4127@end deffn
4128
9fe717e2
AW
4129@deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4130@deffnx {C Function} scm_string_delete (char_pred, s, start, end)
a88e2a96 4131Delete characters satisfying @var{char_pred} from @var{s}.
08de3e24
KR
4132
4133If @var{char_pred} is a procedure, it is applied to each character as
4134a predicate, if it is a character, it is tested for equality and if it
4135is a character set, it is tested for membership.
5676b4fa
MV
4136@end deffn
4137
91210d62
MV
4138@node Conversion to/from C
4139@subsubsection Conversion to/from C
4140
4141When creating a Scheme string from a C string or when converting a
4142Scheme string to a C string, the concept of character encoding becomes
4143important.
4144
4145In C, a string is just a sequence of bytes, and the character encoding
4146describes the relation between these bytes and the actual characters
c88453e8
MV
4147that make up the string. For Scheme strings, character encoding is
4148not an issue (most of the time), since in Scheme you never get to see
4149the bytes, only the characters.
91210d62 4150
67af975c
MG
4151Converting to C and converting from C each have their own challenges.
4152
4153When converting from C to Scheme, it is important that the sequence of
4154bytes in the C string be valid with respect to its encoding. ASCII
4155strings, for example, can't have any bytes greater than 127. An ASCII
4156byte greater than 127 is considered @emph{ill-formed} and cannot be
4157converted into a Scheme character.
4158
4159Problems can occur in the reverse operation as well. Not all character
4160encodings can hold all possible Scheme characters. Some encodings, like
4161ASCII for example, can only describe a small subset of all possible
4162characters. So, when converting to C, one must first decide what to do
4163with Scheme characters that can't be represented in the C string.
91210d62 4164
c88453e8
MV
4165Converting a Scheme string to a C string will often allocate fresh
4166memory to hold the result. You must take care that this memory is
4167properly freed eventually. In many cases, this can be achieved by
661ae7ab
MV
4168using @code{scm_dynwind_free} inside an appropriate dynwind context,
4169@xref{Dynamic Wind}.
91210d62
MV
4170
4171@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4172@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
67af975c
MG
4173Creates a new Scheme string that has the same contents as @var{str} when
4174interpreted in the locale character encoding of the
4175@code{current-input-port}.
91210d62
MV
4176
4177For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4178
4179For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4180@var{str} in bytes, and @var{str} does not need to be null-terminated.
4181If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4182null-terminated and the real length will be found with @code{strlen}.
67af975c
MG
4183
4184If the C string is ill-formed, an error will be raised.
ce3ce21c
MW
4185
4186Note that these functions should @emph{not} be used to convert C string
4187constants, because there is no guarantee that the current locale will
4188match that of the source code. To convert C string constants, use
4189@code{scm_from_latin1_string}, @code{scm_from_utf8_string} or
4190@code{scm_from_utf32_string}.
91210d62
MV
4191@end deftypefn
4192
4193@deftypefn {C Function} SCM scm_take_locale_string (char *str)
4194@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4195Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4196respectively, but also frees @var{str} with @code{free} eventually.
4197Thus, you can use this function when you would free @var{str} anyway
4198immediately after creating the Scheme string. In certain cases, Guile
4199can then use @var{str} directly as its internal representation.
4200@end deftypefn
4201
4846ae2c
KR
4202@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4203@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
67af975c
MG
4204Returns a C string with the same contents as @var{str} in the locale
4205encoding of the @code{current-output-port}. The C string must be freed
4206with @code{free} eventually, maybe by using @code{scm_dynwind_free},
4207@xref{Dynamic Wind}.
91210d62
MV
4208
4209For @code{scm_to_locale_string}, the returned string is
4210null-terminated and an error is signalled when @var{str} contains
4211@code{#\nul} characters.
4212
4213For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4214@var{str} might contain @code{#\nul} characters and the length of the
4215returned string in bytes is stored in @code{*@var{lenp}}. The
4216returned string will not be null-terminated in this case. If
4217@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4218@code{scm_to_locale_string}.
67af975c
MG
4219
4220If a character in @var{str} cannot be represented in the locale encoding
4221of the current output port, the port conversion strategy of the current
4222output port will determine the result, @xref{Ports}. If output port's
4223conversion strategy is @code{error}, an error will be raised. If it is
ecb87335 4224@code{substitute}, a replacement character, such as a question mark, will
67af975c
MG
4225be inserted in its place. If it is @code{escape}, a hex escape will be
4226inserted in its place.
91210d62
MV
4227@end deftypefn
4228
4229@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4230Puts @var{str} as a C string in the current locale encoding into the
4231memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4232@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4233more than that. No terminating @code{'\0'} will be stored.
4234
4235The return value of @code{scm_to_locale_stringbuf} is the number of
4236bytes that are needed for all of @var{str}, regardless of whether
4237@var{buf} was large enough to hold them. Thus, when the return value
4238is larger than @var{max_len}, only @var{max_len} bytes have been
4239stored and you probably need to try again with a larger buffer.
4240@end deftypefn
cf313a94
MG
4241
4242For most situations, string conversion should occur using the current
4243locale, such as with the functions above. But there may be cases where
4244one wants to convert strings from a character encoding other than the
4245locale's character encoding. For these cases, the lower-level functions
4246@code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4247functions should seldom be necessary if one is properly using locales.
4248
4249@deftp {C Type} scm_t_string_failed_conversion_handler
4250This is an enumerated type that can take one of three values:
4251@code{SCM_FAILED_CONVERSION_ERROR},
4252@code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4253@code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4254a strategy for handling characters that cannot be converted to or from a
4255given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4256that a conversion should throw an error if some characters cannot be
4257converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4258conversion should replace unconvertable characters with the question
4259mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4260requests that a conversion should replace an unconvertable character
4261with an escape sequence.
4262
4263While all three strategies apply when converting Scheme strings to C,
4264only @code{SCM_FAILED_CONVERSION_ERROR} and
4265@code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4266strings to Scheme.
4267@end deftp
4268
4269@deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4270This function returns a newly allocated C string from the Guile string
4271@var{str}. The length of the string will be returned in @var{lenp}.
4272The character encoding of the C string is passed as the ASCII,
4273null-terminated C string @var{encoding}. The @var{handler} parameter
4274gives a strategy for dealing with characters that cannot be converted
4275into @var{encoding}.
4276
4277If @var{lenp} is NULL, this function will return a null-terminated C
4278string. It will throw an error if the string contains a null
4279character.
4280@end deftypefn
4281
4282@deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4283This function returns a scheme string from the C string @var{str}. The
4284length of the C string is input as @var{len}. The encoding of the C
4285string is passed as the ASCII, null-terminated C string @code{encoding}.
4286The @var{handler} parameters suggests a strategy for dealing with
4287unconvertable characters.
4288@end deftypefn
4289
ce3ce21c
MW
4290The following conversion functions are provided as a convenience for the
4291most commonly used encodings.
4292
4293@deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4294@deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4295@deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4296Return a scheme string from the null-terminated C string @var{str},
4297which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4298be used to convert hard-coded C string constants into Scheme strings.
4299@end deftypefn
cf313a94
MG
4300
4301@deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
647dc1ac
LC
4302@deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4303@deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4304Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4305UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4306of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4307@code{scm_from_utf8_stringn}; it is the number of elements (code points)
4308in @var{str} in the case of @code{scm_from_utf32_stringn}.
cf313a94
MG
4309@end deftypefn
4310
647dc1ac
LC
4311@deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4312@deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4313@deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4314Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4315from Scheme string @var{str}. An error is thrown when @var{str}
4316string cannot be converted to the specified encoding. If @var{lenp} is
cf313a94
MG
4317@code{NULL}, the returned C string will be null terminated, and an error
4318will be thrown if the C string would otherwise contain null
4319characters. If @var{lenp} is not NULL, the length of the string is
4320returned in @var{lenp}, and the string is not null terminated.
4321@end deftypefn
07d83abe 4322
5b6b22e8
MG
4323@node String Internals
4324@subsubsection String Internals
4325
4326Guile stores each string in memory as a contiguous array of Unicode code
4327points along with an associated set of attributes. If all of the code
4328points of a string have an integer range between 0 and 255 inclusive,
4329the code point array is stored as one byte per code point: it is stored
4330as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4331string has an integer value greater that 255, the code point array is
4332stored as four bytes per code point: it is stored as a UTF-32 string.
4333
4334Conversion between the one-byte-per-code-point and
4335four-bytes-per-code-point representations happens automatically as
4336necessary.
4337
4338No API is provided to set the internal representation of strings;
4339however, there are pair of procedures available to query it. These are
4340debugging procedures. Using them in production code is discouraged,
4341since the details of Guile's internal representation of strings may
4342change from release to release.
4343
4344@deffn {Scheme Procedure} string-bytes-per-char str
4345@deffnx {C Function} scm_string_bytes_per_char (str)
4346Return the number of bytes used to encode a Unicode code point in string
4347@var{str}. The result is one or four.
4348@end deffn
4349
4350@deffn {Scheme Procedure} %string-dump str
4351@deffnx {C Function} scm_sys_string_dump (str)
4352Returns an association list containing debugging information for
4353@var{str}. The association list has the following entries.
4354@table @code
4355
4356@item string
4357The string itself.
4358
4359@item start
4360The start index of the string into its stringbuf
4361
4362@item length
4363The length of the string
4364
4365@item shared
4366If this string is a substring, it returns its
4367parent string. Otherwise, it returns @code{#f}
4368
4369@item read-only
4370@code{#t} if the string is read-only
4371
4372@item stringbuf-chars
4373A new string containing this string's stringbuf's characters
4374
4375@item stringbuf-length
4376The number of characters in this stringbuf
4377
4378@item stringbuf-shared
4379@code{#t} if this stringbuf is shared
4380
4381@item stringbuf-wide
4382@code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4383or @code{#f} if they are stored in an 8-bit buffer
4384@end table
4385@end deffn
4386
4387
b242715b
LC
4388@node Bytevectors
4389@subsection Bytevectors
4390
4391@cindex bytevector
4392@cindex R6RS
4393
07d22c02 4394A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
b242715b 4395module provides the programming interface specified by the
5fa2deb3 4396@uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
b242715b
LC
4397Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4398interpret their contents in a number of ways: bytevector contents can be
4399accessed as signed or unsigned integer of various sizes and endianness,
4400as IEEE-754 floating point numbers, or as strings. It is a useful tool
4401to encode and decode binary data.
4402
4403The R6RS (Section 4.3.4) specifies an external representation for
4404bytevectors, whereby the octets (integers in the range 0--255) contained
4405in the bytevector are represented as a list prefixed by @code{#vu8}:
4406
4407@lisp
4408#vu8(1 53 204)
4409@end lisp
4410
4411denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4412string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4413they do not need to be quoted:
4414
4415@lisp
4416#vu8(1 53 204)
4417@result{} #vu8(1 53 204)
4418@end lisp
4419
4420Bytevectors can be used with the binary input/output primitives of the
4421R6RS (@pxref{R6RS I/O Ports}).
4422
4423@menu
4424* Bytevector Endianness:: Dealing with byte order.
4425* Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4426* Bytevectors as Integers:: Interpreting bytes as integers.
4427* Bytevectors and Integer Lists:: Converting to/from an integer list.
4428* Bytevectors as Floats:: Interpreting bytes as real numbers.
4429* Bytevectors as Strings:: Interpreting bytes as Unicode strings.
438974d0 4430* Bytevectors as Generalized Vectors:: Guile extension to the bytevector API.
27219b32 4431* Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
b242715b
LC
4432@end menu
4433
4434@node Bytevector Endianness
4435@subsubsection Endianness
4436
4437@cindex endianness
4438@cindex byte order
4439@cindex word order
4440
4441Some of the following procedures take an @var{endianness} parameter.
5fa2deb3
AW
4442The @dfn{endianness} is defined as the order of bytes in multi-byte
4443numbers: numbers encoded in @dfn{big endian} have their most
4444significant bytes written first, whereas numbers encoded in
4445@dfn{little endian} have their least significant bytes
4446first@footnote{Big-endian and little-endian are the most common
4447``endiannesses'', but others do exist. For instance, the GNU MP
4448library allows @dfn{word order} to be specified independently of
4449@dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4450Multiple Precision Arithmetic Library Manual}).}.
4451
4452Little-endian is the native endianness of the IA32 architecture and
4453its derivatives, while big-endian is native to SPARC and PowerPC,
4454among others. The @code{native-endianness} procedure returns the
4455native endianness of the machine it runs on.
b242715b
LC
4456
4457@deffn {Scheme Procedure} native-endianness
4458@deffnx {C Function} scm_native_endianness ()
4459Return a value denoting the native endianness of the host machine.
4460@end deffn
4461
4462@deffn {Scheme Macro} endianness symbol
4463Return an object denoting the endianness specified by @var{symbol}. If
5fa2deb3
AW
4464@var{symbol} is neither @code{big} nor @code{little} then an error is
4465raised at expand-time.
b242715b
LC
4466@end deffn
4467
4468@defvr {C Variable} scm_endianness_big
4469@defvrx {C Variable} scm_endianness_little
5fa2deb3 4470The objects denoting big- and little-endianness, respectively.
b242715b
LC
4471@end defvr
4472
4473
4474@node Bytevector Manipulation
4475@subsubsection Manipulating Bytevectors
4476
4477Bytevectors can be created, copied, and analyzed with the following
404bb5f8 4478procedures and C functions.
b242715b
LC
4479
4480@deffn {Scheme Procedure} make-bytevector len [fill]
4481@deffnx {C Function} scm_make_bytevector (len, fill)
2d34e924 4482@deffnx {C Function} scm_c_make_bytevector (size_t len)
b242715b 4483Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
d64fc8b0
LC
4484is given, fill it with @var{fill}; @var{fill} must be in the range
4485[-128,255].
b242715b
LC
4486@end deffn
4487
4488@deffn {Scheme Procedure} bytevector? obj
4489@deffnx {C Function} scm_bytevector_p (obj)
4490Return true if @var{obj} is a bytevector.
4491@end deffn
4492
404bb5f8
LC
4493@deftypefn {C Function} int scm_is_bytevector (SCM obj)
4494Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4495@end deftypefn
4496
b242715b
LC
4497@deffn {Scheme Procedure} bytevector-length bv
4498@deffnx {C Function} scm_bytevector_length (bv)
4499Return the length in bytes of bytevector @var{bv}.
4500@end deffn
4501
404bb5f8
LC
4502@deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4503Likewise, return the length in bytes of bytevector @var{bv}.
4504@end deftypefn
4505
b242715b
LC
4506@deffn {Scheme Procedure} bytevector=? bv1 bv2
4507@deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4508Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4509length and contents.
4510@end deffn
4511
4512@deffn {Scheme Procedure} bytevector-fill! bv fill
4513@deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4514Fill bytevector @var{bv} with @var{fill}, a byte.
4515@end deffn
4516
4517@deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4518@deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4519Copy @var{len} bytes from @var{source} into @var{target}, starting
4520reading from @var{source-start} (a positive index within @var{source})
4521and start writing at @var{target-start}.
4522@end deffn
4523
4524@deffn {Scheme Procedure} bytevector-copy bv
4525@deffnx {C Function} scm_bytevector_copy (bv)
4526Return a newly allocated copy of @var{bv}.
4527@end deffn
4528
404bb5f8
LC
4529@deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4530Return the byte at @var{index} in bytevector @var{bv}.
4531@end deftypefn
4532
4533@deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4534Set the byte at @var{index} in @var{bv} to @var{value}.
4535@end deftypefn
4536
b242715b
LC
4537Low-level C macros are available. They do not perform any
4538type-checking; as such they should be used with care.
4539
4540@deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4541Return the length in bytes of bytevector @var{bv}.
4542@end deftypefn
4543
4544@deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4545Return a pointer to the contents of bytevector @var{bv}.
4546@end deftypefn
4547
4548
4549@node Bytevectors as Integers
4550@subsubsection Interpreting Bytevector Contents as Integers
4551
4552The contents of a bytevector can be interpreted as a sequence of
4553integers of any given size, sign, and endianness.
4554
4555@lisp
4556(let ((bv (make-bytevector 4)))
4557 (bytevector-u8-set! bv 0 #x12)
4558 (bytevector-u8-set! bv 1 #x34)
4559 (bytevector-u8-set! bv 2 #x56)
4560 (bytevector-u8-set! bv 3 #x78)
4561
4562 (map (lambda (number)
4563 (number->string number 16))
4564 (list (bytevector-u8-ref bv 0)
4565 (bytevector-u16-ref bv 0 (endianness big))
4566 (bytevector-u32-ref bv 0 (endianness little)))))
4567
4568@result{} ("12" "1234" "78563412")
4569@end lisp
4570
4571The most generic procedures to interpret bytevector contents as integers
4572are described below.
4573
4574@deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
b242715b 4575@deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4827afeb
NJ
4576Return the @var{size}-byte long unsigned integer at index @var{index} in
4577@var{bv}, decoded according to @var{endianness}.
4578@end deffn
4579
4580@deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
b242715b 4581@deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4827afeb
NJ
4582Return the @var{size}-byte long signed integer at index @var{index} in
4583@var{bv}, decoded according to @var{endianness}.
b242715b
LC
4584@end deffn
4585
4586@deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
b242715b 4587@deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4827afeb
NJ
4588Set the @var{size}-byte long unsigned integer at @var{index} to
4589@var{value}, encoded according to @var{endianness}.
4590@end deffn
4591
4592@deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
b242715b 4593@deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4827afeb
NJ
4594Set the @var{size}-byte long signed integer at @var{index} to
4595@var{value}, encoded according to @var{endianness}.
b242715b
LC
4596@end deffn
4597
4598The following procedures are similar to the ones above, but specialized
4599to a given integer size:
4600
4601@deffn {Scheme Procedure} bytevector-u8-ref bv index
4602@deffnx {Scheme Procedure} bytevector-s8-ref bv index
4603@deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4604@deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4605@deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4606@deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4607@deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4608@deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4609@deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4610@deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4611@deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4612@deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4613@deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4614@deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4615@deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4616@deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4617Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
461816, 32 or 64) from @var{bv} at @var{index}, decoded according to
4619@var{endianness}.
4620@end deffn
4621
4622@deffn {Scheme Procedure} bytevector-u8-set! bv index value
4623@deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4624@deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4625@deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4626@deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4627@deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4628@deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4629@deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4630@deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4631@deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4632@deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4633@deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4634@deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4635@deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4636@deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4637@deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4638Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
46398, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4640@var{endianness}.
4641@end deffn
4642
4643Finally, a variant specialized for the host's endianness is available
4644for each of these functions (with the exception of the @code{u8}
4645accessors, for obvious reasons):
4646
4647@deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4648@deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4649@deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4650@deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4651@deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4652@deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4653@deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4654@deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4655@deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4656@deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4657@deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4658@deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4659Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
466016, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4661host's native endianness.
4662@end deffn
4663
4664@deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4665@deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4666@deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4667@deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4668@deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4669@deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4670@deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4671@deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4672@deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4673@deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4674@deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4675@deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4676Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
46778, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4678host's native endianness.
4679@end deffn
4680
4681
4682@node Bytevectors and Integer Lists
4683@subsubsection Converting Bytevectors to/from Integer Lists
4684
4685Bytevector contents can readily be converted to/from lists of signed or
4686unsigned integers:
4687
4688@lisp
4689(bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4690 (endianness little) 2)
4691@result{} (-1 -1)
4692@end lisp
4693
4694@deffn {Scheme Procedure} bytevector->u8-list bv
4695@deffnx {C Function} scm_bytevector_to_u8_list (bv)
4696Return a newly allocated list of unsigned 8-bit integers from the
4697contents of @var{bv}.
4698@end deffn
4699
4700@deffn {Scheme Procedure} u8-list->bytevector lst
4701@deffnx {C Function} scm_u8_list_to_bytevector (lst)
4702Return a newly allocated bytevector consisting of the unsigned 8-bit
4703integers listed in @var{lst}.
4704@end deffn
4705
4706@deffn {Scheme Procedure} bytevector->uint-list bv endianness size
b242715b 4707@deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4827afeb
NJ
4708Return a list of unsigned integers of @var{size} bytes representing the
4709contents of @var{bv}, decoded according to @var{endianness}.
4710@end deffn
4711
4712@deffn {Scheme Procedure} bytevector->sint-list bv endianness size
b242715b 4713@deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4827afeb
NJ
4714Return a list of signed integers of @var{size} bytes representing the
4715contents of @var{bv}, decoded according to @var{endianness}.
b242715b
LC
4716@end deffn
4717
4718@deffn {Scheme Procedure} uint-list->bytevector lst endianness size
b242715b 4719@deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4827afeb
NJ
4720Return a new bytevector containing the unsigned integers listed in
4721@var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4722@end deffn
4723
4724@deffn {Scheme Procedure} sint-list->bytevector lst endianness size
b242715b 4725@deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4827afeb
NJ
4726Return a new bytevector containing the signed integers listed in
4727@var{lst} and encoded on @var{size} bytes according to @var{endianness}.
b242715b
LC
4728@end deffn
4729
4730@node Bytevectors as Floats
4731@subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4732
4733@cindex IEEE-754 floating point numbers
4734
4735Bytevector contents can also be accessed as IEEE-754 single- or
4736double-precision floating point numbers (respectively 32 and 64-bit
4737long) using the procedures described here.
4738
4739@deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4740@deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4741@deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4742@deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4743Return the IEEE-754 single-precision floating point number from @var{bv}
4744at @var{index} according to @var{endianness}.
4745@end deffn
4746
4747@deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4748@deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4749@deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4750@deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4751Store real number @var{value} in @var{bv} at @var{index} according to
4752@var{endianness}.
4753@end deffn
4754
4755Specialized procedures are also available:
4756
4757@deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4758@deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4759@deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4760@deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4761Return the IEEE-754 single-precision floating point number from @var{bv}
4762at @var{index} according to the host's native endianness.
4763@end deffn
4764
4765@deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4766@deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4767@deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4768@deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4769Store real number @var{value} in @var{bv} at @var{index} according to
4770the host's native endianness.
4771@end deffn
4772
4773
4774@node Bytevectors as Strings
4775@subsubsection Interpreting Bytevector Contents as Unicode Strings
4776
4777@cindex Unicode string encoding
4778
4779Bytevector contents can also be interpreted as Unicode strings encoded
d3b5628c 4780in one of the most commonly available encoding formats.
b242715b
LC
4781
4782@lisp
4783(utf8->string (u8-list->bytevector '(99 97 102 101)))
4784@result{} "cafe"
4785
4786(string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4787@result{} #vu8(99 97 102 195 169)
4788@end lisp
4789
4790@deffn {Scheme Procedure} string->utf8 str
524aa8ae
LC
4791@deffnx {Scheme Procedure} string->utf16 str [endianness]
4792@deffnx {Scheme Procedure} string->utf32 str [endianness]
b242715b 4793@deffnx {C Function} scm_string_to_utf8 (str)
524aa8ae
LC
4794@deffnx {C Function} scm_string_to_utf16 (str, endianness)
4795@deffnx {C Function} scm_string_to_utf32 (str, endianness)
b242715b 4796Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
524aa8ae
LC
4797UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4798@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4799it defaults to big endian.
b242715b
LC
4800@end deffn
4801
4802@deffn {Scheme Procedure} utf8->string utf
524aa8ae
LC
4803@deffnx {Scheme Procedure} utf16->string utf [endianness]
4804@deffnx {Scheme Procedure} utf32->string utf [endianness]
b242715b 4805@deffnx {C Function} scm_utf8_to_string (utf)
524aa8ae
LC
4806@deffnx {C Function} scm_utf16_to_string (utf, endianness)
4807@deffnx {C Function} scm_utf32_to_string (utf, endianness)
b242715b 4808Return a newly allocated string that contains from the UTF-8-, UTF-16-,
524aa8ae
LC
4809or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4810@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4811it defaults to big endian.
b242715b
LC
4812@end deffn
4813
438974d0
LC
4814@node Bytevectors as Generalized Vectors
4815@subsubsection Accessing Bytevectors with the Generalized Vector API
4816
4817As an extension to the R6RS, Guile allows bytevectors to be manipulated
4818with the @dfn{generalized vector} procedures (@pxref{Generalized
4819Vectors}). This also allows bytevectors to be accessed using the
4820generic @dfn{array} procedures (@pxref{Array Procedures}). When using
4821these APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4822
4823@example
4824(define bv #vu8(0 1 2 3))
4825
4826(generalized-vector? bv)
4827@result{} #t
4828
4829(generalized-vector-ref bv 2)
4830@result{} 2
4831
4832(generalized-vector-set! bv 2 77)
4833(array-ref bv 2)
4834@result{} 77
4835
4836(array-type bv)
4837@result{} vu8
4838@end example
4839
b242715b 4840
27219b32
AW
4841@node Bytevectors as Uniform Vectors
4842@subsubsection Accessing Bytevectors with the SRFI-4 API
4843
4844Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
4845Bytevectors}, for more information.
4846
4847
07d83abe
MV
4848@node Symbols
4849@subsection Symbols
4850@tpindex Symbols
4851
4852Symbols in Scheme are widely used in three ways: as items of discrete
4853data, as lookup keys for alists and hash tables, and to denote variable
4854references.
4855
4856A @dfn{symbol} is similar to a string in that it is defined by a
4857sequence of characters. The sequence of characters is known as the
4858symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4859name doesn't include any characters that could be confused with other
4860elements of Scheme syntax --- a symbol is written in a Scheme program by
4861writing the sequence of characters that make up the name, @emph{without}
4862any quotation marks or other special syntax. For example, the symbol
4863whose name is ``multiply-by-2'' is written, simply:
4864
4865@lisp
4866multiply-by-2
4867@end lisp
4868
4869Notice how this differs from a @emph{string} with contents
4870``multiply-by-2'', which is written with double quotation marks, like
4871this:
4872
4873@lisp
4874"multiply-by-2"
4875@end lisp
4876
4877Looking beyond how they are written, symbols are different from strings
4878in two important respects.
4879
4880The first important difference is uniqueness. If the same-looking
4881string is read twice from two different places in a program, the result
4882is two @emph{different} string objects whose contents just happen to be
4883the same. If, on the other hand, the same-looking symbol is read twice
4884from two different places in a program, the result is the @emph{same}
4885symbol object both times.
4886
4887Given two read symbols, you can use @code{eq?} to test whether they are
4888the same (that is, have the same name). @code{eq?} is the most
4889efficient comparison operator in Scheme, and comparing two symbols like
4890this is as fast as comparing, for example, two numbers. Given two
4891strings, on the other hand, you must use @code{equal?} or
4892@code{string=?}, which are much slower comparison operators, to
4893determine whether the strings have the same contents.
4894
4895@lisp
4896(define sym1 (quote hello))
4897(define sym2 (quote hello))
4898(eq? sym1 sym2) @result{} #t
4899
4900(define str1 "hello")
4901(define str2 "hello")
4902(eq? str1 str2) @result{} #f
4903(equal? str1 str2) @result{} #t
4904@end lisp
4905
4906The second important difference is that symbols, unlike strings, are not
4907self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4908example above: @code{(quote hello)} evaluates to the symbol named
4909"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4910symbol named "hello" and evaluated as a variable reference @dots{} about
4911which more below (@pxref{Symbol Variables}).
4912
4913@menu
4914* Symbol Data:: Symbols as discrete data.
4915* Symbol Keys:: Symbols as lookup keys.
4916* Symbol Variables:: Symbols as denoting variables.
4917* Symbol Primitives:: Operations related to symbols.
4918* Symbol Props:: Function slots and property lists.
4919* Symbol Read Syntax:: Extended read syntax for symbols.
4920* Symbol Uninterned:: Uninterned symbols.
4921@end menu
4922
4923
4924@node Symbol Data
4925@subsubsection Symbols as Discrete Data
4926
4927Numbers and symbols are similar to the extent that they both lend
4928themselves to @code{eq?} comparison. But symbols are more descriptive
4929than numbers, because a symbol's name can be used directly to describe
4930the concept for which that symbol stands.
4931
4932For example, imagine that you need to represent some colours in a
4933computer program. Using numbers, you would have to choose arbitrarily
4934some mapping between numbers and colours, and then take care to use that
4935mapping consistently:
4936
4937@lisp
4938;; 1=red, 2=green, 3=purple
4939
4940(if (eq? (colour-of car) 1)
4941 ...)
4942@end lisp
4943
4944@noindent
4945You can make the mapping more explicit and the code more readable by
4946defining constants:
4947
4948@lisp
4949(define red 1)
4950(define green 2)
4951(define purple 3)
4952
4953(if (eq? (colour-of car) red)
4954 ...)
4955@end lisp
4956
4957@noindent
4958But the simplest and clearest approach is not to use numbers at all, but
4959symbols whose names specify the colours that they refer to:
4960
4961@lisp
4962(if (eq? (colour-of car) 'red)
4963 ...)
4964@end lisp
4965
4966The descriptive advantages of symbols over numbers increase as the set
4967of concepts that you want to describe grows. Suppose that a car object
4968can have other properties as well, such as whether it has or uses:
4969
4970@itemize @bullet
4971@item
4972automatic or manual transmission
4973@item
4974leaded or unleaded fuel
4975@item
4976power steering (or not).
4977@end itemize
4978
4979@noindent
4980Then a car's combined property set could be naturally represented and
4981manipulated as a list of symbols:
4982
4983@lisp
4984(properties-of car1)
4985@result{}
4986(red manual unleaded power-steering)
4987
4988(if (memq 'power-steering (properties-of car1))
4989 (display "Unfit people can drive this car.\n")
4990 (display "You'll need strong arms to drive this car!\n"))
4991@print{}
4992Unfit people can drive this car.
4993@end lisp
4994
4995Remember, the fundamental property of symbols that we are relying on
4996here is that an occurrence of @code{'red} in one part of a program is an
4997@emph{indistinguishable} symbol from an occurrence of @code{'red} in
4998another part of a program; this means that symbols can usefully be
4999compared using @code{eq?}. At the same time, symbols have naturally
5000descriptive names. This combination of efficiency and descriptive power
5001makes them ideal for use as discrete data.
5002
5003
5004@node Symbol Keys
5005@subsubsection Symbols as Lookup Keys
5006
5007Given their efficiency and descriptive power, it is natural to use
5008symbols as the keys in an association list or hash table.
5009
5010To illustrate this, consider a more structured representation of the car
5011properties example from the preceding subsection. Rather than
5012mixing all the properties up together in a flat list, we could use an
5013association list like this:
5014
5015@lisp
5016(define car1-properties '((colour . red)
5017 (transmission . manual)
5018 (fuel . unleaded)
5019 (steering . power-assisted)))
5020@end lisp
5021
5022Notice how this structure is more explicit and extensible than the flat
5023list. For example it makes clear that @code{manual} refers to the
5024transmission rather than, say, the windows or the locking of the car.
5025It also allows further properties to use the same symbols among their
5026possible values without becoming ambiguous:
5027
5028@lisp
5029(define car1-properties '((colour . red)
5030 (transmission . manual)
5031 (fuel . unleaded)
5032 (steering . power-assisted)
5033 (seat-colour . red)
5034 (locking . manual)))
5035@end lisp
5036
5037With a representation like this, it is easy to use the efficient
5038@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5039extract or change individual pieces of information:
5040
5041@lisp
5042(assq-ref car1-properties 'fuel) @result{} unleaded
5043(assq-ref car1-properties 'transmission) @result{} manual
5044
5045(assq-set! car1-properties 'seat-colour 'black)
5046@result{}
5047((colour . red)
5048 (transmission . manual)
5049 (fuel . unleaded)
5050 (steering . power-assisted)
5051 (seat-colour . black)
5052 (locking . manual)))
5053@end lisp
5054
5055Hash tables also have keys, and exactly the same arguments apply to the
5056use of symbols in hash tables as in association lists. The hash value
5057that Guile uses to decide where to add a symbol-keyed entry to a hash
5058table can be obtained by calling the @code{symbol-hash} procedure:
5059
5060@deffn {Scheme Procedure} symbol-hash symbol
5061@deffnx {C Function} scm_symbol_hash (symbol)
5062Return a hash value for @var{symbol}.
5063@end deffn
5064
5065See @ref{Hash Tables} for information about hash tables in general, and
5066for why you might choose to use a hash table rather than an association
5067list.
5068
5069
5070@node Symbol Variables
5071@subsubsection Symbols as Denoting Variables
5072
5073When an unquoted symbol in a Scheme program is evaluated, it is
5074interpreted as a variable reference, and the result of the evaluation is
5075the appropriate variable's value.
5076
5077For example, when the expression @code{(string-length "abcd")} is read
5078and evaluated, the sequence of characters @code{string-length} is read
5079as the symbol whose name is "string-length". This symbol is associated
5080with a variable whose value is the procedure that implements string
5081length calculation. Therefore evaluation of the @code{string-length}
5082symbol results in that procedure.
5083
5084The details of the connection between an unquoted symbol and the
5085variable to which it refers are explained elsewhere. See @ref{Binding
5086Constructs}, for how associations between symbols and variables are
5087created, and @ref{Modules}, for how those associations are affected by
5088Guile's module system.
5089
5090
5091@node Symbol Primitives
5092@subsubsection Operations Related to Symbols
5093
5094Given any Scheme value, you can determine whether it is a symbol using
5095the @code{symbol?} primitive:
5096
5097@rnindex symbol?
5098@deffn {Scheme Procedure} symbol? obj
5099@deffnx {C Function} scm_symbol_p (obj)
5100Return @code{#t} if @var{obj} is a symbol, otherwise return
5101@code{#f}.
5102@end deffn
5103
c9dc8c6c
MV
5104@deftypefn {C Function} int scm_is_symbol (SCM val)
5105Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5106@end deftypefn
5107
07d83abe
MV
5108Once you know that you have a symbol, you can obtain its name as a
5109string by calling @code{symbol->string}. Note that Guile differs by
5110default from R5RS on the details of @code{symbol->string} as regards
5111case-sensitivity:
5112
5113@rnindex symbol->string
5114@deffn {Scheme Procedure} symbol->string s
5115@deffnx {C Function} scm_symbol_to_string (s)
5116Return the name of symbol @var{s} as a string. By default, Guile reads
5117symbols case-sensitively, so the string returned will have the same case
5118variation as the sequence of characters that caused @var{s} to be
5119created.
5120
5121If Guile is set to read symbols case-insensitively (as specified by
5122R5RS), and @var{s} comes into being as part of a literal expression
5123(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5124by a call to the @code{read} or @code{string-ci->symbol} procedures,
5125Guile converts any alphabetic characters in the symbol's name to
5126lower case before creating the symbol object, so the string returned
5127here will be in lower case.
5128
5129If @var{s} was created by @code{string->symbol}, the case of characters
5130in the string returned will be the same as that in the string that was
5131passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5132setting at the time @var{s} was created.
5133
5134It is an error to apply mutation procedures like @code{string-set!} to
5135strings returned by this procedure.
5136@end deffn
5137
5138Most symbols are created by writing them literally in code. However it
5139is also possible to create symbols programmatically using the following
c5fc8f8c
JG
5140procedures:
5141
5142@deffn {Scheme Procedure} symbol char@dots{}
5143@rnindex symbol
5144Return a newly allocated symbol made from the given character arguments.
5145
5146@example
5147(symbol #\x #\y #\z) @result{} xyz
5148@end example
5149@end deffn
5150
5151@deffn {Scheme Procedure} list->symbol lst
5152@rnindex list->symbol
5153Return a newly allocated symbol made from a list of characters.
5154
5155@example
5156(list->symbol '(#\a #\b #\c)) @result{} abc
5157@end example
5158@end deffn
5159
5160@rnindex symbol-append
5161@deffn {Scheme Procedure} symbol-append . args
5162Return a newly allocated symbol whose characters form the
5163concatenation of the given symbols, @var{args}.
5164
5165@example
5166(let ((h 'hello))
5167 (symbol-append h 'world))
5168@result{} helloworld
5169@end example
5170@end deffn
07d83abe
MV
5171
5172@rnindex string->symbol
5173@deffn {Scheme Procedure} string->symbol string
5174@deffnx {C Function} scm_string_to_symbol (string)
5175Return the symbol whose name is @var{string}. This procedure can create
5176symbols with names containing special characters or letters in the
5177non-standard case, but it is usually a bad idea to create such symbols
5178because in some implementations of Scheme they cannot be read as
5179themselves.
5180@end deffn
5181
5182@deffn {Scheme Procedure} string-ci->symbol str
5183@deffnx {C Function} scm_string_ci_to_symbol (str)
5184Return the symbol whose name is @var{str}. If Guile is currently
5185reading symbols case-insensitively, @var{str} is converted to lowercase
5186before the returned symbol is looked up or created.
5187@end deffn
5188
5189The following examples illustrate Guile's detailed behaviour as regards
5190the case-sensitivity of symbols:
5191
5192@lisp
5193(read-enable 'case-insensitive) ; R5RS compliant behaviour
5194
5195(symbol->string 'flying-fish) @result{} "flying-fish"
5196(symbol->string 'Martin) @result{} "martin"
5197(symbol->string
5198 (string->symbol "Malvina")) @result{} "Malvina"
5199
5200(eq? 'mISSISSIppi 'mississippi) @result{} #t
5201(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5202(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5203(eq? 'LolliPop
5204 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5205(string=? "K. Harper, M.D."
5206 (symbol->string
5207 (string->symbol "K. Harper, M.D."))) @result{} #t
5208
5209(read-disable 'case-insensitive) ; Guile default behaviour
5210
5211(symbol->string 'flying-fish) @result{} "flying-fish"
5212(symbol->string 'Martin) @result{} "Martin"
5213(symbol->string
5214 (string->symbol "Malvina")) @result{} "Malvina"
5215
5216(eq? 'mISSISSIppi 'mississippi) @result{} #f
5217(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5218(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5219(eq? 'LolliPop
5220 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5221(string=? "K. Harper, M.D."
5222 (symbol->string
5223 (string->symbol "K. Harper, M.D."))) @result{} #t
5224@end lisp
5225
5226From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
5227from a C string in the current locale encoding.
5228
5229When you want to do more from C, you should convert between symbols
5230and strings using @code{scm_symbol_to_string} and
5231@code{scm_string_to_symbol} and work with the strings.
07d83abe 5232
ce3ce21c
MW
5233@deffn {C Function} scm_from_latin1_symbol (const char *name)
5234@deffnx {C Function} scm_from_utf8_symbol (const char *name)
5235Construct and return a Scheme symbol whose name is specified by the
5236null-terminated C string @var{name}. These are appropriate when
5237the C string is hard-coded in the source code.
5238@end deffn
5239
c48c62d0
MV
5240@deffn {C Function} scm_from_locale_symbol (const char *name)
5241@deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
07d83abe 5242Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
5243@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5244terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe 5245specified explicitly by @var{len}.
ce3ce21c
MW
5246
5247Note that these functions should @emph{not} be used when @var{name} is a
5248C string constant, because there is no guarantee that the current locale
5249will match that of the source code. In such cases, use
5250@code{scm_from_latin1_symbol} or @code{scm_from_utf8_symbol}.
07d83abe
MV
5251@end deffn
5252
fd0a5bbc
HWN
5253@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5254@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5255Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5256respectively, but also frees @var{str} with @code{free} eventually.
5257Thus, you can use this function when you would free @var{str} anyway
5258immediately after creating the Scheme string. In certain cases, Guile
5259can then use @var{str} directly as its internal representation.
5260@end deftypefn
5261
071bb6a8
LC
5262The size of a symbol can also be obtained from C:
5263
5264@deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5265Return the number of characters in @var{sym}.
5266@end deftypefn
fd0a5bbc 5267
07d83abe
MV
5268Finally, some applications, especially those that generate new Scheme
5269code dynamically, need to generate symbols for use in the generated
5270code. The @code{gensym} primitive meets this need:
5271
5272@deffn {Scheme Procedure} gensym [prefix]
5273@deffnx {C Function} scm_gensym (prefix)
5274Create a new symbol with a name constructed from a prefix and a counter
5275value. The string @var{prefix} can be specified as an optional
5276argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5277at each call. There is no provision for resetting the counter.
5278@end deffn
5279
5280The symbols generated by @code{gensym} are @emph{likely} to be unique,
5281since their names begin with a space and it is only otherwise possible
5282to generate such symbols if a programmer goes out of their way to do
5283so. Uniqueness can be guaranteed by instead using uninterned symbols
5284(@pxref{Symbol Uninterned}), though they can't be usefully written out
5285and read back in.
5286
5287
5288@node Symbol Props
5289@subsubsection Function Slots and Property Lists
5290
5291In traditional Lisp dialects, symbols are often understood as having
5292three kinds of value at once:
5293
5294@itemize @bullet
5295@item
5296a @dfn{variable} value, which is used when the symbol appears in
5297code in a variable reference context
5298
5299@item
5300a @dfn{function} value, which is used when the symbol appears in
679cceed 5301code in a function name position (i.e.@: as the first element in an
07d83abe
MV
5302unquoted list)
5303
5304@item
5305a @dfn{property list} value, which is used when the symbol is given as
5306the first argument to Lisp's @code{put} or @code{get} functions.
5307@end itemize
5308
5309Although Scheme (as one of its simplifications with respect to Lisp)
5310does away with the distinction between variable and function namespaces,
5311Guile currently retains some elements of the traditional structure in
5312case they turn out to be useful when implementing translators for other
5313languages, in particular Emacs Lisp.
5314
ecb87335
RW
5315Specifically, Guile symbols have two extra slots, one for a symbol's
5316property list, and one for its ``function value.'' The following procedures
07d83abe
MV
5317are provided to access these slots.
5318
5319@deffn {Scheme Procedure} symbol-fref symbol
5320@deffnx {C Function} scm_symbol_fref (symbol)
5321Return the contents of @var{symbol}'s @dfn{function slot}.
5322@end deffn
5323
5324@deffn {Scheme Procedure} symbol-fset! symbol value
5325@deffnx {C Function} scm_symbol_fset_x (symbol, value)
5326Set the contents of @var{symbol}'s function slot to @var{value}.
5327@end deffn
5328
5329@deffn {Scheme Procedure} symbol-pref symbol
5330@deffnx {C Function} scm_symbol_pref (symbol)
5331Return the @dfn{property list} currently associated with @var{symbol}.
5332@end deffn
5333
5334@deffn {Scheme Procedure} symbol-pset! symbol value
5335@deffnx {C Function} scm_symbol_pset_x (symbol, value)
5336Set @var{symbol}'s property list to @var{value}.
5337@end deffn
5338
5339@deffn {Scheme Procedure} symbol-property sym prop
5340From @var{sym}'s property list, return the value for property
5341@var{prop}. The assumption is that @var{sym}'s property list is an
5342association list whose keys are distinguished from each other using
5343@code{equal?}; @var{prop} should be one of the keys in that list. If
5344the property list has no entry for @var{prop}, @code{symbol-property}
5345returns @code{#f}.
5346@end deffn
5347
5348@deffn {Scheme Procedure} set-symbol-property! sym prop val
5349In @var{sym}'s property list, set the value for property @var{prop} to
5350@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5351none already exists. For the structure of the property list, see
5352@code{symbol-property}.
5353@end deffn
5354
5355@deffn {Scheme Procedure} symbol-property-remove! sym prop
5356From @var{sym}'s property list, remove the entry for property
5357@var{prop}, if there is one. For the structure of the property list,
5358see @code{symbol-property}.
5359@end deffn
5360
5361Support for these extra slots may be removed in a future release, and it
4695789c
NJ
5362is probably better to avoid using them. For a more modern and Schemely
5363approach to properties, see @ref{Object Properties}.
07d83abe
MV
5364
5365
5366@node Symbol Read Syntax
5367@subsubsection Extended Read Syntax for Symbols
5368
5369The read syntax for a symbol is a sequence of letters, digits, and
5370@dfn{extended alphabetic characters}, beginning with a character that
5371cannot begin a number. In addition, the special cases of @code{+},
5372@code{-}, and @code{...} are read as symbols even though numbers can
5373begin with @code{+}, @code{-} or @code{.}.
5374
5375Extended alphabetic characters may be used within identifiers as if
5376they were letters. The set of extended alphabetic characters is:
5377
5378@example
5379! $ % & * + - . / : < = > ? @@ ^ _ ~
5380@end example
5381
5382In addition to the standard read syntax defined above (which is taken
5383from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5384Scheme})), Guile provides an extended symbol read syntax that allows the
5385inclusion of unusual characters such as space characters, newlines and
5386parentheses. If (for whatever reason) you need to write a symbol
5387containing characters not mentioned above, you can do so as follows.
5388
5389@itemize @bullet
5390@item
5391Begin the symbol with the characters @code{#@{},
5392
5393@item
5394write the characters of the symbol and
5395
5396@item
5397finish the symbol with the characters @code{@}#}.
5398@end itemize
5399
5400Here are a few examples of this form of read syntax. The first symbol
5401needs to use extended syntax because it contains a space character, the
5402second because it contains a line break, and the last because it looks
5403like a number.
5404
5405@lisp
5406#@{foo bar@}#
5407
5408#@{what
5409ever@}#
5410
5411#@{4242@}#
5412@end lisp
5413
5414Although Guile provides this extended read syntax for symbols,
5415widespread usage of it is discouraged because it is not portable and not
5416very readable.
5417
5418
5419@node Symbol Uninterned
5420@subsubsection Uninterned Symbols
5421
5422What makes symbols useful is that they are automatically kept unique.
5423There are no two symbols that are distinct objects but have the same
5424name. But of course, there is no rule without exception. In addition
5425to the normal symbols that have been discussed up to now, you can also
5426create special @dfn{uninterned} symbols that behave slightly
5427differently.
5428
5429To understand what is different about them and why they might be useful,
5430we look at how normal symbols are actually kept unique.
5431
5432Whenever Guile wants to find the symbol with a specific name, for
5433example during @code{read} or when executing @code{string->symbol}, it
5434first looks into a table of all existing symbols to find out whether a
5435symbol with the given name already exists. When this is the case, Guile
5436just returns that symbol. When not, a new symbol with the name is
5437created and entered into the table so that it can be found later.
5438
5439Sometimes you might want to create a symbol that is guaranteed `fresh',
679cceed 5440i.e.@: a symbol that did not exist previously. You might also want to
07d83abe
MV
5441somehow guarantee that no one else will ever unintentionally stumble
5442across your symbol in the future. These properties of a symbol are
5443often needed when generating code during macro expansion. When
5444introducing new temporary variables, you want to guarantee that they
5445don't conflict with variables in other people's code.
5446
5447The simplest way to arrange for this is to create a new symbol but
5448not enter it into the global table of all symbols. That way, no one
5449will ever get access to your symbol by chance. Symbols that are not in
5450the table are called @dfn{uninterned}. Of course, symbols that
5451@emph{are} in the table are called @dfn{interned}.
5452
5453You create new uninterned symbols with the function @code{make-symbol}.
5454You can test whether a symbol is interned or not with
5455@code{symbol-interned?}.
5456
5457Uninterned symbols break the rule that the name of a symbol uniquely
5458identifies the symbol object. Because of this, they can not be written
5459out and read back in like interned symbols. Currently, Guile has no
5460support for reading uninterned symbols. Note that the function
5461@code{gensym} does not return uninterned symbols for this reason.
5462
5463@deffn {Scheme Procedure} make-symbol name
5464@deffnx {C Function} scm_make_symbol (name)
5465Return a new uninterned symbol with the name @var{name}. The returned
5466symbol is guaranteed to be unique and future calls to
5467@code{string->symbol} will not return it.
5468@end deffn
5469
5470@deffn {Scheme Procedure} symbol-interned? symbol
5471@deffnx {C Function} scm_symbol_interned_p (symbol)
5472Return @code{#t} if @var{symbol} is interned, otherwise return
5473@code{#f}.
5474@end deffn
5475
5476For example:
5477
5478@lisp
5479(define foo-1 (string->symbol "foo"))
5480(define foo-2 (string->symbol "foo"))
5481(define foo-3 (make-symbol "foo"))
5482(define foo-4 (make-symbol "foo"))
5483
5484(eq? foo-1 foo-2)
5485@result{} #t
5486; Two interned symbols with the same name are the same object,
5487
5488(eq? foo-1 foo-3)
5489@result{} #f
5490; but a call to make-symbol with the same name returns a
5491; distinct object.
5492
5493(eq? foo-3 foo-4)
5494@result{} #f
5495; A call to make-symbol always returns a new object, even for
5496; the same name.
5497
5498foo-3
5499@result{} #<uninterned-symbol foo 8085290>
5500; Uninterned symbols print differently from interned symbols,
5501
5502(symbol? foo-3)
5503@result{} #t
5504; but they are still symbols,
5505
5506(symbol-interned? foo-3)
5507@result{} #f
5508; just not interned.
5509@end lisp
5510
5511
5512@node Keywords
5513@subsection Keywords
5514@tpindex Keywords
5515
5516Keywords are self-evaluating objects with a convenient read syntax that
5517makes them easy to type.
5518
5519Guile's keyword support conforms to R5RS, and adds a (switchable) read
5520syntax extension to permit keywords to begin with @code{:} as well as
ef4cbc08 5521@code{#:}, or to end with @code{:}.
07d83abe
MV
5522
5523@menu
5524* Why Use Keywords?:: Motivation for keyword usage.
5525* Coding With Keywords:: How to use keywords.
5526* Keyword Read Syntax:: Read syntax for keywords.
5527* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
5528@end menu
5529
5530@node Why Use Keywords?
5531@subsubsection Why Use Keywords?
5532
5533Keywords are useful in contexts where a program or procedure wants to be
5534able to accept a large number of optional arguments without making its
5535interface unmanageable.
5536
5537To illustrate this, consider a hypothetical @code{make-window}
5538procedure, which creates a new window on the screen for drawing into
5539using some graphical toolkit. There are many parameters that the caller
5540might like to specify, but which could also be sensibly defaulted, for
5541example:
5542
5543@itemize @bullet
5544@item
5545color depth -- Default: the color depth for the screen
5546
5547@item
5548background color -- Default: white
5549
5550@item
5551width -- Default: 600
5552
5553@item
5554height -- Default: 400
5555@end itemize
5556
5557If @code{make-window} did not use keywords, the caller would have to
5558pass in a value for each possible argument, remembering the correct
5559argument order and using a special value to indicate the default value
5560for that argument:
5561
5562@lisp
5563(make-window 'default ;; Color depth
5564 'default ;; Background color
5565 800 ;; Width
5566 100 ;; Height
5567 @dots{}) ;; More make-window arguments
5568@end lisp
5569
5570With keywords, on the other hand, defaulted arguments are omitted, and
5571non-default arguments are clearly tagged by the appropriate keyword. As
5572a result, the invocation becomes much clearer:
5573
5574@lisp
5575(make-window #:width 800 #:height 100)
5576@end lisp
5577
5578On the other hand, for a simpler procedure with few arguments, the use
5579of keywords would be a hindrance rather than a help. The primitive
5580procedure @code{cons}, for example, would not be improved if it had to
5581be invoked as
5582
5583@lisp
5584(cons #:car x #:cdr y)
5585@end lisp
5586
5587So the decision whether to use keywords or not is purely pragmatic: use
5588them if they will clarify the procedure invocation at point of call.
5589
5590@node Coding With Keywords
5591@subsubsection Coding With Keywords
5592
5593If a procedure wants to support keywords, it should take a rest argument
5594and then use whatever means is convenient to extract keywords and their
5595corresponding arguments from the contents of that rest argument.
5596
5597The following example illustrates the principle: the code for
5598@code{make-window} uses a helper procedure called
5599@code{get-keyword-value} to extract individual keyword arguments from
5600the rest argument.
5601
5602@lisp
5603(define (get-keyword-value args keyword default)
5604 (let ((kv (memq keyword args)))
5605 (if (and kv (>= (length kv) 2))
5606 (cadr kv)
5607 default)))
5608
5609(define (make-window . args)
5610 (let ((depth (get-keyword-value args #:depth screen-depth))
5611 (bg (get-keyword-value args #:bg "white"))
5612 (width (get-keyword-value args #:width 800))
5613 (height (get-keyword-value args #:height 100))
5614 @dots{})
5615 @dots{}))
5616@end lisp
5617
5618But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5619optargs)} module provides a set of powerful macros that you can use to
5620implement keyword-supporting procedures like this:
5621
5622@lisp
5623(use-modules (ice-9 optargs))
5624
5625(define (make-window . args)
5626 (let-keywords args #f ((depth screen-depth)
5627 (bg "white")
5628 (width 800)
5629 (height 100))
5630 ...))
5631@end lisp
5632
5633@noindent
5634Or, even more economically, like this:
5635
5636@lisp
5637(use-modules (ice-9 optargs))
5638
5639(define* (make-window #:key (depth screen-depth)
5640 (bg "white")
5641 (width 800)
5642 (height 100))
5643 ...)
5644@end lisp
5645
5646For further details on @code{let-keywords}, @code{define*} and other
5647facilities provided by the @code{(ice-9 optargs)} module, see
5648@ref{Optional Arguments}.
5649
5650
5651@node Keyword Read Syntax
5652@subsubsection Keyword Read Syntax
5653
7719ef22
MV
5654Guile, by default, only recognizes a keyword syntax that is compatible
5655with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5656same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5657external representation of the keyword named @code{NAME}. Keyword
5658objects print using this syntax as well, so values containing keyword
5659objects can be read back into Guile. When used in an expression,
5660keywords are self-quoting objects.
07d83abe
MV
5661
5662If the @code{keyword} read option is set to @code{'prefix}, Guile also
5663recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5664of the form @code{:NAME} are read as symbols, as required by R5RS.
5665
ef4cbc08
LC
5666@cindex SRFI-88 keyword syntax
5667
5668If the @code{keyword} read option is set to @code{'postfix}, Guile
189681f5
LC
5669recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5670Otherwise, tokens of this form are read as symbols.
ef4cbc08 5671
07d83abe 5672To enable and disable the alternative non-R5RS keyword syntax, you use
1518f649
AW
5673the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5674the @code{prefix} and @code{postfix} syntax are mutually exclusive.
07d83abe 5675
aba0dff5 5676@lisp
07d83abe
MV
5677(read-set! keywords 'prefix)
5678
5679#:type
5680@result{}
5681#:type
5682
5683:type
5684@result{}
5685#:type
5686
ef4cbc08
LC
5687(read-set! keywords 'postfix)
5688
5689type:
5690@result{}
5691#:type
5692
5693:type
5694@result{}
5695:type
5696
07d83abe
MV
5697(read-set! keywords #f)
5698
5699#:type
5700@result{}
5701#:type
5702
5703:type
5704@print{}
5705ERROR: In expression :type:
5706ERROR: Unbound variable: :type
5707ABORT: (unbound-variable)
aba0dff5 5708@end lisp
07d83abe
MV
5709
5710@node Keyword Procedures
5711@subsubsection Keyword Procedures
5712
07d83abe
MV
5713@deffn {Scheme Procedure} keyword? obj
5714@deffnx {C Function} scm_keyword_p (obj)
5715Return @code{#t} if the argument @var{obj} is a keyword, else
5716@code{#f}.
5717@end deffn
5718
7719ef22
MV
5719@deffn {Scheme Procedure} keyword->symbol keyword
5720@deffnx {C Function} scm_keyword_to_symbol (keyword)
5721Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5722@end deffn
5723
7719ef22
MV
5724@deffn {Scheme Procedure} symbol->keyword symbol
5725@deffnx {C Function} scm_symbol_to_keyword (symbol)
5726Return the keyword with the same name as @var{symbol}.
5727@end deffn
07d83abe 5728
7719ef22
MV
5729@deftypefn {C Function} int scm_is_keyword (SCM obj)
5730Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5731@end deftypefn
5732
7719ef22
MV
5733@deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5734@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5735Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5736(@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5737(@var{str}, @var{len}))}, respectively.
5738@end deftypefn
07d83abe
MV
5739
5740@node Other Types
5741@subsection ``Functionality-Centric'' Data Types
5742
a136ada6 5743Procedures and macros are documented in their own sections: see
e4955559 5744@ref{Procedures} and @ref{Macros}.
07d83abe
MV
5745
5746Variable objects are documented as part of the description of Guile's
5747module system: see @ref{Variables}.
5748
a136ada6 5749Asyncs, dynamic roots and fluids are described in the section on
07d83abe
MV
5750scheduling: see @ref{Scheduling}.
5751
a136ada6 5752Hooks are documented in the section on general utility functions: see
07d83abe
MV
5753@ref{Hooks}.
5754
a136ada6 5755Ports are described in the section on I/O: see @ref{Input and Output}.
07d83abe 5756
a136ada6
NJ
5757Regular expressions are described in their own section: see @ref{Regular
5758Expressions}.
07d83abe
MV
5759
5760@c Local Variables:
5761@c TeX-master: "guile.texi"
5762@c End: