read: Accept "\|" in string literals.
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
7facc08a 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007,
f659df44 4@c 2008, 2009, 2010, 2011, 2012, 2013, 2014 Free Software Foundation, Inc.
07d83abe
MV
5@c See the file guile.texi for copying conditions.
6
07d83abe
MV
7@node Simple Data Types
8@section Simple Generic Data Types
9
10This chapter describes those of Guile's simple data types which are
11primarily used for their role as items of generic data. By
12@dfn{simple} we mean data types that are not primarily used as
13containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14For the documentation of such @dfn{compound} data types, see
15@ref{Compound Data Types}.
16
17@c One of the great strengths of Scheme is that there is no straightforward
18@c distinction between ``data'' and ``functionality''. For example,
19@c Guile's support for dynamic linking could be described:
20
21@c @itemize @bullet
22@c @item
23@c either in a ``data-centric'' way, as the behaviour and properties of the
24@c ``dynamically linked object'' data type, and the operations that may be
25@c applied to instances of this type
26
27@c @item
28@c or in a ``functionality-centric'' way, as the set of procedures that
29@c constitute Guile's support for dynamic linking, in the context of the
30@c module system.
31@c @end itemize
32
33@c The contents of this chapter are, therefore, a matter of judgment. By
34@c @dfn{generic}, we mean to select those data types whose typical use as
35@c @emph{data} in a wide variety of programming contexts is more important
36@c than their use in the implementation of a particular piece of
37@c @emph{functionality}. The last section of this chapter provides
38@c references for all the data types that are documented not here but in a
39@c ``functionality-centric'' way elsewhere in the manual.
40
41@menu
42* Booleans:: True/false values.
43* Numbers:: Numerical data types.
050ab45f
MV
44* Characters:: Single characters.
45* Character Sets:: Sets of characters.
46* Strings:: Sequences of characters.
b242715b 47* Bytevectors:: Sequences of bytes.
07d83abe
MV
48* Symbols:: Symbols.
49* Keywords:: Self-quoting, customizable display keywords.
50* Other Types:: "Functionality-centric" data types.
51@end menu
52
53
54@node Booleans
55@subsection Booleans
56@tpindex Booleans
57
58The two boolean values are @code{#t} for true and @code{#f} for false.
7a329029 59They can also be written as @code{#true} and @code{#false}, as per R7RS.
07d83abe
MV
60
61Boolean values are returned by predicate procedures, such as the general
62equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63(@pxref{Equality}) and numerical and string comparison operators like
64@code{string=?} (@pxref{String Comparison}) and @code{<=}
65(@pxref{Comparison}).
66
67@lisp
68(<= 3 8)
69@result{} #t
70
71(<= 3 -3)
72@result{} #f
73
74(equal? "house" "houses")
75@result{} #f
76
77(eq? #f #f)
78@result{}
79#t
80@end lisp
81
9accf3d9
AW
82In test condition contexts like @code{if} and @code{cond}
83(@pxref{Conditionals}), where a group of subexpressions will be
84evaluated only if a @var{condition} expression evaluates to ``true'',
85``true'' means any value at all except @code{#f}.
07d83abe
MV
86
87@lisp
88(if #t "yes" "no")
89@result{} "yes"
90
91(if 0 "yes" "no")
92@result{} "yes"
93
94(if #f "yes" "no")
95@result{} "no"
96@end lisp
97
98A result of this asymmetry is that typical Scheme source code more often
99uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101not necessary to represent an @code{if} or @code{cond} true value.
102
103It is important to note that @code{#f} is @strong{not} equivalent to any
104other Scheme value. In particular, @code{#f} is not the same as the
105number 0 (like in C and C++), and not the same as the ``empty list''
106(like in some Lisp dialects).
107
108In C, the two Scheme boolean values are available as the two constants
109@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111false when used in C conditionals. In order to test for it, use
112@code{scm_is_false} or @code{scm_is_true}.
113
114@rnindex not
115@deffn {Scheme Procedure} not x
116@deffnx {C Function} scm_not (x)
117Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118@end deffn
119
120@rnindex boolean?
121@deffn {Scheme Procedure} boolean? obj
122@deffnx {C Function} scm_boolean_p (obj)
123Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124return @code{#f}.
125@end deffn
126
127@deftypevr {C Macro} SCM SCM_BOOL_T
128The @code{SCM} representation of the Scheme object @code{#t}.
129@end deftypevr
130
131@deftypevr {C Macro} SCM SCM_BOOL_F
132The @code{SCM} representation of the Scheme object @code{#f}.
133@end deftypevr
134
135@deftypefn {C Function} int scm_is_true (SCM obj)
136Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137@end deftypefn
138
139@deftypefn {C Function} int scm_is_false (SCM obj)
140Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141@end deftypefn
142
143@deftypefn {C Function} int scm_is_bool (SCM obj)
144Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145return @code{0}.
146@end deftypefn
147
148@deftypefn {C Function} SCM scm_from_bool (int val)
149Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150@end deftypefn
151
152@deftypefn {C Function} int scm_to_bool (SCM val)
153Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156You should probably use @code{scm_is_true} instead of this function
157when you just want to test a @code{SCM} value for trueness.
158@end deftypefn
159
160@node Numbers
161@subsection Numerical data types
162@tpindex Numbers
163
164Guile supports a rich ``tower'' of numerical types --- integer,
165rational, real and complex --- and provides an extensive set of
166mathematical and scientific functions for operating on numerical
167data. This section of the manual documents those types and functions.
168
169You may also find it illuminating to read R5RS's presentation of numbers
170in Scheme, which is particularly clear and accessible: see
171@ref{Numbers,,,r5rs,R5RS}.
172
173@menu
174* Numerical Tower:: Scheme's numerical "tower".
175* Integers:: Whole numbers.
176* Reals and Rationals:: Real and rational numbers.
177* Complex Numbers:: Complex numbers.
178* Exactness:: Exactness and inexactness.
179* Number Syntax:: Read syntax for numerical data.
180* Integer Operations:: Operations on integer values.
181* Comparison:: Comparison predicates.
182* Conversion:: Converting numbers to and from strings.
183* Complex:: Complex number operations.
184* Arithmetic:: Arithmetic functions.
185* Scientific:: Scientific functions.
07d83abe
MV
186* Bitwise Operations:: Logical AND, OR, NOT, and so on.
187* Random:: Random number generation.
188@end menu
189
190
191@node Numerical Tower
192@subsubsection Scheme's Numerical ``Tower''
193@rnindex number?
194
195Scheme's numerical ``tower'' consists of the following categories of
196numbers:
197
198@table @dfn
199@item integers
200Whole numbers, positive or negative; e.g.@: --5, 0, 18.
201
202@item rationals
203The set of numbers that can be expressed as @math{@var{p}/@var{q}}
204where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
205pi (an irrational number) doesn't. These include integers
206(@math{@var{n}/1}).
207
208@item real numbers
209The set of numbers that describes all possible positions along a
210one-dimensional line. This includes rationals as well as irrational
211numbers.
212
213@item complex numbers
214The set of numbers that describes all possible positions in a two
215dimensional space. This includes real as well as imaginary numbers
216(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
217@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
218@minus{}1.)
219@end table
220
221It is called a tower because each category ``sits on'' the one that
222follows it, in the sense that every integer is also a rational, every
223rational is also real, and every real number is also a complex number
224(but with zero imaginary part).
225
226In addition to the classification into integers, rationals, reals and
227complex numbers, Scheme also distinguishes between whether a number is
228represented exactly or not. For example, the result of
9f1ba6a9
NJ
229@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
230can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
07d83abe
MV
231Instead, it stores an inexact approximation, using the C type
232@code{double}.
233
234Guile can represent exact rationals of any magnitude, inexact
235rationals that fit into a C @code{double}, and inexact complex numbers
236with @code{double} real and imaginary parts.
237
238The @code{number?} predicate may be applied to any Scheme value to
239discover whether the value is any of the supported numerical types.
240
241@deffn {Scheme Procedure} number? obj
242@deffnx {C Function} scm_number_p (obj)
243Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
244@end deffn
245
246For example:
247
248@lisp
249(number? 3)
250@result{} #t
251
252(number? "hello there!")
253@result{} #f
254
255(define pi 3.141592654)
256(number? pi)
257@result{} #t
258@end lisp
259
5615f696
MV
260@deftypefn {C Function} int scm_is_number (SCM obj)
261This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
262@end deftypefn
263
07d83abe
MV
264The next few subsections document each of Guile's numerical data types
265in detail.
266
267@node Integers
268@subsubsection Integers
269
270@tpindex Integer numbers
271
272@rnindex integer?
273
274Integers are whole numbers, that is numbers with no fractional part,
275such as 2, 83, and @minus{}3789.
276
277Integers in Guile can be arbitrarily big, as shown by the following
278example.
279
280@lisp
281(define (factorial n)
282 (let loop ((n n) (product 1))
283 (if (= n 0)
284 product
285 (loop (- n 1) (* product n)))))
286
287(factorial 3)
288@result{} 6
289
290(factorial 20)
291@result{} 2432902008176640000
292
293(- (factorial 45))
294@result{} -119622220865480194561963161495657715064383733760000000000
295@end lisp
296
297Readers whose background is in programming languages where integers are
298limited by the need to fit into just 4 or 8 bytes of memory may find
299this surprising, or suspect that Guile's representation of integers is
300inefficient. In fact, Guile achieves a near optimal balance of
301convenience and efficiency by using the host computer's native
302representation of integers where possible, and a more general
303representation where the required number does not fit in the native
304form. Conversion between these two representations is automatic and
305completely invisible to the Scheme level programmer.
306
07d83abe
MV
307C has a host of different integer types, and Guile offers a host of
308functions to convert between them and the @code{SCM} representation.
309For example, a C @code{int} can be handled with @code{scm_to_int} and
310@code{scm_from_int}. Guile also defines a few C integer types of its
311own, to help with differences between systems.
312
313C integer types that are not covered can be handled with the generic
314@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
315signed types, or with @code{scm_to_unsigned_integer} and
316@code{scm_from_unsigned_integer} for unsigned types.
317
318Scheme integers can be exact and inexact. For example, a number
319written as @code{3.0} with an explicit decimal-point is inexact, but
320it is also an integer. The functions @code{integer?} and
321@code{scm_is_integer} report true for such a number, but the functions
900a897c
MW
322@code{exact-integer?}, @code{scm_is_exact_integer},
323@code{scm_is_signed_integer}, and @code{scm_is_unsigned_integer} only
07d83abe
MV
324allow exact integers and thus report false. Likewise, the conversion
325functions like @code{scm_to_signed_integer} only accept exact
326integers.
327
328The motivation for this behavior is that the inexactness of a number
329should not be lost silently. If you want to allow inexact integers,
877f06c3 330you can explicitly insert a call to @code{inexact->exact} or to its C
07d83abe
MV
331equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
332be converted by this call into exact integers; inexact non-integers
333will become exact fractions.)
334
335@deffn {Scheme Procedure} integer? x
336@deffnx {C Function} scm_integer_p (x)
909fcc97 337Return @code{#t} if @var{x} is an exact or inexact integer number, else
900a897c 338return @code{#f}.
07d83abe
MV
339
340@lisp
341(integer? 487)
342@result{} #t
343
344(integer? 3.0)
345@result{} #t
346
347(integer? -3.4)
348@result{} #f
349
350(integer? +inf.0)
f659df44 351@result{} #f
07d83abe
MV
352@end lisp
353@end deffn
354
355@deftypefn {C Function} int scm_is_integer (SCM x)
356This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
357@end deftypefn
358
900a897c
MW
359@deffn {Scheme Procedure} exact-integer? x
360@deffnx {C Function} scm_exact_integer_p (x)
361Return @code{#t} if @var{x} is an exact integer number, else
362return @code{#f}.
363
364@lisp
365(exact-integer? 37)
366@result{} #t
367
368(exact-integer? 3.0)
369@result{} #f
370@end lisp
371@end deffn
372
373@deftypefn {C Function} int scm_is_exact_integer (SCM x)
374This is equivalent to @code{scm_is_true (scm_exact_integer_p (x))}.
375@end deftypefn
376
07d83abe
MV
377@defvr {C Type} scm_t_int8
378@defvrx {C Type} scm_t_uint8
379@defvrx {C Type} scm_t_int16
380@defvrx {C Type} scm_t_uint16
381@defvrx {C Type} scm_t_int32
382@defvrx {C Type} scm_t_uint32
383@defvrx {C Type} scm_t_int64
384@defvrx {C Type} scm_t_uint64
385@defvrx {C Type} scm_t_intmax
386@defvrx {C Type} scm_t_uintmax
387The C types are equivalent to the corresponding ISO C types but are
388defined on all platforms, with the exception of @code{scm_t_int64} and
389@code{scm_t_uint64}, which are only defined when a 64-bit type is
390available. For example, @code{scm_t_int8} is equivalent to
391@code{int8_t}.
392
393You can regard these definitions as a stop-gap measure until all
394platforms provide these types. If you know that all the platforms
395that you are interested in already provide these types, it is better
396to use them directly instead of the types provided by Guile.
397@end defvr
398
399@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
400@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
401Return @code{1} when @var{x} represents an exact integer that is
402between @var{min} and @var{max}, inclusive.
403
404These functions can be used to check whether a @code{SCM} value will
405fit into a given range, such as the range of a given C integer type.
406If you just want to convert a @code{SCM} value to a given C integer
407type, use one of the conversion functions directly.
408@end deftypefn
409
410@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
411@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
412When @var{x} represents an exact integer that is between @var{min} and
413@var{max} inclusive, return that integer. Else signal an error,
414either a `wrong-type' error when @var{x} is not an exact integer, or
415an `out-of-range' error when it doesn't fit the given range.
416@end deftypefn
417
418@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
419@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
420Return the @code{SCM} value that represents the integer @var{x}. This
421function will always succeed and will always return an exact number.
422@end deftypefn
423
424@deftypefn {C Function} char scm_to_char (SCM x)
425@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
426@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
427@deftypefnx {C Function} short scm_to_short (SCM x)
428@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
429@deftypefnx {C Function} int scm_to_int (SCM x)
430@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
431@deftypefnx {C Function} long scm_to_long (SCM x)
432@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
433@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
434@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
435@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
436@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
7facc08a 437@deftypefnx {C Function} scm_t_ptrdiff scm_to_ptrdiff_t (SCM x)
07d83abe
MV
438@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
439@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
440@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
441@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
442@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
443@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
444@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
445@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
446@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
447@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
448When @var{x} represents an exact integer that fits into the indicated
449C type, return that integer. Else signal an error, either a
450`wrong-type' error when @var{x} is not an exact integer, or an
451`out-of-range' error when it doesn't fit the given range.
452
453The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
454@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
455the corresponding types are.
456@end deftypefn
457
458@deftypefn {C Function} SCM scm_from_char (char x)
459@deftypefnx {C Function} SCM scm_from_schar (signed char x)
460@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
461@deftypefnx {C Function} SCM scm_from_short (short x)
462@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
463@deftypefnx {C Function} SCM scm_from_int (int x)
464@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
465@deftypefnx {C Function} SCM scm_from_long (long x)
466@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
467@deftypefnx {C Function} SCM scm_from_long_long (long long x)
468@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
469@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
470@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
7facc08a 471@deftypefnx {C Function} SCM scm_from_ptrdiff_t (scm_t_ptrdiff x)
07d83abe
MV
472@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
473@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
474@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
475@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
476@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
477@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
478@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
479@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
480@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
481@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
482Return the @code{SCM} value that represents the integer @var{x}.
483These functions will always succeed and will always return an exact
484number.
485@end deftypefn
486
08962922
MV
487@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
488Assign @var{val} to the multiple precision integer @var{rop}.
489@var{val} must be an exact integer, otherwise an error will be
490signalled. @var{rop} must have been initialized with @code{mpz_init}
491before this function is called. When @var{rop} is no longer needed
492the occupied space must be freed with @code{mpz_clear}.
493@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
494@end deftypefn
495
9f1ba6a9 496@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
08962922
MV
497Return the @code{SCM} value that represents @var{val}.
498@end deftypefn
499
07d83abe
MV
500@node Reals and Rationals
501@subsubsection Real and Rational Numbers
502@tpindex Real numbers
503@tpindex Rational numbers
504
505@rnindex real?
506@rnindex rational?
507
508Mathematically, the real numbers are the set of numbers that describe
509all possible points along a continuous, infinite, one-dimensional line.
510The rational numbers are the set of all numbers that can be written as
511fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
512All rational numbers are also real, but there are real numbers that
995953e5 513are not rational, for example @m{\sqrt{2}, the square root of 2}, and
34942993 514@m{\pi,pi}.
07d83abe
MV
515
516Guile can represent both exact and inexact rational numbers, but it
c960e556
MW
517cannot represent precise finite irrational numbers. Exact rationals are
518represented by storing the numerator and denominator as two exact
519integers. Inexact rationals are stored as floating point numbers using
520the C type @code{double}.
07d83abe
MV
521
522Exact rationals are written as a fraction of integers. There must be
523no whitespace around the slash:
524
525@lisp
5261/2
527-22/7
528@end lisp
529
530Even though the actual encoding of inexact rationals is in binary, it
531may be helpful to think of it as a decimal number with a limited
532number of significant figures and a decimal point somewhere, since
533this corresponds to the standard notation for non-whole numbers. For
534example:
535
536@lisp
5370.34
538-0.00000142857931198
539-5648394822220000000000.0
5404.0
541@end lisp
542
c960e556
MW
543The limited precision of Guile's encoding means that any finite ``real''
544number in Guile can be written in a rational form, by multiplying and
545then dividing by sufficient powers of 10 (or in fact, 2). For example,
546@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
547by 100000000000000000. In Guile's current incarnation, therefore, the
548@code{rational?} and @code{real?} predicates are equivalent for finite
549numbers.
07d83abe 550
07d83abe 551
c960e556
MW
552Dividing by an exact zero leads to a error message, as one might expect.
553However, dividing by an inexact zero does not produce an error.
554Instead, the result of the division is either plus or minus infinity,
555depending on the sign of the divided number and the sign of the zero
556divisor (some platforms support signed zeroes @samp{-0.0} and
557@samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
558
559Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
560value, although they are actually considered numbers by Scheme.
561Attempts to compare a @acronym{NaN} value with any number (including
562itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
563always returns @code{#f}. Although a @acronym{NaN} value is not
564@code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
565and other @acronym{NaN} values. However, the preferred way to test for
566them is by using @code{nan?}.
567
568The real @acronym{NaN} values and infinities are written @samp{+nan.0},
569@samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
570@code{read} as an extension to the usual Scheme syntax. These special
571values are considered by Scheme to be inexact real numbers but not
572rational. Note that non-real complex numbers may also contain
573infinities or @acronym{NaN} values in their real or imaginary parts. To
574test a real number to see if it is infinite, a @acronym{NaN} value, or
575neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
576Every real number in Scheme belongs to precisely one of those three
577classes.
07d83abe
MV
578
579On platforms that follow @acronym{IEEE} 754 for their floating point
580arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
581are implemented using the corresponding @acronym{IEEE} 754 values.
582They behave in arithmetic operations like @acronym{IEEE} 754 describes
583it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
584
07d83abe
MV
585@deffn {Scheme Procedure} real? obj
586@deffnx {C Function} scm_real_p (obj)
587Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
588that the sets of integer and rational values form subsets of the set
589of real numbers, so the predicate will also be fulfilled if @var{obj}
590is an integer number or a rational number.
591@end deffn
592
593@deffn {Scheme Procedure} rational? x
594@deffnx {C Function} scm_rational_p (x)
595Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
596Note that the set of integer values forms a subset of the set of
995953e5 597rational numbers, i.e.@: the predicate will also be fulfilled if
07d83abe 598@var{x} is an integer number.
07d83abe
MV
599@end deffn
600
601@deffn {Scheme Procedure} rationalize x eps
602@deffnx {C Function} scm_rationalize (x, eps)
603Returns the @emph{simplest} rational number differing
604from @var{x} by no more than @var{eps}.
605
606As required by @acronym{R5RS}, @code{rationalize} only returns an
607exact result when both its arguments are exact. Thus, you might need
608to use @code{inexact->exact} on the arguments.
609
610@lisp
611(rationalize (inexact->exact 1.2) 1/100)
612@result{} 6/5
613@end lisp
614
615@end deffn
616
d3df9759
MV
617@deffn {Scheme Procedure} inf? x
618@deffnx {C Function} scm_inf_p (x)
10391e06
AW
619Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
620@samp{-inf.0}. Otherwise return @code{#f}.
07d83abe
MV
621@end deffn
622
623@deffn {Scheme Procedure} nan? x
d3df9759 624@deffnx {C Function} scm_nan_p (x)
10391e06
AW
625Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
626@code{#f} otherwise.
07d83abe
MV
627@end deffn
628
7112615f
MW
629@deffn {Scheme Procedure} finite? x
630@deffnx {C Function} scm_finite_p (x)
10391e06
AW
631Return @code{#t} if the real number @var{x} is neither infinite nor a
632NaN, @code{#f} otherwise.
7112615f
MW
633@end deffn
634
cdf1ad3b
MV
635@deffn {Scheme Procedure} nan
636@deffnx {C Function} scm_nan ()
c960e556 637Return @samp{+nan.0}, a @acronym{NaN} value.
cdf1ad3b
MV
638@end deffn
639
640@deffn {Scheme Procedure} inf
641@deffnx {C Function} scm_inf ()
c960e556 642Return @samp{+inf.0}, positive infinity.
cdf1ad3b
MV
643@end deffn
644
d3df9759
MV
645@deffn {Scheme Procedure} numerator x
646@deffnx {C Function} scm_numerator (x)
647Return the numerator of the rational number @var{x}.
648@end deffn
649
650@deffn {Scheme Procedure} denominator x
651@deffnx {C Function} scm_denominator (x)
652Return the denominator of the rational number @var{x}.
653@end deffn
654
655@deftypefn {C Function} int scm_is_real (SCM val)
656@deftypefnx {C Function} int scm_is_rational (SCM val)
657Equivalent to @code{scm_is_true (scm_real_p (val))} and
658@code{scm_is_true (scm_rational_p (val))}, respectively.
659@end deftypefn
660
661@deftypefn {C Function} double scm_to_double (SCM val)
662Returns the number closest to @var{val} that is representable as a
663@code{double}. Returns infinity for a @var{val} that is too large in
664magnitude. The argument @var{val} must be a real number.
665@end deftypefn
666
667@deftypefn {C Function} SCM scm_from_double (double val)
be3eb25c 668Return the @code{SCM} value that represents @var{val}. The returned
d3df9759
MV
669value is inexact according to the predicate @code{inexact?}, but it
670will be exactly equal to @var{val}.
671@end deftypefn
672
07d83abe
MV
673@node Complex Numbers
674@subsubsection Complex Numbers
675@tpindex Complex numbers
676
677@rnindex complex?
678
679Complex numbers are the set of numbers that describe all possible points
680in a two-dimensional space. The two coordinates of a particular point
681in this space are known as the @dfn{real} and @dfn{imaginary} parts of
682the complex number that describes that point.
683
684In Guile, complex numbers are written in rectangular form as the sum of
685their real and imaginary parts, using the symbol @code{i} to indicate
686the imaginary part.
687
688@lisp
6893+4i
690@result{}
6913.0+4.0i
692
693(* 3-8i 2.3+0.3i)
694@result{}
6959.3-17.5i
696@end lisp
697
34942993
KR
698@cindex polar form
699@noindent
700Polar form can also be used, with an @samp{@@} between magnitude and
701angle,
702
703@lisp
7041@@3.141592 @result{} -1.0 (approx)
705-1@@1.57079 @result{} 0.0-1.0i (approx)
706@end lisp
707
c7218482
MW
708Guile represents a complex number as a pair of inexact reals, so the
709real and imaginary parts of a complex number have the same properties of
710inexactness and limited precision as single inexact real numbers.
711
712Note that each part of a complex number may contain any inexact real
713value, including the special values @samp{+nan.0}, @samp{+inf.0} and
714@samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
715@samp{-0.0}.
716
07d83abe 717
5615f696
MV
718@deffn {Scheme Procedure} complex? z
719@deffnx {C Function} scm_complex_p (z)
64de6db5 720Return @code{#t} if @var{z} is a complex number, @code{#f}
07d83abe 721otherwise. Note that the sets of real, rational and integer
679cceed 722values form subsets of the set of complex numbers, i.e.@: the
64de6db5 723predicate will also be fulfilled if @var{z} is a real,
07d83abe
MV
724rational or integer number.
725@end deffn
726
c9dc8c6c
MV
727@deftypefn {C Function} int scm_is_complex (SCM val)
728Equivalent to @code{scm_is_true (scm_complex_p (val))}.
729@end deftypefn
730
07d83abe
MV
731@node Exactness
732@subsubsection Exact and Inexact Numbers
733@tpindex Exact numbers
734@tpindex Inexact numbers
735
736@rnindex exact?
737@rnindex inexact?
738@rnindex exact->inexact
739@rnindex inexact->exact
740
654b2823
MW
741R5RS requires that, with few exceptions, a calculation involving inexact
742numbers always produces an inexact result. To meet this requirement,
743Guile distinguishes between an exact integer value such as @samp{5} and
744the corresponding inexact integer value which, to the limited precision
07d83abe
MV
745available, has no fractional part, and is printed as @samp{5.0}. Guile
746will only convert the latter value to the former when forced to do so by
747an invocation of the @code{inexact->exact} procedure.
748
654b2823
MW
749The only exception to the above requirement is when the values of the
750inexact numbers do not affect the result. For example @code{(expt n 0)}
751is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
752permitted to return an exact @samp{1}.
753
07d83abe
MV
754@deffn {Scheme Procedure} exact? z
755@deffnx {C Function} scm_exact_p (z)
756Return @code{#t} if the number @var{z} is exact, @code{#f}
757otherwise.
758
759@lisp
760(exact? 2)
761@result{} #t
762
763(exact? 0.5)
764@result{} #f
765
766(exact? (/ 2))
767@result{} #t
768@end lisp
769
770@end deffn
771
022dda69
MG
772@deftypefn {C Function} int scm_is_exact (SCM z)
773Return a @code{1} if the number @var{z} is exact, and @code{0}
774otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
775
776An alternate approch to testing the exactness of a number is to
777use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
778@end deftypefn
779
07d83abe
MV
780@deffn {Scheme Procedure} inexact? z
781@deffnx {C Function} scm_inexact_p (z)
782Return @code{#t} if the number @var{z} is inexact, @code{#f}
783else.
784@end deffn
785
022dda69
MG
786@deftypefn {C Function} int scm_is_inexact (SCM z)
787Return a @code{1} if the number @var{z} is inexact, and @code{0}
788otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
789@end deftypefn
790
07d83abe
MV
791@deffn {Scheme Procedure} inexact->exact z
792@deffnx {C Function} scm_inexact_to_exact (z)
793Return an exact number that is numerically closest to @var{z}, when
794there is one. For inexact rationals, Guile returns the exact rational
795that is numerically equal to the inexact rational. Inexact complex
796numbers with a non-zero imaginary part can not be made exact.
797
798@lisp
799(inexact->exact 0.5)
800@result{} 1/2
801@end lisp
802
803The following happens because 12/10 is not exactly representable as a
804@code{double} (on most platforms). However, when reading a decimal
805number that has been marked exact with the ``#e'' prefix, Guile is
806able to represent it correctly.
807
808@lisp
809(inexact->exact 1.2)
810@result{} 5404319552844595/4503599627370496
811
812#e1.2
813@result{} 6/5
814@end lisp
815
816@end deffn
817
818@c begin (texi-doc-string "guile" "exact->inexact")
819@deffn {Scheme Procedure} exact->inexact z
820@deffnx {C Function} scm_exact_to_inexact (z)
821Convert the number @var{z} to its inexact representation.
822@end deffn
823
824
825@node Number Syntax
826@subsubsection Read Syntax for Numerical Data
827
828The read syntax for integers is a string of digits, optionally
829preceded by a minus or plus character, a code indicating the
830base in which the integer is encoded, and a code indicating whether
831the number is exact or inexact. The supported base codes are:
832
833@table @code
834@item #b
835@itemx #B
836the integer is written in binary (base 2)
837
838@item #o
839@itemx #O
840the integer is written in octal (base 8)
841
842@item #d
843@itemx #D
844the integer is written in decimal (base 10)
845
846@item #x
847@itemx #X
848the integer is written in hexadecimal (base 16)
849@end table
850
851If the base code is omitted, the integer is assumed to be decimal. The
852following examples show how these base codes are used.
853
854@lisp
855-13
856@result{} -13
857
858#d-13
859@result{} -13
860
861#x-13
862@result{} -19
863
864#b+1101
865@result{} 13
866
867#o377
868@result{} 255
869@end lisp
870
871The codes for indicating exactness (which can, incidentally, be applied
872to all numerical values) are:
873
874@table @code
875@item #e
876@itemx #E
877the number is exact
878
879@item #i
880@itemx #I
881the number is inexact.
882@end table
883
884If the exactness indicator is omitted, the number is exact unless it
885contains a radix point. Since Guile can not represent exact complex
886numbers, an error is signalled when asking for them.
887
888@lisp
889(exact? 1.2)
890@result{} #f
891
892(exact? #e1.2)
893@result{} #t
894
895(exact? #e+1i)
896ERROR: Wrong type argument
897@end lisp
898
899Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
900plus and minus infinity, respectively. The value must be written
901exactly as shown, that is, they always must have a sign and exactly
902one zero digit after the decimal point. It also understands
903@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
904The sign is ignored for `not-a-number' and the value is always printed
905as @samp{+nan.0}.
906
907@node Integer Operations
908@subsubsection Operations on Integer Values
909@rnindex odd?
910@rnindex even?
911@rnindex quotient
912@rnindex remainder
913@rnindex modulo
914@rnindex gcd
915@rnindex lcm
916
917@deffn {Scheme Procedure} odd? n
918@deffnx {C Function} scm_odd_p (n)
919Return @code{#t} if @var{n} is an odd number, @code{#f}
920otherwise.
921@end deffn
922
923@deffn {Scheme Procedure} even? n
924@deffnx {C Function} scm_even_p (n)
925Return @code{#t} if @var{n} is an even number, @code{#f}
926otherwise.
927@end deffn
928
929@c begin (texi-doc-string "guile" "quotient")
930@c begin (texi-doc-string "guile" "remainder")
931@deffn {Scheme Procedure} quotient n d
932@deffnx {Scheme Procedure} remainder n d
933@deffnx {C Function} scm_quotient (n, d)
934@deffnx {C Function} scm_remainder (n, d)
935Return the quotient or remainder from @var{n} divided by @var{d}. The
936quotient is rounded towards zero, and the remainder will have the same
937sign as @var{n}. In all cases quotient and remainder satisfy
938@math{@var{n} = @var{q}*@var{d} + @var{r}}.
939
940@lisp
941(remainder 13 4) @result{} 1
942(remainder -13 4) @result{} -1
943@end lisp
ff62c168 944
8f9da340 945See also @code{truncate-quotient}, @code{truncate-remainder} and
ff62c168 946related operations in @ref{Arithmetic}.
07d83abe
MV
947@end deffn
948
949@c begin (texi-doc-string "guile" "modulo")
950@deffn {Scheme Procedure} modulo n d
951@deffnx {C Function} scm_modulo (n, d)
952Return the remainder from @var{n} divided by @var{d}, with the same
953sign as @var{d}.
954
955@lisp
956(modulo 13 4) @result{} 1
957(modulo -13 4) @result{} 3
958(modulo 13 -4) @result{} -3
959(modulo -13 -4) @result{} -1
960@end lisp
ff62c168 961
8f9da340 962See also @code{floor-quotient}, @code{floor-remainder} and
ff62c168 963related operations in @ref{Arithmetic}.
07d83abe
MV
964@end deffn
965
966@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 967@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
968@deffnx {C Function} scm_gcd (x, y)
969Return the greatest common divisor of all arguments.
970If called without arguments, 0 is returned.
971
972The C function @code{scm_gcd} always takes two arguments, while the
973Scheme function can take an arbitrary number.
974@end deffn
975
976@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 977@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
978@deffnx {C Function} scm_lcm (x, y)
979Return the least common multiple of the arguments.
980If called without arguments, 1 is returned.
981
982The C function @code{scm_lcm} always takes two arguments, while the
983Scheme function can take an arbitrary number.
984@end deffn
985
cdf1ad3b
MV
986@deffn {Scheme Procedure} modulo-expt n k m
987@deffnx {C Function} scm_modulo_expt (n, k, m)
988Return @var{n} raised to the integer exponent
989@var{k}, modulo @var{m}.
990
991@lisp
992(modulo-expt 2 3 5)
993 @result{} 3
994@end lisp
995@end deffn
07d83abe 996
882c8963
MW
997@deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
998@deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
999Return two exact non-negative integers @var{s} and @var{r}
1000such that @math{@var{k} = @var{s}^2 + @var{r}} and
1001@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
1002An error is raised if @var{k} is not an exact non-negative integer.
1003
1004@lisp
1005(exact-integer-sqrt 10) @result{} 3 and 1
1006@end lisp
1007@end deftypefn
1008
07d83abe
MV
1009@node Comparison
1010@subsubsection Comparison Predicates
1011@rnindex zero?
1012@rnindex positive?
1013@rnindex negative?
1014
1015The C comparison functions below always takes two arguments, while the
1016Scheme functions can take an arbitrary number. Also keep in mind that
1017the C functions return one of the Scheme boolean values
1018@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
1019is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
1020y))} when testing the two Scheme numbers @code{x} and @code{y} for
1021equality, for example.
1022
1023@c begin (texi-doc-string "guile" "=")
1024@deffn {Scheme Procedure} =
1025@deffnx {C Function} scm_num_eq_p (x, y)
1026Return @code{#t} if all parameters are numerically equal.
1027@end deffn
1028
1029@c begin (texi-doc-string "guile" "<")
1030@deffn {Scheme Procedure} <
1031@deffnx {C Function} scm_less_p (x, y)
1032Return @code{#t} if the list of parameters is monotonically
1033increasing.
1034@end deffn
1035
1036@c begin (texi-doc-string "guile" ">")
1037@deffn {Scheme Procedure} >
1038@deffnx {C Function} scm_gr_p (x, y)
1039Return @code{#t} if the list of parameters is monotonically
1040decreasing.
1041@end deffn
1042
1043@c begin (texi-doc-string "guile" "<=")
1044@deffn {Scheme Procedure} <=
1045@deffnx {C Function} scm_leq_p (x, y)
1046Return @code{#t} if the list of parameters is monotonically
1047non-decreasing.
1048@end deffn
1049
1050@c begin (texi-doc-string "guile" ">=")
1051@deffn {Scheme Procedure} >=
1052@deffnx {C Function} scm_geq_p (x, y)
1053Return @code{#t} if the list of parameters is monotonically
1054non-increasing.
1055@end deffn
1056
1057@c begin (texi-doc-string "guile" "zero?")
1058@deffn {Scheme Procedure} zero? z
1059@deffnx {C Function} scm_zero_p (z)
1060Return @code{#t} if @var{z} is an exact or inexact number equal to
1061zero.
1062@end deffn
1063
1064@c begin (texi-doc-string "guile" "positive?")
1065@deffn {Scheme Procedure} positive? x
1066@deffnx {C Function} scm_positive_p (x)
1067Return @code{#t} if @var{x} is an exact or inexact number greater than
1068zero.
1069@end deffn
1070
1071@c begin (texi-doc-string "guile" "negative?")
1072@deffn {Scheme Procedure} negative? x
1073@deffnx {C Function} scm_negative_p (x)
1074Return @code{#t} if @var{x} is an exact or inexact number less than
1075zero.
1076@end deffn
1077
1078
1079@node Conversion
1080@subsubsection Converting Numbers To and From Strings
1081@rnindex number->string
1082@rnindex string->number
1083
b89c4943
LC
1084The following procedures read and write numbers according to their
1085external representation as defined by R5RS (@pxref{Lexical structure,
1086R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
a2f00b9b 1087Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
b89c4943
LC
1088i18n)} module}, for locale-dependent number parsing.
1089
07d83abe
MV
1090@deffn {Scheme Procedure} number->string n [radix]
1091@deffnx {C Function} scm_number_to_string (n, radix)
1092Return a string holding the external representation of the
1093number @var{n} in the given @var{radix}. If @var{n} is
1094inexact, a radix of 10 will be used.
1095@end deffn
1096
1097@deffn {Scheme Procedure} string->number string [radix]
1098@deffnx {C Function} scm_string_to_number (string, radix)
1099Return a number of the maximally precise representation
1100expressed by the given @var{string}. @var{radix} must be an
1101exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1102is a default radix that may be overridden by an explicit radix
679cceed 1103prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
07d83abe
MV
1104supplied, then the default radix is 10. If string is not a
1105syntactically valid notation for a number, then
1106@code{string->number} returns @code{#f}.
1107@end deffn
1108
1b09b607
KR
1109@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1110As per @code{string->number} above, but taking a C string, as pointer
1111and length. The string characters should be in the current locale
1112encoding (@code{locale} in the name refers only to that, there's no
1113locale-dependent parsing).
1114@end deftypefn
1115
07d83abe
MV
1116
1117@node Complex
1118@subsubsection Complex Number Operations
1119@rnindex make-rectangular
1120@rnindex make-polar
1121@rnindex real-part
1122@rnindex imag-part
1123@rnindex magnitude
1124@rnindex angle
1125
3323ec06
NJ
1126@deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1127@deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1128Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
07d83abe
MV
1129@end deffn
1130
c7218482
MW
1131@deffn {Scheme Procedure} make-polar mag ang
1132@deffnx {C Function} scm_make_polar (mag, ang)
34942993 1133@cindex polar form
c7218482 1134Return the complex number @var{mag} * e^(i * @var{ang}).
07d83abe
MV
1135@end deffn
1136
1137@c begin (texi-doc-string "guile" "real-part")
1138@deffn {Scheme Procedure} real-part z
1139@deffnx {C Function} scm_real_part (z)
1140Return the real part of the number @var{z}.
1141@end deffn
1142
1143@c begin (texi-doc-string "guile" "imag-part")
1144@deffn {Scheme Procedure} imag-part z
1145@deffnx {C Function} scm_imag_part (z)
1146Return the imaginary part of the number @var{z}.
1147@end deffn
1148
1149@c begin (texi-doc-string "guile" "magnitude")
1150@deffn {Scheme Procedure} magnitude z
1151@deffnx {C Function} scm_magnitude (z)
1152Return the magnitude of the number @var{z}. This is the same as
1153@code{abs} for real arguments, but also allows complex numbers.
1154@end deffn
1155
1156@c begin (texi-doc-string "guile" "angle")
1157@deffn {Scheme Procedure} angle z
1158@deffnx {C Function} scm_angle (z)
1159Return the angle of the complex number @var{z}.
1160@end deffn
1161
5615f696
MV
1162@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1163@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1164Like @code{scm_make_rectangular} or @code{scm_make_polar},
1165respectively, but these functions take @code{double}s as their
1166arguments.
1167@end deftypefn
1168
1169@deftypefn {C Function} double scm_c_real_part (z)
1170@deftypefnx {C Function} double scm_c_imag_part (z)
1171Returns the real or imaginary part of @var{z} as a @code{double}.
1172@end deftypefn
1173
1174@deftypefn {C Function} double scm_c_magnitude (z)
1175@deftypefnx {C Function} double scm_c_angle (z)
1176Returns the magnitude or angle of @var{z} as a @code{double}.
1177@end deftypefn
1178
07d83abe
MV
1179
1180@node Arithmetic
1181@subsubsection Arithmetic Functions
1182@rnindex max
1183@rnindex min
1184@rnindex +
1185@rnindex *
1186@rnindex -
1187@rnindex /
b1f57ea4
LC
1188@findex 1+
1189@findex 1-
07d83abe
MV
1190@rnindex abs
1191@rnindex floor
1192@rnindex ceiling
1193@rnindex truncate
1194@rnindex round
ff62c168
MW
1195@rnindex euclidean/
1196@rnindex euclidean-quotient
1197@rnindex euclidean-remainder
8f9da340
MW
1198@rnindex floor/
1199@rnindex floor-quotient
1200@rnindex floor-remainder
1201@rnindex ceiling/
1202@rnindex ceiling-quotient
1203@rnindex ceiling-remainder
1204@rnindex truncate/
1205@rnindex truncate-quotient
1206@rnindex truncate-remainder
ff62c168
MW
1207@rnindex centered/
1208@rnindex centered-quotient
1209@rnindex centered-remainder
8f9da340
MW
1210@rnindex round/
1211@rnindex round-quotient
1212@rnindex round-remainder
07d83abe
MV
1213
1214The C arithmetic functions below always takes two arguments, while the
1215Scheme functions can take an arbitrary number. When you need to
1216invoke them with just one argument, for example to compute the
ecb87335 1217equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
07d83abe
MV
1218one: @code{scm_difference (x, SCM_UNDEFINED)}.
1219
1220@c begin (texi-doc-string "guile" "+")
1221@deffn {Scheme Procedure} + z1 @dots{}
1222@deffnx {C Function} scm_sum (z1, z2)
1223Return the sum of all parameter values. Return 0 if called without any
1224parameters.
1225@end deffn
1226
1227@c begin (texi-doc-string "guile" "-")
1228@deffn {Scheme Procedure} - z1 z2 @dots{}
1229@deffnx {C Function} scm_difference (z1, z2)
1230If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1231the sum of all but the first argument are subtracted from the first
1232argument.
1233@end deffn
1234
1235@c begin (texi-doc-string "guile" "*")
1236@deffn {Scheme Procedure} * z1 @dots{}
1237@deffnx {C Function} scm_product (z1, z2)
1238Return the product of all arguments. If called without arguments, 1 is
1239returned.
1240@end deffn
1241
1242@c begin (texi-doc-string "guile" "/")
1243@deffn {Scheme Procedure} / z1 z2 @dots{}
1244@deffnx {C Function} scm_divide (z1, z2)
1245Divide the first argument by the product of the remaining arguments. If
1246called with one argument @var{z1}, 1/@var{z1} is returned.
1247@end deffn
1248
b1f57ea4
LC
1249@deffn {Scheme Procedure} 1+ z
1250@deffnx {C Function} scm_oneplus (z)
1251Return @math{@var{z} + 1}.
1252@end deffn
1253
1254@deffn {Scheme Procedure} 1- z
1255@deffnx {C function} scm_oneminus (z)
1256Return @math{@var{z} - 1}.
1257@end deffn
1258
07d83abe
MV
1259@c begin (texi-doc-string "guile" "abs")
1260@deffn {Scheme Procedure} abs x
1261@deffnx {C Function} scm_abs (x)
1262Return the absolute value of @var{x}.
1263
1264@var{x} must be a number with zero imaginary part. To calculate the
1265magnitude of a complex number, use @code{magnitude} instead.
1266@end deffn
1267
1268@c begin (texi-doc-string "guile" "max")
1269@deffn {Scheme Procedure} max x1 x2 @dots{}
1270@deffnx {C Function} scm_max (x1, x2)
1271Return the maximum of all parameter values.
1272@end deffn
1273
1274@c begin (texi-doc-string "guile" "min")
1275@deffn {Scheme Procedure} min x1 x2 @dots{}
1276@deffnx {C Function} scm_min (x1, x2)
1277Return the minimum of all parameter values.
1278@end deffn
1279
1280@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1281@deffn {Scheme Procedure} truncate x
07d83abe
MV
1282@deffnx {C Function} scm_truncate_number (x)
1283Round the inexact number @var{x} towards zero.
1284@end deffn
1285
1286@c begin (texi-doc-string "guile" "round")
1287@deffn {Scheme Procedure} round x
1288@deffnx {C Function} scm_round_number (x)
1289Round the inexact number @var{x} to the nearest integer. When exactly
1290halfway between two integers, round to the even one.
1291@end deffn
1292
1293@c begin (texi-doc-string "guile" "floor")
1294@deffn {Scheme Procedure} floor x
1295@deffnx {C Function} scm_floor (x)
1296Round the number @var{x} towards minus infinity.
1297@end deffn
1298
1299@c begin (texi-doc-string "guile" "ceiling")
1300@deffn {Scheme Procedure} ceiling x
1301@deffnx {C Function} scm_ceiling (x)
1302Round the number @var{x} towards infinity.
1303@end deffn
1304
35da08ee
MV
1305@deftypefn {C Function} double scm_c_truncate (double x)
1306@deftypefnx {C Function} double scm_c_round (double x)
1307Like @code{scm_truncate_number} or @code{scm_round_number},
1308respectively, but these functions take and return @code{double}
1309values.
1310@end deftypefn
07d83abe 1311
5fbf680b
MW
1312@deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1313@deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1314@deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1315@deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1316@deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1317@deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
ff62c168
MW
1318These procedures accept two real numbers @var{x} and @var{y}, where the
1319divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1320integer @var{q} and @code{euclidean-remainder} returns the real number
1321@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
5fbf680b 1322@math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
ff62c168
MW
1323@var{r}, and is more efficient than computing each separately. Note
1324that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1325@math{floor(@var{x}/@var{y})}, otherwise it returns
1326@math{ceiling(@var{x}/@var{y})}.
1327
1328Note that these operators are equivalent to the R6RS operators
1329@code{div}, @code{mod}, and @code{div-and-mod}.
1330
1331@lisp
1332(euclidean-quotient 123 10) @result{} 12
1333(euclidean-remainder 123 10) @result{} 3
1334(euclidean/ 123 10) @result{} 12 and 3
1335(euclidean/ 123 -10) @result{} -12 and 3
1336(euclidean/ -123 10) @result{} -13 and 7
1337(euclidean/ -123 -10) @result{} 13 and 7
1338(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1339(euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1340@end lisp
5fbf680b 1341@end deftypefn
ff62c168 1342
8f9da340
MW
1343@deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1344@deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1345@deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1346@deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1347@deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1348@deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1349These procedures accept two real numbers @var{x} and @var{y}, where the
1350divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1351integer @var{q} and @code{floor-remainder} returns the real number
1352@var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1353@math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1354both @var{q} and @var{r}, and is more efficient than computing each
1355separately. Note that @var{r}, if non-zero, will have the same sign
1356as @var{y}.
1357
ce606606 1358When @var{x} and @var{y} are integers, @code{floor-remainder} is
8f9da340
MW
1359equivalent to the R5RS integer-only operator @code{modulo}.
1360
1361@lisp
1362(floor-quotient 123 10) @result{} 12
1363(floor-remainder 123 10) @result{} 3
1364(floor/ 123 10) @result{} 12 and 3
1365(floor/ 123 -10) @result{} -13 and -7
1366(floor/ -123 10) @result{} -13 and 7
1367(floor/ -123 -10) @result{} 12 and -3
1368(floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1369(floor/ 16/3 -10/7) @result{} -4 and -8/21
1370@end lisp
1371@end deftypefn
1372
1373@deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1374@deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1375@deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1376@deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1377@deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1378@deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1379These procedures accept two real numbers @var{x} and @var{y}, where the
1380divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1381integer @var{q} and @code{ceiling-remainder} returns the real number
1382@var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1383@math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1384both @var{q} and @var{r}, and is more efficient than computing each
1385separately. Note that @var{r}, if non-zero, will have the opposite sign
1386of @var{y}.
1387
1388@lisp
1389(ceiling-quotient 123 10) @result{} 13
1390(ceiling-remainder 123 10) @result{} -7
1391(ceiling/ 123 10) @result{} 13 and -7
1392(ceiling/ 123 -10) @result{} -12 and 3
1393(ceiling/ -123 10) @result{} -12 and -3
1394(ceiling/ -123 -10) @result{} 13 and 7
1395(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1396(ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1397@end lisp
1398@end deftypefn
1399
1400@deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1401@deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1402@deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1403@deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1404@deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1405@deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1406These procedures accept two real numbers @var{x} and @var{y}, where the
1407divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1408integer @var{q} and @code{truncate-remainder} returns the real number
1409@var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1410and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1411both @var{q} and @var{r}, and is more efficient than computing each
1412separately. Note that @var{r}, if non-zero, will have the same sign
1413as @var{x}.
1414
ce606606 1415When @var{x} and @var{y} are integers, these operators are
a6b087be
MW
1416equivalent to the R5RS integer-only operators @code{quotient} and
1417@code{remainder}.
8f9da340
MW
1418
1419@lisp
1420(truncate-quotient 123 10) @result{} 12
1421(truncate-remainder 123 10) @result{} 3
1422(truncate/ 123 10) @result{} 12 and 3
1423(truncate/ 123 -10) @result{} -12 and 3
1424(truncate/ -123 10) @result{} -12 and -3
1425(truncate/ -123 -10) @result{} 12 and -3
1426(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1427(truncate/ 16/3 -10/7) @result{} -3 and 22/21
1428@end lisp
1429@end deftypefn
1430
5fbf680b
MW
1431@deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1432@deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1433@deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1434@deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1435@deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1436@deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
ff62c168
MW
1437These procedures accept two real numbers @var{x} and @var{y}, where the
1438divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1439integer @var{q} and @code{centered-remainder} returns the real number
1440@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
5fbf680b 1441@math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
ff62c168
MW
1442returns both @var{q} and @var{r}, and is more efficient than computing
1443each separately.
1444
1445Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1446rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1447exactly half-way between two integers, the tie is broken according to
1448the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1449positive infinity, otherwise they are rounded toward negative infinity.
5fbf680b
MW
1450This is a consequence of the requirement that
1451@math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
ff62c168
MW
1452
1453Note that these operators are equivalent to the R6RS operators
1454@code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1455
1456@lisp
1457(centered-quotient 123 10) @result{} 12
1458(centered-remainder 123 10) @result{} 3
1459(centered/ 123 10) @result{} 12 and 3
1460(centered/ 123 -10) @result{} -12 and 3
1461(centered/ -123 10) @result{} -12 and -3
1462(centered/ -123 -10) @result{} 12 and -3
8f9da340
MW
1463(centered/ 125 10) @result{} 13 and -5
1464(centered/ 127 10) @result{} 13 and -3
1465(centered/ 135 10) @result{} 14 and -5
ff62c168
MW
1466(centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1467(centered/ 16/3 -10/7) @result{} -4 and -8/21
1468@end lisp
5fbf680b 1469@end deftypefn
ff62c168 1470
8f9da340
MW
1471@deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1472@deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1473@deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1474@deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1475@deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1476@deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1477These procedures accept two real numbers @var{x} and @var{y}, where the
1478divisor @var{y} must be non-zero. @code{round-quotient} returns the
1479integer @var{q} and @code{round-remainder} returns the real number
1480@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1481@var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1482with ties going to the nearest even integer. @code{round/}
1483returns both @var{q} and @var{r}, and is more efficient than computing
1484each separately.
1485
1486Note that @code{round/} and @code{centered/} are almost equivalent, but
1487their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1488between two integers. In this case, @code{round/} chooses the nearest
1489even integer, whereas @code{centered/} chooses in such a way to satisfy
1490the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1491is stronger than the corresponding constraint for @code{round/},
1492@math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1493when @var{x} and @var{y} are integers, the number of possible remainders
1494returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1495possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1496@var{y} is even.
1497
1498@lisp
1499(round-quotient 123 10) @result{} 12
1500(round-remainder 123 10) @result{} 3
1501(round/ 123 10) @result{} 12 and 3
1502(round/ 123 -10) @result{} -12 and 3
1503(round/ -123 10) @result{} -12 and -3
1504(round/ -123 -10) @result{} 12 and -3
1505(round/ 125 10) @result{} 12 and 5
1506(round/ 127 10) @result{} 13 and -3
1507(round/ 135 10) @result{} 14 and -5
1508(round/ -123.2 -63.5) @result{} 2.0 and 3.8
1509(round/ 16/3 -10/7) @result{} -4 and -8/21
1510@end lisp
1511@end deftypefn
1512
07d83abe
MV
1513@node Scientific
1514@subsubsection Scientific Functions
1515
1516The following procedures accept any kind of number as arguments,
1517including complex numbers.
1518
1519@rnindex sqrt
1520@c begin (texi-doc-string "guile" "sqrt")
1521@deffn {Scheme Procedure} sqrt z
40296bab 1522Return the square root of @var{z}. Of the two possible roots
ecb87335 1523(positive and negative), the one with a positive real part is
40296bab
KR
1524returned, or if that's zero then a positive imaginary part. Thus,
1525
1526@example
1527(sqrt 9.0) @result{} 3.0
1528(sqrt -9.0) @result{} 0.0+3.0i
1529(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1530(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1531@end example
07d83abe
MV
1532@end deffn
1533
1534@rnindex expt
1535@c begin (texi-doc-string "guile" "expt")
1536@deffn {Scheme Procedure} expt z1 z2
1537Return @var{z1} raised to the power of @var{z2}.
1538@end deffn
1539
1540@rnindex sin
1541@c begin (texi-doc-string "guile" "sin")
1542@deffn {Scheme Procedure} sin z
1543Return the sine of @var{z}.
1544@end deffn
1545
1546@rnindex cos
1547@c begin (texi-doc-string "guile" "cos")
1548@deffn {Scheme Procedure} cos z
1549Return the cosine of @var{z}.
1550@end deffn
1551
1552@rnindex tan
1553@c begin (texi-doc-string "guile" "tan")
1554@deffn {Scheme Procedure} tan z
1555Return the tangent of @var{z}.
1556@end deffn
1557
1558@rnindex asin
1559@c begin (texi-doc-string "guile" "asin")
1560@deffn {Scheme Procedure} asin z
1561Return the arcsine of @var{z}.
1562@end deffn
1563
1564@rnindex acos
1565@c begin (texi-doc-string "guile" "acos")
1566@deffn {Scheme Procedure} acos z
1567Return the arccosine of @var{z}.
1568@end deffn
1569
1570@rnindex atan
1571@c begin (texi-doc-string "guile" "atan")
1572@deffn {Scheme Procedure} atan z
1573@deffnx {Scheme Procedure} atan y x
1574Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1575@end deffn
1576
1577@rnindex exp
1578@c begin (texi-doc-string "guile" "exp")
1579@deffn {Scheme Procedure} exp z
1580Return e to the power of @var{z}, where e is the base of natural
1581logarithms (2.71828@dots{}).
1582@end deffn
1583
1584@rnindex log
1585@c begin (texi-doc-string "guile" "log")
1586@deffn {Scheme Procedure} log z
1587Return the natural logarithm of @var{z}.
1588@end deffn
1589
1590@c begin (texi-doc-string "guile" "log10")
1591@deffn {Scheme Procedure} log10 z
1592Return the base 10 logarithm of @var{z}.
1593@end deffn
1594
1595@c begin (texi-doc-string "guile" "sinh")
1596@deffn {Scheme Procedure} sinh z
1597Return the hyperbolic sine of @var{z}.
1598@end deffn
1599
1600@c begin (texi-doc-string "guile" "cosh")
1601@deffn {Scheme Procedure} cosh z
1602Return the hyperbolic cosine of @var{z}.
1603@end deffn
1604
1605@c begin (texi-doc-string "guile" "tanh")
1606@deffn {Scheme Procedure} tanh z
1607Return the hyperbolic tangent of @var{z}.
1608@end deffn
1609
1610@c begin (texi-doc-string "guile" "asinh")
1611@deffn {Scheme Procedure} asinh z
1612Return the hyperbolic arcsine of @var{z}.
1613@end deffn
1614
1615@c begin (texi-doc-string "guile" "acosh")
1616@deffn {Scheme Procedure} acosh z
1617Return the hyperbolic arccosine of @var{z}.
1618@end deffn
1619
1620@c begin (texi-doc-string "guile" "atanh")
1621@deffn {Scheme Procedure} atanh z
1622Return the hyperbolic arctangent of @var{z}.
1623@end deffn
1624
1625
07d83abe
MV
1626@node Bitwise Operations
1627@subsubsection Bitwise Operations
1628
1629For the following bitwise functions, negative numbers are treated as
1630infinite precision twos-complements. For instance @math{-6} is bits
1631@math{@dots{}111010}, with infinitely many ones on the left. It can
1632be seen that adding 6 (binary 110) to such a bit pattern gives all
1633zeros.
1634
1635@deffn {Scheme Procedure} logand n1 n2 @dots{}
1636@deffnx {C Function} scm_logand (n1, n2)
1637Return the bitwise @sc{and} of the integer arguments.
1638
1639@lisp
1640(logand) @result{} -1
1641(logand 7) @result{} 7
1642(logand #b111 #b011 #b001) @result{} 1
1643@end lisp
1644@end deffn
1645
1646@deffn {Scheme Procedure} logior n1 n2 @dots{}
1647@deffnx {C Function} scm_logior (n1, n2)
1648Return the bitwise @sc{or} of the integer arguments.
1649
1650@lisp
1651(logior) @result{} 0
1652(logior 7) @result{} 7
1653(logior #b000 #b001 #b011) @result{} 3
1654@end lisp
1655@end deffn
1656
1657@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1658@deffnx {C Function} scm_loxor (n1, n2)
1659Return the bitwise @sc{xor} of the integer arguments. A bit is
1660set in the result if it is set in an odd number of arguments.
1661
1662@lisp
1663(logxor) @result{} 0
1664(logxor 7) @result{} 7
1665(logxor #b000 #b001 #b011) @result{} 2
1666(logxor #b000 #b001 #b011 #b011) @result{} 1
1667@end lisp
1668@end deffn
1669
1670@deffn {Scheme Procedure} lognot n
1671@deffnx {C Function} scm_lognot (n)
1672Return the integer which is the ones-complement of the integer
1673argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1674
1675@lisp
1676(number->string (lognot #b10000000) 2)
1677 @result{} "-10000001"
1678(number->string (lognot #b0) 2)
1679 @result{} "-1"
1680@end lisp
1681@end deffn
1682
1683@deffn {Scheme Procedure} logtest j k
1684@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1685Test whether @var{j} and @var{k} have any 1 bits in common. This is
1686equivalent to @code{(not (zero? (logand j k)))}, but without actually
1687calculating the @code{logand}, just testing for non-zero.
07d83abe 1688
a46648ac 1689@lisp
07d83abe
MV
1690(logtest #b0100 #b1011) @result{} #f
1691(logtest #b0100 #b0111) @result{} #t
1692@end lisp
1693@end deffn
1694
1695@deffn {Scheme Procedure} logbit? index j
1696@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1697Test whether bit number @var{index} in @var{j} is set. @var{index}
1698starts from 0 for the least significant bit.
07d83abe 1699
a46648ac 1700@lisp
07d83abe
MV
1701(logbit? 0 #b1101) @result{} #t
1702(logbit? 1 #b1101) @result{} #f
1703(logbit? 2 #b1101) @result{} #t
1704(logbit? 3 #b1101) @result{} #t
1705(logbit? 4 #b1101) @result{} #f
1706@end lisp
1707@end deffn
1708
e08a12b5
MW
1709@deffn {Scheme Procedure} ash n count
1710@deffnx {C Function} scm_ash (n, count)
912f5f34 1711Return @math{floor(n * 2^count)}.
e08a12b5 1712@var{n} and @var{count} must be exact integers.
07d83abe 1713
e08a12b5
MW
1714With @var{n} viewed as an infinite-precision twos-complement
1715integer, @code{ash} means a left shift introducing zero bits
1716when @var{count} is positive, or a right shift dropping bits
1717when @var{count} is negative. This is an ``arithmetic'' shift.
07d83abe
MV
1718
1719@lisp
1720(number->string (ash #b1 3) 2) @result{} "1000"
1721(number->string (ash #b1010 -1) 2) @result{} "101"
1722
1723;; -23 is bits ...11101001, -6 is bits ...111010
1724(ash -23 -2) @result{} -6
1725@end lisp
1726@end deffn
1727
e08a12b5
MW
1728@deffn {Scheme Procedure} round-ash n count
1729@deffnx {C Function} scm_round_ash (n, count)
912f5f34 1730Return @math{round(n * 2^count)}.
e08a12b5
MW
1731@var{n} and @var{count} must be exact integers.
1732
1733With @var{n} viewed as an infinite-precision twos-complement
1734integer, @code{round-ash} means a left shift introducing zero
1735bits when @var{count} is positive, or a right shift rounding
1736to the nearest integer (with ties going to the nearest even
1737integer) when @var{count} is negative. This is a rounded
1738``arithmetic'' shift.
1739
1740@lisp
1741(number->string (round-ash #b1 3) 2) @result{} \"1000\"
1742(number->string (round-ash #b1010 -1) 2) @result{} \"101\"
1743(number->string (round-ash #b1010 -2) 2) @result{} \"10\"
1744(number->string (round-ash #b1011 -2) 2) @result{} \"11\"
1745(number->string (round-ash #b1101 -2) 2) @result{} \"11\"
1746(number->string (round-ash #b1110 -2) 2) @result{} \"100\"
1747@end lisp
1748@end deffn
1749
07d83abe
MV
1750@deffn {Scheme Procedure} logcount n
1751@deffnx {C Function} scm_logcount (n)
a46648ac 1752Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1753positive, the 1-bits in its binary representation are counted.
1754If negative, the 0-bits in its two's-complement binary
a46648ac 1755representation are counted. If zero, 0 is returned.
07d83abe
MV
1756
1757@lisp
1758(logcount #b10101010)
1759 @result{} 4
1760(logcount 0)
1761 @result{} 0
1762(logcount -2)
1763 @result{} 1
1764@end lisp
1765@end deffn
1766
1767@deffn {Scheme Procedure} integer-length n
1768@deffnx {C Function} scm_integer_length (n)
1769Return the number of bits necessary to represent @var{n}.
1770
1771For positive @var{n} this is how many bits to the most significant one
1772bit. For negative @var{n} it's how many bits to the most significant
1773zero bit in twos complement form.
1774
1775@lisp
1776(integer-length #b10101010) @result{} 8
1777(integer-length #b1111) @result{} 4
1778(integer-length 0) @result{} 0
1779(integer-length -1) @result{} 0
1780(integer-length -256) @result{} 8
1781(integer-length -257) @result{} 9
1782@end lisp
1783@end deffn
1784
1785@deffn {Scheme Procedure} integer-expt n k
1786@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1787Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1788integer, @var{n} can be any number.
1789
1790Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1791in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1792@math{0^0} is 1.
07d83abe
MV
1793
1794@lisp
a46648ac
KR
1795(integer-expt 2 5) @result{} 32
1796(integer-expt -3 3) @result{} -27
1797(integer-expt 5 -3) @result{} 1/125
1798(integer-expt 0 0) @result{} 1
07d83abe
MV
1799@end lisp
1800@end deffn
1801
1802@deffn {Scheme Procedure} bit-extract n start end
1803@deffnx {C Function} scm_bit_extract (n, start, end)
1804Return the integer composed of the @var{start} (inclusive)
1805through @var{end} (exclusive) bits of @var{n}. The
1806@var{start}th bit becomes the 0-th bit in the result.
1807
1808@lisp
1809(number->string (bit-extract #b1101101010 0 4) 2)
1810 @result{} "1010"
1811(number->string (bit-extract #b1101101010 4 9) 2)
1812 @result{} "10110"
1813@end lisp
1814@end deffn
1815
1816
1817@node Random
1818@subsubsection Random Number Generation
1819
1820Pseudo-random numbers are generated from a random state object, which
77b13912 1821can be created with @code{seed->random-state} or
679cceed 1822@code{datum->random-state}. An external representation (i.e.@: one
77b13912
AR
1823which can written with @code{write} and read with @code{read}) of a
1824random state object can be obtained via
1d454874 1825@code{random-state->datum}. The @var{state} parameter to the
77b13912
AR
1826various functions below is optional, it defaults to the state object
1827in the @code{*random-state*} variable.
07d83abe
MV
1828
1829@deffn {Scheme Procedure} copy-random-state [state]
1830@deffnx {C Function} scm_copy_random_state (state)
1831Return a copy of the random state @var{state}.
1832@end deffn
1833
1834@deffn {Scheme Procedure} random n [state]
1835@deffnx {C Function} scm_random (n, state)
1836Return a number in [0, @var{n}).
1837
1838Accepts a positive integer or real n and returns a
1839number of the same type between zero (inclusive) and
1840@var{n} (exclusive). The values returned have a uniform
1841distribution.
1842@end deffn
1843
1844@deffn {Scheme Procedure} random:exp [state]
1845@deffnx {C Function} scm_random_exp (state)
1846Return an inexact real in an exponential distribution with mean
18471. For an exponential distribution with mean @var{u} use @code{(*
1848@var{u} (random:exp))}.
1849@end deffn
1850
1851@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1852@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1853Fills @var{vect} with inexact real random numbers the sum of whose
1854squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1855space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1856the coordinates are uniformly distributed over the surface of the unit
1857n-sphere.
1858@end deffn
1859
1860@deffn {Scheme Procedure} random:normal [state]
1861@deffnx {C Function} scm_random_normal (state)
1862Return an inexact real in a normal distribution. The distribution
1863used has mean 0 and standard deviation 1. For a normal distribution
1864with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1865(* @var{d} (random:normal)))}.
1866@end deffn
1867
1868@deffn {Scheme Procedure} random:normal-vector! vect [state]
1869@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1870Fills @var{vect} with inexact real random numbers that are
1871independent and standard normally distributed
1872(i.e., with mean 0 and variance 1).
1873@end deffn
1874
1875@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1876@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1877Fills @var{vect} with inexact real random numbers the sum of whose
1878squares is less than 1.0. Thinking of @var{vect} as coordinates in
1879space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1880the coordinates are uniformly distributed within the unit
4497bd2f 1881@var{n}-sphere.
07d83abe
MV
1882@c FIXME: What does this mean, particularly the n-sphere part?
1883@end deffn
1884
1885@deffn {Scheme Procedure} random:uniform [state]
1886@deffnx {C Function} scm_random_uniform (state)
1887Return a uniformly distributed inexact real random number in
1888[0,1).
1889@end deffn
1890
1891@deffn {Scheme Procedure} seed->random-state seed
1892@deffnx {C Function} scm_seed_to_random_state (seed)
1893Return a new random state using @var{seed}.
1894@end deffn
1895
1d454874
AW
1896@deffn {Scheme Procedure} datum->random-state datum
1897@deffnx {C Function} scm_datum_to_random_state (datum)
1898Return a new random state from @var{datum}, which should have been
1899obtained by @code{random-state->datum}.
77b13912
AR
1900@end deffn
1901
1d454874
AW
1902@deffn {Scheme Procedure} random-state->datum state
1903@deffnx {C Function} scm_random_state_to_datum (state)
1904Return a datum representation of @var{state} that may be written out and
1905read back with the Scheme reader.
77b13912
AR
1906@end deffn
1907
d47db067
MW
1908@deffn {Scheme Procedure} random-state-from-platform
1909@deffnx {C Function} scm_random_state_from_platform ()
1910Construct a new random state seeded from a platform-specific source of
1911entropy, appropriate for use in non-security-critical applications.
1912Currently @file{/dev/urandom} is tried first, or else the seed is based
444b26f7
MW
1913on the time, date, process ID, an address from a freshly allocated heap
1914cell, an address from the local stack frame, and a high-resolution timer
1915if available.
d47db067
MW
1916@end deffn
1917
07d83abe
MV
1918@defvar *random-state*
1919The global random state used by the above functions when the
1920@var{state} parameter is not given.
1921@end defvar
1922
8c726cf0
NJ
1923Note that the initial value of @code{*random-state*} is the same every
1924time Guile starts up. Therefore, if you don't pass a @var{state}
1925parameter to the above procedures, and you don't set
1926@code{*random-state*} to @code{(seed->random-state your-seed)}, where
1927@code{your-seed} is something that @emph{isn't} the same every time,
1928you'll get the same sequence of ``random'' numbers on every run.
1929
1930For example, unless the relevant source code has changed, @code{(map
1931random (cdr (iota 30)))}, if the first use of random numbers since
1932Guile started up, will always give:
1933
1934@lisp
1935(map random (cdr (iota 19)))
1936@result{}
1937(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1938@end lisp
1939
d47db067
MW
1940To seed the random state in a sensible way for non-security-critical
1941applications, do this during initialization of your program:
8c726cf0
NJ
1942
1943@lisp
d47db067 1944(set! *random-state* (random-state-from-platform))
8c726cf0
NJ
1945@end lisp
1946
07d83abe
MV
1947
1948@node Characters
1949@subsection Characters
1950@tpindex Characters
1951
3f12aedb
MG
1952In Scheme, there is a data type to describe a single character.
1953
1954Defining what exactly a character @emph{is} can be more complicated
bb15a36c
MG
1955than it seems. Guile follows the advice of R6RS and uses The Unicode
1956Standard to help define what a character is. So, for Guile, a
1957character is anything in the Unicode Character Database.
1958
1959@cindex code point
1960@cindex Unicode code point
1961
1962The Unicode Character Database is basically a table of characters
1963indexed using integers called 'code points'. Valid code points are in
1964the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1965@code{#x10FFFF} inclusive, which is about 1.1 million code points.
1966
1967@cindex designated code point
1968@cindex code point, designated
1969
1970Any code point that has been assigned to a character or that has
1971otherwise been given a meaning by Unicode is called a 'designated code
1972point'. Most of the designated code points, about 200,000 of them,
1973indicate characters, accents or other combining marks that modify
1974other characters, symbols, whitespace, and control characters. Some
1975are not characters but indicators that suggest how to format or
1976display neighboring characters.
1977
1978@cindex reserved code point
1979@cindex code point, reserved
1980
1981If a code point is not a designated code point -- if it has not been
1982assigned to a character by The Unicode Standard -- it is a 'reserved
1983code point', meaning that they are reserved for future use. Most of
1984the code points, about 800,000, are 'reserved code points'.
1985
1986By convention, a Unicode code point is written as
1987``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1988this convenient notation is not valid code. Guile does not interpret
1989``U+XXXX'' as a character.
3f12aedb 1990
050ab45f
MV
1991In Scheme, a character literal is written as @code{#\@var{name}} where
1992@var{name} is the name of the character that you want. Printable
1993characters have their usual single character name; for example,
bb15a36c
MG
1994@code{#\a} is a lower case @code{a}.
1995
1996Some of the code points are 'combining characters' that are not meant
1997to be printed by themselves but are instead meant to modify the
1998appearance of the previous character. For combining characters, an
1999alternate form of the character literal is @code{#\} followed by
2000U+25CC (a small, dotted circle), followed by the combining character.
2001This allows the combining character to be drawn on the circle, not on
2002the backslash of @code{#\}.
2003
2004Many of the non-printing characters, such as whitespace characters and
2005control characters, also have names.
07d83abe 2006
15b6a6b2
MG
2007The most commonly used non-printing characters have long character
2008names, described in the table below.
2009
2010@multitable {@code{#\backspace}} {Preferred}
2011@item Character Name @tab Codepoint
2012@item @code{#\nul} @tab U+0000
2013@item @code{#\alarm} @tab u+0007
2014@item @code{#\backspace} @tab U+0008
2015@item @code{#\tab} @tab U+0009
2016@item @code{#\linefeed} @tab U+000A
2017@item @code{#\newline} @tab U+000A
2018@item @code{#\vtab} @tab U+000B
2019@item @code{#\page} @tab U+000C
2020@item @code{#\return} @tab U+000D
2021@item @code{#\esc} @tab U+001B
2022@item @code{#\space} @tab U+0020
2023@item @code{#\delete} @tab U+007F
2024@end multitable
2025
2026There are also short names for all of the ``C0 control characters''
2027(those with code points below 32). The following table lists the short
2028name for each character.
07d83abe
MV
2029
2030@multitable @columnfractions .25 .25 .25 .25
2031@item 0 = @code{#\nul}
2032 @tab 1 = @code{#\soh}
2033 @tab 2 = @code{#\stx}
2034 @tab 3 = @code{#\etx}
2035@item 4 = @code{#\eot}
2036 @tab 5 = @code{#\enq}
2037 @tab 6 = @code{#\ack}
2038 @tab 7 = @code{#\bel}
2039@item 8 = @code{#\bs}
2040 @tab 9 = @code{#\ht}
6ea30487 2041 @tab 10 = @code{#\lf}
07d83abe 2042 @tab 11 = @code{#\vt}
3f12aedb 2043@item 12 = @code{#\ff}
07d83abe
MV
2044 @tab 13 = @code{#\cr}
2045 @tab 14 = @code{#\so}
2046 @tab 15 = @code{#\si}
2047@item 16 = @code{#\dle}
2048 @tab 17 = @code{#\dc1}
2049 @tab 18 = @code{#\dc2}
2050 @tab 19 = @code{#\dc3}
2051@item 20 = @code{#\dc4}
2052 @tab 21 = @code{#\nak}
2053 @tab 22 = @code{#\syn}
2054 @tab 23 = @code{#\etb}
2055@item 24 = @code{#\can}
2056 @tab 25 = @code{#\em}
2057 @tab 26 = @code{#\sub}
2058 @tab 27 = @code{#\esc}
2059@item 28 = @code{#\fs}
2060 @tab 29 = @code{#\gs}
2061 @tab 30 = @code{#\rs}
2062 @tab 31 = @code{#\us}
2063@item 32 = @code{#\sp}
2064@end multitable
2065
15b6a6b2
MG
2066The short name for the ``delete'' character (code point U+007F) is
2067@code{#\del}.
07d83abe 2068
15b6a6b2
MG
2069There are also a few alternative names left over for compatibility with
2070previous versions of Guile.
07d83abe 2071
3f12aedb
MG
2072@multitable {@code{#\backspace}} {Preferred}
2073@item Alternate @tab Standard
3f12aedb 2074@item @code{#\nl} @tab @code{#\newline}
15b6a6b2 2075@item @code{#\np} @tab @code{#\page}
07d83abe
MV
2076@item @code{#\null} @tab @code{#\nul}
2077@end multitable
2078
bb15a36c
MG
2079Characters may also be written using their code point values. They can
2080be written with as an octal number, such as @code{#\10} for
2081@code{#\bs} or @code{#\177} for @code{#\del}.
3f12aedb 2082
0f3a70cf
MG
2083If one prefers hex to octal, there is an additional syntax for character
2084escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2085number of one to eight digits.
6ea30487 2086
07d83abe
MV
2087@rnindex char?
2088@deffn {Scheme Procedure} char? x
2089@deffnx {C Function} scm_char_p (x)
a4b4fbbd 2090Return @code{#t} if @var{x} is a character, else @code{#f}.
07d83abe
MV
2091@end deffn
2092
bb15a36c 2093Fundamentally, the character comparison operations below are
3f12aedb
MG
2094numeric comparisons of the character's code points.
2095
07d83abe
MV
2096@rnindex char=?
2097@deffn {Scheme Procedure} char=? x y
a4b4fbbd 2098Return @code{#t} if code point of @var{x} is equal to the code point
3f12aedb 2099of @var{y}, else @code{#f}.
07d83abe
MV
2100@end deffn
2101
2102@rnindex char<?
2103@deffn {Scheme Procedure} char<? x y
a4b4fbbd 2104Return @code{#t} if the code point of @var{x} is less than the code
3f12aedb 2105point of @var{y}, else @code{#f}.
07d83abe
MV
2106@end deffn
2107
2108@rnindex char<=?
2109@deffn {Scheme Procedure} char<=? x y
a4b4fbbd 2110Return @code{#t} if the code point of @var{x} is less than or equal
3f12aedb 2111to the code point of @var{y}, else @code{#f}.
07d83abe
MV
2112@end deffn
2113
2114@rnindex char>?
2115@deffn {Scheme Procedure} char>? x y
a4b4fbbd 2116Return @code{#t} if the code point of @var{x} is greater than the
3f12aedb 2117code point of @var{y}, else @code{#f}.
07d83abe
MV
2118@end deffn
2119
2120@rnindex char>=?
2121@deffn {Scheme Procedure} char>=? x y
a4b4fbbd 2122Return @code{#t} if the code point of @var{x} is greater than or
3f12aedb 2123equal to the code point of @var{y}, else @code{#f}.
07d83abe
MV
2124@end deffn
2125
bb15a36c
MG
2126@cindex case folding
2127
2128Case-insensitive character comparisons use @emph{Unicode case
2129folding}. In case folding comparisons, if a character is lowercase
2130and has an uppercase form that can be expressed as a single character,
2131it is converted to uppercase before comparison. All other characters
2132undergo no conversion before the comparison occurs. This includes the
2133German sharp S (Eszett) which is not uppercased before conversion
2134because its uppercase form has two characters. Unicode case folding
2135is language independent: it uses rules that are generally true, but,
2136it cannot cover all cases for all languages.
3f12aedb 2137
07d83abe
MV
2138@rnindex char-ci=?
2139@deffn {Scheme Procedure} char-ci=? x y
a4b4fbbd 2140Return @code{#t} if the case-folded code point of @var{x} is the same
3f12aedb 2141as the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2142@end deffn
2143
2144@rnindex char-ci<?
2145@deffn {Scheme Procedure} char-ci<? x y
a4b4fbbd 2146Return @code{#t} if the case-folded code point of @var{x} is less
3f12aedb 2147than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2148@end deffn
2149
2150@rnindex char-ci<=?
2151@deffn {Scheme Procedure} char-ci<=? x y
a4b4fbbd 2152Return @code{#t} if the case-folded code point of @var{x} is less
3f12aedb
MG
2153than or equal to the case-folded code point of @var{y}, else
2154@code{#f}.
07d83abe
MV
2155@end deffn
2156
2157@rnindex char-ci>?
2158@deffn {Scheme Procedure} char-ci>? x y
a4b4fbbd 2159Return @code{#t} if the case-folded code point of @var{x} is greater
3f12aedb 2160than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2161@end deffn
2162
2163@rnindex char-ci>=?
2164@deffn {Scheme Procedure} char-ci>=? x y
a4b4fbbd 2165Return @code{#t} if the case-folded code point of @var{x} is greater
3f12aedb
MG
2166than or equal to the case-folded code point of @var{y}, else
2167@code{#f}.
07d83abe
MV
2168@end deffn
2169
2170@rnindex char-alphabetic?
2171@deffn {Scheme Procedure} char-alphabetic? chr
2172@deffnx {C Function} scm_char_alphabetic_p (chr)
a4b4fbbd 2173Return @code{#t} if @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
2174@end deffn
2175
2176@rnindex char-numeric?
2177@deffn {Scheme Procedure} char-numeric? chr
2178@deffnx {C Function} scm_char_numeric_p (chr)
a4b4fbbd 2179Return @code{#t} if @var{chr} is numeric, else @code{#f}.
07d83abe
MV
2180@end deffn
2181
2182@rnindex char-whitespace?
2183@deffn {Scheme Procedure} char-whitespace? chr
2184@deffnx {C Function} scm_char_whitespace_p (chr)
a4b4fbbd 2185Return @code{#t} if @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
2186@end deffn
2187
2188@rnindex char-upper-case?
2189@deffn {Scheme Procedure} char-upper-case? chr
2190@deffnx {C Function} scm_char_upper_case_p (chr)
a4b4fbbd 2191Return @code{#t} if @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
2192@end deffn
2193
2194@rnindex char-lower-case?
2195@deffn {Scheme Procedure} char-lower-case? chr
2196@deffnx {C Function} scm_char_lower_case_p (chr)
a4b4fbbd 2197Return @code{#t} if @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
2198@end deffn
2199
2200@deffn {Scheme Procedure} char-is-both? chr
2201@deffnx {C Function} scm_char_is_both_p (chr)
a4b4fbbd 2202Return @code{#t} if @var{chr} is either uppercase or lowercase, else
5676b4fa 2203@code{#f}.
07d83abe
MV
2204@end deffn
2205
0ca3a342
JG
2206@deffn {Scheme Procedure} char-general-category chr
2207@deffnx {C Function} scm_char_general_category (chr)
2208Return a symbol giving the two-letter name of the Unicode general
2209category assigned to @var{chr} or @code{#f} if no named category is
2210assigned. The following table provides a list of category names along
2211with their meanings.
2212
2213@multitable @columnfractions .1 .4 .1 .4
2214@item Lu
2215 @tab Uppercase letter
2216 @tab Pf
2217 @tab Final quote punctuation
2218@item Ll
2219 @tab Lowercase letter
2220 @tab Po
2221 @tab Other punctuation
2222@item Lt
2223 @tab Titlecase letter
2224 @tab Sm
2225 @tab Math symbol
2226@item Lm
2227 @tab Modifier letter
2228 @tab Sc
2229 @tab Currency symbol
2230@item Lo
2231 @tab Other letter
2232 @tab Sk
2233 @tab Modifier symbol
2234@item Mn
2235 @tab Non-spacing mark
2236 @tab So
2237 @tab Other symbol
2238@item Mc
2239 @tab Combining spacing mark
2240 @tab Zs
2241 @tab Space separator
2242@item Me
2243 @tab Enclosing mark
2244 @tab Zl
2245 @tab Line separator
2246@item Nd
2247 @tab Decimal digit number
2248 @tab Zp
2249 @tab Paragraph separator
2250@item Nl
2251 @tab Letter number
2252 @tab Cc
2253 @tab Control
2254@item No
2255 @tab Other number
2256 @tab Cf
2257 @tab Format
2258@item Pc
2259 @tab Connector punctuation
2260 @tab Cs
2261 @tab Surrogate
2262@item Pd
2263 @tab Dash punctuation
2264 @tab Co
2265 @tab Private use
2266@item Ps
2267 @tab Open punctuation
2268 @tab Cn
2269 @tab Unassigned
2270@item Pe
2271 @tab Close punctuation
2272 @tab
2273 @tab
2274@item Pi
2275 @tab Initial quote punctuation
2276 @tab
2277 @tab
2278@end multitable
2279@end deffn
2280
07d83abe
MV
2281@rnindex char->integer
2282@deffn {Scheme Procedure} char->integer chr
2283@deffnx {C Function} scm_char_to_integer (chr)
3f12aedb 2284Return the code point of @var{chr}.
07d83abe
MV
2285@end deffn
2286
2287@rnindex integer->char
2288@deffn {Scheme Procedure} integer->char n
2289@deffnx {C Function} scm_integer_to_char (n)
3f12aedb
MG
2290Return the character that has code point @var{n}. The integer @var{n}
2291must be a valid code point. Valid code points are in the ranges 0 to
2292@code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
07d83abe
MV
2293@end deffn
2294
2295@rnindex char-upcase
2296@deffn {Scheme Procedure} char-upcase chr
2297@deffnx {C Function} scm_char_upcase (chr)
2298Return the uppercase character version of @var{chr}.
2299@end deffn
2300
2301@rnindex char-downcase
2302@deffn {Scheme Procedure} char-downcase chr
2303@deffnx {C Function} scm_char_downcase (chr)
2304Return the lowercase character version of @var{chr}.
2305@end deffn
2306
820f33aa
JG
2307@rnindex char-titlecase
2308@deffn {Scheme Procedure} char-titlecase chr
2309@deffnx {C Function} scm_char_titlecase (chr)
2310Return the titlecase character version of @var{chr} if one exists;
2311otherwise return the uppercase version.
2312
2313For most characters these will be the same, but the Unicode Standard
2314includes certain digraph compatibility characters, such as @code{U+01F3}
2315``dz'', for which the uppercase and titlecase characters are different
2316(@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2317respectively).
2318@end deffn
2319
a1dcb961
MG
2320@tindex scm_t_wchar
2321@deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2322@deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2323@deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2324
2325These C functions take an integer representation of a Unicode
2326codepoint and return the codepoint corresponding to its uppercase,
2327lowercase, and titlecase forms respectively. The type
2328@code{scm_t_wchar} is a signed, 32-bit integer.
2329@end deftypefn
2330
050ab45f
MV
2331@node Character Sets
2332@subsection Character Sets
07d83abe 2333
050ab45f
MV
2334The features described in this section correspond directly to SRFI-14.
2335
2336The data type @dfn{charset} implements sets of characters
2337(@pxref{Characters}). Because the internal representation of
2338character sets is not visible to the user, a lot of procedures for
2339handling them are provided.
2340
2341Character sets can be created, extended, tested for the membership of a
2342characters and be compared to other character sets.
2343
050ab45f
MV
2344@menu
2345* Character Set Predicates/Comparison::
2346* Iterating Over Character Sets:: Enumerate charset elements.
2347* Creating Character Sets:: Making new charsets.
2348* Querying Character Sets:: Test charsets for membership etc.
2349* Character-Set Algebra:: Calculating new charsets.
2350* Standard Character Sets:: Variables containing predefined charsets.
2351@end menu
2352
2353@node Character Set Predicates/Comparison
2354@subsubsection Character Set Predicates/Comparison
2355
2356Use these procedures for testing whether an object is a character set,
2357or whether several character sets are equal or subsets of each other.
2358@code{char-set-hash} can be used for calculating a hash value, maybe for
2359usage in fast lookup procedures.
2360
2361@deffn {Scheme Procedure} char-set? obj
2362@deffnx {C Function} scm_char_set_p (obj)
2363Return @code{#t} if @var{obj} is a character set, @code{#f}
2364otherwise.
2365@end deffn
2366
df0a1002 2367@deffn {Scheme Procedure} char-set= char_set @dots{}
050ab45f
MV
2368@deffnx {C Function} scm_char_set_eq (char_sets)
2369Return @code{#t} if all given character sets are equal.
2370@end deffn
2371
df0a1002 2372@deffn {Scheme Procedure} char-set<= char_set @dots{}
050ab45f 2373@deffnx {C Function} scm_char_set_leq (char_sets)
64de6db5
BT
2374Return @code{#t} if every character set @var{char_set}i is a subset
2375of character set @var{char_set}i+1.
050ab45f
MV
2376@end deffn
2377
2378@deffn {Scheme Procedure} char-set-hash cs [bound]
2379@deffnx {C Function} scm_char_set_hash (cs, bound)
2380Compute a hash value for the character set @var{cs}. If
2381@var{bound} is given and non-zero, it restricts the
df0a1002 2382returned value to the range 0 @dots{} @var{bound} - 1.
050ab45f
MV
2383@end deffn
2384
2385@c ===================================================================
2386
2387@node Iterating Over Character Sets
2388@subsubsection Iterating Over Character Sets
2389
2390Character set cursors are a means for iterating over the members of a
2391character sets. After creating a character set cursor with
2392@code{char-set-cursor}, a cursor can be dereferenced with
2393@code{char-set-ref}, advanced to the next member with
2394@code{char-set-cursor-next}. Whether a cursor has passed past the last
2395element of the set can be checked with @code{end-of-char-set?}.
2396
2397Additionally, mapping and (un-)folding procedures for character sets are
2398provided.
2399
2400@deffn {Scheme Procedure} char-set-cursor cs
2401@deffnx {C Function} scm_char_set_cursor (cs)
2402Return a cursor into the character set @var{cs}.
2403@end deffn
2404
2405@deffn {Scheme Procedure} char-set-ref cs cursor
2406@deffnx {C Function} scm_char_set_ref (cs, cursor)
2407Return the character at the current cursor position
2408@var{cursor} in the character set @var{cs}. It is an error to
2409pass a cursor for which @code{end-of-char-set?} returns true.
2410@end deffn
2411
2412@deffn {Scheme Procedure} char-set-cursor-next cs cursor
2413@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2414Advance the character set cursor @var{cursor} to the next
2415character in the character set @var{cs}. It is an error if the
2416cursor given satisfies @code{end-of-char-set?}.
2417@end deffn
2418
2419@deffn {Scheme Procedure} end-of-char-set? cursor
2420@deffnx {C Function} scm_end_of_char_set_p (cursor)
2421Return @code{#t} if @var{cursor} has reached the end of a
2422character set, @code{#f} otherwise.
2423@end deffn
2424
2425@deffn {Scheme Procedure} char-set-fold kons knil cs
2426@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2427Fold the procedure @var{kons} over the character set @var{cs},
2428initializing it with @var{knil}.
2429@end deffn
2430
2431@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2432@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2433This is a fundamental constructor for character sets.
2434@itemize @bullet
2435@item @var{g} is used to generate a series of ``seed'' values
2436from the initial seed: @var{seed}, (@var{g} @var{seed}),
2437(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2438@item @var{p} tells us when to stop -- when it returns true
2439when applied to one of the seed values.
2440@item @var{f} maps each seed value to a character. These
2441characters are added to the base character set @var{base_cs} to
2442form the result; @var{base_cs} defaults to the empty set.
2443@end itemize
2444@end deffn
2445
2446@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2447@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2448This is a fundamental constructor for character sets.
2449@itemize @bullet
2450@item @var{g} is used to generate a series of ``seed'' values
2451from the initial seed: @var{seed}, (@var{g} @var{seed}),
2452(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2453@item @var{p} tells us when to stop -- when it returns true
2454when applied to one of the seed values.
2455@item @var{f} maps each seed value to a character. These
2456characters are added to the base character set @var{base_cs} to
2457form the result; @var{base_cs} defaults to the empty set.
2458@end itemize
2459@end deffn
2460
2461@deffn {Scheme Procedure} char-set-for-each proc cs
2462@deffnx {C Function} scm_char_set_for_each (proc, cs)
2463Apply @var{proc} to every character in the character set
2464@var{cs}. The return value is not specified.
2465@end deffn
2466
2467@deffn {Scheme Procedure} char-set-map proc cs
2468@deffnx {C Function} scm_char_set_map (proc, cs)
2469Map the procedure @var{proc} over every character in @var{cs}.
2470@var{proc} must be a character -> character procedure.
2471@end deffn
2472
2473@c ===================================================================
2474
2475@node Creating Character Sets
2476@subsubsection Creating Character Sets
2477
2478New character sets are produced with these procedures.
2479
2480@deffn {Scheme Procedure} char-set-copy cs
2481@deffnx {C Function} scm_char_set_copy (cs)
2482Return a newly allocated character set containing all
2483characters in @var{cs}.
2484@end deffn
2485
df0a1002
BT
2486@deffn {Scheme Procedure} char-set chr @dots{}
2487@deffnx {C Function} scm_char_set (chrs)
050ab45f
MV
2488Return a character set containing all given characters.
2489@end deffn
2490
2491@deffn {Scheme Procedure} list->char-set list [base_cs]
2492@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2493Convert the character list @var{list} to a character set. If
2494the character set @var{base_cs} is given, the character in this
2495set are also included in the result.
2496@end deffn
2497
2498@deffn {Scheme Procedure} list->char-set! list base_cs
2499@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2500Convert the character list @var{list} to a character set. The
2501characters are added to @var{base_cs} and @var{base_cs} is
2502returned.
2503@end deffn
2504
2505@deffn {Scheme Procedure} string->char-set str [base_cs]
2506@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2507Convert the string @var{str} to a character set. If the
2508character set @var{base_cs} is given, the characters in this
2509set are also included in the result.
2510@end deffn
2511
2512@deffn {Scheme Procedure} string->char-set! str base_cs
2513@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2514Convert the string @var{str} to a character set. The
2515characters from the string are added to @var{base_cs}, and
2516@var{base_cs} is returned.
2517@end deffn
2518
2519@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2520@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2521Return a character set containing every character from @var{cs}
2522so that it satisfies @var{pred}. If provided, the characters
2523from @var{base_cs} are added to the result.
2524@end deffn
2525
2526@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2527@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2528Return a character set containing every character from @var{cs}
2529so that it satisfies @var{pred}. The characters are added to
2530@var{base_cs} and @var{base_cs} is returned.
2531@end deffn
2532
2533@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2534@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2535Return a character set containing all characters whose
2536character codes lie in the half-open range
2537[@var{lower},@var{upper}).
2538
2539If @var{error} is a true value, an error is signalled if the
2540specified range contains characters which are not contained in
2541the implemented character range. If @var{error} is @code{#f},
be3eb25c 2542these characters are silently left out of the resulting
050ab45f
MV
2543character set.
2544
2545The characters in @var{base_cs} are added to the result, if
2546given.
2547@end deffn
2548
2549@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2550@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2551Return a character set containing all characters whose
2552character codes lie in the half-open range
2553[@var{lower},@var{upper}).
2554
2555If @var{error} is a true value, an error is signalled if the
2556specified range contains characters which are not contained in
2557the implemented character range. If @var{error} is @code{#f},
be3eb25c 2558these characters are silently left out of the resulting
050ab45f
MV
2559character set.
2560
2561The characters are added to @var{base_cs} and @var{base_cs} is
2562returned.
2563@end deffn
2564
2565@deffn {Scheme Procedure} ->char-set x
2566@deffnx {C Function} scm_to_char_set (x)
be3eb25c
MG
2567Coerces x into a char-set. @var{x} may be a string, character or
2568char-set. A string is converted to the set of its constituent
2569characters; a character is converted to a singleton set; a char-set is
2570returned as-is.
050ab45f
MV
2571@end deffn
2572
2573@c ===================================================================
2574
2575@node Querying Character Sets
2576@subsubsection Querying Character Sets
2577
2578Access the elements and other information of a character set with these
2579procedures.
2580
be3eb25c
MG
2581@deffn {Scheme Procedure} %char-set-dump cs
2582Returns an association list containing debugging information
2583for @var{cs}. The association list has the following entries.
2584@table @code
2585@item char-set
2586The char-set itself
2587@item len
2588The number of groups of contiguous code points the char-set
2589contains
2590@item ranges
2591A list of lists where each sublist is a range of code points
2592and their associated characters
2593@end table
2594The return value of this function cannot be relied upon to be
2595consistent between versions of Guile and should not be used in code.
2596@end deffn
2597
050ab45f
MV
2598@deffn {Scheme Procedure} char-set-size cs
2599@deffnx {C Function} scm_char_set_size (cs)
2600Return the number of elements in character set @var{cs}.
2601@end deffn
2602
2603@deffn {Scheme Procedure} char-set-count pred cs
2604@deffnx {C Function} scm_char_set_count (pred, cs)
2605Return the number of the elements int the character set
2606@var{cs} which satisfy the predicate @var{pred}.
2607@end deffn
2608
2609@deffn {Scheme Procedure} char-set->list cs
2610@deffnx {C Function} scm_char_set_to_list (cs)
2611Return a list containing the elements of the character set
2612@var{cs}.
2613@end deffn
2614
2615@deffn {Scheme Procedure} char-set->string cs
2616@deffnx {C Function} scm_char_set_to_string (cs)
2617Return a string containing the elements of the character set
2618@var{cs}. The order in which the characters are placed in the
2619string is not defined.
2620@end deffn
2621
2622@deffn {Scheme Procedure} char-set-contains? cs ch
2623@deffnx {C Function} scm_char_set_contains_p (cs, ch)
a4b4fbbd
JE
2624Return @code{#t} if the character @var{ch} is contained in the
2625character set @var{cs}, or @code{#f} otherwise.
050ab45f
MV
2626@end deffn
2627
2628@deffn {Scheme Procedure} char-set-every pred cs
2629@deffnx {C Function} scm_char_set_every (pred, cs)
2630Return a true value if every character in the character set
2631@var{cs} satisfies the predicate @var{pred}.
2632@end deffn
2633
2634@deffn {Scheme Procedure} char-set-any pred cs
2635@deffnx {C Function} scm_char_set_any (pred, cs)
2636Return a true value if any character in the character set
2637@var{cs} satisfies the predicate @var{pred}.
2638@end deffn
2639
2640@c ===================================================================
2641
2642@node Character-Set Algebra
2643@subsubsection Character-Set Algebra
2644
2645Character sets can be manipulated with the common set algebra operation,
2646such as union, complement, intersection etc. All of these procedures
2647provide side-effecting variants, which modify their character set
2648argument(s).
2649
df0a1002
BT
2650@deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
2651@deffnx {C Function} scm_char_set_adjoin (cs, chrs)
050ab45f
MV
2652Add all character arguments to the first argument, which must
2653be a character set.
2654@end deffn
2655
df0a1002
BT
2656@deffn {Scheme Procedure} char-set-delete cs chr @dots{}
2657@deffnx {C Function} scm_char_set_delete (cs, chrs)
050ab45f
MV
2658Delete all character arguments from the first argument, which
2659must be a character set.
2660@end deffn
2661
df0a1002
BT
2662@deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
2663@deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
050ab45f
MV
2664Add all character arguments to the first argument, which must
2665be a character set.
2666@end deffn
2667
df0a1002
BT
2668@deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
2669@deffnx {C Function} scm_char_set_delete_x (cs, chrs)
050ab45f
MV
2670Delete all character arguments from the first argument, which
2671must be a character set.
2672@end deffn
2673
2674@deffn {Scheme Procedure} char-set-complement cs
2675@deffnx {C Function} scm_char_set_complement (cs)
2676Return the complement of the character set @var{cs}.
2677@end deffn
2678
be3eb25c
MG
2679Note that the complement of a character set is likely to contain many
2680reserved code points (code points that are not associated with
2681characters). It may be helpful to modify the output of
2682@code{char-set-complement} by computing its intersection with the set
2683of designated code points, @code{char-set:designated}.
2684
df0a1002
BT
2685@deffn {Scheme Procedure} char-set-union cs @dots{}
2686@deffnx {C Function} scm_char_set_union (char_sets)
050ab45f
MV
2687Return the union of all argument character sets.
2688@end deffn
2689
df0a1002
BT
2690@deffn {Scheme Procedure} char-set-intersection cs @dots{}
2691@deffnx {C Function} scm_char_set_intersection (char_sets)
050ab45f
MV
2692Return the intersection of all argument character sets.
2693@end deffn
2694
df0a1002
BT
2695@deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
2696@deffnx {C Function} scm_char_set_difference (cs1, char_sets)
050ab45f
MV
2697Return the difference of all argument character sets.
2698@end deffn
2699
df0a1002
BT
2700@deffn {Scheme Procedure} char-set-xor cs @dots{}
2701@deffnx {C Function} scm_char_set_xor (char_sets)
050ab45f
MV
2702Return the exclusive-or of all argument character sets.
2703@end deffn
2704
df0a1002
BT
2705@deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
2706@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
050ab45f
MV
2707Return the difference and the intersection of all argument
2708character sets.
2709@end deffn
2710
2711@deffn {Scheme Procedure} char-set-complement! cs
2712@deffnx {C Function} scm_char_set_complement_x (cs)
2713Return the complement of the character set @var{cs}.
2714@end deffn
2715
df0a1002
BT
2716@deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
2717@deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
050ab45f
MV
2718Return the union of all argument character sets.
2719@end deffn
2720
df0a1002
BT
2721@deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
2722@deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
050ab45f
MV
2723Return the intersection of all argument character sets.
2724@end deffn
2725
df0a1002
BT
2726@deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
2727@deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
050ab45f
MV
2728Return the difference of all argument character sets.
2729@end deffn
2730
df0a1002
BT
2731@deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
2732@deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
050ab45f
MV
2733Return the exclusive-or of all argument character sets.
2734@end deffn
2735
df0a1002
BT
2736@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
2737@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
050ab45f
MV
2738Return the difference and the intersection of all argument
2739character sets.
2740@end deffn
2741
2742@c ===================================================================
2743
2744@node Standard Character Sets
2745@subsubsection Standard Character Sets
2746
2747In order to make the use of the character set data type and procedures
2748useful, several predefined character set variables exist.
2749
49dec04b
LC
2750@cindex codeset
2751@cindex charset
2752@cindex locale
2753
be3eb25c
MG
2754These character sets are locale independent and are not recomputed
2755upon a @code{setlocale} call. They contain characters from the whole
2756range of Unicode code points. For instance, @code{char-set:letter}
bf8d8454 2757contains about 100,000 characters.
49dec04b 2758
c9dc8c6c
MV
2759@defvr {Scheme Variable} char-set:lower-case
2760@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2761All lower-case characters.
c9dc8c6c 2762@end defvr
050ab45f 2763
c9dc8c6c
MV
2764@defvr {Scheme Variable} char-set:upper-case
2765@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2766All upper-case characters.
c9dc8c6c 2767@end defvr
050ab45f 2768
c9dc8c6c
MV
2769@defvr {Scheme Variable} char-set:title-case
2770@defvrx {C Variable} scm_char_set_title_case
be3eb25c
MG
2771All single characters that function as if they were an upper-case
2772letter followed by a lower-case letter.
c9dc8c6c 2773@end defvr
050ab45f 2774
c9dc8c6c
MV
2775@defvr {Scheme Variable} char-set:letter
2776@defvrx {C Variable} scm_char_set_letter
be3eb25c
MG
2777All letters. This includes @code{char-set:lower-case},
2778@code{char-set:upper-case}, @code{char-set:title-case}, and many
2779letters that have no case at all. For example, Chinese and Japanese
2780characters typically have no concept of case.
c9dc8c6c 2781@end defvr
050ab45f 2782
c9dc8c6c
MV
2783@defvr {Scheme Variable} char-set:digit
2784@defvrx {C Variable} scm_char_set_digit
050ab45f 2785All digits.
c9dc8c6c 2786@end defvr
050ab45f 2787
c9dc8c6c
MV
2788@defvr {Scheme Variable} char-set:letter+digit
2789@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2790The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2791@end defvr
050ab45f 2792
c9dc8c6c
MV
2793@defvr {Scheme Variable} char-set:graphic
2794@defvrx {C Variable} scm_char_set_graphic
050ab45f 2795All characters which would put ink on the paper.
c9dc8c6c 2796@end defvr
050ab45f 2797
c9dc8c6c
MV
2798@defvr {Scheme Variable} char-set:printing
2799@defvrx {C Variable} scm_char_set_printing
050ab45f 2800The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2801@end defvr
050ab45f 2802
c9dc8c6c
MV
2803@defvr {Scheme Variable} char-set:whitespace
2804@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2805All whitespace characters.
c9dc8c6c 2806@end defvr
050ab45f 2807
c9dc8c6c
MV
2808@defvr {Scheme Variable} char-set:blank
2809@defvrx {C Variable} scm_char_set_blank
be3eb25c
MG
2810All horizontal whitespace characters, which notably includes
2811@code{#\space} and @code{#\tab}.
c9dc8c6c 2812@end defvr
050ab45f 2813
c9dc8c6c
MV
2814@defvr {Scheme Variable} char-set:iso-control
2815@defvrx {C Variable} scm_char_set_iso_control
be3eb25c
MG
2816The ISO control characters are the C0 control characters (U+0000 to
2817U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2818U+009F).
c9dc8c6c 2819@end defvr
050ab45f 2820
c9dc8c6c
MV
2821@defvr {Scheme Variable} char-set:punctuation
2822@defvrx {C Variable} scm_char_set_punctuation
be3eb25c
MG
2823All punctuation characters, such as the characters
2824@code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2825@end defvr
050ab45f 2826
c9dc8c6c
MV
2827@defvr {Scheme Variable} char-set:symbol
2828@defvrx {C Variable} scm_char_set_symbol
be3eb25c 2829All symbol characters, such as the characters @code{$+<=>^`|~}.
c9dc8c6c 2830@end defvr
050ab45f 2831
c9dc8c6c
MV
2832@defvr {Scheme Variable} char-set:hex-digit
2833@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2834The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2835@end defvr
050ab45f 2836
c9dc8c6c
MV
2837@defvr {Scheme Variable} char-set:ascii
2838@defvrx {C Variable} scm_char_set_ascii
050ab45f 2839All ASCII characters.
c9dc8c6c 2840@end defvr
050ab45f 2841
c9dc8c6c
MV
2842@defvr {Scheme Variable} char-set:empty
2843@defvrx {C Variable} scm_char_set_empty
050ab45f 2844The empty character set.
c9dc8c6c 2845@end defvr
050ab45f 2846
be3eb25c
MG
2847@defvr {Scheme Variable} char-set:designated
2848@defvrx {C Variable} scm_char_set_designated
2849This character set contains all designated code points. This includes
2850all the code points to which Unicode has assigned a character or other
2851meaning.
2852@end defvr
2853
c9dc8c6c
MV
2854@defvr {Scheme Variable} char-set:full
2855@defvrx {C Variable} scm_char_set_full
be3eb25c
MG
2856This character set contains all possible code points. This includes
2857both designated and reserved code points.
c9dc8c6c 2858@end defvr
07d83abe
MV
2859
2860@node Strings
2861@subsection Strings
2862@tpindex Strings
2863
2864Strings are fixed-length sequences of characters. They can be created
2865by calling constructor procedures, but they can also literally get
2866entered at the @acronym{REPL} or in Scheme source files.
2867
2868@c Guile provides a rich set of string processing procedures, because text
2869@c handling is very important when Guile is used as a scripting language.
2870
2871Strings always carry the information about how many characters they are
2872composed of with them, so there is no special end-of-string character,
2873like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2874even the @samp{#\nul} character @samp{\0}.
2875
2876To use strings efficiently, you need to know a bit about how Guile
2877implements them. In Guile, a string consists of two parts, a head and
2878the actual memory where the characters are stored. When a string (or
2879a substring of it) is copied, only a new head gets created, the memory
2880is usually not copied. The two heads start out pointing to the same
2881memory.
2882
2883When one of these two strings is modified, as with @code{string-set!},
2884their common memory does get copied so that each string has its own
be3eb25c 2885memory and modifying one does not accidentally modify the other as well.
c48c62d0
MV
2886Thus, Guile's strings are `copy on write'; the actual copying of their
2887memory is delayed until one string is written to.
2888
2889This implementation makes functions like @code{substring} very
2890efficient in the common case that no modifications are done to the
2891involved strings.
2892
2893If you do know that your strings are getting modified right away, you
2894can use @code{substring/copy} instead of @code{substring}. This
2895function performs the copy immediately at the time of creation. This
2896is more efficient, especially in a multi-threaded program. Also,
2897@code{substring/copy} can avoid the problem that a short substring
2898holds on to the memory of a very large original string that could
2899otherwise be recycled.
2900
2901If you want to avoid the copy altogether, so that modifications of one
2902string show up in the other, you can use @code{substring/shared}. The
2903strings created by this procedure are called @dfn{mutation sharing
2904substrings} since the substring and the original string share
2905modifications to each other.
07d83abe 2906
05256760
MV
2907If you want to prevent modifications, use @code{substring/read-only}.
2908
c9dc8c6c
MV
2909Guile provides all procedures of SRFI-13 and a few more.
2910
07d83abe 2911@menu
5676b4fa
MV
2912* String Syntax:: Read syntax for strings.
2913* String Predicates:: Testing strings for certain properties.
2914* String Constructors:: Creating new string objects.
2915* List/String Conversion:: Converting from/to lists of characters.
2916* String Selection:: Select portions from strings.
2917* String Modification:: Modify parts or whole strings.
2918* String Comparison:: Lexicographic ordering predicates.
2919* String Searching:: Searching in strings.
2920* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2921* Reversing and Appending Strings:: Appending strings to form a new string.
2922* Mapping Folding and Unfolding:: Iterating over strings.
2923* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
f05bb849 2924* Representing Strings as Bytes:: Encoding and decoding strings.
67af975c 2925* Conversion to/from C::
5b6b22e8 2926* String Internals:: The storage strategy for strings.
07d83abe
MV
2927@end menu
2928
2929@node String Syntax
2930@subsubsection String Read Syntax
2931
2932@c In the following @code is used to get a good font in TeX etc, but
2933@c is omitted for Info format, so as not to risk any confusion over
2934@c whether surrounding ` ' quotes are part of the escape or are
2935@c special in a string (they're not).
2936
2937The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2938characters enclosed in double quotes (@nicode{"}).
07d83abe 2939
67af975c 2940Backslash is an escape character and can be used to insert the following
6579c330
MW
2941special characters. @nicode{\"} and @nicode{\\} are R5RS standard,
2942@nicode{\|} is R7RS standard, the next seven are R6RS standard ---
2943notice they follow C syntax --- and the remaining four are Guile
2944extensions.
07d83abe
MV
2945
2946@table @asis
2947@item @nicode{\\}
2948Backslash character.
2949
2950@item @nicode{\"}
2951Double quote character (an unescaped @nicode{"} is otherwise the end
2952of the string).
2953
6579c330
MW
2954@item @nicode{\|}
2955Vertical bar character.
2956
07d83abe
MV
2957@item @nicode{\a}
2958Bell character (ASCII 7).
2959
2960@item @nicode{\f}
2961Formfeed character (ASCII 12).
2962
2963@item @nicode{\n}
2964Newline character (ASCII 10).
2965
2966@item @nicode{\r}
2967Carriage return character (ASCII 13).
2968
2969@item @nicode{\t}
2970Tab character (ASCII 9).
2971
2972@item @nicode{\v}
2973Vertical tab character (ASCII 11).
2974
67a4a16d
MG
2975@item @nicode{\b}
2976Backspace character (ASCII 8).
2977
67af975c
MG
2978@item @nicode{\0}
2979NUL character (ASCII 0).
2980
c869f0c1
AW
2981@item @nicode{\} followed by newline (ASCII 10)
2982Nothing. This way if @nicode{\} is the last character in a line, the
2983string will continue with the first character from the next line,
2984without a line break.
2985
2986If the @code{hungry-eol-escapes} reader option is enabled, which is not
2987the case by default, leading whitespace on the next line is discarded.
2988
2989@lisp
2990"foo\
2991 bar"
2992@result{} "foo bar"
2993(read-enable 'hungry-eol-escapes)
2994"foo\
2995 bar"
2996@result{} "foobar"
2997@end lisp
07d83abe
MV
2998@item @nicode{\xHH}
2999Character code given by two hexadecimal digits. For example
3000@nicode{\x7f} for an ASCII DEL (127).
28cc8dac
MG
3001
3002@item @nicode{\uHHHH}
3003Character code given by four hexadecimal digits. For example
3004@nicode{\u0100} for a capital A with macron (U+0100).
3005
3006@item @nicode{\UHHHHHH}
3007Character code given by six hexadecimal digits. For example
3008@nicode{\U010402}.
07d83abe
MV
3009@end table
3010
3011@noindent
3012The following are examples of string literals:
3013
3014@lisp
3015"foo"
3016"bar plonk"
3017"Hello World"
3018"\"Hi\", he said."
3019@end lisp
3020
6ea30487
MG
3021The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
3022chosen to not break compatibility with code written for previous versions of
3023Guile. The R6RS specification suggests a different, incompatible syntax for hex
3024escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
3025digits terminated with a semicolon. If this escape format is desired instead,
3026it can be enabled with the reader option @code{r6rs-hex-escapes}.
3027
3028@lisp
3029(read-enable 'r6rs-hex-escapes)
3030@end lisp
3031
1518f649 3032For more on reader options, @xref{Scheme Read}.
07d83abe
MV
3033
3034@node String Predicates
3035@subsubsection String Predicates
3036
3037The following procedures can be used to check whether a given string
3038fulfills some specified property.
3039
3040@rnindex string?
3041@deffn {Scheme Procedure} string? obj
3042@deffnx {C Function} scm_string_p (obj)
3043Return @code{#t} if @var{obj} is a string, else @code{#f}.
3044@end deffn
3045
91210d62
MV
3046@deftypefn {C Function} int scm_is_string (SCM obj)
3047Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
3048@end deftypefn
3049
07d83abe
MV
3050@deffn {Scheme Procedure} string-null? str
3051@deffnx {C Function} scm_string_null_p (str)
3052Return @code{#t} if @var{str}'s length is zero, and
3053@code{#f} otherwise.
3054@lisp
3055(string-null? "") @result{} #t
3056y @result{} "foo"
3057(string-null? y) @result{} #f
3058@end lisp
3059@end deffn
3060
5676b4fa
MV
3061@deffn {Scheme Procedure} string-any char_pred s [start [end]]
3062@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 3063Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 3064
c100a12c
KR
3065@var{char_pred} can be a character to check for any equal to that, or
3066a character set (@pxref{Character Sets}) to check for any in that set,
3067or a predicate procedure to call.
5676b4fa 3068
c100a12c
KR
3069For a procedure, calls @code{(@var{char_pred} c)} are made
3070successively on the characters from @var{start} to @var{end}. If
3071@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3072stops and that return value is the return from @code{string-any}. The
3073call on the last character (ie.@: at @math{@var{end}-1}), if that
3074point is reached, is a tail call.
3075
3076If there are no characters in @var{s} (ie.@: @var{start} equals
3077@var{end}) then the return is @code{#f}.
5676b4fa
MV
3078@end deffn
3079
3080@deffn {Scheme Procedure} string-every char_pred s [start [end]]
3081@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
3082Check if @var{char_pred} is true for every character in string
3083@var{s}.
5676b4fa 3084
c100a12c
KR
3085@var{char_pred} can be a character to check for every character equal
3086to that, or a character set (@pxref{Character Sets}) to check for
3087every character being in that set, or a predicate procedure to call.
3088
3089For a procedure, calls @code{(@var{char_pred} c)} are made
3090successively on the characters from @var{start} to @var{end}. If
3091@var{char_pred} returns @code{#f}, @code{string-every} stops and
3092returns @code{#f}. The call on the last character (ie.@: at
3093@math{@var{end}-1}), if that point is reached, is a tail call and the
3094return from that call is the return from @code{string-every}.
5676b4fa
MV
3095
3096If there are no characters in @var{s} (ie.@: @var{start} equals
3097@var{end}) then the return is @code{#t}.
5676b4fa
MV
3098@end deffn
3099
07d83abe
MV
3100@node String Constructors
3101@subsubsection String Constructors
3102
3103The string constructor procedures create new string objects, possibly
c48c62d0
MV
3104initializing them with some specified character data. See also
3105@xref{String Selection}, for ways to create strings from existing
3106strings.
07d83abe
MV
3107
3108@c FIXME::martin: list->string belongs into `List/String Conversion'
3109
bba26c32 3110@deffn {Scheme Procedure} string char@dots{}
07d83abe 3111@rnindex string
bba26c32
KR
3112Return a newly allocated string made from the given character
3113arguments.
3114
3115@example
3116(string #\x #\y #\z) @result{} "xyz"
3117(string) @result{} ""
3118@end example
3119@end deffn
3120
3121@deffn {Scheme Procedure} list->string lst
3122@deffnx {C Function} scm_string (lst)
07d83abe 3123@rnindex list->string
bba26c32
KR
3124Return a newly allocated string made from a list of characters.
3125
3126@example
3127(list->string '(#\a #\b #\c)) @result{} "abc"
3128@end example
3129@end deffn
3130
3131@deffn {Scheme Procedure} reverse-list->string lst
3132@deffnx {C Function} scm_reverse_list_to_string (lst)
3133Return a newly allocated string made from a list of characters, in
3134reverse order.
3135
3136@example
3137(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3138@end example
07d83abe
MV
3139@end deffn
3140
3141@rnindex make-string
3142@deffn {Scheme Procedure} make-string k [chr]
3143@deffnx {C Function} scm_make_string (k, chr)
3144Return a newly allocated string of
3145length @var{k}. If @var{chr} is given, then all elements of
3146the string are initialized to @var{chr}, otherwise the contents
64de6db5 3147of the string are unspecified.
07d83abe
MV
3148@end deffn
3149
c48c62d0
MV
3150@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3151Like @code{scm_make_string}, but expects the length as a
3152@code{size_t}.
3153@end deftypefn
3154
5676b4fa
MV
3155@deffn {Scheme Procedure} string-tabulate proc len
3156@deffnx {C Function} scm_string_tabulate (proc, len)
3157@var{proc} is an integer->char procedure. Construct a string
3158of size @var{len} by applying @var{proc} to each index to
3159produce the corresponding string element. The order in which
3160@var{proc} is applied to the indices is not specified.
3161@end deffn
3162
5676b4fa
MV
3163@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3164@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3165Append the string in the string list @var{ls}, using the string
64de6db5 3166@var{delimiter} as a delimiter between the elements of @var{ls}.
5676b4fa
MV
3167@var{grammar} is a symbol which specifies how the delimiter is
3168placed between the strings, and defaults to the symbol
3169@code{infix}.
3170
3171@table @code
3172@item infix
3173Insert the separator between list elements. An empty string
3174will produce an empty list.
3b80c358 3175@item strict-infix
5676b4fa
MV
3176Like @code{infix}, but will raise an error if given the empty
3177list.
3178@item suffix
3179Insert the separator after every list element.
3180@item prefix
3181Insert the separator before each list element.
3182@end table
3183@end deffn
3184
07d83abe
MV
3185@node List/String Conversion
3186@subsubsection List/String conversion
3187
3188When processing strings, it is often convenient to first convert them
3189into a list representation by using the procedure @code{string->list},
3190work with the resulting list, and then convert it back into a string.
3191These procedures are useful for similar tasks.
3192
3193@rnindex string->list
5676b4fa
MV
3194@deffn {Scheme Procedure} string->list str [start [end]]
3195@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 3196@deffnx {C Function} scm_string_to_list (str)
5676b4fa 3197Convert the string @var{str} into a list of characters.
07d83abe
MV
3198@end deffn
3199
5f085775
DH
3200@deffn {Scheme Procedure} string-split str char_pred
3201@deffnx {C Function} scm_string_split (str, char_pred)
ecb87335 3202Split the string @var{str} into a list of substrings delimited
5f085775
DH
3203by appearances of characters that
3204
3205@itemize @bullet
3206@item
3207equal @var{char_pred}, if it is a character,
3208
3209@item
3210satisfy the predicate @var{char_pred}, if it is a procedure,
3211
3212@item
3213are in the set @var{char_pred}, if it is a character set.
3214@end itemize
3215
3216Note that an empty substring between separator characters will result in
3217an empty string in the result list.
07d83abe
MV
3218
3219@lisp
3220(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3221@result{}
3222("root" "x" "0" "0" "root" "/root" "/bin/bash")
3223
3224(string-split "::" #\:)
3225@result{}
3226("" "" "")
3227
3228(string-split "" #\:)
3229@result{}
3230("")
3231@end lisp
3232@end deffn
3233
3234
3235@node String Selection
3236@subsubsection String Selection
3237
3238Portions of strings can be extracted by these procedures.
3239@code{string-ref} delivers individual characters whereas
3240@code{substring} can be used to extract substrings from longer strings.
3241
3242@rnindex string-length
3243@deffn {Scheme Procedure} string-length string
3244@deffnx {C Function} scm_string_length (string)
3245Return the number of characters in @var{string}.
3246@end deffn
3247
c48c62d0
MV
3248@deftypefn {C Function} size_t scm_c_string_length (SCM str)
3249Return the number of characters in @var{str} as a @code{size_t}.
3250@end deftypefn
3251
07d83abe
MV
3252@rnindex string-ref
3253@deffn {Scheme Procedure} string-ref str k
3254@deffnx {C Function} scm_string_ref (str, k)
3255Return character @var{k} of @var{str} using zero-origin
3256indexing. @var{k} must be a valid index of @var{str}.
3257@end deffn
3258
c48c62d0
MV
3259@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3260Return character @var{k} of @var{str} using zero-origin
3261indexing. @var{k} must be a valid index of @var{str}.
3262@end deftypefn
3263
07d83abe 3264@rnindex string-copy
5676b4fa
MV
3265@deffn {Scheme Procedure} string-copy str [start [end]]
3266@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 3267@deffnx {C Function} scm_string_copy (str)
5676b4fa 3268Return a copy of the given string @var{str}.
c48c62d0
MV
3269
3270The returned string shares storage with @var{str} initially, but it is
3271copied as soon as one of the two strings is modified.
07d83abe
MV
3272@end deffn
3273
3274@rnindex substring
3275@deffn {Scheme Procedure} substring str start [end]
3276@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 3277Return a new string formed from the characters
07d83abe
MV
3278of @var{str} beginning with index @var{start} (inclusive) and
3279ending with index @var{end} (exclusive).
3280@var{str} must be a string, @var{start} and @var{end} must be
3281exact integers satisfying:
3282
32830 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
3284
3285The returned string shares storage with @var{str} initially, but it is
3286copied as soon as one of the two strings is modified.
3287@end deffn
3288
3289@deffn {Scheme Procedure} substring/shared str start [end]
3290@deffnx {C Function} scm_substring_shared (str, start, end)
3291Like @code{substring}, but the strings continue to share their storage
3292even if they are modified. Thus, modifications to @var{str} show up
3293in the new string, and vice versa.
3294@end deffn
3295
3296@deffn {Scheme Procedure} substring/copy str start [end]
3297@deffnx {C Function} scm_substring_copy (str, start, end)
3298Like @code{substring}, but the storage for the new string is copied
3299immediately.
07d83abe
MV
3300@end deffn
3301
05256760
MV
3302@deffn {Scheme Procedure} substring/read-only str start [end]
3303@deffnx {C Function} scm_substring_read_only (str, start, end)
3304Like @code{substring}, but the resulting string can not be modified.
3305@end deffn
3306
c48c62d0
MV
3307@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3308@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3309@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 3310@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
3311Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3312@end deftypefn
3313
5676b4fa
MV
3314@deffn {Scheme Procedure} string-take s n
3315@deffnx {C Function} scm_string_take (s, n)
3316Return the @var{n} first characters of @var{s}.
3317@end deffn
3318
3319@deffn {Scheme Procedure} string-drop s n
3320@deffnx {C Function} scm_string_drop (s, n)
3321Return all but the first @var{n} characters of @var{s}.
3322@end deffn
3323
3324@deffn {Scheme Procedure} string-take-right s n
3325@deffnx {C Function} scm_string_take_right (s, n)
3326Return the @var{n} last characters of @var{s}.
3327@end deffn
3328
3329@deffn {Scheme Procedure} string-drop-right s n
3330@deffnx {C Function} scm_string_drop_right (s, n)
3331Return all but the last @var{n} characters of @var{s}.
3332@end deffn
3333
3334@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 3335@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 3336@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 3337@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb 3338Take characters @var{start} to @var{end} from the string @var{s} and
64de6db5 3339either pad with @var{chr} or truncate them to give @var{len}
6337e7fb
KR
3340characters.
3341
3342@code{string-pad} pads or truncates on the left, so for example
3343
3344@example
3345(string-pad "x" 3) @result{} " x"
3346(string-pad "abcde" 3) @result{} "cde"
3347@end example
3348
3349@code{string-pad-right} pads or truncates on the right, so for example
3350
3351@example
3352(string-pad-right "x" 3) @result{} "x "
3353(string-pad-right "abcde" 3) @result{} "abc"
3354@end example
5676b4fa
MV
3355@end deffn
3356
3357@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
dc297bb7
KR
3358@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3359@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
5676b4fa 3360@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
5676b4fa 3361@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
5676b4fa 3362@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
be3eb25c 3363Trim occurrences of @var{char_pred} from the ends of @var{s}.
5676b4fa 3364
dc297bb7
KR
3365@code{string-trim} trims @var{char_pred} characters from the left
3366(start) of the string, @code{string-trim-right} trims them from the
3367right (end) of the string, @code{string-trim-both} trims from both
3368ends.
5676b4fa 3369
dc297bb7
KR
3370@var{char_pred} can be a character, a character set, or a predicate
3371procedure to call on each character. If @var{char_pred} is not given
3372the default is whitespace as per @code{char-set:whitespace}
3373(@pxref{Standard Character Sets}).
5676b4fa 3374
dc297bb7
KR
3375@example
3376(string-trim " x ") @result{} "x "
3377(string-trim-right "banana" #\a) @result{} "banan"
3378(string-trim-both ".,xy:;" char-set:punctuation)
3379 @result{} "xy"
3380(string-trim-both "xyzzy" (lambda (c)
3381 (or (eqv? c #\x)
3382 (eqv? c #\y))))
3383 @result{} "zz"
3384@end example
5676b4fa
MV
3385@end deffn
3386
07d83abe
MV
3387@node String Modification
3388@subsubsection String Modification
3389
3390These procedures are for modifying strings in-place. This means that the
3391result of the operation is not a new string; instead, the original string's
3392memory representation is modified.
3393
3394@rnindex string-set!
3395@deffn {Scheme Procedure} string-set! str k chr
3396@deffnx {C Function} scm_string_set_x (str, k, chr)
3397Store @var{chr} in element @var{k} of @var{str} and return
3398an unspecified value. @var{k} must be a valid index of
3399@var{str}.
3400@end deffn
3401
c48c62d0
MV
3402@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3403Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3404@end deftypefn
3405
07d83abe 3406@rnindex string-fill!
5676b4fa
MV
3407@deffn {Scheme Procedure} string-fill! str chr [start [end]]
3408@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 3409@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
3410Stores @var{chr} in every element of the given @var{str} and
3411returns an unspecified value.
07d83abe
MV
3412@end deffn
3413
3414@deffn {Scheme Procedure} substring-fill! str start end fill
3415@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3416Change every character in @var{str} between @var{start} and
3417@var{end} to @var{fill}.
3418
3419@lisp
4dbd29a9 3420(define y (string-copy "abcdefg"))
07d83abe
MV
3421(substring-fill! y 1 3 #\r)
3422y
3423@result{} "arrdefg"
3424@end lisp
3425@end deffn
3426
3427@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3428@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3429Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3430into @var{str2} beginning at position @var{start2}.
3431@var{str1} and @var{str2} can be the same string.
3432@end deffn
3433
5676b4fa
MV
3434@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3435@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3436Copy the sequence of characters from index range [@var{start},
3437@var{end}) in string @var{s} to string @var{target}, beginning
3438at index @var{tstart}. The characters are copied left-to-right
3439or right-to-left as needed -- the copy is guaranteed to work,
3440even if @var{target} and @var{s} are the same string. It is an
3441error if the copy operation runs off the end of the target
3442string.
3443@end deffn
3444
07d83abe
MV
3445
3446@node String Comparison
3447@subsubsection String Comparison
3448
3449The procedures in this section are similar to the character ordering
3450predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 3451
5676b4fa 3452The first set is specified in R5RS and has names that end in @code{?}.
28cc8dac 3453The second set is specified in SRFI-13 and the names have not ending
67af975c 3454@code{?}.
28cc8dac
MG
3455
3456The predicates ending in @code{-ci} ignore the character case
3457when comparing strings. For now, case-insensitive comparison is done
3458using the R5RS rules, where every lower-case character that has a
3459single character upper-case form is converted to uppercase before
3460comparison. See @xref{Text Collation, the @code{(ice-9
b89c4943 3461i18n)} module}, for locale-dependent string comparison.
07d83abe
MV
3462
3463@rnindex string=?
df0a1002 3464@deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
df0a1002
BT
3465Lexicographic equality predicate; return @code{#t} if all strings are
3466the same length and contain the same characters in the same positions,
3467otherwise return @code{#f}.
07d83abe
MV
3468
3469The procedure @code{string-ci=?} treats upper and lower case
3470letters as though they were the same character, but
3471@code{string=?} treats upper and lower case as distinct
3472characters.
3473@end deffn
3474
3475@rnindex string<?
df0a1002 3476@deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
df0a1002
BT
3477Lexicographic ordering predicate; return @code{#t} if, for every pair of
3478consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3479lexicographically less than @var{str_i+1}.
07d83abe
MV
3480@end deffn
3481
3482@rnindex string<=?
df0a1002 3483@deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
df0a1002
BT
3484Lexicographic ordering predicate; return @code{#t} if, for every pair of
3485consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3486lexicographically less than or equal to @var{str_i+1}.
07d83abe
MV
3487@end deffn
3488
3489@rnindex string>?
df0a1002 3490@deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
df0a1002
BT
3491Lexicographic ordering predicate; return @code{#t} if, for every pair of
3492consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3493lexicographically greater than @var{str_i+1}.
07d83abe
MV
3494@end deffn
3495
3496@rnindex string>=?
df0a1002 3497@deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
df0a1002
BT
3498Lexicographic ordering predicate; return @code{#t} if, for every pair of
3499consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3500lexicographically greater than or equal to @var{str_i+1}.
07d83abe
MV
3501@end deffn
3502
3503@rnindex string-ci=?
df0a1002 3504@deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
07d83abe 3505Case-insensitive string equality predicate; return @code{#t} if
df0a1002 3506all strings are the same length and their component
07d83abe
MV
3507characters match (ignoring case) at each position; otherwise
3508return @code{#f}.
3509@end deffn
3510
5676b4fa 3511@rnindex string-ci<?
df0a1002 3512@deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
df0a1002
BT
3513Case insensitive lexicographic ordering predicate; return @code{#t} if,
3514for every pair of consecutive string arguments @var{str_i} and
3515@var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
07d83abe
MV
3516regardless of case.
3517@end deffn
3518
3519@rnindex string<=?
df0a1002 3520@deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
df0a1002
BT
3521Case insensitive lexicographic ordering predicate; return @code{#t} if,
3522for every pair of consecutive string arguments @var{str_i} and
3523@var{str_i+1}, @var{str_i} is lexicographically less than or equal to
3524@var{str_i+1} regardless of case.
07d83abe
MV
3525@end deffn
3526
3527@rnindex string-ci>?
df0a1002 3528@deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
df0a1002
BT
3529Case insensitive lexicographic ordering predicate; return @code{#t} if,
3530for every pair of consecutive string arguments @var{str_i} and
3531@var{str_i+1}, @var{str_i} is lexicographically greater than
3532@var{str_i+1} regardless of case.
07d83abe
MV
3533@end deffn
3534
3535@rnindex string-ci>=?
df0a1002 3536@deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
df0a1002
BT
3537Case insensitive lexicographic ordering predicate; return @code{#t} if,
3538for every pair of consecutive string arguments @var{str_i} and
3539@var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
3540@var{str_i+1} regardless of case.
07d83abe
MV
3541@end deffn
3542
5676b4fa
MV
3543@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3544@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3545Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3546mismatch index, depending upon whether @var{s1} is less than,
3547equal to, or greater than @var{s2}. The mismatch index is the
3548largest index @var{i} such that for every 0 <= @var{j} <
3549@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3550@var{i} is the first position that does not match.
3551@end deffn
3552
3553@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3554@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3555Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3556mismatch index, depending upon whether @var{s1} is less than,
3557equal to, or greater than @var{s2}. The mismatch index is the
3558largest index @var{i} such that for every 0 <= @var{j} <
3559@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3323ec06
NJ
3560@var{i} is the first position where the lowercased letters
3561do not match.
3562
5676b4fa
MV
3563@end deffn
3564
3565@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3566@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3567Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3568value otherwise.
3569@end deffn
3570
3571@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3572@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3573Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3574value otherwise.
3575@end deffn
3576
3577@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3578@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3579Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3580true value otherwise.
3581@end deffn
3582
3583@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3584@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3585Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3586true value otherwise.
3587@end deffn
3588
3589@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3590@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3591Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3592value otherwise.
3593@end deffn
3594
3595@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3596@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3597Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3598otherwise.
3599@end deffn
3600
3601@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3602@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3603Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3604value otherwise. The character comparison is done
3605case-insensitively.
3606@end deffn
3607
3608@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3609@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3610Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3611value otherwise. The character comparison is done
3612case-insensitively.
3613@end deffn
3614
3615@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3616@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3617Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3618true value otherwise. The character comparison is done
3619case-insensitively.
3620@end deffn
3621
3622@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3623@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3624Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3625true value otherwise. The character comparison is done
3626case-insensitively.
3627@end deffn
3628
3629@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3630@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3631Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3632value otherwise. The character comparison is done
3633case-insensitively.
3634@end deffn
3635
3636@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3637@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3638Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3639otherwise. The character comparison is done
3640case-insensitively.
3641@end deffn
3642
3643@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3644@deffnx {C Function} scm_substring_hash (s, bound, start, end)
64de6db5 3645Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
5676b4fa
MV
3646@end deffn
3647
3648@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3649@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
64de6db5 3650Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
5676b4fa 3651@end deffn
07d83abe 3652
edb7bb47
JG
3653Because the same visual appearance of an abstract Unicode character can
3654be obtained via multiple sequences of Unicode characters, even the
3655case-insensitive string comparison functions described above may return
3656@code{#f} when presented with strings containing different
3657representations of the same character. For example, the Unicode
3658character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3659represented with a single character (U+1E69) or by the character ``LATIN
3660SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3661DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3662
3663For this reason, it is often desirable to ensure that the strings
3664to be compared are using a mutually consistent representation for every
3665character. The Unicode standard defines two methods of normalizing the
3666contents of strings: Decomposition, which breaks composite characters
3667into a set of constituent characters with an ordering defined by the
3668Unicode Standard; and composition, which performs the converse.
3669
3670There are two decomposition operations. ``Canonical decomposition''
3671produces character sequences that share the same visual appearance as
ecb87335 3672the original characters, while ``compatibility decomposition'' produces
edb7bb47
JG
3673ones whose visual appearances may differ from the originals but which
3674represent the same abstract character.
3675
3676These operations are encapsulated in the following set of normalization
3677forms:
3678
3679@table @dfn
3680@item NFD
3681Characters are decomposed to their canonical forms.
3682
3683@item NFKD
3684Characters are decomposed to their compatibility forms.
3685
3686@item NFC
3687Characters are decomposed to their canonical forms, then composed.
3688
3689@item NFKC
3690Characters are decomposed to their compatibility forms, then composed.
3691
3692@end table
3693
3694The functions below put their arguments into one of the forms described
3695above.
3696
3697@deffn {Scheme Procedure} string-normalize-nfd s
3698@deffnx {C Function} scm_string_normalize_nfd (s)
3699Return the @code{NFD} normalized form of @var{s}.
3700@end deffn
3701
3702@deffn {Scheme Procedure} string-normalize-nfkd s
3703@deffnx {C Function} scm_string_normalize_nfkd (s)
3704Return the @code{NFKD} normalized form of @var{s}.
3705@end deffn
3706
3707@deffn {Scheme Procedure} string-normalize-nfc s
3708@deffnx {C Function} scm_string_normalize_nfc (s)
3709Return the @code{NFC} normalized form of @var{s}.
3710@end deffn
3711
3712@deffn {Scheme Procedure} string-normalize-nfkc s
3713@deffnx {C Function} scm_string_normalize_nfkc (s)
3714Return the @code{NFKC} normalized form of @var{s}.
3715@end deffn
3716
07d83abe
MV
3717@node String Searching
3718@subsubsection String Searching
3719
5676b4fa
MV
3720@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3721@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3722Search through the string @var{s} from left to right, returning
be3eb25c 3723the index of the first occurrence of a character which
07d83abe 3724
5676b4fa
MV
3725@itemize @bullet
3726@item
3727equals @var{char_pred}, if it is character,
07d83abe 3728
5676b4fa 3729@item
be3eb25c 3730satisfies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3731
5676b4fa
MV
3732@item
3733is in the set @var{char_pred}, if it is a character set.
3734@end itemize
bf7c2e96
LC
3735
3736Return @code{#f} if no match is found.
5676b4fa 3737@end deffn
07d83abe 3738
5676b4fa
MV
3739@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3740@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3741Search through the string @var{s} from right to left, returning
be3eb25c 3742the index of the last occurrence of a character which
5676b4fa
MV
3743
3744@itemize @bullet
3745@item
3746equals @var{char_pred}, if it is character,
3747
3748@item
be3eb25c 3749satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3750
3751@item
3752is in the set if @var{char_pred} is a character set.
3753@end itemize
bf7c2e96
LC
3754
3755Return @code{#f} if no match is found.
07d83abe
MV
3756@end deffn
3757
5676b4fa
MV
3758@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3759@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3760Return the length of the longest common prefix of the two
3761strings.
3762@end deffn
07d83abe 3763
5676b4fa
MV
3764@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3765@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3766Return the length of the longest common prefix of the two
3767strings, ignoring character case.
3768@end deffn
07d83abe 3769
5676b4fa
MV
3770@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3771@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3772Return the length of the longest common suffix of the two
3773strings.
3774@end deffn
07d83abe 3775
5676b4fa
MV
3776@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3777@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3778Return the length of the longest common suffix of the two
3779strings, ignoring character case.
3780@end deffn
3781
3782@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3783@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3784Is @var{s1} a prefix of @var{s2}?
3785@end deffn
3786
3787@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3788@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3789Is @var{s1} a prefix of @var{s2}, ignoring character case?
3790@end deffn
3791
3792@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3793@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3794Is @var{s1} a suffix of @var{s2}?
3795@end deffn
3796
3797@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3798@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3799Is @var{s1} a suffix of @var{s2}, ignoring character case?
3800@end deffn
3801
3802@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3803@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3804Search through the string @var{s} from right to left, returning
be3eb25c 3805the index of the last occurrence of a character which
5676b4fa
MV
3806
3807@itemize @bullet
3808@item
3809equals @var{char_pred}, if it is character,
3810
3811@item
be3eb25c 3812satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3813
3814@item
3815is in the set if @var{char_pred} is a character set.
3816@end itemize
bf7c2e96
LC
3817
3818Return @code{#f} if no match is found.
5676b4fa
MV
3819@end deffn
3820
3821@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3822@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3823Search through the string @var{s} from left to right, returning
be3eb25c 3824the index of the first occurrence of a character which
5676b4fa
MV
3825
3826@itemize @bullet
3827@item
3828does not equal @var{char_pred}, if it is character,
3829
3830@item
be3eb25c 3831does not satisfy the predicate @var{char_pred}, if it is a
5676b4fa
MV
3832procedure,
3833
3834@item
3835is not in the set if @var{char_pred} is a character set.
3836@end itemize
3837@end deffn
3838
3839@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3840@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3841Search through the string @var{s} from right to left, returning
be3eb25c 3842the index of the last occurrence of a character which
5676b4fa
MV
3843
3844@itemize @bullet
3845@item
3846does not equal @var{char_pred}, if it is character,
3847
3848@item
3849does not satisfy the predicate @var{char_pred}, if it is a
3850procedure,
3851
3852@item
3853is not in the set if @var{char_pred} is a character set.
3854@end itemize
3855@end deffn
3856
3857@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3858@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3859Return the count of the number of characters in the string
3860@var{s} which
3861
3862@itemize @bullet
3863@item
3864equals @var{char_pred}, if it is character,
3865
3866@item
be3eb25c 3867satisfies the predicate @var{char_pred}, if it is a procedure.
5676b4fa
MV
3868
3869@item
3870is in the set @var{char_pred}, if it is a character set.
3871@end itemize
3872@end deffn
3873
3874@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3875@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3876Does string @var{s1} contain string @var{s2}? Return the index
3877in @var{s1} where @var{s2} occurs as a substring, or false.
3878The optional start/end indices restrict the operation to the
3879indicated substrings.
3880@end deffn
3881
3882@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3883@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3884Does string @var{s1} contain string @var{s2}? Return the index
3885in @var{s1} where @var{s2} occurs as a substring, or false.
3886The optional start/end indices restrict the operation to the
3887indicated substrings. Character comparison is done
3888case-insensitively.
07d83abe
MV
3889@end deffn
3890
3891@node Alphabetic Case Mapping
3892@subsubsection Alphabetic Case Mapping
3893
3894These are procedures for mapping strings to their upper- or lower-case
3895equivalents, respectively, or for capitalizing strings.
3896
67af975c
MG
3897They use the basic case mapping rules for Unicode characters. No
3898special language or context rules are considered. The resulting strings
3899are guaranteed to be the same length as the input strings.
3900
3901@xref{Character Case Mapping, the @code{(ice-9
3902i18n)} module}, for locale-dependent case conversions.
3903
5676b4fa
MV
3904@deffn {Scheme Procedure} string-upcase str [start [end]]
3905@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3906@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3907Upcase every character in @code{str}.
07d83abe
MV
3908@end deffn
3909
5676b4fa
MV
3910@deffn {Scheme Procedure} string-upcase! str [start [end]]
3911@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3912@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3913Destructively upcase every character in @code{str}.
3914
07d83abe 3915@lisp
5676b4fa
MV
3916(string-upcase! y)
3917@result{} "ARRDEFG"
3918y
3919@result{} "ARRDEFG"
07d83abe
MV
3920@end lisp
3921@end deffn
3922
5676b4fa
MV
3923@deffn {Scheme Procedure} string-downcase str [start [end]]
3924@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3925@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3926Downcase every character in @var{str}.
07d83abe
MV
3927@end deffn
3928
5676b4fa
MV
3929@deffn {Scheme Procedure} string-downcase! str [start [end]]
3930@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3931@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3932Destructively downcase every character in @var{str}.
3933
07d83abe 3934@lisp
5676b4fa
MV
3935y
3936@result{} "ARRDEFG"
3937(string-downcase! y)
3938@result{} "arrdefg"
3939y
3940@result{} "arrdefg"
07d83abe
MV
3941@end lisp
3942@end deffn
3943
3944@deffn {Scheme Procedure} string-capitalize str
3945@deffnx {C Function} scm_string_capitalize (str)
3946Return a freshly allocated string with the characters in
3947@var{str}, where the first character of every word is
3948capitalized.
3949@end deffn
3950
3951@deffn {Scheme Procedure} string-capitalize! str
3952@deffnx {C Function} scm_string_capitalize_x (str)
3953Upcase the first character of every word in @var{str}
3954destructively and return @var{str}.
3955
3956@lisp
3957y @result{} "hello world"
3958(string-capitalize! y) @result{} "Hello World"
3959y @result{} "Hello World"
3960@end lisp
3961@end deffn
3962
5676b4fa
MV
3963@deffn {Scheme Procedure} string-titlecase str [start [end]]
3964@deffnx {C Function} scm_string_titlecase (str, start, end)
3965Titlecase every first character in a word in @var{str}.
3966@end deffn
07d83abe 3967
5676b4fa
MV
3968@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3969@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3970Destructively titlecase every first character in a word in
3971@var{str}.
3972@end deffn
3973
3974@node Reversing and Appending Strings
3975@subsubsection Reversing and Appending Strings
07d83abe 3976
5676b4fa
MV
3977@deffn {Scheme Procedure} string-reverse str [start [end]]
3978@deffnx {C Function} scm_string_reverse (str, start, end)
3979Reverse the string @var{str}. The optional arguments
3980@var{start} and @var{end} delimit the region of @var{str} to
3981operate on.
3982@end deffn
3983
3984@deffn {Scheme Procedure} string-reverse! str [start [end]]
3985@deffnx {C Function} scm_string_reverse_x (str, start, end)
3986Reverse the string @var{str} in-place. The optional arguments
3987@var{start} and @var{end} delimit the region of @var{str} to
3988operate on. The return value is unspecified.
3989@end deffn
07d83abe
MV
3990
3991@rnindex string-append
df0a1002 3992@deffn {Scheme Procedure} string-append arg @dots{}
07d83abe
MV
3993@deffnx {C Function} scm_string_append (args)
3994Return a newly allocated string whose characters form the
df0a1002 3995concatenation of the given strings, @var{arg} @enddots{}.
07d83abe
MV
3996
3997@example
3998(let ((h "hello "))
3999 (string-append h "world"))
4000@result{} "hello world"
4001@end example
4002@end deffn
4003
df0a1002
BT
4004@deffn {Scheme Procedure} string-append/shared arg @dots{}
4005@deffnx {C Function} scm_string_append_shared (args)
5676b4fa
MV
4006Like @code{string-append}, but the result may share memory
4007with the argument strings.
4008@end deffn
4009
4010@deffn {Scheme Procedure} string-concatenate ls
4011@deffnx {C Function} scm_string_concatenate (ls)
df0a1002
BT
4012Append the elements (which must be strings) of @var{ls} together into a
4013single string. Guaranteed to return a freshly allocated string.
5676b4fa
MV
4014@end deffn
4015
4016@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
4017@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
4018Without optional arguments, this procedure is equivalent to
4019
aba0dff5 4020@lisp
5676b4fa 4021(string-concatenate (reverse ls))
aba0dff5 4022@end lisp
5676b4fa
MV
4023
4024If the optional argument @var{final_string} is specified, it is
4025consed onto the beginning to @var{ls} before performing the
4026list-reverse and string-concatenate operations. If @var{end}
4027is given, only the characters of @var{final_string} up to index
4028@var{end} are used.
4029
4030Guaranteed to return a freshly allocated string.
4031@end deffn
4032
4033@deffn {Scheme Procedure} string-concatenate/shared ls
4034@deffnx {C Function} scm_string_concatenate_shared (ls)
4035Like @code{string-concatenate}, but the result may share memory
4036with the strings in the list @var{ls}.
4037@end deffn
4038
4039@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
4040@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
4041Like @code{string-concatenate-reverse}, but the result may
72b3aa56 4042share memory with the strings in the @var{ls} arguments.
5676b4fa
MV
4043@end deffn
4044
4045@node Mapping Folding and Unfolding
4046@subsubsection Mapping, Folding, and Unfolding
4047
4048@deffn {Scheme Procedure} string-map proc s [start [end]]
4049@deffnx {C Function} scm_string_map (proc, s, start, end)
4050@var{proc} is a char->char procedure, it is mapped over
4051@var{s}. The order in which the procedure is applied to the
4052string elements is not specified.
4053@end deffn
4054
4055@deffn {Scheme Procedure} string-map! proc s [start [end]]
4056@deffnx {C Function} scm_string_map_x (proc, s, start, end)
4057@var{proc} is a char->char procedure, it is mapped over
4058@var{s}. The order in which the procedure is applied to the
4059string elements is not specified. The string @var{s} is
4060modified in-place, the return value is not specified.
4061@end deffn
4062
4063@deffn {Scheme Procedure} string-for-each proc s [start [end]]
4064@deffnx {C Function} scm_string_for_each (proc, s, start, end)
4065@var{proc} is mapped over @var{s} in left-to-right order. The
4066return value is not specified.
4067@end deffn
4068
4069@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
4070@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
4071Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
4072right.
4073
4074For example, to change characters to alternately upper and lower case,
4075
4076@example
4077(define str (string-copy "studly"))
45867c2a
NJ
4078(string-for-each-index
4079 (lambda (i)
4080 (string-set! str i
4081 ((if (even? i) char-upcase char-downcase)
4082 (string-ref str i))))
4083 str)
2a7820f2
KR
4084str @result{} "StUdLy"
4085@end example
5676b4fa
MV
4086@end deffn
4087
4088@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4089@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4090Fold @var{kons} over the characters of @var{s}, with @var{knil}
4091as the terminating element, from left to right. @var{kons}
4092must expect two arguments: The actual character and the last
4093result of @var{kons}' application.
4094@end deffn
4095
4096@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4097@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4098Fold @var{kons} over the characters of @var{s}, with @var{knil}
4099as the terminating element, from right to left. @var{kons}
4100must expect two arguments: The actual character and the last
4101result of @var{kons}' application.
4102@end deffn
4103
4104@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4105@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4106@itemize @bullet
4107@item @var{g} is used to generate a series of @emph{seed}
4108values from the initial @var{seed}: @var{seed}, (@var{g}
4109@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4110@dots{}
4111@item @var{p} tells us when to stop -- when it returns true
4112when applied to one of these seed values.
4113@item @var{f} maps each seed value to the corresponding
4114character in the result string. These chars are assembled
4115into the string in a left-to-right order.
4116@item @var{base} is the optional initial/leftmost portion
4117of the constructed string; it default to the empty
4118string.
4119@item @var{make_final} is applied to the terminal seed
4120value (on which @var{p} returns true) to produce
4121the final/rightmost portion of the constructed string.
9a18d8d4 4122The default is nothing extra.
5676b4fa
MV
4123@end itemize
4124@end deffn
4125
4126@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4127@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4128@itemize @bullet
4129@item @var{g} is used to generate a series of @emph{seed}
4130values from the initial @var{seed}: @var{seed}, (@var{g}
4131@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4132@dots{}
4133@item @var{p} tells us when to stop -- when it returns true
4134when applied to one of these seed values.
4135@item @var{f} maps each seed value to the corresponding
4136character in the result string. These chars are assembled
4137into the string in a right-to-left order.
4138@item @var{base} is the optional initial/rightmost portion
4139of the constructed string; it default to the empty
4140string.
4141@item @var{make_final} is applied to the terminal seed
4142value (on which @var{p} returns true) to produce
4143the final/leftmost portion of the constructed string.
4144It defaults to @code{(lambda (x) )}.
4145@end itemize
4146@end deffn
4147
4148@node Miscellaneous String Operations
4149@subsubsection Miscellaneous String Operations
4150
4151@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4152@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4153This is the @emph{extended substring} procedure that implements
4154replicated copying of a substring of some string.
4155
4156@var{s} is a string, @var{start} and @var{end} are optional
4157arguments that demarcate a substring of @var{s}, defaulting to
41580 and the length of @var{s}. Replicate this substring up and
4159down index space, in both the positive and negative directions.
4160@code{xsubstring} returns the substring of this string
4161beginning at index @var{from}, and ending at @var{to}, which
4162defaults to @var{from} + (@var{end} - @var{start}).
4163@end deffn
4164
4165@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4166@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4167Exactly the same as @code{xsubstring}, but the extracted text
4168is written into the string @var{target} starting at index
4169@var{tstart}. The operation is not defined if @code{(eq?
4170@var{target} @var{s})} or these arguments share storage -- you
4171cannot copy a string on top of itself.
4172@end deffn
4173
4174@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4175@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4176Return the string @var{s1}, but with the characters
4177@var{start1} @dots{} @var{end1} replaced by the characters
4178@var{start2} @dots{} @var{end2} from @var{s2}.
4179@end deffn
4180
4181@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4182@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4183Split the string @var{s} into a list of substrings, where each
4184substring is a maximal non-empty contiguous sequence of
4185characters from the character set @var{token_set}, which
4186defaults to @code{char-set:graphic}.
4187If @var{start} or @var{end} indices are provided, they restrict
4188@code{string-tokenize} to operating on the indicated substring
4189of @var{s}.
4190@end deffn
4191
9fe717e2
AW
4192@deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4193@deffnx {C Function} scm_string_filter (char_pred, s, start, end)
08de3e24 4194Filter the string @var{s}, retaining only those characters which
a88e2a96 4195satisfy @var{char_pred}.
08de3e24
KR
4196
4197If @var{char_pred} is a procedure, it is applied to each character as
4198a predicate, if it is a character, it is tested for equality and if it
4199is a character set, it is tested for membership.
5676b4fa
MV
4200@end deffn
4201
9fe717e2
AW
4202@deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4203@deffnx {C Function} scm_string_delete (char_pred, s, start, end)
a88e2a96 4204Delete characters satisfying @var{char_pred} from @var{s}.
08de3e24
KR
4205
4206If @var{char_pred} is a procedure, it is applied to each character as
4207a predicate, if it is a character, it is tested for equality and if it
4208is a character set, it is tested for membership.
5676b4fa
MV
4209@end deffn
4210
f05bb849
AW
4211@node Representing Strings as Bytes
4212@subsubsection Representing Strings as Bytes
4213
4214Out in the cold world outside of Guile, not all strings are treated in
4215the same way. Out there there are only bytes, and there are many ways
4216of representing a strings (sequences of characters) as binary data
4217(sequences of bytes).
4218
4219As a user, usually you don't have to think about this very much. When
4220you type on your keyboard, your system encodes your keystrokes as bytes
4221according to the locale that you have configured on your computer.
4222Guile uses the locale to decode those bytes back into characters --
4223hopefully the same characters that you typed in.
4224
4225All is not so clear when dealing with a system with multiple users, such
4226as a web server. Your web server might get a request from one user for
4227data encoded in the ISO-8859-1 character set, and then another request
4228from a different user for UTF-8 data.
4229
4230@cindex iconv
4231@cindex character encoding
4232Guile provides an @dfn{iconv} module for converting between strings and
4233sequences of bytes. @xref{Bytevectors}, for more on how Guile
4234represents raw byte sequences. This module gets its name from the
4235common @sc{unix} command of the same name.
4236
5ed4ea90
AW
4237Note that often it is sufficient to just read and write strings from
4238ports instead of using these functions. To do this, specify the port
4239encoding using @code{set-port-encoding!}. @xref{Ports}, for more on
4240ports and character encodings.
4241
f05bb849
AW
4242Unlike the rest of the procedures in this section, you have to load the
4243@code{iconv} module before having access to these procedures:
4244
4245@example
4246(use-modules (ice-9 iconv))
4247@end example
4248
36929486 4249@deffn {Scheme Procedure} string->bytevector string encoding [conversion-strategy]
f05bb849
AW
4250Encode @var{string} as a sequence of bytes.
4251
4252The string will be encoded in the character set specified by the
4253@var{encoding} string. If the string has characters that cannot be
4254represented in the encoding, by default this procedure raises an
5ed4ea90
AW
4255@code{encoding-error}. Pass a @var{conversion-strategy} argument to
4256specify other behaviors.
f05bb849
AW
4257
4258The return value is a bytevector. @xref{Bytevectors}, for more on
4259bytevectors. @xref{Ports}, for more on character encodings and
4260conversion strategies.
4261@end deffn
4262
36929486 4263@deffn {Scheme Procedure} bytevector->string bytevector encoding [conversion-strategy]
f05bb849
AW
4264Decode @var{bytevector} into a string.
4265
4266The bytes will be decoded from the character set by the @var{encoding}
4267string. If the bytes do not form a valid encoding, by default this
5ed4ea90
AW
4268procedure raises an @code{decoding-error}. As with
4269@code{string->bytevector}, pass the optional @var{conversion-strategy}
4270argument to modify this behavior. @xref{Ports}, for more on character
4271encodings and conversion strategies.
f05bb849
AW
4272@end deffn
4273
36929486 4274@deffn {Scheme Procedure} call-with-output-encoded-string encoding proc [conversion-strategy]
f05bb849
AW
4275Like @code{call-with-output-string}, but instead of returning a string,
4276returns a encoding of the string according to @var{encoding}, as a
4277bytevector. This procedure can be more efficient than collecting a
4278string and then converting it via @code{string->bytevector}.
4279@end deffn
4280
91210d62
MV
4281@node Conversion to/from C
4282@subsubsection Conversion to/from C
4283
4284When creating a Scheme string from a C string or when converting a
4285Scheme string to a C string, the concept of character encoding becomes
4286important.
4287
4288In C, a string is just a sequence of bytes, and the character encoding
4289describes the relation between these bytes and the actual characters
f05bb849
AW
4290that make up the string. For Scheme strings, character encoding is not
4291an issue (most of the time), since in Scheme you usually treat strings
4292as character sequences, not byte sequences.
91210d62 4293
67af975c
MG
4294Converting to C and converting from C each have their own challenges.
4295
4296When converting from C to Scheme, it is important that the sequence of
4297bytes in the C string be valid with respect to its encoding. ASCII
4298strings, for example, can't have any bytes greater than 127. An ASCII
4299byte greater than 127 is considered @emph{ill-formed} and cannot be
4300converted into a Scheme character.
4301
4302Problems can occur in the reverse operation as well. Not all character
4303encodings can hold all possible Scheme characters. Some encodings, like
4304ASCII for example, can only describe a small subset of all possible
4305characters. So, when converting to C, one must first decide what to do
4306with Scheme characters that can't be represented in the C string.
91210d62 4307
c88453e8
MV
4308Converting a Scheme string to a C string will often allocate fresh
4309memory to hold the result. You must take care that this memory is
4310properly freed eventually. In many cases, this can be achieved by
661ae7ab
MV
4311using @code{scm_dynwind_free} inside an appropriate dynwind context,
4312@xref{Dynamic Wind}.
91210d62
MV
4313
4314@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4315@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
67af975c 4316Creates a new Scheme string that has the same contents as @var{str} when
95f5e303 4317interpreted in the character encoding of the current locale.
91210d62
MV
4318
4319For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4320
4321For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4322@var{str} in bytes, and @var{str} does not need to be null-terminated.
4323If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4324null-terminated and the real length will be found with @code{strlen}.
67af975c
MG
4325
4326If the C string is ill-formed, an error will be raised.
ce3ce21c
MW
4327
4328Note that these functions should @emph{not} be used to convert C string
4329constants, because there is no guarantee that the current locale will
a71e79c3
MW
4330match that of the execution character set, used for string and character
4331constants. Most modern C compilers use UTF-8 by default, so to convert
4332C string constants we recommend @code{scm_from_utf8_string}.
91210d62
MV
4333@end deftypefn
4334
4335@deftypefn {C Function} SCM scm_take_locale_string (char *str)
4336@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4337Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4338respectively, but also frees @var{str} with @code{free} eventually.
4339Thus, you can use this function when you would free @var{str} anyway
4340immediately after creating the Scheme string. In certain cases, Guile
4341can then use @var{str} directly as its internal representation.
4342@end deftypefn
4343
4846ae2c
KR
4344@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4345@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
95f5e303
AW
4346Returns a C string with the same contents as @var{str} in the character
4347encoding of the current locale. The C string must be freed with
4348@code{free} eventually, maybe by using @code{scm_dynwind_free},
67af975c 4349@xref{Dynamic Wind}.
91210d62
MV
4350
4351For @code{scm_to_locale_string}, the returned string is
4352null-terminated and an error is signalled when @var{str} contains
4353@code{#\nul} characters.
4354
4355For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4356@var{str} might contain @code{#\nul} characters and the length of the
4357returned string in bytes is stored in @code{*@var{lenp}}. The
4358returned string will not be null-terminated in this case. If
4359@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4360@code{scm_to_locale_string}.
67af975c 4361
95f5e303
AW
4362If a character in @var{str} cannot be represented in the character
4363encoding of the current locale, the default port conversion strategy is
4364used. @xref{Ports}, for more on conversion strategies.
4365
4366If the conversion strategy is @code{error}, an error will be raised. If
4367it is @code{substitute}, a replacement character, such as a question
4368mark, will be inserted in its place. If it is @code{escape}, a hex
4369escape will be inserted in its place.
91210d62
MV
4370@end deftypefn
4371
4372@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4373Puts @var{str} as a C string in the current locale encoding into the
4374memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4375@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4376more than that. No terminating @code{'\0'} will be stored.
4377
4378The return value of @code{scm_to_locale_stringbuf} is the number of
4379bytes that are needed for all of @var{str}, regardless of whether
4380@var{buf} was large enough to hold them. Thus, when the return value
4381is larger than @var{max_len}, only @var{max_len} bytes have been
4382stored and you probably need to try again with a larger buffer.
4383@end deftypefn
cf313a94
MG
4384
4385For most situations, string conversion should occur using the current
4386locale, such as with the functions above. But there may be cases where
4387one wants to convert strings from a character encoding other than the
4388locale's character encoding. For these cases, the lower-level functions
4389@code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4390functions should seldom be necessary if one is properly using locales.
4391
4392@deftp {C Type} scm_t_string_failed_conversion_handler
4393This is an enumerated type that can take one of three values:
4394@code{SCM_FAILED_CONVERSION_ERROR},
4395@code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4396@code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4397a strategy for handling characters that cannot be converted to or from a
4398given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4399that a conversion should throw an error if some characters cannot be
4400converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4401conversion should replace unconvertable characters with the question
4402mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4403requests that a conversion should replace an unconvertable character
4404with an escape sequence.
4405
4406While all three strategies apply when converting Scheme strings to C,
4407only @code{SCM_FAILED_CONVERSION_ERROR} and
4408@code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4409strings to Scheme.
4410@end deftp
4411
4412@deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4413This function returns a newly allocated C string from the Guile string
68a78738
MW
4414@var{str}. The length of the returned string in bytes will be returned in
4415@var{lenp}. The character encoding of the C string is passed as the ASCII,
cf313a94
MG
4416null-terminated C string @var{encoding}. The @var{handler} parameter
4417gives a strategy for dealing with characters that cannot be converted
4418into @var{encoding}.
4419
68a78738 4420If @var{lenp} is @code{NULL}, this function will return a null-terminated C
cf313a94
MG
4421string. It will throw an error if the string contains a null
4422character.
f05bb849 4423
5ed4ea90 4424The Scheme interface to this function is @code{string->bytevector}, from the
f05bb849 4425@code{ice-9 iconv} module. @xref{Representing Strings as Bytes}.
cf313a94
MG
4426@end deftypefn
4427
4428@deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4429This function returns a scheme string from the C string @var{str}. The
c3d8450c 4430length in bytes of the C string is input as @var{len}. The encoding of the C
cf313a94
MG
4431string is passed as the ASCII, null-terminated C string @code{encoding}.
4432The @var{handler} parameters suggests a strategy for dealing with
4433unconvertable characters.
f05bb849 4434
5ed4ea90 4435The Scheme interface to this function is @code{bytevector->string}.
f05bb849 4436@xref{Representing Strings as Bytes}.
cf313a94
MG
4437@end deftypefn
4438
ce3ce21c
MW
4439The following conversion functions are provided as a convenience for the
4440most commonly used encodings.
4441
4442@deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4443@deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4444@deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4445Return a scheme string from the null-terminated C string @var{str},
4446which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4447be used to convert hard-coded C string constants into Scheme strings.
4448@end deftypefn
cf313a94
MG
4449
4450@deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
647dc1ac
LC
4451@deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4452@deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4453Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4454UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4455of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4456@code{scm_from_utf8_stringn}; it is the number of elements (code points)
4457in @var{str} in the case of @code{scm_from_utf32_stringn}.
cf313a94
MG
4458@end deftypefn
4459
647dc1ac
LC
4460@deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4461@deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4462@deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4463Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4464from Scheme string @var{str}. An error is thrown when @var{str}
68a78738 4465cannot be converted to the specified encoding. If @var{lenp} is
cf313a94
MG
4466@code{NULL}, the returned C string will be null terminated, and an error
4467will be thrown if the C string would otherwise contain null
68a78738
MW
4468characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
4469and the length of the returned string is returned in @var{lenp}. The length
4470returned is the number of bytes for @code{scm_to_latin1_stringn} and
4471@code{scm_to_utf8_stringn}; it is the number of elements (code points)
4472for @code{scm_to_utf32_stringn}.
cf313a94 4473@end deftypefn
07d83abe 4474
5b6b22e8
MG
4475@node String Internals
4476@subsubsection String Internals
4477
4478Guile stores each string in memory as a contiguous array of Unicode code
4479points along with an associated set of attributes. If all of the code
4480points of a string have an integer range between 0 and 255 inclusive,
4481the code point array is stored as one byte per code point: it is stored
4482as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4483string has an integer value greater that 255, the code point array is
4484stored as four bytes per code point: it is stored as a UTF-32 string.
4485
4486Conversion between the one-byte-per-code-point and
4487four-bytes-per-code-point representations happens automatically as
4488necessary.
4489
4490No API is provided to set the internal representation of strings;
4491however, there are pair of procedures available to query it. These are
4492debugging procedures. Using them in production code is discouraged,
4493since the details of Guile's internal representation of strings may
4494change from release to release.
4495
4496@deffn {Scheme Procedure} string-bytes-per-char str
4497@deffnx {C Function} scm_string_bytes_per_char (str)
4498Return the number of bytes used to encode a Unicode code point in string
4499@var{str}. The result is one or four.
4500@end deffn
4501
4502@deffn {Scheme Procedure} %string-dump str
4503@deffnx {C Function} scm_sys_string_dump (str)
4504Returns an association list containing debugging information for
4505@var{str}. The association list has the following entries.
4506@table @code
4507
4508@item string
4509The string itself.
4510
4511@item start
4512The start index of the string into its stringbuf
4513
4514@item length
4515The length of the string
4516
4517@item shared
4518If this string is a substring, it returns its
4519parent string. Otherwise, it returns @code{#f}
4520
4521@item read-only
4522@code{#t} if the string is read-only
4523
4524@item stringbuf-chars
4525A new string containing this string's stringbuf's characters
4526
4527@item stringbuf-length
4528The number of characters in this stringbuf
4529
4530@item stringbuf-shared
4531@code{#t} if this stringbuf is shared
4532
4533@item stringbuf-wide
4534@code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4535or @code{#f} if they are stored in an 8-bit buffer
4536@end table
4537@end deffn
4538
4539
b242715b
LC
4540@node Bytevectors
4541@subsection Bytevectors
4542
4543@cindex bytevector
4544@cindex R6RS
4545
07d22c02 4546A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
b242715b 4547module provides the programming interface specified by the
5fa2deb3 4548@uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
b242715b
LC
4549Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4550interpret their contents in a number of ways: bytevector contents can be
4551accessed as signed or unsigned integer of various sizes and endianness,
4552as IEEE-754 floating point numbers, or as strings. It is a useful tool
4553to encode and decode binary data.
4554
4555The R6RS (Section 4.3.4) specifies an external representation for
4556bytevectors, whereby the octets (integers in the range 0--255) contained
4557in the bytevector are represented as a list prefixed by @code{#vu8}:
4558
4559@lisp
4560#vu8(1 53 204)
4561@end lisp
4562
4563denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4564string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4565they do not need to be quoted:
4566
4567@lisp
4568#vu8(1 53 204)
4569@result{} #vu8(1 53 204)
4570@end lisp
4571
4572Bytevectors can be used with the binary input/output primitives of the
4573R6RS (@pxref{R6RS I/O Ports}).
4574
4575@menu
4576* Bytevector Endianness:: Dealing with byte order.
4577* Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4578* Bytevectors as Integers:: Interpreting bytes as integers.
4579* Bytevectors and Integer Lists:: Converting to/from an integer list.
4580* Bytevectors as Floats:: Interpreting bytes as real numbers.
4581* Bytevectors as Strings:: Interpreting bytes as Unicode strings.
118ff892 4582* Bytevectors as Arrays:: Guile extension to the bytevector API.
27219b32 4583* Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
b242715b
LC
4584@end menu
4585
4586@node Bytevector Endianness
4587@subsubsection Endianness
4588
4589@cindex endianness
4590@cindex byte order
4591@cindex word order
4592
4593Some of the following procedures take an @var{endianness} parameter.
5fa2deb3
AW
4594The @dfn{endianness} is defined as the order of bytes in multi-byte
4595numbers: numbers encoded in @dfn{big endian} have their most
4596significant bytes written first, whereas numbers encoded in
4597@dfn{little endian} have their least significant bytes
4598first@footnote{Big-endian and little-endian are the most common
4599``endiannesses'', but others do exist. For instance, the GNU MP
4600library allows @dfn{word order} to be specified independently of
4601@dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4602Multiple Precision Arithmetic Library Manual}).}.
4603
4604Little-endian is the native endianness of the IA32 architecture and
4605its derivatives, while big-endian is native to SPARC and PowerPC,
4606among others. The @code{native-endianness} procedure returns the
4607native endianness of the machine it runs on.
b242715b
LC
4608
4609@deffn {Scheme Procedure} native-endianness
4610@deffnx {C Function} scm_native_endianness ()
4611Return a value denoting the native endianness of the host machine.
4612@end deffn
4613
4614@deffn {Scheme Macro} endianness symbol
4615Return an object denoting the endianness specified by @var{symbol}. If
5fa2deb3
AW
4616@var{symbol} is neither @code{big} nor @code{little} then an error is
4617raised at expand-time.
b242715b
LC
4618@end deffn
4619
4620@defvr {C Variable} scm_endianness_big
4621@defvrx {C Variable} scm_endianness_little
5fa2deb3 4622The objects denoting big- and little-endianness, respectively.
b242715b
LC
4623@end defvr
4624
4625
4626@node Bytevector Manipulation
4627@subsubsection Manipulating Bytevectors
4628
4629Bytevectors can be created, copied, and analyzed with the following
404bb5f8 4630procedures and C functions.
b242715b
LC
4631
4632@deffn {Scheme Procedure} make-bytevector len [fill]
4633@deffnx {C Function} scm_make_bytevector (len, fill)
2d34e924 4634@deffnx {C Function} scm_c_make_bytevector (size_t len)
b242715b 4635Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
d64fc8b0
LC
4636is given, fill it with @var{fill}; @var{fill} must be in the range
4637[-128,255].
b242715b
LC
4638@end deffn
4639
4640@deffn {Scheme Procedure} bytevector? obj
4641@deffnx {C Function} scm_bytevector_p (obj)
4642Return true if @var{obj} is a bytevector.
4643@end deffn
4644
404bb5f8
LC
4645@deftypefn {C Function} int scm_is_bytevector (SCM obj)
4646Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4647@end deftypefn
4648
b242715b
LC
4649@deffn {Scheme Procedure} bytevector-length bv
4650@deffnx {C Function} scm_bytevector_length (bv)
4651Return the length in bytes of bytevector @var{bv}.
4652@end deffn
4653
404bb5f8
LC
4654@deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4655Likewise, return the length in bytes of bytevector @var{bv}.
4656@end deftypefn
4657
b242715b
LC
4658@deffn {Scheme Procedure} bytevector=? bv1 bv2
4659@deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4660Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4661length and contents.
4662@end deffn
4663
4664@deffn {Scheme Procedure} bytevector-fill! bv fill
4665@deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4666Fill bytevector @var{bv} with @var{fill}, a byte.
4667@end deffn
4668
4669@deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4670@deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4671Copy @var{len} bytes from @var{source} into @var{target}, starting
4672reading from @var{source-start} (a positive index within @var{source})
80719649
LC
4673and start writing at @var{target-start}. It is permitted for the
4674@var{source} and @var{target} regions to overlap.
b242715b
LC
4675@end deffn
4676
4677@deffn {Scheme Procedure} bytevector-copy bv
4678@deffnx {C Function} scm_bytevector_copy (bv)
4679Return a newly allocated copy of @var{bv}.
4680@end deffn
4681
404bb5f8
LC
4682@deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4683Return the byte at @var{index} in bytevector @var{bv}.
4684@end deftypefn
4685
4686@deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4687Set the byte at @var{index} in @var{bv} to @var{value}.
4688@end deftypefn
4689
b242715b
LC
4690Low-level C macros are available. They do not perform any
4691type-checking; as such they should be used with care.
4692
4693@deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4694Return the length in bytes of bytevector @var{bv}.
4695@end deftypefn
4696
4697@deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4698Return a pointer to the contents of bytevector @var{bv}.
4699@end deftypefn
4700
4701
4702@node Bytevectors as Integers
4703@subsubsection Interpreting Bytevector Contents as Integers
4704
4705The contents of a bytevector can be interpreted as a sequence of
4706integers of any given size, sign, and endianness.
4707
4708@lisp
4709(let ((bv (make-bytevector 4)))
4710 (bytevector-u8-set! bv 0 #x12)
4711 (bytevector-u8-set! bv 1 #x34)
4712 (bytevector-u8-set! bv 2 #x56)
4713 (bytevector-u8-set! bv 3 #x78)
4714
4715 (map (lambda (number)
4716 (number->string number 16))
4717 (list (bytevector-u8-ref bv 0)
4718 (bytevector-u16-ref bv 0 (endianness big))
4719 (bytevector-u32-ref bv 0 (endianness little)))))
4720
4721@result{} ("12" "1234" "78563412")
4722@end lisp
4723
4724The most generic procedures to interpret bytevector contents as integers
4725are described below.
4726
4727@deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
b242715b 4728@deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4827afeb
NJ
4729Return the @var{size}-byte long unsigned integer at index @var{index} in
4730@var{bv}, decoded according to @var{endianness}.
4731@end deffn
4732
4733@deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
b242715b 4734@deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4827afeb
NJ
4735Return the @var{size}-byte long signed integer at index @var{index} in
4736@var{bv}, decoded according to @var{endianness}.
b242715b
LC
4737@end deffn
4738
4739@deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
b242715b 4740@deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4827afeb
NJ
4741Set the @var{size}-byte long unsigned integer at @var{index} to
4742@var{value}, encoded according to @var{endianness}.
4743@end deffn
4744
4745@deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
b242715b 4746@deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4827afeb
NJ
4747Set the @var{size}-byte long signed integer at @var{index} to
4748@var{value}, encoded according to @var{endianness}.
b242715b
LC
4749@end deffn
4750
4751The following procedures are similar to the ones above, but specialized
4752to a given integer size:
4753
4754@deffn {Scheme Procedure} bytevector-u8-ref bv index
4755@deffnx {Scheme Procedure} bytevector-s8-ref bv index
4756@deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4757@deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4758@deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4759@deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4760@deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4761@deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4762@deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4763@deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4764@deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4765@deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4766@deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4767@deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4768@deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4769@deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4770Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
477116, 32 or 64) from @var{bv} at @var{index}, decoded according to
4772@var{endianness}.
4773@end deffn
4774
4775@deffn {Scheme Procedure} bytevector-u8-set! bv index value
4776@deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4777@deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4778@deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4779@deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4780@deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4781@deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4782@deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4783@deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4784@deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4785@deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4786@deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4787@deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4788@deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4789@deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4790@deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4791Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
47928, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4793@var{endianness}.
4794@end deffn
4795
4796Finally, a variant specialized for the host's endianness is available
4797for each of these functions (with the exception of the @code{u8}
4798accessors, for obvious reasons):
4799
4800@deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4801@deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4802@deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4803@deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4804@deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4805@deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4806@deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4807@deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4808@deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4809@deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4810@deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4811@deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4812Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
481316, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4814host's native endianness.
4815@end deffn
4816
4817@deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4818@deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4819@deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4820@deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4821@deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4822@deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4823@deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4824@deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4825@deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4826@deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4827@deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4828@deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4829Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
48308, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4831host's native endianness.
4832@end deffn
4833
4834
4835@node Bytevectors and Integer Lists
4836@subsubsection Converting Bytevectors to/from Integer Lists
4837
4838Bytevector contents can readily be converted to/from lists of signed or
4839unsigned integers:
4840
4841@lisp
4842(bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4843 (endianness little) 2)
4844@result{} (-1 -1)
4845@end lisp
4846
4847@deffn {Scheme Procedure} bytevector->u8-list bv
4848@deffnx {C Function} scm_bytevector_to_u8_list (bv)
4849Return a newly allocated list of unsigned 8-bit integers from the
4850contents of @var{bv}.
4851@end deffn
4852
4853@deffn {Scheme Procedure} u8-list->bytevector lst
4854@deffnx {C Function} scm_u8_list_to_bytevector (lst)
4855Return a newly allocated bytevector consisting of the unsigned 8-bit
4856integers listed in @var{lst}.
4857@end deffn
4858
4859@deffn {Scheme Procedure} bytevector->uint-list bv endianness size
b242715b 4860@deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4827afeb
NJ
4861Return a list of unsigned integers of @var{size} bytes representing the
4862contents of @var{bv}, decoded according to @var{endianness}.
4863@end deffn
4864
4865@deffn {Scheme Procedure} bytevector->sint-list bv endianness size
b242715b 4866@deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4827afeb
NJ
4867Return a list of signed integers of @var{size} bytes representing the
4868contents of @var{bv}, decoded according to @var{endianness}.
b242715b
LC
4869@end deffn
4870
4871@deffn {Scheme Procedure} uint-list->bytevector lst endianness size
b242715b 4872@deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4827afeb
NJ
4873Return a new bytevector containing the unsigned integers listed in
4874@var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4875@end deffn
4876
4877@deffn {Scheme Procedure} sint-list->bytevector lst endianness size
b242715b 4878@deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4827afeb
NJ
4879Return a new bytevector containing the signed integers listed in
4880@var{lst} and encoded on @var{size} bytes according to @var{endianness}.
b242715b
LC
4881@end deffn
4882
4883@node Bytevectors as Floats
4884@subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4885
4886@cindex IEEE-754 floating point numbers
4887
4888Bytevector contents can also be accessed as IEEE-754 single- or
4889double-precision floating point numbers (respectively 32 and 64-bit
4890long) using the procedures described here.
4891
4892@deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4893@deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4894@deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4895@deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4896Return the IEEE-754 single-precision floating point number from @var{bv}
4897at @var{index} according to @var{endianness}.
4898@end deffn
4899
4900@deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4901@deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4902@deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4903@deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4904Store real number @var{value} in @var{bv} at @var{index} according to
4905@var{endianness}.
4906@end deffn
4907
4908Specialized procedures are also available:
4909
4910@deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4911@deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4912@deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4913@deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4914Return the IEEE-754 single-precision floating point number from @var{bv}
4915at @var{index} according to the host's native endianness.
4916@end deffn
4917
4918@deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4919@deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4920@deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4921@deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4922Store real number @var{value} in @var{bv} at @var{index} according to
4923the host's native endianness.
4924@end deffn
4925
4926
4927@node Bytevectors as Strings
4928@subsubsection Interpreting Bytevector Contents as Unicode Strings
4929
4930@cindex Unicode string encoding
4931
4932Bytevector contents can also be interpreted as Unicode strings encoded
d3b5628c 4933in one of the most commonly available encoding formats.
f05bb849 4934@xref{Representing Strings as Bytes}, for a more generic interface.
b242715b
LC
4935
4936@lisp
4937(utf8->string (u8-list->bytevector '(99 97 102 101)))
4938@result{} "cafe"
4939
4940(string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4941@result{} #vu8(99 97 102 195 169)
4942@end lisp
4943
4944@deffn {Scheme Procedure} string->utf8 str
524aa8ae
LC
4945@deffnx {Scheme Procedure} string->utf16 str [endianness]
4946@deffnx {Scheme Procedure} string->utf32 str [endianness]
b242715b 4947@deffnx {C Function} scm_string_to_utf8 (str)
524aa8ae
LC
4948@deffnx {C Function} scm_string_to_utf16 (str, endianness)
4949@deffnx {C Function} scm_string_to_utf32 (str, endianness)
b242715b 4950Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
524aa8ae
LC
4951UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4952@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4953it defaults to big endian.
b242715b
LC
4954@end deffn
4955
4956@deffn {Scheme Procedure} utf8->string utf
524aa8ae
LC
4957@deffnx {Scheme Procedure} utf16->string utf [endianness]
4958@deffnx {Scheme Procedure} utf32->string utf [endianness]
b242715b 4959@deffnx {C Function} scm_utf8_to_string (utf)
524aa8ae
LC
4960@deffnx {C Function} scm_utf16_to_string (utf, endianness)
4961@deffnx {C Function} scm_utf32_to_string (utf, endianness)
b242715b 4962Return a newly allocated string that contains from the UTF-8-, UTF-16-,
524aa8ae
LC
4963or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4964@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4965it defaults to big endian.
b242715b
LC
4966@end deffn
4967
118ff892
AW
4968@node Bytevectors as Arrays
4969@subsubsection Accessing Bytevectors with the Array API
438974d0
LC
4970
4971As an extension to the R6RS, Guile allows bytevectors to be manipulated
118ff892
AW
4972with the @dfn{array} procedures (@pxref{Arrays}). When using these
4973APIs, bytes are accessed one at a time as 8-bit unsigned integers:
438974d0
LC
4974
4975@example
4976(define bv #vu8(0 1 2 3))
4977
118ff892 4978(array? bv)
438974d0
LC
4979@result{} #t
4980
118ff892
AW
4981(array-rank bv)
4982@result{} 1
4983
4984(array-ref bv 2)
438974d0
LC
4985@result{} 2
4986
118ff892
AW
4987;; Note the different argument order on array-set!.
4988(array-set! bv 77 2)
438974d0
LC
4989(array-ref bv 2)
4990@result{} 77
4991
4992(array-type bv)
4993@result{} vu8
4994@end example
4995
b242715b 4996
27219b32
AW
4997@node Bytevectors as Uniform Vectors
4998@subsubsection Accessing Bytevectors with the SRFI-4 API
4999
5000Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
5001Bytevectors}, for more information.
5002
5003
07d83abe
MV
5004@node Symbols
5005@subsection Symbols
5006@tpindex Symbols
5007
5008Symbols in Scheme are widely used in three ways: as items of discrete
5009data, as lookup keys for alists and hash tables, and to denote variable
5010references.
5011
5012A @dfn{symbol} is similar to a string in that it is defined by a
5013sequence of characters. The sequence of characters is known as the
5014symbol's @dfn{name}. In the usual case --- that is, where the symbol's
5015name doesn't include any characters that could be confused with other
5016elements of Scheme syntax --- a symbol is written in a Scheme program by
5017writing the sequence of characters that make up the name, @emph{without}
5018any quotation marks or other special syntax. For example, the symbol
5019whose name is ``multiply-by-2'' is written, simply:
5020
5021@lisp
5022multiply-by-2
5023@end lisp
5024
5025Notice how this differs from a @emph{string} with contents
5026``multiply-by-2'', which is written with double quotation marks, like
5027this:
5028
5029@lisp
5030"multiply-by-2"
5031@end lisp
5032
5033Looking beyond how they are written, symbols are different from strings
5034in two important respects.
5035
5036The first important difference is uniqueness. If the same-looking
5037string is read twice from two different places in a program, the result
5038is two @emph{different} string objects whose contents just happen to be
5039the same. If, on the other hand, the same-looking symbol is read twice
5040from two different places in a program, the result is the @emph{same}
5041symbol object both times.
5042
5043Given two read symbols, you can use @code{eq?} to test whether they are
5044the same (that is, have the same name). @code{eq?} is the most
5045efficient comparison operator in Scheme, and comparing two symbols like
5046this is as fast as comparing, for example, two numbers. Given two
5047strings, on the other hand, you must use @code{equal?} or
5048@code{string=?}, which are much slower comparison operators, to
5049determine whether the strings have the same contents.
5050
5051@lisp
5052(define sym1 (quote hello))
5053(define sym2 (quote hello))
5054(eq? sym1 sym2) @result{} #t
5055
5056(define str1 "hello")
5057(define str2 "hello")
5058(eq? str1 str2) @result{} #f
5059(equal? str1 str2) @result{} #t
5060@end lisp
5061
5062The second important difference is that symbols, unlike strings, are not
5063self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5064example above: @code{(quote hello)} evaluates to the symbol named
5065"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5066symbol named "hello" and evaluated as a variable reference @dots{} about
5067which more below (@pxref{Symbol Variables}).
5068
5069@menu
5070* Symbol Data:: Symbols as discrete data.
5071* Symbol Keys:: Symbols as lookup keys.
5072* Symbol Variables:: Symbols as denoting variables.
5073* Symbol Primitives:: Operations related to symbols.
5074* Symbol Props:: Function slots and property lists.
5075* Symbol Read Syntax:: Extended read syntax for symbols.
5076* Symbol Uninterned:: Uninterned symbols.
5077@end menu
5078
5079
5080@node Symbol Data
5081@subsubsection Symbols as Discrete Data
5082
5083Numbers and symbols are similar to the extent that they both lend
5084themselves to @code{eq?} comparison. But symbols are more descriptive
5085than numbers, because a symbol's name can be used directly to describe
5086the concept for which that symbol stands.
5087
5088For example, imagine that you need to represent some colours in a
5089computer program. Using numbers, you would have to choose arbitrarily
5090some mapping between numbers and colours, and then take care to use that
5091mapping consistently:
5092
5093@lisp
5094;; 1=red, 2=green, 3=purple
5095
5096(if (eq? (colour-of car) 1)
5097 ...)
5098@end lisp
5099
5100@noindent
5101You can make the mapping more explicit and the code more readable by
5102defining constants:
5103
5104@lisp
5105(define red 1)
5106(define green 2)
5107(define purple 3)
5108
5109(if (eq? (colour-of car) red)
5110 ...)
5111@end lisp
5112
5113@noindent
5114But the simplest and clearest approach is not to use numbers at all, but
5115symbols whose names specify the colours that they refer to:
5116
5117@lisp
5118(if (eq? (colour-of car) 'red)
5119 ...)
5120@end lisp
5121
5122The descriptive advantages of symbols over numbers increase as the set
5123of concepts that you want to describe grows. Suppose that a car object
5124can have other properties as well, such as whether it has or uses:
5125
5126@itemize @bullet
5127@item
5128automatic or manual transmission
5129@item
5130leaded or unleaded fuel
5131@item
5132power steering (or not).
5133@end itemize
5134
5135@noindent
5136Then a car's combined property set could be naturally represented and
5137manipulated as a list of symbols:
5138
5139@lisp
5140(properties-of car1)
5141@result{}
5142(red manual unleaded power-steering)
5143
5144(if (memq 'power-steering (properties-of car1))
5145 (display "Unfit people can drive this car.\n")
5146 (display "You'll need strong arms to drive this car!\n"))
5147@print{}
5148Unfit people can drive this car.
5149@end lisp
5150
5151Remember, the fundamental property of symbols that we are relying on
5152here is that an occurrence of @code{'red} in one part of a program is an
5153@emph{indistinguishable} symbol from an occurrence of @code{'red} in
5154another part of a program; this means that symbols can usefully be
5155compared using @code{eq?}. At the same time, symbols have naturally
5156descriptive names. This combination of efficiency and descriptive power
5157makes them ideal for use as discrete data.
5158
5159
5160@node Symbol Keys
5161@subsubsection Symbols as Lookup Keys
5162
5163Given their efficiency and descriptive power, it is natural to use
5164symbols as the keys in an association list or hash table.
5165
5166To illustrate this, consider a more structured representation of the car
5167properties example from the preceding subsection. Rather than
5168mixing all the properties up together in a flat list, we could use an
5169association list like this:
5170
5171@lisp
5172(define car1-properties '((colour . red)
5173 (transmission . manual)
5174 (fuel . unleaded)
5175 (steering . power-assisted)))
5176@end lisp
5177
5178Notice how this structure is more explicit and extensible than the flat
5179list. For example it makes clear that @code{manual} refers to the
5180transmission rather than, say, the windows or the locking of the car.
5181It also allows further properties to use the same symbols among their
5182possible values without becoming ambiguous:
5183
5184@lisp
5185(define car1-properties '((colour . red)
5186 (transmission . manual)
5187 (fuel . unleaded)
5188 (steering . power-assisted)
5189 (seat-colour . red)
5190 (locking . manual)))
5191@end lisp
5192
5193With a representation like this, it is easy to use the efficient
5194@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5195extract or change individual pieces of information:
5196
5197@lisp
5198(assq-ref car1-properties 'fuel) @result{} unleaded
5199(assq-ref car1-properties 'transmission) @result{} manual
5200
5201(assq-set! car1-properties 'seat-colour 'black)
5202@result{}
5203((colour . red)
5204 (transmission . manual)
5205 (fuel . unleaded)
5206 (steering . power-assisted)
5207 (seat-colour . black)
5208 (locking . manual)))
5209@end lisp
5210
5211Hash tables also have keys, and exactly the same arguments apply to the
5212use of symbols in hash tables as in association lists. The hash value
5213that Guile uses to decide where to add a symbol-keyed entry to a hash
5214table can be obtained by calling the @code{symbol-hash} procedure:
5215
5216@deffn {Scheme Procedure} symbol-hash symbol
5217@deffnx {C Function} scm_symbol_hash (symbol)
5218Return a hash value for @var{symbol}.
5219@end deffn
5220
5221See @ref{Hash Tables} for information about hash tables in general, and
5222for why you might choose to use a hash table rather than an association
5223list.
5224
5225
5226@node Symbol Variables
5227@subsubsection Symbols as Denoting Variables
5228
5229When an unquoted symbol in a Scheme program is evaluated, it is
5230interpreted as a variable reference, and the result of the evaluation is
5231the appropriate variable's value.
5232
5233For example, when the expression @code{(string-length "abcd")} is read
5234and evaluated, the sequence of characters @code{string-length} is read
5235as the symbol whose name is "string-length". This symbol is associated
5236with a variable whose value is the procedure that implements string
5237length calculation. Therefore evaluation of the @code{string-length}
5238symbol results in that procedure.
5239
5240The details of the connection between an unquoted symbol and the
5241variable to which it refers are explained elsewhere. See @ref{Binding
5242Constructs}, for how associations between symbols and variables are
5243created, and @ref{Modules}, for how those associations are affected by
5244Guile's module system.
5245
5246
5247@node Symbol Primitives
5248@subsubsection Operations Related to Symbols
5249
5250Given any Scheme value, you can determine whether it is a symbol using
5251the @code{symbol?} primitive:
5252
5253@rnindex symbol?
5254@deffn {Scheme Procedure} symbol? obj
5255@deffnx {C Function} scm_symbol_p (obj)
5256Return @code{#t} if @var{obj} is a symbol, otherwise return
5257@code{#f}.
5258@end deffn
5259
c9dc8c6c
MV
5260@deftypefn {C Function} int scm_is_symbol (SCM val)
5261Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5262@end deftypefn
5263
07d83abe
MV
5264Once you know that you have a symbol, you can obtain its name as a
5265string by calling @code{symbol->string}. Note that Guile differs by
5266default from R5RS on the details of @code{symbol->string} as regards
5267case-sensitivity:
5268
5269@rnindex symbol->string
5270@deffn {Scheme Procedure} symbol->string s
5271@deffnx {C Function} scm_symbol_to_string (s)
5272Return the name of symbol @var{s} as a string. By default, Guile reads
5273symbols case-sensitively, so the string returned will have the same case
5274variation as the sequence of characters that caused @var{s} to be
5275created.
5276
5277If Guile is set to read symbols case-insensitively (as specified by
5278R5RS), and @var{s} comes into being as part of a literal expression
5279(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5280by a call to the @code{read} or @code{string-ci->symbol} procedures,
5281Guile converts any alphabetic characters in the symbol's name to
5282lower case before creating the symbol object, so the string returned
5283here will be in lower case.
5284
5285If @var{s} was created by @code{string->symbol}, the case of characters
5286in the string returned will be the same as that in the string that was
5287passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5288setting at the time @var{s} was created.
5289
5290It is an error to apply mutation procedures like @code{string-set!} to
5291strings returned by this procedure.
5292@end deffn
5293
5294Most symbols are created by writing them literally in code. However it
5295is also possible to create symbols programmatically using the following
c5fc8f8c
JG
5296procedures:
5297
5298@deffn {Scheme Procedure} symbol char@dots{}
5299@rnindex symbol
5300Return a newly allocated symbol made from the given character arguments.
5301
5302@example
5303(symbol #\x #\y #\z) @result{} xyz
5304@end example
5305@end deffn
5306
5307@deffn {Scheme Procedure} list->symbol lst
5308@rnindex list->symbol
5309Return a newly allocated symbol made from a list of characters.
5310
5311@example
5312(list->symbol '(#\a #\b #\c)) @result{} abc
5313@end example
5314@end deffn
5315
5316@rnindex symbol-append
df0a1002 5317@deffn {Scheme Procedure} symbol-append arg @dots{}
c5fc8f8c 5318Return a newly allocated symbol whose characters form the
df0a1002 5319concatenation of the given symbols, @var{arg} @enddots{}.
c5fc8f8c
JG
5320
5321@example
5322(let ((h 'hello))
5323 (symbol-append h 'world))
5324@result{} helloworld
5325@end example
5326@end deffn
07d83abe
MV
5327
5328@rnindex string->symbol
5329@deffn {Scheme Procedure} string->symbol string
5330@deffnx {C Function} scm_string_to_symbol (string)
5331Return the symbol whose name is @var{string}. This procedure can create
5332symbols with names containing special characters or letters in the
5333non-standard case, but it is usually a bad idea to create such symbols
5334because in some implementations of Scheme they cannot be read as
5335themselves.
5336@end deffn
5337
5338@deffn {Scheme Procedure} string-ci->symbol str
5339@deffnx {C Function} scm_string_ci_to_symbol (str)
5340Return the symbol whose name is @var{str}. If Guile is currently
5341reading symbols case-insensitively, @var{str} is converted to lowercase
5342before the returned symbol is looked up or created.
5343@end deffn
5344
5345The following examples illustrate Guile's detailed behaviour as regards
5346the case-sensitivity of symbols:
5347
5348@lisp
5349(read-enable 'case-insensitive) ; R5RS compliant behaviour
5350
5351(symbol->string 'flying-fish) @result{} "flying-fish"
5352(symbol->string 'Martin) @result{} "martin"
5353(symbol->string
5354 (string->symbol "Malvina")) @result{} "Malvina"
5355
5356(eq? 'mISSISSIppi 'mississippi) @result{} #t
5357(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5358(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5359(eq? 'LolliPop
5360 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5361(string=? "K. Harper, M.D."
5362 (symbol->string
5363 (string->symbol "K. Harper, M.D."))) @result{} #t
5364
5365(read-disable 'case-insensitive) ; Guile default behaviour
5366
5367(symbol->string 'flying-fish) @result{} "flying-fish"
5368(symbol->string 'Martin) @result{} "Martin"
5369(symbol->string
5370 (string->symbol "Malvina")) @result{} "Malvina"
5371
5372(eq? 'mISSISSIppi 'mississippi) @result{} #f
5373(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5374(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5375(eq? 'LolliPop
5376 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5377(string=? "K. Harper, M.D."
5378 (symbol->string
5379 (string->symbol "K. Harper, M.D."))) @result{} #t
5380@end lisp
5381
5382From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
5383from a C string in the current locale encoding.
5384
5385When you want to do more from C, you should convert between symbols
5386and strings using @code{scm_symbol_to_string} and
5387@code{scm_string_to_symbol} and work with the strings.
07d83abe 5388
a71e79c3
MW
5389@deftypefn {C Function} SCM scm_from_latin1_symbol (const char *name)
5390@deftypefnx {C Function} SCM scm_from_utf8_symbol (const char *name)
ce3ce21c
MW
5391Construct and return a Scheme symbol whose name is specified by the
5392null-terminated C string @var{name}. These are appropriate when
5393the C string is hard-coded in the source code.
5f6ffd66 5394@end deftypefn
ce3ce21c 5395
a71e79c3
MW
5396@deftypefn {C Function} SCM scm_from_locale_symbol (const char *name)
5397@deftypefnx {C Function} SCM scm_from_locale_symboln (const char *name, size_t len)
07d83abe 5398Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
5399@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5400terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe 5401specified explicitly by @var{len}.
ce3ce21c
MW
5402
5403Note that these functions should @emph{not} be used when @var{name} is a
5404C string constant, because there is no guarantee that the current locale
a71e79c3
MW
5405will match that of the execution character set, used for string and
5406character constants. Most modern C compilers use UTF-8 by default, so
5407in such cases we recommend @code{scm_from_utf8_symbol}.
5f6ffd66 5408@end deftypefn
07d83abe 5409
fd0a5bbc
HWN
5410@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5411@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5412Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5413respectively, but also frees @var{str} with @code{free} eventually.
5414Thus, you can use this function when you would free @var{str} anyway
5415immediately after creating the Scheme string. In certain cases, Guile
5416can then use @var{str} directly as its internal representation.
5417@end deftypefn
5418
071bb6a8
LC
5419The size of a symbol can also be obtained from C:
5420
5421@deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5422Return the number of characters in @var{sym}.
5423@end deftypefn
fd0a5bbc 5424
07d83abe
MV
5425Finally, some applications, especially those that generate new Scheme
5426code dynamically, need to generate symbols for use in the generated
5427code. The @code{gensym} primitive meets this need:
5428
5429@deffn {Scheme Procedure} gensym [prefix]
5430@deffnx {C Function} scm_gensym (prefix)
5431Create a new symbol with a name constructed from a prefix and a counter
5432value. The string @var{prefix} can be specified as an optional
5433argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5434at each call. There is no provision for resetting the counter.
5435@end deffn
5436
5437The symbols generated by @code{gensym} are @emph{likely} to be unique,
5438since their names begin with a space and it is only otherwise possible
5439to generate such symbols if a programmer goes out of their way to do
5440so. Uniqueness can be guaranteed by instead using uninterned symbols
5441(@pxref{Symbol Uninterned}), though they can't be usefully written out
5442and read back in.
5443
5444
5445@node Symbol Props
5446@subsubsection Function Slots and Property Lists
5447
5448In traditional Lisp dialects, symbols are often understood as having
5449three kinds of value at once:
5450
5451@itemize @bullet
5452@item
5453a @dfn{variable} value, which is used when the symbol appears in
5454code in a variable reference context
5455
5456@item
5457a @dfn{function} value, which is used when the symbol appears in
679cceed 5458code in a function name position (i.e.@: as the first element in an
07d83abe
MV
5459unquoted list)
5460
5461@item
5462a @dfn{property list} value, which is used when the symbol is given as
5463the first argument to Lisp's @code{put} or @code{get} functions.
5464@end itemize
5465
5466Although Scheme (as one of its simplifications with respect to Lisp)
5467does away with the distinction between variable and function namespaces,
5468Guile currently retains some elements of the traditional structure in
5469case they turn out to be useful when implementing translators for other
5470languages, in particular Emacs Lisp.
5471
ecb87335
RW
5472Specifically, Guile symbols have two extra slots, one for a symbol's
5473property list, and one for its ``function value.'' The following procedures
07d83abe
MV
5474are provided to access these slots.
5475
5476@deffn {Scheme Procedure} symbol-fref symbol
5477@deffnx {C Function} scm_symbol_fref (symbol)
5478Return the contents of @var{symbol}'s @dfn{function slot}.
5479@end deffn
5480
5481@deffn {Scheme Procedure} symbol-fset! symbol value
5482@deffnx {C Function} scm_symbol_fset_x (symbol, value)
5483Set the contents of @var{symbol}'s function slot to @var{value}.
5484@end deffn
5485
5486@deffn {Scheme Procedure} symbol-pref symbol
5487@deffnx {C Function} scm_symbol_pref (symbol)
5488Return the @dfn{property list} currently associated with @var{symbol}.
5489@end deffn
5490
5491@deffn {Scheme Procedure} symbol-pset! symbol value
5492@deffnx {C Function} scm_symbol_pset_x (symbol, value)
5493Set @var{symbol}'s property list to @var{value}.
5494@end deffn
5495
5496@deffn {Scheme Procedure} symbol-property sym prop
5497From @var{sym}'s property list, return the value for property
5498@var{prop}. The assumption is that @var{sym}'s property list is an
5499association list whose keys are distinguished from each other using
5500@code{equal?}; @var{prop} should be one of the keys in that list. If
5501the property list has no entry for @var{prop}, @code{symbol-property}
5502returns @code{#f}.
5503@end deffn
5504
5505@deffn {Scheme Procedure} set-symbol-property! sym prop val
5506In @var{sym}'s property list, set the value for property @var{prop} to
5507@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5508none already exists. For the structure of the property list, see
5509@code{symbol-property}.
5510@end deffn
5511
5512@deffn {Scheme Procedure} symbol-property-remove! sym prop
5513From @var{sym}'s property list, remove the entry for property
5514@var{prop}, if there is one. For the structure of the property list,
5515see @code{symbol-property}.
5516@end deffn
5517
5518Support for these extra slots may be removed in a future release, and it
4695789c
NJ
5519is probably better to avoid using them. For a more modern and Schemely
5520approach to properties, see @ref{Object Properties}.
07d83abe
MV
5521
5522
5523@node Symbol Read Syntax
5524@subsubsection Extended Read Syntax for Symbols
5525
5526The read syntax for a symbol is a sequence of letters, digits, and
5527@dfn{extended alphabetic characters}, beginning with a character that
5528cannot begin a number. In addition, the special cases of @code{+},
5529@code{-}, and @code{...} are read as symbols even though numbers can
5530begin with @code{+}, @code{-} or @code{.}.
5531
5532Extended alphabetic characters may be used within identifiers as if
5533they were letters. The set of extended alphabetic characters is:
5534
5535@example
5536! $ % & * + - . / : < = > ? @@ ^ _ ~
5537@end example
5538
5539In addition to the standard read syntax defined above (which is taken
5540from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5541Scheme})), Guile provides an extended symbol read syntax that allows the
5542inclusion of unusual characters such as space characters, newlines and
5543parentheses. If (for whatever reason) you need to write a symbol
5544containing characters not mentioned above, you can do so as follows.
5545
5546@itemize @bullet
5547@item
5548Begin the symbol with the characters @code{#@{},
5549
5550@item
5551write the characters of the symbol and
5552
5553@item
5554finish the symbol with the characters @code{@}#}.
5555@end itemize
5556
5557Here are a few examples of this form of read syntax. The first symbol
5558needs to use extended syntax because it contains a space character, the
5559second because it contains a line break, and the last because it looks
5560like a number.
5561
5562@lisp
5563#@{foo bar@}#
5564
5565#@{what
5566ever@}#
5567
5568#@{4242@}#
5569@end lisp
5570
5571Although Guile provides this extended read syntax for symbols,
5572widespread usage of it is discouraged because it is not portable and not
5573very readable.
5574
5575
5576@node Symbol Uninterned
5577@subsubsection Uninterned Symbols
5578
5579What makes symbols useful is that they are automatically kept unique.
5580There are no two symbols that are distinct objects but have the same
5581name. But of course, there is no rule without exception. In addition
5582to the normal symbols that have been discussed up to now, you can also
5583create special @dfn{uninterned} symbols that behave slightly
5584differently.
5585
5586To understand what is different about them and why they might be useful,
5587we look at how normal symbols are actually kept unique.
5588
5589Whenever Guile wants to find the symbol with a specific name, for
5590example during @code{read} or when executing @code{string->symbol}, it
5591first looks into a table of all existing symbols to find out whether a
5592symbol with the given name already exists. When this is the case, Guile
5593just returns that symbol. When not, a new symbol with the name is
5594created and entered into the table so that it can be found later.
5595
5596Sometimes you might want to create a symbol that is guaranteed `fresh',
679cceed 5597i.e.@: a symbol that did not exist previously. You might also want to
07d83abe
MV
5598somehow guarantee that no one else will ever unintentionally stumble
5599across your symbol in the future. These properties of a symbol are
5600often needed when generating code during macro expansion. When
5601introducing new temporary variables, you want to guarantee that they
5602don't conflict with variables in other people's code.
5603
5604The simplest way to arrange for this is to create a new symbol but
5605not enter it into the global table of all symbols. That way, no one
5606will ever get access to your symbol by chance. Symbols that are not in
5607the table are called @dfn{uninterned}. Of course, symbols that
5608@emph{are} in the table are called @dfn{interned}.
5609
5610You create new uninterned symbols with the function @code{make-symbol}.
5611You can test whether a symbol is interned or not with
5612@code{symbol-interned?}.
5613
5614Uninterned symbols break the rule that the name of a symbol uniquely
5615identifies the symbol object. Because of this, they can not be written
5616out and read back in like interned symbols. Currently, Guile has no
5617support for reading uninterned symbols. Note that the function
5618@code{gensym} does not return uninterned symbols for this reason.
5619
5620@deffn {Scheme Procedure} make-symbol name
5621@deffnx {C Function} scm_make_symbol (name)
5622Return a new uninterned symbol with the name @var{name}. The returned
5623symbol is guaranteed to be unique and future calls to
5624@code{string->symbol} will not return it.
5625@end deffn
5626
5627@deffn {Scheme Procedure} symbol-interned? symbol
5628@deffnx {C Function} scm_symbol_interned_p (symbol)
5629Return @code{#t} if @var{symbol} is interned, otherwise return
5630@code{#f}.
5631@end deffn
5632
5633For example:
5634
5635@lisp
5636(define foo-1 (string->symbol "foo"))
5637(define foo-2 (string->symbol "foo"))
5638(define foo-3 (make-symbol "foo"))
5639(define foo-4 (make-symbol "foo"))
5640
5641(eq? foo-1 foo-2)
5642@result{} #t
5643; Two interned symbols with the same name are the same object,
5644
5645(eq? foo-1 foo-3)
5646@result{} #f
5647; but a call to make-symbol with the same name returns a
5648; distinct object.
5649
5650(eq? foo-3 foo-4)
5651@result{} #f
5652; A call to make-symbol always returns a new object, even for
5653; the same name.
5654
5655foo-3
5656@result{} #<uninterned-symbol foo 8085290>
5657; Uninterned symbols print differently from interned symbols,
5658
5659(symbol? foo-3)
5660@result{} #t
5661; but they are still symbols,
5662
5663(symbol-interned? foo-3)
5664@result{} #f
5665; just not interned.
5666@end lisp
5667
5668
5669@node Keywords
5670@subsection Keywords
5671@tpindex Keywords
5672
5673Keywords are self-evaluating objects with a convenient read syntax that
5674makes them easy to type.
5675
5676Guile's keyword support conforms to R5RS, and adds a (switchable) read
5677syntax extension to permit keywords to begin with @code{:} as well as
ef4cbc08 5678@code{#:}, or to end with @code{:}.
07d83abe
MV
5679
5680@menu
5681* Why Use Keywords?:: Motivation for keyword usage.
5682* Coding With Keywords:: How to use keywords.
5683* Keyword Read Syntax:: Read syntax for keywords.
5684* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
5685@end menu
5686
5687@node Why Use Keywords?
5688@subsubsection Why Use Keywords?
5689
5690Keywords are useful in contexts where a program or procedure wants to be
5691able to accept a large number of optional arguments without making its
5692interface unmanageable.
5693
5694To illustrate this, consider a hypothetical @code{make-window}
5695procedure, which creates a new window on the screen for drawing into
5696using some graphical toolkit. There are many parameters that the caller
5697might like to specify, but which could also be sensibly defaulted, for
5698example:
5699
5700@itemize @bullet
5701@item
5702color depth -- Default: the color depth for the screen
5703
5704@item
5705background color -- Default: white
5706
5707@item
5708width -- Default: 600
5709
5710@item
5711height -- Default: 400
5712@end itemize
5713
5714If @code{make-window} did not use keywords, the caller would have to
5715pass in a value for each possible argument, remembering the correct
5716argument order and using a special value to indicate the default value
5717for that argument:
5718
5719@lisp
5720(make-window 'default ;; Color depth
5721 'default ;; Background color
5722 800 ;; Width
5723 100 ;; Height
5724 @dots{}) ;; More make-window arguments
5725@end lisp
5726
5727With keywords, on the other hand, defaulted arguments are omitted, and
5728non-default arguments are clearly tagged by the appropriate keyword. As
5729a result, the invocation becomes much clearer:
5730
5731@lisp
5732(make-window #:width 800 #:height 100)
5733@end lisp
5734
5735On the other hand, for a simpler procedure with few arguments, the use
5736of keywords would be a hindrance rather than a help. The primitive
5737procedure @code{cons}, for example, would not be improved if it had to
5738be invoked as
5739
5740@lisp
5741(cons #:car x #:cdr y)
5742@end lisp
5743
5744So the decision whether to use keywords or not is purely pragmatic: use
5745them if they will clarify the procedure invocation at point of call.
5746
5747@node Coding With Keywords
5748@subsubsection Coding With Keywords
5749
5750If a procedure wants to support keywords, it should take a rest argument
5751and then use whatever means is convenient to extract keywords and their
5752corresponding arguments from the contents of that rest argument.
5753
5754The following example illustrates the principle: the code for
5755@code{make-window} uses a helper procedure called
5756@code{get-keyword-value} to extract individual keyword arguments from
5757the rest argument.
5758
5759@lisp
5760(define (get-keyword-value args keyword default)
5761 (let ((kv (memq keyword args)))
5762 (if (and kv (>= (length kv) 2))
5763 (cadr kv)
5764 default)))
5765
5766(define (make-window . args)
5767 (let ((depth (get-keyword-value args #:depth screen-depth))
5768 (bg (get-keyword-value args #:bg "white"))
5769 (width (get-keyword-value args #:width 800))
5770 (height (get-keyword-value args #:height 100))
5771 @dots{})
5772 @dots{}))
5773@end lisp
5774
5775But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5776optargs)} module provides a set of powerful macros that you can use to
5777implement keyword-supporting procedures like this:
5778
5779@lisp
5780(use-modules (ice-9 optargs))
5781
5782(define (make-window . args)
5783 (let-keywords args #f ((depth screen-depth)
5784 (bg "white")
5785 (width 800)
5786 (height 100))
5787 ...))
5788@end lisp
5789
5790@noindent
5791Or, even more economically, like this:
5792
5793@lisp
5794(use-modules (ice-9 optargs))
5795
5796(define* (make-window #:key (depth screen-depth)
5797 (bg "white")
5798 (width 800)
5799 (height 100))
5800 ...)
5801@end lisp
5802
5803For further details on @code{let-keywords}, @code{define*} and other
5804facilities provided by the @code{(ice-9 optargs)} module, see
5805@ref{Optional Arguments}.
5806
a16d4e82
MW
5807To handle keyword arguments from procedures implemented in C,
5808use @code{scm_c_bind_keyword_arguments} (@pxref{Keyword Procedures}).
07d83abe
MV
5809
5810@node Keyword Read Syntax
5811@subsubsection Keyword Read Syntax
5812
7719ef22
MV
5813Guile, by default, only recognizes a keyword syntax that is compatible
5814with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5815same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5816external representation of the keyword named @code{NAME}. Keyword
5817objects print using this syntax as well, so values containing keyword
5818objects can be read back into Guile. When used in an expression,
5819keywords are self-quoting objects.
07d83abe
MV
5820
5821If the @code{keyword} read option is set to @code{'prefix}, Guile also
5822recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5823of the form @code{:NAME} are read as symbols, as required by R5RS.
5824
ef4cbc08
LC
5825@cindex SRFI-88 keyword syntax
5826
5827If the @code{keyword} read option is set to @code{'postfix}, Guile
189681f5
LC
5828recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5829Otherwise, tokens of this form are read as symbols.
ef4cbc08 5830
07d83abe 5831To enable and disable the alternative non-R5RS keyword syntax, you use
1518f649
AW
5832the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5833the @code{prefix} and @code{postfix} syntax are mutually exclusive.
07d83abe 5834
aba0dff5 5835@lisp
07d83abe
MV
5836(read-set! keywords 'prefix)
5837
5838#:type
5839@result{}
5840#:type
5841
5842:type
5843@result{}
5844#:type
5845
ef4cbc08
LC
5846(read-set! keywords 'postfix)
5847
5848type:
5849@result{}
5850#:type
5851
5852:type
5853@result{}
5854:type
5855
07d83abe
MV
5856(read-set! keywords #f)
5857
5858#:type
5859@result{}
5860#:type
5861
5862:type
5863@print{}
5864ERROR: In expression :type:
5865ERROR: Unbound variable: :type
5866ABORT: (unbound-variable)
aba0dff5 5867@end lisp
07d83abe
MV
5868
5869@node Keyword Procedures
5870@subsubsection Keyword Procedures
5871
07d83abe
MV
5872@deffn {Scheme Procedure} keyword? obj
5873@deffnx {C Function} scm_keyword_p (obj)
5874Return @code{#t} if the argument @var{obj} is a keyword, else
5875@code{#f}.
5876@end deffn
5877
7719ef22
MV
5878@deffn {Scheme Procedure} keyword->symbol keyword
5879@deffnx {C Function} scm_keyword_to_symbol (keyword)
5880Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5881@end deffn
5882
7719ef22
MV
5883@deffn {Scheme Procedure} symbol->keyword symbol
5884@deffnx {C Function} scm_symbol_to_keyword (symbol)
5885Return the keyword with the same name as @var{symbol}.
5886@end deffn
07d83abe 5887
7719ef22
MV
5888@deftypefn {C Function} int scm_is_keyword (SCM obj)
5889Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5890@end deftypefn
5891
c428e586
MW
5892@deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
5893@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
7719ef22 5894Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
c428e586
MW
5895(@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5896(@var{name}, @var{len}))}, respectively.
5897
5898Note that these functions should @emph{not} be used when @var{name} is a
5899C string constant, because there is no guarantee that the current locale
a71e79c3
MW
5900will match that of the execution character set, used for string and
5901character constants. Most modern C compilers use UTF-8 by default, so
5902in such cases we recommend @code{scm_from_utf8_keyword}.
c428e586
MW
5903@end deftypefn
5904
5905@deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
5906@deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
5907Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
5908(@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
5909(@var{name}))}, respectively.
7719ef22 5910@end deftypefn
07d83abe 5911
a16d4e82
MW
5912@deftypefn {C Function} void scm_c_bind_keyword_arguments (const char *subr, @
5913 SCM rest, scm_t_keyword_arguments_flags flags, @
5914 SCM keyword1, SCM *argp1, @
5915 @dots{}, @
5916 SCM keywordN, SCM *argpN, @
5917 @nicode{SCM_UNDEFINED})
5918
5919Extract the specified keyword arguments from @var{rest}, which is not
5920modified. If the keyword argument @var{keyword1} is present in
5921@var{rest} with an associated value, that value is stored in the
5922variable pointed to by @var{argp1}, otherwise the variable is left
5923unchanged. Similarly for the other keywords and argument pointers up to
5924@var{keywordN} and @var{argpN}. The argument list to
5925@code{scm_c_bind_keyword_arguments} must be terminated by
5926@code{SCM_UNDEFINED}.
5927
5928Note that since the variables pointed to by @var{argp1} through
5929@var{argpN} are left unchanged if the associated keyword argument is not
5930present, they should be initialized to their default values before
5931calling @code{scm_c_bind_keyword_arguments}. Alternatively, you can
5932initialize them to @code{SCM_UNDEFINED} before the call, and then use
5933@code{SCM_UNBNDP} after the call to see which ones were provided.
5934
5935If an unrecognized keyword argument is present in @var{rest} and
5936@var{flags} does not contain @code{SCM_ALLOW_OTHER_KEYS}, or if
5937non-keyword arguments are present and @var{flags} does not contain
5938@code{SCM_ALLOW_NON_KEYWORD_ARGUMENTS}, an exception is raised.
5939@var{subr} should be the name of the procedure receiving the keyword
5940arguments, for purposes of error reporting.
5941
5942For example:
5943
5944@example
5945SCM k_delimiter;
5946SCM k_grammar;
5947SCM sym_infix;
5948
5949SCM my_string_join (SCM strings, SCM rest)
5950@{
5951 SCM delimiter = SCM_UNDEFINED;
5952 SCM grammar = sym_infix;
5953
5954 scm_c_bind_keyword_arguments ("my-string-join", rest, 0,
5955 k_delimiter, &delimiter,
5956 k_grammar, &grammar,
5957 SCM_UNDEFINED);
5958
5959 if (SCM_UNBNDP (delimiter))
5960 delimiter = scm_from_utf8_string (" ");
5961
5962 return scm_string_join (strings, delimiter, grammar);
5963@}
5964
5965void my_init ()
5966@{
5967 k_delimiter = scm_from_utf8_keyword ("delimiter");
5968 k_grammar = scm_from_utf8_keyword ("grammar");
5969 sym_infix = scm_from_utf8_symbol ("infix");
5970 scm_c_define_gsubr ("my-string-join", 1, 0, 1, my_string_join);
5971@}
5972@end example
5973@end deftypefn
5974
5975
07d83abe
MV
5976@node Other Types
5977@subsection ``Functionality-Centric'' Data Types
5978
a136ada6 5979Procedures and macros are documented in their own sections: see
e4955559 5980@ref{Procedures} and @ref{Macros}.
07d83abe
MV
5981
5982Variable objects are documented as part of the description of Guile's
5983module system: see @ref{Variables}.
5984
a136ada6 5985Asyncs, dynamic roots and fluids are described in the section on
07d83abe
MV
5986scheduling: see @ref{Scheduling}.
5987
a136ada6 5988Hooks are documented in the section on general utility functions: see
07d83abe
MV
5989@ref{Hooks}.
5990
a136ada6 5991Ports are described in the section on I/O: see @ref{Input and Output}.
07d83abe 5992
a136ada6
NJ
5993Regular expressions are described in their own section: see @ref{Regular
5994Expressions}.
07d83abe
MV
5995
5996@c Local Variables:
5997@c TeX-master: "guile.texi"
5998@c End: