*** empty log message ***
[bpt/guile.git] / doc / ref / srfi-modules.texi
CommitLineData
2da09c3f
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
a0e07ba4
NJ
7@page
8@node SRFI Support
3229f68b 9@section SRFI Support Modules
8742c48b 10@cindex SRFI
a0e07ba4
NJ
11
12SRFI is an acronym for Scheme Request For Implementation. The SRFI
13documents define a lot of syntactic and procedure extensions to standard
14Scheme as defined in R5RS.
15
16Guile has support for a number of SRFIs. This chapter gives an overview
17over the available SRFIs and some usage hints. For complete
18documentation, design rationales and further examples, we advise you to
19get the relevant SRFI documents from the SRFI home page
20@url{http://srfi.schemers.org}.
21
22@menu
23* About SRFI Usage:: What to know about Guile's SRFI support.
24* SRFI-0:: cond-expand
25* SRFI-1:: List library.
26* SRFI-2:: and-let*.
27* SRFI-4:: Homogeneous numeric vector datatypes.
28* SRFI-6:: Basic String Ports.
29* SRFI-8:: receive.
30* SRFI-9:: define-record-type.
31* SRFI-10:: Hash-Comma Reader Extension.
32* SRFI-11:: let-values and let-values*.
33* SRFI-13:: String library.
34* SRFI-14:: Character-set library.
35* SRFI-16:: case-lambda
36* SRFI-17:: Generalized set!
bfc9c8e0 37* SRFI-19:: Time/Date library.
1de8c1ae 38* SRFI-26:: Specializing parameters
8638c417 39* SRFI-31:: A special form `rec' for recursive evaluation
a0e07ba4
NJ
40@end menu
41
42
43@node About SRFI Usage
3229f68b 44@subsection About SRFI Usage
a0e07ba4
NJ
45
46@c FIXME::martin: Review me!
47
48SRFI support in Guile is currently implemented partly in the core
49library, and partly as add-on modules. That means that some SRFIs are
50automatically available when the interpreter is started, whereas the
51other SRFIs require you to use the appropriate support module
12991fed 52explicitly.
a0e07ba4
NJ
53
54There are several reasons for this inconsistency. First, the feature
55checking syntactic form @code{cond-expand} (@pxref{SRFI-0}) must be
56available immediately, because it must be there when the user wants to
57check for the Scheme implementation, that is, before she can know that
58it is safe to use @code{use-modules} to load SRFI support modules. The
59second reason is that some features defined in SRFIs had been
60implemented in Guile before the developers started to add SRFI
61implementations as modules (for example SRFI-6 (@pxref{SRFI-6})). In
62the future, it is possible that SRFIs in the core library might be
63factored out into separate modules, requiring explicit module loading
64when they are needed. So you should be prepared to have to use
65@code{use-modules} someday in the future to access SRFI-6 bindings. If
66you want, you can do that already. We have included the module
67@code{(srfi srfi-6)} in the distribution, which currently does nothing,
68but ensures that you can write future-safe code.
69
70Generally, support for a specific SRFI is made available by using
71modules named @code{(srfi srfi-@var{number})}, where @var{number} is the
72number of the SRFI needed. Another possibility is to use the command
73line option @code{--use-srfi}, which will load the necessary modules
74automatically (@pxref{Invoking Guile}).
75
76
77@node SRFI-0
3229f68b 78@subsection SRFI-0 - cond-expand
8742c48b 79@cindex SRFI-0
a0e07ba4 80
5eef0f61
KR
81This SRFI lets a portable Scheme program test for the presence of
82certain features, and adapt itself by using different blocks of code,
83or fail if the necessary features are not available. There's no
84module to load, this is in the Guile core.
a0e07ba4 85
5eef0f61
KR
86A program designed only for Guile will generally not need this
87mechanism, such a program can of course directly use the various
88documented parts of Guile.
a0e07ba4 89
5eef0f61
KR
90@deffn syntax cond-expand (feature body@dots{}) @dots{}
91Expand to the @var{body} of the first clause whose @var{feature}
92specification is satisfied. It is an error if no @var{feature} is
a0e07ba4
NJ
93satisfied.
94
5eef0f61
KR
95Features are symbols such as @code{srfi-1}, and a feature
96specification can use @code{and}, @code{or} and @code{not} forms to
97test combinations. The last clause can be an @code{else}, to be used
98if no other passes.
a0e07ba4 99
5eef0f61
KR
100For example, define a private version of @code{alist-cons} if SRFI-1
101is not available.
a0e07ba4 102
5eef0f61
KR
103@example
104(cond-expand (srfi-1
105 )
106 (else
107 (define (alist-cons key val alist)
108 (cons (cons key val) alist))))
109@end example
a0e07ba4 110
5eef0f61
KR
111Or demand a certain set of SRFIs (list operations, string ports,
112@code{receive} and string operations), failing if they're not
113available.
a0e07ba4 114
5eef0f61
KR
115@example
116(cond-expand ((and srfi-1 srfi-6 srfi-8 srfi-13)
117 ))
118@end example
119@end deffn
a0e07ba4 120
5eef0f61
KR
121The Guile core provides features @code{guile}, @code{r5rs},
122@code{srfi-0} and @code{srfi-6} initially. Other SRFI feature symbols
123are defined once their code has been loaded with @code{use-modules},
124since only then are their bindings available.
a0e07ba4 125
5eef0f61
KR
126The @samp{--use-srfi} command line option (@pxref{Invoking Guile}) is
127a good way to load SRFIs to satisfy @code{cond-expand} when running a
128portable program.
a0e07ba4 129
5eef0f61
KR
130Testing the @code{guile} feature allows a program to adapt itself to
131the Guile module system, but still run on other Scheme systems. For
132example the following demands SRFI-8 (@code{receive}), but also knows
133how to load it with the Guile mechanism.
a0e07ba4
NJ
134
135@example
5eef0f61
KR
136(cond-expand (srfi-8
137 )
138 (guile
139 (use-modules (srfi srfi-8))))
a0e07ba4
NJ
140@end example
141
5eef0f61
KR
142It should be noted that @code{cond-expand} is separate from the
143@code{*features*} mechanism (@pxref{Feature Tracking}), feature
144symbols in one are unrelated to those in the other.
a0e07ba4
NJ
145
146
147@node SRFI-1
3229f68b 148@subsection SRFI-1 - List library
8742c48b 149@cindex SRFI-1
a0e07ba4
NJ
150
151@c FIXME::martin: Review me!
152
153The list library defined in SRFI-1 contains a lot of useful list
154processing procedures for construction, examining, destructuring and
155manipulating lists and pairs.
156
157Since SRFI-1 also defines some procedures which are already contained
158in R5RS and thus are supported by the Guile core library, some list
159and pair procedures which appear in the SRFI-1 document may not appear
160in this section. So when looking for a particular list/pair
161processing procedure, you should also have a look at the sections
162@ref{Lists} and @ref{Pairs}.
163
164@menu
165* SRFI-1 Constructors:: Constructing new lists.
166* SRFI-1 Predicates:: Testing list for specific properties.
167* SRFI-1 Selectors:: Selecting elements from lists.
168* SRFI-1 Length Append etc:: Length calculation and list appending.
169* SRFI-1 Fold and Map:: Higher-order list processing.
170* SRFI-1 Filtering and Partitioning:: Filter lists based on predicates.
85a9b4ed 171* SRFI-1 Searching:: Search for elements.
a0e07ba4
NJ
172* SRFI-1 Deleting:: Delete elements from lists.
173* SRFI-1 Association Lists:: Handle association lists.
174* SRFI-1 Set Operations:: Use lists for representing sets.
175@end menu
176
177@node SRFI-1 Constructors
3229f68b 178@subsubsection Constructors
a0e07ba4
NJ
179
180@c FIXME::martin: Review me!
181
182New lists can be constructed by calling one of the following
183procedures.
184
8f85c0c6 185@deffn {Scheme Procedure} xcons d a
a0e07ba4
NJ
186Like @code{cons}, but with interchanged arguments. Useful mostly when
187passed to higher-order procedures.
188@end deffn
189
8f85c0c6 190@deffn {Scheme Procedure} list-tabulate n init-proc
a0e07ba4
NJ
191Return an @var{n}-element list, where each list element is produced by
192applying the procedure @var{init-proc} to the corresponding list
193index. The order in which @var{init-proc} is applied to the indices
194is not specified.
195@end deffn
196
57066448
KR
197@deffn {Scheme Procedure} list-copy lst
198Return a new list containing the elements of the list @var{lst}.
199
200This function differs from the core @code{list-copy} (@pxref{List
201Constructors}) in accepting improper lists too. And if @var{lst} is
202not a pair at all then it's treated as the final tail of an improper
203list and simply returned.
204@end deffn
205
8f85c0c6 206@deffn {Scheme Procedure} circular-list elt1 elt2 @dots{}
a0e07ba4
NJ
207Return a circular list containing the given arguments @var{elt1}
208@var{elt2} @dots{}.
209@end deffn
210
8f85c0c6 211@deffn {Scheme Procedure} iota count [start step]
256853db
KR
212Return a list containing @var{count} numbers, starting from
213@var{start} and adding @var{step} each time. The default @var{start}
214is 0, the default @var{step} is 1. For example,
a0e07ba4 215
256853db
KR
216@example
217(iota 6) @result{} (0 1 2 3 4 5)
218(iota 4 2.5 -2) @result{} (2.5 0.5 -1.5 -3.5)
219@end example
a0e07ba4 220
256853db
KR
221This function takes its name from the corresponding primitive in the
222APL language.
a0e07ba4
NJ
223@end deffn
224
225
226@node SRFI-1 Predicates
3229f68b 227@subsubsection Predicates
a0e07ba4
NJ
228
229@c FIXME::martin: Review me!
230
231The procedures in this section test specific properties of lists.
232
8f85c0c6 233@deffn {Scheme Procedure} proper-list? obj
a0e07ba4
NJ
234Return @code{#t} if @var{obj} is a proper list, that is a finite list,
235terminated with the empty list. Otherwise, return @code{#f}.
236@end deffn
237
8f85c0c6 238@deffn {Scheme Procedure} circular-list? obj
a0e07ba4
NJ
239Return @code{#t} if @var{obj} is a circular list, otherwise return
240@code{#f}.
241@end deffn
242
8f85c0c6 243@deffn {Scheme Procedure} dotted-list? obj
a0e07ba4
NJ
244Return @code{#t} if @var{obj} is a dotted list, return @code{#f}
245otherwise. A dotted list is a finite list which is not terminated by
246the empty list, but some other value.
247@end deffn
248
8f85c0c6 249@deffn {Scheme Procedure} null-list? lst
a0e07ba4
NJ
250Return @code{#t} if @var{lst} is the empty list @code{()}, @code{#f}
251otherwise. If something else than a proper or circular list is passed
85a9b4ed 252as @var{lst}, an error is signalled. This procedure is recommended
a0e07ba4
NJ
253for checking for the end of a list in contexts where dotted lists are
254not allowed.
255@end deffn
256
8f85c0c6 257@deffn {Scheme Procedure} not-pair? obj
a0e07ba4
NJ
258Return @code{#t} is @var{obj} is not a pair, @code{#f} otherwise.
259This is shorthand notation @code{(not (pair? @var{obj}))} and is
260supposed to be used for end-of-list checking in contexts where dotted
261lists are allowed.
262@end deffn
263
8f85c0c6 264@deffn {Scheme Procedure} list= elt= list1 @dots{}
a0e07ba4
NJ
265Return @code{#t} if all argument lists are equal, @code{#f} otherwise.
266List equality is determined by testing whether all lists have the same
267length and the corresponding elements are equal in the sense of the
268equality predicate @var{elt=}. If no or only one list is given,
269@code{#t} is returned.
270@end deffn
271
272
273@node SRFI-1 Selectors
3229f68b 274@subsubsection Selectors
a0e07ba4
NJ
275
276@c FIXME::martin: Review me!
277
8f85c0c6
NJ
278@deffn {Scheme Procedure} first pair
279@deffnx {Scheme Procedure} second pair
280@deffnx {Scheme Procedure} third pair
281@deffnx {Scheme Procedure} fourth pair
282@deffnx {Scheme Procedure} fifth pair
283@deffnx {Scheme Procedure} sixth pair
284@deffnx {Scheme Procedure} seventh pair
285@deffnx {Scheme Procedure} eighth pair
286@deffnx {Scheme Procedure} ninth pair
287@deffnx {Scheme Procedure} tenth pair
a0e07ba4
NJ
288These are synonyms for @code{car}, @code{cadr}, @code{caddr}, @dots{}.
289@end deffn
290
8f85c0c6 291@deffn {Scheme Procedure} car+cdr pair
a0e07ba4
NJ
292Return two values, the @sc{car} and the @sc{cdr} of @var{pair}.
293@end deffn
294
8f85c0c6
NJ
295@deffn {Scheme Procedure} take lst i
296@deffnx {Scheme Procedure} take! lst i
a0e07ba4
NJ
297Return a list containing the first @var{i} elements of @var{lst}.
298
299@code{take!} may modify the structure of the argument list @var{lst}
300in order to produce the result.
301@end deffn
302
8f85c0c6 303@deffn {Scheme Procedure} drop lst i
a0e07ba4
NJ
304Return a list containing all but the first @var{i} elements of
305@var{lst}.
306@end deffn
307
8f85c0c6 308@deffn {Scheme Procedure} take-right lst i
a0e07ba4
NJ
309Return the a list containing the @var{i} last elements of @var{lst}.
310@end deffn
311
8f85c0c6
NJ
312@deffn {Scheme Procedure} drop-right lst i
313@deffnx {Scheme Procedure} drop-right! lst i
a0e07ba4
NJ
314Return the a list containing all but the @var{i} last elements of
315@var{lst}.
316
317@code{drop-right!} may modify the structure of the argument list
318@var{lst} in order to produce the result.
319@end deffn
320
8f85c0c6
NJ
321@deffn {Scheme Procedure} split-at lst i
322@deffnx {Scheme Procedure} split-at! lst i
a0e07ba4
NJ
323Return two values, a list containing the first @var{i} elements of the
324list @var{lst} and a list containing the remaining elements.
325
326@code{split-at!} may modify the structure of the argument list
327@var{lst} in order to produce the result.
328@end deffn
329
8f85c0c6 330@deffn {Scheme Procedure} last lst
a0e07ba4
NJ
331Return the last element of the non-empty, finite list @var{lst}.
332@end deffn
333
334
335@node SRFI-1 Length Append etc
3229f68b 336@subsubsection Length, Append, Concatenate, etc.
a0e07ba4
NJ
337
338@c FIXME::martin: Review me!
339
8f85c0c6 340@deffn {Scheme Procedure} length+ lst
a0e07ba4
NJ
341Return the length of the argument list @var{lst}. When @var{lst} is a
342circular list, @code{#f} is returned.
343@end deffn
344
8f85c0c6
NJ
345@deffn {Scheme Procedure} concatenate list-of-lists
346@deffnx {Scheme Procedure} concatenate! list-of-lists
a0e07ba4
NJ
347Construct a list by appending all lists in @var{list-of-lists}.
348
349@code{concatenate!} may modify the structure of the given lists in
350order to produce the result.
a3e856f2
KR
351
352@code{concatenate} is the same as @code{(apply append
353@var{list-of-lists})}. It exists because some Scheme implementations
354have a limit on the number of arguments a function takes, which the
355@code{apply} might exceed. In Guile there is no such limit.
a0e07ba4
NJ
356@end deffn
357
8f85c0c6
NJ
358@deffn {Scheme Procedure} append-reverse rev-head tail
359@deffnx {Scheme Procedure} append-reverse! rev-head tail
a0e07ba4
NJ
360Reverse @var{rev-head}, append @var{tail} and return the result. This
361is equivalent to @code{(append (reverse @var{rev-head}) @var{tail})},
362but more efficient.
363
364@code{append-reverse!} may modify @var{rev-head} in order to produce
365the result.
366@end deffn
367
8f85c0c6 368@deffn {Scheme Procedure} zip lst1 lst2 @dots{}
a0e07ba4
NJ
369Return a list as long as the shortest of the argument lists, where
370each element is a list. The first list contains the first elements of
371the argument lists, the second list contains the second elements, and
372so on.
373@end deffn
374
8f85c0c6
NJ
375@deffn {Scheme Procedure} unzip1 lst
376@deffnx {Scheme Procedure} unzip2 lst
377@deffnx {Scheme Procedure} unzip3 lst
378@deffnx {Scheme Procedure} unzip4 lst
379@deffnx {Scheme Procedure} unzip5 lst
a0e07ba4
NJ
380@code{unzip1} takes a list of lists, and returns a list containing the
381first elements of each list, @code{unzip2} returns two lists, the
382first containing the first elements of each lists and the second
383containing the second elements of each lists, and so on.
384@end deffn
385
e508c863
KR
386@deffn {Scheme Procedure} count pred lst1 @dots{} lstN
387Return a count of the number of times @var{pred} returns true when
388called on elements from the given lists.
389
390@var{pred} is called with @var{N} parameters @code{(@var{pred}
391@var{elem1} @dots{} @var{elemN})}, each element being from the
392corresponding @var{lst1} @dots{} @var{lstN}. The first call is with
393the first element of each list, the second with the second element
394from each, and so on.
395
396Counting stops when the end of the shortest list is reached. At least
397one list must be non-circular.
398@end deffn
399
a0e07ba4
NJ
400
401@node SRFI-1 Fold and Map
3229f68b 402@subsubsection Fold, Unfold & Map
a0e07ba4
NJ
403
404@c FIXME::martin: Review me!
405
8f85c0c6 406@deffn {Scheme Procedure} fold kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
407Fold the procedure @var{kons} across all elements of @var{lst1},
408@var{lst2}, @dots{}. Produce the result of
409
410@code{(@var{kons} @var{en1} @var{en2} @dots{} (@var{kons} @var{e21}
411@var{e22} (@var{kons} @var{e11} @var{e12} @var{knil})))},
412
413if @var{enm} are the elements of the lists @var{lst1}, @var{lst2},
414@dots{}.
415@end deffn
416
8f85c0c6 417@deffn {Scheme Procedure} fold-right kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
418Similar to @code{fold}, but applies @var{kons} in right-to-left order
419to the list elements, that is:
420
421@code{(@var{kons} @var{e11} @var{e12}(@var{kons} @var{e21}
422@var{e22} @dots{} (@var{kons} @var{en1} @var{en2} @var{knil})))},
423@end deffn
424
8f85c0c6 425@deffn {Scheme Procedure} pair-fold kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
426Like @code{fold}, but apply @var{kons} to the pairs of the list
427instead of the list elements.
428@end deffn
429
8f85c0c6 430@deffn {Scheme Procedure} pair-fold-right kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
431Like @code{fold-right}, but apply @var{kons} to the pairs of the list
432instead of the list elements.
433@end deffn
434
8f85c0c6 435@deffn {Scheme Procedure} reduce f ridentity lst
1ae7b878
KR
436@code{reduce} is a variant of @code{fold}. If @var{lst} is
437@code{()}, @var{ridentity} is returned. Otherwise, @code{(fold f (car
a0e07ba4
NJ
438@var{lst}) (cdr @var{lst}))} is returned.
439@end deffn
440
8f85c0c6 441@deffn {Scheme Procedure} reduce-right f ridentity lst
b5aa0215 442This is the @code{fold-right} variant of @code{reduce}.
a0e07ba4
NJ
443@end deffn
444
8f85c0c6 445@deffn {Scheme Procedure} unfold p f g seed [tail-gen]
a0e07ba4
NJ
446@code{unfold} is defined as follows:
447
448@lisp
449(unfold p f g seed) =
450 (if (p seed) (tail-gen seed)
451 (cons (f seed)
452 (unfold p f g (g seed))))
453@end lisp
454
455@table @var
456@item p
457Determines when to stop unfolding.
458
459@item f
460Maps each seed value to the corresponding list element.
461
462@item g
463Maps each seed value to next seed valu.
464
465@item seed
466The state value for the unfold.
467
468@item tail-gen
469Creates the tail of the list; defaults to @code{(lambda (x) '())}.
470@end table
471
472@var{g} produces a series of seed values, which are mapped to list
473elements by @var{f}. These elements are put into a list in
474left-to-right order, and @var{p} tells when to stop unfolding.
475@end deffn
476
8f85c0c6 477@deffn {Scheme Procedure} unfold-right p f g seed [tail]
a0e07ba4
NJ
478Construct a list with the following loop.
479
480@lisp
481(let lp ((seed seed) (lis tail))
482 (if (p seed) lis
483 (lp (g seed)
484 (cons (f seed) lis))))
485@end lisp
486
487@table @var
488@item p
489Determines when to stop unfolding.
490
491@item f
492Maps each seed value to the corresponding list element.
493
494@item g
495Maps each seed value to next seed valu.
496
497@item seed
498The state value for the unfold.
499
500@item tail-gen
501Creates the tail of the list; defaults to @code{(lambda (x) '())}.
502@end table
503
504@end deffn
505
8f85c0c6 506@deffn {Scheme Procedure} map f lst1 lst2 @dots{}
a0e07ba4
NJ
507Map the procedure over the list(s) @var{lst1}, @var{lst2}, @dots{} and
508return a list containing the results of the procedure applications.
509This procedure is extended with respect to R5RS, because the argument
510lists may have different lengths. The result list will have the same
511length as the shortest argument lists. The order in which @var{f}
512will be applied to the list element(s) is not specified.
513@end deffn
514
8f85c0c6 515@deffn {Scheme Procedure} for-each f lst1 lst2 @dots{}
a0e07ba4
NJ
516Apply the procedure @var{f} to each pair of corresponding elements of
517the list(s) @var{lst1}, @var{lst2}, @dots{}. The return value is not
518specified. This procedure is extended with respect to R5RS, because
519the argument lists may have different lengths. The shortest argument
520list determines the number of times @var{f} is called. @var{f} will
85a9b4ed 521be applied to the list elements in left-to-right order.
a0e07ba4
NJ
522
523@end deffn
524
8f85c0c6
NJ
525@deffn {Scheme Procedure} append-map f lst1 lst2 @dots{}
526@deffnx {Scheme Procedure} append-map! f lst1 lst2 @dots{}
12991fed 527Equivalent to
a0e07ba4
NJ
528
529@lisp
12991fed 530(apply append (map f clist1 clist2 ...))
a0e07ba4
NJ
531@end lisp
532
12991fed 533and
a0e07ba4
NJ
534
535@lisp
12991fed 536(apply append! (map f clist1 clist2 ...))
a0e07ba4
NJ
537@end lisp
538
539Map @var{f} over the elements of the lists, just as in the @code{map}
540function. However, the results of the applications are appended
541together to make the final result. @code{append-map} uses
542@code{append} to append the results together; @code{append-map!} uses
543@code{append!}.
544
545The dynamic order in which the various applications of @var{f} are
546made is not specified.
547@end deffn
548
8f85c0c6 549@deffn {Scheme Procedure} map! f lst1 lst2 @dots{}
a0e07ba4
NJ
550Linear-update variant of @code{map} -- @code{map!} is allowed, but not
551required, to alter the cons cells of @var{lst1} to construct the
552result list.
553
554The dynamic order in which the various applications of @var{f} are
555made is not specified. In the n-ary case, @var{lst2}, @var{lst3},
556@dots{} must have at least as many elements as @var{lst1}.
557@end deffn
558
8f85c0c6 559@deffn {Scheme Procedure} pair-for-each f lst1 lst2 @dots{}
a0e07ba4
NJ
560Like @code{for-each}, but applies the procedure @var{f} to the pairs
561from which the argument lists are constructed, instead of the list
562elements. The return value is not specified.
563@end deffn
564
8f85c0c6 565@deffn {Scheme Procedure} filter-map f lst1 lst2 @dots{}
a0e07ba4
NJ
566Like @code{map}, but only results from the applications of @var{f}
567which are true are saved in the result list.
568@end deffn
569
570
571@node SRFI-1 Filtering and Partitioning
3229f68b 572@subsubsection Filtering and Partitioning
a0e07ba4
NJ
573
574@c FIXME::martin: Review me!
575
576Filtering means to collect all elements from a list which satisfy a
577specific condition. Partitioning a list means to make two groups of
578list elements, one which contains the elements satisfying a condition,
579and the other for the elements which don't.
580
60e25dc4
KR
581The @code{filter} and @code{filter!} functions are implemented in the
582Guile core, @xref{List Modification}.
a0e07ba4 583
8f85c0c6
NJ
584@deffn {Scheme Procedure} partition pred lst
585@deffnx {Scheme Procedure} partition! pred lst
193239f1
KR
586Split @var{lst} into those elements which do and don't satisfy the
587predicate @var{pred}.
a0e07ba4 588
193239f1
KR
589The return is two values (@pxref{Multiple Values}), the first being a
590list of all elements from @var{lst} which satisfy @var{pred}, the
591second a list of those which do not.
592
593The elements in the result lists are in the same order as in @var{lst}
594but the order in which the calls @code{(@var{pred} elem)} are made on
595the list elements is unspecified.
596
597@code{partition} does not change @var{lst}, but one of the returned
598lists may share a tail with it. @code{partition!} may modify
599@var{lst} to construct its return.
a0e07ba4
NJ
600@end deffn
601
8f85c0c6
NJ
602@deffn {Scheme Procedure} remove pred lst
603@deffnx {Scheme Procedure} remove! pred lst
a0e07ba4
NJ
604Return a list containing all elements from @var{lst} which do not
605satisfy the predicate @var{pred}. The elements in the result list
606have the same order as in @var{lst}. The order in which @var{pred} is
607applied to the list elements is not specified.
608
609@code{remove!} is allowed, but not required to modify the structure of
610the input list.
611@end deffn
612
613
614@node SRFI-1 Searching
3229f68b 615@subsubsection Searching
a0e07ba4
NJ
616
617@c FIXME::martin: Review me!
618
619The procedures for searching elements in lists either accept a
620predicate or a comparison object for determining which elements are to
621be searched.
622
8f85c0c6 623@deffn {Scheme Procedure} find pred lst
a0e07ba4
NJ
624Return the first element of @var{lst} which satisfies the predicate
625@var{pred} and @code{#f} if no such element is found.
626@end deffn
627
8f85c0c6 628@deffn {Scheme Procedure} find-tail pred lst
a0e07ba4
NJ
629Return the first pair of @var{lst} whose @sc{car} satisfies the
630predicate @var{pred} and @code{#f} if no such element is found.
631@end deffn
632
8f85c0c6
NJ
633@deffn {Scheme Procedure} take-while pred lst
634@deffnx {Scheme Procedure} take-while! pred lst
a0e07ba4
NJ
635Return the longest initial prefix of @var{lst} whose elements all
636satisfy the predicate @var{pred}.
637
638@code{take-while!} is allowed, but not required to modify the input
639list while producing the result.
640@end deffn
641
8f85c0c6 642@deffn {Scheme Procedure} drop-while pred lst
a0e07ba4
NJ
643Drop the longest initial prefix of @var{lst} whose elements all
644satisfy the predicate @var{pred}.
645@end deffn
646
8f85c0c6
NJ
647@deffn {Scheme Procedure} span pred lst
648@deffnx {Scheme Procedure} span! pred lst
649@deffnx {Scheme Procedure} break pred lst
650@deffnx {Scheme Procedure} break! pred lst
a0e07ba4
NJ
651@code{span} splits the list @var{lst} into the longest initial prefix
652whose elements all satisfy the predicate @var{pred}, and the remaining
653tail. @code{break} inverts the sense of the predicate.
654
655@code{span!} and @code{break!} are allowed, but not required to modify
656the structure of the input list @var{lst} in order to produce the
657result.
3e73b6f9
KR
658
659Note that the name @code{break} conflicts with the @code{break}
660binding established by @code{while} (@pxref{while do}). Applications
661wanting to use @code{break} from within a @code{while} loop will need
662to make a new define under a different name.
a0e07ba4
NJ
663@end deffn
664
8f85c0c6 665@deffn {Scheme Procedure} any pred lst1 lst2 @dots{}
a0e07ba4
NJ
666Apply @var{pred} across the lists and return a true value if the
667predicate returns true for any of the list elements(s); return
668@code{#f} otherwise. The true value returned is always the result of
85a9b4ed 669the first successful application of @var{pred}.
a0e07ba4
NJ
670@end deffn
671
8f85c0c6 672@deffn {Scheme Procedure} every pred lst1 lst2 @dots{}
a0e07ba4
NJ
673Apply @var{pred} across the lists and return a true value if the
674predicate returns true for every of the list elements(s); return
675@code{#f} otherwise. The true value returned is always the result of
85a9b4ed 676the final successful application of @var{pred}.
a0e07ba4
NJ
677@end deffn
678
8f85c0c6 679@deffn {Scheme Procedure} list-index pred lst1 lst2 @dots{}
a0e07ba4
NJ
680Return the index of the leftmost element that satisfies @var{pred}.
681@end deffn
682
8f85c0c6 683@deffn {Scheme Procedure} member x lst [=]
a0e07ba4
NJ
684Return the first sublist of @var{lst} whose @sc{car} is equal to
685@var{x}. If @var{x} does no appear in @var{lst}, return @code{#f}.
686Equality is determined by the equality predicate @var{=}, or
687@code{equal?} if @var{=} is not given.
ea6ea01b
KR
688
689This function extends the core @code{member} by accepting an equality
690predicate. (@pxref{List Searching})
a0e07ba4
NJ
691@end deffn
692
693
694@node SRFI-1 Deleting
3229f68b 695@subsubsection Deleting
a0e07ba4
NJ
696
697@c FIXME::martin: Review me!
698
8f85c0c6
NJ
699@deffn {Scheme Procedure} delete x lst [=]
700@deffnx {Scheme Procedure} delete! x lst [=]
b6b9376a
KR
701Return a list containing the elements of @var{lst} but with those
702equal to @var{x} deleted. The returned elements will be in the same
703order as they were in @var{lst}.
704
705Equality is determined by the @var{=} predicate, or @code{equal?} if
706not given. An equality call is made just once for each element, but
707the order in which the calls are made on the elements is unspecified.
a0e07ba4 708
243bdb63 709The equality calls are always @code{(= x elem)}, ie.@: the given @var{x}
b6b9376a
KR
710is first. This means for instance elements greater than 5 can be
711deleted with @code{(delete 5 lst <)}.
712
713@code{delete} does not modify @var{lst}, but the return might share a
714common tail with @var{lst}. @code{delete!} may modify the structure
715of @var{lst} to construct its return.
ea6ea01b
KR
716
717These functions extend the core @code{delete} and @code{delete!} in
718accepting an equality predicate. (@pxref{List Modification})
a0e07ba4
NJ
719@end deffn
720
8f85c0c6
NJ
721@deffn {Scheme Procedure} delete-duplicates lst [=]
722@deffnx {Scheme Procedure} delete-duplicates! lst [=]
b6b9376a
KR
723Return a list containing the elements of @var{lst} but without
724duplicates.
725
726When elements are equal, only the first in @var{lst} is retained.
727Equal elements can be anywhere in @var{lst}, they don't have to be
728adjacent. The returned list will have the retained elements in the
729same order as they were in @var{lst}.
730
731Equality is determined by the @var{=} predicate, or @code{equal?} if
732not given. Calls @code{(= x y)} are made with element @var{x} being
733before @var{y} in @var{lst}. A call is made at most once for each
734combination, but the sequence of the calls across the elements is
735unspecified.
736
737@code{delete-duplicates} does not modify @var{lst}, but the return
738might share a common tail with @var{lst}. @code{delete-duplicates!}
739may modify the structure of @var{lst} to construct its return.
740
741In the worst case, this is an @math{O(N^2)} algorithm because it must
742check each element against all those preceding it. For long lists it
743is more efficient to sort and then compare only adjacent elements.
a0e07ba4
NJ
744@end deffn
745
746
747@node SRFI-1 Association Lists
3229f68b 748@subsubsection Association Lists
a0e07ba4
NJ
749
750@c FIXME::martin: Review me!
751
752Association lists are described in detail in section @ref{Association
753Lists}. The present section only documents the additional procedures
754for dealing with association lists defined by SRFI-1.
755
8f85c0c6 756@deffn {Scheme Procedure} assoc key alist [=]
a0e07ba4
NJ
757Return the pair from @var{alist} which matches @var{key}. Equality is
758determined by @var{=}, which defaults to @code{equal?} if not given.
759@var{alist} must be an association lists---a list of pairs.
ea6ea01b
KR
760
761This function extends the core @code{assoc} by accepting an equality
762predicate. (@pxref{Association Lists})
a0e07ba4
NJ
763@end deffn
764
8f85c0c6 765@deffn {Scheme Procedure} alist-cons key datum alist
a0e07ba4
NJ
766Equivalent to
767
768@lisp
769(cons (cons @var{key} @var{datum}) @var{alist})
770@end lisp
771
772This procedure is used to coons a new pair onto an existing
773association list.
774@end deffn
775
8f85c0c6 776@deffn {Scheme Procedure} alist-copy alist
a0e07ba4
NJ
777Return a newly allocated copy of @var{alist}, that means that the
778spine of the list as well as the pairs are copied.
779@end deffn
780
8f85c0c6
NJ
781@deffn {Scheme Procedure} alist-delete key alist [=]
782@deffnx {Scheme Procedure} alist-delete! key alist [=]
bd35f1f0
KR
783Return a list containing the elements of @var{alist} but with those
784elements whose keys are equal to @var{key} deleted. The returned
785elements will be in the same order as they were in @var{alist}.
a0e07ba4 786
bd35f1f0
KR
787Equality is determined by the @var{=} predicate, or @code{equal?} if
788not given. The order in which elements are tested is unspecified, but
789each equality call is made @code{(= key alistkey)}, ie. the given
790@var{key} parameter is first and the key from @var{alist} second.
791This means for instance all associations with a key greater than 5 can
792be removed with @code{(alist-delete 5 alist <)}.
793
794@code{alist-delete} does not modify @var{alist}, but the return might
795share a common tail with @var{alist}. @code{alist-delete!} may modify
796the list structure of @var{alist} to construct its return.
a0e07ba4
NJ
797@end deffn
798
799
800@node SRFI-1 Set Operations
3229f68b 801@subsubsection Set Operations on Lists
a0e07ba4
NJ
802
803@c FIXME::martin: Review me!
804
805Lists can be used for representing sets of objects. The procedures
806documented in this section can be used for such set representations.
85a9b4ed 807Man combining several sets or adding elements, they make sure that no
a0e07ba4
NJ
808object is contained more than once in a given list. Please note that
809lists are not a too efficient implementation method for sets, so if
810you need high performance, you should think about implementing a
811custom data structure for representing sets, such as trees, bitsets,
812hash tables or something similar.
813
814All these procedures accept an equality predicate as the first
815argument. This predicate is used for testing the objects in the list
816sets for sameness.
817
8f85c0c6 818@deffn {Scheme Procedure} lset<= = list1 @dots{}
a0e07ba4
NJ
819Return @code{#t} if every @var{listi} is a subset of @var{listi+1},
820otherwise return @code{#f}. Returns @code{#t} if called with less
821than two arguments. @var{=} is used for testing element equality.
822@end deffn
823
8f85c0c6 824@deffn {Scheme Procedure} lset= = list1 list2 @dots{}
a0e07ba4
NJ
825Return @code{#t} if all argument lists are equal. @var{=} is used for
826testing element equality.
827@end deffn
828
8f85c0c6
NJ
829@deffn {Scheme Procedure} lset-adjoin = list elt1 @dots{}
830@deffnx {Scheme Procedure} lset-adjoin! = list elt1 @dots{}
a0e07ba4
NJ
831Add all @var{elts} to the list @var{list}, suppressing duplicates and
832return the resulting list. @code{lset-adjoin!} is allowed, but not
833required to modify its first argument. @var{=} is used for testing
834element equality.
835@end deffn
836
8f85c0c6
NJ
837@deffn {Scheme Procedure} lset-union = list1 @dots{}
838@deffnx {Scheme Procedure} lset-union! = list1 @dots{}
a0e07ba4
NJ
839Return the union of all argument list sets. The union is the set of
840all elements which appear in any of the argument sets.
841@code{lset-union!} is allowed, but not required to modify its first
842argument. @var{=} is used for testing element equality.
843@end deffn
844
8f85c0c6
NJ
845@deffn {Scheme Procedure} lset-intersection = list1 list2 @dots{}
846@deffnx {Scheme Procedure} lset-intersection! = list1 list2 @dots{}
a0e07ba4
NJ
847Return the intersection of all argument list sets. The intersection
848is the set containing all elements which appear in all argument sets.
849@code{lset-intersection!} is allowed, but not required to modify its
850first argument. @var{=} is used for testing element equality.
851@end deffn
852
8f85c0c6
NJ
853@deffn {Scheme Procedure} lset-difference = list1 list2 @dots{}
854@deffnx {Scheme Procedure} lset-difference! = list1 list2 @dots{}
a0e07ba4
NJ
855Return the difference of all argument list sets. The difference is
856the the set containing all elements of the first list which do not
857appear in the other lists. @code{lset-difference!} is allowed, but
858not required to modify its first argument. @var{=} is used for testing
859element equality.
860@end deffn
861
8f85c0c6
NJ
862@deffn {Scheme Procedure} lset-xor = list1 @dots{}
863@deffnx {Scheme Procedure} lset-xor! = list1 @dots{}
a0e07ba4
NJ
864Return the set containing all elements which appear in the first
865argument list set, but not in the second; or, more generally: which
866appear in an odd number of sets. @code{lset-xor!} is allowed, but
867not required to modify its first argument. @var{=} is used for testing
868element equality.
869@end deffn
870
8f85c0c6
NJ
871@deffn {Scheme Procedure} lset-diff+intersection = list1 list2 @dots{}
872@deffnx {Scheme Procedure} lset-diff+intersection! = list1 list2 @dots{}
a0e07ba4
NJ
873Return two values, the difference and the intersection of the argument
874list sets. This works like a combination of @code{lset-difference} and
875@code{lset-intersection}, but is more efficient.
876@code{lset-diff+intersection!} is allowed, but not required to modify
877its first argument. @var{=} is used for testing element equality. You
878have to use some means to deal with the multiple values these
879procedures return (@pxref{Multiple Values}).
880@end deffn
881
882
883@node SRFI-2
3229f68b 884@subsection SRFI-2 - and-let*
8742c48b 885@cindex SRFI-2
a0e07ba4 886
4fd0db14
KR
887@noindent
888The following syntax can be obtained with
a0e07ba4 889
4fd0db14
KR
890@lisp
891(use-modules (srfi srfi-2))
892@end lisp
a0e07ba4 893
4fd0db14
KR
894@deffn {library syntax} and-let* (clause @dots{}) body @dots{}
895A combination of @code{and} and @code{let*}.
896
897Each @var{clause} is evaluated in turn, and if @code{#f} is obtained
898then evaluation stops and @code{#f} is returned. If all are
899non-@code{#f} then @var{body} is evaluated and the last form gives the
6b1a6e4c
KR
900return value, or if @var{body} is empty then the result is @code{#t}.
901Each @var{clause} should be one of the following,
4fd0db14
KR
902
903@table @code
904@item (symbol expr)
905Evaluate @var{expr}, check for @code{#f}, and bind it to @var{symbol}.
906Like @code{let*}, that binding is available to subsequent clauses.
907@item (expr)
908Evaluate @var{expr} and check for @code{#f}.
909@item symbol
910Get the value bound to @var{symbol} and check for @code{#f}.
911@end table
a0e07ba4 912
4fd0db14
KR
913Notice that @code{(expr)} has an ``extra'' pair of parentheses, for
914instance @code{((eq? x y))}. One way to remember this is to imagine
915the @code{symbol} in @code{(symbol expr)} is omitted.
a0e07ba4 916
4fd0db14
KR
917@code{and-let*} is good for calculations where a @code{#f} value means
918termination, but where a non-@code{#f} value is going to be needed in
919subsequent expressions.
920
921The following illustrates this, it returns text between brackets
922@samp{[...]} in a string, or @code{#f} if there are no such brackets
923(ie.@: either @code{string-index} gives @code{#f}).
924
925@example
926(define (extract-brackets str)
927 (and-let* ((start (string-index str #\[))
928 (end (string-index str #\] start)))
929 (substring str (1+ start) end)))
930@end example
931
932The following shows plain variables and expressions tested too.
933@code{diagnostic-levels} is taken to be an alist associating a
934diagnostic type with a level. @code{str} is printed only if the type
935is known and its level is high enough.
936
937@example
938(define (show-diagnostic type str)
939 (and-let* (want-diagnostics
940 (level (assq-ref diagnostic-levels type))
941 ((>= level current-diagnostic-level)))
942 (display str)))
943@end example
944
945The advantage of @code{and-let*} is that an extended sequence of
946expressions and tests doesn't require lots of nesting as would arise
947from separate @code{and} and @code{let*}, or from @code{cond} with
948@code{=>}.
949
950@end deffn
a0e07ba4
NJ
951
952
953@node SRFI-4
3229f68b 954@subsection SRFI-4 - Homogeneous numeric vector datatypes
8742c48b 955@cindex SRFI-4
a0e07ba4 956
e6b226b9 957The SRFI-4 procedures and data types are always available, @xref{Uniform
3dd6e0cf 958Numeric Vectors}.
a0e07ba4
NJ
959
960@node SRFI-6
3229f68b 961@subsection SRFI-6 - Basic String Ports
8742c48b 962@cindex SRFI-6
a0e07ba4
NJ
963
964SRFI-6 defines the procedures @code{open-input-string},
965@code{open-output-string} and @code{get-output-string}. These
966procedures are included in the Guile core, so using this module does not
967make any difference at the moment. But it is possible that support for
968SRFI-6 will be factored out of the core library in the future, so using
969this module does not hurt, after all.
970
971@node SRFI-8
3229f68b 972@subsection SRFI-8 - receive
8742c48b 973@cindex SRFI-8
a0e07ba4
NJ
974
975@code{receive} is a syntax for making the handling of multiple-value
976procedures easier. It is documented in @xref{Multiple Values}.
977
978
979@node SRFI-9
3229f68b 980@subsection SRFI-9 - define-record-type
8742c48b 981@cindex SRFI-9
a0e07ba4 982
6afe385d
KR
983This SRFI is a syntax for defining new record types and creating
984predicate, constructor, and field getter and setter functions. In
985Guile this is simply an alternate interface to the core record
986functionality (@pxref{Records}). It can be used with,
a0e07ba4 987
6afe385d
KR
988@example
989(use-modules (srfi srfi-9))
990@end example
991
992@deffn {library syntax} define-record-type type @* (constructor fieldname @dots{}) @* predicate @* (fieldname accessor [modifier]) @dots{}
993@sp 1
994Create a new record type, and make various @code{define}s for using
995it. This syntax can only occur at the top-level, not nested within
996some other form.
997
998@var{type} is bound to the record type, which is as per the return
999from the core @code{make-record-type}. @var{type} also provides the
1000name for the record, as per @code{record-type-name}.
1001
1002@var{constructor} is bound to a function to be called as
1003@code{(@var{constructor} fieldval @dots{})} to create a new record of
1004this type. The arguments are initial values for the fields, one
1005argument for each field, in the order they appear in the
1006@code{define-record-type} form.
1007
1008The @var{fieldname}s provide the names for the record fields, as per
1009the core @code{record-type-fields} etc, and are referred to in the
1010subsequent accessor/modifier forms.
1011
1012@var{predictate} is bound to a function to be called as
1013@code{(@var{predicate} obj)}. It returns @code{#t} or @code{#f}
1014according to whether @var{obj} is a record of this type.
1015
1016Each @var{accessor} is bound to a function to be called
1017@code{(@var{accessor} record)} to retrieve the respective field from a
1018@var{record}. Similarly each @var{modifier} is bound to a function to
1019be called @code{(@var{modifier} record val)} to set the respective
1020field in a @var{record}.
1021@end deffn
1022
1023@noindent
1024An example will illustrate typical usage,
a0e07ba4
NJ
1025
1026@example
6afe385d
KR
1027(define-record-type employee-type
1028 (make-employee name age salary)
1029 employee?
1030 (name get-employee-name)
1031 (age get-employee-age set-employee-age)
1032 (salary get-employee-salary set-employee-salary))
a0e07ba4
NJ
1033@end example
1034
6afe385d
KR
1035This creates a new employee data type, with name, age and salary
1036fields. Accessor functions are created for each field, but no
1037modifier function for the name (the intention in this example being
1038that it's established only when an employee object is created). These
1039can all then be used as for example,
a0e07ba4
NJ
1040
1041@example
6afe385d
KR
1042employee-type @result{} #<record-type employee-type>
1043
1044(define fred (make-employee "Fred" 45 20000.00))
1045
1046(employee? fred) @result{} #t
1047(get-employee-age fred) @result{} 45
1048(set-employee-salary fred 25000.00) ;; pay rise
a0e07ba4
NJ
1049@end example
1050
6afe385d
KR
1051The functions created by @code{define-record-type} are ordinary
1052top-level @code{define}s. They can be redefined or @code{set!} as
1053desired, exported from a module, etc.
1054
a0e07ba4
NJ
1055
1056@node SRFI-10
3229f68b 1057@subsection SRFI-10 - Hash-Comma Reader Extension
8742c48b 1058@cindex SRFI-10
a0e07ba4
NJ
1059
1060@cindex hash-comma
1061@cindex #,()
633acbe2
KR
1062This SRFI implements a reader extension @code{#,()} called hash-comma.
1063It allows the reader to give new kinds of objects, for use both in
1064data and as constants or literals in source code. This feature is
1065available with
a0e07ba4 1066
633acbe2
KR
1067@example
1068(use-modules (srfi srfi-10))
1069@end example
1070
1071@noindent
1072The new read syntax is of the form
a0e07ba4
NJ
1073
1074@example
633acbe2 1075#,(@var{tag} @var{arg}@dots{})
a0e07ba4
NJ
1076@end example
1077
633acbe2
KR
1078@noindent
1079where @var{tag} is a symbol and the @var{arg}s are objects taken as
1080parameters. @var{tag}s are registered with the following procedure.
a0e07ba4 1081
633acbe2
KR
1082@deffn {Scheme Procedure} define-reader-ctor tag proc
1083Register @var{proc} as the constructor for a hash-comma read syntax
1084starting with symbol @var{tag}, ie. @nicode{#,(@var{tag} arg@dots{})}.
1085@var{proc} is called with the given arguments @code{(@var{proc}
1086arg@dots{})} and the object it returns is the result of the read.
1087@end deffn
a0e07ba4 1088
633acbe2
KR
1089@noindent
1090For example, a syntax giving a list of @var{N} copies of an object.
1091
1092@example
1093(define-reader-ctor 'repeat
1094 (lambda (obj reps)
1095 (make-list reps obj)))
1096
1097(display '#,(repeat 99 3))
1098@print{} (99 99 99)
1099@end example
1100
1101Notice the quote @nicode{'} when the @nicode{#,( )} is used. The
1102@code{repeat} handler returns a list and the program must quote to use
1103it literally, the same as any other list. Ie.
1104
1105@example
1106(display '#,(repeat 99 3))
a0e07ba4 1107@result{}
633acbe2
KR
1108(display '(99 99 99))
1109@end example
a0e07ba4 1110
633acbe2
KR
1111When a handler returns an object which is self-evaluating, like a
1112number or a string, then there's no need for quoting, just as there's
1113no need when giving those directly as literals. For example an
1114addition,
a0e07ba4 1115
633acbe2
KR
1116@example
1117(define-reader-ctor 'sum
1118 (lambda (x y)
1119 (+ x y)))
1120(display #,(sum 123 456)) @print{} 579
1121@end example
1122
1123A typical use for @nicode{#,()} is to get a read syntax for objects
1124which don't otherwise have one. For example, the following allows a
1125hash table to be given literally, with tags and values, ready for fast
1126lookup.
1127
1128@example
1129(define-reader-ctor 'hash
1130 (lambda elems
1131 (let ((table (make-hash-table)))
1132 (for-each (lambda (elem)
1133 (apply hash-set! table elem))
1134 elems)
1135 table)))
1136
1137(define (animal->family animal)
1138 (hash-ref '#,(hash ("tiger" "cat")
1139 ("lion" "cat")
1140 ("wolf" "dog"))
1141 animal))
1142
1143(animal->family "lion") @result{} "cat"
1144@end example
1145
1146Or for example the following is a syntax for a compiled regular
1147expression (@pxref{Regular Expressions}).
1148
1149@example
1150(use-modules (ice-9 regex))
1151
1152(define-reader-ctor 'regexp make-regexp)
1153
1154(define (extract-angs str)
1155 (let ((match (regexp-exec '#,(regexp "<([A-Z0-9]+)>") str)))
1156 (and match
1157 (match:substring match 1))))
1158
1159(extract-angs "foo <BAR> quux") @result{} "BAR"
1160@end example
1161
1162@sp 1
1163@nicode{#,()} is somewhat similar to @code{define-macro}
1164(@pxref{Macros}) in that handler code is run to produce a result, but
1165@nicode{#,()} operates at the read stage, so it can appear in data for
1166@code{read} (@pxref{Scheme Read}), not just in code to be executed.
1167
1168Because @nicode{#,()} is handled at read-time it has no direct access
1169to variables etc. A symbol in the arguments is just a symbol, not a
1170variable reference. The arguments are essentially constants, though
1171the handler procedure can use them in any complicated way it might
1172want.
1173
1174Once @code{(srfi srfi-10)} has loaded, @nicode{#,()} is available
1175globally, there's no need to use @code{(srfi srfi-10)} in later
1176modules. Similarly the tags registered are global and can be used
1177anywhere once registered.
1178
1179There's no attempt to record what previous @nicode{#,()} forms have
1180been seen, if two identical forms occur then two calls are made to the
1181handler procedure. The handler might like to maintain a cache or
1182similar to avoid making copies of large objects, depending on expected
1183usage.
1184
1185In code the best uses of @nicode{#,()} are generally when there's a
1186lot of objects of a particular kind as literals or constants. If
1187there's just a few then some local variables and initializers are
1188fine, but that becomes tedious and error prone when there's a lot, and
1189the anonymous and compact syntax of @nicode{#,()} is much better.
a0e07ba4
NJ
1190
1191
1192@node SRFI-11
3229f68b 1193@subsection SRFI-11 - let-values
8742c48b 1194@cindex SRFI-11
a0e07ba4 1195
8742c48b
KR
1196@findex let-values
1197@findex let-values*
a0e07ba4
NJ
1198This module implements the binding forms for multiple values
1199@code{let-values} and @code{let-values*}. These forms are similar to
1200@code{let} and @code{let*} (@pxref{Local Bindings}), but they support
1201binding of the values returned by multiple-valued expressions.
1202
1203Write @code{(use-modules (srfi srfi-11))} to make the bindings
1204available.
1205
1206@lisp
1207(let-values (((x y) (values 1 2))
1208 ((z f) (values 3 4)))
1209 (+ x y z f))
1210@result{}
121110
1212@end lisp
1213
1214@code{let-values} performs all bindings simultaneously, which means that
1215no expression in the binding clauses may refer to variables bound in the
1216same clause list. @code{let-values*}, on the other hand, performs the
1217bindings sequentially, just like @code{let*} does for single-valued
1218expressions.
1219
1220
1221@node SRFI-13
3229f68b 1222@subsection SRFI-13 - String Library
8742c48b 1223@cindex SRFI-13
a0e07ba4 1224
5676b4fa 1225The SRFI-13 procedures are always available, @xref{Strings}.
a0e07ba4
NJ
1226
1227@node SRFI-14
3229f68b 1228@subsection SRFI-14 - Character-set Library
8742c48b 1229@cindex SRFI-14
a0e07ba4 1230
050ab45f
MV
1231The SRFI-14 data type and procedures are always available,
1232@xref{Character Sets}.
a0e07ba4
NJ
1233
1234@node SRFI-16
3229f68b 1235@subsection SRFI-16 - case-lambda
8742c48b 1236@cindex SRFI-16
a0e07ba4
NJ
1237
1238@c FIXME::martin: Review me!
1239
8742c48b 1240@findex case-lambda
a0e07ba4
NJ
1241The syntactic form @code{case-lambda} creates procedures, just like
1242@code{lambda}, but has syntactic extensions for writing procedures of
1243varying arity easier.
1244
1245The syntax of the @code{case-lambda} form is defined in the following
1246EBNF grammar.
1247
1248@example
1249@group
1250<case-lambda>
1251 --> (case-lambda <case-lambda-clause>)
1252<case-lambda-clause>
1253 --> (<formals> <definition-or-command>*)
1254<formals>
1255 --> (<identifier>*)
1256 | (<identifier>* . <identifier>)
1257 | <identifier>
1258@end group
1259@end example
1260
1261The value returned by a @code{case-lambda} form is a procedure which
1262matches the number of actual arguments against the formals in the
1263various clauses, in order. @dfn{Formals} means a formal argument list
1264just like with @code{lambda} (@pxref{Lambda}). The first matching clause
1265is selected, the corresponding values from the actual parameter list are
1266bound to the variable names in the clauses and the body of the clause is
1267evaluated. If no clause matches, an error is signalled.
1268
1269The following (silly) definition creates a procedure @var{foo} which
1270acts differently, depending on the number of actual arguments. If one
1271argument is given, the constant @code{#t} is returned, two arguments are
1272added and if more arguments are passed, their product is calculated.
1273
1274@lisp
1275(define foo (case-lambda
1276 ((x) #t)
1277 ((x y) (+ x y))
1278 (z
1279 (apply * z))))
1280(foo 'bar)
1281@result{}
1282#t
1283(foo 2 4)
1284@result{}
12856
1286(foo 3 3 3)
1287@result{}
128827
1289(foo)
1290@result{}
12911
1292@end lisp
1293
1294The last expression evaluates to 1 because the last clause is matched,
1295@var{z} is bound to the empty list and the following multiplication,
1296applied to zero arguments, yields 1.
1297
1298
1299@node SRFI-17
3229f68b 1300@subsection SRFI-17 - Generalized set!
8742c48b 1301@cindex SRFI-17
a0e07ba4
NJ
1302
1303This is an implementation of SRFI-17: Generalized set!
1304
8742c48b 1305@findex getter-with-setter
a0e07ba4
NJ
1306It exports the Guile procedure @code{make-procedure-with-setter} under
1307the SRFI name @code{getter-with-setter} and exports the standard
1308procedures @code{car}, @code{cdr}, @dots{}, @code{cdddr},
1309@code{string-ref} and @code{vector-ref} as procedures with setters, as
1310required by the SRFI.
1311
1312SRFI-17 was heavily criticized during its discussion period but it was
1313finalized anyway. One issue was its concept of globally associating
1314setter @dfn{properties} with (procedure) values, which is non-Schemy.
1315For this reason, this implementation chooses not to provide a way to set
1316the setter of a procedure. In fact, @code{(set! (setter @var{proc})
1317@var{setter})} signals an error. The only way to attach a setter to a
1318procedure is to create a new object (a @dfn{procedure with setter}) via
1319the @code{getter-with-setter} procedure. This procedure is also
1320specified in the SRFI. Using it avoids the described problems.
1321
12991fed
TTN
1322
1323@node SRFI-19
3229f68b 1324@subsection SRFI-19 - Time/Date Library
8742c48b 1325@cindex SRFI-19
12991fed 1326
85600a0f
KR
1327This is an implementation of the SRFI-19 time/date library. The
1328functions and variables described here are provided by
12991fed
TTN
1329
1330@example
85600a0f 1331(use-modules (srfi srfi-19))
12991fed
TTN
1332@end example
1333
85600a0f
KR
1334@menu
1335* SRFI-19 Introduction::
1336* SRFI-19 Time::
1337* SRFI-19 Date::
1338* SRFI-19 Time/Date conversions::
1339* SRFI-19 Date to string::
1340* SRFI-19 String to date::
1341@end menu
12991fed 1342
85600a0f 1343@node SRFI-19 Introduction
3229f68b 1344@subsubsection SRFI-19 Introduction
85600a0f
KR
1345
1346@cindex universal time
1347@cindex atomic time
1348@cindex UTC
1349@cindex TAI
1350This module implements time and date representations and calculations,
1351in various time systems, including universal time (UTC) and atomic
1352time (TAI).
1353
1354For those not familiar with these time systems, TAI is based on a
1355fixed length second derived from oscillations of certain atoms. UTC
1356differs from TAI by an integral number of seconds, which is increased
1357or decreased at announced times to keep UTC aligned to a mean solar
1358day (the orbit and rotation of the earth are not quite constant).
1359
1360@cindex leap second
1361So far, only increases in the TAI
1362@tex
1363$\leftrightarrow$
1364@end tex
1365@ifnottex
1366<->
1367@end ifnottex
1368UTC difference have been needed. Such an increase is a ``leap
1369second'', an extra second of TAI introduced at the end of a UTC day.
1370When working entirely within UTC this is never seen, every day simply
1371has 86400 seconds. But when converting from TAI to a UTC date, an
1372extra 23:59:60 is present, where normally a day would end at 23:59:59.
1373Effectively the UTC second from 23:59:59 to 00:00:00 has taken two TAI
1374seconds.
1375
1376@cindex system clock
1377In the current implementation, the system clock is assumed to be UTC,
1378and a table of leap seconds in the code converts to TAI. See comments
1379in @file{srfi-19.scm} for how to update this table.
1380
1381@cindex julian day
1382@cindex modified julian day
1383Also, for those not familiar with the terminology, a @dfn{Julian Day}
1384is a real number which is a count of days and fraction of a day, in
1385UTC, starting from -4713-01-01T12:00:00Z, ie.@: midday Monday 1 Jan
13864713 B.C. And a @dfn{Modified Julian Day} is the same, but starting
1387from 1858-11-17T00:00:00Z, ie.@: midnight 17 November 1858 UTC.
1388
1389@c The SRFI-1 spec says -4714-11-24T12:00:00Z (November 24, -4714 at
1390@c noon, UTC), but this is incorrect. It looks like it might have
1391@c arisen from the code incorrectly treating years a multiple of 100
1392@c but not 400 prior to 1582 as leap years, where instead the Julian
1393@c calendar should be used so all multiples of 4 before 1582 are leap
1394@c years.
1395
1396
1397@node SRFI-19 Time
3229f68b 1398@subsubsection SRFI-19 Time
85600a0f
KR
1399@cindex time
1400
1401A @dfn{time} object has type, seconds and nanoseconds fields
1402representing a point in time starting from some epoch. This is an
1403arbitrary point in time, not just a time of day. Although times are
1404represented in nanoseconds, the actual resolution may be lower.
1405
1406The following variables hold the possible time types. For instance
1407@code{(current-time time-process)} would give the current CPU process
1408time.
1409
1410@defvar time-utc
1411Universal Coordinated Time (UTC).
1412@cindex UTC
1413@end defvar
12991fed 1414
85600a0f
KR
1415@defvar time-tai
1416International Atomic Time (TAI).
1417@cindex TAI
1418@end defvar
12991fed 1419
85600a0f
KR
1420@defvar time-monotonic
1421Monotonic time, meaning a monotonically increasing time starting from
1422an unspecified epoch.
12991fed 1423
85600a0f
KR
1424Note that in the current implementation @code{time-monotonic} is the
1425same as @code{time-tai}, and unfortunately is therefore affected by
1426adjustments to the system clock. Perhaps this will change in the
1427future.
1428@end defvar
12991fed 1429
85600a0f
KR
1430@defvar time-duration
1431A duration, meaning simply a difference between two times.
1432@end defvar
12991fed 1433
85600a0f
KR
1434@defvar time-process
1435CPU time spent in the current process, starting from when the process
1436began.
1437@cindex process time
1438@end defvar
12991fed 1439
85600a0f
KR
1440@defvar time-thread
1441CPU time spent in the current thread. Not currently implemented.
1442@cindex thread time
1443@end defvar
12991fed 1444
85600a0f
KR
1445@sp 1
1446@defun time? obj
1447Return @code{#t} if @var{obj} is a time object, or @code{#f} if not.
1448@end defun
1449
1450@defun make-time type nanoseconds seconds
1451Create a time object with the given @var{type}, @var{seconds} and
1452@var{nanoseconds}.
1453@end defun
1454
1455@defun time-type time
1456@defunx time-nanosecond time
1457@defunx time-second time
1458@defunx set-time-type! time type
1459@defunx set-time-nanosecond! time nsec
1460@defunx set-time-second! time sec
1461Get or set the type, seconds or nanoseconds fields of a time object.
1462
1463@code{set-time-type!} merely changes the field, it doesn't convert the
1464time value. For conversions, see @ref{SRFI-19 Time/Date conversions}.
1465@end defun
1466
1467@defun copy-time time
1468Return a new time object, which is a copy of the given @var{time}.
1469@end defun
1470
1471@defun current-time [type]
1472Return the current time of the given @var{type}. The default
1473@var{type} is @code{time-utc}.
1474
1475Note that the name @code{current-time} conflicts with the Guile core
1476@code{current-time} function (@pxref{Time}). Applications wanting to
1477use both will need to use a different name for one of them.
1478@end defun
1479
1480@defun time-resolution [type]
1481Return the resolution, in nanoseconds, of the given time @var{type}.
1482The default @var{type} is @code{time-utc}.
1483@end defun
1484
1485@defun time<=? t1 t2
1486@defunx time<? t1 t2
1487@defunx time=? t1 t2
1488@defunx time>=? t1 t2
1489@defunx time>? t1 t2
1490Return @code{#t} or @code{#f} according to the respective relation
1491between time objects @var{t1} and @var{t2}. @var{t1} and @var{t2}
1492must be the same time type.
1493@end defun
1494
1495@defun time-difference t1 t2
1496@defunx time-difference! t1 t2
1497Return a time object of type @code{time-duration} representing the
1498period between @var{t1} and @var{t2}. @var{t1} and @var{t2} must be
1499the same time type.
1500
1501@code{time-difference} returns a new time object,
1502@code{time-difference!} may modify @var{t1} to form its return.
1503@end defun
1504
1505@defun add-duration time duration
1506@defunx add-duration! time duration
1507@defunx subtract-duration time duration
1508@defunx subtract-duration! time duration
1509Return a time object which is @var{time} with the given @var{duration}
1510added or subtracted. @var{duration} must be a time object of type
1511@code{time-duration}.
1512
1513@code{add-duration} and @code{subtract-duration} return a new time
1514object. @code{add-duration!} and @code{subtract-duration!} may modify
1515the given @var{time} to form their return.
1516@end defun
1517
1518
1519@node SRFI-19 Date
3229f68b 1520@subsubsection SRFI-19 Date
85600a0f
KR
1521@cindex date
1522
1523A @dfn{date} object represents a date in the Gregorian calendar and a
1524time of day on that date in some timezone.
1525
1526The fields are year, month, day, hour, minute, second, nanoseconds and
1527timezone. A date object is immutable, its fields can be read but they
1528cannot be modified once the object is created.
1529
1530@defun date? obj
1531Return @code{#t} if @var{obj} is a date object, or @code{#f} if not.
1532@end defun
1533
1534@defun make-date nsecs seconds minutes hours date month year zone-offset
1535Create a new date object.
1536@c
1537@c FIXME: What can we say about the ranges of the values. The
1538@c current code looks it doesn't normalize, but expects then in their
1539@c usual range already.
1540@c
1541@end defun
1542
1543@defun date-nanosecond date
1544Nanoseconds, 0 to 999999999.
1545@end defun
1546
1547@defun date-second date
1548Seconds, 0 to 60. 0 to 59 is the usual range, 60 is for a leap second.
1549@end defun
1550
1551@defun date-minute date
1552Minutes, 0 to 59.
1553@end defun
1554
1555@defun date-hour date
1556Hour, 0 to 23.
1557@end defun
1558
1559@defun date-day date
1560Day of the month, 1 to 31 (or less, according to the month).
1561@end defun
1562
1563@defun date-month date
1564Month, 1 to 12.
1565@end defun
1566
1567@defun date-year date
1568Year, eg.@: 2003.
1569@end defun
1570
1571@defun date-zone-offset date
1572Time zone, an integer number of seconds east of Greenwich.
1573@end defun
1574
1575@defun date-year-day date
1576Day of the year, starting from 1 for 1st January.
1577@end defun
1578
1579@defun date-week-day date
1580Day of the week, starting from 0 for Sunday.
1581@end defun
1582
1583@defun date-week-number date dstartw
1584Week of the year, ignoring a first partial week. @var{dstartw} is the
1585day of the week which is taken to start a week, 0 for Sunday, 1 for
1586Monday, etc.
1587@c
1588@c FIXME: The spec doesn't say whether numbering starts at 0 or 1.
1589@c The code looks like it's 0, if that's the correct intention.
1590@c
1591@end defun
1592
1593@c The SRFI text doesn't actually give the default for tz-offset, but
1594@c the reference implementation has the local timezone and the
1595@c conversions functions all specify that, so it should be ok to
1596@c document it here.
1597@c
1598@defun current-date [tz-offset]
1599Return a date object representing the current date/time UTC.
1600@var{tz-offset} is seconds east of Greenwich, and defaults to the
1601local timezone.
1602@end defun
1603
1604@defun current-julian-day
1605@cindex julian day
1606Return the current Julian Day.
1607@end defun
1608
1609@defun current-modified-julian-day
1610@cindex modified julian day
1611Return the current Modified Julian Day.
1612@end defun
1613
1614
1615@node SRFI-19 Time/Date conversions
3229f68b 1616@subsubsection SRFI-19 Time/Date conversions
85600a0f
KR
1617
1618@defun date->julian-day date
1619@defunx date->modified-julian-day date
1620@defunx date->time-monotonic date
1621@defunx date->time-tai date
1622@defunx date->time-utc date
1623@end defun
1624@defun julian-day->date jdn [tz-offset]
1625@defunx julian-day->time-monotonic jdn
1626@defunx julian-day->time-tai jdn
1627@defunx julian-day->time-utc jdn
1628@end defun
1629@defun modified-julian-day->date jdn [tz-offset]
1630@defunx modified-julian-day->time-monotonic jdn
1631@defunx modified-julian-day->time-tai jdn
1632@defunx modified-julian-day->time-utc jdn
1633@end defun
1634@defun time-monotonic->date time [tz-offset]
1635@defunx time-monotonic->time-tai time
1636@defunx time-monotonic->time-tai! time
1637@defunx time-monotonic->time-utc time
1638@defunx time-monotonic->time-utc! time
1639@end defun
1640@defun time-tai->date time [tz-offset]
1641@defunx time-tai->julian-day time
1642@defunx time-tai->modified-julian-day time
1643@defunx time-tai->time-monotonic time
1644@defunx time-tai->time-monotonic! time
1645@defunx time-tai->time-utc time
1646@defunx time-tai->time-utc! time
1647@end defun
1648@defun time-utc->date time [tz-offset]
1649@defunx time-utc->julian-day time
1650@defunx time-utc->modified-julian-day time
1651@defunx time-utc->time-monotonic time
1652@defunx time-utc->time-monotonic! time
1653@defunx time-utc->time-tai time
1654@defunx time-utc->time-tai! time
1655@sp 1
1656Convert between dates, times and days of the respective types. For
1657instance @code{time-tai->time-utc} accepts a @var{time} object of type
1658@code{time-tai} and returns an object of type @code{time-utc}.
1659
1660For conversions to dates, @var{tz-offset} is seconds east of
1661Greenwich. The default is the local timezone.
1662
1663The @code{!} variants may modify their @var{time} argument to form
1664their return. The plain functions create a new object.
1665@end defun
1666
1667@node SRFI-19 Date to string
3229f68b 1668@subsubsection SRFI-19 Date to string
85600a0f
KR
1669@cindex date to string
1670
1671@defun date->string date [format]
1672Convert a date to a string under the control of a format.
1673@var{format} should be a string containing @samp{~} escapes, which
1674will be expanded as per the following conversion table. The default
1675@var{format} is @samp{~c}, a locale-dependent date and time.
1676
1677Many of these conversion characters are the same as POSIX
1678@code{strftime} (@pxref{Time}), but there are some extras and some
1679variations.
1680
1681@multitable {MMMM} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
1682@item @nicode{~~} @tab literal ~
1683@item @nicode{~a} @tab locale abbreviated weekday, eg.@: @samp{Sun}
1684@item @nicode{~A} @tab locale full weekday, eg.@: @samp{Sunday}
1685@item @nicode{~b} @tab locale abbreviated month, eg.@: @samp{Jan}
1686@item @nicode{~B} @tab locale full month, eg.@: @samp{January}
1687@item @nicode{~c} @tab locale date and time, eg.@: @*
1688@samp{Fri Jul 14 20:28:42-0400 2000}
1689@item @nicode{~d} @tab day of month, zero padded, @samp{01} to @samp{31}
1690
1691@c Spec says d/m/y, reference implementation says m/d/y.
1692@c Apparently the reference code was the intention, but would like to
1693@c see an errata published for the spec before contradicting it here.
1694@c
1695@c @item @nicode{~D} @tab date @nicode{~d/~m/~y}
1696
1697@item @nicode{~e} @tab day of month, blank padded, @samp{ 1} to @samp{31}
1698@item @nicode{~f} @tab seconds and fractional seconds,
1699with locale decimal point, eg.@: @samp{5.2}
1700@item @nicode{~h} @tab same as @nicode{~b}
1701@item @nicode{~H} @tab hour, 24-hour clock, zero padded, @samp{00} to @samp{23}
1702@item @nicode{~I} @tab hour, 12-hour clock, zero padded, @samp{01} to @samp{12}
1703@item @nicode{~j} @tab day of year, zero padded, @samp{001} to @samp{366}
1704@item @nicode{~k} @tab hour, 24-hour clock, blank padded, @samp{ 0} to @samp{23}
1705@item @nicode{~l} @tab hour, 12-hour clock, blank padded, @samp{ 1} to @samp{12}
1706@item @nicode{~m} @tab month, zero padded, @samp{01} to @samp{12}
1707@item @nicode{~M} @tab minute, zero padded, @samp{00} to @samp{59}
1708@item @nicode{~n} @tab newline
1709@item @nicode{~N} @tab nanosecond, zero padded, @samp{000000000} to @samp{999999999}
1710@item @nicode{~p} @tab locale AM or PM
1711@item @nicode{~r} @tab time, 12 hour clock, @samp{~I:~M:~S ~p}
1712@item @nicode{~s} @tab number of full seconds since ``the epoch'' in UTC
1713@item @nicode{~S} @tab second, zero padded @samp{00} to @samp{60} @*
1714(usual limit is 59, 60 is a leap second)
1715@item @nicode{~t} @tab horizontal tab character
1716@item @nicode{~T} @tab time, 24 hour clock, @samp{~H:~M:~S}
1717@item @nicode{~U} @tab week of year, Sunday first day of week,
1718@samp{00} to @samp{52}
1719@item @nicode{~V} @tab week of year, Monday first day of week,
1720@samp{01} to @samp{53}
1721@item @nicode{~w} @tab day of week, 0 for Sunday, @samp{0} to @samp{6}
1722@item @nicode{~W} @tab week of year, Monday first day of week,
1723@samp{00} to @samp{52}
1724
1725@c The spec has ~x as an apparent duplicate of ~W, and ~X as a locale
1726@c date. The reference code has ~x as the locale date and ~X as a
1727@c locale time. The rule is apparently that the code should be
1728@c believed, but would like to see an errata for the spec before
1729@c contradicting it here.
1730@c
1731@c @item @nicode{~x} @tab week of year, Monday as first day of week,
1732@c @samp{00} to @samp{53}
1733@c @item @nicode{~X} @tab locale date, eg.@: @samp{07/31/00}
1734
1735@item @nicode{~y} @tab year, two digits, @samp{00} to @samp{99}
1736@item @nicode{~Y} @tab year, full, eg.@: @samp{2003}
1737@item @nicode{~z} @tab time zone, RFC-822 style
1738@item @nicode{~Z} @tab time zone symbol (not currently implemented)
1739@item @nicode{~1} @tab ISO-8601 date, @samp{~Y-~m-~d}
1740@item @nicode{~2} @tab ISO-8601 time+zone, @samp{~k:~M:~S~z}
1741@item @nicode{~3} @tab ISO-8601 time, @samp{~k:~M:~S}
1742@item @nicode{~4} @tab ISO-8601 date/time+zone, @samp{~Y-~m-~dT~k:~M:~S~z}
1743@item @nicode{~5} @tab ISO-8601 date/time, @samp{~Y-~m-~dT~k:~M:~S}
1744@end multitable
1745@end defun
1746
1747Conversions @samp{~D}, @samp{~x} and @samp{~X} are not currently
1748described here, since the specification and reference implementation
1749differ.
1750
1751Currently Guile doesn't implement any localizations for the above, all
1752outputs are in English, and the @samp{~c} conversion is POSIX
1753@code{ctime} style @samp{~a ~b ~d ~H:~M:~S~z ~Y}. This may change in
1754the future.
1755
1756
1757@node SRFI-19 String to date
3229f68b 1758@subsubsection SRFI-19 String to date
85600a0f
KR
1759@cindex string to date
1760
1761@c FIXME: Can we say what happens when an incomplete date is
1762@c converted? Ie. fields left as 0, or what? The spec seems to be
1763@c silent on this.
1764
1765@defun string->date input template
1766Convert an @var{input} string to a date under the control of a
1767@var{template} string. Return a newly created date object.
1768
1769Literal characters in @var{template} must match characters in
1770@var{input} and @samp{~} escapes must match the input forms described
1771in the table below. ``Skip to'' means characters up to one of the
1772given type are ignored, or ``no skip'' for no skipping. ``Read'' is
1773what's then read, and ``Set'' is the field affected in the date
1774object.
1775
1776For example @samp{~Y} skips input characters until a digit is reached,
1777at which point it expects a year and stores that to the year field of
1778the date.
1779
1780@multitable {MMMM} {@nicode{char-alphabetic?}} {MMMMMMMMMMMMMMMMMMMMMMMMM} {@nicode{date-zone-offset}}
1781@item
1782@tab Skip to
1783@tab Read
1784@tab Set
1785
1786@item @nicode{~~}
1787@tab no skip
1788@tab literal ~
1789@tab nothing
1790
1791@item @nicode{~a}
1792@tab @nicode{char-alphabetic?}
1793@tab locale abbreviated weekday name
1794@tab nothing
1795
1796@item @nicode{~A}
1797@tab @nicode{char-alphabetic?}
1798@tab locale full weekday name
1799@tab nothing
1800
1801@c Note that the SRFI spec says that ~b and ~B don't set anything,
1802@c but that looks like a mistake. The reference implementation sets
1803@c the month field, which seems sensible and is what we describe
1804@c here.
1805
1806@item @nicode{~b}
1807@tab @nicode{char-alphabetic?}
1808@tab locale abbreviated month name
1809@tab @nicode{date-month}
1810
1811@item @nicode{~B}
1812@tab @nicode{char-alphabetic?}
1813@tab locale full month name
1814@tab @nicode{date-month}
1815
1816@item @nicode{~d}
1817@tab @nicode{char-numeric?}
1818@tab day of month
1819@tab @nicode{date-day}
1820
1821@item @nicode{~e}
1822@tab no skip
1823@tab day of month, blank padded
1824@tab @nicode{date-day}
1825
1826@item @nicode{~h}
1827@tab same as @samp{~b}
1828
1829@item @nicode{~H}
1830@tab @nicode{char-numeric?}
1831@tab hour
1832@tab @nicode{date-hour}
1833
1834@item @nicode{~k}
1835@tab no skip
1836@tab hour, blank padded
1837@tab @nicode{date-hour}
1838
1839@item @nicode{~m}
1840@tab @nicode{char-numeric?}
1841@tab month
1842@tab @nicode{date-month}
1843
1844@item @nicode{~M}
1845@tab @nicode{char-numeric?}
1846@tab minute
1847@tab @nicode{date-minute}
1848
1849@item @nicode{~S}
1850@tab @nicode{char-numeric?}
1851@tab second
1852@tab @nicode{date-second}
1853
1854@item @nicode{~y}
1855@tab no skip
1856@tab 2-digit year
1857@tab @nicode{date-year} within 50 years
1858
1859@item @nicode{~Y}
1860@tab @nicode{char-numeric?}
1861@tab year
1862@tab @nicode{date-year}
1863
1864@item @nicode{~z}
1865@tab no skip
1866@tab time zone
1867@tab date-zone-offset
1868@end multitable
1869
1870Notice that the weekday matching forms don't affect the date object
1871returned, instead the weekday will be derived from the day, month and
1872year.
1873
1874Currently Guile doesn't implement any localizations for the above,
1875month and weekday names are always expected in English. This may
1876change in the future.
1877@end defun
12991fed 1878
1de8c1ae 1879
b0b55bd6 1880@node SRFI-26
3229f68b 1881@subsection SRFI-26 - specializing parameters
1de8c1ae
KR
1882@cindex SRFI-26
1883
1884This SRFI provides a syntax for conveniently specializing selected
1885parameters of a function. It can be used with,
1886
1887@example
1888(use-modules (srfi srfi-26))
1889@end example
1890
1891@deffn {library syntax} cut slot @dots{}
1892@deffnx {library syntax} cute slot @dots{}
1893Return a new procedure which will make a call (@var{slot} @dots{}) but
1894with selected parameters specialized to given expressions.
1895
1896An example will illustrate the idea. The following is a
1897specialization of @code{write}, sending output to
1898@code{my-output-port},
1899
1900@example
1901(cut write <> my-output-port)
1902@result{}
1903(lambda (obj) (write obj my-output-port))
1904@end example
1905
1906The special symbol @code{<>} indicates a slot to be filled by an
1907argument to the new procedure. @code{my-output-port} on the other
1908hand is an expression to be evaluated and passed, ie.@: it specializes
1909the behaviour of @code{write}.
1910
1911@table @nicode
1912@item <>
1913A slot to be filled by an argument from the created procedure.
1914Arguments are assigned to @code{<>} slots in the order they appear in
1915the @code{cut} form, there's no way to re-arrange arguments.
1916
1917The first argument to @code{cut} is usually a procedure (or expression
1918giving a procedure), but @code{<>} is allowed there too. For example,
1919
1920@example
1921(cut <> 1 2 3)
1922@result{}
1923(lambda (proc) (proc 1 2 3))
1924@end example
1925
1926@item <...>
1927A slot to be filled by all remaining arguments from the new procedure.
1928This can only occur at the end of a @code{cut} form.
1929
1930For example, a procedure taking a variable number of arguments like
1931@code{max} but in addition enforcing a lower bound,
1932
1933@example
1934(define my-lower-bound 123)
1935
1936(cut max my-lower-bound <...>)
1937@result{}
1938(lambda arglist (apply max my-lower-bound arglist))
1939@end example
1940@end table
1941
1942For @code{cut} the specializing expressions are evaluated each time
1943the new procedure is called. For @code{cute} they're evaluated just
1944once, when the new procedure is created. The name @code{cute} stands
1945for ``@code{cut} with evaluated arguments''. In all cases the
1946evaluations take place in an unspecified order.
1947
1948The following illustrates the difference between @code{cut} and
1949@code{cute},
1950
1951@example
1952(cut format <> "the time is ~s" (current-time))
1953@result{}
1954(lambda (port) (format port "the time is ~s" (current-time)))
1955
1956(cute format <> "the time is ~s" (current-time))
1957@result{}
1958(let ((val (current-time)))
1959 (lambda (port) (format port "the time is ~s" val))
1960@end example
1961
1962(There's no provision for a mixture of @code{cut} and @code{cute}
1963where some expressions would be evaluated every time but others
1964evaluated only once.)
1965
1966@code{cut} is really just a shorthand for the sort of @code{lambda}
1967forms shown in the above examples. But notice @code{cut} avoids the
1968need to name unspecialized parameters, and is more compact. Use in
1969functional programming style or just with @code{map}, @code{for-each}
1970or similar is typical.
1971
1972@example
1973(map (cut * 2 <>) '(1 2 3 4))
1974
1975(for-each (cut write <> my-port) my-list)
1976@end example
1977@end deffn
b0b55bd6 1978
8638c417
RB
1979@node SRFI-31
1980@subsection SRFI-31 - A special form `rec' for recursive evaluation
1981@cindex SRFI-31
1982@findex rec
1983
1984SRFI-31 defines a special form that can be used to create
1985self-referential expressions more conveniently. The syntax is as
1986follows:
1987
1988@example
1989@group
1990<rec expression> --> (rec <variable> <expression>)
1991<rec expression> --> (rec (<variable>+) <body>)
1992@end group
1993@end example
1994
1995The first syntax can be used to create self-referential expressions,
1996for example:
1997
1998@lisp
1999 guile> (define tmp (rec ones (cons 1 (delay ones))))
2000@end lisp
2001
2002The second syntax can be used to create anonymous recursive functions:
2003
2004@lisp
2005 guile> (define tmp (rec (display-n item n)
2006 (if (positive? n)
2007 (begin (display n) (display-n (- n 1))))))
2008 guile> (tmp 42 3)
2009 424242
2010 guile>
2011@end lisp
12991fed
TTN
2012
2013@c srfi-modules.texi ends here
193239f1
KR
2014
2015@c Local Variables:
2016@c TeX-master: "guile.texi"
2017@c End: