*** empty log message ***
[bpt/guile.git] / doc / ref / srfi-modules.texi
CommitLineData
2da09c3f
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
a0e07ba4
NJ
7@page
8@node SRFI Support
3229f68b 9@section SRFI Support Modules
8742c48b 10@cindex SRFI
a0e07ba4
NJ
11
12SRFI is an acronym for Scheme Request For Implementation. The SRFI
13documents define a lot of syntactic and procedure extensions to standard
14Scheme as defined in R5RS.
15
16Guile has support for a number of SRFIs. This chapter gives an overview
17over the available SRFIs and some usage hints. For complete
18documentation, design rationales and further examples, we advise you to
19get the relevant SRFI documents from the SRFI home page
20@url{http://srfi.schemers.org}.
21
22@menu
23* About SRFI Usage:: What to know about Guile's SRFI support.
24* SRFI-0:: cond-expand
25* SRFI-1:: List library.
26* SRFI-2:: and-let*.
27* SRFI-4:: Homogeneous numeric vector datatypes.
28* SRFI-6:: Basic String Ports.
29* SRFI-8:: receive.
30* SRFI-9:: define-record-type.
31* SRFI-10:: Hash-Comma Reader Extension.
32* SRFI-11:: let-values and let-values*.
33* SRFI-13:: String library.
34* SRFI-14:: Character-set library.
35* SRFI-16:: case-lambda
36* SRFI-17:: Generalized set!
bfc9c8e0 37* SRFI-19:: Time/Date library.
1de8c1ae 38* SRFI-26:: Specializing parameters
8638c417 39* SRFI-31:: A special form `rec' for recursive evaluation
a0e07ba4
NJ
40@end menu
41
42
43@node About SRFI Usage
3229f68b 44@subsection About SRFI Usage
a0e07ba4
NJ
45
46@c FIXME::martin: Review me!
47
48SRFI support in Guile is currently implemented partly in the core
49library, and partly as add-on modules. That means that some SRFIs are
50automatically available when the interpreter is started, whereas the
51other SRFIs require you to use the appropriate support module
12991fed 52explicitly.
a0e07ba4
NJ
53
54There are several reasons for this inconsistency. First, the feature
55checking syntactic form @code{cond-expand} (@pxref{SRFI-0}) must be
56available immediately, because it must be there when the user wants to
57check for the Scheme implementation, that is, before she can know that
58it is safe to use @code{use-modules} to load SRFI support modules. The
59second reason is that some features defined in SRFIs had been
60implemented in Guile before the developers started to add SRFI
61implementations as modules (for example SRFI-6 (@pxref{SRFI-6})). In
62the future, it is possible that SRFIs in the core library might be
63factored out into separate modules, requiring explicit module loading
64when they are needed. So you should be prepared to have to use
65@code{use-modules} someday in the future to access SRFI-6 bindings. If
66you want, you can do that already. We have included the module
67@code{(srfi srfi-6)} in the distribution, which currently does nothing,
68but ensures that you can write future-safe code.
69
70Generally, support for a specific SRFI is made available by using
71modules named @code{(srfi srfi-@var{number})}, where @var{number} is the
72number of the SRFI needed. Another possibility is to use the command
73line option @code{--use-srfi}, which will load the necessary modules
74automatically (@pxref{Invoking Guile}).
75
76
77@node SRFI-0
3229f68b 78@subsection SRFI-0 - cond-expand
8742c48b 79@cindex SRFI-0
a0e07ba4 80
5eef0f61
KR
81This SRFI lets a portable Scheme program test for the presence of
82certain features, and adapt itself by using different blocks of code,
83or fail if the necessary features are not available. There's no
84module to load, this is in the Guile core.
a0e07ba4 85
5eef0f61
KR
86A program designed only for Guile will generally not need this
87mechanism, such a program can of course directly use the various
88documented parts of Guile.
a0e07ba4 89
5eef0f61
KR
90@deffn syntax cond-expand (feature body@dots{}) @dots{}
91Expand to the @var{body} of the first clause whose @var{feature}
92specification is satisfied. It is an error if no @var{feature} is
a0e07ba4
NJ
93satisfied.
94
5eef0f61
KR
95Features are symbols such as @code{srfi-1}, and a feature
96specification can use @code{and}, @code{or} and @code{not} forms to
97test combinations. The last clause can be an @code{else}, to be used
98if no other passes.
a0e07ba4 99
5eef0f61
KR
100For example, define a private version of @code{alist-cons} if SRFI-1
101is not available.
a0e07ba4 102
5eef0f61
KR
103@example
104(cond-expand (srfi-1
105 )
106 (else
107 (define (alist-cons key val alist)
108 (cons (cons key val) alist))))
109@end example
a0e07ba4 110
5eef0f61
KR
111Or demand a certain set of SRFIs (list operations, string ports,
112@code{receive} and string operations), failing if they're not
113available.
a0e07ba4 114
5eef0f61
KR
115@example
116(cond-expand ((and srfi-1 srfi-6 srfi-8 srfi-13)
117 ))
118@end example
119@end deffn
a0e07ba4 120
5eef0f61
KR
121The Guile core provides features @code{guile}, @code{r5rs},
122@code{srfi-0} and @code{srfi-6} initially. Other SRFI feature symbols
123are defined once their code has been loaded with @code{use-modules},
124since only then are their bindings available.
a0e07ba4 125
5eef0f61
KR
126The @samp{--use-srfi} command line option (@pxref{Invoking Guile}) is
127a good way to load SRFIs to satisfy @code{cond-expand} when running a
128portable program.
a0e07ba4 129
5eef0f61
KR
130Testing the @code{guile} feature allows a program to adapt itself to
131the Guile module system, but still run on other Scheme systems. For
132example the following demands SRFI-8 (@code{receive}), but also knows
133how to load it with the Guile mechanism.
a0e07ba4
NJ
134
135@example
5eef0f61
KR
136(cond-expand (srfi-8
137 )
138 (guile
139 (use-modules (srfi srfi-8))))
a0e07ba4
NJ
140@end example
141
5eef0f61
KR
142It should be noted that @code{cond-expand} is separate from the
143@code{*features*} mechanism (@pxref{Feature Tracking}), feature
144symbols in one are unrelated to those in the other.
a0e07ba4
NJ
145
146
147@node SRFI-1
3229f68b 148@subsection SRFI-1 - List library
8742c48b 149@cindex SRFI-1
a0e07ba4
NJ
150
151@c FIXME::martin: Review me!
152
153The list library defined in SRFI-1 contains a lot of useful list
154processing procedures for construction, examining, destructuring and
155manipulating lists and pairs.
156
157Since SRFI-1 also defines some procedures which are already contained
158in R5RS and thus are supported by the Guile core library, some list
159and pair procedures which appear in the SRFI-1 document may not appear
160in this section. So when looking for a particular list/pair
161processing procedure, you should also have a look at the sections
162@ref{Lists} and @ref{Pairs}.
163
164@menu
165* SRFI-1 Constructors:: Constructing new lists.
166* SRFI-1 Predicates:: Testing list for specific properties.
167* SRFI-1 Selectors:: Selecting elements from lists.
168* SRFI-1 Length Append etc:: Length calculation and list appending.
169* SRFI-1 Fold and Map:: Higher-order list processing.
170* SRFI-1 Filtering and Partitioning:: Filter lists based on predicates.
85a9b4ed 171* SRFI-1 Searching:: Search for elements.
a0e07ba4
NJ
172* SRFI-1 Deleting:: Delete elements from lists.
173* SRFI-1 Association Lists:: Handle association lists.
174* SRFI-1 Set Operations:: Use lists for representing sets.
175@end menu
176
177@node SRFI-1 Constructors
3229f68b 178@subsubsection Constructors
a0e07ba4
NJ
179
180@c FIXME::martin: Review me!
181
182New lists can be constructed by calling one of the following
183procedures.
184
8f85c0c6 185@deffn {Scheme Procedure} xcons d a
a0e07ba4
NJ
186Like @code{cons}, but with interchanged arguments. Useful mostly when
187passed to higher-order procedures.
188@end deffn
189
8f85c0c6 190@deffn {Scheme Procedure} list-tabulate n init-proc
a0e07ba4
NJ
191Return an @var{n}-element list, where each list element is produced by
192applying the procedure @var{init-proc} to the corresponding list
193index. The order in which @var{init-proc} is applied to the indices
194is not specified.
195@end deffn
196
57066448
KR
197@deffn {Scheme Procedure} list-copy lst
198Return a new list containing the elements of the list @var{lst}.
199
200This function differs from the core @code{list-copy} (@pxref{List
201Constructors}) in accepting improper lists too. And if @var{lst} is
202not a pair at all then it's treated as the final tail of an improper
203list and simply returned.
204@end deffn
205
8f85c0c6 206@deffn {Scheme Procedure} circular-list elt1 elt2 @dots{}
a0e07ba4
NJ
207Return a circular list containing the given arguments @var{elt1}
208@var{elt2} @dots{}.
209@end deffn
210
8f85c0c6 211@deffn {Scheme Procedure} iota count [start step]
256853db
KR
212Return a list containing @var{count} numbers, starting from
213@var{start} and adding @var{step} each time. The default @var{start}
214is 0, the default @var{step} is 1. For example,
a0e07ba4 215
256853db
KR
216@example
217(iota 6) @result{} (0 1 2 3 4 5)
218(iota 4 2.5 -2) @result{} (2.5 0.5 -1.5 -3.5)
219@end example
a0e07ba4 220
256853db
KR
221This function takes its name from the corresponding primitive in the
222APL language.
a0e07ba4
NJ
223@end deffn
224
225
226@node SRFI-1 Predicates
3229f68b 227@subsubsection Predicates
a0e07ba4
NJ
228
229@c FIXME::martin: Review me!
230
231The procedures in this section test specific properties of lists.
232
8f85c0c6 233@deffn {Scheme Procedure} proper-list? obj
a0e07ba4
NJ
234Return @code{#t} if @var{obj} is a proper list, that is a finite list,
235terminated with the empty list. Otherwise, return @code{#f}.
236@end deffn
237
8f85c0c6 238@deffn {Scheme Procedure} circular-list? obj
a0e07ba4
NJ
239Return @code{#t} if @var{obj} is a circular list, otherwise return
240@code{#f}.
241@end deffn
242
8f85c0c6 243@deffn {Scheme Procedure} dotted-list? obj
a0e07ba4
NJ
244Return @code{#t} if @var{obj} is a dotted list, return @code{#f}
245otherwise. A dotted list is a finite list which is not terminated by
246the empty list, but some other value.
247@end deffn
248
8f85c0c6 249@deffn {Scheme Procedure} null-list? lst
a0e07ba4
NJ
250Return @code{#t} if @var{lst} is the empty list @code{()}, @code{#f}
251otherwise. If something else than a proper or circular list is passed
85a9b4ed 252as @var{lst}, an error is signalled. This procedure is recommended
a0e07ba4
NJ
253for checking for the end of a list in contexts where dotted lists are
254not allowed.
255@end deffn
256
8f85c0c6 257@deffn {Scheme Procedure} not-pair? obj
a0e07ba4
NJ
258Return @code{#t} is @var{obj} is not a pair, @code{#f} otherwise.
259This is shorthand notation @code{(not (pair? @var{obj}))} and is
260supposed to be used for end-of-list checking in contexts where dotted
261lists are allowed.
262@end deffn
263
8f85c0c6 264@deffn {Scheme Procedure} list= elt= list1 @dots{}
a0e07ba4
NJ
265Return @code{#t} if all argument lists are equal, @code{#f} otherwise.
266List equality is determined by testing whether all lists have the same
267length and the corresponding elements are equal in the sense of the
268equality predicate @var{elt=}. If no or only one list is given,
269@code{#t} is returned.
270@end deffn
271
272
273@node SRFI-1 Selectors
3229f68b 274@subsubsection Selectors
a0e07ba4
NJ
275
276@c FIXME::martin: Review me!
277
8f85c0c6
NJ
278@deffn {Scheme Procedure} first pair
279@deffnx {Scheme Procedure} second pair
280@deffnx {Scheme Procedure} third pair
281@deffnx {Scheme Procedure} fourth pair
282@deffnx {Scheme Procedure} fifth pair
283@deffnx {Scheme Procedure} sixth pair
284@deffnx {Scheme Procedure} seventh pair
285@deffnx {Scheme Procedure} eighth pair
286@deffnx {Scheme Procedure} ninth pair
287@deffnx {Scheme Procedure} tenth pair
a0e07ba4
NJ
288These are synonyms for @code{car}, @code{cadr}, @code{caddr}, @dots{}.
289@end deffn
290
8f85c0c6 291@deffn {Scheme Procedure} car+cdr pair
a0e07ba4
NJ
292Return two values, the @sc{car} and the @sc{cdr} of @var{pair}.
293@end deffn
294
8f85c0c6
NJ
295@deffn {Scheme Procedure} take lst i
296@deffnx {Scheme Procedure} take! lst i
a0e07ba4
NJ
297Return a list containing the first @var{i} elements of @var{lst}.
298
299@code{take!} may modify the structure of the argument list @var{lst}
300in order to produce the result.
301@end deffn
302
8f85c0c6 303@deffn {Scheme Procedure} drop lst i
a0e07ba4
NJ
304Return a list containing all but the first @var{i} elements of
305@var{lst}.
306@end deffn
307
8f85c0c6 308@deffn {Scheme Procedure} take-right lst i
a0e07ba4
NJ
309Return the a list containing the @var{i} last elements of @var{lst}.
310@end deffn
311
8f85c0c6
NJ
312@deffn {Scheme Procedure} drop-right lst i
313@deffnx {Scheme Procedure} drop-right! lst i
a0e07ba4
NJ
314Return the a list containing all but the @var{i} last elements of
315@var{lst}.
316
317@code{drop-right!} may modify the structure of the argument list
318@var{lst} in order to produce the result.
319@end deffn
320
8f85c0c6
NJ
321@deffn {Scheme Procedure} split-at lst i
322@deffnx {Scheme Procedure} split-at! lst i
a0e07ba4
NJ
323Return two values, a list containing the first @var{i} elements of the
324list @var{lst} and a list containing the remaining elements.
325
326@code{split-at!} may modify the structure of the argument list
327@var{lst} in order to produce the result.
328@end deffn
329
8f85c0c6 330@deffn {Scheme Procedure} last lst
a0e07ba4
NJ
331Return the last element of the non-empty, finite list @var{lst}.
332@end deffn
333
334
335@node SRFI-1 Length Append etc
3229f68b 336@subsubsection Length, Append, Concatenate, etc.
a0e07ba4
NJ
337
338@c FIXME::martin: Review me!
339
8f85c0c6 340@deffn {Scheme Procedure} length+ lst
a0e07ba4
NJ
341Return the length of the argument list @var{lst}. When @var{lst} is a
342circular list, @code{#f} is returned.
343@end deffn
344
8f85c0c6
NJ
345@deffn {Scheme Procedure} concatenate list-of-lists
346@deffnx {Scheme Procedure} concatenate! list-of-lists
a0e07ba4
NJ
347Construct a list by appending all lists in @var{list-of-lists}.
348
349@code{concatenate!} may modify the structure of the given lists in
350order to produce the result.
351@end deffn
352
8f85c0c6
NJ
353@deffn {Scheme Procedure} append-reverse rev-head tail
354@deffnx {Scheme Procedure} append-reverse! rev-head tail
a0e07ba4
NJ
355Reverse @var{rev-head}, append @var{tail} and return the result. This
356is equivalent to @code{(append (reverse @var{rev-head}) @var{tail})},
357but more efficient.
358
359@code{append-reverse!} may modify @var{rev-head} in order to produce
360the result.
361@end deffn
362
8f85c0c6 363@deffn {Scheme Procedure} zip lst1 lst2 @dots{}
a0e07ba4
NJ
364Return a list as long as the shortest of the argument lists, where
365each element is a list. The first list contains the first elements of
366the argument lists, the second list contains the second elements, and
367so on.
368@end deffn
369
8f85c0c6
NJ
370@deffn {Scheme Procedure} unzip1 lst
371@deffnx {Scheme Procedure} unzip2 lst
372@deffnx {Scheme Procedure} unzip3 lst
373@deffnx {Scheme Procedure} unzip4 lst
374@deffnx {Scheme Procedure} unzip5 lst
a0e07ba4
NJ
375@code{unzip1} takes a list of lists, and returns a list containing the
376first elements of each list, @code{unzip2} returns two lists, the
377first containing the first elements of each lists and the second
378containing the second elements of each lists, and so on.
379@end deffn
380
e508c863
KR
381@deffn {Scheme Procedure} count pred lst1 @dots{} lstN
382Return a count of the number of times @var{pred} returns true when
383called on elements from the given lists.
384
385@var{pred} is called with @var{N} parameters @code{(@var{pred}
386@var{elem1} @dots{} @var{elemN})}, each element being from the
387corresponding @var{lst1} @dots{} @var{lstN}. The first call is with
388the first element of each list, the second with the second element
389from each, and so on.
390
391Counting stops when the end of the shortest list is reached. At least
392one list must be non-circular.
393@end deffn
394
a0e07ba4
NJ
395
396@node SRFI-1 Fold and Map
3229f68b 397@subsubsection Fold, Unfold & Map
a0e07ba4
NJ
398
399@c FIXME::martin: Review me!
400
8f85c0c6 401@deffn {Scheme Procedure} fold kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
402Fold the procedure @var{kons} across all elements of @var{lst1},
403@var{lst2}, @dots{}. Produce the result of
404
405@code{(@var{kons} @var{en1} @var{en2} @dots{} (@var{kons} @var{e21}
406@var{e22} (@var{kons} @var{e11} @var{e12} @var{knil})))},
407
408if @var{enm} are the elements of the lists @var{lst1}, @var{lst2},
409@dots{}.
410@end deffn
411
8f85c0c6 412@deffn {Scheme Procedure} fold-right kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
413Similar to @code{fold}, but applies @var{kons} in right-to-left order
414to the list elements, that is:
415
416@code{(@var{kons} @var{e11} @var{e12}(@var{kons} @var{e21}
417@var{e22} @dots{} (@var{kons} @var{en1} @var{en2} @var{knil})))},
418@end deffn
419
8f85c0c6 420@deffn {Scheme Procedure} pair-fold kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
421Like @code{fold}, but apply @var{kons} to the pairs of the list
422instead of the list elements.
423@end deffn
424
8f85c0c6 425@deffn {Scheme Procedure} pair-fold-right kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
426Like @code{fold-right}, but apply @var{kons} to the pairs of the list
427instead of the list elements.
428@end deffn
429
8f85c0c6 430@deffn {Scheme Procedure} reduce f ridentity lst
1ae7b878
KR
431@code{reduce} is a variant of @code{fold}. If @var{lst} is
432@code{()}, @var{ridentity} is returned. Otherwise, @code{(fold f (car
a0e07ba4
NJ
433@var{lst}) (cdr @var{lst}))} is returned.
434@end deffn
435
8f85c0c6 436@deffn {Scheme Procedure} reduce-right f ridentity lst
b5aa0215 437This is the @code{fold-right} variant of @code{reduce}.
a0e07ba4
NJ
438@end deffn
439
8f85c0c6 440@deffn {Scheme Procedure} unfold p f g seed [tail-gen]
a0e07ba4
NJ
441@code{unfold} is defined as follows:
442
443@lisp
444(unfold p f g seed) =
445 (if (p seed) (tail-gen seed)
446 (cons (f seed)
447 (unfold p f g (g seed))))
448@end lisp
449
450@table @var
451@item p
452Determines when to stop unfolding.
453
454@item f
455Maps each seed value to the corresponding list element.
456
457@item g
458Maps each seed value to next seed valu.
459
460@item seed
461The state value for the unfold.
462
463@item tail-gen
464Creates the tail of the list; defaults to @code{(lambda (x) '())}.
465@end table
466
467@var{g} produces a series of seed values, which are mapped to list
468elements by @var{f}. These elements are put into a list in
469left-to-right order, and @var{p} tells when to stop unfolding.
470@end deffn
471
8f85c0c6 472@deffn {Scheme Procedure} unfold-right p f g seed [tail]
a0e07ba4
NJ
473Construct a list with the following loop.
474
475@lisp
476(let lp ((seed seed) (lis tail))
477 (if (p seed) lis
478 (lp (g seed)
479 (cons (f seed) lis))))
480@end lisp
481
482@table @var
483@item p
484Determines when to stop unfolding.
485
486@item f
487Maps each seed value to the corresponding list element.
488
489@item g
490Maps each seed value to next seed valu.
491
492@item seed
493The state value for the unfold.
494
495@item tail-gen
496Creates the tail of the list; defaults to @code{(lambda (x) '())}.
497@end table
498
499@end deffn
500
8f85c0c6 501@deffn {Scheme Procedure} map f lst1 lst2 @dots{}
a0e07ba4
NJ
502Map the procedure over the list(s) @var{lst1}, @var{lst2}, @dots{} and
503return a list containing the results of the procedure applications.
504This procedure is extended with respect to R5RS, because the argument
505lists may have different lengths. The result list will have the same
506length as the shortest argument lists. The order in which @var{f}
507will be applied to the list element(s) is not specified.
508@end deffn
509
8f85c0c6 510@deffn {Scheme Procedure} for-each f lst1 lst2 @dots{}
a0e07ba4
NJ
511Apply the procedure @var{f} to each pair of corresponding elements of
512the list(s) @var{lst1}, @var{lst2}, @dots{}. The return value is not
513specified. This procedure is extended with respect to R5RS, because
514the argument lists may have different lengths. The shortest argument
515list determines the number of times @var{f} is called. @var{f} will
85a9b4ed 516be applied to the list elements in left-to-right order.
a0e07ba4
NJ
517
518@end deffn
519
8f85c0c6
NJ
520@deffn {Scheme Procedure} append-map f lst1 lst2 @dots{}
521@deffnx {Scheme Procedure} append-map! f lst1 lst2 @dots{}
12991fed 522Equivalent to
a0e07ba4
NJ
523
524@lisp
12991fed 525(apply append (map f clist1 clist2 ...))
a0e07ba4
NJ
526@end lisp
527
12991fed 528and
a0e07ba4
NJ
529
530@lisp
12991fed 531(apply append! (map f clist1 clist2 ...))
a0e07ba4
NJ
532@end lisp
533
534Map @var{f} over the elements of the lists, just as in the @code{map}
535function. However, the results of the applications are appended
536together to make the final result. @code{append-map} uses
537@code{append} to append the results together; @code{append-map!} uses
538@code{append!}.
539
540The dynamic order in which the various applications of @var{f} are
541made is not specified.
542@end deffn
543
8f85c0c6 544@deffn {Scheme Procedure} map! f lst1 lst2 @dots{}
a0e07ba4
NJ
545Linear-update variant of @code{map} -- @code{map!} is allowed, but not
546required, to alter the cons cells of @var{lst1} to construct the
547result list.
548
549The dynamic order in which the various applications of @var{f} are
550made is not specified. In the n-ary case, @var{lst2}, @var{lst3},
551@dots{} must have at least as many elements as @var{lst1}.
552@end deffn
553
8f85c0c6 554@deffn {Scheme Procedure} pair-for-each f lst1 lst2 @dots{}
a0e07ba4
NJ
555Like @code{for-each}, but applies the procedure @var{f} to the pairs
556from which the argument lists are constructed, instead of the list
557elements. The return value is not specified.
558@end deffn
559
8f85c0c6 560@deffn {Scheme Procedure} filter-map f lst1 lst2 @dots{}
a0e07ba4
NJ
561Like @code{map}, but only results from the applications of @var{f}
562which are true are saved in the result list.
563@end deffn
564
565
566@node SRFI-1 Filtering and Partitioning
3229f68b 567@subsubsection Filtering and Partitioning
a0e07ba4
NJ
568
569@c FIXME::martin: Review me!
570
571Filtering means to collect all elements from a list which satisfy a
572specific condition. Partitioning a list means to make two groups of
573list elements, one which contains the elements satisfying a condition,
574and the other for the elements which don't.
575
60e25dc4
KR
576The @code{filter} and @code{filter!} functions are implemented in the
577Guile core, @xref{List Modification}.
a0e07ba4 578
8f85c0c6
NJ
579@deffn {Scheme Procedure} partition pred lst
580@deffnx {Scheme Procedure} partition! pred lst
193239f1
KR
581Split @var{lst} into those elements which do and don't satisfy the
582predicate @var{pred}.
a0e07ba4 583
193239f1
KR
584The return is two values (@pxref{Multiple Values}), the first being a
585list of all elements from @var{lst} which satisfy @var{pred}, the
586second a list of those which do not.
587
588The elements in the result lists are in the same order as in @var{lst}
589but the order in which the calls @code{(@var{pred} elem)} are made on
590the list elements is unspecified.
591
592@code{partition} does not change @var{lst}, but one of the returned
593lists may share a tail with it. @code{partition!} may modify
594@var{lst} to construct its return.
a0e07ba4
NJ
595@end deffn
596
8f85c0c6
NJ
597@deffn {Scheme Procedure} remove pred lst
598@deffnx {Scheme Procedure} remove! pred lst
a0e07ba4
NJ
599Return a list containing all elements from @var{lst} which do not
600satisfy the predicate @var{pred}. The elements in the result list
601have the same order as in @var{lst}. The order in which @var{pred} is
602applied to the list elements is not specified.
603
604@code{remove!} is allowed, but not required to modify the structure of
605the input list.
606@end deffn
607
608
609@node SRFI-1 Searching
3229f68b 610@subsubsection Searching
a0e07ba4
NJ
611
612@c FIXME::martin: Review me!
613
614The procedures for searching elements in lists either accept a
615predicate or a comparison object for determining which elements are to
616be searched.
617
8f85c0c6 618@deffn {Scheme Procedure} find pred lst
a0e07ba4
NJ
619Return the first element of @var{lst} which satisfies the predicate
620@var{pred} and @code{#f} if no such element is found.
621@end deffn
622
8f85c0c6 623@deffn {Scheme Procedure} find-tail pred lst
a0e07ba4
NJ
624Return the first pair of @var{lst} whose @sc{car} satisfies the
625predicate @var{pred} and @code{#f} if no such element is found.
626@end deffn
627
8f85c0c6
NJ
628@deffn {Scheme Procedure} take-while pred lst
629@deffnx {Scheme Procedure} take-while! pred lst
a0e07ba4
NJ
630Return the longest initial prefix of @var{lst} whose elements all
631satisfy the predicate @var{pred}.
632
633@code{take-while!} is allowed, but not required to modify the input
634list while producing the result.
635@end deffn
636
8f85c0c6 637@deffn {Scheme Procedure} drop-while pred lst
a0e07ba4
NJ
638Drop the longest initial prefix of @var{lst} whose elements all
639satisfy the predicate @var{pred}.
640@end deffn
641
8f85c0c6
NJ
642@deffn {Scheme Procedure} span pred lst
643@deffnx {Scheme Procedure} span! pred lst
644@deffnx {Scheme Procedure} break pred lst
645@deffnx {Scheme Procedure} break! pred lst
a0e07ba4
NJ
646@code{span} splits the list @var{lst} into the longest initial prefix
647whose elements all satisfy the predicate @var{pred}, and the remaining
648tail. @code{break} inverts the sense of the predicate.
649
650@code{span!} and @code{break!} are allowed, but not required to modify
651the structure of the input list @var{lst} in order to produce the
652result.
3e73b6f9
KR
653
654Note that the name @code{break} conflicts with the @code{break}
655binding established by @code{while} (@pxref{while do}). Applications
656wanting to use @code{break} from within a @code{while} loop will need
657to make a new define under a different name.
a0e07ba4
NJ
658@end deffn
659
8f85c0c6 660@deffn {Scheme Procedure} any pred lst1 lst2 @dots{}
a0e07ba4
NJ
661Apply @var{pred} across the lists and return a true value if the
662predicate returns true for any of the list elements(s); return
663@code{#f} otherwise. The true value returned is always the result of
85a9b4ed 664the first successful application of @var{pred}.
a0e07ba4
NJ
665@end deffn
666
8f85c0c6 667@deffn {Scheme Procedure} every pred lst1 lst2 @dots{}
a0e07ba4
NJ
668Apply @var{pred} across the lists and return a true value if the
669predicate returns true for every of the list elements(s); return
670@code{#f} otherwise. The true value returned is always the result of
85a9b4ed 671the final successful application of @var{pred}.
a0e07ba4
NJ
672@end deffn
673
8f85c0c6 674@deffn {Scheme Procedure} list-index pred lst1 lst2 @dots{}
a0e07ba4
NJ
675Return the index of the leftmost element that satisfies @var{pred}.
676@end deffn
677
8f85c0c6 678@deffn {Scheme Procedure} member x lst [=]
a0e07ba4
NJ
679Return the first sublist of @var{lst} whose @sc{car} is equal to
680@var{x}. If @var{x} does no appear in @var{lst}, return @code{#f}.
681Equality is determined by the equality predicate @var{=}, or
682@code{equal?} if @var{=} is not given.
ea6ea01b
KR
683
684This function extends the core @code{member} by accepting an equality
685predicate. (@pxref{List Searching})
a0e07ba4
NJ
686@end deffn
687
688
689@node SRFI-1 Deleting
3229f68b 690@subsubsection Deleting
a0e07ba4
NJ
691
692@c FIXME::martin: Review me!
693
8f85c0c6
NJ
694@deffn {Scheme Procedure} delete x lst [=]
695@deffnx {Scheme Procedure} delete! x lst [=]
b6b9376a
KR
696Return a list containing the elements of @var{lst} but with those
697equal to @var{x} deleted. The returned elements will be in the same
698order as they were in @var{lst}.
699
700Equality is determined by the @var{=} predicate, or @code{equal?} if
701not given. An equality call is made just once for each element, but
702the order in which the calls are made on the elements is unspecified.
a0e07ba4 703
243bdb63 704The equality calls are always @code{(= x elem)}, ie.@: the given @var{x}
b6b9376a
KR
705is first. This means for instance elements greater than 5 can be
706deleted with @code{(delete 5 lst <)}.
707
708@code{delete} does not modify @var{lst}, but the return might share a
709common tail with @var{lst}. @code{delete!} may modify the structure
710of @var{lst} to construct its return.
ea6ea01b
KR
711
712These functions extend the core @code{delete} and @code{delete!} in
713accepting an equality predicate. (@pxref{List Modification})
a0e07ba4
NJ
714@end deffn
715
8f85c0c6
NJ
716@deffn {Scheme Procedure} delete-duplicates lst [=]
717@deffnx {Scheme Procedure} delete-duplicates! lst [=]
b6b9376a
KR
718Return a list containing the elements of @var{lst} but without
719duplicates.
720
721When elements are equal, only the first in @var{lst} is retained.
722Equal elements can be anywhere in @var{lst}, they don't have to be
723adjacent. The returned list will have the retained elements in the
724same order as they were in @var{lst}.
725
726Equality is determined by the @var{=} predicate, or @code{equal?} if
727not given. Calls @code{(= x y)} are made with element @var{x} being
728before @var{y} in @var{lst}. A call is made at most once for each
729combination, but the sequence of the calls across the elements is
730unspecified.
731
732@code{delete-duplicates} does not modify @var{lst}, but the return
733might share a common tail with @var{lst}. @code{delete-duplicates!}
734may modify the structure of @var{lst} to construct its return.
735
736In the worst case, this is an @math{O(N^2)} algorithm because it must
737check each element against all those preceding it. For long lists it
738is more efficient to sort and then compare only adjacent elements.
a0e07ba4
NJ
739@end deffn
740
741
742@node SRFI-1 Association Lists
3229f68b 743@subsubsection Association Lists
a0e07ba4
NJ
744
745@c FIXME::martin: Review me!
746
747Association lists are described in detail in section @ref{Association
748Lists}. The present section only documents the additional procedures
749for dealing with association lists defined by SRFI-1.
750
8f85c0c6 751@deffn {Scheme Procedure} assoc key alist [=]
a0e07ba4
NJ
752Return the pair from @var{alist} which matches @var{key}. Equality is
753determined by @var{=}, which defaults to @code{equal?} if not given.
754@var{alist} must be an association lists---a list of pairs.
ea6ea01b
KR
755
756This function extends the core @code{assoc} by accepting an equality
757predicate. (@pxref{Association Lists})
a0e07ba4
NJ
758@end deffn
759
8f85c0c6 760@deffn {Scheme Procedure} alist-cons key datum alist
a0e07ba4
NJ
761Equivalent to
762
763@lisp
764(cons (cons @var{key} @var{datum}) @var{alist})
765@end lisp
766
767This procedure is used to coons a new pair onto an existing
768association list.
769@end deffn
770
8f85c0c6 771@deffn {Scheme Procedure} alist-copy alist
a0e07ba4
NJ
772Return a newly allocated copy of @var{alist}, that means that the
773spine of the list as well as the pairs are copied.
774@end deffn
775
8f85c0c6
NJ
776@deffn {Scheme Procedure} alist-delete key alist [=]
777@deffnx {Scheme Procedure} alist-delete! key alist [=]
bd35f1f0
KR
778Return a list containing the elements of @var{alist} but with those
779elements whose keys are equal to @var{key} deleted. The returned
780elements will be in the same order as they were in @var{alist}.
a0e07ba4 781
bd35f1f0
KR
782Equality is determined by the @var{=} predicate, or @code{equal?} if
783not given. The order in which elements are tested is unspecified, but
784each equality call is made @code{(= key alistkey)}, ie. the given
785@var{key} parameter is first and the key from @var{alist} second.
786This means for instance all associations with a key greater than 5 can
787be removed with @code{(alist-delete 5 alist <)}.
788
789@code{alist-delete} does not modify @var{alist}, but the return might
790share a common tail with @var{alist}. @code{alist-delete!} may modify
791the list structure of @var{alist} to construct its return.
a0e07ba4
NJ
792@end deffn
793
794
795@node SRFI-1 Set Operations
3229f68b 796@subsubsection Set Operations on Lists
a0e07ba4
NJ
797
798@c FIXME::martin: Review me!
799
800Lists can be used for representing sets of objects. The procedures
801documented in this section can be used for such set representations.
85a9b4ed 802Man combining several sets or adding elements, they make sure that no
a0e07ba4
NJ
803object is contained more than once in a given list. Please note that
804lists are not a too efficient implementation method for sets, so if
805you need high performance, you should think about implementing a
806custom data structure for representing sets, such as trees, bitsets,
807hash tables or something similar.
808
809All these procedures accept an equality predicate as the first
810argument. This predicate is used for testing the objects in the list
811sets for sameness.
812
8f85c0c6 813@deffn {Scheme Procedure} lset<= = list1 @dots{}
a0e07ba4
NJ
814Return @code{#t} if every @var{listi} is a subset of @var{listi+1},
815otherwise return @code{#f}. Returns @code{#t} if called with less
816than two arguments. @var{=} is used for testing element equality.
817@end deffn
818
8f85c0c6 819@deffn {Scheme Procedure} lset= = list1 list2 @dots{}
a0e07ba4
NJ
820Return @code{#t} if all argument lists are equal. @var{=} is used for
821testing element equality.
822@end deffn
823
8f85c0c6
NJ
824@deffn {Scheme Procedure} lset-adjoin = list elt1 @dots{}
825@deffnx {Scheme Procedure} lset-adjoin! = list elt1 @dots{}
a0e07ba4
NJ
826Add all @var{elts} to the list @var{list}, suppressing duplicates and
827return the resulting list. @code{lset-adjoin!} is allowed, but not
828required to modify its first argument. @var{=} is used for testing
829element equality.
830@end deffn
831
8f85c0c6
NJ
832@deffn {Scheme Procedure} lset-union = list1 @dots{}
833@deffnx {Scheme Procedure} lset-union! = list1 @dots{}
a0e07ba4
NJ
834Return the union of all argument list sets. The union is the set of
835all elements which appear in any of the argument sets.
836@code{lset-union!} is allowed, but not required to modify its first
837argument. @var{=} is used for testing element equality.
838@end deffn
839
8f85c0c6
NJ
840@deffn {Scheme Procedure} lset-intersection = list1 list2 @dots{}
841@deffnx {Scheme Procedure} lset-intersection! = list1 list2 @dots{}
a0e07ba4
NJ
842Return the intersection of all argument list sets. The intersection
843is the set containing all elements which appear in all argument sets.
844@code{lset-intersection!} is allowed, but not required to modify its
845first argument. @var{=} is used for testing element equality.
846@end deffn
847
8f85c0c6
NJ
848@deffn {Scheme Procedure} lset-difference = list1 list2 @dots{}
849@deffnx {Scheme Procedure} lset-difference! = list1 list2 @dots{}
a0e07ba4
NJ
850Return the difference of all argument list sets. The difference is
851the the set containing all elements of the first list which do not
852appear in the other lists. @code{lset-difference!} is allowed, but
853not required to modify its first argument. @var{=} is used for testing
854element equality.
855@end deffn
856
8f85c0c6
NJ
857@deffn {Scheme Procedure} lset-xor = list1 @dots{}
858@deffnx {Scheme Procedure} lset-xor! = list1 @dots{}
a0e07ba4
NJ
859Return the set containing all elements which appear in the first
860argument list set, but not in the second; or, more generally: which
861appear in an odd number of sets. @code{lset-xor!} is allowed, but
862not required to modify its first argument. @var{=} is used for testing
863element equality.
864@end deffn
865
8f85c0c6
NJ
866@deffn {Scheme Procedure} lset-diff+intersection = list1 list2 @dots{}
867@deffnx {Scheme Procedure} lset-diff+intersection! = list1 list2 @dots{}
a0e07ba4
NJ
868Return two values, the difference and the intersection of the argument
869list sets. This works like a combination of @code{lset-difference} and
870@code{lset-intersection}, but is more efficient.
871@code{lset-diff+intersection!} is allowed, but not required to modify
872its first argument. @var{=} is used for testing element equality. You
873have to use some means to deal with the multiple values these
874procedures return (@pxref{Multiple Values}).
875@end deffn
876
877
878@node SRFI-2
3229f68b 879@subsection SRFI-2 - and-let*
8742c48b 880@cindex SRFI-2
a0e07ba4 881
4fd0db14
KR
882@noindent
883The following syntax can be obtained with
a0e07ba4 884
4fd0db14
KR
885@lisp
886(use-modules (srfi srfi-2))
887@end lisp
a0e07ba4 888
4fd0db14
KR
889@deffn {library syntax} and-let* (clause @dots{}) body @dots{}
890A combination of @code{and} and @code{let*}.
891
892Each @var{clause} is evaluated in turn, and if @code{#f} is obtained
893then evaluation stops and @code{#f} is returned. If all are
894non-@code{#f} then @var{body} is evaluated and the last form gives the
895return value. Each @var{clause} should be one of the following,
896
897@table @code
898@item (symbol expr)
899Evaluate @var{expr}, check for @code{#f}, and bind it to @var{symbol}.
900Like @code{let*}, that binding is available to subsequent clauses.
901@item (expr)
902Evaluate @var{expr} and check for @code{#f}.
903@item symbol
904Get the value bound to @var{symbol} and check for @code{#f}.
905@end table
a0e07ba4 906
4fd0db14
KR
907Notice that @code{(expr)} has an ``extra'' pair of parentheses, for
908instance @code{((eq? x y))}. One way to remember this is to imagine
909the @code{symbol} in @code{(symbol expr)} is omitted.
a0e07ba4 910
4fd0db14
KR
911@code{and-let*} is good for calculations where a @code{#f} value means
912termination, but where a non-@code{#f} value is going to be needed in
913subsequent expressions.
914
915The following illustrates this, it returns text between brackets
916@samp{[...]} in a string, or @code{#f} if there are no such brackets
917(ie.@: either @code{string-index} gives @code{#f}).
918
919@example
920(define (extract-brackets str)
921 (and-let* ((start (string-index str #\[))
922 (end (string-index str #\] start)))
923 (substring str (1+ start) end)))
924@end example
925
926The following shows plain variables and expressions tested too.
927@code{diagnostic-levels} is taken to be an alist associating a
928diagnostic type with a level. @code{str} is printed only if the type
929is known and its level is high enough.
930
931@example
932(define (show-diagnostic type str)
933 (and-let* (want-diagnostics
934 (level (assq-ref diagnostic-levels type))
935 ((>= level current-diagnostic-level)))
936 (display str)))
937@end example
938
939The advantage of @code{and-let*} is that an extended sequence of
940expressions and tests doesn't require lots of nesting as would arise
941from separate @code{and} and @code{let*}, or from @code{cond} with
942@code{=>}.
943
944@end deffn
a0e07ba4
NJ
945
946
947@node SRFI-4
3229f68b 948@subsection SRFI-4 - Homogeneous numeric vector datatypes
8742c48b 949@cindex SRFI-4
a0e07ba4
NJ
950
951@c FIXME::martin: Review me!
952
f85f9591
KR
953SRFI-4 defines a set of datatypes and functions for vectors whose
954elements are numbers, all of the same numeric type. Vectors for
955signed and unsigned exact integers and inexact reals in several
956precisions are available. Being homogeneous means they require less
957memory than normal vectors.
a0e07ba4 958
f85f9591
KR
959The functions and the read syntax in this section are made available
960with
a0e07ba4 961
f85f9591
KR
962@lisp
963(use-modules (srfi srfi-4))
964@end lisp
a0e07ba4 965
f85f9591
KR
966Procedures similar to the vector procedures (@pxref{Vectors}) are
967provided for handling these homogeneous vectors, but they are distinct
968datatypes and the two cannot be inter-mixed.
a0e07ba4
NJ
969
970Ten vector data types are provided: Unsigned and signed integer values
971with 8, 16, 32 and 64 bits and floating point values with 32 and 64
f85f9591
KR
972bits. The type is indicated by a tag in the function names,
973@code{u8}, @code{s8}, @code{u16}, @code{s16}, @code{u32}, @code{s32},
974@code{u64}, @code{s64}, @code{f32}, @code{f64}.
a0e07ba4 975
f85f9591
KR
976The external representation (ie.@: read syntax) for these vectors is
977similar to normal Scheme vectors, but with an additional tag
978indiciating the vector's type. For example,
a0e07ba4
NJ
979
980@lisp
981#u16(1 2 3)
a0e07ba4
NJ
982#f64(3.1415 2.71)
983@end lisp
984
f85f9591
KR
985Note that the read syntax for floating-point here conflicts with
986@code{#f} for false. In Standard Scheme one can write @code{(1
987#f3)} for a three element list @code{(1 #f 3)}, but with the SRFI-4
988module @code{(1 #f3)} is invalid. @code{(1 #f 3)} is almost certainly
989what one should write anyway to make the intention clear, so this is
990rarely a problem.
991
992@deffn {Scheme Procedure} u8vector? obj
993@deffnx {Scheme Procedure} s8vector? obj
994@deffnx {Scheme Procedure} u16vector? obj
995@deffnx {Scheme Procedure} s16vector? obj
996@deffnx {Scheme Procedure} u32vector? obj
997@deffnx {Scheme Procedure} s32vector? obj
998@deffnx {Scheme Procedure} u64vector? obj
999@deffnx {Scheme Procedure} s64vector? obj
1000@deffnx {Scheme Procedure} f32vector? obj
1001@deffnx {Scheme Procedure} f64vector? obj
1002Return @code{#t} if @var{obj} is a homogeneous numeric vector of the
1003indicated type.
1004@end deffn
1005
1006@deffn {Scheme Procedure} make-u8vector n [value]
1007@deffnx {Scheme Procedure} make-s8vector n [value]
1008@deffnx {Scheme Procedure} make-u16vector n [value]
1009@deffnx {Scheme Procedure} make-s16vector n [value]
1010@deffnx {Scheme Procedure} make-u32vector n [value]
1011@deffnx {Scheme Procedure} make-s32vector n [value]
1012@deffnx {Scheme Procedure} make-u64vector n [value]
1013@deffnx {Scheme Procedure} make-s64vector n [value]
1014@deffnx {Scheme Procedure} make-f32vector n [value]
1015@deffnx {Scheme Procedure} make-f64vector n [value]
1016Return a newly allocated homogeneous numeric vector holding @var{n}
1017elements of the indicated type. If @var{value} is given, the vector
1018is initialized with that value, otherwise the contents are
1019unspecified.
a0e07ba4
NJ
1020@end deffn
1021
f85f9591
KR
1022@deffn {Scheme Procedure} u8vector value @dots{}
1023@deffnx {Scheme Procedure} s8vector value @dots{}
1024@deffnx {Scheme Procedure} u16vector value @dots{}
1025@deffnx {Scheme Procedure} s16vector value @dots{}
1026@deffnx {Scheme Procedure} u32vector value @dots{}
1027@deffnx {Scheme Procedure} s32vector value @dots{}
1028@deffnx {Scheme Procedure} u64vector value @dots{}
1029@deffnx {Scheme Procedure} s64vector value @dots{}
1030@deffnx {Scheme Procedure} f32vector value @dots{}
1031@deffnx {Scheme Procedure} f64vector value @dots{}
1032Return a newly allocated homogeneous numeric vector of the indicated
1033type, holding the given parameter @var{value}s. The vector length is
1034the number of parameters given.
1035@end deffn
1036
1037@deffn {Scheme Procedure} u8vector-length vec
1038@deffnx {Scheme Procedure} s8vector-length vec
1039@deffnx {Scheme Procedure} u16vector-length vec
1040@deffnx {Scheme Procedure} s16vector-length vec
1041@deffnx {Scheme Procedure} u32vector-length vec
1042@deffnx {Scheme Procedure} s32vector-length vec
1043@deffnx {Scheme Procedure} u64vector-length vec
1044@deffnx {Scheme Procedure} s64vector-length vec
1045@deffnx {Scheme Procedure} f32vector-length vec
1046@deffnx {Scheme Procedure} f64vector-length vec
1047Return the number of elements in @var{vec}.
1048@end deffn
1049
1050@deffn {Scheme Procedure} u8vector-ref vec i
1051@deffnx {Scheme Procedure} s8vector-ref vec i
1052@deffnx {Scheme Procedure} u16vector-ref vec i
1053@deffnx {Scheme Procedure} s16vector-ref vec i
1054@deffnx {Scheme Procedure} u32vector-ref vec i
1055@deffnx {Scheme Procedure} s32vector-ref vec i
1056@deffnx {Scheme Procedure} u64vector-ref vec i
1057@deffnx {Scheme Procedure} s64vector-ref vec i
1058@deffnx {Scheme Procedure} f32vector-ref vec i
1059@deffnx {Scheme Procedure} f64vector-ref vec i
1060Return the element at index @var{i} in @var{vec}. The first element
1061in @var{vec} is index 0.
1062@end deffn
1063
1064@deffn {Scheme Procedure} u8vector-ref vec i value
1065@deffnx {Scheme Procedure} s8vector-ref vec i value
1066@deffnx {Scheme Procedure} u16vector-ref vec i value
1067@deffnx {Scheme Procedure} s16vector-ref vec i value
1068@deffnx {Scheme Procedure} u32vector-ref vec i value
1069@deffnx {Scheme Procedure} s32vector-ref vec i value
1070@deffnx {Scheme Procedure} u64vector-ref vec i value
1071@deffnx {Scheme Procedure} s64vector-ref vec i value
1072@deffnx {Scheme Procedure} f32vector-ref vec i value
1073@deffnx {Scheme Procedure} f64vector-ref vec i value
1074Set the element at index @var{i} in @var{vec} to @var{value}. The
1075first element in @var{vec} is index 0. The return value is
1076unspecified.
a0e07ba4
NJ
1077@end deffn
1078
f85f9591
KR
1079@deffn {Scheme Procedure} u8vector->list vec
1080@deffnx {Scheme Procedure} s8vector->list vec
1081@deffnx {Scheme Procedure} u16vector->list vec
1082@deffnx {Scheme Procedure} s16vector->list vec
1083@deffnx {Scheme Procedure} u32vector->list vec
1084@deffnx {Scheme Procedure} s32vector->list vec
1085@deffnx {Scheme Procedure} u64vector->list vec
1086@deffnx {Scheme Procedure} s64vector->list vec
1087@deffnx {Scheme Procedure} f32vector->list vec
1088@deffnx {Scheme Procedure} f64vector->list vec
1089Return a newly allocated list holding all elements of @var{vec}.
1090@end deffn
1091
1092@deffn {Scheme Procedure} list->u8vector lst
1093@deffnx {Scheme Procedure} list->s8vector lst
1094@deffnx {Scheme Procedure} list->u16vector lst
1095@deffnx {Scheme Procedure} list->s16vector lst
1096@deffnx {Scheme Procedure} list->u32vector lst
1097@deffnx {Scheme Procedure} list->s32vector lst
1098@deffnx {Scheme Procedure} list->u64vector lst
1099@deffnx {Scheme Procedure} list->s64vector lst
1100@deffnx {Scheme Procedure} list->f32vector lst
1101@deffnx {Scheme Procedure} list->f64vector lst
1102Return a newly allocated homogeneous numeric vector of the indicated type,
a0e07ba4
NJ
1103initialized with the elements of the list @var{lst}.
1104@end deffn
1105
1106
1107@node SRFI-6
3229f68b 1108@subsection SRFI-6 - Basic String Ports
8742c48b 1109@cindex SRFI-6
a0e07ba4
NJ
1110
1111SRFI-6 defines the procedures @code{open-input-string},
1112@code{open-output-string} and @code{get-output-string}. These
1113procedures are included in the Guile core, so using this module does not
1114make any difference at the moment. But it is possible that support for
1115SRFI-6 will be factored out of the core library in the future, so using
1116this module does not hurt, after all.
1117
1118@node SRFI-8
3229f68b 1119@subsection SRFI-8 - receive
8742c48b 1120@cindex SRFI-8
a0e07ba4
NJ
1121
1122@code{receive} is a syntax for making the handling of multiple-value
1123procedures easier. It is documented in @xref{Multiple Values}.
1124
1125
1126@node SRFI-9
3229f68b 1127@subsection SRFI-9 - define-record-type
8742c48b 1128@cindex SRFI-9
a0e07ba4 1129
6afe385d
KR
1130This SRFI is a syntax for defining new record types and creating
1131predicate, constructor, and field getter and setter functions. In
1132Guile this is simply an alternate interface to the core record
1133functionality (@pxref{Records}). It can be used with,
a0e07ba4 1134
6afe385d
KR
1135@example
1136(use-modules (srfi srfi-9))
1137@end example
1138
1139@deffn {library syntax} define-record-type type @* (constructor fieldname @dots{}) @* predicate @* (fieldname accessor [modifier]) @dots{}
1140@sp 1
1141Create a new record type, and make various @code{define}s for using
1142it. This syntax can only occur at the top-level, not nested within
1143some other form.
1144
1145@var{type} is bound to the record type, which is as per the return
1146from the core @code{make-record-type}. @var{type} also provides the
1147name for the record, as per @code{record-type-name}.
1148
1149@var{constructor} is bound to a function to be called as
1150@code{(@var{constructor} fieldval @dots{})} to create a new record of
1151this type. The arguments are initial values for the fields, one
1152argument for each field, in the order they appear in the
1153@code{define-record-type} form.
1154
1155The @var{fieldname}s provide the names for the record fields, as per
1156the core @code{record-type-fields} etc, and are referred to in the
1157subsequent accessor/modifier forms.
1158
1159@var{predictate} is bound to a function to be called as
1160@code{(@var{predicate} obj)}. It returns @code{#t} or @code{#f}
1161according to whether @var{obj} is a record of this type.
1162
1163Each @var{accessor} is bound to a function to be called
1164@code{(@var{accessor} record)} to retrieve the respective field from a
1165@var{record}. Similarly each @var{modifier} is bound to a function to
1166be called @code{(@var{modifier} record val)} to set the respective
1167field in a @var{record}.
1168@end deffn
1169
1170@noindent
1171An example will illustrate typical usage,
a0e07ba4
NJ
1172
1173@example
6afe385d
KR
1174(define-record-type employee-type
1175 (make-employee name age salary)
1176 employee?
1177 (name get-employee-name)
1178 (age get-employee-age set-employee-age)
1179 (salary get-employee-salary set-employee-salary))
a0e07ba4
NJ
1180@end example
1181
6afe385d
KR
1182This creates a new employee data type, with name, age and salary
1183fields. Accessor functions are created for each field, but no
1184modifier function for the name (the intention in this example being
1185that it's established only when an employee object is created). These
1186can all then be used as for example,
a0e07ba4
NJ
1187
1188@example
6afe385d
KR
1189employee-type @result{} #<record-type employee-type>
1190
1191(define fred (make-employee "Fred" 45 20000.00))
1192
1193(employee? fred) @result{} #t
1194(get-employee-age fred) @result{} 45
1195(set-employee-salary fred 25000.00) ;; pay rise
a0e07ba4
NJ
1196@end example
1197
6afe385d
KR
1198The functions created by @code{define-record-type} are ordinary
1199top-level @code{define}s. They can be redefined or @code{set!} as
1200desired, exported from a module, etc.
1201
a0e07ba4
NJ
1202
1203@node SRFI-10
3229f68b 1204@subsection SRFI-10 - Hash-Comma Reader Extension
8742c48b 1205@cindex SRFI-10
a0e07ba4
NJ
1206
1207@cindex hash-comma
1208@cindex #,()
1209The module @code{(srfi srfi-10)} implements the syntax extension
1210@code{#,()}, also called hash-comma, which is defined in SRFI-10.
1211
1212The support for SRFI-10 consists of the procedure
1213@code{define-reader-ctor} for defining new reader constructors and the
1214read syntax form
1215
1216@example
1217#,(@var{ctor} @var{datum} ...)
1218@end example
1219
1220where @var{ctor} must be a symbol for which a read constructor was
85a9b4ed 1221defined previously, using @code{define-reader-ctor}.
a0e07ba4
NJ
1222
1223Example:
1224
1225@lisp
4310df36 1226(use-modules (ice-9 rdelim)) ; for read-line
a0e07ba4
NJ
1227(define-reader-ctor 'file open-input-file)
1228(define f '#,(file "/etc/passwd"))
1229(read-line f)
1230@result{}
1231"root:x:0:0:root:/root:/bin/bash"
1232@end lisp
1233
1234Please note the quote before the @code{#,(file ...)} expression. This
1235is necessary because ports are not self-evaluating in Guile.
1236
8f85c0c6 1237@deffn {Scheme Procedure} define-reader-ctor symbol proc
a0e07ba4
NJ
1238Define @var{proc} as the reader constructor for hash-comma forms with a
1239tag @var{symbol}. @var{proc} will be applied to the datum(s) following
1240the tag in the hash-comma expression after the complete form has been
1241read in. The result of @var{proc} is returned by the Scheme reader.
1242@end deffn
1243
1244
1245@node SRFI-11
3229f68b 1246@subsection SRFI-11 - let-values
8742c48b 1247@cindex SRFI-11
a0e07ba4 1248
8742c48b
KR
1249@findex let-values
1250@findex let-values*
a0e07ba4
NJ
1251This module implements the binding forms for multiple values
1252@code{let-values} and @code{let-values*}. These forms are similar to
1253@code{let} and @code{let*} (@pxref{Local Bindings}), but they support
1254binding of the values returned by multiple-valued expressions.
1255
1256Write @code{(use-modules (srfi srfi-11))} to make the bindings
1257available.
1258
1259@lisp
1260(let-values (((x y) (values 1 2))
1261 ((z f) (values 3 4)))
1262 (+ x y z f))
1263@result{}
126410
1265@end lisp
1266
1267@code{let-values} performs all bindings simultaneously, which means that
1268no expression in the binding clauses may refer to variables bound in the
1269same clause list. @code{let-values*}, on the other hand, performs the
1270bindings sequentially, just like @code{let*} does for single-valued
1271expressions.
1272
1273
1274@node SRFI-13
3229f68b 1275@subsection SRFI-13 - String Library
8742c48b 1276@cindex SRFI-13
a0e07ba4 1277
5676b4fa 1278The SRFI-13 procedures are always available, @xref{Strings}.
a0e07ba4
NJ
1279
1280@node SRFI-14
3229f68b 1281@subsection SRFI-14 - Character-set Library
8742c48b 1282@cindex SRFI-14
a0e07ba4 1283
050ab45f
MV
1284The SRFI-14 data type and procedures are always available,
1285@xref{Character Sets}.
a0e07ba4
NJ
1286
1287@node SRFI-16
3229f68b 1288@subsection SRFI-16 - case-lambda
8742c48b 1289@cindex SRFI-16
a0e07ba4
NJ
1290
1291@c FIXME::martin: Review me!
1292
8742c48b 1293@findex case-lambda
a0e07ba4
NJ
1294The syntactic form @code{case-lambda} creates procedures, just like
1295@code{lambda}, but has syntactic extensions for writing procedures of
1296varying arity easier.
1297
1298The syntax of the @code{case-lambda} form is defined in the following
1299EBNF grammar.
1300
1301@example
1302@group
1303<case-lambda>
1304 --> (case-lambda <case-lambda-clause>)
1305<case-lambda-clause>
1306 --> (<formals> <definition-or-command>*)
1307<formals>
1308 --> (<identifier>*)
1309 | (<identifier>* . <identifier>)
1310 | <identifier>
1311@end group
1312@end example
1313
1314The value returned by a @code{case-lambda} form is a procedure which
1315matches the number of actual arguments against the formals in the
1316various clauses, in order. @dfn{Formals} means a formal argument list
1317just like with @code{lambda} (@pxref{Lambda}). The first matching clause
1318is selected, the corresponding values from the actual parameter list are
1319bound to the variable names in the clauses and the body of the clause is
1320evaluated. If no clause matches, an error is signalled.
1321
1322The following (silly) definition creates a procedure @var{foo} which
1323acts differently, depending on the number of actual arguments. If one
1324argument is given, the constant @code{#t} is returned, two arguments are
1325added and if more arguments are passed, their product is calculated.
1326
1327@lisp
1328(define foo (case-lambda
1329 ((x) #t)
1330 ((x y) (+ x y))
1331 (z
1332 (apply * z))))
1333(foo 'bar)
1334@result{}
1335#t
1336(foo 2 4)
1337@result{}
13386
1339(foo 3 3 3)
1340@result{}
134127
1342(foo)
1343@result{}
13441
1345@end lisp
1346
1347The last expression evaluates to 1 because the last clause is matched,
1348@var{z} is bound to the empty list and the following multiplication,
1349applied to zero arguments, yields 1.
1350
1351
1352@node SRFI-17
3229f68b 1353@subsection SRFI-17 - Generalized set!
8742c48b 1354@cindex SRFI-17
a0e07ba4
NJ
1355
1356This is an implementation of SRFI-17: Generalized set!
1357
8742c48b 1358@findex getter-with-setter
a0e07ba4
NJ
1359It exports the Guile procedure @code{make-procedure-with-setter} under
1360the SRFI name @code{getter-with-setter} and exports the standard
1361procedures @code{car}, @code{cdr}, @dots{}, @code{cdddr},
1362@code{string-ref} and @code{vector-ref} as procedures with setters, as
1363required by the SRFI.
1364
1365SRFI-17 was heavily criticized during its discussion period but it was
1366finalized anyway. One issue was its concept of globally associating
1367setter @dfn{properties} with (procedure) values, which is non-Schemy.
1368For this reason, this implementation chooses not to provide a way to set
1369the setter of a procedure. In fact, @code{(set! (setter @var{proc})
1370@var{setter})} signals an error. The only way to attach a setter to a
1371procedure is to create a new object (a @dfn{procedure with setter}) via
1372the @code{getter-with-setter} procedure. This procedure is also
1373specified in the SRFI. Using it avoids the described problems.
1374
12991fed
TTN
1375
1376@node SRFI-19
3229f68b 1377@subsection SRFI-19 - Time/Date Library
8742c48b 1378@cindex SRFI-19
12991fed 1379
85600a0f
KR
1380This is an implementation of the SRFI-19 time/date library. The
1381functions and variables described here are provided by
12991fed
TTN
1382
1383@example
85600a0f 1384(use-modules (srfi srfi-19))
12991fed
TTN
1385@end example
1386
85600a0f
KR
1387@menu
1388* SRFI-19 Introduction::
1389* SRFI-19 Time::
1390* SRFI-19 Date::
1391* SRFI-19 Time/Date conversions::
1392* SRFI-19 Date to string::
1393* SRFI-19 String to date::
1394@end menu
12991fed 1395
85600a0f 1396@node SRFI-19 Introduction
3229f68b 1397@subsubsection SRFI-19 Introduction
85600a0f
KR
1398
1399@cindex universal time
1400@cindex atomic time
1401@cindex UTC
1402@cindex TAI
1403This module implements time and date representations and calculations,
1404in various time systems, including universal time (UTC) and atomic
1405time (TAI).
1406
1407For those not familiar with these time systems, TAI is based on a
1408fixed length second derived from oscillations of certain atoms. UTC
1409differs from TAI by an integral number of seconds, which is increased
1410or decreased at announced times to keep UTC aligned to a mean solar
1411day (the orbit and rotation of the earth are not quite constant).
1412
1413@cindex leap second
1414So far, only increases in the TAI
1415@tex
1416$\leftrightarrow$
1417@end tex
1418@ifnottex
1419<->
1420@end ifnottex
1421UTC difference have been needed. Such an increase is a ``leap
1422second'', an extra second of TAI introduced at the end of a UTC day.
1423When working entirely within UTC this is never seen, every day simply
1424has 86400 seconds. But when converting from TAI to a UTC date, an
1425extra 23:59:60 is present, where normally a day would end at 23:59:59.
1426Effectively the UTC second from 23:59:59 to 00:00:00 has taken two TAI
1427seconds.
1428
1429@cindex system clock
1430In the current implementation, the system clock is assumed to be UTC,
1431and a table of leap seconds in the code converts to TAI. See comments
1432in @file{srfi-19.scm} for how to update this table.
1433
1434@cindex julian day
1435@cindex modified julian day
1436Also, for those not familiar with the terminology, a @dfn{Julian Day}
1437is a real number which is a count of days and fraction of a day, in
1438UTC, starting from -4713-01-01T12:00:00Z, ie.@: midday Monday 1 Jan
14394713 B.C. And a @dfn{Modified Julian Day} is the same, but starting
1440from 1858-11-17T00:00:00Z, ie.@: midnight 17 November 1858 UTC.
1441
1442@c The SRFI-1 spec says -4714-11-24T12:00:00Z (November 24, -4714 at
1443@c noon, UTC), but this is incorrect. It looks like it might have
1444@c arisen from the code incorrectly treating years a multiple of 100
1445@c but not 400 prior to 1582 as leap years, where instead the Julian
1446@c calendar should be used so all multiples of 4 before 1582 are leap
1447@c years.
1448
1449
1450@node SRFI-19 Time
3229f68b 1451@subsubsection SRFI-19 Time
85600a0f
KR
1452@cindex time
1453
1454A @dfn{time} object has type, seconds and nanoseconds fields
1455representing a point in time starting from some epoch. This is an
1456arbitrary point in time, not just a time of day. Although times are
1457represented in nanoseconds, the actual resolution may be lower.
1458
1459The following variables hold the possible time types. For instance
1460@code{(current-time time-process)} would give the current CPU process
1461time.
1462
1463@defvar time-utc
1464Universal Coordinated Time (UTC).
1465@cindex UTC
1466@end defvar
12991fed 1467
85600a0f
KR
1468@defvar time-tai
1469International Atomic Time (TAI).
1470@cindex TAI
1471@end defvar
12991fed 1472
85600a0f
KR
1473@defvar time-monotonic
1474Monotonic time, meaning a monotonically increasing time starting from
1475an unspecified epoch.
12991fed 1476
85600a0f
KR
1477Note that in the current implementation @code{time-monotonic} is the
1478same as @code{time-tai}, and unfortunately is therefore affected by
1479adjustments to the system clock. Perhaps this will change in the
1480future.
1481@end defvar
12991fed 1482
85600a0f
KR
1483@defvar time-duration
1484A duration, meaning simply a difference between two times.
1485@end defvar
12991fed 1486
85600a0f
KR
1487@defvar time-process
1488CPU time spent in the current process, starting from when the process
1489began.
1490@cindex process time
1491@end defvar
12991fed 1492
85600a0f
KR
1493@defvar time-thread
1494CPU time spent in the current thread. Not currently implemented.
1495@cindex thread time
1496@end defvar
12991fed 1497
85600a0f
KR
1498@sp 1
1499@defun time? obj
1500Return @code{#t} if @var{obj} is a time object, or @code{#f} if not.
1501@end defun
1502
1503@defun make-time type nanoseconds seconds
1504Create a time object with the given @var{type}, @var{seconds} and
1505@var{nanoseconds}.
1506@end defun
1507
1508@defun time-type time
1509@defunx time-nanosecond time
1510@defunx time-second time
1511@defunx set-time-type! time type
1512@defunx set-time-nanosecond! time nsec
1513@defunx set-time-second! time sec
1514Get or set the type, seconds or nanoseconds fields of a time object.
1515
1516@code{set-time-type!} merely changes the field, it doesn't convert the
1517time value. For conversions, see @ref{SRFI-19 Time/Date conversions}.
1518@end defun
1519
1520@defun copy-time time
1521Return a new time object, which is a copy of the given @var{time}.
1522@end defun
1523
1524@defun current-time [type]
1525Return the current time of the given @var{type}. The default
1526@var{type} is @code{time-utc}.
1527
1528Note that the name @code{current-time} conflicts with the Guile core
1529@code{current-time} function (@pxref{Time}). Applications wanting to
1530use both will need to use a different name for one of them.
1531@end defun
1532
1533@defun time-resolution [type]
1534Return the resolution, in nanoseconds, of the given time @var{type}.
1535The default @var{type} is @code{time-utc}.
1536@end defun
1537
1538@defun time<=? t1 t2
1539@defunx time<? t1 t2
1540@defunx time=? t1 t2
1541@defunx time>=? t1 t2
1542@defunx time>? t1 t2
1543Return @code{#t} or @code{#f} according to the respective relation
1544between time objects @var{t1} and @var{t2}. @var{t1} and @var{t2}
1545must be the same time type.
1546@end defun
1547
1548@defun time-difference t1 t2
1549@defunx time-difference! t1 t2
1550Return a time object of type @code{time-duration} representing the
1551period between @var{t1} and @var{t2}. @var{t1} and @var{t2} must be
1552the same time type.
1553
1554@code{time-difference} returns a new time object,
1555@code{time-difference!} may modify @var{t1} to form its return.
1556@end defun
1557
1558@defun add-duration time duration
1559@defunx add-duration! time duration
1560@defunx subtract-duration time duration
1561@defunx subtract-duration! time duration
1562Return a time object which is @var{time} with the given @var{duration}
1563added or subtracted. @var{duration} must be a time object of type
1564@code{time-duration}.
1565
1566@code{add-duration} and @code{subtract-duration} return a new time
1567object. @code{add-duration!} and @code{subtract-duration!} may modify
1568the given @var{time} to form their return.
1569@end defun
1570
1571
1572@node SRFI-19 Date
3229f68b 1573@subsubsection SRFI-19 Date
85600a0f
KR
1574@cindex date
1575
1576A @dfn{date} object represents a date in the Gregorian calendar and a
1577time of day on that date in some timezone.
1578
1579The fields are year, month, day, hour, minute, second, nanoseconds and
1580timezone. A date object is immutable, its fields can be read but they
1581cannot be modified once the object is created.
1582
1583@defun date? obj
1584Return @code{#t} if @var{obj} is a date object, or @code{#f} if not.
1585@end defun
1586
1587@defun make-date nsecs seconds minutes hours date month year zone-offset
1588Create a new date object.
1589@c
1590@c FIXME: What can we say about the ranges of the values. The
1591@c current code looks it doesn't normalize, but expects then in their
1592@c usual range already.
1593@c
1594@end defun
1595
1596@defun date-nanosecond date
1597Nanoseconds, 0 to 999999999.
1598@end defun
1599
1600@defun date-second date
1601Seconds, 0 to 60. 0 to 59 is the usual range, 60 is for a leap second.
1602@end defun
1603
1604@defun date-minute date
1605Minutes, 0 to 59.
1606@end defun
1607
1608@defun date-hour date
1609Hour, 0 to 23.
1610@end defun
1611
1612@defun date-day date
1613Day of the month, 1 to 31 (or less, according to the month).
1614@end defun
1615
1616@defun date-month date
1617Month, 1 to 12.
1618@end defun
1619
1620@defun date-year date
1621Year, eg.@: 2003.
1622@end defun
1623
1624@defun date-zone-offset date
1625Time zone, an integer number of seconds east of Greenwich.
1626@end defun
1627
1628@defun date-year-day date
1629Day of the year, starting from 1 for 1st January.
1630@end defun
1631
1632@defun date-week-day date
1633Day of the week, starting from 0 for Sunday.
1634@end defun
1635
1636@defun date-week-number date dstartw
1637Week of the year, ignoring a first partial week. @var{dstartw} is the
1638day of the week which is taken to start a week, 0 for Sunday, 1 for
1639Monday, etc.
1640@c
1641@c FIXME: The spec doesn't say whether numbering starts at 0 or 1.
1642@c The code looks like it's 0, if that's the correct intention.
1643@c
1644@end defun
1645
1646@c The SRFI text doesn't actually give the default for tz-offset, but
1647@c the reference implementation has the local timezone and the
1648@c conversions functions all specify that, so it should be ok to
1649@c document it here.
1650@c
1651@defun current-date [tz-offset]
1652Return a date object representing the current date/time UTC.
1653@var{tz-offset} is seconds east of Greenwich, and defaults to the
1654local timezone.
1655@end defun
1656
1657@defun current-julian-day
1658@cindex julian day
1659Return the current Julian Day.
1660@end defun
1661
1662@defun current-modified-julian-day
1663@cindex modified julian day
1664Return the current Modified Julian Day.
1665@end defun
1666
1667
1668@node SRFI-19 Time/Date conversions
3229f68b 1669@subsubsection SRFI-19 Time/Date conversions
85600a0f
KR
1670
1671@defun date->julian-day date
1672@defunx date->modified-julian-day date
1673@defunx date->time-monotonic date
1674@defunx date->time-tai date
1675@defunx date->time-utc date
1676@end defun
1677@defun julian-day->date jdn [tz-offset]
1678@defunx julian-day->time-monotonic jdn
1679@defunx julian-day->time-tai jdn
1680@defunx julian-day->time-utc jdn
1681@end defun
1682@defun modified-julian-day->date jdn [tz-offset]
1683@defunx modified-julian-day->time-monotonic jdn
1684@defunx modified-julian-day->time-tai jdn
1685@defunx modified-julian-day->time-utc jdn
1686@end defun
1687@defun time-monotonic->date time [tz-offset]
1688@defunx time-monotonic->time-tai time
1689@defunx time-monotonic->time-tai! time
1690@defunx time-monotonic->time-utc time
1691@defunx time-monotonic->time-utc! time
1692@end defun
1693@defun time-tai->date time [tz-offset]
1694@defunx time-tai->julian-day time
1695@defunx time-tai->modified-julian-day time
1696@defunx time-tai->time-monotonic time
1697@defunx time-tai->time-monotonic! time
1698@defunx time-tai->time-utc time
1699@defunx time-tai->time-utc! time
1700@end defun
1701@defun time-utc->date time [tz-offset]
1702@defunx time-utc->julian-day time
1703@defunx time-utc->modified-julian-day time
1704@defunx time-utc->time-monotonic time
1705@defunx time-utc->time-monotonic! time
1706@defunx time-utc->time-tai time
1707@defunx time-utc->time-tai! time
1708@sp 1
1709Convert between dates, times and days of the respective types. For
1710instance @code{time-tai->time-utc} accepts a @var{time} object of type
1711@code{time-tai} and returns an object of type @code{time-utc}.
1712
1713For conversions to dates, @var{tz-offset} is seconds east of
1714Greenwich. The default is the local timezone.
1715
1716The @code{!} variants may modify their @var{time} argument to form
1717their return. The plain functions create a new object.
1718@end defun
1719
1720@node SRFI-19 Date to string
3229f68b 1721@subsubsection SRFI-19 Date to string
85600a0f
KR
1722@cindex date to string
1723
1724@defun date->string date [format]
1725Convert a date to a string under the control of a format.
1726@var{format} should be a string containing @samp{~} escapes, which
1727will be expanded as per the following conversion table. The default
1728@var{format} is @samp{~c}, a locale-dependent date and time.
1729
1730Many of these conversion characters are the same as POSIX
1731@code{strftime} (@pxref{Time}), but there are some extras and some
1732variations.
1733
1734@multitable {MMMM} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
1735@item @nicode{~~} @tab literal ~
1736@item @nicode{~a} @tab locale abbreviated weekday, eg.@: @samp{Sun}
1737@item @nicode{~A} @tab locale full weekday, eg.@: @samp{Sunday}
1738@item @nicode{~b} @tab locale abbreviated month, eg.@: @samp{Jan}
1739@item @nicode{~B} @tab locale full month, eg.@: @samp{January}
1740@item @nicode{~c} @tab locale date and time, eg.@: @*
1741@samp{Fri Jul 14 20:28:42-0400 2000}
1742@item @nicode{~d} @tab day of month, zero padded, @samp{01} to @samp{31}
1743
1744@c Spec says d/m/y, reference implementation says m/d/y.
1745@c Apparently the reference code was the intention, but would like to
1746@c see an errata published for the spec before contradicting it here.
1747@c
1748@c @item @nicode{~D} @tab date @nicode{~d/~m/~y}
1749
1750@item @nicode{~e} @tab day of month, blank padded, @samp{ 1} to @samp{31}
1751@item @nicode{~f} @tab seconds and fractional seconds,
1752with locale decimal point, eg.@: @samp{5.2}
1753@item @nicode{~h} @tab same as @nicode{~b}
1754@item @nicode{~H} @tab hour, 24-hour clock, zero padded, @samp{00} to @samp{23}
1755@item @nicode{~I} @tab hour, 12-hour clock, zero padded, @samp{01} to @samp{12}
1756@item @nicode{~j} @tab day of year, zero padded, @samp{001} to @samp{366}
1757@item @nicode{~k} @tab hour, 24-hour clock, blank padded, @samp{ 0} to @samp{23}
1758@item @nicode{~l} @tab hour, 12-hour clock, blank padded, @samp{ 1} to @samp{12}
1759@item @nicode{~m} @tab month, zero padded, @samp{01} to @samp{12}
1760@item @nicode{~M} @tab minute, zero padded, @samp{00} to @samp{59}
1761@item @nicode{~n} @tab newline
1762@item @nicode{~N} @tab nanosecond, zero padded, @samp{000000000} to @samp{999999999}
1763@item @nicode{~p} @tab locale AM or PM
1764@item @nicode{~r} @tab time, 12 hour clock, @samp{~I:~M:~S ~p}
1765@item @nicode{~s} @tab number of full seconds since ``the epoch'' in UTC
1766@item @nicode{~S} @tab second, zero padded @samp{00} to @samp{60} @*
1767(usual limit is 59, 60 is a leap second)
1768@item @nicode{~t} @tab horizontal tab character
1769@item @nicode{~T} @tab time, 24 hour clock, @samp{~H:~M:~S}
1770@item @nicode{~U} @tab week of year, Sunday first day of week,
1771@samp{00} to @samp{52}
1772@item @nicode{~V} @tab week of year, Monday first day of week,
1773@samp{01} to @samp{53}
1774@item @nicode{~w} @tab day of week, 0 for Sunday, @samp{0} to @samp{6}
1775@item @nicode{~W} @tab week of year, Monday first day of week,
1776@samp{00} to @samp{52}
1777
1778@c The spec has ~x as an apparent duplicate of ~W, and ~X as a locale
1779@c date. The reference code has ~x as the locale date and ~X as a
1780@c locale time. The rule is apparently that the code should be
1781@c believed, but would like to see an errata for the spec before
1782@c contradicting it here.
1783@c
1784@c @item @nicode{~x} @tab week of year, Monday as first day of week,
1785@c @samp{00} to @samp{53}
1786@c @item @nicode{~X} @tab locale date, eg.@: @samp{07/31/00}
1787
1788@item @nicode{~y} @tab year, two digits, @samp{00} to @samp{99}
1789@item @nicode{~Y} @tab year, full, eg.@: @samp{2003}
1790@item @nicode{~z} @tab time zone, RFC-822 style
1791@item @nicode{~Z} @tab time zone symbol (not currently implemented)
1792@item @nicode{~1} @tab ISO-8601 date, @samp{~Y-~m-~d}
1793@item @nicode{~2} @tab ISO-8601 time+zone, @samp{~k:~M:~S~z}
1794@item @nicode{~3} @tab ISO-8601 time, @samp{~k:~M:~S}
1795@item @nicode{~4} @tab ISO-8601 date/time+zone, @samp{~Y-~m-~dT~k:~M:~S~z}
1796@item @nicode{~5} @tab ISO-8601 date/time, @samp{~Y-~m-~dT~k:~M:~S}
1797@end multitable
1798@end defun
1799
1800Conversions @samp{~D}, @samp{~x} and @samp{~X} are not currently
1801described here, since the specification and reference implementation
1802differ.
1803
1804Currently Guile doesn't implement any localizations for the above, all
1805outputs are in English, and the @samp{~c} conversion is POSIX
1806@code{ctime} style @samp{~a ~b ~d ~H:~M:~S~z ~Y}. This may change in
1807the future.
1808
1809
1810@node SRFI-19 String to date
3229f68b 1811@subsubsection SRFI-19 String to date
85600a0f
KR
1812@cindex string to date
1813
1814@c FIXME: Can we say what happens when an incomplete date is
1815@c converted? Ie. fields left as 0, or what? The spec seems to be
1816@c silent on this.
1817
1818@defun string->date input template
1819Convert an @var{input} string to a date under the control of a
1820@var{template} string. Return a newly created date object.
1821
1822Literal characters in @var{template} must match characters in
1823@var{input} and @samp{~} escapes must match the input forms described
1824in the table below. ``Skip to'' means characters up to one of the
1825given type are ignored, or ``no skip'' for no skipping. ``Read'' is
1826what's then read, and ``Set'' is the field affected in the date
1827object.
1828
1829For example @samp{~Y} skips input characters until a digit is reached,
1830at which point it expects a year and stores that to the year field of
1831the date.
1832
1833@multitable {MMMM} {@nicode{char-alphabetic?}} {MMMMMMMMMMMMMMMMMMMMMMMMM} {@nicode{date-zone-offset}}
1834@item
1835@tab Skip to
1836@tab Read
1837@tab Set
1838
1839@item @nicode{~~}
1840@tab no skip
1841@tab literal ~
1842@tab nothing
1843
1844@item @nicode{~a}
1845@tab @nicode{char-alphabetic?}
1846@tab locale abbreviated weekday name
1847@tab nothing
1848
1849@item @nicode{~A}
1850@tab @nicode{char-alphabetic?}
1851@tab locale full weekday name
1852@tab nothing
1853
1854@c Note that the SRFI spec says that ~b and ~B don't set anything,
1855@c but that looks like a mistake. The reference implementation sets
1856@c the month field, which seems sensible and is what we describe
1857@c here.
1858
1859@item @nicode{~b}
1860@tab @nicode{char-alphabetic?}
1861@tab locale abbreviated month name
1862@tab @nicode{date-month}
1863
1864@item @nicode{~B}
1865@tab @nicode{char-alphabetic?}
1866@tab locale full month name
1867@tab @nicode{date-month}
1868
1869@item @nicode{~d}
1870@tab @nicode{char-numeric?}
1871@tab day of month
1872@tab @nicode{date-day}
1873
1874@item @nicode{~e}
1875@tab no skip
1876@tab day of month, blank padded
1877@tab @nicode{date-day}
1878
1879@item @nicode{~h}
1880@tab same as @samp{~b}
1881
1882@item @nicode{~H}
1883@tab @nicode{char-numeric?}
1884@tab hour
1885@tab @nicode{date-hour}
1886
1887@item @nicode{~k}
1888@tab no skip
1889@tab hour, blank padded
1890@tab @nicode{date-hour}
1891
1892@item @nicode{~m}
1893@tab @nicode{char-numeric?}
1894@tab month
1895@tab @nicode{date-month}
1896
1897@item @nicode{~M}
1898@tab @nicode{char-numeric?}
1899@tab minute
1900@tab @nicode{date-minute}
1901
1902@item @nicode{~S}
1903@tab @nicode{char-numeric?}
1904@tab second
1905@tab @nicode{date-second}
1906
1907@item @nicode{~y}
1908@tab no skip
1909@tab 2-digit year
1910@tab @nicode{date-year} within 50 years
1911
1912@item @nicode{~Y}
1913@tab @nicode{char-numeric?}
1914@tab year
1915@tab @nicode{date-year}
1916
1917@item @nicode{~z}
1918@tab no skip
1919@tab time zone
1920@tab date-zone-offset
1921@end multitable
1922
1923Notice that the weekday matching forms don't affect the date object
1924returned, instead the weekday will be derived from the day, month and
1925year.
1926
1927Currently Guile doesn't implement any localizations for the above,
1928month and weekday names are always expected in English. This may
1929change in the future.
1930@end defun
12991fed 1931
1de8c1ae 1932
b0b55bd6 1933@node SRFI-26
3229f68b 1934@subsection SRFI-26 - specializing parameters
1de8c1ae
KR
1935@cindex SRFI-26
1936
1937This SRFI provides a syntax for conveniently specializing selected
1938parameters of a function. It can be used with,
1939
1940@example
1941(use-modules (srfi srfi-26))
1942@end example
1943
1944@deffn {library syntax} cut slot @dots{}
1945@deffnx {library syntax} cute slot @dots{}
1946Return a new procedure which will make a call (@var{slot} @dots{}) but
1947with selected parameters specialized to given expressions.
1948
1949An example will illustrate the idea. The following is a
1950specialization of @code{write}, sending output to
1951@code{my-output-port},
1952
1953@example
1954(cut write <> my-output-port)
1955@result{}
1956(lambda (obj) (write obj my-output-port))
1957@end example
1958
1959The special symbol @code{<>} indicates a slot to be filled by an
1960argument to the new procedure. @code{my-output-port} on the other
1961hand is an expression to be evaluated and passed, ie.@: it specializes
1962the behaviour of @code{write}.
1963
1964@table @nicode
1965@item <>
1966A slot to be filled by an argument from the created procedure.
1967Arguments are assigned to @code{<>} slots in the order they appear in
1968the @code{cut} form, there's no way to re-arrange arguments.
1969
1970The first argument to @code{cut} is usually a procedure (or expression
1971giving a procedure), but @code{<>} is allowed there too. For example,
1972
1973@example
1974(cut <> 1 2 3)
1975@result{}
1976(lambda (proc) (proc 1 2 3))
1977@end example
1978
1979@item <...>
1980A slot to be filled by all remaining arguments from the new procedure.
1981This can only occur at the end of a @code{cut} form.
1982
1983For example, a procedure taking a variable number of arguments like
1984@code{max} but in addition enforcing a lower bound,
1985
1986@example
1987(define my-lower-bound 123)
1988
1989(cut max my-lower-bound <...>)
1990@result{}
1991(lambda arglist (apply max my-lower-bound arglist))
1992@end example
1993@end table
1994
1995For @code{cut} the specializing expressions are evaluated each time
1996the new procedure is called. For @code{cute} they're evaluated just
1997once, when the new procedure is created. The name @code{cute} stands
1998for ``@code{cut} with evaluated arguments''. In all cases the
1999evaluations take place in an unspecified order.
2000
2001The following illustrates the difference between @code{cut} and
2002@code{cute},
2003
2004@example
2005(cut format <> "the time is ~s" (current-time))
2006@result{}
2007(lambda (port) (format port "the time is ~s" (current-time)))
2008
2009(cute format <> "the time is ~s" (current-time))
2010@result{}
2011(let ((val (current-time)))
2012 (lambda (port) (format port "the time is ~s" val))
2013@end example
2014
2015(There's no provision for a mixture of @code{cut} and @code{cute}
2016where some expressions would be evaluated every time but others
2017evaluated only once.)
2018
2019@code{cut} is really just a shorthand for the sort of @code{lambda}
2020forms shown in the above examples. But notice @code{cut} avoids the
2021need to name unspecialized parameters, and is more compact. Use in
2022functional programming style or just with @code{map}, @code{for-each}
2023or similar is typical.
2024
2025@example
2026(map (cut * 2 <>) '(1 2 3 4))
2027
2028(for-each (cut write <> my-port) my-list)
2029@end example
2030@end deffn
b0b55bd6 2031
8638c417
RB
2032@node SRFI-31
2033@subsection SRFI-31 - A special form `rec' for recursive evaluation
2034@cindex SRFI-31
2035@findex rec
2036
2037SRFI-31 defines a special form that can be used to create
2038self-referential expressions more conveniently. The syntax is as
2039follows:
2040
2041@example
2042@group
2043<rec expression> --> (rec <variable> <expression>)
2044<rec expression> --> (rec (<variable>+) <body>)
2045@end group
2046@end example
2047
2048The first syntax can be used to create self-referential expressions,
2049for example:
2050
2051@lisp
2052 guile> (define tmp (rec ones (cons 1 (delay ones))))
2053@end lisp
2054
2055The second syntax can be used to create anonymous recursive functions:
2056
2057@lisp
2058 guile> (define tmp (rec (display-n item n)
2059 (if (positive? n)
2060 (begin (display n) (display-n (- n 1))))))
2061 guile> (tmp 42 3)
2062 424242
2063 guile>
2064@end lisp
12991fed
TTN
2065
2066@c srfi-modules.texi ends here
193239f1
KR
2067
2068@c Local Variables:
2069@c TeX-master: "guile.texi"
2070@c End: