*** empty log message ***
[bpt/guile.git] / doc / ref / srfi-modules.texi
CommitLineData
2da09c3f
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
a0e07ba4
NJ
7@page
8@node SRFI Support
3229f68b 9@section SRFI Support Modules
8742c48b 10@cindex SRFI
a0e07ba4
NJ
11
12SRFI is an acronym for Scheme Request For Implementation. The SRFI
13documents define a lot of syntactic and procedure extensions to standard
14Scheme as defined in R5RS.
15
16Guile has support for a number of SRFIs. This chapter gives an overview
17over the available SRFIs and some usage hints. For complete
18documentation, design rationales and further examples, we advise you to
19get the relevant SRFI documents from the SRFI home page
20@url{http://srfi.schemers.org}.
21
22@menu
23* About SRFI Usage:: What to know about Guile's SRFI support.
24* SRFI-0:: cond-expand
25* SRFI-1:: List library.
26* SRFI-2:: and-let*.
27* SRFI-4:: Homogeneous numeric vector datatypes.
28* SRFI-6:: Basic String Ports.
29* SRFI-8:: receive.
30* SRFI-9:: define-record-type.
31* SRFI-10:: Hash-Comma Reader Extension.
32* SRFI-11:: let-values and let-values*.
33* SRFI-13:: String library.
34* SRFI-14:: Character-set library.
35* SRFI-16:: case-lambda
36* SRFI-17:: Generalized set!
bfc9c8e0 37* SRFI-19:: Time/Date library.
1de8c1ae 38* SRFI-26:: Specializing parameters
8638c417 39* SRFI-31:: A special form `rec' for recursive evaluation
a0e07ba4
NJ
40@end menu
41
42
43@node About SRFI Usage
3229f68b 44@subsection About SRFI Usage
a0e07ba4
NJ
45
46@c FIXME::martin: Review me!
47
48SRFI support in Guile is currently implemented partly in the core
49library, and partly as add-on modules. That means that some SRFIs are
50automatically available when the interpreter is started, whereas the
51other SRFIs require you to use the appropriate support module
12991fed 52explicitly.
a0e07ba4
NJ
53
54There are several reasons for this inconsistency. First, the feature
55checking syntactic form @code{cond-expand} (@pxref{SRFI-0}) must be
56available immediately, because it must be there when the user wants to
57check for the Scheme implementation, that is, before she can know that
58it is safe to use @code{use-modules} to load SRFI support modules. The
59second reason is that some features defined in SRFIs had been
60implemented in Guile before the developers started to add SRFI
61implementations as modules (for example SRFI-6 (@pxref{SRFI-6})). In
62the future, it is possible that SRFIs in the core library might be
63factored out into separate modules, requiring explicit module loading
64when they are needed. So you should be prepared to have to use
65@code{use-modules} someday in the future to access SRFI-6 bindings. If
66you want, you can do that already. We have included the module
67@code{(srfi srfi-6)} in the distribution, which currently does nothing,
68but ensures that you can write future-safe code.
69
70Generally, support for a specific SRFI is made available by using
71modules named @code{(srfi srfi-@var{number})}, where @var{number} is the
72number of the SRFI needed. Another possibility is to use the command
73line option @code{--use-srfi}, which will load the necessary modules
74automatically (@pxref{Invoking Guile}).
75
76
77@node SRFI-0
3229f68b 78@subsection SRFI-0 - cond-expand
8742c48b 79@cindex SRFI-0
a0e07ba4 80
5eef0f61
KR
81This SRFI lets a portable Scheme program test for the presence of
82certain features, and adapt itself by using different blocks of code,
83or fail if the necessary features are not available. There's no
84module to load, this is in the Guile core.
a0e07ba4 85
5eef0f61
KR
86A program designed only for Guile will generally not need this
87mechanism, such a program can of course directly use the various
88documented parts of Guile.
a0e07ba4 89
5eef0f61
KR
90@deffn syntax cond-expand (feature body@dots{}) @dots{}
91Expand to the @var{body} of the first clause whose @var{feature}
92specification is satisfied. It is an error if no @var{feature} is
a0e07ba4
NJ
93satisfied.
94
5eef0f61
KR
95Features are symbols such as @code{srfi-1}, and a feature
96specification can use @code{and}, @code{or} and @code{not} forms to
97test combinations. The last clause can be an @code{else}, to be used
98if no other passes.
a0e07ba4 99
5eef0f61
KR
100For example, define a private version of @code{alist-cons} if SRFI-1
101is not available.
a0e07ba4 102
5eef0f61
KR
103@example
104(cond-expand (srfi-1
105 )
106 (else
107 (define (alist-cons key val alist)
108 (cons (cons key val) alist))))
109@end example
a0e07ba4 110
5eef0f61
KR
111Or demand a certain set of SRFIs (list operations, string ports,
112@code{receive} and string operations), failing if they're not
113available.
a0e07ba4 114
5eef0f61
KR
115@example
116(cond-expand ((and srfi-1 srfi-6 srfi-8 srfi-13)
117 ))
118@end example
119@end deffn
a0e07ba4 120
5eef0f61
KR
121The Guile core provides features @code{guile}, @code{r5rs},
122@code{srfi-0} and @code{srfi-6} initially. Other SRFI feature symbols
123are defined once their code has been loaded with @code{use-modules},
124since only then are their bindings available.
a0e07ba4 125
5eef0f61
KR
126The @samp{--use-srfi} command line option (@pxref{Invoking Guile}) is
127a good way to load SRFIs to satisfy @code{cond-expand} when running a
128portable program.
a0e07ba4 129
5eef0f61
KR
130Testing the @code{guile} feature allows a program to adapt itself to
131the Guile module system, but still run on other Scheme systems. For
132example the following demands SRFI-8 (@code{receive}), but also knows
133how to load it with the Guile mechanism.
a0e07ba4
NJ
134
135@example
5eef0f61
KR
136(cond-expand (srfi-8
137 )
138 (guile
139 (use-modules (srfi srfi-8))))
a0e07ba4
NJ
140@end example
141
5eef0f61
KR
142It should be noted that @code{cond-expand} is separate from the
143@code{*features*} mechanism (@pxref{Feature Tracking}), feature
144symbols in one are unrelated to those in the other.
a0e07ba4
NJ
145
146
147@node SRFI-1
3229f68b 148@subsection SRFI-1 - List library
8742c48b 149@cindex SRFI-1
a0e07ba4
NJ
150
151@c FIXME::martin: Review me!
152
153The list library defined in SRFI-1 contains a lot of useful list
154processing procedures for construction, examining, destructuring and
155manipulating lists and pairs.
156
157Since SRFI-1 also defines some procedures which are already contained
158in R5RS and thus are supported by the Guile core library, some list
159and pair procedures which appear in the SRFI-1 document may not appear
160in this section. So when looking for a particular list/pair
161processing procedure, you should also have a look at the sections
162@ref{Lists} and @ref{Pairs}.
163
164@menu
165* SRFI-1 Constructors:: Constructing new lists.
166* SRFI-1 Predicates:: Testing list for specific properties.
167* SRFI-1 Selectors:: Selecting elements from lists.
168* SRFI-1 Length Append etc:: Length calculation and list appending.
169* SRFI-1 Fold and Map:: Higher-order list processing.
170* SRFI-1 Filtering and Partitioning:: Filter lists based on predicates.
85a9b4ed 171* SRFI-1 Searching:: Search for elements.
a0e07ba4
NJ
172* SRFI-1 Deleting:: Delete elements from lists.
173* SRFI-1 Association Lists:: Handle association lists.
174* SRFI-1 Set Operations:: Use lists for representing sets.
175@end menu
176
177@node SRFI-1 Constructors
3229f68b 178@subsubsection Constructors
a0e07ba4
NJ
179
180@c FIXME::martin: Review me!
181
182New lists can be constructed by calling one of the following
183procedures.
184
8f85c0c6 185@deffn {Scheme Procedure} xcons d a
a0e07ba4
NJ
186Like @code{cons}, but with interchanged arguments. Useful mostly when
187passed to higher-order procedures.
188@end deffn
189
8f85c0c6 190@deffn {Scheme Procedure} list-tabulate n init-proc
a0e07ba4
NJ
191Return an @var{n}-element list, where each list element is produced by
192applying the procedure @var{init-proc} to the corresponding list
193index. The order in which @var{init-proc} is applied to the indices
194is not specified.
195@end deffn
196
57066448
KR
197@deffn {Scheme Procedure} list-copy lst
198Return a new list containing the elements of the list @var{lst}.
199
200This function differs from the core @code{list-copy} (@pxref{List
201Constructors}) in accepting improper lists too. And if @var{lst} is
202not a pair at all then it's treated as the final tail of an improper
203list and simply returned.
204@end deffn
205
8f85c0c6 206@deffn {Scheme Procedure} circular-list elt1 elt2 @dots{}
a0e07ba4
NJ
207Return a circular list containing the given arguments @var{elt1}
208@var{elt2} @dots{}.
209@end deffn
210
8f85c0c6 211@deffn {Scheme Procedure} iota count [start step]
256853db
KR
212Return a list containing @var{count} numbers, starting from
213@var{start} and adding @var{step} each time. The default @var{start}
214is 0, the default @var{step} is 1. For example,
a0e07ba4 215
256853db
KR
216@example
217(iota 6) @result{} (0 1 2 3 4 5)
218(iota 4 2.5 -2) @result{} (2.5 0.5 -1.5 -3.5)
219@end example
a0e07ba4 220
256853db
KR
221This function takes its name from the corresponding primitive in the
222APL language.
a0e07ba4
NJ
223@end deffn
224
225
226@node SRFI-1 Predicates
3229f68b 227@subsubsection Predicates
a0e07ba4
NJ
228
229@c FIXME::martin: Review me!
230
231The procedures in this section test specific properties of lists.
232
8f85c0c6 233@deffn {Scheme Procedure} proper-list? obj
a0e07ba4
NJ
234Return @code{#t} if @var{obj} is a proper list, that is a finite list,
235terminated with the empty list. Otherwise, return @code{#f}.
236@end deffn
237
8f85c0c6 238@deffn {Scheme Procedure} circular-list? obj
a0e07ba4
NJ
239Return @code{#t} if @var{obj} is a circular list, otherwise return
240@code{#f}.
241@end deffn
242
8f85c0c6 243@deffn {Scheme Procedure} dotted-list? obj
a0e07ba4
NJ
244Return @code{#t} if @var{obj} is a dotted list, return @code{#f}
245otherwise. A dotted list is a finite list which is not terminated by
246the empty list, but some other value.
247@end deffn
248
8f85c0c6 249@deffn {Scheme Procedure} null-list? lst
a0e07ba4
NJ
250Return @code{#t} if @var{lst} is the empty list @code{()}, @code{#f}
251otherwise. If something else than a proper or circular list is passed
85a9b4ed 252as @var{lst}, an error is signalled. This procedure is recommended
a0e07ba4
NJ
253for checking for the end of a list in contexts where dotted lists are
254not allowed.
255@end deffn
256
8f85c0c6 257@deffn {Scheme Procedure} not-pair? obj
a0e07ba4
NJ
258Return @code{#t} is @var{obj} is not a pair, @code{#f} otherwise.
259This is shorthand notation @code{(not (pair? @var{obj}))} and is
260supposed to be used for end-of-list checking in contexts where dotted
261lists are allowed.
262@end deffn
263
8f85c0c6 264@deffn {Scheme Procedure} list= elt= list1 @dots{}
a0e07ba4
NJ
265Return @code{#t} if all argument lists are equal, @code{#f} otherwise.
266List equality is determined by testing whether all lists have the same
267length and the corresponding elements are equal in the sense of the
268equality predicate @var{elt=}. If no or only one list is given,
269@code{#t} is returned.
270@end deffn
271
272
273@node SRFI-1 Selectors
3229f68b 274@subsubsection Selectors
a0e07ba4
NJ
275
276@c FIXME::martin: Review me!
277
8f85c0c6
NJ
278@deffn {Scheme Procedure} first pair
279@deffnx {Scheme Procedure} second pair
280@deffnx {Scheme Procedure} third pair
281@deffnx {Scheme Procedure} fourth pair
282@deffnx {Scheme Procedure} fifth pair
283@deffnx {Scheme Procedure} sixth pair
284@deffnx {Scheme Procedure} seventh pair
285@deffnx {Scheme Procedure} eighth pair
286@deffnx {Scheme Procedure} ninth pair
287@deffnx {Scheme Procedure} tenth pair
a0e07ba4
NJ
288These are synonyms for @code{car}, @code{cadr}, @code{caddr}, @dots{}.
289@end deffn
290
8f85c0c6 291@deffn {Scheme Procedure} car+cdr pair
a0e07ba4
NJ
292Return two values, the @sc{car} and the @sc{cdr} of @var{pair}.
293@end deffn
294
8f85c0c6
NJ
295@deffn {Scheme Procedure} take lst i
296@deffnx {Scheme Procedure} take! lst i
a0e07ba4
NJ
297Return a list containing the first @var{i} elements of @var{lst}.
298
299@code{take!} may modify the structure of the argument list @var{lst}
300in order to produce the result.
301@end deffn
302
8f85c0c6 303@deffn {Scheme Procedure} drop lst i
a0e07ba4
NJ
304Return a list containing all but the first @var{i} elements of
305@var{lst}.
306@end deffn
307
8f85c0c6 308@deffn {Scheme Procedure} take-right lst i
a0e07ba4
NJ
309Return the a list containing the @var{i} last elements of @var{lst}.
310@end deffn
311
8f85c0c6
NJ
312@deffn {Scheme Procedure} drop-right lst i
313@deffnx {Scheme Procedure} drop-right! lst i
a0e07ba4
NJ
314Return the a list containing all but the @var{i} last elements of
315@var{lst}.
316
317@code{drop-right!} may modify the structure of the argument list
318@var{lst} in order to produce the result.
319@end deffn
320
8f85c0c6
NJ
321@deffn {Scheme Procedure} split-at lst i
322@deffnx {Scheme Procedure} split-at! lst i
a0e07ba4
NJ
323Return two values, a list containing the first @var{i} elements of the
324list @var{lst} and a list containing the remaining elements.
325
326@code{split-at!} may modify the structure of the argument list
327@var{lst} in order to produce the result.
328@end deffn
329
8f85c0c6 330@deffn {Scheme Procedure} last lst
a0e07ba4
NJ
331Return the last element of the non-empty, finite list @var{lst}.
332@end deffn
333
334
335@node SRFI-1 Length Append etc
3229f68b 336@subsubsection Length, Append, Concatenate, etc.
a0e07ba4
NJ
337
338@c FIXME::martin: Review me!
339
8f85c0c6 340@deffn {Scheme Procedure} length+ lst
a0e07ba4
NJ
341Return the length of the argument list @var{lst}. When @var{lst} is a
342circular list, @code{#f} is returned.
343@end deffn
344
8f85c0c6
NJ
345@deffn {Scheme Procedure} concatenate list-of-lists
346@deffnx {Scheme Procedure} concatenate! list-of-lists
a0e07ba4
NJ
347Construct a list by appending all lists in @var{list-of-lists}.
348
349@code{concatenate!} may modify the structure of the given lists in
350order to produce the result.
351@end deffn
352
8f85c0c6
NJ
353@deffn {Scheme Procedure} append-reverse rev-head tail
354@deffnx {Scheme Procedure} append-reverse! rev-head tail
a0e07ba4
NJ
355Reverse @var{rev-head}, append @var{tail} and return the result. This
356is equivalent to @code{(append (reverse @var{rev-head}) @var{tail})},
357but more efficient.
358
359@code{append-reverse!} may modify @var{rev-head} in order to produce
360the result.
361@end deffn
362
8f85c0c6 363@deffn {Scheme Procedure} zip lst1 lst2 @dots{}
a0e07ba4
NJ
364Return a list as long as the shortest of the argument lists, where
365each element is a list. The first list contains the first elements of
366the argument lists, the second list contains the second elements, and
367so on.
368@end deffn
369
8f85c0c6
NJ
370@deffn {Scheme Procedure} unzip1 lst
371@deffnx {Scheme Procedure} unzip2 lst
372@deffnx {Scheme Procedure} unzip3 lst
373@deffnx {Scheme Procedure} unzip4 lst
374@deffnx {Scheme Procedure} unzip5 lst
a0e07ba4
NJ
375@code{unzip1} takes a list of lists, and returns a list containing the
376first elements of each list, @code{unzip2} returns two lists, the
377first containing the first elements of each lists and the second
378containing the second elements of each lists, and so on.
379@end deffn
380
e508c863
KR
381@deffn {Scheme Procedure} count pred lst1 @dots{} lstN
382Return a count of the number of times @var{pred} returns true when
383called on elements from the given lists.
384
385@var{pred} is called with @var{N} parameters @code{(@var{pred}
386@var{elem1} @dots{} @var{elemN})}, each element being from the
387corresponding @var{lst1} @dots{} @var{lstN}. The first call is with
388the first element of each list, the second with the second element
389from each, and so on.
390
391Counting stops when the end of the shortest list is reached. At least
392one list must be non-circular.
393@end deffn
394
a0e07ba4
NJ
395
396@node SRFI-1 Fold and Map
3229f68b 397@subsubsection Fold, Unfold & Map
a0e07ba4
NJ
398
399@c FIXME::martin: Review me!
400
8f85c0c6 401@deffn {Scheme Procedure} fold kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
402Fold the procedure @var{kons} across all elements of @var{lst1},
403@var{lst2}, @dots{}. Produce the result of
404
405@code{(@var{kons} @var{en1} @var{en2} @dots{} (@var{kons} @var{e21}
406@var{e22} (@var{kons} @var{e11} @var{e12} @var{knil})))},
407
408if @var{enm} are the elements of the lists @var{lst1}, @var{lst2},
409@dots{}.
410@end deffn
411
8f85c0c6 412@deffn {Scheme Procedure} fold-right kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
413Similar to @code{fold}, but applies @var{kons} in right-to-left order
414to the list elements, that is:
415
416@code{(@var{kons} @var{e11} @var{e12}(@var{kons} @var{e21}
417@var{e22} @dots{} (@var{kons} @var{en1} @var{en2} @var{knil})))},
418@end deffn
419
8f85c0c6 420@deffn {Scheme Procedure} pair-fold kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
421Like @code{fold}, but apply @var{kons} to the pairs of the list
422instead of the list elements.
423@end deffn
424
8f85c0c6 425@deffn {Scheme Procedure} pair-fold-right kons knil lst1 lst2 @dots{}
a0e07ba4
NJ
426Like @code{fold-right}, but apply @var{kons} to the pairs of the list
427instead of the list elements.
428@end deffn
429
8f85c0c6 430@deffn {Scheme Procedure} reduce f ridentity lst
1ae7b878
KR
431@code{reduce} is a variant of @code{fold}. If @var{lst} is
432@code{()}, @var{ridentity} is returned. Otherwise, @code{(fold f (car
a0e07ba4
NJ
433@var{lst}) (cdr @var{lst}))} is returned.
434@end deffn
435
8f85c0c6 436@deffn {Scheme Procedure} reduce-right f ridentity lst
b5aa0215 437This is the @code{fold-right} variant of @code{reduce}.
a0e07ba4
NJ
438@end deffn
439
8f85c0c6 440@deffn {Scheme Procedure} unfold p f g seed [tail-gen]
a0e07ba4
NJ
441@code{unfold} is defined as follows:
442
443@lisp
444(unfold p f g seed) =
445 (if (p seed) (tail-gen seed)
446 (cons (f seed)
447 (unfold p f g (g seed))))
448@end lisp
449
450@table @var
451@item p
452Determines when to stop unfolding.
453
454@item f
455Maps each seed value to the corresponding list element.
456
457@item g
458Maps each seed value to next seed valu.
459
460@item seed
461The state value for the unfold.
462
463@item tail-gen
464Creates the tail of the list; defaults to @code{(lambda (x) '())}.
465@end table
466
467@var{g} produces a series of seed values, which are mapped to list
468elements by @var{f}. These elements are put into a list in
469left-to-right order, and @var{p} tells when to stop unfolding.
470@end deffn
471
8f85c0c6 472@deffn {Scheme Procedure} unfold-right p f g seed [tail]
a0e07ba4
NJ
473Construct a list with the following loop.
474
475@lisp
476(let lp ((seed seed) (lis tail))
477 (if (p seed) lis
478 (lp (g seed)
479 (cons (f seed) lis))))
480@end lisp
481
482@table @var
483@item p
484Determines when to stop unfolding.
485
486@item f
487Maps each seed value to the corresponding list element.
488
489@item g
490Maps each seed value to next seed valu.
491
492@item seed
493The state value for the unfold.
494
495@item tail-gen
496Creates the tail of the list; defaults to @code{(lambda (x) '())}.
497@end table
498
499@end deffn
500
8f85c0c6 501@deffn {Scheme Procedure} map f lst1 lst2 @dots{}
a0e07ba4
NJ
502Map the procedure over the list(s) @var{lst1}, @var{lst2}, @dots{} and
503return a list containing the results of the procedure applications.
504This procedure is extended with respect to R5RS, because the argument
505lists may have different lengths. The result list will have the same
506length as the shortest argument lists. The order in which @var{f}
507will be applied to the list element(s) is not specified.
508@end deffn
509
8f85c0c6 510@deffn {Scheme Procedure} for-each f lst1 lst2 @dots{}
a0e07ba4
NJ
511Apply the procedure @var{f} to each pair of corresponding elements of
512the list(s) @var{lst1}, @var{lst2}, @dots{}. The return value is not
513specified. This procedure is extended with respect to R5RS, because
514the argument lists may have different lengths. The shortest argument
515list determines the number of times @var{f} is called. @var{f} will
85a9b4ed 516be applied to the list elements in left-to-right order.
a0e07ba4
NJ
517
518@end deffn
519
8f85c0c6
NJ
520@deffn {Scheme Procedure} append-map f lst1 lst2 @dots{}
521@deffnx {Scheme Procedure} append-map! f lst1 lst2 @dots{}
12991fed 522Equivalent to
a0e07ba4
NJ
523
524@lisp
12991fed 525(apply append (map f clist1 clist2 ...))
a0e07ba4
NJ
526@end lisp
527
12991fed 528and
a0e07ba4
NJ
529
530@lisp
12991fed 531(apply append! (map f clist1 clist2 ...))
a0e07ba4
NJ
532@end lisp
533
534Map @var{f} over the elements of the lists, just as in the @code{map}
535function. However, the results of the applications are appended
536together to make the final result. @code{append-map} uses
537@code{append} to append the results together; @code{append-map!} uses
538@code{append!}.
539
540The dynamic order in which the various applications of @var{f} are
541made is not specified.
542@end deffn
543
8f85c0c6 544@deffn {Scheme Procedure} map! f lst1 lst2 @dots{}
a0e07ba4
NJ
545Linear-update variant of @code{map} -- @code{map!} is allowed, but not
546required, to alter the cons cells of @var{lst1} to construct the
547result list.
548
549The dynamic order in which the various applications of @var{f} are
550made is not specified. In the n-ary case, @var{lst2}, @var{lst3},
551@dots{} must have at least as many elements as @var{lst1}.
552@end deffn
553
8f85c0c6 554@deffn {Scheme Procedure} pair-for-each f lst1 lst2 @dots{}
a0e07ba4
NJ
555Like @code{for-each}, but applies the procedure @var{f} to the pairs
556from which the argument lists are constructed, instead of the list
557elements. The return value is not specified.
558@end deffn
559
8f85c0c6 560@deffn {Scheme Procedure} filter-map f lst1 lst2 @dots{}
a0e07ba4
NJ
561Like @code{map}, but only results from the applications of @var{f}
562which are true are saved in the result list.
563@end deffn
564
565
566@node SRFI-1 Filtering and Partitioning
3229f68b 567@subsubsection Filtering and Partitioning
a0e07ba4
NJ
568
569@c FIXME::martin: Review me!
570
571Filtering means to collect all elements from a list which satisfy a
572specific condition. Partitioning a list means to make two groups of
573list elements, one which contains the elements satisfying a condition,
574and the other for the elements which don't.
575
60e25dc4
KR
576The @code{filter} and @code{filter!} functions are implemented in the
577Guile core, @xref{List Modification}.
a0e07ba4 578
8f85c0c6
NJ
579@deffn {Scheme Procedure} partition pred lst
580@deffnx {Scheme Procedure} partition! pred lst
193239f1
KR
581Split @var{lst} into those elements which do and don't satisfy the
582predicate @var{pred}.
a0e07ba4 583
193239f1
KR
584The return is two values (@pxref{Multiple Values}), the first being a
585list of all elements from @var{lst} which satisfy @var{pred}, the
586second a list of those which do not.
587
588The elements in the result lists are in the same order as in @var{lst}
589but the order in which the calls @code{(@var{pred} elem)} are made on
590the list elements is unspecified.
591
592@code{partition} does not change @var{lst}, but one of the returned
593lists may share a tail with it. @code{partition!} may modify
594@var{lst} to construct its return.
a0e07ba4
NJ
595@end deffn
596
8f85c0c6
NJ
597@deffn {Scheme Procedure} remove pred lst
598@deffnx {Scheme Procedure} remove! pred lst
a0e07ba4
NJ
599Return a list containing all elements from @var{lst} which do not
600satisfy the predicate @var{pred}. The elements in the result list
601have the same order as in @var{lst}. The order in which @var{pred} is
602applied to the list elements is not specified.
603
604@code{remove!} is allowed, but not required to modify the structure of
605the input list.
606@end deffn
607
608
609@node SRFI-1 Searching
3229f68b 610@subsubsection Searching
a0e07ba4
NJ
611
612@c FIXME::martin: Review me!
613
614The procedures for searching elements in lists either accept a
615predicate or a comparison object for determining which elements are to
616be searched.
617
8f85c0c6 618@deffn {Scheme Procedure} find pred lst
a0e07ba4
NJ
619Return the first element of @var{lst} which satisfies the predicate
620@var{pred} and @code{#f} if no such element is found.
621@end deffn
622
8f85c0c6 623@deffn {Scheme Procedure} find-tail pred lst
a0e07ba4
NJ
624Return the first pair of @var{lst} whose @sc{car} satisfies the
625predicate @var{pred} and @code{#f} if no such element is found.
626@end deffn
627
8f85c0c6
NJ
628@deffn {Scheme Procedure} take-while pred lst
629@deffnx {Scheme Procedure} take-while! pred lst
a0e07ba4
NJ
630Return the longest initial prefix of @var{lst} whose elements all
631satisfy the predicate @var{pred}.
632
633@code{take-while!} is allowed, but not required to modify the input
634list while producing the result.
635@end deffn
636
8f85c0c6 637@deffn {Scheme Procedure} drop-while pred lst
a0e07ba4
NJ
638Drop the longest initial prefix of @var{lst} whose elements all
639satisfy the predicate @var{pred}.
640@end deffn
641
8f85c0c6
NJ
642@deffn {Scheme Procedure} span pred lst
643@deffnx {Scheme Procedure} span! pred lst
644@deffnx {Scheme Procedure} break pred lst
645@deffnx {Scheme Procedure} break! pred lst
a0e07ba4
NJ
646@code{span} splits the list @var{lst} into the longest initial prefix
647whose elements all satisfy the predicate @var{pred}, and the remaining
648tail. @code{break} inverts the sense of the predicate.
649
650@code{span!} and @code{break!} are allowed, but not required to modify
651the structure of the input list @var{lst} in order to produce the
652result.
3e73b6f9
KR
653
654Note that the name @code{break} conflicts with the @code{break}
655binding established by @code{while} (@pxref{while do}). Applications
656wanting to use @code{break} from within a @code{while} loop will need
657to make a new define under a different name.
a0e07ba4
NJ
658@end deffn
659
8f85c0c6 660@deffn {Scheme Procedure} any pred lst1 lst2 @dots{}
a0e07ba4
NJ
661Apply @var{pred} across the lists and return a true value if the
662predicate returns true for any of the list elements(s); return
663@code{#f} otherwise. The true value returned is always the result of
85a9b4ed 664the first successful application of @var{pred}.
a0e07ba4
NJ
665@end deffn
666
8f85c0c6 667@deffn {Scheme Procedure} every pred lst1 lst2 @dots{}
a0e07ba4
NJ
668Apply @var{pred} across the lists and return a true value if the
669predicate returns true for every of the list elements(s); return
670@code{#f} otherwise. The true value returned is always the result of
85a9b4ed 671the final successful application of @var{pred}.
a0e07ba4
NJ
672@end deffn
673
8f85c0c6 674@deffn {Scheme Procedure} list-index pred lst1 lst2 @dots{}
a0e07ba4
NJ
675Return the index of the leftmost element that satisfies @var{pred}.
676@end deffn
677
8f85c0c6 678@deffn {Scheme Procedure} member x lst [=]
a0e07ba4
NJ
679Return the first sublist of @var{lst} whose @sc{car} is equal to
680@var{x}. If @var{x} does no appear in @var{lst}, return @code{#f}.
681Equality is determined by the equality predicate @var{=}, or
682@code{equal?} if @var{=} is not given.
ea6ea01b
KR
683
684This function extends the core @code{member} by accepting an equality
685predicate. (@pxref{List Searching})
a0e07ba4
NJ
686@end deffn
687
688
689@node SRFI-1 Deleting
3229f68b 690@subsubsection Deleting
a0e07ba4
NJ
691
692@c FIXME::martin: Review me!
693
8f85c0c6
NJ
694@deffn {Scheme Procedure} delete x lst [=]
695@deffnx {Scheme Procedure} delete! x lst [=]
b6b9376a
KR
696Return a list containing the elements of @var{lst} but with those
697equal to @var{x} deleted. The returned elements will be in the same
698order as they were in @var{lst}.
699
700Equality is determined by the @var{=} predicate, or @code{equal?} if
701not given. An equality call is made just once for each element, but
702the order in which the calls are made on the elements is unspecified.
a0e07ba4 703
243bdb63 704The equality calls are always @code{(= x elem)}, ie.@: the given @var{x}
b6b9376a
KR
705is first. This means for instance elements greater than 5 can be
706deleted with @code{(delete 5 lst <)}.
707
708@code{delete} does not modify @var{lst}, but the return might share a
709common tail with @var{lst}. @code{delete!} may modify the structure
710of @var{lst} to construct its return.
ea6ea01b
KR
711
712These functions extend the core @code{delete} and @code{delete!} in
713accepting an equality predicate. (@pxref{List Modification})
a0e07ba4
NJ
714@end deffn
715
8f85c0c6
NJ
716@deffn {Scheme Procedure} delete-duplicates lst [=]
717@deffnx {Scheme Procedure} delete-duplicates! lst [=]
b6b9376a
KR
718Return a list containing the elements of @var{lst} but without
719duplicates.
720
721When elements are equal, only the first in @var{lst} is retained.
722Equal elements can be anywhere in @var{lst}, they don't have to be
723adjacent. The returned list will have the retained elements in the
724same order as they were in @var{lst}.
725
726Equality is determined by the @var{=} predicate, or @code{equal?} if
727not given. Calls @code{(= x y)} are made with element @var{x} being
728before @var{y} in @var{lst}. A call is made at most once for each
729combination, but the sequence of the calls across the elements is
730unspecified.
731
732@code{delete-duplicates} does not modify @var{lst}, but the return
733might share a common tail with @var{lst}. @code{delete-duplicates!}
734may modify the structure of @var{lst} to construct its return.
735
736In the worst case, this is an @math{O(N^2)} algorithm because it must
737check each element against all those preceding it. For long lists it
738is more efficient to sort and then compare only adjacent elements.
a0e07ba4
NJ
739@end deffn
740
741
742@node SRFI-1 Association Lists
3229f68b 743@subsubsection Association Lists
a0e07ba4
NJ
744
745@c FIXME::martin: Review me!
746
747Association lists are described in detail in section @ref{Association
748Lists}. The present section only documents the additional procedures
749for dealing with association lists defined by SRFI-1.
750
8f85c0c6 751@deffn {Scheme Procedure} assoc key alist [=]
a0e07ba4
NJ
752Return the pair from @var{alist} which matches @var{key}. Equality is
753determined by @var{=}, which defaults to @code{equal?} if not given.
754@var{alist} must be an association lists---a list of pairs.
ea6ea01b
KR
755
756This function extends the core @code{assoc} by accepting an equality
757predicate. (@pxref{Association Lists})
a0e07ba4
NJ
758@end deffn
759
8f85c0c6 760@deffn {Scheme Procedure} alist-cons key datum alist
a0e07ba4
NJ
761Equivalent to
762
763@lisp
764(cons (cons @var{key} @var{datum}) @var{alist})
765@end lisp
766
767This procedure is used to coons a new pair onto an existing
768association list.
769@end deffn
770
8f85c0c6 771@deffn {Scheme Procedure} alist-copy alist
a0e07ba4
NJ
772Return a newly allocated copy of @var{alist}, that means that the
773spine of the list as well as the pairs are copied.
774@end deffn
775
8f85c0c6
NJ
776@deffn {Scheme Procedure} alist-delete key alist [=]
777@deffnx {Scheme Procedure} alist-delete! key alist [=]
bd35f1f0
KR
778Return a list containing the elements of @var{alist} but with those
779elements whose keys are equal to @var{key} deleted. The returned
780elements will be in the same order as they were in @var{alist}.
a0e07ba4 781
bd35f1f0
KR
782Equality is determined by the @var{=} predicate, or @code{equal?} if
783not given. The order in which elements are tested is unspecified, but
784each equality call is made @code{(= key alistkey)}, ie. the given
785@var{key} parameter is first and the key from @var{alist} second.
786This means for instance all associations with a key greater than 5 can
787be removed with @code{(alist-delete 5 alist <)}.
788
789@code{alist-delete} does not modify @var{alist}, but the return might
790share a common tail with @var{alist}. @code{alist-delete!} may modify
791the list structure of @var{alist} to construct its return.
a0e07ba4
NJ
792@end deffn
793
794
795@node SRFI-1 Set Operations
3229f68b 796@subsubsection Set Operations on Lists
a0e07ba4
NJ
797
798@c FIXME::martin: Review me!
799
800Lists can be used for representing sets of objects. The procedures
801documented in this section can be used for such set representations.
85a9b4ed 802Man combining several sets or adding elements, they make sure that no
a0e07ba4
NJ
803object is contained more than once in a given list. Please note that
804lists are not a too efficient implementation method for sets, so if
805you need high performance, you should think about implementing a
806custom data structure for representing sets, such as trees, bitsets,
807hash tables or something similar.
808
809All these procedures accept an equality predicate as the first
810argument. This predicate is used for testing the objects in the list
811sets for sameness.
812
8f85c0c6 813@deffn {Scheme Procedure} lset<= = list1 @dots{}
a0e07ba4
NJ
814Return @code{#t} if every @var{listi} is a subset of @var{listi+1},
815otherwise return @code{#f}. Returns @code{#t} if called with less
816than two arguments. @var{=} is used for testing element equality.
817@end deffn
818
8f85c0c6 819@deffn {Scheme Procedure} lset= = list1 list2 @dots{}
a0e07ba4
NJ
820Return @code{#t} if all argument lists are equal. @var{=} is used for
821testing element equality.
822@end deffn
823
8f85c0c6
NJ
824@deffn {Scheme Procedure} lset-adjoin = list elt1 @dots{}
825@deffnx {Scheme Procedure} lset-adjoin! = list elt1 @dots{}
a0e07ba4
NJ
826Add all @var{elts} to the list @var{list}, suppressing duplicates and
827return the resulting list. @code{lset-adjoin!} is allowed, but not
828required to modify its first argument. @var{=} is used for testing
829element equality.
830@end deffn
831
8f85c0c6
NJ
832@deffn {Scheme Procedure} lset-union = list1 @dots{}
833@deffnx {Scheme Procedure} lset-union! = list1 @dots{}
a0e07ba4
NJ
834Return the union of all argument list sets. The union is the set of
835all elements which appear in any of the argument sets.
836@code{lset-union!} is allowed, but not required to modify its first
837argument. @var{=} is used for testing element equality.
838@end deffn
839
8f85c0c6
NJ
840@deffn {Scheme Procedure} lset-intersection = list1 list2 @dots{}
841@deffnx {Scheme Procedure} lset-intersection! = list1 list2 @dots{}
a0e07ba4
NJ
842Return the intersection of all argument list sets. The intersection
843is the set containing all elements which appear in all argument sets.
844@code{lset-intersection!} is allowed, but not required to modify its
845first argument. @var{=} is used for testing element equality.
846@end deffn
847
8f85c0c6
NJ
848@deffn {Scheme Procedure} lset-difference = list1 list2 @dots{}
849@deffnx {Scheme Procedure} lset-difference! = list1 list2 @dots{}
a0e07ba4
NJ
850Return the difference of all argument list sets. The difference is
851the the set containing all elements of the first list which do not
852appear in the other lists. @code{lset-difference!} is allowed, but
853not required to modify its first argument. @var{=} is used for testing
854element equality.
855@end deffn
856
8f85c0c6
NJ
857@deffn {Scheme Procedure} lset-xor = list1 @dots{}
858@deffnx {Scheme Procedure} lset-xor! = list1 @dots{}
a0e07ba4
NJ
859Return the set containing all elements which appear in the first
860argument list set, but not in the second; or, more generally: which
861appear in an odd number of sets. @code{lset-xor!} is allowed, but
862not required to modify its first argument. @var{=} is used for testing
863element equality.
864@end deffn
865
8f85c0c6
NJ
866@deffn {Scheme Procedure} lset-diff+intersection = list1 list2 @dots{}
867@deffnx {Scheme Procedure} lset-diff+intersection! = list1 list2 @dots{}
a0e07ba4
NJ
868Return two values, the difference and the intersection of the argument
869list sets. This works like a combination of @code{lset-difference} and
870@code{lset-intersection}, but is more efficient.
871@code{lset-diff+intersection!} is allowed, but not required to modify
872its first argument. @var{=} is used for testing element equality. You
873have to use some means to deal with the multiple values these
874procedures return (@pxref{Multiple Values}).
875@end deffn
876
877
878@node SRFI-2
3229f68b 879@subsection SRFI-2 - and-let*
8742c48b 880@cindex SRFI-2
a0e07ba4 881
4fd0db14
KR
882@noindent
883The following syntax can be obtained with
a0e07ba4 884
4fd0db14
KR
885@lisp
886(use-modules (srfi srfi-2))
887@end lisp
a0e07ba4 888
4fd0db14
KR
889@deffn {library syntax} and-let* (clause @dots{}) body @dots{}
890A combination of @code{and} and @code{let*}.
891
892Each @var{clause} is evaluated in turn, and if @code{#f} is obtained
893then evaluation stops and @code{#f} is returned. If all are
894non-@code{#f} then @var{body} is evaluated and the last form gives the
6b1a6e4c
KR
895return value, or if @var{body} is empty then the result is @code{#t}.
896Each @var{clause} should be one of the following,
4fd0db14
KR
897
898@table @code
899@item (symbol expr)
900Evaluate @var{expr}, check for @code{#f}, and bind it to @var{symbol}.
901Like @code{let*}, that binding is available to subsequent clauses.
902@item (expr)
903Evaluate @var{expr} and check for @code{#f}.
904@item symbol
905Get the value bound to @var{symbol} and check for @code{#f}.
906@end table
a0e07ba4 907
4fd0db14
KR
908Notice that @code{(expr)} has an ``extra'' pair of parentheses, for
909instance @code{((eq? x y))}. One way to remember this is to imagine
910the @code{symbol} in @code{(symbol expr)} is omitted.
a0e07ba4 911
4fd0db14
KR
912@code{and-let*} is good for calculations where a @code{#f} value means
913termination, but where a non-@code{#f} value is going to be needed in
914subsequent expressions.
915
916The following illustrates this, it returns text between brackets
917@samp{[...]} in a string, or @code{#f} if there are no such brackets
918(ie.@: either @code{string-index} gives @code{#f}).
919
920@example
921(define (extract-brackets str)
922 (and-let* ((start (string-index str #\[))
923 (end (string-index str #\] start)))
924 (substring str (1+ start) end)))
925@end example
926
927The following shows plain variables and expressions tested too.
928@code{diagnostic-levels} is taken to be an alist associating a
929diagnostic type with a level. @code{str} is printed only if the type
930is known and its level is high enough.
931
932@example
933(define (show-diagnostic type str)
934 (and-let* (want-diagnostics
935 (level (assq-ref diagnostic-levels type))
936 ((>= level current-diagnostic-level)))
937 (display str)))
938@end example
939
940The advantage of @code{and-let*} is that an extended sequence of
941expressions and tests doesn't require lots of nesting as would arise
942from separate @code{and} and @code{let*}, or from @code{cond} with
943@code{=>}.
944
945@end deffn
a0e07ba4
NJ
946
947
948@node SRFI-4
3229f68b 949@subsection SRFI-4 - Homogeneous numeric vector datatypes
8742c48b 950@cindex SRFI-4
a0e07ba4
NJ
951
952@c FIXME::martin: Review me!
953
f85f9591
KR
954SRFI-4 defines a set of datatypes and functions for vectors whose
955elements are numbers, all of the same numeric type. Vectors for
956signed and unsigned exact integers and inexact reals in several
957precisions are available. Being homogeneous means they require less
958memory than normal vectors.
a0e07ba4 959
f85f9591
KR
960The functions and the read syntax in this section are made available
961with
a0e07ba4 962
f85f9591
KR
963@lisp
964(use-modules (srfi srfi-4))
965@end lisp
a0e07ba4 966
f85f9591
KR
967Procedures similar to the vector procedures (@pxref{Vectors}) are
968provided for handling these homogeneous vectors, but they are distinct
969datatypes and the two cannot be inter-mixed.
a0e07ba4
NJ
970
971Ten vector data types are provided: Unsigned and signed integer values
972with 8, 16, 32 and 64 bits and floating point values with 32 and 64
f85f9591
KR
973bits. The type is indicated by a tag in the function names,
974@code{u8}, @code{s8}, @code{u16}, @code{s16}, @code{u32}, @code{s32},
975@code{u64}, @code{s64}, @code{f32}, @code{f64}.
a0e07ba4 976
f85f9591
KR
977The external representation (ie.@: read syntax) for these vectors is
978similar to normal Scheme vectors, but with an additional tag
979indiciating the vector's type. For example,
a0e07ba4
NJ
980
981@lisp
982#u16(1 2 3)
a0e07ba4
NJ
983#f64(3.1415 2.71)
984@end lisp
985
f85f9591
KR
986Note that the read syntax for floating-point here conflicts with
987@code{#f} for false. In Standard Scheme one can write @code{(1
988#f3)} for a three element list @code{(1 #f 3)}, but with the SRFI-4
989module @code{(1 #f3)} is invalid. @code{(1 #f 3)} is almost certainly
990what one should write anyway to make the intention clear, so this is
991rarely a problem.
992
993@deffn {Scheme Procedure} u8vector? obj
994@deffnx {Scheme Procedure} s8vector? obj
995@deffnx {Scheme Procedure} u16vector? obj
996@deffnx {Scheme Procedure} s16vector? obj
997@deffnx {Scheme Procedure} u32vector? obj
998@deffnx {Scheme Procedure} s32vector? obj
999@deffnx {Scheme Procedure} u64vector? obj
1000@deffnx {Scheme Procedure} s64vector? obj
1001@deffnx {Scheme Procedure} f32vector? obj
1002@deffnx {Scheme Procedure} f64vector? obj
1003Return @code{#t} if @var{obj} is a homogeneous numeric vector of the
1004indicated type.
1005@end deffn
1006
1007@deffn {Scheme Procedure} make-u8vector n [value]
1008@deffnx {Scheme Procedure} make-s8vector n [value]
1009@deffnx {Scheme Procedure} make-u16vector n [value]
1010@deffnx {Scheme Procedure} make-s16vector n [value]
1011@deffnx {Scheme Procedure} make-u32vector n [value]
1012@deffnx {Scheme Procedure} make-s32vector n [value]
1013@deffnx {Scheme Procedure} make-u64vector n [value]
1014@deffnx {Scheme Procedure} make-s64vector n [value]
1015@deffnx {Scheme Procedure} make-f32vector n [value]
1016@deffnx {Scheme Procedure} make-f64vector n [value]
1017Return a newly allocated homogeneous numeric vector holding @var{n}
1018elements of the indicated type. If @var{value} is given, the vector
1019is initialized with that value, otherwise the contents are
1020unspecified.
a0e07ba4
NJ
1021@end deffn
1022
f85f9591
KR
1023@deffn {Scheme Procedure} u8vector value @dots{}
1024@deffnx {Scheme Procedure} s8vector value @dots{}
1025@deffnx {Scheme Procedure} u16vector value @dots{}
1026@deffnx {Scheme Procedure} s16vector value @dots{}
1027@deffnx {Scheme Procedure} u32vector value @dots{}
1028@deffnx {Scheme Procedure} s32vector value @dots{}
1029@deffnx {Scheme Procedure} u64vector value @dots{}
1030@deffnx {Scheme Procedure} s64vector value @dots{}
1031@deffnx {Scheme Procedure} f32vector value @dots{}
1032@deffnx {Scheme Procedure} f64vector value @dots{}
1033Return a newly allocated homogeneous numeric vector of the indicated
1034type, holding the given parameter @var{value}s. The vector length is
1035the number of parameters given.
1036@end deffn
1037
1038@deffn {Scheme Procedure} u8vector-length vec
1039@deffnx {Scheme Procedure} s8vector-length vec
1040@deffnx {Scheme Procedure} u16vector-length vec
1041@deffnx {Scheme Procedure} s16vector-length vec
1042@deffnx {Scheme Procedure} u32vector-length vec
1043@deffnx {Scheme Procedure} s32vector-length vec
1044@deffnx {Scheme Procedure} u64vector-length vec
1045@deffnx {Scheme Procedure} s64vector-length vec
1046@deffnx {Scheme Procedure} f32vector-length vec
1047@deffnx {Scheme Procedure} f64vector-length vec
1048Return the number of elements in @var{vec}.
1049@end deffn
1050
1051@deffn {Scheme Procedure} u8vector-ref vec i
1052@deffnx {Scheme Procedure} s8vector-ref vec i
1053@deffnx {Scheme Procedure} u16vector-ref vec i
1054@deffnx {Scheme Procedure} s16vector-ref vec i
1055@deffnx {Scheme Procedure} u32vector-ref vec i
1056@deffnx {Scheme Procedure} s32vector-ref vec i
1057@deffnx {Scheme Procedure} u64vector-ref vec i
1058@deffnx {Scheme Procedure} s64vector-ref vec i
1059@deffnx {Scheme Procedure} f32vector-ref vec i
1060@deffnx {Scheme Procedure} f64vector-ref vec i
1061Return the element at index @var{i} in @var{vec}. The first element
1062in @var{vec} is index 0.
1063@end deffn
1064
1065@deffn {Scheme Procedure} u8vector-ref vec i value
1066@deffnx {Scheme Procedure} s8vector-ref vec i value
1067@deffnx {Scheme Procedure} u16vector-ref vec i value
1068@deffnx {Scheme Procedure} s16vector-ref vec i value
1069@deffnx {Scheme Procedure} u32vector-ref vec i value
1070@deffnx {Scheme Procedure} s32vector-ref vec i value
1071@deffnx {Scheme Procedure} u64vector-ref vec i value
1072@deffnx {Scheme Procedure} s64vector-ref vec i value
1073@deffnx {Scheme Procedure} f32vector-ref vec i value
1074@deffnx {Scheme Procedure} f64vector-ref vec i value
1075Set the element at index @var{i} in @var{vec} to @var{value}. The
1076first element in @var{vec} is index 0. The return value is
1077unspecified.
a0e07ba4
NJ
1078@end deffn
1079
f85f9591
KR
1080@deffn {Scheme Procedure} u8vector->list vec
1081@deffnx {Scheme Procedure} s8vector->list vec
1082@deffnx {Scheme Procedure} u16vector->list vec
1083@deffnx {Scheme Procedure} s16vector->list vec
1084@deffnx {Scheme Procedure} u32vector->list vec
1085@deffnx {Scheme Procedure} s32vector->list vec
1086@deffnx {Scheme Procedure} u64vector->list vec
1087@deffnx {Scheme Procedure} s64vector->list vec
1088@deffnx {Scheme Procedure} f32vector->list vec
1089@deffnx {Scheme Procedure} f64vector->list vec
1090Return a newly allocated list holding all elements of @var{vec}.
1091@end deffn
1092
1093@deffn {Scheme Procedure} list->u8vector lst
1094@deffnx {Scheme Procedure} list->s8vector lst
1095@deffnx {Scheme Procedure} list->u16vector lst
1096@deffnx {Scheme Procedure} list->s16vector lst
1097@deffnx {Scheme Procedure} list->u32vector lst
1098@deffnx {Scheme Procedure} list->s32vector lst
1099@deffnx {Scheme Procedure} list->u64vector lst
1100@deffnx {Scheme Procedure} list->s64vector lst
1101@deffnx {Scheme Procedure} list->f32vector lst
1102@deffnx {Scheme Procedure} list->f64vector lst
1103Return a newly allocated homogeneous numeric vector of the indicated type,
a0e07ba4
NJ
1104initialized with the elements of the list @var{lst}.
1105@end deffn
1106
1107
1108@node SRFI-6
3229f68b 1109@subsection SRFI-6 - Basic String Ports
8742c48b 1110@cindex SRFI-6
a0e07ba4
NJ
1111
1112SRFI-6 defines the procedures @code{open-input-string},
1113@code{open-output-string} and @code{get-output-string}. These
1114procedures are included in the Guile core, so using this module does not
1115make any difference at the moment. But it is possible that support for
1116SRFI-6 will be factored out of the core library in the future, so using
1117this module does not hurt, after all.
1118
1119@node SRFI-8
3229f68b 1120@subsection SRFI-8 - receive
8742c48b 1121@cindex SRFI-8
a0e07ba4
NJ
1122
1123@code{receive} is a syntax for making the handling of multiple-value
1124procedures easier. It is documented in @xref{Multiple Values}.
1125
1126
1127@node SRFI-9
3229f68b 1128@subsection SRFI-9 - define-record-type
8742c48b 1129@cindex SRFI-9
a0e07ba4 1130
6afe385d
KR
1131This SRFI is a syntax for defining new record types and creating
1132predicate, constructor, and field getter and setter functions. In
1133Guile this is simply an alternate interface to the core record
1134functionality (@pxref{Records}). It can be used with,
a0e07ba4 1135
6afe385d
KR
1136@example
1137(use-modules (srfi srfi-9))
1138@end example
1139
1140@deffn {library syntax} define-record-type type @* (constructor fieldname @dots{}) @* predicate @* (fieldname accessor [modifier]) @dots{}
1141@sp 1
1142Create a new record type, and make various @code{define}s for using
1143it. This syntax can only occur at the top-level, not nested within
1144some other form.
1145
1146@var{type} is bound to the record type, which is as per the return
1147from the core @code{make-record-type}. @var{type} also provides the
1148name for the record, as per @code{record-type-name}.
1149
1150@var{constructor} is bound to a function to be called as
1151@code{(@var{constructor} fieldval @dots{})} to create a new record of
1152this type. The arguments are initial values for the fields, one
1153argument for each field, in the order they appear in the
1154@code{define-record-type} form.
1155
1156The @var{fieldname}s provide the names for the record fields, as per
1157the core @code{record-type-fields} etc, and are referred to in the
1158subsequent accessor/modifier forms.
1159
1160@var{predictate} is bound to a function to be called as
1161@code{(@var{predicate} obj)}. It returns @code{#t} or @code{#f}
1162according to whether @var{obj} is a record of this type.
1163
1164Each @var{accessor} is bound to a function to be called
1165@code{(@var{accessor} record)} to retrieve the respective field from a
1166@var{record}. Similarly each @var{modifier} is bound to a function to
1167be called @code{(@var{modifier} record val)} to set the respective
1168field in a @var{record}.
1169@end deffn
1170
1171@noindent
1172An example will illustrate typical usage,
a0e07ba4
NJ
1173
1174@example
6afe385d
KR
1175(define-record-type employee-type
1176 (make-employee name age salary)
1177 employee?
1178 (name get-employee-name)
1179 (age get-employee-age set-employee-age)
1180 (salary get-employee-salary set-employee-salary))
a0e07ba4
NJ
1181@end example
1182
6afe385d
KR
1183This creates a new employee data type, with name, age and salary
1184fields. Accessor functions are created for each field, but no
1185modifier function for the name (the intention in this example being
1186that it's established only when an employee object is created). These
1187can all then be used as for example,
a0e07ba4
NJ
1188
1189@example
6afe385d
KR
1190employee-type @result{} #<record-type employee-type>
1191
1192(define fred (make-employee "Fred" 45 20000.00))
1193
1194(employee? fred) @result{} #t
1195(get-employee-age fred) @result{} 45
1196(set-employee-salary fred 25000.00) ;; pay rise
a0e07ba4
NJ
1197@end example
1198
6afe385d
KR
1199The functions created by @code{define-record-type} are ordinary
1200top-level @code{define}s. They can be redefined or @code{set!} as
1201desired, exported from a module, etc.
1202
a0e07ba4
NJ
1203
1204@node SRFI-10
3229f68b 1205@subsection SRFI-10 - Hash-Comma Reader Extension
8742c48b 1206@cindex SRFI-10
a0e07ba4
NJ
1207
1208@cindex hash-comma
1209@cindex #,()
1210The module @code{(srfi srfi-10)} implements the syntax extension
1211@code{#,()}, also called hash-comma, which is defined in SRFI-10.
1212
1213The support for SRFI-10 consists of the procedure
1214@code{define-reader-ctor} for defining new reader constructors and the
1215read syntax form
1216
1217@example
1218#,(@var{ctor} @var{datum} ...)
1219@end example
1220
1221where @var{ctor} must be a symbol for which a read constructor was
85a9b4ed 1222defined previously, using @code{define-reader-ctor}.
a0e07ba4
NJ
1223
1224Example:
1225
1226@lisp
4310df36 1227(use-modules (ice-9 rdelim)) ; for read-line
a0e07ba4
NJ
1228(define-reader-ctor 'file open-input-file)
1229(define f '#,(file "/etc/passwd"))
1230(read-line f)
1231@result{}
1232"root:x:0:0:root:/root:/bin/bash"
1233@end lisp
1234
1235Please note the quote before the @code{#,(file ...)} expression. This
1236is necessary because ports are not self-evaluating in Guile.
1237
8f85c0c6 1238@deffn {Scheme Procedure} define-reader-ctor symbol proc
a0e07ba4
NJ
1239Define @var{proc} as the reader constructor for hash-comma forms with a
1240tag @var{symbol}. @var{proc} will be applied to the datum(s) following
1241the tag in the hash-comma expression after the complete form has been
1242read in. The result of @var{proc} is returned by the Scheme reader.
1243@end deffn
1244
1245
1246@node SRFI-11
3229f68b 1247@subsection SRFI-11 - let-values
8742c48b 1248@cindex SRFI-11
a0e07ba4 1249
8742c48b
KR
1250@findex let-values
1251@findex let-values*
a0e07ba4
NJ
1252This module implements the binding forms for multiple values
1253@code{let-values} and @code{let-values*}. These forms are similar to
1254@code{let} and @code{let*} (@pxref{Local Bindings}), but they support
1255binding of the values returned by multiple-valued expressions.
1256
1257Write @code{(use-modules (srfi srfi-11))} to make the bindings
1258available.
1259
1260@lisp
1261(let-values (((x y) (values 1 2))
1262 ((z f) (values 3 4)))
1263 (+ x y z f))
1264@result{}
126510
1266@end lisp
1267
1268@code{let-values} performs all bindings simultaneously, which means that
1269no expression in the binding clauses may refer to variables bound in the
1270same clause list. @code{let-values*}, on the other hand, performs the
1271bindings sequentially, just like @code{let*} does for single-valued
1272expressions.
1273
1274
1275@node SRFI-13
3229f68b 1276@subsection SRFI-13 - String Library
8742c48b 1277@cindex SRFI-13
a0e07ba4 1278
5676b4fa 1279The SRFI-13 procedures are always available, @xref{Strings}.
a0e07ba4
NJ
1280
1281@node SRFI-14
3229f68b 1282@subsection SRFI-14 - Character-set Library
8742c48b 1283@cindex SRFI-14
a0e07ba4 1284
050ab45f
MV
1285The SRFI-14 data type and procedures are always available,
1286@xref{Character Sets}.
a0e07ba4
NJ
1287
1288@node SRFI-16
3229f68b 1289@subsection SRFI-16 - case-lambda
8742c48b 1290@cindex SRFI-16
a0e07ba4
NJ
1291
1292@c FIXME::martin: Review me!
1293
8742c48b 1294@findex case-lambda
a0e07ba4
NJ
1295The syntactic form @code{case-lambda} creates procedures, just like
1296@code{lambda}, but has syntactic extensions for writing procedures of
1297varying arity easier.
1298
1299The syntax of the @code{case-lambda} form is defined in the following
1300EBNF grammar.
1301
1302@example
1303@group
1304<case-lambda>
1305 --> (case-lambda <case-lambda-clause>)
1306<case-lambda-clause>
1307 --> (<formals> <definition-or-command>*)
1308<formals>
1309 --> (<identifier>*)
1310 | (<identifier>* . <identifier>)
1311 | <identifier>
1312@end group
1313@end example
1314
1315The value returned by a @code{case-lambda} form is a procedure which
1316matches the number of actual arguments against the formals in the
1317various clauses, in order. @dfn{Formals} means a formal argument list
1318just like with @code{lambda} (@pxref{Lambda}). The first matching clause
1319is selected, the corresponding values from the actual parameter list are
1320bound to the variable names in the clauses and the body of the clause is
1321evaluated. If no clause matches, an error is signalled.
1322
1323The following (silly) definition creates a procedure @var{foo} which
1324acts differently, depending on the number of actual arguments. If one
1325argument is given, the constant @code{#t} is returned, two arguments are
1326added and if more arguments are passed, their product is calculated.
1327
1328@lisp
1329(define foo (case-lambda
1330 ((x) #t)
1331 ((x y) (+ x y))
1332 (z
1333 (apply * z))))
1334(foo 'bar)
1335@result{}
1336#t
1337(foo 2 4)
1338@result{}
13396
1340(foo 3 3 3)
1341@result{}
134227
1343(foo)
1344@result{}
13451
1346@end lisp
1347
1348The last expression evaluates to 1 because the last clause is matched,
1349@var{z} is bound to the empty list and the following multiplication,
1350applied to zero arguments, yields 1.
1351
1352
1353@node SRFI-17
3229f68b 1354@subsection SRFI-17 - Generalized set!
8742c48b 1355@cindex SRFI-17
a0e07ba4
NJ
1356
1357This is an implementation of SRFI-17: Generalized set!
1358
8742c48b 1359@findex getter-with-setter
a0e07ba4
NJ
1360It exports the Guile procedure @code{make-procedure-with-setter} under
1361the SRFI name @code{getter-with-setter} and exports the standard
1362procedures @code{car}, @code{cdr}, @dots{}, @code{cdddr},
1363@code{string-ref} and @code{vector-ref} as procedures with setters, as
1364required by the SRFI.
1365
1366SRFI-17 was heavily criticized during its discussion period but it was
1367finalized anyway. One issue was its concept of globally associating
1368setter @dfn{properties} with (procedure) values, which is non-Schemy.
1369For this reason, this implementation chooses not to provide a way to set
1370the setter of a procedure. In fact, @code{(set! (setter @var{proc})
1371@var{setter})} signals an error. The only way to attach a setter to a
1372procedure is to create a new object (a @dfn{procedure with setter}) via
1373the @code{getter-with-setter} procedure. This procedure is also
1374specified in the SRFI. Using it avoids the described problems.
1375
12991fed
TTN
1376
1377@node SRFI-19
3229f68b 1378@subsection SRFI-19 - Time/Date Library
8742c48b 1379@cindex SRFI-19
12991fed 1380
85600a0f
KR
1381This is an implementation of the SRFI-19 time/date library. The
1382functions and variables described here are provided by
12991fed
TTN
1383
1384@example
85600a0f 1385(use-modules (srfi srfi-19))
12991fed
TTN
1386@end example
1387
85600a0f
KR
1388@menu
1389* SRFI-19 Introduction::
1390* SRFI-19 Time::
1391* SRFI-19 Date::
1392* SRFI-19 Time/Date conversions::
1393* SRFI-19 Date to string::
1394* SRFI-19 String to date::
1395@end menu
12991fed 1396
85600a0f 1397@node SRFI-19 Introduction
3229f68b 1398@subsubsection SRFI-19 Introduction
85600a0f
KR
1399
1400@cindex universal time
1401@cindex atomic time
1402@cindex UTC
1403@cindex TAI
1404This module implements time and date representations and calculations,
1405in various time systems, including universal time (UTC) and atomic
1406time (TAI).
1407
1408For those not familiar with these time systems, TAI is based on a
1409fixed length second derived from oscillations of certain atoms. UTC
1410differs from TAI by an integral number of seconds, which is increased
1411or decreased at announced times to keep UTC aligned to a mean solar
1412day (the orbit and rotation of the earth are not quite constant).
1413
1414@cindex leap second
1415So far, only increases in the TAI
1416@tex
1417$\leftrightarrow$
1418@end tex
1419@ifnottex
1420<->
1421@end ifnottex
1422UTC difference have been needed. Such an increase is a ``leap
1423second'', an extra second of TAI introduced at the end of a UTC day.
1424When working entirely within UTC this is never seen, every day simply
1425has 86400 seconds. But when converting from TAI to a UTC date, an
1426extra 23:59:60 is present, where normally a day would end at 23:59:59.
1427Effectively the UTC second from 23:59:59 to 00:00:00 has taken two TAI
1428seconds.
1429
1430@cindex system clock
1431In the current implementation, the system clock is assumed to be UTC,
1432and a table of leap seconds in the code converts to TAI. See comments
1433in @file{srfi-19.scm} for how to update this table.
1434
1435@cindex julian day
1436@cindex modified julian day
1437Also, for those not familiar with the terminology, a @dfn{Julian Day}
1438is a real number which is a count of days and fraction of a day, in
1439UTC, starting from -4713-01-01T12:00:00Z, ie.@: midday Monday 1 Jan
14404713 B.C. And a @dfn{Modified Julian Day} is the same, but starting
1441from 1858-11-17T00:00:00Z, ie.@: midnight 17 November 1858 UTC.
1442
1443@c The SRFI-1 spec says -4714-11-24T12:00:00Z (November 24, -4714 at
1444@c noon, UTC), but this is incorrect. It looks like it might have
1445@c arisen from the code incorrectly treating years a multiple of 100
1446@c but not 400 prior to 1582 as leap years, where instead the Julian
1447@c calendar should be used so all multiples of 4 before 1582 are leap
1448@c years.
1449
1450
1451@node SRFI-19 Time
3229f68b 1452@subsubsection SRFI-19 Time
85600a0f
KR
1453@cindex time
1454
1455A @dfn{time} object has type, seconds and nanoseconds fields
1456representing a point in time starting from some epoch. This is an
1457arbitrary point in time, not just a time of day. Although times are
1458represented in nanoseconds, the actual resolution may be lower.
1459
1460The following variables hold the possible time types. For instance
1461@code{(current-time time-process)} would give the current CPU process
1462time.
1463
1464@defvar time-utc
1465Universal Coordinated Time (UTC).
1466@cindex UTC
1467@end defvar
12991fed 1468
85600a0f
KR
1469@defvar time-tai
1470International Atomic Time (TAI).
1471@cindex TAI
1472@end defvar
12991fed 1473
85600a0f
KR
1474@defvar time-monotonic
1475Monotonic time, meaning a monotonically increasing time starting from
1476an unspecified epoch.
12991fed 1477
85600a0f
KR
1478Note that in the current implementation @code{time-monotonic} is the
1479same as @code{time-tai}, and unfortunately is therefore affected by
1480adjustments to the system clock. Perhaps this will change in the
1481future.
1482@end defvar
12991fed 1483
85600a0f
KR
1484@defvar time-duration
1485A duration, meaning simply a difference between two times.
1486@end defvar
12991fed 1487
85600a0f
KR
1488@defvar time-process
1489CPU time spent in the current process, starting from when the process
1490began.
1491@cindex process time
1492@end defvar
12991fed 1493
85600a0f
KR
1494@defvar time-thread
1495CPU time spent in the current thread. Not currently implemented.
1496@cindex thread time
1497@end defvar
12991fed 1498
85600a0f
KR
1499@sp 1
1500@defun time? obj
1501Return @code{#t} if @var{obj} is a time object, or @code{#f} if not.
1502@end defun
1503
1504@defun make-time type nanoseconds seconds
1505Create a time object with the given @var{type}, @var{seconds} and
1506@var{nanoseconds}.
1507@end defun
1508
1509@defun time-type time
1510@defunx time-nanosecond time
1511@defunx time-second time
1512@defunx set-time-type! time type
1513@defunx set-time-nanosecond! time nsec
1514@defunx set-time-second! time sec
1515Get or set the type, seconds or nanoseconds fields of a time object.
1516
1517@code{set-time-type!} merely changes the field, it doesn't convert the
1518time value. For conversions, see @ref{SRFI-19 Time/Date conversions}.
1519@end defun
1520
1521@defun copy-time time
1522Return a new time object, which is a copy of the given @var{time}.
1523@end defun
1524
1525@defun current-time [type]
1526Return the current time of the given @var{type}. The default
1527@var{type} is @code{time-utc}.
1528
1529Note that the name @code{current-time} conflicts with the Guile core
1530@code{current-time} function (@pxref{Time}). Applications wanting to
1531use both will need to use a different name for one of them.
1532@end defun
1533
1534@defun time-resolution [type]
1535Return the resolution, in nanoseconds, of the given time @var{type}.
1536The default @var{type} is @code{time-utc}.
1537@end defun
1538
1539@defun time<=? t1 t2
1540@defunx time<? t1 t2
1541@defunx time=? t1 t2
1542@defunx time>=? t1 t2
1543@defunx time>? t1 t2
1544Return @code{#t} or @code{#f} according to the respective relation
1545between time objects @var{t1} and @var{t2}. @var{t1} and @var{t2}
1546must be the same time type.
1547@end defun
1548
1549@defun time-difference t1 t2
1550@defunx time-difference! t1 t2
1551Return a time object of type @code{time-duration} representing the
1552period between @var{t1} and @var{t2}. @var{t1} and @var{t2} must be
1553the same time type.
1554
1555@code{time-difference} returns a new time object,
1556@code{time-difference!} may modify @var{t1} to form its return.
1557@end defun
1558
1559@defun add-duration time duration
1560@defunx add-duration! time duration
1561@defunx subtract-duration time duration
1562@defunx subtract-duration! time duration
1563Return a time object which is @var{time} with the given @var{duration}
1564added or subtracted. @var{duration} must be a time object of type
1565@code{time-duration}.
1566
1567@code{add-duration} and @code{subtract-duration} return a new time
1568object. @code{add-duration!} and @code{subtract-duration!} may modify
1569the given @var{time} to form their return.
1570@end defun
1571
1572
1573@node SRFI-19 Date
3229f68b 1574@subsubsection SRFI-19 Date
85600a0f
KR
1575@cindex date
1576
1577A @dfn{date} object represents a date in the Gregorian calendar and a
1578time of day on that date in some timezone.
1579
1580The fields are year, month, day, hour, minute, second, nanoseconds and
1581timezone. A date object is immutable, its fields can be read but they
1582cannot be modified once the object is created.
1583
1584@defun date? obj
1585Return @code{#t} if @var{obj} is a date object, or @code{#f} if not.
1586@end defun
1587
1588@defun make-date nsecs seconds minutes hours date month year zone-offset
1589Create a new date object.
1590@c
1591@c FIXME: What can we say about the ranges of the values. The
1592@c current code looks it doesn't normalize, but expects then in their
1593@c usual range already.
1594@c
1595@end defun
1596
1597@defun date-nanosecond date
1598Nanoseconds, 0 to 999999999.
1599@end defun
1600
1601@defun date-second date
1602Seconds, 0 to 60. 0 to 59 is the usual range, 60 is for a leap second.
1603@end defun
1604
1605@defun date-minute date
1606Minutes, 0 to 59.
1607@end defun
1608
1609@defun date-hour date
1610Hour, 0 to 23.
1611@end defun
1612
1613@defun date-day date
1614Day of the month, 1 to 31 (or less, according to the month).
1615@end defun
1616
1617@defun date-month date
1618Month, 1 to 12.
1619@end defun
1620
1621@defun date-year date
1622Year, eg.@: 2003.
1623@end defun
1624
1625@defun date-zone-offset date
1626Time zone, an integer number of seconds east of Greenwich.
1627@end defun
1628
1629@defun date-year-day date
1630Day of the year, starting from 1 for 1st January.
1631@end defun
1632
1633@defun date-week-day date
1634Day of the week, starting from 0 for Sunday.
1635@end defun
1636
1637@defun date-week-number date dstartw
1638Week of the year, ignoring a first partial week. @var{dstartw} is the
1639day of the week which is taken to start a week, 0 for Sunday, 1 for
1640Monday, etc.
1641@c
1642@c FIXME: The spec doesn't say whether numbering starts at 0 or 1.
1643@c The code looks like it's 0, if that's the correct intention.
1644@c
1645@end defun
1646
1647@c The SRFI text doesn't actually give the default for tz-offset, but
1648@c the reference implementation has the local timezone and the
1649@c conversions functions all specify that, so it should be ok to
1650@c document it here.
1651@c
1652@defun current-date [tz-offset]
1653Return a date object representing the current date/time UTC.
1654@var{tz-offset} is seconds east of Greenwich, and defaults to the
1655local timezone.
1656@end defun
1657
1658@defun current-julian-day
1659@cindex julian day
1660Return the current Julian Day.
1661@end defun
1662
1663@defun current-modified-julian-day
1664@cindex modified julian day
1665Return the current Modified Julian Day.
1666@end defun
1667
1668
1669@node SRFI-19 Time/Date conversions
3229f68b 1670@subsubsection SRFI-19 Time/Date conversions
85600a0f
KR
1671
1672@defun date->julian-day date
1673@defunx date->modified-julian-day date
1674@defunx date->time-monotonic date
1675@defunx date->time-tai date
1676@defunx date->time-utc date
1677@end defun
1678@defun julian-day->date jdn [tz-offset]
1679@defunx julian-day->time-monotonic jdn
1680@defunx julian-day->time-tai jdn
1681@defunx julian-day->time-utc jdn
1682@end defun
1683@defun modified-julian-day->date jdn [tz-offset]
1684@defunx modified-julian-day->time-monotonic jdn
1685@defunx modified-julian-day->time-tai jdn
1686@defunx modified-julian-day->time-utc jdn
1687@end defun
1688@defun time-monotonic->date time [tz-offset]
1689@defunx time-monotonic->time-tai time
1690@defunx time-monotonic->time-tai! time
1691@defunx time-monotonic->time-utc time
1692@defunx time-monotonic->time-utc! time
1693@end defun
1694@defun time-tai->date time [tz-offset]
1695@defunx time-tai->julian-day time
1696@defunx time-tai->modified-julian-day time
1697@defunx time-tai->time-monotonic time
1698@defunx time-tai->time-monotonic! time
1699@defunx time-tai->time-utc time
1700@defunx time-tai->time-utc! time
1701@end defun
1702@defun time-utc->date time [tz-offset]
1703@defunx time-utc->julian-day time
1704@defunx time-utc->modified-julian-day time
1705@defunx time-utc->time-monotonic time
1706@defunx time-utc->time-monotonic! time
1707@defunx time-utc->time-tai time
1708@defunx time-utc->time-tai! time
1709@sp 1
1710Convert between dates, times and days of the respective types. For
1711instance @code{time-tai->time-utc} accepts a @var{time} object of type
1712@code{time-tai} and returns an object of type @code{time-utc}.
1713
1714For conversions to dates, @var{tz-offset} is seconds east of
1715Greenwich. The default is the local timezone.
1716
1717The @code{!} variants may modify their @var{time} argument to form
1718their return. The plain functions create a new object.
1719@end defun
1720
1721@node SRFI-19 Date to string
3229f68b 1722@subsubsection SRFI-19 Date to string
85600a0f
KR
1723@cindex date to string
1724
1725@defun date->string date [format]
1726Convert a date to a string under the control of a format.
1727@var{format} should be a string containing @samp{~} escapes, which
1728will be expanded as per the following conversion table. The default
1729@var{format} is @samp{~c}, a locale-dependent date and time.
1730
1731Many of these conversion characters are the same as POSIX
1732@code{strftime} (@pxref{Time}), but there are some extras and some
1733variations.
1734
1735@multitable {MMMM} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
1736@item @nicode{~~} @tab literal ~
1737@item @nicode{~a} @tab locale abbreviated weekday, eg.@: @samp{Sun}
1738@item @nicode{~A} @tab locale full weekday, eg.@: @samp{Sunday}
1739@item @nicode{~b} @tab locale abbreviated month, eg.@: @samp{Jan}
1740@item @nicode{~B} @tab locale full month, eg.@: @samp{January}
1741@item @nicode{~c} @tab locale date and time, eg.@: @*
1742@samp{Fri Jul 14 20:28:42-0400 2000}
1743@item @nicode{~d} @tab day of month, zero padded, @samp{01} to @samp{31}
1744
1745@c Spec says d/m/y, reference implementation says m/d/y.
1746@c Apparently the reference code was the intention, but would like to
1747@c see an errata published for the spec before contradicting it here.
1748@c
1749@c @item @nicode{~D} @tab date @nicode{~d/~m/~y}
1750
1751@item @nicode{~e} @tab day of month, blank padded, @samp{ 1} to @samp{31}
1752@item @nicode{~f} @tab seconds and fractional seconds,
1753with locale decimal point, eg.@: @samp{5.2}
1754@item @nicode{~h} @tab same as @nicode{~b}
1755@item @nicode{~H} @tab hour, 24-hour clock, zero padded, @samp{00} to @samp{23}
1756@item @nicode{~I} @tab hour, 12-hour clock, zero padded, @samp{01} to @samp{12}
1757@item @nicode{~j} @tab day of year, zero padded, @samp{001} to @samp{366}
1758@item @nicode{~k} @tab hour, 24-hour clock, blank padded, @samp{ 0} to @samp{23}
1759@item @nicode{~l} @tab hour, 12-hour clock, blank padded, @samp{ 1} to @samp{12}
1760@item @nicode{~m} @tab month, zero padded, @samp{01} to @samp{12}
1761@item @nicode{~M} @tab minute, zero padded, @samp{00} to @samp{59}
1762@item @nicode{~n} @tab newline
1763@item @nicode{~N} @tab nanosecond, zero padded, @samp{000000000} to @samp{999999999}
1764@item @nicode{~p} @tab locale AM or PM
1765@item @nicode{~r} @tab time, 12 hour clock, @samp{~I:~M:~S ~p}
1766@item @nicode{~s} @tab number of full seconds since ``the epoch'' in UTC
1767@item @nicode{~S} @tab second, zero padded @samp{00} to @samp{60} @*
1768(usual limit is 59, 60 is a leap second)
1769@item @nicode{~t} @tab horizontal tab character
1770@item @nicode{~T} @tab time, 24 hour clock, @samp{~H:~M:~S}
1771@item @nicode{~U} @tab week of year, Sunday first day of week,
1772@samp{00} to @samp{52}
1773@item @nicode{~V} @tab week of year, Monday first day of week,
1774@samp{01} to @samp{53}
1775@item @nicode{~w} @tab day of week, 0 for Sunday, @samp{0} to @samp{6}
1776@item @nicode{~W} @tab week of year, Monday first day of week,
1777@samp{00} to @samp{52}
1778
1779@c The spec has ~x as an apparent duplicate of ~W, and ~X as a locale
1780@c date. The reference code has ~x as the locale date and ~X as a
1781@c locale time. The rule is apparently that the code should be
1782@c believed, but would like to see an errata for the spec before
1783@c contradicting it here.
1784@c
1785@c @item @nicode{~x} @tab week of year, Monday as first day of week,
1786@c @samp{00} to @samp{53}
1787@c @item @nicode{~X} @tab locale date, eg.@: @samp{07/31/00}
1788
1789@item @nicode{~y} @tab year, two digits, @samp{00} to @samp{99}
1790@item @nicode{~Y} @tab year, full, eg.@: @samp{2003}
1791@item @nicode{~z} @tab time zone, RFC-822 style
1792@item @nicode{~Z} @tab time zone symbol (not currently implemented)
1793@item @nicode{~1} @tab ISO-8601 date, @samp{~Y-~m-~d}
1794@item @nicode{~2} @tab ISO-8601 time+zone, @samp{~k:~M:~S~z}
1795@item @nicode{~3} @tab ISO-8601 time, @samp{~k:~M:~S}
1796@item @nicode{~4} @tab ISO-8601 date/time+zone, @samp{~Y-~m-~dT~k:~M:~S~z}
1797@item @nicode{~5} @tab ISO-8601 date/time, @samp{~Y-~m-~dT~k:~M:~S}
1798@end multitable
1799@end defun
1800
1801Conversions @samp{~D}, @samp{~x} and @samp{~X} are not currently
1802described here, since the specification and reference implementation
1803differ.
1804
1805Currently Guile doesn't implement any localizations for the above, all
1806outputs are in English, and the @samp{~c} conversion is POSIX
1807@code{ctime} style @samp{~a ~b ~d ~H:~M:~S~z ~Y}. This may change in
1808the future.
1809
1810
1811@node SRFI-19 String to date
3229f68b 1812@subsubsection SRFI-19 String to date
85600a0f
KR
1813@cindex string to date
1814
1815@c FIXME: Can we say what happens when an incomplete date is
1816@c converted? Ie. fields left as 0, or what? The spec seems to be
1817@c silent on this.
1818
1819@defun string->date input template
1820Convert an @var{input} string to a date under the control of a
1821@var{template} string. Return a newly created date object.
1822
1823Literal characters in @var{template} must match characters in
1824@var{input} and @samp{~} escapes must match the input forms described
1825in the table below. ``Skip to'' means characters up to one of the
1826given type are ignored, or ``no skip'' for no skipping. ``Read'' is
1827what's then read, and ``Set'' is the field affected in the date
1828object.
1829
1830For example @samp{~Y} skips input characters until a digit is reached,
1831at which point it expects a year and stores that to the year field of
1832the date.
1833
1834@multitable {MMMM} {@nicode{char-alphabetic?}} {MMMMMMMMMMMMMMMMMMMMMMMMM} {@nicode{date-zone-offset}}
1835@item
1836@tab Skip to
1837@tab Read
1838@tab Set
1839
1840@item @nicode{~~}
1841@tab no skip
1842@tab literal ~
1843@tab nothing
1844
1845@item @nicode{~a}
1846@tab @nicode{char-alphabetic?}
1847@tab locale abbreviated weekday name
1848@tab nothing
1849
1850@item @nicode{~A}
1851@tab @nicode{char-alphabetic?}
1852@tab locale full weekday name
1853@tab nothing
1854
1855@c Note that the SRFI spec says that ~b and ~B don't set anything,
1856@c but that looks like a mistake. The reference implementation sets
1857@c the month field, which seems sensible and is what we describe
1858@c here.
1859
1860@item @nicode{~b}
1861@tab @nicode{char-alphabetic?}
1862@tab locale abbreviated month name
1863@tab @nicode{date-month}
1864
1865@item @nicode{~B}
1866@tab @nicode{char-alphabetic?}
1867@tab locale full month name
1868@tab @nicode{date-month}
1869
1870@item @nicode{~d}
1871@tab @nicode{char-numeric?}
1872@tab day of month
1873@tab @nicode{date-day}
1874
1875@item @nicode{~e}
1876@tab no skip
1877@tab day of month, blank padded
1878@tab @nicode{date-day}
1879
1880@item @nicode{~h}
1881@tab same as @samp{~b}
1882
1883@item @nicode{~H}
1884@tab @nicode{char-numeric?}
1885@tab hour
1886@tab @nicode{date-hour}
1887
1888@item @nicode{~k}
1889@tab no skip
1890@tab hour, blank padded
1891@tab @nicode{date-hour}
1892
1893@item @nicode{~m}
1894@tab @nicode{char-numeric?}
1895@tab month
1896@tab @nicode{date-month}
1897
1898@item @nicode{~M}
1899@tab @nicode{char-numeric?}
1900@tab minute
1901@tab @nicode{date-minute}
1902
1903@item @nicode{~S}
1904@tab @nicode{char-numeric?}
1905@tab second
1906@tab @nicode{date-second}
1907
1908@item @nicode{~y}
1909@tab no skip
1910@tab 2-digit year
1911@tab @nicode{date-year} within 50 years
1912
1913@item @nicode{~Y}
1914@tab @nicode{char-numeric?}
1915@tab year
1916@tab @nicode{date-year}
1917
1918@item @nicode{~z}
1919@tab no skip
1920@tab time zone
1921@tab date-zone-offset
1922@end multitable
1923
1924Notice that the weekday matching forms don't affect the date object
1925returned, instead the weekday will be derived from the day, month and
1926year.
1927
1928Currently Guile doesn't implement any localizations for the above,
1929month and weekday names are always expected in English. This may
1930change in the future.
1931@end defun
12991fed 1932
1de8c1ae 1933
b0b55bd6 1934@node SRFI-26
3229f68b 1935@subsection SRFI-26 - specializing parameters
1de8c1ae
KR
1936@cindex SRFI-26
1937
1938This SRFI provides a syntax for conveniently specializing selected
1939parameters of a function. It can be used with,
1940
1941@example
1942(use-modules (srfi srfi-26))
1943@end example
1944
1945@deffn {library syntax} cut slot @dots{}
1946@deffnx {library syntax} cute slot @dots{}
1947Return a new procedure which will make a call (@var{slot} @dots{}) but
1948with selected parameters specialized to given expressions.
1949
1950An example will illustrate the idea. The following is a
1951specialization of @code{write}, sending output to
1952@code{my-output-port},
1953
1954@example
1955(cut write <> my-output-port)
1956@result{}
1957(lambda (obj) (write obj my-output-port))
1958@end example
1959
1960The special symbol @code{<>} indicates a slot to be filled by an
1961argument to the new procedure. @code{my-output-port} on the other
1962hand is an expression to be evaluated and passed, ie.@: it specializes
1963the behaviour of @code{write}.
1964
1965@table @nicode
1966@item <>
1967A slot to be filled by an argument from the created procedure.
1968Arguments are assigned to @code{<>} slots in the order they appear in
1969the @code{cut} form, there's no way to re-arrange arguments.
1970
1971The first argument to @code{cut} is usually a procedure (or expression
1972giving a procedure), but @code{<>} is allowed there too. For example,
1973
1974@example
1975(cut <> 1 2 3)
1976@result{}
1977(lambda (proc) (proc 1 2 3))
1978@end example
1979
1980@item <...>
1981A slot to be filled by all remaining arguments from the new procedure.
1982This can only occur at the end of a @code{cut} form.
1983
1984For example, a procedure taking a variable number of arguments like
1985@code{max} but in addition enforcing a lower bound,
1986
1987@example
1988(define my-lower-bound 123)
1989
1990(cut max my-lower-bound <...>)
1991@result{}
1992(lambda arglist (apply max my-lower-bound arglist))
1993@end example
1994@end table
1995
1996For @code{cut} the specializing expressions are evaluated each time
1997the new procedure is called. For @code{cute} they're evaluated just
1998once, when the new procedure is created. The name @code{cute} stands
1999for ``@code{cut} with evaluated arguments''. In all cases the
2000evaluations take place in an unspecified order.
2001
2002The following illustrates the difference between @code{cut} and
2003@code{cute},
2004
2005@example
2006(cut format <> "the time is ~s" (current-time))
2007@result{}
2008(lambda (port) (format port "the time is ~s" (current-time)))
2009
2010(cute format <> "the time is ~s" (current-time))
2011@result{}
2012(let ((val (current-time)))
2013 (lambda (port) (format port "the time is ~s" val))
2014@end example
2015
2016(There's no provision for a mixture of @code{cut} and @code{cute}
2017where some expressions would be evaluated every time but others
2018evaluated only once.)
2019
2020@code{cut} is really just a shorthand for the sort of @code{lambda}
2021forms shown in the above examples. But notice @code{cut} avoids the
2022need to name unspecialized parameters, and is more compact. Use in
2023functional programming style or just with @code{map}, @code{for-each}
2024or similar is typical.
2025
2026@example
2027(map (cut * 2 <>) '(1 2 3 4))
2028
2029(for-each (cut write <> my-port) my-list)
2030@end example
2031@end deffn
b0b55bd6 2032
8638c417
RB
2033@node SRFI-31
2034@subsection SRFI-31 - A special form `rec' for recursive evaluation
2035@cindex SRFI-31
2036@findex rec
2037
2038SRFI-31 defines a special form that can be used to create
2039self-referential expressions more conveniently. The syntax is as
2040follows:
2041
2042@example
2043@group
2044<rec expression> --> (rec <variable> <expression>)
2045<rec expression> --> (rec (<variable>+) <body>)
2046@end group
2047@end example
2048
2049The first syntax can be used to create self-referential expressions,
2050for example:
2051
2052@lisp
2053 guile> (define tmp (rec ones (cons 1 (delay ones))))
2054@end lisp
2055
2056The second syntax can be used to create anonymous recursive functions:
2057
2058@lisp
2059 guile> (define tmp (rec (display-n item n)
2060 (if (positive? n)
2061 (begin (display n) (display-n (- n 1))))))
2062 guile> (tmp 42 3)
2063 424242
2064 guile>
2065@end lisp
12991fed
TTN
2066
2067@c srfi-modules.texi ends here
193239f1
KR
2068
2069@c Local Variables:
2070@c TeX-master: "guile.texi"
2071@c End: