* syncase.scm (putprop): Temporary fix which publishes new syntax
[bpt/guile.git] / ice-9 / boot-9.scm
CommitLineData
0f2d19dd
JB
1;;; installed-scm-file
2
d0cbd20c 3;;;; Copyright (C) 1995, 1996, 1997 Free Software Foundation, Inc.
0f2d19dd
JB
4;;;;
5;;;; This program is free software; you can redistribute it and/or modify
6;;;; it under the terms of the GNU General Public License as published by
7;;;; the Free Software Foundation; either version 2, or (at your option)
8;;;; any later version.
9;;;;
10;;;; This program is distributed in the hope that it will be useful,
11;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13;;;; GNU General Public License for more details.
14;;;;
15;;;; You should have received a copy of the GNU General Public License
16;;;; along with this software; see the file COPYING. If not, write to
15328041
JB
17;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18;;;; Boston, MA 02111-1307 USA
0f2d19dd
JB
19;;;;
20\f
21
22;;; This file is the first thing loaded into Guile. It adds many mundane
23;;; definitions and a few that are interesting.
24;;;
25;;; The module system (hence the hierarchical namespace) are defined in this
26;;; file.
27;;;
28
29\f
21ed9efe
MD
30;;; {Features}
31;;
32
33(define (provide sym)
34 (if (not (memq sym *features*))
35 (set! *features* (cons sym *features*))))
36
37\f
79451588
JB
38;;; {R4RS compliance}
39
40(primitive-load-path "ice-9/r4rs.scm")
41
42\f
44cf1f0f 43;;; {Simple Debugging Tools}
0f2d19dd
JB
44;;
45
46
47;; peek takes any number of arguments, writes them to the
48;; current ouput port, and returns the last argument.
49;; It is handy to wrap around an expression to look at
50;; a value each time is evaluated, e.g.:
51;;
52;; (+ 10 (troublesome-fn))
53;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
54;;
55
56(define (peek . stuff)
57 (newline)
58 (display ";;; ")
59 (write stuff)
60 (newline)
61 (car (last-pair stuff)))
62
63(define pk peek)
64
65(define (warn . stuff)
66 (with-output-to-port (current-error-port)
67 (lambda ()
68 (newline)
69 (display ";;; WARNING ")
6355358a 70 (display stuff)
0f2d19dd
JB
71 (newline)
72 (car (last-pair stuff)))))
73
74\f
79451588 75;;; {Trivial Functions}
0f2d19dd 76;;;
79451588
JB
77
78(define (id x) x)
79(define (1+ n) (+ n 1))
80(define (-1+ n) (+ n -1))
81(define 1- -1+)
82(define return-it noop)
132e5fac 83(define (and=> value procedure) (and value (procedure value)))
79451588
JB
84(define (make-hash-table k) (make-vector k '()))
85
0f2d19dd
JB
86;;; apply-to-args is functionally redunant with apply and, worse,
87;;; is less general than apply since it only takes two arguments.
88;;;
89;;; On the other hand, apply-to-args is a syntacticly convenient way to
90;;; perform binding in many circumstances when the "let" family of
91;;; of forms don't cut it. E.g.:
92;;;
93;;; (apply-to-args (return-3d-mouse-coords)
94;;; (lambda (x y z)
95;;; ...))
96;;;
97
98(define (apply-to-args args fn) (apply fn args))
99
100\f
0f2d19dd
JB
101;;; {Integer Math}
102;;;
103
0f2d19dd
JB
104(define (ipow-by-squaring x k acc proc)
105 (cond ((zero? k) acc)
106 ((= 1 k) (proc acc x))
52c5a23a
JB
107 (else (ipow-by-squaring (proc x x)
108 (quotient k 2)
109 (if (even? k) acc (proc acc x))
110 proc))))
0f2d19dd
JB
111
112(define string-character-length string-length)
113
114
115
116;; A convenience function for combining flag bits. Like logior, but
117;; handles the cases of 0 and 1 arguments.
118;;
119(define (flags . args)
120 (cond
121 ((null? args) 0)
122 ((null? (cdr args)) (car args))
123 (else (apply logior args))))
124
125\f
0f2d19dd
JB
126;;; {Symbol Properties}
127;;;
128
129(define (symbol-property sym prop)
130 (let ((pair (assoc prop (symbol-pref sym))))
131 (and pair (cdr pair))))
132
133(define (set-symbol-property! sym prop val)
134 (let ((pair (assoc prop (symbol-pref sym))))
135 (if pair
136 (set-cdr! pair val)
137 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
138
139(define (symbol-property-remove! sym prop)
140 (let ((pair (assoc prop (symbol-pref sym))))
141 (if pair
142 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
143
144\f
1e531c3a
GH
145
146;;; {Line and Delimited I/O}
147
148;;; corresponds to SCM_LINE_INCREMENTORS in libguile.
149(define scm-line-incrementors "\n")
150
151(define (read-line! string . maybe-port)
152 (let* ((port (if (pair? maybe-port)
153 (car maybe-port)
154 (current-input-port))))
155 (let* ((rv (%read-delimited! scm-line-incrementors
156 string
157 #t
158 port))
159 (terminator (car rv))
160 (nchars (cdr rv)))
161 (cond ((and (= nchars 0)
162 (eof-object? terminator))
163 terminator)
164 ((not terminator) #f)
165 (else nchars)))))
166
167(define (read-delimited! delims buf . args)
168 (let* ((num-args (length args))
169 (port (if (> num-args 0)
170 (car args)
171 (current-input-port)))
172 (handle-delim (if (> num-args 1)
173 (cadr args)
174 'trim))
175 (start (if (> num-args 2)
176 (caddr args)
177 0))
178 (end (if (> num-args 3)
179 (cadddr args)
180 (string-length buf))))
181 (let* ((rv (%read-delimited! delims
182 buf
183 (not (eq? handle-delim 'peek))
184 port
185 start
186 end))
187 (terminator (car rv))
188 (nchars (cdr rv)))
189 (cond ((or (not terminator) ; buffer filled
190 (eof-object? terminator))
191 (if (zero? nchars)
192 (if (eq? handle-delim 'split)
193 (cons terminator terminator)
194 terminator)
195 (if (eq? handle-delim 'split)
196 (cons nchars terminator)
197 nchars)))
198 (else
199 (case handle-delim
200 ((trim peek) nchars)
201 ((concat) (string-set! buf nchars terminator)
202 (+ nchars 1))
203 ((split) (cons nchars terminator))
204 (else (error "unexpected handle-delim value: "
205 handle-delim))))))))
206
207(define (read-delimited delims . args)
208 (let* ((port (if (pair? args)
209 (let ((pt (car args)))
210 (set! args (cdr args))
211 pt)
212 (current-input-port)))
213 (handle-delim (if (pair? args)
214 (car args)
215 'trim)))
216 (let loop ((substrings ())
217 (total-chars 0)
218 (buf-size 100)) ; doubled each time through.
219 (let* ((buf (make-string buf-size))
220 (rv (%read-delimited! delims
221 buf
222 (not (eq? handle-delim 'peek))
223 port))
224 (terminator (car rv))
225 (nchars (cdr rv))
226 (join-substrings
227 (lambda ()
228 (apply string-append
229 (reverse
230 (cons (if (and (eq? handle-delim 'concat)
231 (not (eof-object? terminator)))
232 (string terminator)
233 "")
234 (cons (make-shared-substring buf 0 nchars)
235 substrings))))))
236 (new-total (+ total-chars nchars)))
237 (cond ((not terminator)
238 ;; buffer filled.
239 (loop (cons (substring buf 0 nchars) substrings)
240 new-total
241 (* buf-size 2)))
242 ((eof-object? terminator)
243 (if (zero? new-total)
244 (if (eq? handle-delim 'split)
245 (cons terminator terminator)
246 terminator)
247 (if (eq? handle-delim 'split)
248 (cons (join-substrings) terminator)
249 (join-substrings))))
250 (else
251 (case handle-delim
252 ((trim peek concat) (join-substrings))
253 ((split) (cons (join-substrings) terminator))
254 (else (error "unexpected handle-delim value: "
255 handle-delim)))))))))
256
257(define (read-line . args)
258 (apply read-delimited scm-line-incrementors args))
259
260\f
0f2d19dd
JB
261;;; {Arrays}
262;;;
263
264(begin
265 (define uniform-vector? array?)
266 (define make-uniform-vector dimensions->uniform-array)
267 ; (define uniform-vector-ref array-ref)
268 (define (uniform-vector-set! u i o)
c2132276 269 (uniform-array-set1! u o i))
0f2d19dd
JB
270 (define uniform-vector-fill! array-fill!)
271 (define uniform-vector-read! uniform-array-read!)
272 (define uniform-vector-write uniform-array-write)
273
274 (define (make-array fill . args)
275 (dimensions->uniform-array args () fill))
276 (define (make-uniform-array prot . args)
277 (dimensions->uniform-array args prot))
278 (define (list->array ndim lst)
279 (list->uniform-array ndim '() lst))
280 (define (list->uniform-vector prot lst)
281 (list->uniform-array 1 prot lst))
282 (define (array-shape a)
283 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
284 (array-dimensions a))))
285
286\f
287;;; {Keywords}
288;;;
289
290(define (symbol->keyword symbol)
291 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
292
293(define (keyword->symbol kw)
294 (let ((sym (keyword-dash-symbol kw)))
295 (string->symbol (substring sym 1 (length sym)))))
296
297(define (kw-arg-ref args kw)
298 (let ((rem (member kw args)))
299 (and rem (pair? (cdr rem)) (cadr rem))))
300
301\f
fa7e9274
MV
302
303;;; Printing structs
304
305;; The printing of structures can be customized by setting the builtin
306;; variable *struct-printer* to a procedure. A second dispatching
307;; step is implemented here to allow for struct-type specific printing
308;; procedures.
309;;
310;; A particular type of structures is characterized by its vtable. In
311;; addition to some internal fields, such a vtable can contain
312;; arbitrary user-defined fields. We use the first of these fields to
313;; hold the specific printing procedure. To avoid breaking code that
314;; already uses this first extra-field for some other purposes, we use
315;; a unique tag to decide whether it really contains a structure
316;; printer or not.
317;;
318;; XXX - Printing structures is probably fundamental enough that we
319;; can simply hardcode the vtable slot convention and expect everyone
320;; to obey it.
321;;
322;; A structure-type specific printer follows the same calling
323;; convention as the builtin *struct-printer*.
324
325;; A shorthand for one already hardcoded vtable convention
326
327(define (struct-layout s)
328 (struct-ref (struct-vtable s) 0))
329
330;; This is our new convention for storing printing procedures
331
332(define %struct-printer-tag (cons '%struct-printer-tag #f))
333
334(define (struct-printer s)
755da2fc 335 (let ((vtable (struct-vtable s)))
52c5a23a
JB
336 (and (> (string-length (struct-layout vtable))
337 (* 2 struct-vtable-offset))
755da2fc 338 (let ((p (struct-ref vtable struct-vtable-offset)))
52c5a23a
JB
339 (and (pair? p)
340 (eq? (car p) %struct-printer-tag)
755da2fc 341 (cdr p))))))
fa7e9274
MV
342
343(define (make-struct-printer printer)
344 (cons %struct-printer-tag printer))
345
346;; Note: While the printer is extracted from a structure itself, it
347;; has to be set in the vtable of the structure.
348
349(define (set-struct-printer-in-vtable! vtable printer)
350 (struct-set! vtable struct-vtable-offset (make-struct-printer printer)))
351
352;; The dispatcher
353
354(set! *struct-printer* (lambda (s p)
355 (let ((printer (struct-printer s)))
356 (and printer
357 (printer s p)))))
358
359\f
0f2d19dd
JB
360;;; {Records}
361;;;
362
fa7e9274
MV
363;; Printing records: by default, records are printed as
364;;
365;; #<type-name field1: val1 field2: val2 ...>
366;;
367;; You can change that by giving a custom printing function to
368;; MAKE-RECORD-TYPE (after the list of field symbols). This function
369;; will be called like
370;;
371;; (<printer> object port)
372;;
373;; It should print OBJECT to PORT.
374
375;; 0: printer, 1: type-name, 2: fields
376(define record-type-vtable
377 (make-vtable-vtable "prprpr" 0
378 (make-struct-printer
379 (lambda (s p)
380 (cond ((eq? s record-type-vtable)
381 (display "#<record-type-vtable>" p))
382 (else
383 (display "#<record-type " p)
384 (display (record-type-name s) p)
385 (display ">" p)))))))
0f2d19dd
JB
386
387(define (record-type? obj)
388 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
389
390(define (make-record-type type-name fields . opt)
8e693424 391 (let ((printer-fn (and (pair? opt) (car opt))))
0f2d19dd 392 (let ((struct (make-struct record-type-vtable 0
c7c03b9f
JB
393 (make-struct-layout
394 (apply symbol-append
395 (map (lambda (f) "pw") fields)))
fa7e9274
MV
396 (make-struct-printer
397 (or printer-fn
398 (lambda (s p)
399 (display "#<" p)
400 (display type-name p)
401 (let loop ((fields fields)
402 (off 0))
403 (cond
404 ((not (null? fields))
405 (display " " p)
406 (display (car fields) p)
407 (display ": " p)
408 (display (struct-ref s off) p)
409 (loop (cdr fields) (+ 1 off)))))
410 (display ">" p))))
0f2d19dd
JB
411 type-name
412 (copy-tree fields))))
0f2d19dd
JB
413 struct)))
414
415(define (record-type-name obj)
416 (if (record-type? obj)
fa7e9274 417 (struct-ref obj (+ 1 struct-vtable-offset))
0f2d19dd
JB
418 (error 'not-a-record-type obj)))
419
420(define (record-type-fields obj)
421 (if (record-type? obj)
fa7e9274 422 (struct-ref obj (+ 2 struct-vtable-offset))
0f2d19dd
JB
423 (error 'not-a-record-type obj)))
424
425(define (record-constructor rtd . opt)
8e693424 426 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
0f2d19dd
JB
427 (eval `(lambda ,field-names
428 (make-struct ',rtd 0 ,@(map (lambda (f)
429 (if (memq f field-names)
430 f
431 #f))
432 (record-type-fields rtd)))))))
433
434(define (record-predicate rtd)
435 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
436
437(define (record-accessor rtd field-name)
438 (let* ((pos (list-index (record-type-fields rtd) field-name)))
439 (if (not pos)
440 (error 'no-such-field field-name))
441 (eval `(lambda (obj)
442 (and (eq? ',rtd (record-type-descriptor obj))
443 (struct-ref obj ,pos))))))
444
445(define (record-modifier rtd field-name)
446 (let* ((pos (list-index (record-type-fields rtd) field-name)))
447 (if (not pos)
448 (error 'no-such-field field-name))
449 (eval `(lambda (obj val)
450 (and (eq? ',rtd (record-type-descriptor obj))
451 (struct-set! obj ,pos val))))))
452
453
454(define (record? obj)
455 (and (struct? obj) (record-type? (struct-vtable obj))))
456
457(define (record-type-descriptor obj)
458 (if (struct? obj)
459 (struct-vtable obj)
460 (error 'not-a-record obj)))
461
21ed9efe
MD
462(provide 'record)
463
0f2d19dd
JB
464\f
465;;; {Booleans}
466;;;
467
468(define (->bool x) (not (not x)))
469
470\f
471;;; {Symbols}
472;;;
473
474(define (symbol-append . args)
475 (string->symbol (apply string-append args)))
476
477(define (list->symbol . args)
478 (string->symbol (apply list->string args)))
479
480(define (symbol . args)
481 (string->symbol (apply string args)))
482
483(define (obarray-symbol-append ob . args)
484 (string->obarray-symbol (apply string-append ob args)))
485
e672f1b5
MD
486(define (obarray-gensym obarray . opt)
487 (if (null? opt)
488 (gensym "%%gensym" obarray)
489 (gensym (car opt) obarray)))
0f2d19dd
JB
490
491\f
492;;; {Lists}
493;;;
494
495(define (list-index l k)
496 (let loop ((n 0)
497 (l l))
498 (and (not (null? l))
499 (if (eq? (car l) k)
500 n
501 (loop (+ n 1) (cdr l))))))
502
75fd4fb6
JB
503(define (make-list n . init)
504 (if (pair? init) (set! init (car init)))
0f2d19dd
JB
505 (let loop ((answer '())
506 (n n))
507 (if (<= n 0)
508 answer
509 (loop (cons init answer) (- n 1)))))
510
511
512\f
513;;; {and-map, or-map, and map-in-order}
514;;;
515;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
516;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
517;;; (map-in-order fn lst) is like (map fn lst) but definately in order of lst.
518;;;
519
520;; and-map f l
521;;
522;; Apply f to successive elements of l until exhaustion or f returns #f.
523;; If returning early, return #f. Otherwise, return the last value returned
524;; by f. If f has never been called because l is empty, return #t.
525;;
526(define (and-map f lst)
527 (let loop ((result #t)
528 (l lst))
529 (and result
530 (or (and (null? l)
531 result)
532 (loop (f (car l)) (cdr l))))))
533
534;; or-map f l
535;;
536;; Apply f to successive elements of l until exhaustion or while f returns #f.
537;; If returning early, return the return value of f.
538;;
539(define (or-map f lst)
540 (let loop ((result #f)
541 (l lst))
542 (or result
543 (and (not (null? l))
544 (loop (f (car l)) (cdr l))))))
545
546;; map-in-order
547;;
548;; Like map, but guaranteed to process the list in order.
549;;
550(define (map-in-order fn l)
551 (if (null? l)
552 '()
553 (cons (fn (car l))
554 (map-in-order fn (cdr l)))))
555
556\f
59e1116d
MD
557;;; {Hooks}
558(define (run-hooks hook)
559 (for-each (lambda (thunk) (thunk)) hook))
560
561(define add-hook!
562 (procedure->macro
563 (lambda (exp env)
564 `(let ((thunk ,(caddr exp)))
565 (if (not (memq thunk ,(cadr exp)))
566 (set! ,(cadr exp)
567 (cons thunk ,(cadr exp))))))))
568
569\f
0f2d19dd
JB
570;;; {Files}
571;;; !!!! these should be implemented using Tcl commands, not fports.
572;;;
573
6fa8995c
GH
574(define (feature? feature)
575 (and (memq feature *features*) #t))
576
3afb28ce
GH
577;; Using the vector returned by stat directly is probably not a good
578;; idea (it could just as well be a record). Hence some accessors.
579(define (stat:dev f) (vector-ref f 0))
580(define (stat:ino f) (vector-ref f 1))
581(define (stat:mode f) (vector-ref f 2))
582(define (stat:nlink f) (vector-ref f 3))
583(define (stat:uid f) (vector-ref f 4))
584(define (stat:gid f) (vector-ref f 5))
585(define (stat:rdev f) (vector-ref f 6))
586(define (stat:size f) (vector-ref f 7))
587(define (stat:atime f) (vector-ref f 8))
588(define (stat:mtime f) (vector-ref f 9))
589(define (stat:ctime f) (vector-ref f 10))
590(define (stat:blksize f) (vector-ref f 11))
591(define (stat:blocks f) (vector-ref f 12))
592
593;; derived from stat mode.
594(define (stat:type f) (vector-ref f 13))
595(define (stat:perms f) (vector-ref f 14))
596
6fa8995c
GH
597(define file-exists?
598 (if (feature? 'posix)
599 (lambda (str)
600 (access? str F_OK))
601 (lambda (str)
602 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
603 (lambda args #f))))
604 (if port (begin (close-port port) #t)
605 #f)))))
606
607(define file-is-directory?
608 (if (feature? 'i/o-extensions)
609 (lambda (str)
3afb28ce 610 (eq? (stat:type (stat str)) 'directory))
6fa8995c
GH
611 (lambda (str)
612 (display str)
613 (newline)
614 (let ((port (catch 'system-error
615 (lambda () (open-file (string-append str "/.")
616 OPEN_READ))
617 (lambda args #f))))
618 (if port (begin (close-port port) #t)
619 #f)))))
0f2d19dd
JB
620
621(define (has-suffix? str suffix)
622 (let ((sufl (string-length suffix))
623 (sl (string-length str)))
624 (and (> sl sufl)
625 (string=? (substring str (- sl sufl) sl) suffix))))
626
0f2d19dd
JB
627\f
628;;; {Error Handling}
629;;;
630
0f2d19dd 631(define (error . args)
21ed9efe 632 (save-stack)
2194b6f0 633 (if (null? args)
5552355a 634 (scm-error 'misc-error #f "?" #f #f)
2194b6f0
GH
635 (let loop ((msg "%s")
636 (rest (cdr args)))
637 (if (not (null? rest))
638 (loop (string-append msg " %S")
639 (cdr rest))
5552355a 640 (scm-error 'misc-error #f msg args #f)))))
be2d2c70 641
1349bd53 642;; bad-throw is the hook that is called upon a throw to a an unhandled
9a0d70e2
GH
643;; key (unless the throw has four arguments, in which case
644;; it's usually interpreted as an error throw.)
645;; If the key has a default handler (a throw-handler-default property),
0f2d19dd
JB
646;; it is applied to the throw.
647;;
1349bd53 648(define (bad-throw key . args)
0f2d19dd
JB
649 (let ((default (symbol-property key 'throw-handler-default)))
650 (or (and default (apply default key args))
2194b6f0 651 (apply error "unhandled-exception:" key args))))
0f2d19dd 652
0f2d19dd 653\f
44cf1f0f
JB
654;;; {Non-polymorphic versions of POSIX functions}
655
02b754d3
GH
656(define (getgrnam name) (getgr name))
657(define (getgrgid id) (getgr id))
658(define (gethostbyaddr addr) (gethost addr))
659(define (gethostbyname name) (gethost name))
660(define (getnetbyaddr addr) (getnet addr))
661(define (getnetbyname name) (getnet name))
662(define (getprotobyname name) (getproto name))
663(define (getprotobynumber addr) (getproto addr))
664(define (getpwnam name) (getpw name))
665(define (getpwuid uid) (getpw uid))
920235cc
GH
666(define (getservbyname name proto) (getserv name proto))
667(define (getservbyport port proto) (getserv port proto))
0f2d19dd
JB
668(define (endgrent) (setgr))
669(define (endhostent) (sethost))
670(define (endnetent) (setnet))
671(define (endprotoent) (setproto))
672(define (endpwent) (setpw))
673(define (endservent) (setserv))
02b754d3
GH
674(define (getgrent) (getgr))
675(define (gethostent) (gethost))
676(define (getnetent) (getnet))
677(define (getprotoent) (getproto))
678(define (getpwent) (getpw))
679(define (getservent) (getserv))
0f2d19dd 680(define (reopen-file . args) (apply freopen args))
bce074ee
GH
681(define (setgrent) (setgr #f))
682(define (sethostent) (sethost #t))
683(define (setnetent) (setnet #t))
684(define (setprotoent) (setproto #t))
685(define (setpwent) (setpw #t))
686(define (setservent) (setserv #t))
687
688(define (passwd:name obj) (vector-ref obj 0))
689(define (passwd:passwd obj) (vector-ref obj 1))
690(define (passwd:uid obj) (vector-ref obj 2))
691(define (passwd:gid obj) (vector-ref obj 3))
692(define (passwd:gecos obj) (vector-ref obj 4))
693(define (passwd:dir obj) (vector-ref obj 5))
694(define (passwd:shell obj) (vector-ref obj 6))
695
696(define (group:name obj) (vector-ref obj 0))
697(define (group:passwd obj) (vector-ref obj 1))
698(define (group:gid obj) (vector-ref obj 2))
699(define (group:mem obj) (vector-ref obj 3))
700
701(define (hostent:name obj) (vector-ref obj 0))
702(define (hostent:aliases obj) (vector-ref obj 1))
703(define (hostent:addrtype obj) (vector-ref obj 2))
704(define (hostent:length obj) (vector-ref obj 3))
705(define (hostent:addr-list obj) (vector-ref obj 4))
706
707(define (netent:name obj) (vector-ref obj 0))
708(define (netent:aliases obj) (vector-ref obj 1))
9337637f
GH
709(define (netent:addrtype obj) (vector-ref obj 2))
710(define (netent:net obj) (vector-ref obj 3))
bce074ee
GH
711
712(define (protoent:name obj) (vector-ref obj 0))
713(define (protoent:aliases obj) (vector-ref obj 1))
714(define (protoent:proto obj) (vector-ref obj 2))
715
716(define (servent:name obj) (vector-ref obj 0))
717(define (servent:aliases obj) (vector-ref obj 1))
9337637f
GH
718(define (servent:port obj) (vector-ref obj 2))
719(define (servent:proto obj) (vector-ref obj 3))
720
721(define (sockaddr:fam obj) (vector-ref obj 0))
722(define (sockaddr:path obj) (vector-ref obj 1))
723(define (sockaddr:addr obj) (vector-ref obj 1))
724(define (sockaddr:port obj) (vector-ref obj 2))
725
726(define (utsname:sysname obj) (vector-ref obj 0))
727(define (utsname:nodename obj) (vector-ref obj 1))
728(define (utsname:release obj) (vector-ref obj 2))
729(define (utsname:version obj) (vector-ref obj 3))
730(define (utsname:machine obj) (vector-ref obj 4))
bce074ee 731
708bf0f3
GH
732(define (tm:sec obj) (vector-ref obj 0))
733(define (tm:min obj) (vector-ref obj 1))
734(define (tm:hour obj) (vector-ref obj 2))
735(define (tm:mday obj) (vector-ref obj 3))
736(define (tm:mon obj) (vector-ref obj 4))
737(define (tm:year obj) (vector-ref obj 5))
738(define (tm:wday obj) (vector-ref obj 6))
739(define (tm:yday obj) (vector-ref obj 7))
740(define (tm:isdst obj) (vector-ref obj 8))
741(define (tm:gmtoff obj) (vector-ref obj 9))
742(define (tm:zone obj) (vector-ref obj 10))
743
744(define (set-tm:sec obj val) (vector-set! obj 0 val))
745(define (set-tm:min obj val) (vector-set! obj 1 val))
746(define (set-tm:hour obj val) (vector-set! obj 2 val))
747(define (set-tm:mday obj val) (vector-set! obj 3 val))
748(define (set-tm:mon obj val) (vector-set! obj 4 val))
749(define (set-tm:year obj val) (vector-set! obj 5 val))
750(define (set-tm:wday obj val) (vector-set! obj 6 val))
751(define (set-tm:yday obj val) (vector-set! obj 7 val))
752(define (set-tm:isdst obj val) (vector-set! obj 8 val))
753(define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
754(define (set-tm:zone obj val) (vector-set! obj 10 val))
755
6afcd3b2
GH
756(define (tms:clock obj) (vector-ref obj 0))
757(define (tms:utime obj) (vector-ref obj 1))
758(define (tms:stime obj) (vector-ref obj 2))
759(define (tms:cutime obj) (vector-ref obj 3))
760(define (tms:cstime obj) (vector-ref obj 4))
761
bce074ee
GH
762(define (file-position . args) (apply ftell args))
763(define (file-set-position . args) (apply fseek args))
8b13c6b3 764
708bf0f3
GH
765(define (open-input-pipe command) (open-pipe command OPEN_READ))
766(define (open-output-pipe command) (open-pipe command OPEN_WRITE))
767
e38303a2
GH
768(define (move->fdes fd/port fd)
769 (cond ((integer? fd/port)
7a6f1ffa 770 (dup->fdes fd/port fd)
e38303a2
GH
771 (close fd/port)
772 fd)
773 (else
774 (primitive-move->fdes fd/port fd)
775 (set-port-revealed! fd/port 1)
776 fd/port)))
8b13c6b3
GH
777
778(define (release-port-handle port)
779 (let ((revealed (port-revealed port)))
780 (if (> revealed 0)
781 (set-port-revealed! port (- revealed 1)))))
0f2d19dd 782
e38303a2 783(define (dup->port port/fd mode . maybe-fd)
7a6f1ffa 784 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
e38303a2
GH
785 mode)))
786 (if (pair? maybe-fd)
787 (set-port-revealed! port 1))
788 port))
789
790(define (dup->inport port/fd . maybe-fd)
791 (apply dup->port port/fd "r" maybe-fd))
792
793(define (dup->outport port/fd . maybe-fd)
794 (apply dup->port port/fd "w" maybe-fd))
795
e38303a2
GH
796(define (dup port/fd . maybe-fd)
797 (if (integer? port/fd)
798 (apply dup->fdes port/fd maybe-fd)
799 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
800
801(define (duplicate-port port modes)
802 (dup->port port modes))
803
804(define (fdes->inport fdes)
805 (let loop ((rest-ports (fdes->ports fdes)))
806 (cond ((null? rest-ports)
807 (let ((result (fdopen fdes "r")))
808 (set-port-revealed! result 1)
809 result))
810 ((input-port? (car rest-ports))
811 (set-port-revealed! (car rest-ports)
812 (+ (port-revealed (car rest-ports)) 1))
813 (car rest-ports))
814 (else
815 (loop (cdr rest-ports))))))
816
817(define (fdes->outport fdes)
818 (let loop ((rest-ports (fdes->ports fdes)))
819 (cond ((null? rest-ports)
820 (let ((result (fdopen fdes "w")))
821 (set-port-revealed! result 1)
822 result))
823 ((output-port? (car rest-ports))
824 (set-port-revealed! (car rest-ports)
825 (+ (port-revealed (car rest-ports)) 1))
826 (car rest-ports))
827 (else
828 (loop (cdr rest-ports))))))
829
830(define (port->fdes port)
831 (set-port-revealed! port (+ (port-revealed port) 1))
832 (fileno port))
833
956055a9
GH
834(define (setenv name value)
835 (if value
836 (putenv (string-append name "=" value))
837 (putenv name)))
838
0f2d19dd
JB
839\f
840;;; {Load Paths}
841;;;
842
0f2d19dd
JB
843;;; Here for backward compatability
844;;
845(define scheme-file-suffix (lambda () ".scm"))
846
3cab8392
JB
847(define (in-vicinity vicinity file)
848 (let ((tail (let ((len (string-length vicinity)))
849 (if (zero? len) #f
850 (string-ref vicinity (- len 1))))))
851 (string-append vicinity
852 (if (eq? tail #\/) "" "/")
853 file)))
02ceadb8 854
0f2d19dd 855\f
ef00e7f4
JB
856;;; {Help for scm_shell}
857;;; The argument-processing code used by Guile-based shells generates
858;;; Scheme code based on the argument list. This page contains help
859;;; functions for the code it generates.
860
ef00e7f4
JB
861(define (command-line) (program-arguments))
862
5aa7fe69
JB
863;; This is mostly for the internal use of the code generated by
864;; scm_compile_shell_switches.
ef00e7f4
JB
865(define (load-user-init)
866 (define (has-init? dir)
867 (let ((path (in-vicinity dir ".guile")))
868 (catch 'system-error
869 (lambda ()
870 (let ((stats (stat path)))
871 (if (not (eq? (stat:type stats) 'directory))
872 path)))
873 (lambda dummy #f))))
4cd2a3e6
JB
874 (let ((path (or (has-init? (or (getenv "HOME") "/"))
875 (has-init? (passwd:dir (getpw (getuid)))))))
ef00e7f4
JB
876 (if path (primitive-load path))))
877
878\f
a06181a2
JB
879;;; {Loading by paths}
880
881;;; Load a Scheme source file named NAME, searching for it in the
882;;; directories listed in %load-path, and applying each of the file
883;;; name extensions listed in %load-extensions.
884(define (load-from-path name)
885 (start-stack 'load-stack
75a97b92 886 (primitive-load-path name)))
0f2d19dd 887
5552355a 888
0f2d19dd 889\f
0f2d19dd
JB
890;;; {Transcendental Functions}
891;;;
892;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
893;;; Copyright (C) 1992, 1993 Jerry D. Hedden.
894;;; See the file `COPYING' for terms applying to this program.
895;;;
896
897(define (exp z)
898 (if (real? z) ($exp z)
899 (make-polar ($exp (real-part z)) (imag-part z))))
900
901(define (log z)
902 (if (and (real? z) (>= z 0))
903 ($log z)
904 (make-rectangular ($log (magnitude z)) (angle z))))
905
906(define (sqrt z)
907 (if (real? z)
908 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
909 ($sqrt z))
910 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
911
912(define expt
913 (let ((integer-expt integer-expt))
914 (lambda (z1 z2)
915 (cond ((exact? z2)
916 (integer-expt z1 z2))
917 ((and (real? z2) (real? z1) (>= z1 0))
918 ($expt z1 z2))
919 (else
920 (exp (* z2 (log z1))))))))
921
922(define (sinh z)
923 (if (real? z) ($sinh z)
924 (let ((x (real-part z)) (y (imag-part z)))
925 (make-rectangular (* ($sinh x) ($cos y))
926 (* ($cosh x) ($sin y))))))
927(define (cosh z)
928 (if (real? z) ($cosh z)
929 (let ((x (real-part z)) (y (imag-part z)))
930 (make-rectangular (* ($cosh x) ($cos y))
931 (* ($sinh x) ($sin y))))))
932(define (tanh z)
933 (if (real? z) ($tanh z)
934 (let* ((x (* 2 (real-part z)))
935 (y (* 2 (imag-part z)))
936 (w (+ ($cosh x) ($cos y))))
937 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
938
939(define (asinh z)
940 (if (real? z) ($asinh z)
941 (log (+ z (sqrt (+ (* z z) 1))))))
942
943(define (acosh z)
944 (if (and (real? z) (>= z 1))
945 ($acosh z)
946 (log (+ z (sqrt (- (* z z) 1))))))
947
948(define (atanh z)
949 (if (and (real? z) (> z -1) (< z 1))
950 ($atanh z)
951 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
952
953(define (sin z)
954 (if (real? z) ($sin z)
955 (let ((x (real-part z)) (y (imag-part z)))
956 (make-rectangular (* ($sin x) ($cosh y))
957 (* ($cos x) ($sinh y))))))
958(define (cos z)
959 (if (real? z) ($cos z)
960 (let ((x (real-part z)) (y (imag-part z)))
961 (make-rectangular (* ($cos x) ($cosh y))
962 (- (* ($sin x) ($sinh y)))))))
963(define (tan z)
964 (if (real? z) ($tan z)
965 (let* ((x (* 2 (real-part z)))
966 (y (* 2 (imag-part z)))
967 (w (+ ($cos x) ($cosh y))))
968 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
969
970(define (asin z)
971 (if (and (real? z) (>= z -1) (<= z 1))
972 ($asin z)
973 (* -i (asinh (* +i z)))))
974
975(define (acos z)
976 (if (and (real? z) (>= z -1) (<= z 1))
977 ($acos z)
978 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
979
980(define (atan z . y)
981 (if (null? y)
982 (if (real? z) ($atan z)
983 (/ (log (/ (- +i z) (+ +i z))) +2i))
984 ($atan2 z (car y))))
985
986(set! abs magnitude)
987
65495221
GH
988(define (log10 arg)
989 (/ (log arg) (log 10)))
990
0f2d19dd 991\f
0f2d19dd
JB
992
993;;; {Reader Extensions}
994;;;
995
996;;; Reader code for various "#c" forms.
997;;;
998
fb6d1065
JB
999;;; Parse the portion of a #/ list that comes after the first slash.
1000(define (read-path-list-notation slash port)
1001 (letrec
1002
1003 ;; Is C a delimiter?
1004 ((delimiter? (lambda (c) (or (eof-object? c)
1005 (char-whitespace? c)
1006 (string-index "()\";" c))))
1007
1008 ;; Read and return one component of a path list.
1009 (read-component
1010 (lambda ()
1011 (let loop ((reversed-chars '()))
1012 (let ((c (peek-char port)))
1013 (if (or (delimiter? c)
1014 (char=? c #\/))
1015 (string->symbol (list->string (reverse reversed-chars)))
1016 (loop (cons (read-char port) reversed-chars))))))))
1017
1018 ;; Read and return a path list.
1019 (let loop ((reversed-path (list (read-component))))
1020 (let ((c (peek-char port)))
1021 (if (and (char? c) (char=? c #\/))
1022 (begin
1023 (read-char port)
1024 (loop (cons (read-component) reversed-path)))
1025 (reverse reversed-path))))))
0f2d19dd 1026
75a97b92
GH
1027(read-hash-extend #\' (lambda (c port)
1028 (read port)))
1029(read-hash-extend #\. (lambda (c port)
1030 (eval (read port))))
1031
1032(if (feature? 'array)
1033 (begin
1034 (let ((make-array-proc (lambda (template)
1035 (lambda (c port)
1036 (read:uniform-vector template port)))))
1037 (for-each (lambda (char template)
1038 (read-hash-extend char
1039 (make-array-proc template)))
1040 '(#\b #\a #\u #\e #\s #\i #\c)
1041 '(#t #\a 1 -1 1.0 1/3 0+i)))
1042 (let ((array-proc (lambda (c port)
1043 (read:array c port))))
1044 (for-each (lambda (char) (read-hash-extend char array-proc))
1045 '(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)))))
1046
00c34e45
GH
1047;; pushed to the beginning of the alist since it's used more than the
1048;; others at present.
fb6d1065 1049(read-hash-extend #\/ read-path-list-notation)
00c34e45 1050
0f2d19dd
JB
1051(define (read:array digit port)
1052 (define chr0 (char->integer #\0))
1053 (let ((rank (let readnum ((val (- (char->integer digit) chr0)))
1054 (if (char-numeric? (peek-char port))
1055 (readnum (+ (* 10 val)
1056 (- (char->integer (read-char port)) chr0)))
1057 val)))
1058 (prot (if (eq? #\( (peek-char port))
1059 '()
1060 (let ((c (read-char port)))
1061 (case c ((#\b) #t)
1062 ((#\a) #\a)
1063 ((#\u) 1)
1064 ((#\e) -1)
1065 ((#\s) 1.0)
1066 ((#\i) 1/3)
1067 ((#\c) 0+i)
1068 (else (error "read:array unknown option " c)))))))
1069 (if (eq? (peek-char port) #\()
75a97b92 1070 (list->uniform-array rank prot (read port))
0f2d19dd
JB
1071 (error "read:array list not found"))))
1072
1073(define (read:uniform-vector proto port)
1074 (if (eq? #\( (peek-char port))
75a97b92 1075 (list->uniform-array 1 proto (read port))
0f2d19dd
JB
1076 (error "read:uniform-vector list not found")))
1077
0f2d19dd
JB
1078\f
1079;;; {Command Line Options}
1080;;;
1081
1082(define (get-option argv kw-opts kw-args return)
1083 (cond
1084 ((null? argv)
1085 (return #f #f argv))
1086
1087 ((or (not (eq? #\- (string-ref (car argv) 0)))
1088 (eq? (string-length (car argv)) 1))
1089 (return 'normal-arg (car argv) (cdr argv)))
1090
1091 ((eq? #\- (string-ref (car argv) 1))
1092 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
1093 (string-length (car argv))))
1094 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
1095 (kw-opt? (member kw kw-opts))
1096 (kw-arg? (member kw kw-args))
1097 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
1098 (substring (car argv)
1099 (+ kw-arg-pos 1)
1100 (string-length (car argv))))
1101 (and kw-arg?
1102 (begin (set! argv (cdr argv)) (car argv))))))
1103 (if (or kw-opt? kw-arg?)
1104 (return kw arg (cdr argv))
1105 (return 'usage-error kw (cdr argv)))))
1106
1107 (else
1108 (let* ((char (substring (car argv) 1 2))
1109 (kw (symbol->keyword char)))
1110 (cond
1111
1112 ((member kw kw-opts)
1113 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1114 (new-argv (if (= 0 (string-length rest-car))
1115 (cdr argv)
1116 (cons (string-append "-" rest-car) (cdr argv)))))
1117 (return kw #f new-argv)))
1118
1119 ((member kw kw-args)
1120 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1121 (arg (if (= 0 (string-length rest-car))
1122 (cadr argv)
1123 rest-car))
1124 (new-argv (if (= 0 (string-length rest-car))
1125 (cddr argv)
1126 (cdr argv))))
1127 (return kw arg new-argv)))
1128
1129 (else (return 'usage-error kw argv)))))))
1130
1131(define (for-next-option proc argv kw-opts kw-args)
1132 (let loop ((argv argv))
1133 (get-option argv kw-opts kw-args
1134 (lambda (opt opt-arg argv)
1135 (and opt (proc opt opt-arg argv loop))))))
1136
1137(define (display-usage-report kw-desc)
1138 (for-each
1139 (lambda (kw)
1140 (or (eq? (car kw) #t)
1141 (eq? (car kw) 'else)
1142 (let* ((opt-desc kw)
1143 (help (cadr opt-desc))
1144 (opts (car opt-desc))
1145 (opts-proper (if (string? (car opts)) (cdr opts) opts))
1146 (arg-name (if (string? (car opts))
1147 (string-append "<" (car opts) ">")
1148 ""))
1149 (left-part (string-append
1150 (with-output-to-string
1151 (lambda ()
1152 (map (lambda (x) (display (keyword-symbol x)) (display " "))
1153 opts-proper)))
1154 arg-name))
1155 (middle-part (if (and (< (length left-part) 30)
1156 (< (length help) 40))
1157 (make-string (- 30 (length left-part)) #\ )
1158 "\n\t")))
1159 (display left-part)
1160 (display middle-part)
1161 (display help)
1162 (newline))))
1163 kw-desc))
1164
1165
1166
0f2d19dd
JB
1167(define (transform-usage-lambda cases)
1168 (let* ((raw-usage (delq! 'else (map car cases)))
1169 (usage-sans-specials (map (lambda (x)
1170 (or (and (not (list? x)) x)
1171 (and (symbol? (car x)) #t)
1172 (and (boolean? (car x)) #t)
1173 x))
1174 raw-usage))
ed440df5 1175 (usage-desc (delq! #t usage-sans-specials))
0f2d19dd
JB
1176 (kw-desc (map car usage-desc))
1177 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
1178 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
1179 (transmogrified-cases (map (lambda (case)
1180 (cons (let ((opts (car case)))
1181 (if (or (boolean? opts) (eq? 'else opts))
1182 opts
1183 (cond
1184 ((symbol? (car opts)) opts)
1185 ((boolean? (car opts)) opts)
1186 ((string? (caar opts)) (cdar opts))
1187 (else (car opts)))))
1188 (cdr case)))
1189 cases)))
1190 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1191 (lambda (%argv)
1192 (let %next-arg ((%argv %argv))
1193 (get-option %argv
1194 ',kw-opts
1195 ',kw-args
1196 (lambda (%opt %arg %new-argv)
1197 (case %opt
1198 ,@ transmogrified-cases))))))))
1199
1200
1201\f
1202
1203;;; {Low Level Modules}
1204;;;
1205;;; These are the low level data structures for modules.
1206;;;
1207;;; !!! warning: The interface to lazy binder procedures is going
1208;;; to be changed in an incompatible way to permit all the basic
1209;;; module ops to be virtualized.
1210;;;
1211;;; (make-module size use-list lazy-binding-proc) => module
1212;;; module-{obarray,uses,binder}[|-set!]
1213;;; (module? obj) => [#t|#f]
1214;;; (module-locally-bound? module symbol) => [#t|#f]
1215;;; (module-bound? module symbol) => [#t|#f]
1216;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1217;;; (module-symbol-interned? module symbol) => [#t|#f]
1218;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1219;;; (module-variable module symbol) => [#<variable ...> | #f]
1220;;; (module-symbol-binding module symbol opt-value)
1221;;; => [ <obj> | opt-value | an error occurs ]
1222;;; (module-make-local-var! module symbol) => #<variable...>
1223;;; (module-add! module symbol var) => unspecified
1224;;; (module-remove! module symbol) => unspecified
1225;;; (module-for-each proc module) => unspecified
1226;;; (make-scm-module) => module ; a lazy copy of the symhash module
1227;;; (set-current-module module) => unspecified
1228;;; (current-module) => #<module...>
1229;;;
1230;;;
1231
1232\f
44cf1f0f
JB
1233;;; {Printing Modules}
1234;; This is how modules are printed. You can re-define it.
fa7e9274
MV
1235;; (Redefining is actually more complicated than simply redefining
1236;; %print-module because that would only change the binding and not
1237;; the value stored in the vtable that determines how record are
1238;; printed. Sigh.)
1239
1240(define (%print-module mod port) ; unused args: depth length style table)
0f2d19dd
JB
1241 (display "#<" port)
1242 (display (or (module-kind mod) "module") port)
1243 (let ((name (module-name mod)))
1244 (if name
1245 (begin
1246 (display " " port)
1247 (display name port))))
1248 (display " " port)
1249 (display (number->string (object-address mod) 16) port)
1250 (display ">" port))
1251
1252;; module-type
1253;;
1254;; A module is characterized by an obarray in which local symbols
1255;; are interned, a list of modules, "uses", from which non-local
1256;; bindings can be inherited, and an optional lazy-binder which
31d50456 1257;; is a (CLOSURE module symbol) which, as a last resort, can provide
0f2d19dd
JB
1258;; bindings that would otherwise not be found locally in the module.
1259;;
1260(define module-type
31d50456 1261 (make-record-type 'module '(obarray uses binder eval-closure name kind)
8b718458 1262 %print-module))
0f2d19dd 1263
8b718458 1264;; make-module &opt size uses binder
0f2d19dd 1265;;
8b718458
JB
1266;; Create a new module, perhaps with a particular size of obarray,
1267;; initial uses list, or binding procedure.
0f2d19dd 1268;;
0f2d19dd
JB
1269(define make-module
1270 (lambda args
0f2d19dd 1271
8b718458
JB
1272 (define (parse-arg index default)
1273 (if (> (length args) index)
1274 (list-ref args index)
1275 default))
1276
1277 (if (> (length args) 3)
1278 (error "Too many args to make-module." args))
0f2d19dd 1279
8b718458
JB
1280 (let ((size (parse-arg 0 1021))
1281 (uses (parse-arg 1 '()))
1282 (binder (parse-arg 2 #f)))
0f2d19dd 1283
8b718458
JB
1284 (if (not (integer? size))
1285 (error "Illegal size to make-module." size))
1286 (if (not (and (list? uses)
1287 (and-map module? uses)))
1288 (error "Incorrect use list." uses))
0f2d19dd
JB
1289 (if (and binder (not (procedure? binder)))
1290 (error
1291 "Lazy-binder expected to be a procedure or #f." binder))
1292
8b718458
JB
1293 (let ((module (module-constructor (make-vector size '())
1294 uses binder #f #f #f)))
1295
1296 ;; We can't pass this as an argument to module-constructor,
1297 ;; because we need it to close over a pointer to the module
1298 ;; itself.
31d50456 1299 (set-module-eval-closure! module
8b718458
JB
1300 (lambda (symbol define?)
1301 (if define?
1302 (module-make-local-var! module symbol)
1303 (module-variable module symbol))))
1304
1305 module))))
0f2d19dd 1306
8b718458 1307(define module-constructor (record-constructor module-type))
0f2d19dd
JB
1308(define module-obarray (record-accessor module-type 'obarray))
1309(define set-module-obarray! (record-modifier module-type 'obarray))
1310(define module-uses (record-accessor module-type 'uses))
1311(define set-module-uses! (record-modifier module-type 'uses))
1312(define module-binder (record-accessor module-type 'binder))
1313(define set-module-binder! (record-modifier module-type 'binder))
31d50456
JB
1314(define module-eval-closure (record-accessor module-type 'eval-closure))
1315(define set-module-eval-closure! (record-modifier module-type 'eval-closure))
0f2d19dd
JB
1316(define module-name (record-accessor module-type 'name))
1317(define set-module-name! (record-modifier module-type 'name))
1318(define module-kind (record-accessor module-type 'kind))
1319(define set-module-kind! (record-modifier module-type 'kind))
1320(define module? (record-predicate module-type))
1321
8b718458 1322
0f2d19dd 1323(define (eval-in-module exp module)
31d50456 1324 (eval2 exp (module-eval-closure module)))
0f2d19dd
JB
1325
1326\f
1327;;; {Module Searching in General}
1328;;;
1329;;; We sometimes want to look for properties of a symbol
1330;;; just within the obarray of one module. If the property
1331;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1332;;; DISPLAY is locally rebound in the module `safe-guile'.''
1333;;;
1334;;;
1335;;; Other times, we want to test for a symbol property in the obarray
1336;;; of M and, if it is not found there, try each of the modules in the
1337;;; uses list of M. This is the normal way of testing for some
1338;;; property, so we state these properties without qualification as
1339;;; in: ``The symbol 'fnord is interned in module M because it is
1340;;; interned locally in module M2 which is a member of the uses list
1341;;; of M.''
1342;;;
1343
1344;; module-search fn m
1345;;
1346;; return the first non-#f result of FN applied to M and then to
1347;; the modules in the uses of m, and so on recursively. If all applications
1348;; return #f, then so does this function.
1349;;
1350(define (module-search fn m v)
1351 (define (loop pos)
1352 (and (pair? pos)
1353 (or (module-search fn (car pos) v)
1354 (loop (cdr pos)))))
1355 (or (fn m v)
1356 (loop (module-uses m))))
1357
1358
1359;;; {Is a symbol bound in a module?}
1360;;;
1361;;; Symbol S in Module M is bound if S is interned in M and if the binding
1362;;; of S in M has been set to some well-defined value.
1363;;;
1364
1365;; module-locally-bound? module symbol
1366;;
1367;; Is a symbol bound (interned and defined) locally in a given module?
1368;;
1369(define (module-locally-bound? m v)
1370 (let ((var (module-local-variable m v)))
1371 (and var
1372 (variable-bound? var))))
1373
1374;; module-bound? module symbol
1375;;
1376;; Is a symbol bound (interned and defined) anywhere in a given module
1377;; or its uses?
1378;;
1379(define (module-bound? m v)
1380 (module-search module-locally-bound? m v))
1381
1382;;; {Is a symbol interned in a module?}
1383;;;
1384;;; Symbol S in Module M is interned if S occurs in
1385;;; of S in M has been set to some well-defined value.
1386;;;
1387;;; It is possible to intern a symbol in a module without providing
1388;;; an initial binding for the corresponding variable. This is done
1389;;; with:
1390;;; (module-add! module symbol (make-undefined-variable))
1391;;;
1392;;; In that case, the symbol is interned in the module, but not
1393;;; bound there. The unbound symbol shadows any binding for that
1394;;; symbol that might otherwise be inherited from a member of the uses list.
1395;;;
1396
1397(define (module-obarray-get-handle ob key)
1398 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1399
1400(define (module-obarray-ref ob key)
1401 ((if (symbol? key) hashq-ref hash-ref) ob key))
1402
1403(define (module-obarray-set! ob key val)
1404 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1405
1406(define (module-obarray-remove! ob key)
1407 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1408
1409;; module-symbol-locally-interned? module symbol
1410;;
1411;; is a symbol interned (not neccessarily defined) locally in a given module
1412;; or its uses? Interned symbols shadow inherited bindings even if
1413;; they are not themselves bound to a defined value.
1414;;
1415(define (module-symbol-locally-interned? m v)
1416 (not (not (module-obarray-get-handle (module-obarray m) v))))
1417
1418;; module-symbol-interned? module symbol
1419;;
1420;; is a symbol interned (not neccessarily defined) anywhere in a given module
1421;; or its uses? Interned symbols shadow inherited bindings even if
1422;; they are not themselves bound to a defined value.
1423;;
1424(define (module-symbol-interned? m v)
1425 (module-search module-symbol-locally-interned? m v))
1426
1427
1428;;; {Mapping modules x symbols --> variables}
1429;;;
1430
1431;; module-local-variable module symbol
1432;; return the local variable associated with a MODULE and SYMBOL.
1433;;
1434;;; This function is very important. It is the only function that can
1435;;; return a variable from a module other than the mutators that store
1436;;; new variables in modules. Therefore, this function is the location
1437;;; of the "lazy binder" hack.
1438;;;
1439;;; If symbol is defined in MODULE, and if the definition binds symbol
1440;;; to a variable, return that variable object.
1441;;;
1442;;; If the symbols is not found at first, but the module has a lazy binder,
1443;;; then try the binder.
1444;;;
1445;;; If the symbol is not found at all, return #f.
1446;;;
1447(define (module-local-variable m v)
6fa8995c
GH
1448; (caddr
1449; (list m v
0f2d19dd
JB
1450 (let ((b (module-obarray-ref (module-obarray m) v)))
1451 (or (and (variable? b) b)
1452 (and (module-binder m)
6fa8995c
GH
1453 ((module-binder m) m v #f)))))
1454;))
0f2d19dd
JB
1455
1456;; module-variable module symbol
1457;;
1458;; like module-local-variable, except search the uses in the
1459;; case V is not found in M.
1460;;
1461(define (module-variable m v)
1462 (module-search module-local-variable m v))
1463
1464
1465;;; {Mapping modules x symbols --> bindings}
1466;;;
1467;;; These are similar to the mapping to variables, except that the
1468;;; variable is dereferenced.
1469;;;
1470
1471;; module-symbol-binding module symbol opt-value
1472;;
1473;; return the binding of a variable specified by name within
1474;; a given module, signalling an error if the variable is unbound.
1475;; If the OPT-VALUE is passed, then instead of signalling an error,
1476;; return OPT-VALUE.
1477;;
1478(define (module-symbol-local-binding m v . opt-val)
1479 (let ((var (module-local-variable m v)))
1480 (if var
1481 (variable-ref var)
1482 (if (not (null? opt-val))
1483 (car opt-val)
1484 (error "Locally unbound variable." v)))))
1485
1486;; module-symbol-binding module symbol opt-value
1487;;
1488;; return the binding of a variable specified by name within
1489;; a given module, signalling an error if the variable is unbound.
1490;; If the OPT-VALUE is passed, then instead of signalling an error,
1491;; return OPT-VALUE.
1492;;
1493(define (module-symbol-binding m v . opt-val)
1494 (let ((var (module-variable m v)))
1495 (if var
1496 (variable-ref var)
1497 (if (not (null? opt-val))
1498 (car opt-val)
1499 (error "Unbound variable." v)))))
1500
1501
1502\f
1503;;; {Adding Variables to Modules}
1504;;;
1505;;;
1506
1507
1508;; module-make-local-var! module symbol
1509;;
1510;; ensure a variable for V in the local namespace of M.
1511;; If no variable was already there, then create a new and uninitialzied
1512;; variable.
1513;;
1514(define (module-make-local-var! m v)
1515 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1516 (and (variable? b) b))
1517 (and (module-binder m)
1518 ((module-binder m) m v #t))
1519 (begin
1520 (let ((answer (make-undefined-variable v)))
1521 (module-obarray-set! (module-obarray m) v answer)
1522 answer))))
1523
1524;; module-add! module symbol var
1525;;
1526;; ensure a particular variable for V in the local namespace of M.
1527;;
1528(define (module-add! m v var)
1529 (if (not (variable? var))
1530 (error "Bad variable to module-add!" var))
1531 (module-obarray-set! (module-obarray m) v var))
1532
1533;; module-remove!
1534;;
1535;; make sure that a symbol is undefined in the local namespace of M.
1536;;
1537(define (module-remove! m v)
1538 (module-obarray-remove! (module-obarray m) v))
1539
1540(define (module-clear! m)
1541 (vector-fill! (module-obarray m) '()))
1542
1543;; MODULE-FOR-EACH -- exported
1544;;
1545;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1546;;
1547(define (module-for-each proc module)
1548 (let ((obarray (module-obarray module)))
1549 (do ((index 0 (+ index 1))
1550 (end (vector-length obarray)))
1551 ((= index end))
1552 (for-each
1553 (lambda (bucket)
1554 (proc (car bucket) (cdr bucket)))
1555 (vector-ref obarray index)))))
1556
1557
1558(define (module-map proc module)
1559 (let* ((obarray (module-obarray module))
1560 (end (vector-length obarray)))
1561
1562 (let loop ((i 0)
1563 (answer '()))
1564 (if (= i end)
1565 answer
1566 (loop (+ 1 i)
1567 (append!
1568 (map (lambda (bucket)
1569 (proc (car bucket) (cdr bucket)))
1570 (vector-ref obarray i))
1571 answer))))))
1572\f
1573
1574;;; {Low Level Bootstrapping}
1575;;;
1576
1577;; make-root-module
1578
21ed9efe 1579;; A root module uses the symhash table (the system's privileged
0f2d19dd
JB
1580;; obarray). Being inside a root module is like using SCM without
1581;; any module system.
1582;;
1583
1584
31d50456 1585(define (root-module-closure m s define?)
0f2d19dd
JB
1586 (let ((bi (and (symbol-interned? #f s)
1587 (builtin-variable s))))
1588 (and bi
1589 (or define? (variable-bound? bi))
1590 (begin
1591 (module-add! m s bi)
1592 bi))))
1593
1594(define (make-root-module)
31d50456 1595 (make-module 1019 '() root-module-closure))
0f2d19dd
JB
1596
1597
1598;; make-scm-module
1599
1600;; An scm module is a module into which the lazy binder copies
1601;; variable bindings from the system symhash table. The mapping is
1602;; one way only; newly introduced bindings in an scm module are not
1603;; copied back into the system symhash table (and can be used to override
1604;; bindings from the symhash table).
1605;;
1606
1607(define (make-scm-module)
8b718458 1608 (make-module 1019 '()
0f2d19dd
JB
1609 (lambda (m s define?)
1610 (let ((bi (and (symbol-interned? #f s)
1611 (builtin-variable s))))
1612 (and bi
1613 (variable-bound? bi)
1614 (begin
1615 (module-add! m s bi)
1616 bi))))))
1617
1618
1619
1620
1621;; the-module
1622;;
1623(define the-module #f)
1624
1625;; set-current-module module
1626;;
1627;; set the current module as viewed by the normalizer.
1628;;
1629(define (set-current-module m)
1630 (set! the-module m)
1631 (if m
31d50456
JB
1632 (set! *top-level-lookup-closure* (module-eval-closure the-module))
1633 (set! *top-level-lookup-closure* #f)))
0f2d19dd
JB
1634
1635
1636;; current-module
1637;;
1638;; return the current module as viewed by the normalizer.
1639;;
1640(define (current-module) the-module)
1641\f
1642;;; {Module-based Loading}
1643;;;
1644
1645(define (save-module-excursion thunk)
1646 (let ((inner-module (current-module))
1647 (outer-module #f))
1648 (dynamic-wind (lambda ()
1649 (set! outer-module (current-module))
1650 (set-current-module inner-module)
1651 (set! inner-module #f))
1652 thunk
1653 (lambda ()
1654 (set! inner-module (current-module))
1655 (set-current-module outer-module)
1656 (set! outer-module #f)))))
1657
0f2d19dd
JB
1658(define basic-load load)
1659
0f2d19dd
JB
1660(define (load-module . args)
1661 (save-module-excursion (lambda () (apply basic-load args))))
1662
1663
1664\f
44cf1f0f 1665;;; {MODULE-REF -- exported}
0f2d19dd
JB
1666;;
1667;; Returns the value of a variable called NAME in MODULE or any of its
1668;; used modules. If there is no such variable, then if the optional third
1669;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1670;;
1671(define (module-ref module name . rest)
1672 (let ((variable (module-variable module name)))
1673 (if (and variable (variable-bound? variable))
1674 (variable-ref variable)
1675 (if (null? rest)
1676 (error "No variable named" name 'in module)
1677 (car rest) ; default value
1678 ))))
1679
1680;; MODULE-SET! -- exported
1681;;
1682;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1683;; to VALUE; if there is no such variable, an error is signaled.
1684;;
1685(define (module-set! module name value)
1686 (let ((variable (module-variable module name)))
1687 (if variable
1688 (variable-set! variable value)
1689 (error "No variable named" name 'in module))))
1690
1691;; MODULE-DEFINE! -- exported
1692;;
1693;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1694;; variable, it is added first.
1695;;
1696(define (module-define! module name value)
1697 (let ((variable (module-local-variable module name)))
1698 (if variable
1699 (variable-set! variable value)
1700 (module-add! module name (make-variable value name)))))
1701
ed218d98
MV
1702;; MODULE-DEFINED? -- exported
1703;;
1704;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1705;; uses)
1706;;
1707(define (module-defined? module name)
1708 (let ((variable (module-variable module name)))
1709 (and variable (variable-bound? variable))))
1710
0f2d19dd
JB
1711;; MODULE-USE! module interface
1712;;
1713;; Add INTERFACE to the list of interfaces used by MODULE.
1714;;
1715(define (module-use! module interface)
1716 (set-module-uses! module
1717 (cons interface (delq! interface (module-uses module)))))
1718
1719\f
0f2d19dd
JB
1720;;; {Recursive Namespaces}
1721;;;
1722;;;
1723;;; A hierarchical namespace emerges if we consider some module to be
1724;;; root, and variables bound to modules as nested namespaces.
1725;;;
1726;;; The routines in this file manage variable names in hierarchical namespace.
1727;;; Each variable name is a list of elements, looked up in successively nested
1728;;; modules.
1729;;;
0dd5491c 1730;;; (nested-ref some-root-module '(foo bar baz))
0f2d19dd
JB
1731;;; => <value of a variable named baz in the module bound to bar in
1732;;; the module bound to foo in some-root-module>
1733;;;
1734;;;
1735;;; There are:
1736;;;
1737;;; ;; a-root is a module
1738;;; ;; name is a list of symbols
1739;;;
0dd5491c
MD
1740;;; nested-ref a-root name
1741;;; nested-set! a-root name val
1742;;; nested-define! a-root name val
1743;;; nested-remove! a-root name
0f2d19dd
JB
1744;;;
1745;;;
1746;;; (current-module) is a natural choice for a-root so for convenience there are
1747;;; also:
1748;;;
0dd5491c
MD
1749;;; local-ref name == nested-ref (current-module) name
1750;;; local-set! name val == nested-set! (current-module) name val
1751;;; local-define! name val == nested-define! (current-module) name val
1752;;; local-remove! name == nested-remove! (current-module) name
0f2d19dd
JB
1753;;;
1754
1755
0dd5491c 1756(define (nested-ref root names)
0f2d19dd
JB
1757 (let loop ((cur root)
1758 (elts names))
1759 (cond
1760 ((null? elts) cur)
1761 ((not (module? cur)) #f)
1762 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1763
0dd5491c 1764(define (nested-set! root names val)
0f2d19dd
JB
1765 (let loop ((cur root)
1766 (elts names))
1767 (if (null? (cdr elts))
1768 (module-set! cur (car elts) val)
1769 (loop (module-ref cur (car elts)) (cdr elts)))))
1770
0dd5491c 1771(define (nested-define! root names val)
0f2d19dd
JB
1772 (let loop ((cur root)
1773 (elts names))
1774 (if (null? (cdr elts))
1775 (module-define! cur (car elts) val)
1776 (loop (module-ref cur (car elts)) (cdr elts)))))
1777
0dd5491c 1778(define (nested-remove! root names)
0f2d19dd
JB
1779 (let loop ((cur root)
1780 (elts names))
1781 (if (null? (cdr elts))
1782 (module-remove! cur (car elts))
1783 (loop (module-ref cur (car elts)) (cdr elts)))))
1784
0dd5491c
MD
1785(define (local-ref names) (nested-ref (current-module) names))
1786(define (local-set! names val) (nested-set! (current-module) names val))
1787(define (local-define names val) (nested-define! (current-module) names val))
1788(define (local-remove names) (nested-remove! (current-module) names))
0f2d19dd
JB
1789
1790
1791\f
8bb7330c 1792;;; {The (app) module}
0f2d19dd
JB
1793;;;
1794;;; The root of conventionally named objects not directly in the top level.
1795;;;
8bb7330c
JB
1796;;; (app modules)
1797;;; (app modules guile)
0f2d19dd
JB
1798;;;
1799;;; The directory of all modules and the standard root module.
1800;;;
1801
1802(define (module-public-interface m) (module-ref m '%module-public-interface #f))
1803(define (set-module-public-interface! m i) (module-define! m '%module-public-interface i))
1804(define the-root-module (make-root-module))
1805(define the-scm-module (make-scm-module))
1806(set-module-public-interface! the-root-module the-scm-module)
1807(set-module-name! the-root-module 'the-root-module)
1808(set-module-name! the-scm-module 'the-scm-module)
1809
1810(set-current-module the-root-module)
1811
1812(define app (make-module 31))
0dd5491c
MD
1813(local-define '(app modules) (make-module 31))
1814(local-define '(app modules guile) the-root-module)
0f2d19dd
JB
1815
1816;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1817
0209ca9a 1818(define (resolve-module name . maybe-autoload)
0f2d19dd 1819 (let ((full-name (append '(app modules) name)))
0dd5491c 1820 (let ((already (local-ref full-name)))
0f2d19dd
JB
1821 (or already
1822 (begin
0209ca9a 1823 (if (or (null? maybe-autoload) (car maybe-autoload))
d0cbd20c
MV
1824 (or (try-module-autoload name)
1825 (try-module-dynamic-link name)))
0f2d19dd
JB
1826 (make-modules-in (current-module) full-name))))))
1827
1828(define (beautify-user-module! module)
1829 (if (not (module-public-interface module))
1830 (let ((interface (make-module 31)))
1831 (set-module-name! interface (module-name module))
1832 (set-module-kind! interface 'interface)
1833 (set-module-public-interface! module interface)))
cc7f066c
MD
1834 (if (and (not (memq the-scm-module (module-uses module)))
1835 (not (eq? module the-root-module)))
0f2d19dd
JB
1836 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1837
1838(define (make-modules-in module name)
1839 (if (null? name)
1840 module
1841 (cond
1842 ((module-ref module (car name) #f) => (lambda (m) (make-modules-in m (cdr name))))
1843 (else (let ((m (make-module 31)))
1844 (set-module-kind! m 'directory)
1845 (set-module-name! m (car name))
1846 (module-define! module (car name) m)
1847 (make-modules-in m (cdr name)))))))
1848
1849(define (resolve-interface name)
1850 (let ((module (resolve-module name)))
1851 (and module (module-public-interface module))))
1852
1853
1854(define %autoloader-developer-mode #t)
1855
1856(define (process-define-module args)
1857 (let* ((module-id (car args))
0209ca9a 1858 (module (resolve-module module-id #f))
0f2d19dd
JB
1859 (kws (cdr args)))
1860 (beautify-user-module! module)
0209ca9a
MV
1861 (let loop ((kws kws)
1862 (reversed-interfaces '()))
1863 (if (null? kws)
1864 (for-each (lambda (interface)
1865 (module-use! module interface))
1866 reversed-interfaces)
04798288
MD
1867 (case (cond ((keyword? (car kws))
1868 (keyword->symbol (car kws)))
90268b35
MD
1869 ((and (symbol? (car kws))
1870 (eq? (string-ref (car kws) 0) #\:))
04798288 1871 (string->symbol (substring (car kws) 1)))
90268b35 1872 (else #f))
04798288 1873 ((use-module)
0209ca9a
MV
1874 (if (not (pair? (cdr kws)))
1875 (error "unrecognized defmodule argument" kws))
1876 (let* ((used-name (cadr kws))
1877 (used-module (resolve-module used-name)))
1878 (if (not (module-ref used-module '%module-public-interface #f))
1879 (begin
1880 ((if %autoloader-developer-mode warn error)
1881 "no code for module" (module-name used-module))
1882 (beautify-user-module! used-module)))
1883 (let ((interface (module-public-interface used-module)))
1884 (if (not interface)
1885 (error "missing interface for use-module" used-module))
1886 (loop (cddr kws) (cons interface reversed-interfaces)))))
1887 (else
1888 (error "unrecognized defmodule argument" kws)))))
0f2d19dd
JB
1889 module))
1890\f
44cf1f0f 1891;;; {Autoloading modules}
0f2d19dd
JB
1892
1893(define autoloads-in-progress '())
1894
1895(define (try-module-autoload module-name)
6fa8995c 1896
0f2d19dd
JB
1897 (define (sfx name) (string-append name (scheme-file-suffix)))
1898 (let* ((reverse-name (reverse module-name))
1899 (name (car reverse-name))
1900 (dir-hint-module-name (reverse (cdr reverse-name)))
1901 (dir-hint (apply symbol-append (map (lambda (elt) (symbol-append elt "/")) dir-hint-module-name))))
0209ca9a 1902 (resolve-module dir-hint-module-name #f)
0f2d19dd
JB
1903 (and (not (autoload-done-or-in-progress? dir-hint name))
1904 (let ((didit #f))
1905 (dynamic-wind
1906 (lambda () (autoload-in-progress! dir-hint name))
1907 (lambda ()
1908 (let loop ((dirs %load-path))
1909 (and (not (null? dirs))
1910 (or
1911 (let ((d (car dirs))
1912 (trys (list
1913 dir-hint
1914 (sfx dir-hint)
1915 (in-vicinity dir-hint name)
1916 (in-vicinity dir-hint (sfx name)))))
1917 (and (or-map (lambda (f)
1918 (let ((full (in-vicinity d f)))
1919 full
6fa8995c
GH
1920 (and (file-exists? full)
1921 (not (file-is-directory? full))
0f2d19dd
JB
1922 (begin
1923 (save-module-excursion
1924 (lambda ()
5552355a
GH
1925 (load (string-append
1926 d "/" f))))
0f2d19dd
JB
1927 #t))))
1928 trys)
1929 (begin
1930 (set! didit #t)
1931 #t)))
1932 (loop (cdr dirs))))))
1933 (lambda () (set-autoloaded! dir-hint name didit)))
1934 didit))))
1935
d0cbd20c
MV
1936;;; Dynamic linking of modules
1937
1938;; Initializing a module that is written in C is a two step process.
1939;; First the module's `module init' function is called. This function
1940;; is expected to call `scm_register_module_xxx' to register the `real
1941;; init' function. Later, when the module is referenced for the first
1942;; time, this real init function is called in the right context. See
1943;; gtcltk-lib/gtcltk-module.c for an example.
1944;;
1945;; The code for the module can be in a regular shared library (so that
1946;; the `module init' function will be called when libguile is
1947;; initialized). Or it can be dynamically linked.
1948;;
1949;; You can safely call `scm_register_module_xxx' before libguile
1950;; itself is initialized. You could call it from an C++ constructor
1951;; of a static object, for example.
1952;;
1953;; To make your Guile extension into a dynamic linkable module, follow
1954;; these easy steps:
1955;;
8bb7330c 1956;; - Find a name for your module, like (ice-9 gtcltk)
d0cbd20c
MV
1957;; - Write a function with a name like
1958;;
1959;; scm_init_ice_9_gtcltk_module
1960;;
1961;; This is your `module init' function. It should call
1962;;
1963;; scm_register_module_xxx ("ice-9 gtcltk", scm_init_gtcltk);
1964;;
1965;; "ice-9 gtcltk" is the C version of the module name. Slashes are
1966;; replaced by spaces, the rest is untouched. `scm_init_gtcltk' is
ed218d98 1967;; the real init function that executes the usual initializations
d0cbd20c
MV
1968;; like making new smobs, etc.
1969;;
1970;; - Make a shared library with your code and a name like
1971;;
1972;; ice-9/libgtcltk.so
1973;;
1974;; and put it somewhere in %load-path.
1975;;
8bb7330c 1976;; - Then you can simply write `:use-module (ice-9 gtcltk)' and it
d0cbd20c
MV
1977;; will be linked automatically.
1978;;
1979;; This is all very experimental.
1980
1981(define (split-c-module-name str)
1982 (let loop ((rev '())
1983 (start 0)
1984 (pos 0)
1985 (end (string-length str)))
1986 (cond
1987 ((= pos end)
1988 (reverse (cons (string->symbol (substring str start pos)) rev)))
1989 ((eq? (string-ref str pos) #\space)
1990 (loop (cons (string->symbol (substring str start pos)) rev)
1991 (+ pos 1)
1992 (+ pos 1)
1993 end))
1994 (else
1995 (loop rev start (+ pos 1) end)))))
1996
1997(define (convert-c-registered-modules dynobj)
1998 (let ((res (map (lambda (c)
1999 (list (split-c-module-name (car c)) (cdr c) dynobj))
2000 (c-registered-modules))))
2001 (c-clear-registered-modules)
2002 res))
2003
2004(define registered-modules (convert-c-registered-modules #f))
2005
2006(define (init-dynamic-module modname)
2007 (or-map (lambda (modinfo)
2008 (if (equal? (car modinfo) modname)
2009 (let ((mod (resolve-module modname #f)))
2010 (save-module-excursion
2011 (lambda ()
2012 (set-current-module mod)
2013 (dynamic-call (cadr modinfo) (caddr modinfo))
2014 (set-module-public-interface! mod mod)))
2015 (set! registered-modules (delq! modinfo registered-modules))
2016 #t)
2017 #f))
2018 registered-modules))
2019
2020(define (dynamic-maybe-call name dynobj)
2021 (catch #t ; could use false-if-exception here
2022 (lambda ()
2023 (dynamic-call name dynobj))
2024 (lambda args
2025 #f)))
2026
ed218d98
MV
2027(define (dynamic-maybe-link filename)
2028 (catch #t ; could use false-if-exception here
2029 (lambda ()
2030 (dynamic-link filename))
2031 (lambda args
2032 #f)))
2033
d0cbd20c
MV
2034(define (find-and-link-dynamic-module module-name)
2035 (define (make-init-name mod-name)
2036 (string-append 'scm_init
2037 (list->string (map (lambda (c)
2038 (if (or (char-alphabetic? c)
2039 (char-numeric? c))
2040 c
2041 #\_))
2042 (string->list mod-name)))
2043 '_module))
2044 (let ((libname
2045 (let loop ((dirs "")
2046 (syms module-name))
2047 (cond
2048 ((null? (cdr syms))
2049 (string-append dirs "lib" (car syms) ".so"))
2050 (else
2051 (loop (string-append dirs (car syms) "/") (cdr syms))))))
2052 (init (make-init-name (apply string-append
2053 (map (lambda (s)
2054 (string-append "_" s))
2055 module-name)))))
2056 ;; (pk 'libname libname 'init init)
2057 (or-map
2058 (lambda (dir)
2059 (let ((full (in-vicinity dir libname)))
2060 ;; (pk 'trying full)
2061 (if (file-exists? full)
2062 (begin
2063 (link-dynamic-module full init)
2064 #t)
2065 #f)))
2066 %load-path)))
2067
2068(define (link-dynamic-module filename initname)
6b856182
MV
2069 (let ((dynobj (dynamic-link filename)))
2070 (dynamic-call initname dynobj)
2071 (set! registered-modules
2072 (append! (convert-c-registered-modules dynobj)
2073 registered-modules))))
ed218d98 2074
d0cbd20c
MV
2075(define (try-module-dynamic-link module-name)
2076 (or (init-dynamic-module module-name)
2077 (and (find-and-link-dynamic-module module-name)
2078 (init-dynamic-module module-name))))
2079
ed218d98
MV
2080
2081
0f2d19dd
JB
2082(define autoloads-done '((guile . guile)))
2083
2084(define (autoload-done-or-in-progress? p m)
2085 (let ((n (cons p m)))
2086 (->bool (or (member n autoloads-done)
2087 (member n autoloads-in-progress)))))
2088
2089(define (autoload-done! p m)
2090 (let ((n (cons p m)))
2091 (set! autoloads-in-progress
2092 (delete! n autoloads-in-progress))
2093 (or (member n autoloads-done)
2094 (set! autoloads-done (cons n autoloads-done)))))
2095
2096(define (autoload-in-progress! p m)
2097 (let ((n (cons p m)))
2098 (set! autoloads-done
2099 (delete! n autoloads-done))
2100 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2101
2102(define (set-autoloaded! p m done?)
2103 (if done?
2104 (autoload-done! p m)
2105 (let ((n (cons p m)))
2106 (set! autoloads-done (delete! n autoloads-done))
2107 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2108
2109
2110
2111
2112\f
2113;;; {Macros}
2114;;;
2115
9591db87
MD
2116(define macro-table (make-weak-key-hash-table 523))
2117(define xformer-table (make-weak-key-hash-table 523))
0f2d19dd
JB
2118
2119(define (defmacro? m) (hashq-ref macro-table m))
2120(define (assert-defmacro?! m) (hashq-set! macro-table m #t))
2121(define (defmacro-transformer m) (hashq-ref xformer-table m))
2122(define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
2123
2124(define defmacro:transformer
2125 (lambda (f)
2126 (let* ((xform (lambda (exp env)
2127 (copy-tree (apply f (cdr exp)))))
2128 (a (procedure->memoizing-macro xform)))
2129 (assert-defmacro?! a)
2130 (set-defmacro-transformer! a f)
2131 a)))
2132
2133
2134(define defmacro
2135 (let ((defmacro-transformer
2136 (lambda (name parms . body)
2137 (let ((transformer `(lambda ,parms ,@body)))
2138 `(define ,name
2139 (,(lambda (transformer)
2140 (defmacro:transformer transformer))
2141 ,transformer))))))
2142 (defmacro:transformer defmacro-transformer)))
2143
2144(define defmacro:syntax-transformer
2145 (lambda (f)
2146 (procedure->syntax
2147 (lambda (exp env)
2148 (copy-tree (apply f (cdr exp)))))))
2149
ed218d98
MV
2150
2151;; XXX - should the definition of the car really be looked up in the
2152;; current module?
2153
0f2d19dd
JB
2154(define (macroexpand-1 e)
2155 (cond
2156 ((pair? e) (let* ((a (car e))
ed218d98 2157 (val (and (symbol? a) (local-ref (list a)))))
0f2d19dd
JB
2158 (if (defmacro? val)
2159 (apply (defmacro-transformer val) (cdr e))
2160 e)))
2161 (#t e)))
2162
2163(define (macroexpand e)
2164 (cond
2165 ((pair? e) (let* ((a (car e))
ed218d98 2166 (val (and (symbol? a) (local-ref (list a)))))
0f2d19dd
JB
2167 (if (defmacro? val)
2168 (macroexpand (apply (defmacro-transformer val) (cdr e)))
2169 e)))
2170 (#t e)))
2171
e672f1b5
MD
2172(define (gentemp)
2173 (gensym "scm:G"))
0f2d19dd
JB
2174
2175
2176\f
2177
2178;;; {Running Repls}
2179;;;
2180
2181(define (repl read evaler print)
75a97b92 2182 (let loop ((source (read (current-input-port))))
0f2d19dd 2183 (print (evaler source))
75a97b92 2184 (loop (read (current-input-port)))))
0f2d19dd
JB
2185
2186;; A provisional repl that acts like the SCM repl:
2187;;
2188(define scm-repl-silent #f)
2189(define (assert-repl-silence v) (set! scm-repl-silent v))
2190
21ed9efe
MD
2191(define *unspecified* (if #f #f))
2192(define (unspecified? v) (eq? v *unspecified*))
2193
2194(define scm-repl-print-unspecified #f)
2195(define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2196
79451588 2197(define scm-repl-verbose #f)
0f2d19dd
JB
2198(define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2199
e6875011 2200(define scm-repl-prompt "guile> ")
0f2d19dd 2201
e6875011
MD
2202(define (set-repl-prompt! v) (set! scm-repl-prompt v))
2203
d5d34fa1
MD
2204(define (default-lazy-handler key . args)
2205 (save-stack lazy-handler-dispatch)
2206 (apply throw key args))
2207
2208(define apply-frame-handler default-lazy-handler)
2209(define exit-frame-handler default-lazy-handler)
2210
2211(define (lazy-handler-dispatch key . args)
2212 (case key
2213 ((apply-frame)
2214 (apply apply-frame-handler key args))
2215 ((exit-frame)
2216 (apply exit-frame-handler key args))
2217 (else
2218 (apply default-lazy-handler key args))))
0f2d19dd 2219
59e1116d
MD
2220(define abort-hook '())
2221
0f2d19dd 2222(define (error-catching-loop thunk)
8e44e7a0
GH
2223 (let ((status #f))
2224 (define (loop first)
2225 (let ((next
2226 (catch #t
9a0d70e2 2227
8e44e7a0
GH
2228 (lambda ()
2229 (lazy-catch #t
2230 (lambda ()
2231 (dynamic-wind
2232 (lambda () (unmask-signals))
2233 (lambda ()
2234 (first)
2235
2236 ;; This line is needed because mark
2237 ;; doesn't do closures quite right.
2238 ;; Unreferenced locals should be
2239 ;; collected.
2240 ;;
2241 (set! first #f)
2242 (let loop ((v (thunk)))
2243 (loop (thunk)))
2244 #f)
2245 (lambda () (mask-signals))))
2246
2247 lazy-handler-dispatch))
2248
2249 (lambda (key . args)
2250 (case key
2251 ((quit)
8e44e7a0
GH
2252 (force-output)
2253 (set! status args)
2254 #f)
2255
2256 ((switch-repl)
2257 (apply throw 'switch-repl args))
2258
2259 ((abort)
2260 ;; This is one of the closures that require
2261 ;; (set! first #f) above
2262 ;;
2263 (lambda ()
2264 (run-hooks abort-hook)
2265 (force-output)
2266 (display "ABORT: " (current-error-port))
2267 (write args (current-error-port))
2268 (newline (current-error-port))
2269 (if (and (not has-shown-debugger-hint?)
2270 (not (memq 'backtrace
2271 (debug-options-interface)))
2272 (stack? the-last-stack))
2273 (begin
2274 (newline (current-error-port))
2275 (display
2276 "Type \"(backtrace)\" to get more information.\n"
2277 (current-error-port))
2278 (set! has-shown-debugger-hint? #t)))
2279 (set! stack-saved? #f)))
2280
2281 (else
2282 ;; This is the other cons-leak closure...
2283 (lambda ()
2284 (cond ((= (length args) 4)
2285 (apply handle-system-error key args))
2286 (else
2287 (apply bad-throw key args))))))))))
2288 (if next (loop next) status)))
2289 (loop (lambda () #t))))
0f2d19dd 2290
d590bbf6 2291;;(define the-last-stack #f) Defined by scm_init_backtrace ()
21ed9efe
MD
2292(define stack-saved? #f)
2293
2294(define (save-stack . narrowing)
2295 (cond (stack-saved?)
2296 ((not (memq 'debug (debug-options-interface)))
2297 (set! the-last-stack #f)
2298 (set! stack-saved? #t))
2299 (else
2300 (set! the-last-stack
2301 (case (stack-id #t)
2302 ((repl-stack)
2303 (apply make-stack #t save-stack eval narrowing))
2304 ((load-stack)
096d5f90 2305 (apply make-stack #t save-stack 0 narrowing))
21ed9efe
MD
2306 ((tk-stack)
2307 (apply make-stack #t save-stack tk-stack-mark narrowing))
2308 ((#t)
e6875011 2309 (apply make-stack #t save-stack 0 1 narrowing))
21ed9efe
MD
2310 (else (let ((id (stack-id #t)))
2311 (and (procedure? id)
2312 (apply make-stack #t save-stack id narrowing))))))
2313 (set! stack-saved? #t))))
1c6cd8e8 2314
59e1116d
MD
2315(define before-error-hook '())
2316(define after-error-hook '())
2317(define before-backtrace-hook '())
2318(define after-backtrace-hook '())
1c6cd8e8 2319
21ed9efe
MD
2320(define has-shown-debugger-hint? #f)
2321
35c5db87
GH
2322(define (handle-system-error key . args)
2323 (let ((cep (current-error-port)))
21ed9efe
MD
2324 (cond ((not (stack? the-last-stack)))
2325 ((memq 'backtrace (debug-options-interface))
59e1116d 2326 (run-hooks before-backtrace-hook)
21ed9efe
MD
2327 (newline cep)
2328 (display-backtrace the-last-stack cep)
2329 (newline cep)
59e1116d
MD
2330 (run-hooks after-backtrace-hook)))
2331 (run-hooks before-error-hook)
c27659c8 2332 (apply display-error the-last-stack cep args)
59e1116d 2333 (run-hooks after-error-hook)
35c5db87
GH
2334 (force-output cep)
2335 (throw 'abort key)))
21ed9efe 2336
0f2d19dd
JB
2337(define (quit . args)
2338 (apply throw 'quit args))
2339
7950df7c
GH
2340(define exit quit)
2341
d590bbf6
MD
2342;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2343
2344;; Replaced by C code:
2345;;(define (backtrace)
2346;; (if the-last-stack
2347;; (begin
2348;; (newline)
2349;; (display-backtrace the-last-stack (current-output-port))
2350;; (newline)
2351;; (if (and (not has-shown-backtrace-hint?)
2352;; (not (memq 'backtrace (debug-options-interface))))
2353;; (begin
2354;; (display
2355;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2356;;automatically if an error occurs in the future.\n")
2357;; (set! has-shown-backtrace-hint? #t))))
2358;; (display "No backtrace available.\n")))
21ed9efe 2359
0f2d19dd
JB
2360(define (error-catching-repl r e p)
2361 (error-catching-loop (lambda () (p (e (r))))))
2362
2363(define (gc-run-time)
2364 (cdr (assq 'gc-time-taken (gc-stats))))
2365
59e1116d
MD
2366(define before-read-hook '())
2367(define after-read-hook '())
1c6cd8e8 2368
0f2d19dd
JB
2369(define (scm-style-repl)
2370 (letrec (
2371 (start-gc-rt #f)
2372 (start-rt #f)
2373 (repl-report-reset (lambda () #f))
2374 (repl-report-start-timing (lambda ()
2375 (set! start-gc-rt (gc-run-time))
2376 (set! start-rt (get-internal-run-time))))
2377 (repl-report (lambda ()
2378 (display ";;; ")
2379 (display (inexact->exact
2380 (* 1000 (/ (- (get-internal-run-time) start-rt)
2381 internal-time-units-per-second))))
2382 (display " msec (")
2383 (display (inexact->exact
2384 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2385 internal-time-units-per-second))))
2386 (display " msec in gc)\n")))
480977d0
JB
2387
2388 (consume-trailing-whitespace
2389 (lambda ()
2390 (let ((ch (peek-char)))
2391 (cond
2392 ((eof-object? ch))
2393 ((or (char=? ch #\space) (char=? ch #\tab))
2394 (read-char)
2395 (consume-trailing-whitespace))
2396 ((char=? ch #\newline)
2397 (read-char))))))
0f2d19dd
JB
2398 (-read (lambda ()
2399 (if scm-repl-prompt
2400 (begin
e6875011
MD
2401 (display (cond ((string? scm-repl-prompt)
2402 scm-repl-prompt)
2403 ((thunk? scm-repl-prompt)
2404 (scm-repl-prompt))
2405 (else "> ")))
0f2d19dd
JB
2406 (force-output)
2407 (repl-report-reset)))
59e1116d 2408 (run-hooks before-read-hook)
75a97b92 2409 (let ((val (read (current-input-port))))
480977d0
JB
2410 ;; As described in R4RS, the READ procedure updates the
2411 ;; port to point to the first characetr past the end of
2412 ;; the external representation of the object. This
2413 ;; means that it doesn't consume the newline typically
2414 ;; found after an expression. This means that, when
2415 ;; debugging Guile with GDB, GDB gets the newline, which
2416 ;; it often interprets as a "continue" command, making
2417 ;; breakpoints kind of useless. So, consume any
2418 ;; trailing newline here, as well as any whitespace
2419 ;; before it.
2420 (consume-trailing-whitespace)
59e1116d 2421 (run-hooks after-read-hook)
0f2d19dd
JB
2422 (if (eof-object? val)
2423 (begin
7950df7c 2424 (repl-report-start-timing)
0f2d19dd
JB
2425 (if scm-repl-verbose
2426 (begin
2427 (newline)
2428 (display ";;; EOF -- quitting")
2429 (newline)))
2430 (quit 0)))
2431 val)))
2432
2433 (-eval (lambda (sourc)
2434 (repl-report-start-timing)
4cdee789 2435 (start-stack 'repl-stack (eval sourc))))
0f2d19dd
JB
2436
2437 (-print (lambda (result)
2438 (if (not scm-repl-silent)
2439 (begin
21ed9efe
MD
2440 (if (or scm-repl-print-unspecified
2441 (not (unspecified? result)))
2442 (begin
2443 (write result)
2444 (newline)))
0f2d19dd
JB
2445 (if scm-repl-verbose
2446 (repl-report))
2447 (force-output)))))
2448
8e44e7a0 2449 (-quit (lambda (args)
0f2d19dd
JB
2450 (if scm-repl-verbose
2451 (begin
2452 (display ";;; QUIT executed, repl exitting")
2453 (newline)
2454 (repl-report)))
8e44e7a0 2455 args))
0f2d19dd
JB
2456
2457 (-abort (lambda ()
2458 (if scm-repl-verbose
2459 (begin
2460 (display ";;; ABORT executed.")
2461 (newline)
2462 (repl-report)))
2463 (repl -read -eval -print))))
2464
8e44e7a0
GH
2465 (let ((status (error-catching-repl -read
2466 -eval
2467 -print)))
2468 (-quit status))))
2469
0f2d19dd 2470
0f2d19dd 2471\f
44cf1f0f 2472;;; {IOTA functions: generating lists of numbers}
0f2d19dd
JB
2473
2474(define (reverse-iota n) (if (> n 0) (cons (1- n) (reverse-iota (1- n))) '()))
2475(define (iota n) (list-reverse! (reverse-iota n)))
2476
2477\f
2478;;; {While}
2479;;;
2480;;; with `continue' and `break'.
2481;;;
2482
2483(defmacro while (cond . body)
2484 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2485 (break (lambda val (apply throw 'break val))))
2486 (catch 'break
2487 (lambda () (continue))
2488 (lambda v (cadr v)))))
2489
2490
8a6a8671
MV
2491;;; {with-fluids}
2492
2493;; with-fluids is a convenience wrapper for the builtin procedure
2494;; `with-fluids*'. The syntax is just like `let':
2495;;
2496;; (with-fluids ((fluid val)
2497;; ...)
2498;; body)
2499
2500(defmacro with-fluids (bindings . body)
2501 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2502 (lambda () ,@body)))
2503
0f2d19dd
JB
2504\f
2505
2506;;; {Macros}
2507;;;
2508
2509;; actually....hobbit might be able to hack these with a little
2510;; coaxing
2511;;
2512
2513(defmacro define-macro (first . rest)
2514 (let ((name (if (symbol? first) first (car first)))
2515 (transformer
2516 (if (symbol? first)
2517 (car rest)
2518 `(lambda ,(cdr first) ,@rest))))
2519 `(define ,name (defmacro:transformer ,transformer))))
2520
2521
2522(defmacro define-syntax-macro (first . rest)
2523 (let ((name (if (symbol? first) first (car first)))
2524 (transformer
2525 (if (symbol? first)
2526 (car rest)
2527 `(lambda ,(cdr first) ,@rest))))
2528 `(define ,name (defmacro:syntax-transformer ,transformer))))
2529\f
2530;;; {Module System Macros}
2531;;;
2532
2533(defmacro define-module args
2534 `(let* ((process-define-module process-define-module)
2535 (set-current-module set-current-module)
2536 (module (process-define-module ',args)))
2537 (set-current-module module)
2538 module))
2539
89da9036
MV
2540;; the guts of the use-modules macro. add the interfaces of the named
2541;; modules to the use-list of the current module, in order
2542(define (process-use-modules module-names)
2543 (for-each (lambda (module-name)
2544 (let ((mod-iface (resolve-interface module-name)))
2545 (or mod-iface
2546 (error "no such module" module-name))
2547 (module-use! (current-module) mod-iface)))
2548 (reverse module-names)))
2549
33cf699f 2550(defmacro use-modules modules
89da9036 2551 `(process-use-modules ',modules))
33cf699f 2552
0f2d19dd
JB
2553(define define-private define)
2554
2555(defmacro define-public args
2556 (define (syntax)
2557 (error "bad syntax" (list 'define-public args)))
2558 (define (defined-name n)
2559 (cond
3c5af9ef
JB
2560 ((symbol? n) n)
2561 ((pair? n) (defined-name (car n)))
2562 (else (syntax))))
0f2d19dd 2563 (cond
3c5af9ef
JB
2564 ((null? args) (syntax))
2565
2566 (#t (let ((name (defined-name (car args))))
2567 `(begin
2568 (let ((public-i (module-public-interface (current-module))))
2569 ;; Make sure there is a local variable:
2570 ;;
2571 (module-define! (current-module)
2572 ',name
2573 (module-ref (current-module) ',name #f))
0f2d19dd 2574
3c5af9ef
JB
2575 ;; Make sure that local is exported:
2576 ;;
2577 (module-add! public-i ',name
2578 (module-variable (current-module) ',name)))
0f2d19dd 2579
3c5af9ef
JB
2580 ;; Now (re)define the var normally. Bernard URBAN
2581 ;; suggests we use eval here to accomodate Hobbit; it lets
2582 ;; the interpreter handle the define-private form, which
2583 ;; Hobbit can't digest.
2584 (eval '(define-private ,@ args)))))))
0f2d19dd
JB
2585
2586
2587
2588(defmacro defmacro-public args
2589 (define (syntax)
2590 (error "bad syntax" (list 'defmacro-public args)))
2591 (define (defined-name n)
2592 (cond
2593 ((symbol? n) n)
2594 (else (syntax))))
2595 (cond
2596 ((null? args) (syntax))
2597
2598 (#t (let ((name (defined-name (car args))))
2599 `(begin
2600 (let ((public-i (module-public-interface (current-module))))
2601 ;; Make sure there is a local variable:
2602 ;;
2603 (module-define! (current-module)
2604 ',name
2605 (module-ref (current-module) ',name #f))
2606
2607 ;; Make sure that local is exported:
2608 ;;
2609 (module-add! public-i ',name (module-variable (current-module) ',name)))
2610
2611 ;; Now (re)define the var normally.
2612 ;;
2613 (defmacro ,@ args))))))
2614
2615
2616
2617
0f2d19dd 2618(define load load-module)
1c6cd8e8
MD
2619;(define (load . args)
2620; (start-stack 'load-stack (apply load-module args)))
0f2d19dd
JB
2621
2622
2623\f
44cf1f0f 2624;;; {I/O functions for Tcl channels (disabled)}
0f2d19dd
JB
2625
2626;; (define in-ch (get-standard-channel TCL_STDIN))
2627;; (define out-ch (get-standard-channel TCL_STDOUT))
2628;; (define err-ch (get-standard-channel TCL_STDERR))
2629;;
2630;; (define inp (%make-channel-port in-ch "r"))
2631;; (define outp (%make-channel-port out-ch "w"))
2632;; (define errp (%make-channel-port err-ch "w"))
2633;;
2634;; (define %system-char-ready? char-ready?)
2635;;
2636;; (define (char-ready? p)
2637;; (if (not (channel-port? p))
2638;; (%system-char-ready? p)
2639;; (let* ((channel (%channel-port-channel p))
2640;; (old-blocking (channel-option-ref channel :blocking)))
2641;; (dynamic-wind
2642;; (lambda () (set-channel-option the-root-tcl-interpreter channel :blocking "0"))
2643;; (lambda () (not (eof-object? (peek-char p))))
2644;; (lambda () (set-channel-option the-root-tcl-interpreter channel :blocking old-blocking))))))
2645;;
2646;; (define (top-repl)
2647;; (with-input-from-port inp
2648;; (lambda ()
2649;; (with-output-to-port outp
2650;; (lambda ()
2651;; (with-error-to-port errp
2652;; (lambda ()
2653;; (scm-style-repl))))))))
2654;;
2655;; (set-current-input-port inp)
2656;; (set-current-output-port outp)
2657;; (set-current-error-port errp)
2658
e1a191a8
GH
2659;; this is just (scm-style-repl) with a wrapper to install and remove
2660;; signal handlers.
8e44e7a0 2661(define (top-repl)
e1a191a8
GH
2662 (let ((old-handlers #f)
2663 (signals `((,SIGINT . "User interrupt")
2664 (,SIGFPE . "Arithmetic error")
2665 (,SIGBUS . "Bad memory access (bus error)")
2666 (,SIGSEGV . "Bad memory access (Segmentation violation)"))))
2667
2668 (dynamic-wind
2669
2670 ;; call at entry
2671 (lambda ()
2672 (let ((make-handler (lambda (msg)
2673 (lambda (sig)
096d5f90 2674 (save-stack %deliver-signals)
e1a191a8
GH
2675 (scm-error 'signal
2676 #f
2677 msg
2678 #f
2679 (list sig))))))
2680 (set! old-handlers
2681 (map (lambda (sig-msg)
2682 (sigaction (car sig-msg)
2683 (make-handler (cdr sig-msg))))
2684 signals))))
2685
2686 ;; the protected thunk.
2687 (lambda ()
2688 (scm-style-repl))
2689
2690 ;; call at exit.
2691 (lambda ()
2692 (map (lambda (sig-msg old-handler)
2693 (if (not (car old-handler))
2694 ;; restore original C handler.
2695 (sigaction (car sig-msg) #f)
2696 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
2697 (sigaction (car sig-msg)
2698 (car old-handler)
2699 (cdr old-handler))))
2700 signals old-handlers)))))
0f2d19dd 2701
02b754d3
GH
2702(defmacro false-if-exception (expr)
2703 `(catch #t (lambda () ,expr)
2704 (lambda args #f)))
2705
0f2d19dd 2706\f
44cf1f0f 2707;;; {Calling Conventions}
0f2d19dd
JB
2708(define-module (ice-9 calling))
2709
2710;;;;
0f2d19dd
JB
2711;;;
2712;;; This file contains a number of macros that support
2713;;; common calling conventions.
2714
2715;;;
2716;;; with-excursion-function <vars> proc
2717;;; <vars> is an unevaluated list of names that are bound in the caller.
2718;;; proc is a procedure, called:
2719;;; (proc excursion)
2720;;;
2721;;; excursion is a procedure isolates all changes to <vars>
2722;;; in the dynamic scope of the call to proc. In other words,
2723;;; the values of <vars> are saved when proc is entered, and when
2724;;; proc returns, those values are restored. Values are also restored
2725;;; entering and leaving the call to proc non-locally, such as using
2726;;; call-with-current-continuation, error, or throw.
2727;;;
2728(defmacro-public with-excursion-function (vars proc)
2729 `(,proc ,(excursion-function-syntax vars)))
2730
2731
2732
2733;;; with-getter-and-setter <vars> proc
2734;;; <vars> is an unevaluated list of names that are bound in the caller.
2735;;; proc is a procedure, called:
2736;;; (proc getter setter)
2737;;;
2738;;; getter and setter are procedures used to access
2739;;; or modify <vars>.
2740;;;
2741;;; setter, called with keywords arguments, modifies the named
2742;;; values. If "foo" and "bar" are among <vars>, then:
2743;;;
2744;;; (setter :foo 1 :bar 2)
2745;;; == (set! foo 1 bar 2)
2746;;;
2747;;; getter, called with just keywords, returns
2748;;; a list of the corresponding values. For example,
2749;;; if "foo" and "bar" are among the <vars>, then
2750;;;
2751;;; (getter :foo :bar)
2752;;; => (<value-of-foo> <value-of-bar>)
2753;;;
2754;;; getter, called with no arguments, returns a list of all accepted
2755;;; keywords and the corresponding values. If "foo" and "bar" are
2756;;; the *only* <vars>, then:
2757;;;
2758;;; (getter)
2759;;; => (:foo <value-of-bar> :bar <value-of-foo>)
2760;;;
2761;;; The unusual calling sequence of a getter supports too handy
2762;;; idioms:
2763;;;
2764;;; (apply setter (getter)) ;; save and restore
2765;;;
2766;;; (apply-to-args (getter :foo :bar) ;; fetch and bind
2767;;; (lambda (foo bar) ....))
2768;;;
2769;;; ;; [ "apply-to-args" is just like two-argument "apply" except that it
2770;;; ;; takes its arguments in a different order.
2771;;;
2772;;;
2773(defmacro-public with-getter-and-setter (vars proc)
2774 `(,proc ,@ (getter-and-setter-syntax vars)))
2775
2776;;; with-getter vars proc
2777;;; A short-hand for a call to with-getter-and-setter.
2778;;; The procedure is called:
2779;;; (proc getter)
2780;;;
2781(defmacro-public with-getter (vars proc)
2782 `(,proc ,(car (getter-and-setter-syntax vars))))
2783
2784
2785;;; with-delegating-getter-and-setter <vars> get-delegate set-delegate proc
2786;;; Compose getters and setters.
2787;;;
2788;;; <vars> is an unevaluated list of names that are bound in the caller.
2789;;;
2790;;; get-delegate is called by the new getter to extend the set of
2791;;; gettable variables beyond just <vars>
2792;;; set-delegate is called by the new setter to extend the set of
2793;;; gettable variables beyond just <vars>
2794;;;
2795;;; proc is a procedure that is called
2796;;; (proc getter setter)
2797;;;
2798(defmacro-public with-delegating-getter-and-setter (vars get-delegate set-delegate proc)
2799 `(,proc ,@ (delegating-getter-and-setter-syntax vars get-delegate set-delegate)))
2800
2801
52c5a23a 2802;;; with-excursion-getter-and-setter <vars> proc
0f2d19dd
JB
2803;;; <vars> is an unevaluated list of names that are bound in the caller.
2804;;; proc is called:
2805;;;
2806;;; (proc excursion getter setter)
2807;;;
2808;;; See also:
2809;;; with-getter-and-setter
2810;;; with-excursion-function
2811;;;
2812(defmacro-public with-excursion-getter-and-setter (vars proc)
2813 `(,proc ,(excursion-function-syntax vars)
2814 ,@ (getter-and-setter-syntax vars)))
2815
2816
2817(define (excursion-function-syntax vars)
2818 (let ((saved-value-names (map gensym vars))
2819 (tmp-var-name (gensym 'temp))
2820 (swap-fn-name (gensym 'swap))
2821 (thunk-name (gensym 'thunk)))
2822 `(lambda (,thunk-name)
2823 (letrec ((,tmp-var-name #f)
2824 (,swap-fn-name
2825 (lambda () ,@ (map (lambda (n sn) `(set! ,tmp-var-name ,n ,n ,sn ,sn ,tmp-var-name))
2826 vars saved-value-names)))
2827 ,@ (map (lambda (sn n) `(,sn ,n)) saved-value-names vars))
2828 (dynamic-wind
2829 ,swap-fn-name
2830 ,thunk-name
2831 ,swap-fn-name)))))
2832
2833
2834(define (getter-and-setter-syntax vars)
2835 (let ((args-name (gensym 'args))
2836 (an-arg-name (gensym 'an-arg))
2837 (new-val-name (gensym 'new-value))
2838 (loop-name (gensym 'loop))
2839 (kws (map symbol->keyword vars)))
2840 (list `(lambda ,args-name
2841 (let ,loop-name ((,args-name ,args-name))
2842 (if (null? ,args-name)
2843 ,(if (null? kws)
2844 ''()
2845 `(let ((all-vals (,loop-name ',kws)))
2846 (let ,loop-name ((vals all-vals)
2847 (kws ',kws))
2848 (if (null? vals)
2849 '()
2850 `(,(car kws) ,(car vals) ,@(,loop-name (cdr vals) (cdr kws)))))))
2851 (map (lambda (,an-arg-name)
2852 (case ,an-arg-name
2853 ,@ (append
2854 (map (lambda (kw v) `((,kw) ,v)) kws vars)
2855 `((else (throw 'bad-get-option ,an-arg-name))))))
2856 ,args-name))))
2857
2858 `(lambda ,args-name
2859 (let ,loop-name ((,args-name ,args-name))
2860 (or (null? ,args-name)
2861 (null? (cdr ,args-name))
2862 (let ((,an-arg-name (car ,args-name))
2863 (,new-val-name (cadr ,args-name)))
2864 (case ,an-arg-name
2865 ,@ (append
2866 (map (lambda (kw v) `((,kw) (set! ,v ,new-val-name))) kws vars)
2867 `((else (throw 'bad-set-option ,an-arg-name)))))
2868 (,loop-name (cddr ,args-name)))))))))
2869
2870(define (delegating-getter-and-setter-syntax vars get-delegate set-delegate)
2871 (let ((args-name (gensym 'args))
2872 (an-arg-name (gensym 'an-arg))
2873 (new-val-name (gensym 'new-value))
2874 (loop-name (gensym 'loop))
2875 (kws (map symbol->keyword vars)))
2876 (list `(lambda ,args-name
2877 (let ,loop-name ((,args-name ,args-name))
2878 (if (null? ,args-name)
2879 (append!
2880 ,(if (null? kws)
2881 ''()
2882 `(let ((all-vals (,loop-name ',kws)))
2883 (let ,loop-name ((vals all-vals)
2884 (kws ',kws))
2885 (if (null? vals)
2886 '()
2887 `(,(car kws) ,(car vals) ,@(,loop-name (cdr vals) (cdr kws)))))))
2888 (,get-delegate))
2889 (map (lambda (,an-arg-name)
2890 (case ,an-arg-name
2891 ,@ (append
2892 (map (lambda (kw v) `((,kw) ,v)) kws vars)
2893 `((else (car (,get-delegate ,an-arg-name)))))))
2894 ,args-name))))
2895
2896 `(lambda ,args-name
2897 (let ,loop-name ((,args-name ,args-name))
2898 (or (null? ,args-name)
2899 (null? (cdr ,args-name))
2900 (let ((,an-arg-name (car ,args-name))
2901 (,new-val-name (cadr ,args-name)))
2902 (case ,an-arg-name
2903 ,@ (append
2904 (map (lambda (kw v) `((,kw) (set! ,v ,new-val-name))) kws vars)
2905 `((else (,set-delegate ,an-arg-name ,new-val-name)))))
2906 (,loop-name (cddr ,args-name)))))))))
2907
2908
2909
2910
2911;;; with-configuration-getter-and-setter <vars-etc> proc
2912;;;
2913;;; Create a getter and setter that can trigger arbitrary computation.
2914;;;
2915;;; <vars-etc> is a list of variable specifiers, explained below.
2916;;; proc is called:
2917;;;
2918;;; (proc getter setter)
2919;;;
2920;;; Each element of the <vars-etc> list is of the form:
2921;;;
2922;;; (<var> getter-hook setter-hook)
2923;;;
2924;;; Both hook elements are evaluated; the variable name is not.
2925;;; Either hook may be #f or procedure.
2926;;;
2927;;; A getter hook is a thunk that returns a value for the corresponding
2928;;; variable. If omitted (#f is passed), the binding of <var> is
2929;;; returned.
2930;;;
2931;;; A setter hook is a procedure of one argument that accepts a new value
2932;;; for the corresponding variable. If omitted, the binding of <var>
2933;;; is simply set using set!.
2934;;;
2935(defmacro-public with-configuration-getter-and-setter (vars-etc proc)
2936 `((lambda (simpler-get simpler-set body-proc)
2937 (with-delegating-getter-and-setter ()
2938 simpler-get simpler-set body-proc))
2939
2940 (lambda (kw)
2941 (case kw
2942 ,@(map (lambda (v) `((,(symbol->keyword (car v)))
2943 ,(cond
2944 ((cadr v) => list)
2945 (else `(list ,(car v))))))
2946 vars-etc)))
2947
2948 (lambda (kw new-val)
2949 (case kw
2950 ,@(map (lambda (v) `((,(symbol->keyword (car v)))
2951 ,(cond
2952 ((caddr v) => (lambda (proc) `(,proc new-val)))
2953 (else `(set! ,(car v) new-val)))))
2954 vars-etc)))
2955
2956 ,proc))
2957
2958(defmacro-public with-delegating-configuration-getter-and-setter (vars-etc delegate-get delegate-set proc)
2959 `((lambda (simpler-get simpler-set body-proc)
2960 (with-delegating-getter-and-setter ()
2961 simpler-get simpler-set body-proc))
2962
2963 (lambda (kw)
2964 (case kw
2965 ,@(append! (map (lambda (v) `((,(symbol->keyword (car v)))
2966 ,(cond
2967 ((cadr v) => list)
2968 (else `(list ,(car v))))))
2969 vars-etc)
2970 `((else (,delegate-get kw))))))
2971
2972 (lambda (kw new-val)
2973 (case kw
2974 ,@(append! (map (lambda (v) `((,(symbol->keyword (car v)))
2975 ,(cond
2976 ((caddr v) => (lambda (proc) `(,proc new-val)))
2977 (else `(set! ,(car v) new-val)))))
2978 vars-etc)
2979 `((else (,delegate-set kw new-val))))))
2980
2981 ,proc))
2982
2983
2984;;; let-configuration-getter-and-setter <vars-etc> proc
2985;;;
2986;;; This procedure is like with-configuration-getter-and-setter (q.v.)
2987;;; except that each element of <vars-etc> is:
2988;;;
2989;;; (<var> initial-value getter-hook setter-hook)
2990;;;
2991;;; Unlike with-configuration-getter-and-setter, let-configuration-getter-and-setter
2992;;; introduces bindings for the variables named in <vars-etc>.
2993;;; It is short-hand for:
2994;;;
2995;;; (let ((<var1> initial-value-1)
2996;;; (<var2> initial-value-2)
2997;;; ...)
2998;;; (with-configuration-getter-and-setter ((<var1> v1-get v1-set) ...) proc))
2999;;;
3000(defmacro-public let-with-configuration-getter-and-setter (vars-etc proc)
3001 `(let ,(map (lambda (v) `(,(car v) ,(cadr v))) vars-etc)
3002 (with-configuration-getter-and-setter ,(map (lambda (v) `(,(car v) ,(caddr v) ,(cadddr v))) vars-etc)
3003 ,proc)))
3004
3005
3006
3007\f
44cf1f0f
JB
3008;;; {Implementation of COMMON LISP list functions for Scheme}
3009
0f2d19dd
JB
3010(define-module (ice-9 common-list))
3011
3012;;"comlist.scm" Implementation of COMMON LISP list functions for Scheme
3013; Copyright (C) 1991, 1993, 1995 Aubrey Jaffer.
3014;
3015;Permission to copy this software, to redistribute it, and to use it
3016;for any purpose is granted, subject to the following restrictions and
3017;understandings.
3018;
3019;1. Any copy made of this software must include this copyright notice
3020;in full.
3021;
3022;2. I have made no warrantee or representation that the operation of
3023;this software will be error-free, and I am under no obligation to
3024;provide any services, by way of maintenance, update, or otherwise.
3025;
3026;3. In conjunction with products arising from the use of this
3027;material, there shall be no use of my name in any advertising,
3028;promotional, or sales literature without prior written consent in
3029;each case.
3030
0f2d19dd
JB
3031(define-public (adjoin e l) (if (memq e l) l (cons e l)))
3032
3033(define-public (union l1 l2)
3034 (cond ((null? l1) l2)
3035 ((null? l2) l1)
3036 (else (union (cdr l1) (adjoin (car l1) l2)))))
3037
3038(define-public (intersection l1 l2)
3039 (cond ((null? l1) l1)
3040 ((null? l2) l2)
3041 ((memv (car l1) l2) (cons (car l1) (intersection (cdr l1) l2)))
3042 (else (intersection (cdr l1) l2))))
3043
3044(define-public (set-difference l1 l2)
3045 (cond ((null? l1) l1)
3046 ((memv (car l1) l2) (set-difference (cdr l1) l2))
3047 (else (cons (car l1) (set-difference (cdr l1) l2)))))
3048
3049(define-public (reduce-init p init l)
3050 (if (null? l)
3051 init
3052 (reduce-init p (p init (car l)) (cdr l))))
3053
3054(define-public (reduce p l)
3055 (cond ((null? l) l)
3056 ((null? (cdr l)) (car l))
3057 (else (reduce-init p (car l) (cdr l)))))
3058
3059(define-public (some pred l . rest)
3060 (cond ((null? rest)
3061 (let mapf ((l l))
3062 (and (not (null? l))
3063 (or (pred (car l)) (mapf (cdr l))))))
3064 (else (let mapf ((l l) (rest rest))
3065 (and (not (null? l))
3066 (or (apply pred (car l) (map car rest))
3067 (mapf (cdr l) (map cdr rest))))))))
3068
3069(define-public (every pred l . rest)
3070 (cond ((null? rest)
3071 (let mapf ((l l))
3072 (or (null? l)
3073 (and (pred (car l)) (mapf (cdr l))))))
3074 (else (let mapf ((l l) (rest rest))
3075 (or (null? l)
3076 (and (apply pred (car l) (map car rest))
3077 (mapf (cdr l) (map cdr rest))))))))
3078
3079(define-public (notany pred . ls) (not (apply some pred ls)))
3080
3081(define-public (notevery pred . ls) (not (apply every pred ls)))
3082
3083(define-public (find-if t l)
3084 (cond ((null? l) #f)
3085 ((t (car l)) (car l))
3086 (else (find-if t (cdr l)))))
3087
3088(define-public (member-if t l)
3089 (cond ((null? l) #f)
3090 ((t (car l)) l)
3091 (else (member-if t (cdr l)))))
3092
3093(define-public (remove-if p l)
3094 (cond ((null? l) '())
3095 ((p (car l)) (remove-if p (cdr l)))
3096 (else (cons (car l) (remove-if p (cdr l))))))
3097
3098(define-public (delete-if! pred list)
3099 (let delete-if ((list list))
3100 (cond ((null? list) '())
3101 ((pred (car list)) (delete-if (cdr list)))
3102 (else
3103 (set-cdr! list (delete-if (cdr list)))
3104 list))))
3105
3106(define-public (delete-if-not! pred list)
3107 (let delete-if ((list list))
3108 (cond ((null? list) '())
3109 ((not (pred (car list))) (delete-if (cdr list)))
3110 (else
3111 (set-cdr! list (delete-if (cdr list)))
3112 list))))
3113
3114(define-public (butlast lst n)
3115 (letrec ((l (- (length lst) n))
3116 (bl (lambda (lst n)
3117 (cond ((null? lst) lst)
3118 ((positive? n)
3119 (cons (car lst) (bl (cdr lst) (+ -1 n))))
3120 (else '())))))
3121 (bl lst (if (negative? n)
52c5a23a 3122 (error "negative argument to butlast" n)
0f2d19dd
JB
3123 l))))
3124
3125(define-public (and? . args)
3126 (cond ((null? args) #t)
3127 ((car args) (apply and? (cdr args)))
3128 (else #f)))
3129
3130(define-public (or? . args)
3131 (cond ((null? args) #f)
3132 ((car args) #t)
3133 (else (apply or? (cdr args)))))
3134
3135(define-public (has-duplicates? lst)
3136 (cond ((null? lst) #f)
3137 ((member (car lst) (cdr lst)) #t)
3138 (else (has-duplicates? (cdr lst)))))
3139
3140(define-public (list* x . y)
3141 (define (list*1 x)
3142 (if (null? (cdr x))
3143 (car x)
3144 (cons (car x) (list*1 (cdr x)))))
3145 (if (null? y)
3146 x
3147 (cons x (list*1 y))))
3148
3149;; pick p l
3150;; Apply P to each element of L, returning a list of elts
3151;; for which P returns a non-#f value.
3152;;
3153(define-public (pick p l)
3154 (let loop ((s '())
3155 (l l))
3156 (cond
3157 ((null? l) s)
3158 ((p (car l)) (loop (cons (car l) s) (cdr l)))
3159 (else (loop s (cdr l))))))
3160
3161;; pick p l
3162;; Apply P to each element of L, returning a list of the
3163;; non-#f return values of P.
3164;;
3165(define-public (pick-mappings p l)
3166 (let loop ((s '())
3167 (l l))
3168 (cond
3169 ((null? l) s)
3170 ((p (car l)) => (lambda (mapping) (loop (cons mapping s) (cdr l))))
3171 (else (loop s (cdr l))))))
3172
3173(define-public (uniq l)
3174 (if (null? l)
3175 '()
3176 (let ((u (uniq (cdr l))))
3177 (if (memq (car l) u)
3178 u
3179 (cons (car l) u)))))
3180
3181\f
44cf1f0f
JB
3182;;; {Functions for browsing modules}
3183
0f2d19dd
JB
3184(define-module (ice-9 ls)
3185 :use-module (ice-9 common-list))
3186
0f2d19dd
JB
3187;;;;
3188;;; local-definitions-in root name
8b718458
JB
3189;;; Returns a list of names defined locally in the named
3190;;; subdirectory of root.
0f2d19dd 3191;;; definitions-in root name
8b718458
JB
3192;;; Returns a list of all names defined in the named
3193;;; subdirectory of root. The list includes alll locally
3194;;; defined names as well as all names inherited from a
3195;;; member of a use-list.
0f2d19dd
JB
3196;;;
3197;;; A convenient interface for examining the nature of things:
3198;;;
3199;;; ls . various-names
3200;;;
8b718458
JB
3201;;; With just one argument, interpret that argument as the
3202;;; name of a subdirectory of the current module and
3203;;; return a list of names defined there.
0f2d19dd 3204;;;
8b718458
JB
3205;;; With more than one argument, still compute
3206;;; subdirectory lists, but return a list:
0f2d19dd
JB
3207;;; ((<subdir-name> . <names-defined-there>)
3208;;; (<subdir-name> . <names-defined-there>)
3209;;; ...)
3210;;;
3211
3212(define-public (local-definitions-in root names)
0dd5491c 3213 (let ((m (nested-ref root names))
0f2d19dd
JB
3214 (answer '()))
3215 (if (not (module? m))
3216 (set! answer m)
3217 (module-for-each (lambda (k v) (set! answer (cons k answer))) m))
3218 answer))
3219
3220(define-public (definitions-in root names)
0dd5491c 3221 (let ((m (nested-ref root names)))
0f2d19dd
JB
3222 (if (not (module? m))
3223 m
3224 (reduce union
3225 (cons (local-definitions-in m '())
8b718458
JB
3226 (map (lambda (m2) (definitions-in m2 '()))
3227 (module-uses m)))))))
0f2d19dd
JB
3228
3229(define-public (ls . various-refs)
3230 (and various-refs
3231 (if (cdr various-refs)
3232 (map (lambda (ref)
3233 (cons ref (definitions-in (current-module) ref)))
3234 various-refs)
3235 (definitions-in (current-module) (car various-refs)))))
3236
3237(define-public (lls . various-refs)
3238 (and various-refs
3239 (if (cdr various-refs)
3240 (map (lambda (ref)
3241 (cons ref (local-definitions-in (current-module) ref)))
3242 various-refs)
3243 (local-definitions-in (current-module) (car various-refs)))))
3244
0dd5491c 3245(define-public (recursive-local-define name value)
0f2d19dd
JB
3246 (let ((parent (reverse! (cdr (reverse name)))))
3247 (and parent (make-modules-in (current-module) parent))
0dd5491c 3248 (local-define name value)))
0f2d19dd 3249\f
44cf1f0f
JB
3250;;; {Queues}
3251
0f2d19dd
JB
3252(define-module (ice-9 q))
3253
3254;;;; Copyright (C) 1995 Free Software Foundation, Inc.
3255;;;;
3256;;;; This program is free software; you can redistribute it and/or modify
3257;;;; it under the terms of the GNU General Public License as published by
3258;;;; the Free Software Foundation; either version 2, or (at your option)
3259;;;; any later version.
3260;;;;
3261;;;; This program is distributed in the hope that it will be useful,
3262;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
3263;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
3264;;;; GNU General Public License for more details.
3265;;;;
3266;;;; You should have received a copy of the GNU General Public License
3267;;;; along with this software; see the file COPYING. If not, write to
15328041
JB
3268;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
3269;;;; Boston, MA 02111-1307 USA
0f2d19dd
JB
3270;;;;
3271
0f2d19dd
JB
3272;;;;
3273;;; Q: Based on the interface to
3274;;;
3275;;; "queue.scm" Queues/Stacks for Scheme
3276;;; Written by Andrew Wilcox (awilcox@astro.psu.edu) on April 1, 1992.
3277;;;
3278
0f2d19dd
JB
3279;;;;
3280;;; {Q}
3281;;;
3282;;; A list is just a bunch of cons pairs that follows some constrains, right?
3283;;; Association lists are the same. Hash tables are just vectors and association
3284;;; lists. You can print them, read them, write them as constants, pun them off as other data
3285;;; structures etc. This is good. This is lisp. These structures are fast and compact
3286;;; and easy to manipulate arbitrarily because of their simple, regular structure and
3287;;; non-disjointedness (associations being lists and so forth).
3288;;;
3289;;; So I figured, queues should be the same -- just a "subtype" of cons-pair
3290;;; structures in general.
3291;;;
3292;;; A queue is a cons pair:
3293;;; ( <the-q> . <last-pair> )
3294;;;
3295;;; <the-q> is a list of things in the q. New elements go at the end of that list.
3296;;;
3297;;; <last-pair> is #f if the q is empty, and otherwise is the last pair of <the-q>.
3298;;;
3299;;; q's print nicely, but alas, they do not read well because the eq?-ness of
3300;;; <last-pair> and (last-pair <the-q>) is lost by read. The procedure
3301;;;
3302;;; (sync-q! q)
3303;;;
3304;;; recomputes and resets the <last-pair> component of a queue.
3305;;;
3306
3307(define-public (sync-q! obj) (set-cdr! obj (and (car obj) (last-pair (car obj)))))
3308
3309;;; make-q
3310;;; return a new q.
3311;;;
3312(define-public (make-q) (cons '() '()))
3313
3314;;; q? obj
3315;;; Return true if obj is a Q.
3316;;; An object is a queue if it is equal? to '(#f . #f) or
3317;;; if it is a pair P with (list? (car P)) and (eq? (cdr P) (last-pair P)).
3318;;;
3319(define-public (q? obj) (and (pair? obj)
3320 (or (and (null? (car obj))
3321 (null? (cdr obj)))
3322 (and
3323 (list? (car obj))
3324 (eq? (cdr obj) (last-pair (car obj)))))))
3325
3326;;; q-empty? obj
3327;;;
3328(define-public (q-empty? obj) (null? (car obj)))
3329
3330;;; q-empty-check q
3331;;; Throw a q-empty exception if Q is empty.
3332(define-public (q-empty-check q) (if (q-empty? q) (throw 'q-empty q)))
3333
3334
3335;;; q-front q
3336;;; Return the first element of Q.
3337(define-public (q-front q) (q-empty-check q) (caar q))
3338
52c5a23a 3339;;; q-rear q
0f2d19dd
JB
3340;;; Return the last element of Q.
3341(define-public (q-rear q) (q-empty-check q) (cadr q))
3342
3343;;; q-remove! q obj
3344;;; Remove all occurences of obj from Q.
3345(define-public (q-remove! q obj)
3346 (while (memq obj (car q))
3347 (set-car! q (delq! obj (car q))))
3348 (set-cdr! q (last-pair (car q))))
3349
3350;;; q-push! q obj
3351;;; Add obj to the front of Q
3352(define-public (q-push! q d)
3353 (let ((h (cons d (car q))))
3354 (set-car! q h)
3355 (if (null? (cdr q))
3356 (set-cdr! q h))))
3357
3358;;; enq! q obj
3359;;; Add obj to the rear of Q
3360(define-public (enq! q d)
3361 (let ((h (cons d '())))
3362 (if (not (null? (cdr q)))
3363 (set-cdr! (cdr q) h)
3364 (set-car! q h))
3365 (set-cdr! q h)))
3366
3367;;; q-pop! q
3368;;; Take the front of Q and return it.
3369(define-public (q-pop! q)
3370 (q-empty-check q)
3371 (let ((it (caar q))
3372 (next (cdar q)))
3373 (if (not next)
3374 (set-cdr! q #f))
3375 (set-car! q next)
3376 it))
3377
3378;;; deq! q
3379;;; Take the front of Q and return it.
3380(define-public deq! q-pop!)
3381
3382;;; q-length q
3383;;; Return the number of enqueued elements.
3384;;;
3385(define-public (q-length q) (length (car q)))
3386
3387
3388
3389\f
44cf1f0f
JB
3390;;; {The runq data structure}
3391
0f2d19dd
JB
3392(define-module (ice-9 runq)
3393 :use-module (ice-9 q))
3394
0f2d19dd
JB
3395;;;; Copyright (C) 1996 Free Software Foundation, Inc.
3396;;;;
3397;;;; This program is free software; you can redistribute it and/or modify
3398;;;; it under the terms of the GNU General Public License as published by
3399;;;; the Free Software Foundation; either version 2, or (at your option)
3400;;;; any later version.
3401;;;;
3402;;;; This program is distributed in the hope that it will be useful,
3403;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
3404;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
3405;;;; GNU General Public License for more details.
3406;;;;
3407;;;; You should have received a copy of the GNU General Public License
3408;;;; along with this software; see the file COPYING. If not, write to
15328041
JB
3409;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
3410;;;; Boston, MA 02111-1307 USA
0f2d19dd
JB
3411;;;;
3412
0f2d19dd 3413;;;;
0f2d19dd
JB
3414;;;
3415;;; One way to schedule parallel computations in a serial environment is
3416;;; to explicitly divide each task up into small, finite execution time,
3417;;; strips. Then you interleave the execution of strips from various
3418;;; tasks to achieve a kind of parallelism. Runqs are a handy data
3419;;; structure for this style of programming.
3420;;;
3421;;; We use thunks (nullary procedures) and lists of thunks to represent
3422;;; strips. By convention, the return value of a strip-thunk must either
3423;;; be another strip or the value #f.
3424;;;
3425;;; A runq is a procedure that manages a queue of strips. Called with no
3426;;; arguments, it processes one strip from the queue. Called with
3427;;; arguments, the arguments form a control message for the queue. The
3428;;; first argument is a symbol which is the message selector.
3429;;;
3430;;; A strip is processed this way: If the strip is a thunk, the thunk is
3431;;; called -- if it returns a strip, that strip is added back to the
3432;;; queue. To process a strip which is a list of thunks, the CAR of that
3433;;; list is called. After a call to that CAR, there are 0, 1, or 2 strips
3434;;; -- perhaps one returned by the thunk, and perhaps the CDR of the
3435;;; original strip if that CDR is not nil. The runq puts whichever of
3436;;; these strips exist back on the queue. (The exact order in which
3437;;; strips are put back on the queue determines the scheduling behavior of
3438;;; a particular queue -- it's a parameter.)
3439;;;
3440;;;
3441
3442
3443
3444;;;;
3445;;; (runq-control q msg . args)
3446;;;
3447;;; processes in the default way the control messages that
3448;;; can be sent to a runq. Q should be an ordinary
3449;;; Q (see utils/q.scm).
3450;;;
3451;;; The standard runq messages are:
3452;;;
3453;;; 'add! strip0 strip1... ;; to enqueue one or more strips
3454;;; 'enqueue! strip0 strip1... ;; to enqueue one or more strips
3455;;; 'push! strip0 ... ;; add strips to the front of the queue
3456;;; 'empty? ;; true if it is
3457;;; 'length ;; how many strips in the queue?
3458;;; 'kill! ;; empty the queue
3459;;; else ;; throw 'not-understood
3460;;;
3461(define-public (runq-control q msg . args)
3462 (case msg
3463 ((add!) (for-each (lambda (t) (enq! q t)) args) '*unspecified*)
3464 ((enque!) (for-each (lambda (t) (enq! q t)) args) '*unspecified*)
3465 ((push!) (for-each (lambda (t) (q-push! q t)) args) '*unspecified*)
3466 ((empty?) (q-empty? q))
3467 ((length) (q-length q))
3468 ((kill!) (set! q (make-q)))
3469 (else (throw 'not-understood msg args))))
3470
3471(define (run-strip thunk) (catch #t thunk (lambda ign (warn 'runq-strip thunk ign) #f)))
3472
3473;;;;
3474;;; make-void-runq
3475;;;
3476;;; Make a runq that discards all messages except "length", for which
3477;;; it returns 0.
3478;;;
3479(define-public (make-void-runq)
3480 (lambda opts
3481 (and opts
3482 (apply-to-args opts
3483 (lambda (msg . args)
3484 (case msg
3485 ((length) 0)
3486 (else #f)))))))
3487
3488;;;;
3489;;; (make-fair-runq)
3490;;;
3491;;; Returns a runq procedure.
3492;;; Called with no arguments, the procedure processes one strip from the queue.
3493;;; Called with arguments, it uses runq-control.
3494;;;
3495;;; In a fair runq, if a strip returns a new strip X, X is added
3496;;; to the end of the queue, meaning it will be the last to execute
3497;;; of all the remaining procedures.
3498;;;
3499(define-public (make-fair-runq)
3500 (letrec ((q (make-q))
3501 (self
3502 (lambda ctl
3503 (if ctl
3504 (apply runq-control q ctl)
3505 (and (not (q-empty? q))
3506 (let ((next-strip (deq! q)))
3507 (cond
3508 ((procedure? next-strip) (let ((k (run-strip next-strip)))
3509 (and k (enq! q k))))
3510 ((pair? next-strip) (let ((k (run-strip (car next-strip))))
3511 (and k (enq! q k)))
3512 (if (not (null? (cdr next-strip)))
3513 (enq! q (cdr next-strip)))))
3514 self))))))
3515 self))
3516
3517
3518;;;;
3519;;; (make-exclusive-runq)
3520;;;
3521;;; Returns a runq procedure.
3522;;; Called with no arguments, the procedure processes one strip from the queue.
3523;;; Called with arguments, it uses runq-control.
3524;;;
3525;;; In an exclusive runq, if a strip W returns a new strip X, X is added
3526;;; to the front of the queue, meaning it will be the next to execute
3527;;; of all the remaining procedures.
3528;;;
3529;;; An exception to this occurs if W was the CAR of a list of strips.
3530;;; In that case, after the return value of W is pushed onto the front
3531;;; of the queue, the CDR of the list of strips is pushed in front
3532;;; of that (if the CDR is not nil). This way, the rest of the thunks
3533;;; in the list that contained W have priority over the return value of W.
3534;;;
3535(define-public (make-exclusive-runq)
3536 (letrec ((q (make-q))
3537 (self
3538 (lambda ctl
3539 (if ctl
3540 (apply runq-control q ctl)
3541 (and (not (q-empty? q))
3542 (let ((next-strip (deq! q)))
3543 (cond
3544 ((procedure? next-strip) (let ((k (run-strip next-strip)))
3545 (and k (q-push! q k))))
3546 ((pair? next-strip) (let ((k (run-strip (car next-strip))))
3547 (and k (q-push! q k)))
3548 (if (not (null? (cdr next-strip)))
3549 (q-push! q (cdr next-strip)))))
3550 self))))))
3551 self))
3552
3553
3554;;;;
3555;;; (make-subordinate-runq-to superior basic-inferior)
3556;;;
3557;;; Returns a runq proxy for the runq basic-inferior.
3558;;;
3559;;; The proxy watches for operations on the basic-inferior that cause
3560;;; a transition from a queue length of 0 to a non-zero length and
3561;;; vice versa. While the basic-inferior queue is not empty,
3562;;; the proxy installs a task on the superior runq. Each strip
3563;;; of that task processes N strips from the basic-inferior where
3564;;; N is the length of the basic-inferior queue when the proxy
3565;;; strip is entered. [Countless scheduling variations are possible.]
3566;;;
3567(define-public (make-subordinate-runq-to superior-runq basic-runq)
3568 (let ((runq-task (cons #f #f)))
3569 (set-car! runq-task
3570 (lambda ()
3571 (if (basic-runq 'empty?)
3572 (set-cdr! runq-task #f)
3573 (do ((n (basic-runq 'length) (1- n)))
3574 ((<= n 0) #f)
3575 (basic-runq)))))
3576 (letrec ((self
3577 (lambda ctl
3578 (if (not ctl)
3579 (let ((answer (basic-runq)))
3580 (self 'empty?)
3581 answer)
3582 (begin
3583 (case (car ctl)
3584 ((suspend) (set-cdr! runq-task #f))
3585 (else (let ((answer (apply basic-runq ctl)))
3586 (if (and (not (cdr runq-task)) (not (basic-runq 'empty?)))
3587 (begin
3588 (set-cdr! runq-task runq-task)
3589 (superior-runq 'add! runq-task)))
3590 answer))))))))
3591 self)))
3592
3593;;;;
3594;;; (define fork-strips (lambda args args))
3595;;; Return a strip that starts several strips in
3596;;; parallel. If this strip is enqueued on a fair
3597;;; runq, strips of the parallel subtasks will run
3598;;; round-robin style.
3599;;;
3600(define fork-strips (lambda args args))
3601
3602
3603;;;;
3604;;; (strip-sequence . strips)
3605;;;
3606;;; Returns a new strip which is the concatenation of the argument strips.
3607;;;
3608(define-public ((strip-sequence . strips))
3609 (let loop ((st (let ((a strips)) (set! strips #f) a)))
3610 (and (not (null? st))
3611 (let ((then ((car st))))
3612 (if then
3613 (lambda () (loop (cons then (cdr st))))
3614 (lambda () (loop (cdr st))))))))
3615
3616
3617;;;;
3618;;; (fair-strip-subtask . initial-strips)
3619;;;
3620;;; Returns a new strip which is the synchronos, fair,
3621;;; parallel execution of the argument strips.
3622;;;
3623;;;
3624;;;
3625(define-public (fair-strip-subtask . initial-strips)
3626 (let ((st (make-fair-runq)))
3627 (apply st 'add! initial-strips)
3628 st))
3629
3630\f
44cf1f0f 3631;;; {String Fun}
0f2d19dd 3632
0f2d19dd
JB
3633(define-module (ice-9 string-fun))
3634
0f2d19dd 3635;;;;
0f2d19dd
JB
3636;;;
3637;;; Various string funcitons, particularly those that take
3638;;; advantage of the "shared substring" capability.
3639;;;
3640\f
44cf1f0f 3641;;; {String Fun: Dividing Strings Into Fields}
0f2d19dd
JB
3642;;;
3643;;; The names of these functions are very regular.
3644;;; Here is a grammar of a call to one of these:
3645;;;
3646;;; <string-function-invocation>
3647;;; := (<action>-<seperator-disposition>-<seperator-determination> <seperator-param> <str> <ret>)
3648;;;
3649;;; <str> = the string
3650;;;
3651;;; <ret> = The continuation. String functions generally return
3652;;; multiple values by passing them to this procedure.
3653;;;
3654;;; <action> = split
3655;;; | separate-fields
3656;;;
3657;;; "split" means to divide a string into two parts.
3658;;; <ret> will be called with two arguments.
3659;;;
3660;;; "separate-fields" means to divide a string into as many
3661;;; parts as possible. <ret> will be called with
3662;;; however many fields are found.
3663;;;
3664;;; <seperator-disposition> = before
3665;;; | after
3666;;; | discarding
3667;;;
3668;;; "before" means to leave the seperator attached to
3669;;; the beginning of the field to its right.
3670;;; "after" means to leave the seperator attached to
3671;;; the end of the field to its left.
3672;;; "discarding" means to discard seperators.
3673;;;
3674;;; Other dispositions might be handy. For example, "isolate"
3675;;; could mean to treat the separator as a field unto itself.
3676;;;
3677;;; <seperator-determination> = char
3678;;; | predicate
3679;;;
3680;;; "char" means to use a particular character as field seperator.
3681;;; "predicate" means to check each character using a particular predicate.
3682;;;
3683;;; Other determinations might be handy. For example, "character-set-member".
3684;;;
3685;;; <seperator-param> = A parameter that completes the meaning of the determinations.
3686;;; For example, if the determination is "char", then this parameter
3687;;; says which character. If it is "predicate", the parameter is the
3688;;; predicate.
3689;;;
3690;;;
3691;;; For example:
3692;;;
3693;;; (separate-fields-discarding-char #\, "foo, bar, baz, , bat" list)
3694;;; => ("foo" " bar" " baz" " " " bat")
3695;;;
3696;;; (split-after-char #\- 'an-example-of-split list)
3697;;; => ("an-" "example-of-split")
3698;;;
3699;;; As an alternative to using a determination "predicate", or to trying to do anything
3700;;; complicated with these functions, consider using regular expressions.
3701;;;
3702
3703(define-public (split-after-char char str ret)
3704 (let ((end (cond
3705 ((string-index str char) => 1+)
3706 (else (string-length str)))))
3707 (ret (make-shared-substring str 0 end)
3708 (make-shared-substring str end))))
3709
3710(define-public (split-before-char char str ret)
3711 (let ((end (or (string-index str char)
3712 (string-length str))))
3713 (ret (make-shared-substring str 0 end)
3714 (make-shared-substring str end))))
3715
3716(define-public (split-discarding-char char str ret)
3717 (let ((end (string-index str char)))
3718 (if (not end)
3719 (ret str "")
3720 (ret (make-shared-substring str 0 end)
3721 (make-shared-substring str (1+ end))))))
3722
3723(define-public (split-after-char-last char str ret)
3724 (let ((end (cond
3725 ((string-rindex str char) => 1+)
3726 (else 0))))
3727 (ret (make-shared-substring str 0 end)
3728 (make-shared-substring str end))))
3729
3730(define-public (split-before-char-last char str ret)
3731 (let ((end (or (string-rindex str char) 0)))
3732 (ret (make-shared-substring str 0 end)
3733 (make-shared-substring str end))))
3734
3735(define-public (split-discarding-char-last char str ret)
3736 (let ((end (string-rindex str char)))
3737 (if (not end)
3738 (ret str "")
3739 (ret (make-shared-substring str 0 end)
3740 (make-shared-substring str (1+ end))))))
3741
3742(define (split-before-predicate pred str ret)
3743 (let loop ((n 0))
3744 (cond
3745 ((= n (length str)) (ret str ""))
3746 ((not (pred (string-ref str n))) (loop (1+ n)))
3747 (else (ret (make-shared-substring str 0 n)
3748 (make-shared-substring str n))))))
3749(define (split-after-predicate pred str ret)
3750 (let loop ((n 0))
3751 (cond
3752 ((= n (length str)) (ret str ""))
3753 ((not (pred (string-ref str n))) (loop (1+ n)))
3754 (else (ret (make-shared-substring str 0 (1+ n))
3755 (make-shared-substring str (1+ n)))))))
3756
3757(define (split-discarding-predicate pred str ret)
3758 (let loop ((n 0))
3759 (cond
3760 ((= n (length str)) (ret str ""))
3761 ((not (pred (string-ref str n))) (loop (1+ n)))
3762 (else (ret (make-shared-substring str 0 n)
3763 (make-shared-substring str (1+ n)))))))
3764
21ed9efe 3765(define-public (separate-fields-discarding-char ch str ret)
0f2d19dd
JB
3766 (let loop ((fields '())
3767 (str str))
3768 (cond
3769 ((string-rindex str ch)
3770 => (lambda (pos) (loop (cons (make-shared-substring str (+ 1 w)) fields)
3771 (make-shared-substring str 0 w))))
3772 (else (ret (cons str fields))))))
3773
21ed9efe 3774(define-public (separate-fields-after-char ch str ret)
0f2d19dd
JB
3775 (let loop ((fields '())
3776 (str str))
3777 (cond
3778 ((string-rindex str ch)
3779 => (lambda (pos) (loop (cons (make-shared-substring str (+ 1 w)) fields)
3780 (make-shared-substring str 0 (+ 1 w)))))
3781 (else (ret (cons str fields))))))
3782
21ed9efe 3783(define-public (separate-fields-before-char ch str ret)
0f2d19dd
JB
3784 (let loop ((fields '())
3785 (str str))
3786 (cond
3787 ((string-rindex str ch)
3788 => (lambda (pos) (loop (cons (make-shared-substring str w) fields)
3789 (make-shared-substring str 0 w))))
3790 (else (ret (cons str fields))))))
3791
3792\f
44cf1f0f 3793;;; {String Fun: String Prefix Predicates}
0f2d19dd
JB
3794;;;
3795;;; Very simple:
3796;;;
21ed9efe 3797;;; (define-public ((string-prefix-predicate pred?) prefix str)
0f2d19dd
JB
3798;;; (and (<= (length prefix) (length str))
3799;;; (pred? prefix (make-shared-substring str 0 (length prefix)))))
3800;;;
3801;;; (define-public string-prefix=? (string-prefix-predicate string=?))
3802;;;
3803
3804(define-public ((string-prefix-predicate pred?) prefix str)
3805 (and (<= (length prefix) (length str))
3806 (pred? prefix (make-shared-substring str 0 (length prefix)))))
3807
3808(define-public string-prefix=? (string-prefix-predicate string=?))
3809
3810\f
44cf1f0f 3811;;; {String Fun: Strippers}
0f2d19dd
JB
3812;;;
3813;;; <stripper> = sans-<removable-part>
3814;;;
3815;;; <removable-part> = surrounding-whitespace
3816;;; | trailing-whitespace
3817;;; | leading-whitespace
3818;;; | final-newline
3819;;;
3820
3821(define-public (sans-surrounding-whitespace s)
3822 (let ((st 0)
3823 (end (string-length s)))
3824 (while (and (< st (string-length s))
3825 (char-whitespace? (string-ref s st)))
3826 (set! st (1+ st)))
3827 (while (and (< 0 end)
3828 (char-whitespace? (string-ref s (1- end))))
3829 (set! end (1- end)))
3830 (if (< end st)
3831 ""
3832 (make-shared-substring s st end))))
3833
3834(define-public (sans-trailing-whitespace s)
3835 (let ((st 0)
3836 (end (string-length s)))
3837 (while (and (< 0 end)
3838 (char-whitespace? (string-ref s (1- end))))
3839 (set! end (1- end)))
3840 (if (< end st)
3841 ""
3842 (make-shared-substring s st end))))
3843
3844(define-public (sans-leading-whitespace s)
3845 (let ((st 0)
3846 (end (string-length s)))
3847 (while (and (< st (string-length s))
3848 (char-whitespace? (string-ref s st)))
3849 (set! st (1+ st)))
3850 (if (< end st)
3851 ""
3852 (make-shared-substring s st end))))
3853
3854(define-public (sans-final-newline str)
3855 (cond
3856 ((= 0 (string-length str))
3857 str)
3858
3859 ((char=? #\nl (string-ref str (1- (string-length str))))
3860 (make-shared-substring str 0 (1- (string-length str))))
3861
3862 (else str)))
3863\f
44cf1f0f 3864;;; {String Fun: has-trailing-newline?}
0f2d19dd
JB
3865;;;
3866
3867(define-public (has-trailing-newline? str)
3868 (and (< 0 (string-length str))
3869 (char=? #\nl (string-ref str (1- (string-length str))))))
3870
3871
3872\f
44cf1f0f 3873;;; {String Fun: with-regexp-parts}
0f2d19dd 3874
52c5a23a
JB
3875;;; This relies on the older, hairier regexp interface, which we don't
3876;;; particularly want to implement, and it's not used anywhere, so
3877;;; we're just going to drop it for now.
3878;;; (define-public (with-regexp-parts regexp fields str return fail)
3879;;; (let ((parts (regexec regexp str fields)))
3880;;; (if (number? parts)
3881;;; (fail parts)
3882;;; (apply return parts))))
0f2d19dd
JB
3883
3884\f
c56634ba
MD
3885;;; {Load debug extension code if debug extensions present.}
3886;;;
3887;;; *fixme* This is a temporary solution.
3888;;;
0f2d19dd 3889
c56634ba 3890(if (memq 'debug-extensions *features*)
90895e5c
MD
3891 (define-module (guile) :use-module (ice-9 debug)))
3892
3893\f
90d5e280
MD
3894;;; {Load session support if present.}
3895;;;
3896;;; *fixme* This is a temporary solution.
3897;;;
3898
3899(if (%search-load-path "ice-9/session.scm")
3900 (define-module (guile) :use-module (ice-9 session)))
3901
3902\f
90895e5c
MD
3903;;; {Load thread code if threads are present.}
3904;;;
3905;;; *fixme* This is a temporary solution.
3906;;;
3907
3908(if (memq 'threads *features*)
3909 (define-module (guile) :use-module (ice-9 threads)))
3910
21ed9efe
MD
3911\f
3912;;; {Load emacs interface support if emacs option is given.}
3913;;;
3914;;; *fixme* This is a temporary solution.
3915;;;
3916
2e3fbd8d
MD
3917(if (and (module-defined? the-root-module 'use-emacs-interface)
3918 use-emacs-interface)
8309a10d
MD
3919 (begin
3920 (if (memq 'debug-extensions *features*)
3921 (debug-enable 'backtrace))
3922 (define-module (guile) :use-module (ice-9 emacs))))
21ed9efe
MD
3923
3924\f
05817d9e
JB
3925;;; {Load regexp code if regexp primitives are available.}
3926
3927(if (memq 'regex *features*)
3928 (define-module (guile) :use-module (ice-9 regex)))
3929
3930\f
9946dd45
JB
3931;;; {Check that the interpreter and scheme code match up.}
3932
3933(let ((show-line
3934 (lambda args
3935 (with-output-to-port (current-error-port)
3936 (lambda ()
3937 (display (car (command-line)))
3938 (display ": ")
3939 (for-each (lambda (string) (display string))
3940 args)
3941 (newline))))))
3942
3943 (load-from-path "ice-9/version.scm")
3944
3945 (if (not (string=?
3946 (libguile-config-stamp) ; from the interprpreter
3947 (ice-9-config-stamp))) ; from the Scheme code
3948 (begin
3949 (show-line "warning: different versions of libguile and ice-9:")
3950 (show-line "libguile: configured on " (libguile-config-stamp))
3951 (show-line "ice-9: configured on " (ice-9-config-stamp)))))
3952
3953\f
21ed9efe 3954
90895e5c 3955(define-module (guile))
6fa8995c
GH
3956
3957(append! %load-path (cons "." ()))