* net_db.h (scm_init_net_db): Fix spelling from scm_init_netdb.
[bpt/guile.git] / ice-9 / boot-9.scm
CommitLineData
0f2d19dd
JB
1;;; installed-scm-file
2
3;;;; Copyright (C) 1995, 1996 Free Software Foundation, Inc.
4;;;;
5;;;; This program is free software; you can redistribute it and/or modify
6;;;; it under the terms of the GNU General Public License as published by
7;;;; the Free Software Foundation; either version 2, or (at your option)
8;;;; any later version.
9;;;;
10;;;; This program is distributed in the hope that it will be useful,
11;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13;;;; GNU General Public License for more details.
14;;;;
15;;;; You should have received a copy of the GNU General Public License
16;;;; along with this software; see the file COPYING. If not, write to
17;;;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
18;;;;
19\f
20
21;;; This file is the first thing loaded into Guile. It adds many mundane
22;;; definitions and a few that are interesting.
23;;;
24;;; The module system (hence the hierarchical namespace) are defined in this
25;;; file.
26;;;
27
28\f
21ed9efe
MD
29;;; During Guile development, we want to use debugging evaluator and record
30;;; positions of source expressions in boot-9.scm by default.
31
32(debug-options-interface (cons 'debug (debug-options-interface)))
33(read-options-interface (cons 'positions (read-options-interface)))
34
35\f
36;;; {Features}
37;;
38
39(define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43\f
79451588
JB
44;;; {R4RS compliance}
45
46(primitive-load-path "ice-9/r4rs.scm")
47
48\f
44cf1f0f 49;;; {Simple Debugging Tools}
0f2d19dd
JB
50;;
51
52
53;; peek takes any number of arguments, writes them to the
54;; current ouput port, and returns the last argument.
55;; It is handy to wrap around an expression to look at
56;; a value each time is evaluated, e.g.:
57;;
58;; (+ 10 (troublesome-fn))
59;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
60;;
61
62(define (peek . stuff)
63 (newline)
64 (display ";;; ")
65 (write stuff)
66 (newline)
67 (car (last-pair stuff)))
68
69(define pk peek)
70
71(define (warn . stuff)
72 (with-output-to-port (current-error-port)
73 (lambda ()
74 (newline)
75 (display ";;; WARNING ")
6355358a 76 (display stuff)
0f2d19dd
JB
77 (newline)
78 (car (last-pair stuff)))))
79
80\f
81;;; {apply and call-with-current-continuation}
82;;;
83;;; These turn syntax, @apply and @call-with-current-continuation,
84;;; into procedures.
85;;;
86
87(set! apply (lambda (fun . args) (@apply fun (apply:nconc2last args))))
44cf1f0f
JB
88(define (call-with-current-continuation proc)
89 (@call-with-current-continuation proc))
0f2d19dd
JB
90
91
92\f
79451588 93;;; {Trivial Functions}
0f2d19dd 94;;;
79451588
JB
95
96(define (id x) x)
97(define (1+ n) (+ n 1))
98(define (-1+ n) (+ n -1))
99(define 1- -1+)
100(define return-it noop)
101(define (and=> value thunk) (and value (thunk value)))
102(define (make-hash-table k) (make-vector k '()))
103
0f2d19dd
JB
104;;; apply-to-args is functionally redunant with apply and, worse,
105;;; is less general than apply since it only takes two arguments.
106;;;
107;;; On the other hand, apply-to-args is a syntacticly convenient way to
108;;; perform binding in many circumstances when the "let" family of
109;;; of forms don't cut it. E.g.:
110;;;
111;;; (apply-to-args (return-3d-mouse-coords)
112;;; (lambda (x y z)
113;;; ...))
114;;;
115
116(define (apply-to-args args fn) (apply fn args))
117
118\f
0f2d19dd
JB
119;;; {Integer Math}
120;;;
121
0f2d19dd
JB
122(define (ipow-by-squaring x k acc proc)
123 (cond ((zero? k) acc)
124 ((= 1 k) (proc acc x))
125 (else (logical:ipow-by-squaring (proc x x)
126 (quotient k 2)
127 (if (even? k) acc (proc acc x))
128 proc))))
129
130(define string-character-length string-length)
131
132
133
134;; A convenience function for combining flag bits. Like logior, but
135;; handles the cases of 0 and 1 arguments.
136;;
137(define (flags . args)
138 (cond
139 ((null? args) 0)
140 ((null? (cdr args)) (car args))
141 (else (apply logior args))))
142
143\f
0f2d19dd
JB
144;;; {Symbol Properties}
145;;;
146
147(define (symbol-property sym prop)
148 (let ((pair (assoc prop (symbol-pref sym))))
149 (and pair (cdr pair))))
150
151(define (set-symbol-property! sym prop val)
152 (let ((pair (assoc prop (symbol-pref sym))))
153 (if pair
154 (set-cdr! pair val)
155 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
156
157(define (symbol-property-remove! sym prop)
158 (let ((pair (assoc prop (symbol-pref sym))))
159 (if pair
160 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
161
162\f
163;;; {Arrays}
164;;;
165
166(begin
167 (define uniform-vector? array?)
168 (define make-uniform-vector dimensions->uniform-array)
169 ; (define uniform-vector-ref array-ref)
170 (define (uniform-vector-set! u i o)
171 (uniform-vector-set1! u o i))
172 (define uniform-vector-fill! array-fill!)
173 (define uniform-vector-read! uniform-array-read!)
174 (define uniform-vector-write uniform-array-write)
175
176 (define (make-array fill . args)
177 (dimensions->uniform-array args () fill))
178 (define (make-uniform-array prot . args)
179 (dimensions->uniform-array args prot))
180 (define (list->array ndim lst)
181 (list->uniform-array ndim '() lst))
182 (define (list->uniform-vector prot lst)
183 (list->uniform-array 1 prot lst))
184 (define (array-shape a)
185 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
186 (array-dimensions a))))
187
188\f
189;;; {Keywords}
190;;;
191
192(define (symbol->keyword symbol)
193 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
194
195(define (keyword->symbol kw)
196 (let ((sym (keyword-dash-symbol kw)))
197 (string->symbol (substring sym 1 (length sym)))))
198
199(define (kw-arg-ref args kw)
200 (let ((rem (member kw args)))
201 (and rem (pair? (cdr rem)) (cadr rem))))
202
203\f
0f2d19dd 204;;; {Print}
6355358a
MD
205;;; MDJ 960919 <djurfeldt@nada.kth.se>: This code will probably be
206;;; removed before the first release of Guile. Later releases may
207;;; contain more fancy printing code.
0f2d19dd
JB
208
209(define (print obj . args)
210 (let ((default-args (list (current-output-port) 0 0 default-print-style #f)))
211 (apply-to-args (append args (list-cdr-ref default-args (length args)))
212 (lambda (port depth length style table)
213 (cond
c7c03b9f
JB
214 ((and table (print-table-ref table obj))
215 ((print-style-tag-hook style 'eq-val)
216 obj port depth length style table))
0f2d19dd
JB
217 (else
218 (and table (print-table-add! table obj))
219 (cond
c7c03b9f
JB
220 ((print-style-max-depth? style depth)
221 ((print-style-excess-depth-hook style)))
222 ((print-style-max-length? style length)
223 ((print-style-excess-length-hook style)))
224 (else
225 ((print-style-hook style obj)
226 obj port depth length style table)))))))))
0f2d19dd 227
95b6af86 228(define (make-print-style) (make-vector 59 '()))
0f2d19dd 229
c7c03b9f
JB
230(define (extend-print-style! style utag printer)
231 (hashq-set! style utag printer))
0f2d19dd
JB
232
233(define (print-style-hook style obj)
234 (let ((type-tag (tag obj)))
235 (or (hashq-ref style type-tag)
236 (hashq-ref style (logand type-tag 255))
237 print-obj)))
238
239(define (print-style-tag-hook style type-tag)
240 (or (hashq-ref style type-tag)
241 print-obj))
242
243(define (print-style-max-depth? style d) #f)
244(define (print-style-max-length? style l) #f)
c7c03b9f
JB
245(define (print-style-excess-length-hook style)
246 (hashq-ref style 'excess-length-hook))
247(define (print-style-excess-depth-hook style)
248 (hashq-ref style 'excess-depth-hook))
0f2d19dd 249
95b6af86 250(define (make-print-table) (make-vector 59 '()))
0f2d19dd
JB
251(define (print-table-ref table obj) (hashq-ref table obj))
252(define (print-table-add! table obj) (hashq-set! table obj (gensym 'ref)))
253
254(define (print-obj obj port depth length style table) (write obj port))
255
256(define (print-pair pair port depth length style table)
257 (if (= 0 length)
258 (display #\( port))
259
260 (print (car pair) port (+ 1 depth) 0 style table)
261
262 (cond
263 ((and (pair? (cdr pair))
264 (or (not table)
265 (not (print-table-ref table (cdr pair)))))
266
267 (display #\space port)
268 (print (cdr pair) port depth (+ 1 length) style table))
269
270 ((null? (cdr pair)) (display #\) port))
271
272 (else (display " . " port)
c7c03b9f
JB
273 (print (cdr pair) port (+ 1 depth) 0
274 style table)
0f2d19dd
JB
275 (display #\) port))))
276
277(define (print-vector obj port depth length style table)
278 (if (= 0 length)
279 (cond
074fa9cf 280 ((weak-key-hash-table? obj) (display "#wh(" port))
0f2d19dd
JB
281 ((weak-value-hash-table? obj) (display "#whv(" port))
282 ((doubly-weak-hash-table? obj) (display "#whd(" port))
283 (else (display "#(" port))))
284
285 (if (< length (vector-length obj))
286 (print (vector-ref obj length) port (+ 1 depth) 0 style table))
287
288 (cond
289 ((>= (+ 1 length) (vector-length obj)) (display #\) port))
290 (else (display #\space port)
c7c03b9f
JB
291 (print obj port depth
292 (+ 1 length)
293 style table))))
0f2d19dd
JB
294
295(define default-print-style (make-print-style))
296
297(extend-print-style! default-print-style utag_vector print-vector)
298(extend-print-style! default-print-style utag_wvect print-vector)
299(extend-print-style! default-print-style utag_pair print-pair)
300(extend-print-style! default-print-style 'eq-val
301 (lambda (obj port depth length style table)
302 (if (symbol? obj)
303 (display obj)
304 (begin
305 (display "##" port)
306 (display (print-table-ref table obj))))))
307
308\f
309;;; {Records}
310;;;
311
312(define record-type-vtable (make-vtable-vtable "prpr" 0))
313
314(define (record-type? obj)
315 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
316
317(define (make-record-type type-name fields . opt)
8e693424 318 (let ((printer-fn (and (pair? opt) (car opt))))
0f2d19dd 319 (let ((struct (make-struct record-type-vtable 0
c7c03b9f
JB
320 (make-struct-layout
321 (apply symbol-append
322 (map (lambda (f) "pw") fields)))
0f2d19dd
JB
323 type-name
324 (copy-tree fields))))
325 ;; !!! leaks printer functions
6355358a
MD
326 ;; MDJ 960919 <djurfeldt@nada.kth.se>: *fixme* need to make it
327 ;; possible to print records nicely.
328 ;(if printer-fn
329; (extend-print-style! default-print-style
330; (logior utag_struct_base (ash (struct-vtable-tag struct) 8))
331; printer-fn))
0f2d19dd
JB
332 struct)))
333
334(define (record-type-name obj)
335 (if (record-type? obj)
336 (struct-ref obj struct-vtable-offset)
337 (error 'not-a-record-type obj)))
338
339(define (record-type-fields obj)
340 (if (record-type? obj)
341 (struct-ref obj (+ 1 struct-vtable-offset))
342 (error 'not-a-record-type obj)))
343
344(define (record-constructor rtd . opt)
8e693424 345 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
0f2d19dd
JB
346 (eval `(lambda ,field-names
347 (make-struct ',rtd 0 ,@(map (lambda (f)
348 (if (memq f field-names)
349 f
350 #f))
351 (record-type-fields rtd)))))))
352
353(define (record-predicate rtd)
354 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
355
356(define (record-accessor rtd field-name)
357 (let* ((pos (list-index (record-type-fields rtd) field-name)))
358 (if (not pos)
359 (error 'no-such-field field-name))
360 (eval `(lambda (obj)
361 (and (eq? ',rtd (record-type-descriptor obj))
362 (struct-ref obj ,pos))))))
363
364(define (record-modifier rtd field-name)
365 (let* ((pos (list-index (record-type-fields rtd) field-name)))
366 (if (not pos)
367 (error 'no-such-field field-name))
368 (eval `(lambda (obj val)
369 (and (eq? ',rtd (record-type-descriptor obj))
370 (struct-set! obj ,pos val))))))
371
372
373(define (record? obj)
374 (and (struct? obj) (record-type? (struct-vtable obj))))
375
376(define (record-type-descriptor obj)
377 (if (struct? obj)
378 (struct-vtable obj)
379 (error 'not-a-record obj)))
380
21ed9efe
MD
381(provide 'record)
382
0f2d19dd
JB
383\f
384;;; {Booleans}
385;;;
386
387(define (->bool x) (not (not x)))
388
389\f
390;;; {Symbols}
391;;;
392
393(define (symbol-append . args)
394 (string->symbol (apply string-append args)))
395
396(define (list->symbol . args)
397 (string->symbol (apply list->string args)))
398
399(define (symbol . args)
400 (string->symbol (apply string args)))
401
402(define (obarray-symbol-append ob . args)
403 (string->obarray-symbol (apply string-append ob args)))
404
405(define obarray-gensym
406 (let ((n -1))
407 (lambda (obarray . opt)
408 (if (null? opt)
409 (set! opt '(%%gensym)))
410 (let loop ((proposed-name (apply string-append opt)))
411 (if (string->obarray-symbol obarray proposed-name #t)
412 (loop (apply string-append (append opt (begin (set! n (1+ n)) (list (number->string n))))))
413 (string->obarray-symbol obarray proposed-name))))))
414
415(define (gensym . args) (apply obarray-gensym #f args))
416
417\f
418;;; {Lists}
419;;;
420
421(define (list-index l k)
422 (let loop ((n 0)
423 (l l))
424 (and (not (null? l))
425 (if (eq? (car l) k)
426 n
427 (loop (+ n 1) (cdr l))))))
428
429(define (make-list n init)
430 (let loop ((answer '())
431 (n n))
432 (if (<= n 0)
433 answer
434 (loop (cons init answer) (- n 1)))))
435
436
437\f
438;;; {and-map, or-map, and map-in-order}
439;;;
440;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
441;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
442;;; (map-in-order fn lst) is like (map fn lst) but definately in order of lst.
443;;;
444
445;; and-map f l
446;;
447;; Apply f to successive elements of l until exhaustion or f returns #f.
448;; If returning early, return #f. Otherwise, return the last value returned
449;; by f. If f has never been called because l is empty, return #t.
450;;
451(define (and-map f lst)
452 (let loop ((result #t)
453 (l lst))
454 (and result
455 (or (and (null? l)
456 result)
457 (loop (f (car l)) (cdr l))))))
458
459;; or-map f l
460;;
461;; Apply f to successive elements of l until exhaustion or while f returns #f.
462;; If returning early, return the return value of f.
463;;
464(define (or-map f lst)
465 (let loop ((result #f)
466 (l lst))
467 (or result
468 (and (not (null? l))
469 (loop (f (car l)) (cdr l))))))
470
471;; map-in-order
472;;
473;; Like map, but guaranteed to process the list in order.
474;;
475(define (map-in-order fn l)
476 (if (null? l)
477 '()
478 (cons (fn (car l))
479 (map-in-order fn (cdr l)))))
480
481\f
482;;; {Files}
483;;; !!!! these should be implemented using Tcl commands, not fports.
484;;;
485
6fa8995c
GH
486(define (feature? feature)
487 (and (memq feature *features*) #t))
488
3afb28ce
GH
489;; Using the vector returned by stat directly is probably not a good
490;; idea (it could just as well be a record). Hence some accessors.
491(define (stat:dev f) (vector-ref f 0))
492(define (stat:ino f) (vector-ref f 1))
493(define (stat:mode f) (vector-ref f 2))
494(define (stat:nlink f) (vector-ref f 3))
495(define (stat:uid f) (vector-ref f 4))
496(define (stat:gid f) (vector-ref f 5))
497(define (stat:rdev f) (vector-ref f 6))
498(define (stat:size f) (vector-ref f 7))
499(define (stat:atime f) (vector-ref f 8))
500(define (stat:mtime f) (vector-ref f 9))
501(define (stat:ctime f) (vector-ref f 10))
502(define (stat:blksize f) (vector-ref f 11))
503(define (stat:blocks f) (vector-ref f 12))
504
505;; derived from stat mode.
506(define (stat:type f) (vector-ref f 13))
507(define (stat:perms f) (vector-ref f 14))
508
6fa8995c
GH
509(define file-exists?
510 (if (feature? 'posix)
511 (lambda (str)
512 (access? str F_OK))
513 (lambda (str)
514 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
515 (lambda args #f))))
516 (if port (begin (close-port port) #t)
517 #f)))))
518
519(define file-is-directory?
520 (if (feature? 'i/o-extensions)
521 (lambda (str)
3afb28ce 522 (eq? (stat:type (stat str)) 'directory))
6fa8995c
GH
523 (lambda (str)
524 (display str)
525 (newline)
526 (let ((port (catch 'system-error
527 (lambda () (open-file (string-append str "/.")
528 OPEN_READ))
529 (lambda args #f))))
530 (if port (begin (close-port port) #t)
531 #f)))))
0f2d19dd
JB
532
533(define (has-suffix? str suffix)
534 (let ((sufl (string-length suffix))
535 (sl (string-length str)))
536 (and (> sl sufl)
537 (string=? (substring str (- sl sufl) sl) suffix))))
538
0f2d19dd
JB
539\f
540;;; {Error Handling}
541;;;
542
0f2d19dd 543(define (error . args)
21ed9efe 544 (save-stack)
2194b6f0 545 (if (null? args)
5552355a 546 (scm-error 'misc-error #f "?" #f #f)
2194b6f0
GH
547 (let loop ((msg "%s")
548 (rest (cdr args)))
549 (if (not (null? rest))
550 (loop (string-append msg " %S")
551 (cdr rest))
5552355a 552 (scm-error 'misc-error #f msg args #f)))))
be2d2c70
GH
553
554(define (scm-error key subr message args rest)
555 (throw key subr message args rest))
0f2d19dd 556
1349bd53 557;; bad-throw is the hook that is called upon a throw to a an unhandled
9a0d70e2
GH
558;; key (unless the throw has four arguments, in which case
559;; it's usually interpreted as an error throw.)
560;; If the key has a default handler (a throw-handler-default property),
0f2d19dd
JB
561;; it is applied to the throw.
562;;
1349bd53 563(define (bad-throw key . args)
0f2d19dd
JB
564 (let ((default (symbol-property key 'throw-handler-default)))
565 (or (and default (apply default key args))
2194b6f0 566 (apply error "unhandled-exception:" key args))))
0f2d19dd 567
2194b6f0
GH
568;; mostly obsolete.
569;; A number of internally defined error types were represented
0f2d19dd
JB
570;; as integers. Here is the mapping to symbolic names
571;; and error messages.
572;;
2194b6f0
GH
573;(define %%system-errors
574; '((-1 UNKNOWN "Unknown error")
575; (0 ARGn "Wrong type argument to ")
576; (1 ARG1 "Wrong type argument in position 1 to ")
577; (2 ARG2 "Wrong type argument in position 2 to ")
578; (3 ARG3 "Wrong type argument in position 3 to ")
579; (4 ARG4 "Wrong type argument in position 4 to ")
580; (5 ARG5 "Wrong type argument in position 5 to ")
581; (6 ARG5 "Wrong type argument in position 5 to ")
582; (7 ARG5 "Wrong type argument in position 5 to ")
583; (8 WNA "Wrong number of arguments to ")
584; (9 OVFLOW "Numerical overflow to ")
585; (10 OUTOFRANGE "Argument out of range to ")
586; (11 NALLOC "Could not allocate to ")
587; (12 STACK_OVFLOW "Stack overflow")
588; (13 EXIT "Exit (internal error?).")
589; (14 HUP_SIGNAL "hang-up")
590; (15 INT_SIGNAL "user interrupt")
591; (16 FPE_SIGNAL "arithmetic error")
592; (17 BUS_SIGNAL "bus error")
593; (18 SEGV_SIGNAL "segmentation violation")
594; (19 ALRM_SIGNAL "alarm")
595; (20 GC_SIGNAL "gc")
596; (21 TICK_SIGNAL "tick")))
0f2d19dd
JB
597
598
599(define (timer-thunk) #t)
600(define (gc-thunk) #t)
601(define (alarm-thunk) #t)
602
603(define (signal-handler n)
2194b6f0
GH
604 (let* (
605 ;; these numbers are set in libguile, not the same as those
be2d2c70 606 ;; interned in posix.c for SIGSEGV etc.
2194b6f0
GH
607 ;;
608 (signal-messages `((14 . "hang-up")
609 (15 . "user interrupt")
610 (16 . "arithmetic error")
611 (17 . "bus error")
612 (18 . "segmentation violation"))))
613 (cond
614 ((= n 21) (unmask-signals) (timer-thunk))
615 ((= n 20) (unmask-signals) (gc-thunk))
616 ((= n 19) (unmask-signals) (alarm-thunk))
1c6cd8e8
MD
617 (else (set! the-last-stack
618 (make-stack #t
619 (list-ref (list %hup-thunk
620 %int-thunk
621 %fpe-thunk
622 %bus-thunk
623 %segv-thunk)
624 (- n 14))
625 1))
21ed9efe
MD
626 (set! stack-saved? #t)
627 (if (not (and (memq 'debug (debug-options-interface))
628 (eq? (stack-id the-last-stack) 'repl-stack)))
5f771ab1
MD
629 (set! the-last-stack #f))
630 (unmask-signals)
2194b6f0 631 (let ((sig-pair (assoc n signal-messages)))
5552355a
GH
632 (scm-error 'error-signal #f
633 (cdr (or sig-pair
6fa8995c 634 (cons n "Unknown signal: %s")))
5552355a
GH
635 (if sig-pair
636 #f
637 (list n))
638 (list n)))))))
2194b6f0 639
0f2d19dd 640\f
44cf1f0f
JB
641;;; {Non-polymorphic versions of POSIX functions}
642
02b754d3
GH
643(define (getgrnam name) (getgr name))
644(define (getgrgid id) (getgr id))
645(define (gethostbyaddr addr) (gethost addr))
646(define (gethostbyname name) (gethost name))
647(define (getnetbyaddr addr) (getnet addr))
648(define (getnetbyname name) (getnet name))
649(define (getprotobyname name) (getproto name))
650(define (getprotobynumber addr) (getproto addr))
651(define (getpwnam name) (getpw name))
652(define (getpwuid uid) (getpw uid))
653(define (getservbyname name proto) (%getserv name proto))
654(define (getservbyport port proto) (%getserv port proto))
0f2d19dd
JB
655(define (endgrent) (setgr))
656(define (endhostent) (sethost))
657(define (endnetent) (setnet))
658(define (endprotoent) (setproto))
659(define (endpwent) (setpw))
660(define (endservent) (setserv))
661(define (file-position . args) (apply ftell args))
662(define (file-set-position . args) (apply fseek args))
02b754d3
GH
663(define (getgrent) (getgr))
664(define (gethostent) (gethost))
665(define (getnetent) (getnet))
666(define (getprotoent) (getproto))
667(define (getpwent) (getpw))
668(define (getservent) (getserv))
0f2d19dd
JB
669(define (reopen-file . args) (apply freopen args))
670(define (setgrent arg) (setgr arg))
671(define (sethostent arg) (sethost arg))
672(define (setnetent arg) (setnet arg))
673(define (setprotoent arg) (setproto arg))
674(define (setpwent arg) (setpw arg))
675(define (setservent arg) (setserv arg))
8b13c6b3 676
02b754d3 677(define (move->fdes port fd)
8b13c6b3
GH
678 (primitive-move->fdes port fd)
679 (set-port-revealed! port 1)
680 port)
681
682(define (release-port-handle port)
683 (let ((revealed (port-revealed port)))
684 (if (> revealed 0)
685 (set-port-revealed! port (- revealed 1)))))
0f2d19dd
JB
686
687\f
688;;; {Load Paths}
689;;;
690
0f2d19dd
JB
691;;; Here for backward compatability
692;;
693(define scheme-file-suffix (lambda () ".scm"))
694
3cab8392
JB
695(define (in-vicinity vicinity file)
696 (let ((tail (let ((len (string-length vicinity)))
697 (if (zero? len) #f
698 (string-ref vicinity (- len 1))))))
699 (string-append vicinity
700 (if (eq? tail #\/) "" "/")
701 file)))
02ceadb8 702
0f2d19dd 703\f
a06181a2
JB
704;;; {Loading by paths}
705
706;;; Load a Scheme source file named NAME, searching for it in the
707;;; directories listed in %load-path, and applying each of the file
708;;; name extensions listed in %load-extensions.
709(define (load-from-path name)
710 (start-stack 'load-stack
711 (primitive-load-path name #t read-sharp)))
0f2d19dd 712
5552355a 713
0f2d19dd 714\f
0f2d19dd
JB
715;;; {Transcendental Functions}
716;;;
717;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
718;;; Copyright (C) 1992, 1993 Jerry D. Hedden.
719;;; See the file `COPYING' for terms applying to this program.
720;;;
721
722(define (exp z)
723 (if (real? z) ($exp z)
724 (make-polar ($exp (real-part z)) (imag-part z))))
725
726(define (log z)
727 (if (and (real? z) (>= z 0))
728 ($log z)
729 (make-rectangular ($log (magnitude z)) (angle z))))
730
731(define (sqrt z)
732 (if (real? z)
733 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
734 ($sqrt z))
735 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
736
737(define expt
738 (let ((integer-expt integer-expt))
739 (lambda (z1 z2)
740 (cond ((exact? z2)
741 (integer-expt z1 z2))
742 ((and (real? z2) (real? z1) (>= z1 0))
743 ($expt z1 z2))
744 (else
745 (exp (* z2 (log z1))))))))
746
747(define (sinh z)
748 (if (real? z) ($sinh z)
749 (let ((x (real-part z)) (y (imag-part z)))
750 (make-rectangular (* ($sinh x) ($cos y))
751 (* ($cosh x) ($sin y))))))
752(define (cosh z)
753 (if (real? z) ($cosh z)
754 (let ((x (real-part z)) (y (imag-part z)))
755 (make-rectangular (* ($cosh x) ($cos y))
756 (* ($sinh x) ($sin y))))))
757(define (tanh z)
758 (if (real? z) ($tanh z)
759 (let* ((x (* 2 (real-part z)))
760 (y (* 2 (imag-part z)))
761 (w (+ ($cosh x) ($cos y))))
762 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
763
764(define (asinh z)
765 (if (real? z) ($asinh z)
766 (log (+ z (sqrt (+ (* z z) 1))))))
767
768(define (acosh z)
769 (if (and (real? z) (>= z 1))
770 ($acosh z)
771 (log (+ z (sqrt (- (* z z) 1))))))
772
773(define (atanh z)
774 (if (and (real? z) (> z -1) (< z 1))
775 ($atanh z)
776 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
777
778(define (sin z)
779 (if (real? z) ($sin z)
780 (let ((x (real-part z)) (y (imag-part z)))
781 (make-rectangular (* ($sin x) ($cosh y))
782 (* ($cos x) ($sinh y))))))
783(define (cos z)
784 (if (real? z) ($cos z)
785 (let ((x (real-part z)) (y (imag-part z)))
786 (make-rectangular (* ($cos x) ($cosh y))
787 (- (* ($sin x) ($sinh y)))))))
788(define (tan z)
789 (if (real? z) ($tan z)
790 (let* ((x (* 2 (real-part z)))
791 (y (* 2 (imag-part z)))
792 (w (+ ($cos x) ($cosh y))))
793 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
794
795(define (asin z)
796 (if (and (real? z) (>= z -1) (<= z 1))
797 ($asin z)
798 (* -i (asinh (* +i z)))))
799
800(define (acos z)
801 (if (and (real? z) (>= z -1) (<= z 1))
802 ($acos z)
803 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
804
805(define (atan z . y)
806 (if (null? y)
807 (if (real? z) ($atan z)
808 (/ (log (/ (- +i z) (+ +i z))) +2i))
809 ($atan2 z (car y))))
810
811(set! abs magnitude)
812
813\f
814;;; {User Settable Hooks}
815;;;
816;;; Parts of the C code check the bindings of these variables.
817;;;
818
819(define ticks-interrupt #f)
820(define user-interrupt #f)
821(define alarm-interrupt #f)
822(define out-of-storage #f)
823(define could-not-open #f)
824(define end-of-program #f)
825(define hang-up #f)
826(define arithmetic-error #f)
827(define read-sharp #f)
828
829\f
830
831;;; {Reader Extensions}
832;;;
833
834;;; Reader code for various "#c" forms.
835;;;
836
837(define (parse-path-symbol s)
21ed9efe 838 (define (separate-fields-discarding-char ch str ret)
0f2d19dd
JB
839 (let loop ((fields '())
840 (str str))
841 (cond
842 ((string-rindex str ch)
843 => (lambda (pos) (loop (cons (make-shared-substring str (+ 1 pos)) fields)
844 (make-shared-substring str 0 pos))))
845 (else (ret (cons str fields))))))
21ed9efe 846 (separate-fields-discarding-char #\/
0f2d19dd
JB
847 s
848 (lambda (fields)
849 (map string->symbol fields))))
850
851
852(define (%read-sharp c port)
853 (define (barf)
854 (error "unknown # object" c))
855
856 (case c
857 ((#\/) (let ((look (peek-char port)))
858 (if (or (eof-object? look)
859 (and (char? look)
860 (or (char-whitespace? look)
861 (string-index ")" look))))
862 '()
863 (parse-path-symbol (read port #t read-sharp)))))
864 ((#\') (read port #t read-sharp))
865 ((#\.) (eval (read port #t read-sharp)))
866 ((#\b) (read:uniform-vector #t port))
867 ((#\a) (read:uniform-vector #\a port))
868 ((#\u) (read:uniform-vector 1 port))
869 ((#\e) (read:uniform-vector -1 port))
870 ((#\s) (read:uniform-vector 1.0 port))
871 ((#\i) (read:uniform-vector 1/3 port))
872 ((#\c) (read:uniform-vector 0+i port))
873 ((#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)
874 (read:array c port))
0f2d19dd
JB
875 (else (barf))))
876
877(define (read:array digit port)
878 (define chr0 (char->integer #\0))
879 (let ((rank (let readnum ((val (- (char->integer digit) chr0)))
880 (if (char-numeric? (peek-char port))
881 (readnum (+ (* 10 val)
882 (- (char->integer (read-char port)) chr0)))
883 val)))
884 (prot (if (eq? #\( (peek-char port))
885 '()
886 (let ((c (read-char port)))
887 (case c ((#\b) #t)
888 ((#\a) #\a)
889 ((#\u) 1)
890 ((#\e) -1)
891 ((#\s) 1.0)
892 ((#\i) 1/3)
893 ((#\c) 0+i)
894 (else (error "read:array unknown option " c)))))))
895 (if (eq? (peek-char port) #\()
896 (list->uniform-array rank prot (read port #t read-sharp))
897 (error "read:array list not found"))))
898
899(define (read:uniform-vector proto port)
900 (if (eq? #\( (peek-char port))
901 (list->uniform-array 1 proto (read port #t read-sharp))
902 (error "read:uniform-vector list not found")))
903
904
905(define read-sharp (lambda a (apply %read-sharp a)))
906
907
908\f
909;;; {Dynamic Roots}
910;;;
911
912; mystery integers passed dynamic root error handlers
913(define repl-quit -1)
914(define repl-abort -2)
915
916
917\f
918;;; {Command Line Options}
919;;;
920
921(define (get-option argv kw-opts kw-args return)
922 (cond
923 ((null? argv)
924 (return #f #f argv))
925
926 ((or (not (eq? #\- (string-ref (car argv) 0)))
927 (eq? (string-length (car argv)) 1))
928 (return 'normal-arg (car argv) (cdr argv)))
929
930 ((eq? #\- (string-ref (car argv) 1))
931 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
932 (string-length (car argv))))
933 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
934 (kw-opt? (member kw kw-opts))
935 (kw-arg? (member kw kw-args))
936 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
937 (substring (car argv)
938 (+ kw-arg-pos 1)
939 (string-length (car argv))))
940 (and kw-arg?
941 (begin (set! argv (cdr argv)) (car argv))))))
942 (if (or kw-opt? kw-arg?)
943 (return kw arg (cdr argv))
944 (return 'usage-error kw (cdr argv)))))
945
946 (else
947 (let* ((char (substring (car argv) 1 2))
948 (kw (symbol->keyword char)))
949 (cond
950
951 ((member kw kw-opts)
952 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
953 (new-argv (if (= 0 (string-length rest-car))
954 (cdr argv)
955 (cons (string-append "-" rest-car) (cdr argv)))))
956 (return kw #f new-argv)))
957
958 ((member kw kw-args)
959 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
960 (arg (if (= 0 (string-length rest-car))
961 (cadr argv)
962 rest-car))
963 (new-argv (if (= 0 (string-length rest-car))
964 (cddr argv)
965 (cdr argv))))
966 (return kw arg new-argv)))
967
968 (else (return 'usage-error kw argv)))))))
969
970(define (for-next-option proc argv kw-opts kw-args)
971 (let loop ((argv argv))
972 (get-option argv kw-opts kw-args
973 (lambda (opt opt-arg argv)
974 (and opt (proc opt opt-arg argv loop))))))
975
976(define (display-usage-report kw-desc)
977 (for-each
978 (lambda (kw)
979 (or (eq? (car kw) #t)
980 (eq? (car kw) 'else)
981 (let* ((opt-desc kw)
982 (help (cadr opt-desc))
983 (opts (car opt-desc))
984 (opts-proper (if (string? (car opts)) (cdr opts) opts))
985 (arg-name (if (string? (car opts))
986 (string-append "<" (car opts) ">")
987 ""))
988 (left-part (string-append
989 (with-output-to-string
990 (lambda ()
991 (map (lambda (x) (display (keyword-symbol x)) (display " "))
992 opts-proper)))
993 arg-name))
994 (middle-part (if (and (< (length left-part) 30)
995 (< (length help) 40))
996 (make-string (- 30 (length left-part)) #\ )
997 "\n\t")))
998 (display left-part)
999 (display middle-part)
1000 (display help)
1001 (newline))))
1002 kw-desc))
1003
1004
1005
1006(define (delq-all! obj l)
1007 (let ((answer (cons '() l)))
1008 (let loop ((pos answer))
1009 (cond
1010 ((null? (cdr pos)) (cdr answer))
1011 ((eq? (cadr pos) obj) (set-cdr! pos (cddr pos))
1012 (loop pos))
1013 (else (loop (cdr pos)))))))
1014
1015(define (transform-usage-lambda cases)
1016 (let* ((raw-usage (delq! 'else (map car cases)))
1017 (usage-sans-specials (map (lambda (x)
1018 (or (and (not (list? x)) x)
1019 (and (symbol? (car x)) #t)
1020 (and (boolean? (car x)) #t)
1021 x))
1022 raw-usage))
1023 (usage-desc (delq-all! #t usage-sans-specials))
1024 (kw-desc (map car usage-desc))
1025 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
1026 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
1027 (transmogrified-cases (map (lambda (case)
1028 (cons (let ((opts (car case)))
1029 (if (or (boolean? opts) (eq? 'else opts))
1030 opts
1031 (cond
1032 ((symbol? (car opts)) opts)
1033 ((boolean? (car opts)) opts)
1034 ((string? (caar opts)) (cdar opts))
1035 (else (car opts)))))
1036 (cdr case)))
1037 cases)))
1038 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1039 (lambda (%argv)
1040 (let %next-arg ((%argv %argv))
1041 (get-option %argv
1042 ',kw-opts
1043 ',kw-args
1044 (lambda (%opt %arg %new-argv)
1045 (case %opt
1046 ,@ transmogrified-cases))))))))
1047
1048
1049\f
1050
1051;;; {Low Level Modules}
1052;;;
1053;;; These are the low level data structures for modules.
1054;;;
1055;;; !!! warning: The interface to lazy binder procedures is going
1056;;; to be changed in an incompatible way to permit all the basic
1057;;; module ops to be virtualized.
1058;;;
1059;;; (make-module size use-list lazy-binding-proc) => module
1060;;; module-{obarray,uses,binder}[|-set!]
1061;;; (module? obj) => [#t|#f]
1062;;; (module-locally-bound? module symbol) => [#t|#f]
1063;;; (module-bound? module symbol) => [#t|#f]
1064;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1065;;; (module-symbol-interned? module symbol) => [#t|#f]
1066;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1067;;; (module-variable module symbol) => [#<variable ...> | #f]
1068;;; (module-symbol-binding module symbol opt-value)
1069;;; => [ <obj> | opt-value | an error occurs ]
1070;;; (module-make-local-var! module symbol) => #<variable...>
1071;;; (module-add! module symbol var) => unspecified
1072;;; (module-remove! module symbol) => unspecified
1073;;; (module-for-each proc module) => unspecified
1074;;; (make-scm-module) => module ; a lazy copy of the symhash module
1075;;; (set-current-module module) => unspecified
1076;;; (current-module) => #<module...>
1077;;;
1078;;;
1079
1080\f
44cf1f0f
JB
1081;;; {Printing Modules}
1082;; This is how modules are printed. You can re-define it.
0f2d19dd
JB
1083;;
1084(define (%print-module mod port depth length style table)
1085 (display "#<" port)
1086 (display (or (module-kind mod) "module") port)
1087 (let ((name (module-name mod)))
1088 (if name
1089 (begin
1090 (display " " port)
1091 (display name port))))
1092 (display " " port)
1093 (display (number->string (object-address mod) 16) port)
1094 (display ">" port))
1095
1096;; module-type
1097;;
1098;; A module is characterized by an obarray in which local symbols
1099;; are interned, a list of modules, "uses", from which non-local
1100;; bindings can be inherited, and an optional lazy-binder which
31d50456 1101;; is a (CLOSURE module symbol) which, as a last resort, can provide
0f2d19dd
JB
1102;; bindings that would otherwise not be found locally in the module.
1103;;
1104(define module-type
31d50456 1105 (make-record-type 'module '(obarray uses binder eval-closure name kind)
8b718458 1106 %print-module))
0f2d19dd 1107
8b718458 1108;; make-module &opt size uses binder
0f2d19dd 1109;;
8b718458
JB
1110;; Create a new module, perhaps with a particular size of obarray,
1111;; initial uses list, or binding procedure.
0f2d19dd 1112;;
0f2d19dd
JB
1113(define make-module
1114 (lambda args
0f2d19dd 1115
8b718458
JB
1116 (define (parse-arg index default)
1117 (if (> (length args) index)
1118 (list-ref args index)
1119 default))
1120
1121 (if (> (length args) 3)
1122 (error "Too many args to make-module." args))
0f2d19dd 1123
8b718458
JB
1124 (let ((size (parse-arg 0 1021))
1125 (uses (parse-arg 1 '()))
1126 (binder (parse-arg 2 #f)))
0f2d19dd 1127
8b718458
JB
1128 (if (not (integer? size))
1129 (error "Illegal size to make-module." size))
1130 (if (not (and (list? uses)
1131 (and-map module? uses)))
1132 (error "Incorrect use list." uses))
0f2d19dd
JB
1133 (if (and binder (not (procedure? binder)))
1134 (error
1135 "Lazy-binder expected to be a procedure or #f." binder))
1136
8b718458
JB
1137 (let ((module (module-constructor (make-vector size '())
1138 uses binder #f #f #f)))
1139
1140 ;; We can't pass this as an argument to module-constructor,
1141 ;; because we need it to close over a pointer to the module
1142 ;; itself.
31d50456 1143 (set-module-eval-closure! module
8b718458
JB
1144 (lambda (symbol define?)
1145 (if define?
1146 (module-make-local-var! module symbol)
1147 (module-variable module symbol))))
1148
1149 module))))
0f2d19dd 1150
8b718458 1151(define module-constructor (record-constructor module-type))
0f2d19dd
JB
1152(define module-obarray (record-accessor module-type 'obarray))
1153(define set-module-obarray! (record-modifier module-type 'obarray))
1154(define module-uses (record-accessor module-type 'uses))
1155(define set-module-uses! (record-modifier module-type 'uses))
1156(define module-binder (record-accessor module-type 'binder))
1157(define set-module-binder! (record-modifier module-type 'binder))
31d50456
JB
1158(define module-eval-closure (record-accessor module-type 'eval-closure))
1159(define set-module-eval-closure! (record-modifier module-type 'eval-closure))
0f2d19dd
JB
1160(define module-name (record-accessor module-type 'name))
1161(define set-module-name! (record-modifier module-type 'name))
1162(define module-kind (record-accessor module-type 'kind))
1163(define set-module-kind! (record-modifier module-type 'kind))
1164(define module? (record-predicate module-type))
1165
8b718458 1166
0f2d19dd 1167(define (eval-in-module exp module)
31d50456 1168 (eval2 exp (module-eval-closure module)))
0f2d19dd
JB
1169
1170\f
1171;;; {Module Searching in General}
1172;;;
1173;;; We sometimes want to look for properties of a symbol
1174;;; just within the obarray of one module. If the property
1175;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1176;;; DISPLAY is locally rebound in the module `safe-guile'.''
1177;;;
1178;;;
1179;;; Other times, we want to test for a symbol property in the obarray
1180;;; of M and, if it is not found there, try each of the modules in the
1181;;; uses list of M. This is the normal way of testing for some
1182;;; property, so we state these properties without qualification as
1183;;; in: ``The symbol 'fnord is interned in module M because it is
1184;;; interned locally in module M2 which is a member of the uses list
1185;;; of M.''
1186;;;
1187
1188;; module-search fn m
1189;;
1190;; return the first non-#f result of FN applied to M and then to
1191;; the modules in the uses of m, and so on recursively. If all applications
1192;; return #f, then so does this function.
1193;;
1194(define (module-search fn m v)
1195 (define (loop pos)
1196 (and (pair? pos)
1197 (or (module-search fn (car pos) v)
1198 (loop (cdr pos)))))
1199 (or (fn m v)
1200 (loop (module-uses m))))
1201
1202
1203;;; {Is a symbol bound in a module?}
1204;;;
1205;;; Symbol S in Module M is bound if S is interned in M and if the binding
1206;;; of S in M has been set to some well-defined value.
1207;;;
1208
1209;; module-locally-bound? module symbol
1210;;
1211;; Is a symbol bound (interned and defined) locally in a given module?
1212;;
1213(define (module-locally-bound? m v)
1214 (let ((var (module-local-variable m v)))
1215 (and var
1216 (variable-bound? var))))
1217
1218;; module-bound? module symbol
1219;;
1220;; Is a symbol bound (interned and defined) anywhere in a given module
1221;; or its uses?
1222;;
1223(define (module-bound? m v)
1224 (module-search module-locally-bound? m v))
1225
1226;;; {Is a symbol interned in a module?}
1227;;;
1228;;; Symbol S in Module M is interned if S occurs in
1229;;; of S in M has been set to some well-defined value.
1230;;;
1231;;; It is possible to intern a symbol in a module without providing
1232;;; an initial binding for the corresponding variable. This is done
1233;;; with:
1234;;; (module-add! module symbol (make-undefined-variable))
1235;;;
1236;;; In that case, the symbol is interned in the module, but not
1237;;; bound there. The unbound symbol shadows any binding for that
1238;;; symbol that might otherwise be inherited from a member of the uses list.
1239;;;
1240
1241(define (module-obarray-get-handle ob key)
1242 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1243
1244(define (module-obarray-ref ob key)
1245 ((if (symbol? key) hashq-ref hash-ref) ob key))
1246
1247(define (module-obarray-set! ob key val)
1248 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1249
1250(define (module-obarray-remove! ob key)
1251 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1252
1253;; module-symbol-locally-interned? module symbol
1254;;
1255;; is a symbol interned (not neccessarily defined) locally in a given module
1256;; or its uses? Interned symbols shadow inherited bindings even if
1257;; they are not themselves bound to a defined value.
1258;;
1259(define (module-symbol-locally-interned? m v)
1260 (not (not (module-obarray-get-handle (module-obarray m) v))))
1261
1262;; module-symbol-interned? module symbol
1263;;
1264;; is a symbol interned (not neccessarily defined) anywhere in a given module
1265;; or its uses? Interned symbols shadow inherited bindings even if
1266;; they are not themselves bound to a defined value.
1267;;
1268(define (module-symbol-interned? m v)
1269 (module-search module-symbol-locally-interned? m v))
1270
1271
1272;;; {Mapping modules x symbols --> variables}
1273;;;
1274
1275;; module-local-variable module symbol
1276;; return the local variable associated with a MODULE and SYMBOL.
1277;;
1278;;; This function is very important. It is the only function that can
1279;;; return a variable from a module other than the mutators that store
1280;;; new variables in modules. Therefore, this function is the location
1281;;; of the "lazy binder" hack.
1282;;;
1283;;; If symbol is defined in MODULE, and if the definition binds symbol
1284;;; to a variable, return that variable object.
1285;;;
1286;;; If the symbols is not found at first, but the module has a lazy binder,
1287;;; then try the binder.
1288;;;
1289;;; If the symbol is not found at all, return #f.
1290;;;
1291(define (module-local-variable m v)
6fa8995c
GH
1292; (caddr
1293; (list m v
0f2d19dd
JB
1294 (let ((b (module-obarray-ref (module-obarray m) v)))
1295 (or (and (variable? b) b)
1296 (and (module-binder m)
6fa8995c
GH
1297 ((module-binder m) m v #f)))))
1298;))
0f2d19dd
JB
1299
1300;; module-variable module symbol
1301;;
1302;; like module-local-variable, except search the uses in the
1303;; case V is not found in M.
1304;;
1305(define (module-variable m v)
1306 (module-search module-local-variable m v))
1307
1308
1309;;; {Mapping modules x symbols --> bindings}
1310;;;
1311;;; These are similar to the mapping to variables, except that the
1312;;; variable is dereferenced.
1313;;;
1314
1315;; module-symbol-binding module symbol opt-value
1316;;
1317;; return the binding of a variable specified by name within
1318;; a given module, signalling an error if the variable is unbound.
1319;; If the OPT-VALUE is passed, then instead of signalling an error,
1320;; return OPT-VALUE.
1321;;
1322(define (module-symbol-local-binding m v . opt-val)
1323 (let ((var (module-local-variable m v)))
1324 (if var
1325 (variable-ref var)
1326 (if (not (null? opt-val))
1327 (car opt-val)
1328 (error "Locally unbound variable." v)))))
1329
1330;; module-symbol-binding module symbol opt-value
1331;;
1332;; return the binding of a variable specified by name within
1333;; a given module, signalling an error if the variable is unbound.
1334;; If the OPT-VALUE is passed, then instead of signalling an error,
1335;; return OPT-VALUE.
1336;;
1337(define (module-symbol-binding m v . opt-val)
1338 (let ((var (module-variable m v)))
1339 (if var
1340 (variable-ref var)
1341 (if (not (null? opt-val))
1342 (car opt-val)
1343 (error "Unbound variable." v)))))
1344
1345
1346\f
1347;;; {Adding Variables to Modules}
1348;;;
1349;;;
1350
1351
1352;; module-make-local-var! module symbol
1353;;
1354;; ensure a variable for V in the local namespace of M.
1355;; If no variable was already there, then create a new and uninitialzied
1356;; variable.
1357;;
1358(define (module-make-local-var! m v)
1359 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1360 (and (variable? b) b))
1361 (and (module-binder m)
1362 ((module-binder m) m v #t))
1363 (begin
1364 (let ((answer (make-undefined-variable v)))
1365 (module-obarray-set! (module-obarray m) v answer)
1366 answer))))
1367
1368;; module-add! module symbol var
1369;;
1370;; ensure a particular variable for V in the local namespace of M.
1371;;
1372(define (module-add! m v var)
1373 (if (not (variable? var))
1374 (error "Bad variable to module-add!" var))
1375 (module-obarray-set! (module-obarray m) v var))
1376
1377;; module-remove!
1378;;
1379;; make sure that a symbol is undefined in the local namespace of M.
1380;;
1381(define (module-remove! m v)
1382 (module-obarray-remove! (module-obarray m) v))
1383
1384(define (module-clear! m)
1385 (vector-fill! (module-obarray m) '()))
1386
1387;; MODULE-FOR-EACH -- exported
1388;;
1389;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1390;;
1391(define (module-for-each proc module)
1392 (let ((obarray (module-obarray module)))
1393 (do ((index 0 (+ index 1))
1394 (end (vector-length obarray)))
1395 ((= index end))
1396 (for-each
1397 (lambda (bucket)
1398 (proc (car bucket) (cdr bucket)))
1399 (vector-ref obarray index)))))
1400
1401
1402(define (module-map proc module)
1403 (let* ((obarray (module-obarray module))
1404 (end (vector-length obarray)))
1405
1406 (let loop ((i 0)
1407 (answer '()))
1408 (if (= i end)
1409 answer
1410 (loop (+ 1 i)
1411 (append!
1412 (map (lambda (bucket)
1413 (proc (car bucket) (cdr bucket)))
1414 (vector-ref obarray i))
1415 answer))))))
1416\f
1417
1418;;; {Low Level Bootstrapping}
1419;;;
1420
1421;; make-root-module
1422
21ed9efe 1423;; A root module uses the symhash table (the system's privileged
0f2d19dd
JB
1424;; obarray). Being inside a root module is like using SCM without
1425;; any module system.
1426;;
1427
1428
31d50456 1429(define (root-module-closure m s define?)
0f2d19dd
JB
1430 (let ((bi (and (symbol-interned? #f s)
1431 (builtin-variable s))))
1432 (and bi
1433 (or define? (variable-bound? bi))
1434 (begin
1435 (module-add! m s bi)
1436 bi))))
1437
1438(define (make-root-module)
31d50456 1439 (make-module 1019 '() root-module-closure))
0f2d19dd
JB
1440
1441
1442;; make-scm-module
1443
1444;; An scm module is a module into which the lazy binder copies
1445;; variable bindings from the system symhash table. The mapping is
1446;; one way only; newly introduced bindings in an scm module are not
1447;; copied back into the system symhash table (and can be used to override
1448;; bindings from the symhash table).
1449;;
1450
1451(define (make-scm-module)
8b718458 1452 (make-module 1019 '()
0f2d19dd
JB
1453 (lambda (m s define?)
1454 (let ((bi (and (symbol-interned? #f s)
1455 (builtin-variable s))))
1456 (and bi
1457 (variable-bound? bi)
1458 (begin
1459 (module-add! m s bi)
1460 bi))))))
1461
1462
1463
1464
1465;; the-module
1466;;
1467(define the-module #f)
1468
1469;; set-current-module module
1470;;
1471;; set the current module as viewed by the normalizer.
1472;;
1473(define (set-current-module m)
1474 (set! the-module m)
1475 (if m
31d50456
JB
1476 (set! *top-level-lookup-closure* (module-eval-closure the-module))
1477 (set! *top-level-lookup-closure* #f)))
0f2d19dd
JB
1478
1479
1480;; current-module
1481;;
1482;; return the current module as viewed by the normalizer.
1483;;
1484(define (current-module) the-module)
1485\f
1486;;; {Module-based Loading}
1487;;;
1488
1489(define (save-module-excursion thunk)
1490 (let ((inner-module (current-module))
1491 (outer-module #f))
1492 (dynamic-wind (lambda ()
1493 (set! outer-module (current-module))
1494 (set-current-module inner-module)
1495 (set! inner-module #f))
1496 thunk
1497 (lambda ()
1498 (set! inner-module (current-module))
1499 (set-current-module outer-module)
1500 (set! outer-module #f)))))
1501
0f2d19dd
JB
1502(define basic-load load)
1503
0f2d19dd
JB
1504(define (load-module . args)
1505 (save-module-excursion (lambda () (apply basic-load args))))
1506
1507
1508\f
44cf1f0f 1509;;; {MODULE-REF -- exported}
0f2d19dd
JB
1510;;
1511;; Returns the value of a variable called NAME in MODULE or any of its
1512;; used modules. If there is no such variable, then if the optional third
1513;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1514;;
1515(define (module-ref module name . rest)
1516 (let ((variable (module-variable module name)))
1517 (if (and variable (variable-bound? variable))
1518 (variable-ref variable)
1519 (if (null? rest)
1520 (error "No variable named" name 'in module)
1521 (car rest) ; default value
1522 ))))
1523
1524;; MODULE-SET! -- exported
1525;;
1526;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1527;; to VALUE; if there is no such variable, an error is signaled.
1528;;
1529(define (module-set! module name value)
1530 (let ((variable (module-variable module name)))
1531 (if variable
1532 (variable-set! variable value)
1533 (error "No variable named" name 'in module))))
1534
1535;; MODULE-DEFINE! -- exported
1536;;
1537;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1538;; variable, it is added first.
1539;;
1540(define (module-define! module name value)
1541 (let ((variable (module-local-variable module name)))
1542 (if variable
1543 (variable-set! variable value)
1544 (module-add! module name (make-variable value name)))))
1545
1546;; MODULE-USE! module interface
1547;;
1548;; Add INTERFACE to the list of interfaces used by MODULE.
1549;;
1550(define (module-use! module interface)
1551 (set-module-uses! module
1552 (cons interface (delq! interface (module-uses module)))))
1553
1554\f
0f2d19dd
JB
1555;;; {Recursive Namespaces}
1556;;;
1557;;;
1558;;; A hierarchical namespace emerges if we consider some module to be
1559;;; root, and variables bound to modules as nested namespaces.
1560;;;
1561;;; The routines in this file manage variable names in hierarchical namespace.
1562;;; Each variable name is a list of elements, looked up in successively nested
1563;;; modules.
1564;;;
0dd5491c 1565;;; (nested-ref some-root-module '(foo bar baz))
0f2d19dd
JB
1566;;; => <value of a variable named baz in the module bound to bar in
1567;;; the module bound to foo in some-root-module>
1568;;;
1569;;;
1570;;; There are:
1571;;;
1572;;; ;; a-root is a module
1573;;; ;; name is a list of symbols
1574;;;
0dd5491c
MD
1575;;; nested-ref a-root name
1576;;; nested-set! a-root name val
1577;;; nested-define! a-root name val
1578;;; nested-remove! a-root name
0f2d19dd
JB
1579;;;
1580;;;
1581;;; (current-module) is a natural choice for a-root so for convenience there are
1582;;; also:
1583;;;
0dd5491c
MD
1584;;; local-ref name == nested-ref (current-module) name
1585;;; local-set! name val == nested-set! (current-module) name val
1586;;; local-define! name val == nested-define! (current-module) name val
1587;;; local-remove! name == nested-remove! (current-module) name
0f2d19dd
JB
1588;;;
1589
1590
0dd5491c 1591(define (nested-ref root names)
0f2d19dd
JB
1592 (let loop ((cur root)
1593 (elts names))
1594 (cond
1595 ((null? elts) cur)
1596 ((not (module? cur)) #f)
1597 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1598
0dd5491c 1599(define (nested-set! root names val)
0f2d19dd
JB
1600 (let loop ((cur root)
1601 (elts names))
1602 (if (null? (cdr elts))
1603 (module-set! cur (car elts) val)
1604 (loop (module-ref cur (car elts)) (cdr elts)))))
1605
0dd5491c 1606(define (nested-define! root names val)
0f2d19dd
JB
1607 (let loop ((cur root)
1608 (elts names))
1609 (if (null? (cdr elts))
1610 (module-define! cur (car elts) val)
1611 (loop (module-ref cur (car elts)) (cdr elts)))))
1612
0dd5491c 1613(define (nested-remove! root names)
0f2d19dd
JB
1614 (let loop ((cur root)
1615 (elts names))
1616 (if (null? (cdr elts))
1617 (module-remove! cur (car elts))
1618 (loop (module-ref cur (car elts)) (cdr elts)))))
1619
0dd5491c
MD
1620(define (local-ref names) (nested-ref (current-module) names))
1621(define (local-set! names val) (nested-set! (current-module) names val))
1622(define (local-define names val) (nested-define! (current-module) names val))
1623(define (local-remove names) (nested-remove! (current-module) names))
0f2d19dd
JB
1624
1625
1626\f
44cf1f0f 1627;;; {#/app}
0f2d19dd
JB
1628;;;
1629;;; The root of conventionally named objects not directly in the top level.
1630;;;
1631;;; #/app/modules
1632;;; #/app/modules/guile
1633;;;
1634;;; The directory of all modules and the standard root module.
1635;;;
1636
1637(define (module-public-interface m) (module-ref m '%module-public-interface #f))
1638(define (set-module-public-interface! m i) (module-define! m '%module-public-interface i))
1639(define the-root-module (make-root-module))
1640(define the-scm-module (make-scm-module))
1641(set-module-public-interface! the-root-module the-scm-module)
1642(set-module-name! the-root-module 'the-root-module)
1643(set-module-name! the-scm-module 'the-scm-module)
1644
1645(set-current-module the-root-module)
1646
1647(define app (make-module 31))
0dd5491c
MD
1648(local-define '(app modules) (make-module 31))
1649(local-define '(app modules guile) the-root-module)
0f2d19dd
JB
1650
1651;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1652
0209ca9a 1653(define (resolve-module name . maybe-autoload)
0f2d19dd 1654 (let ((full-name (append '(app modules) name)))
0dd5491c 1655 (let ((already (local-ref full-name)))
0f2d19dd
JB
1656 (or already
1657 (begin
0209ca9a
MV
1658 (if (or (null? maybe-autoload) (car maybe-autoload))
1659 (try-module-autoload name))
0f2d19dd
JB
1660 (make-modules-in (current-module) full-name))))))
1661
1662(define (beautify-user-module! module)
1663 (if (not (module-public-interface module))
1664 (let ((interface (make-module 31)))
1665 (set-module-name! interface (module-name module))
1666 (set-module-kind! interface 'interface)
1667 (set-module-public-interface! module interface)))
1668 (if (not (memq the-scm-module (module-uses module)))
1669 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1670
1671(define (make-modules-in module name)
1672 (if (null? name)
1673 module
1674 (cond
1675 ((module-ref module (car name) #f) => (lambda (m) (make-modules-in m (cdr name))))
1676 (else (let ((m (make-module 31)))
1677 (set-module-kind! m 'directory)
1678 (set-module-name! m (car name))
1679 (module-define! module (car name) m)
1680 (make-modules-in m (cdr name)))))))
1681
1682(define (resolve-interface name)
1683 (let ((module (resolve-module name)))
1684 (and module (module-public-interface module))))
1685
1686
1687(define %autoloader-developer-mode #t)
1688
1689(define (process-define-module args)
1690 (let* ((module-id (car args))
0209ca9a 1691 (module (resolve-module module-id #f))
0f2d19dd
JB
1692 (kws (cdr args)))
1693 (beautify-user-module! module)
0209ca9a
MV
1694 (let loop ((kws kws)
1695 (reversed-interfaces '()))
1696 (if (null? kws)
1697 (for-each (lambda (interface)
1698 (module-use! module interface))
1699 reversed-interfaces)
1700 (case (car kws)
1701 ((:use-module)
1702 (if (not (pair? (cdr kws)))
1703 (error "unrecognized defmodule argument" kws))
1704 (let* ((used-name (cadr kws))
1705 (used-module (resolve-module used-name)))
1706 (if (not (module-ref used-module '%module-public-interface #f))
1707 (begin
1708 ((if %autoloader-developer-mode warn error)
1709 "no code for module" (module-name used-module))
1710 (beautify-user-module! used-module)))
1711 (let ((interface (module-public-interface used-module)))
1712 (if (not interface)
1713 (error "missing interface for use-module" used-module))
1714 (loop (cddr kws) (cons interface reversed-interfaces)))))
1715 (else
1716 (error "unrecognized defmodule argument" kws)))))
0f2d19dd
JB
1717 module))
1718\f
44cf1f0f 1719;;; {Autoloading modules}
0f2d19dd
JB
1720
1721(define autoloads-in-progress '())
1722
1723(define (try-module-autoload module-name)
6fa8995c 1724
0f2d19dd
JB
1725 (define (sfx name) (string-append name (scheme-file-suffix)))
1726 (let* ((reverse-name (reverse module-name))
1727 (name (car reverse-name))
1728 (dir-hint-module-name (reverse (cdr reverse-name)))
1729 (dir-hint (apply symbol-append (map (lambda (elt) (symbol-append elt "/")) dir-hint-module-name))))
0209ca9a 1730 (resolve-module dir-hint-module-name #f)
0f2d19dd
JB
1731 (and (not (autoload-done-or-in-progress? dir-hint name))
1732 (let ((didit #f))
1733 (dynamic-wind
1734 (lambda () (autoload-in-progress! dir-hint name))
1735 (lambda ()
1736 (let loop ((dirs %load-path))
1737 (and (not (null? dirs))
1738 (or
1739 (let ((d (car dirs))
1740 (trys (list
1741 dir-hint
1742 (sfx dir-hint)
1743 (in-vicinity dir-hint name)
1744 (in-vicinity dir-hint (sfx name)))))
1745 (and (or-map (lambda (f)
1746 (let ((full (in-vicinity d f)))
1747 full
6fa8995c
GH
1748 (and (file-exists? full)
1749 (not (file-is-directory? full))
0f2d19dd
JB
1750 (begin
1751 (save-module-excursion
1752 (lambda ()
5552355a
GH
1753 (load (string-append
1754 d "/" f))))
0f2d19dd
JB
1755 #t))))
1756 trys)
1757 (begin
1758 (set! didit #t)
1759 #t)))
1760 (loop (cdr dirs))))))
1761 (lambda () (set-autoloaded! dir-hint name didit)))
1762 didit))))
1763
1764(define autoloads-done '((guile . guile)))
1765
1766(define (autoload-done-or-in-progress? p m)
1767 (let ((n (cons p m)))
1768 (->bool (or (member n autoloads-done)
1769 (member n autoloads-in-progress)))))
1770
1771(define (autoload-done! p m)
1772 (let ((n (cons p m)))
1773 (set! autoloads-in-progress
1774 (delete! n autoloads-in-progress))
1775 (or (member n autoloads-done)
1776 (set! autoloads-done (cons n autoloads-done)))))
1777
1778(define (autoload-in-progress! p m)
1779 (let ((n (cons p m)))
1780 (set! autoloads-done
1781 (delete! n autoloads-done))
1782 (set! autoloads-in-progress (cons n autoloads-in-progress))))
1783
1784(define (set-autoloaded! p m done?)
1785 (if done?
1786 (autoload-done! p m)
1787 (let ((n (cons p m)))
1788 (set! autoloads-done (delete! n autoloads-done))
1789 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
1790
1791
1792
1793
1794\f
1795;;; {Macros}
1796;;;
1797
9591db87
MD
1798(define macro-table (make-weak-key-hash-table 523))
1799(define xformer-table (make-weak-key-hash-table 523))
0f2d19dd
JB
1800
1801(define (defmacro? m) (hashq-ref macro-table m))
1802(define (assert-defmacro?! m) (hashq-set! macro-table m #t))
1803(define (defmacro-transformer m) (hashq-ref xformer-table m))
1804(define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
1805
1806(define defmacro:transformer
1807 (lambda (f)
1808 (let* ((xform (lambda (exp env)
1809 (copy-tree (apply f (cdr exp)))))
1810 (a (procedure->memoizing-macro xform)))
1811 (assert-defmacro?! a)
1812 (set-defmacro-transformer! a f)
1813 a)))
1814
1815
1816(define defmacro
1817 (let ((defmacro-transformer
1818 (lambda (name parms . body)
1819 (let ((transformer `(lambda ,parms ,@body)))
1820 `(define ,name
1821 (,(lambda (transformer)
1822 (defmacro:transformer transformer))
1823 ,transformer))))))
1824 (defmacro:transformer defmacro-transformer)))
1825
1826(define defmacro:syntax-transformer
1827 (lambda (f)
1828 (procedure->syntax
1829 (lambda (exp env)
1830 (copy-tree (apply f (cdr exp)))))))
1831
1832(define (macroexpand-1 e)
1833 (cond
1834 ((pair? e) (let* ((a (car e))
b1818df3 1835 (val (and (symbol? a) (defined? a) (eval a))))
0f2d19dd
JB
1836 (if (defmacro? val)
1837 (apply (defmacro-transformer val) (cdr e))
1838 e)))
1839 (#t e)))
1840
1841(define (macroexpand e)
1842 (cond
1843 ((pair? e) (let* ((a (car e))
b1818df3 1844 (val (and (symbol? a) (defined? a) (eval a))))
0f2d19dd
JB
1845 (if (defmacro? val)
1846 (macroexpand (apply (defmacro-transformer val) (cdr e)))
1847 e)))
1848 (#t e)))
1849
1850(define gentemp
1851 (let ((*gensym-counter* -1))
1852 (lambda ()
1853 (set! *gensym-counter* (+ *gensym-counter* 1))
1854 (string->symbol
1855 (string-append "scm:G" (number->string *gensym-counter*))))))
1856
1857
1858\f
1859
1860;;; {Running Repls}
1861;;;
1862
1863(define (repl read evaler print)
1864 (let loop ((source (read (current-input-port) #t read-sharp)))
1865 (print (evaler source))
1866 (loop (read (current-input-port) #t read-sharp))))
1867
1868;; A provisional repl that acts like the SCM repl:
1869;;
1870(define scm-repl-silent #f)
1871(define (assert-repl-silence v) (set! scm-repl-silent v))
1872
21ed9efe
MD
1873(define *unspecified* (if #f #f))
1874(define (unspecified? v) (eq? v *unspecified*))
1875
1876(define scm-repl-print-unspecified #f)
1877(define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
1878
79451588 1879(define scm-repl-verbose #f)
0f2d19dd
JB
1880(define (assert-repl-verbosity v) (set! scm-repl-verbose v))
1881
1882(define scm-repl-prompt #t)
1883(define (assert-repl-prompt v) (set! scm-repl-prompt v))
1884
1885(define the-prompt-string "guile> ")
1886
1887(define (error-catching-loop thunk)
1888 (define (loop first)
1889 (let ((next
1890 (catch #t
9b7def66
MD
1891 (lambda ()
1892 (lazy-catch #t
1893 (lambda ()
1894 (dynamic-wind
1895 (lambda () (unmask-signals))
1896 (lambda ()
1897 (first)
1898
1899 ;; This line is needed because mark doesn't do closures quite right.
1900 ;; Unreferenced locals should be collected.
1901 ;;
1902 (set! first #f)
1903 (let loop ((v (thunk)))
1904 (loop (thunk)))
1905 #f)
1906 (lambda () (mask-signals))))
1907
21ed9efe
MD
1908 (lambda args
1909 (save-stack 1)
1910 (apply throw args))))
1c6cd8e8 1911
9b7def66
MD
1912 (lambda (key . args)
1913 (case key
1914 ((quit)
1915 (force-output)
9b7def66
MD
1916 #f)
1917
1918 ((switch-repl)
1919 (apply throw 'switch-repl args))
1920
1921 ((abort)
1922 ;; This is one of the closures that require
1923 ;; (set! first #f) above
1924 ;;
0f2d19dd 1925 (lambda ()
9b7def66 1926 (force-output)
21ed9efe 1927 (display "ABORT: " (current-error-port))
9b7def66 1928 (write args (current-error-port))
21ed9efe
MD
1929 (newline (current-error-port))
1930 (if (and (not has-shown-debugger-hint?)
1931 (not (memq 'backtrace (debug-options-interface)))
1932 (stack? the-last-stack))
1933 (begin
1934 (newline (current-error-port))
1935 (display "Type \"(backtrace)\" to get more information,
1936or type \"$\" to enter the debugger.\n" (current-error-port))
1937 (set! has-shown-debugger-hint? #t)))
1938 (set! stack-saved? #f)))
9a0d70e2 1939
9b7def66
MD
1940 (else
1941 ;; This is the other cons-leak closure...
1942 (lambda ()
9a0d70e2 1943 (cond ((= (length args) 4)
35c5db87 1944 (apply handle-system-error key args))
9a0d70e2
GH
1945 (else
1946 (apply bad-throw key args))))))))))
0f2d19dd
JB
1947 (and next (loop next))))
1948 (loop (lambda () #t)))
1949
1c6cd8e8 1950(define the-last-stack #f)
21ed9efe
MD
1951(define stack-saved? #f)
1952
1953(define (save-stack . narrowing)
1954 (cond (stack-saved?)
1955 ((not (memq 'debug (debug-options-interface)))
1956 (set! the-last-stack #f)
1957 (set! stack-saved? #t))
1958 (else
1959 (set! the-last-stack
1960 (case (stack-id #t)
1961 ((repl-stack)
1962 (apply make-stack #t save-stack eval narrowing))
1963 ((load-stack)
1964 (apply make-stack #t save-stack gsubr-apply narrowing))
1965 ((tk-stack)
1966 (apply make-stack #t save-stack tk-stack-mark narrowing))
1967 ((#t)
1968 (apply make-stack #t save-stack narrowing))
1969 (else (let ((id (stack-id #t)))
1970 (and (procedure? id)
1971 (apply make-stack #t save-stack id narrowing))))))
1972 (set! stack-saved? #t))))
1c6cd8e8
MD
1973
1974(define before-error-hook #f)
1975(define after-error-hook #f)
1976(define before-backtrace-hook #f)
1977(define after-backtrace-hook #f)
1978
21ed9efe
MD
1979(define has-shown-debugger-hint? #f)
1980
35c5db87
GH
1981(define (handle-system-error key . args)
1982 (let ((cep (current-error-port)))
21ed9efe
MD
1983 (cond ((not (stack? the-last-stack)))
1984 ((memq 'backtrace (debug-options-interface))
1985 (and before-backtrace-hook (before-backtrace-hook))
1986 (newline cep)
1987 (display-backtrace the-last-stack cep)
1988 (newline cep)
1989 (and after-backtrace-hook (after-backtrace-hook))))
1c6cd8e8 1990 (and before-error-hook (before-error-hook))
c27659c8 1991 (apply display-error the-last-stack cep args)
1c6cd8e8 1992 (and after-error-hook (after-error-hook))
35c5db87
GH
1993 (force-output cep)
1994 (throw 'abort key)))
21ed9efe 1995
0f2d19dd
JB
1996(define (quit . args)
1997 (apply throw 'quit args))
1998
21ed9efe
MD
1999(define has-shown-backtrace-hint? #f)
2000
2001(define (backtrace)
2002 (if the-last-stack
2003 (begin
2004 (newline)
2005 (display-backtrace the-last-stack (current-output-port))
2006 (newline)
2007 (if (and (not has-shown-backtrace-hint?)
2008 (not (memq 'backtrace (debug-options-interface))))
2009 (begin
2010 (display
2011"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2012automatically if an error occurs in the future.\n")
2013 (set! has-shown-backtrace-hint? #t))))
2014 (display "No backtrace available.\n")))
2015
0f2d19dd
JB
2016(define (error-catching-repl r e p)
2017 (error-catching-loop (lambda () (p (e (r))))))
2018
2019(define (gc-run-time)
2020 (cdr (assq 'gc-time-taken (gc-stats))))
2021
21ed9efe 2022(define before-read-hook #f)
1c6cd8e8
MD
2023(define after-read-hook #f)
2024
0f2d19dd
JB
2025(define (scm-style-repl)
2026 (letrec (
2027 (start-gc-rt #f)
2028 (start-rt #f)
2029 (repl-report-reset (lambda () #f))
2030 (repl-report-start-timing (lambda ()
2031 (set! start-gc-rt (gc-run-time))
2032 (set! start-rt (get-internal-run-time))))
2033 (repl-report (lambda ()
2034 (display ";;; ")
2035 (display (inexact->exact
2036 (* 1000 (/ (- (get-internal-run-time) start-rt)
2037 internal-time-units-per-second))))
2038 (display " msec (")
2039 (display (inexact->exact
2040 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2041 internal-time-units-per-second))))
2042 (display " msec in gc)\n")))
2043 (-read (lambda ()
2044 (if scm-repl-prompt
2045 (begin
2046 (display the-prompt-string)
2047 (force-output)
2048 (repl-report-reset)))
21ed9efe 2049 (and before-read-hook (before-read-hook))
0f2d19dd 2050 (let ((val (read (current-input-port) #t read-sharp)))
1c6cd8e8 2051 (and after-read-hook (after-read-hook))
0f2d19dd
JB
2052 (if (eof-object? val)
2053 (begin
2054 (if scm-repl-verbose
2055 (begin
2056 (newline)
2057 (display ";;; EOF -- quitting")
2058 (newline)))
2059 (quit 0)))
2060 val)))
2061
2062 (-eval (lambda (sourc)
2063 (repl-report-start-timing)
4cdee789 2064 (start-stack 'repl-stack (eval sourc))))
0f2d19dd
JB
2065
2066 (-print (lambda (result)
2067 (if (not scm-repl-silent)
2068 (begin
21ed9efe
MD
2069 (if (or scm-repl-print-unspecified
2070 (not (unspecified? result)))
2071 (begin
2072 (write result)
2073 (newline)))
0f2d19dd
JB
2074 (if scm-repl-verbose
2075 (repl-report))
2076 (force-output)))))
2077
2078 (-quit (lambda ()
2079 (if scm-repl-verbose
2080 (begin
2081 (display ";;; QUIT executed, repl exitting")
2082 (newline)
2083 (repl-report)))
2084 #t))
2085
2086 (-abort (lambda ()
2087 (if scm-repl-verbose
2088 (begin
2089 (display ";;; ABORT executed.")
2090 (newline)
2091 (repl-report)))
2092 (repl -read -eval -print))))
2093
2094 (error-catching-repl -read
2095 -eval
2096 -print)))
2097
2098(define (stand-alone-repl)
2099 (let ((oport (current-input-port)))
2100 (set-current-input-port *stdin*)
2101 (scm-style-repl)
2102 (set-current-input-port oport)))
2103
2104
2105\f
44cf1f0f 2106;;; {IOTA functions: generating lists of numbers}
0f2d19dd
JB
2107
2108(define (reverse-iota n) (if (> n 0) (cons (1- n) (reverse-iota (1- n))) '()))
2109(define (iota n) (list-reverse! (reverse-iota n)))
2110
2111\f
2112;;; {While}
2113;;;
2114;;; with `continue' and `break'.
2115;;;
2116
2117(defmacro while (cond . body)
2118 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2119 (break (lambda val (apply throw 'break val))))
2120 (catch 'break
2121 (lambda () (continue))
2122 (lambda v (cadr v)))))
2123
2124
2125\f
2126
2127;;; {Macros}
2128;;;
2129
2130;; actually....hobbit might be able to hack these with a little
2131;; coaxing
2132;;
2133
2134(defmacro define-macro (first . rest)
2135 (let ((name (if (symbol? first) first (car first)))
2136 (transformer
2137 (if (symbol? first)
2138 (car rest)
2139 `(lambda ,(cdr first) ,@rest))))
2140 `(define ,name (defmacro:transformer ,transformer))))
2141
2142
2143(defmacro define-syntax-macro (first . rest)
2144 (let ((name (if (symbol? first) first (car first)))
2145 (transformer
2146 (if (symbol? first)
2147 (car rest)
2148 `(lambda ,(cdr first) ,@rest))))
2149 `(define ,name (defmacro:syntax-transformer ,transformer))))
2150\f
2151;;; {Module System Macros}
2152;;;
2153
2154(defmacro define-module args
2155 `(let* ((process-define-module process-define-module)
2156 (set-current-module set-current-module)
2157 (module (process-define-module ',args)))
2158 (set-current-module module)
2159 module))
2160
2161(define define-private define)
2162
2163(defmacro define-public args
2164 (define (syntax)
2165 (error "bad syntax" (list 'define-public args)))
2166 (define (defined-name n)
2167 (cond
2168 ((symbol? n) n)
2169 ((pair? n) (defined-name (car n)))
2170 (else (syntax))))
2171 (cond
2172 ((null? args) (syntax))
2173
2174 (#t (let ((name (defined-name (car args))))
2175 `(begin
2176 (let ((public-i (module-public-interface (current-module))))
2177 ;; Make sure there is a local variable:
2178 ;;
2179 (module-define! (current-module)
2180 ',name
2181 (module-ref (current-module) ',name #f))
2182
2183 ;; Make sure that local is exported:
2184 ;;
2185 (module-add! public-i ',name (module-variable (current-module) ',name)))
2186
2187 ;; Now (re)define the var normally.
2188 ;;
2189 (define-private ,@ args))))))
2190
2191
2192
2193(defmacro defmacro-public args
2194 (define (syntax)
2195 (error "bad syntax" (list 'defmacro-public args)))
2196 (define (defined-name n)
2197 (cond
2198 ((symbol? n) n)
2199 (else (syntax))))
2200 (cond
2201 ((null? args) (syntax))
2202
2203 (#t (let ((name (defined-name (car args))))
2204 `(begin
2205 (let ((public-i (module-public-interface (current-module))))
2206 ;; Make sure there is a local variable:
2207 ;;
2208 (module-define! (current-module)
2209 ',name
2210 (module-ref (current-module) ',name #f))
2211
2212 ;; Make sure that local is exported:
2213 ;;
2214 (module-add! public-i ',name (module-variable (current-module) ',name)))
2215
2216 ;; Now (re)define the var normally.
2217 ;;
2218 (defmacro ,@ args))))))
2219
2220
2221
2222
0f2d19dd 2223(define load load-module)
1c6cd8e8
MD
2224;(define (load . args)
2225; (start-stack 'load-stack (apply load-module args)))
0f2d19dd
JB
2226
2227
2228\f
44cf1f0f 2229;;; {I/O functions for Tcl channels (disabled)}
0f2d19dd
JB
2230
2231;; (define in-ch (get-standard-channel TCL_STDIN))
2232;; (define out-ch (get-standard-channel TCL_STDOUT))
2233;; (define err-ch (get-standard-channel TCL_STDERR))
2234;;
2235;; (define inp (%make-channel-port in-ch "r"))
2236;; (define outp (%make-channel-port out-ch "w"))
2237;; (define errp (%make-channel-port err-ch "w"))
2238;;
2239;; (define %system-char-ready? char-ready?)
2240;;
2241;; (define (char-ready? p)
2242;; (if (not (channel-port? p))
2243;; (%system-char-ready? p)
2244;; (let* ((channel (%channel-port-channel p))
2245;; (old-blocking (channel-option-ref channel :blocking)))
2246;; (dynamic-wind
2247;; (lambda () (set-channel-option the-root-tcl-interpreter channel :blocking "0"))
2248;; (lambda () (not (eof-object? (peek-char p))))
2249;; (lambda () (set-channel-option the-root-tcl-interpreter channel :blocking old-blocking))))))
2250;;
2251;; (define (top-repl)
2252;; (with-input-from-port inp
2253;; (lambda ()
2254;; (with-output-to-port outp
2255;; (lambda ()
2256;; (with-error-to-port errp
2257;; (lambda ()
2258;; (scm-style-repl))))))))
2259;;
2260;; (set-current-input-port inp)
2261;; (set-current-output-port outp)
2262;; (set-current-error-port errp)
2263
2264(define (top-repl) (scm-style-repl))
2265
02b754d3
GH
2266(defmacro false-if-exception (expr)
2267 `(catch #t (lambda () ,expr)
2268 (lambda args #f)))
2269
0f2d19dd 2270\f
44cf1f0f 2271;;; {Calling Conventions}
0f2d19dd
JB
2272(define-module (ice-9 calling))
2273
2274;;;;
0f2d19dd
JB
2275;;;
2276;;; This file contains a number of macros that support
2277;;; common calling conventions.
2278
2279;;;
2280;;; with-excursion-function <vars> proc
2281;;; <vars> is an unevaluated list of names that are bound in the caller.
2282;;; proc is a procedure, called:
2283;;; (proc excursion)
2284;;;
2285;;; excursion is a procedure isolates all changes to <vars>
2286;;; in the dynamic scope of the call to proc. In other words,
2287;;; the values of <vars> are saved when proc is entered, and when
2288;;; proc returns, those values are restored. Values are also restored
2289;;; entering and leaving the call to proc non-locally, such as using
2290;;; call-with-current-continuation, error, or throw.
2291;;;
2292(defmacro-public with-excursion-function (vars proc)
2293 `(,proc ,(excursion-function-syntax vars)))
2294
2295
2296
2297;;; with-getter-and-setter <vars> proc
2298;;; <vars> is an unevaluated list of names that are bound in the caller.
2299;;; proc is a procedure, called:
2300;;; (proc getter setter)
2301;;;
2302;;; getter and setter are procedures used to access
2303;;; or modify <vars>.
2304;;;
2305;;; setter, called with keywords arguments, modifies the named
2306;;; values. If "foo" and "bar" are among <vars>, then:
2307;;;
2308;;; (setter :foo 1 :bar 2)
2309;;; == (set! foo 1 bar 2)
2310;;;
2311;;; getter, called with just keywords, returns
2312;;; a list of the corresponding values. For example,
2313;;; if "foo" and "bar" are among the <vars>, then
2314;;;
2315;;; (getter :foo :bar)
2316;;; => (<value-of-foo> <value-of-bar>)
2317;;;
2318;;; getter, called with no arguments, returns a list of all accepted
2319;;; keywords and the corresponding values. If "foo" and "bar" are
2320;;; the *only* <vars>, then:
2321;;;
2322;;; (getter)
2323;;; => (:foo <value-of-bar> :bar <value-of-foo>)
2324;;;
2325;;; The unusual calling sequence of a getter supports too handy
2326;;; idioms:
2327;;;
2328;;; (apply setter (getter)) ;; save and restore
2329;;;
2330;;; (apply-to-args (getter :foo :bar) ;; fetch and bind
2331;;; (lambda (foo bar) ....))
2332;;;
2333;;; ;; [ "apply-to-args" is just like two-argument "apply" except that it
2334;;; ;; takes its arguments in a different order.
2335;;;
2336;;;
2337(defmacro-public with-getter-and-setter (vars proc)
2338 `(,proc ,@ (getter-and-setter-syntax vars)))
2339
2340;;; with-getter vars proc
2341;;; A short-hand for a call to with-getter-and-setter.
2342;;; The procedure is called:
2343;;; (proc getter)
2344;;;
2345(defmacro-public with-getter (vars proc)
2346 `(,proc ,(car (getter-and-setter-syntax vars))))
2347
2348
2349;;; with-delegating-getter-and-setter <vars> get-delegate set-delegate proc
2350;;; Compose getters and setters.
2351;;;
2352;;; <vars> is an unevaluated list of names that are bound in the caller.
2353;;;
2354;;; get-delegate is called by the new getter to extend the set of
2355;;; gettable variables beyond just <vars>
2356;;; set-delegate is called by the new setter to extend the set of
2357;;; gettable variables beyond just <vars>
2358;;;
2359;;; proc is a procedure that is called
2360;;; (proc getter setter)
2361;;;
2362(defmacro-public with-delegating-getter-and-setter (vars get-delegate set-delegate proc)
2363 `(,proc ,@ (delegating-getter-and-setter-syntax vars get-delegate set-delegate)))
2364
2365
2366;;; with-delegating-getter-and-setter <vars> get-delegate set-delegate proc
2367;;; <vars> is an unevaluated list of names that are bound in the caller.
2368;;; proc is called:
2369;;;
2370;;; (proc excursion getter setter)
2371;;;
2372;;; See also:
2373;;; with-getter-and-setter
2374;;; with-excursion-function
2375;;;
2376(defmacro-public with-excursion-getter-and-setter (vars proc)
2377 `(,proc ,(excursion-function-syntax vars)
2378 ,@ (getter-and-setter-syntax vars)))
2379
2380
2381(define (excursion-function-syntax vars)
2382 (let ((saved-value-names (map gensym vars))
2383 (tmp-var-name (gensym 'temp))
2384 (swap-fn-name (gensym 'swap))
2385 (thunk-name (gensym 'thunk)))
2386 `(lambda (,thunk-name)
2387 (letrec ((,tmp-var-name #f)
2388 (,swap-fn-name
2389 (lambda () ,@ (map (lambda (n sn) `(set! ,tmp-var-name ,n ,n ,sn ,sn ,tmp-var-name))
2390 vars saved-value-names)))
2391 ,@ (map (lambda (sn n) `(,sn ,n)) saved-value-names vars))
2392 (dynamic-wind
2393 ,swap-fn-name
2394 ,thunk-name
2395 ,swap-fn-name)))))
2396
2397
2398(define (getter-and-setter-syntax vars)
2399 (let ((args-name (gensym 'args))
2400 (an-arg-name (gensym 'an-arg))
2401 (new-val-name (gensym 'new-value))
2402 (loop-name (gensym 'loop))
2403 (kws (map symbol->keyword vars)))
2404 (list `(lambda ,args-name
2405 (let ,loop-name ((,args-name ,args-name))
2406 (if (null? ,args-name)
2407 ,(if (null? kws)
2408 ''()
2409 `(let ((all-vals (,loop-name ',kws)))
2410 (let ,loop-name ((vals all-vals)
2411 (kws ',kws))
2412 (if (null? vals)
2413 '()
2414 `(,(car kws) ,(car vals) ,@(,loop-name (cdr vals) (cdr kws)))))))
2415 (map (lambda (,an-arg-name)
2416 (case ,an-arg-name
2417 ,@ (append
2418 (map (lambda (kw v) `((,kw) ,v)) kws vars)
2419 `((else (throw 'bad-get-option ,an-arg-name))))))
2420 ,args-name))))
2421
2422 `(lambda ,args-name
2423 (let ,loop-name ((,args-name ,args-name))
2424 (or (null? ,args-name)
2425 (null? (cdr ,args-name))
2426 (let ((,an-arg-name (car ,args-name))
2427 (,new-val-name (cadr ,args-name)))
2428 (case ,an-arg-name
2429 ,@ (append
2430 (map (lambda (kw v) `((,kw) (set! ,v ,new-val-name))) kws vars)
2431 `((else (throw 'bad-set-option ,an-arg-name)))))
2432 (,loop-name (cddr ,args-name)))))))))
2433
2434(define (delegating-getter-and-setter-syntax vars get-delegate set-delegate)
2435 (let ((args-name (gensym 'args))
2436 (an-arg-name (gensym 'an-arg))
2437 (new-val-name (gensym 'new-value))
2438 (loop-name (gensym 'loop))
2439 (kws (map symbol->keyword vars)))
2440 (list `(lambda ,args-name
2441 (let ,loop-name ((,args-name ,args-name))
2442 (if (null? ,args-name)
2443 (append!
2444 ,(if (null? kws)
2445 ''()
2446 `(let ((all-vals (,loop-name ',kws)))
2447 (let ,loop-name ((vals all-vals)
2448 (kws ',kws))
2449 (if (null? vals)
2450 '()
2451 `(,(car kws) ,(car vals) ,@(,loop-name (cdr vals) (cdr kws)))))))
2452 (,get-delegate))
2453 (map (lambda (,an-arg-name)
2454 (case ,an-arg-name
2455 ,@ (append
2456 (map (lambda (kw v) `((,kw) ,v)) kws vars)
2457 `((else (car (,get-delegate ,an-arg-name)))))))
2458 ,args-name))))
2459
2460 `(lambda ,args-name
2461 (let ,loop-name ((,args-name ,args-name))
2462 (or (null? ,args-name)
2463 (null? (cdr ,args-name))
2464 (let ((,an-arg-name (car ,args-name))
2465 (,new-val-name (cadr ,args-name)))
2466 (case ,an-arg-name
2467 ,@ (append
2468 (map (lambda (kw v) `((,kw) (set! ,v ,new-val-name))) kws vars)
2469 `((else (,set-delegate ,an-arg-name ,new-val-name)))))
2470 (,loop-name (cddr ,args-name)))))))))
2471
2472
2473
2474
2475;;; with-configuration-getter-and-setter <vars-etc> proc
2476;;;
2477;;; Create a getter and setter that can trigger arbitrary computation.
2478;;;
2479;;; <vars-etc> is a list of variable specifiers, explained below.
2480;;; proc is called:
2481;;;
2482;;; (proc getter setter)
2483;;;
2484;;; Each element of the <vars-etc> list is of the form:
2485;;;
2486;;; (<var> getter-hook setter-hook)
2487;;;
2488;;; Both hook elements are evaluated; the variable name is not.
2489;;; Either hook may be #f or procedure.
2490;;;
2491;;; A getter hook is a thunk that returns a value for the corresponding
2492;;; variable. If omitted (#f is passed), the binding of <var> is
2493;;; returned.
2494;;;
2495;;; A setter hook is a procedure of one argument that accepts a new value
2496;;; for the corresponding variable. If omitted, the binding of <var>
2497;;; is simply set using set!.
2498;;;
2499(defmacro-public with-configuration-getter-and-setter (vars-etc proc)
2500 `((lambda (simpler-get simpler-set body-proc)
2501 (with-delegating-getter-and-setter ()
2502 simpler-get simpler-set body-proc))
2503
2504 (lambda (kw)
2505 (case kw
2506 ,@(map (lambda (v) `((,(symbol->keyword (car v)))
2507 ,(cond
2508 ((cadr v) => list)
2509 (else `(list ,(car v))))))
2510 vars-etc)))
2511
2512 (lambda (kw new-val)
2513 (case kw
2514 ,@(map (lambda (v) `((,(symbol->keyword (car v)))
2515 ,(cond
2516 ((caddr v) => (lambda (proc) `(,proc new-val)))
2517 (else `(set! ,(car v) new-val)))))
2518 vars-etc)))
2519
2520 ,proc))
2521
2522(defmacro-public with-delegating-configuration-getter-and-setter (vars-etc delegate-get delegate-set proc)
2523 `((lambda (simpler-get simpler-set body-proc)
2524 (with-delegating-getter-and-setter ()
2525 simpler-get simpler-set body-proc))
2526
2527 (lambda (kw)
2528 (case kw
2529 ,@(append! (map (lambda (v) `((,(symbol->keyword (car v)))
2530 ,(cond
2531 ((cadr v) => list)
2532 (else `(list ,(car v))))))
2533 vars-etc)
2534 `((else (,delegate-get kw))))))
2535
2536 (lambda (kw new-val)
2537 (case kw
2538 ,@(append! (map (lambda (v) `((,(symbol->keyword (car v)))
2539 ,(cond
2540 ((caddr v) => (lambda (proc) `(,proc new-val)))
2541 (else `(set! ,(car v) new-val)))))
2542 vars-etc)
2543 `((else (,delegate-set kw new-val))))))
2544
2545 ,proc))
2546
2547
2548;;; let-configuration-getter-and-setter <vars-etc> proc
2549;;;
2550;;; This procedure is like with-configuration-getter-and-setter (q.v.)
2551;;; except that each element of <vars-etc> is:
2552;;;
2553;;; (<var> initial-value getter-hook setter-hook)
2554;;;
2555;;; Unlike with-configuration-getter-and-setter, let-configuration-getter-and-setter
2556;;; introduces bindings for the variables named in <vars-etc>.
2557;;; It is short-hand for:
2558;;;
2559;;; (let ((<var1> initial-value-1)
2560;;; (<var2> initial-value-2)
2561;;; ...)
2562;;; (with-configuration-getter-and-setter ((<var1> v1-get v1-set) ...) proc))
2563;;;
2564(defmacro-public let-with-configuration-getter-and-setter (vars-etc proc)
2565 `(let ,(map (lambda (v) `(,(car v) ,(cadr v))) vars-etc)
2566 (with-configuration-getter-and-setter ,(map (lambda (v) `(,(car v) ,(caddr v) ,(cadddr v))) vars-etc)
2567 ,proc)))
2568
2569
2570
2571\f
44cf1f0f
JB
2572;;; {Implementation of COMMON LISP list functions for Scheme}
2573
0f2d19dd
JB
2574(define-module (ice-9 common-list))
2575
2576;;"comlist.scm" Implementation of COMMON LISP list functions for Scheme
2577; Copyright (C) 1991, 1993, 1995 Aubrey Jaffer.
2578;
2579;Permission to copy this software, to redistribute it, and to use it
2580;for any purpose is granted, subject to the following restrictions and
2581;understandings.
2582;
2583;1. Any copy made of this software must include this copyright notice
2584;in full.
2585;
2586;2. I have made no warrantee or representation that the operation of
2587;this software will be error-free, and I am under no obligation to
2588;provide any services, by way of maintenance, update, or otherwise.
2589;
2590;3. In conjunction with products arising from the use of this
2591;material, there shall be no use of my name in any advertising,
2592;promotional, or sales literature without prior written consent in
2593;each case.
2594
0f2d19dd
JB
2595;;;From: hugh@ear.mit.edu (Hugh Secker-Walker)
2596(define-public (make-list k . init)
2597 (set! init (if (pair? init) (car init)))
2598 (do ((k k (+ -1 k))
2599 (result '() (cons init result)))
2600 ((<= k 0) result)))
2601
2602(define-public (adjoin e l) (if (memq e l) l (cons e l)))
2603
2604(define-public (union l1 l2)
2605 (cond ((null? l1) l2)
2606 ((null? l2) l1)
2607 (else (union (cdr l1) (adjoin (car l1) l2)))))
2608
2609(define-public (intersection l1 l2)
2610 (cond ((null? l1) l1)
2611 ((null? l2) l2)
2612 ((memv (car l1) l2) (cons (car l1) (intersection (cdr l1) l2)))
2613 (else (intersection (cdr l1) l2))))
2614
2615(define-public (set-difference l1 l2)
2616 (cond ((null? l1) l1)
2617 ((memv (car l1) l2) (set-difference (cdr l1) l2))
2618 (else (cons (car l1) (set-difference (cdr l1) l2)))))
2619
2620(define-public (reduce-init p init l)
2621 (if (null? l)
2622 init
2623 (reduce-init p (p init (car l)) (cdr l))))
2624
2625(define-public (reduce p l)
2626 (cond ((null? l) l)
2627 ((null? (cdr l)) (car l))
2628 (else (reduce-init p (car l) (cdr l)))))
2629
2630(define-public (some pred l . rest)
2631 (cond ((null? rest)
2632 (let mapf ((l l))
2633 (and (not (null? l))
2634 (or (pred (car l)) (mapf (cdr l))))))
2635 (else (let mapf ((l l) (rest rest))
2636 (and (not (null? l))
2637 (or (apply pred (car l) (map car rest))
2638 (mapf (cdr l) (map cdr rest))))))))
2639
2640(define-public (every pred l . rest)
2641 (cond ((null? rest)
2642 (let mapf ((l l))
2643 (or (null? l)
2644 (and (pred (car l)) (mapf (cdr l))))))
2645 (else (let mapf ((l l) (rest rest))
2646 (or (null? l)
2647 (and (apply pred (car l) (map car rest))
2648 (mapf (cdr l) (map cdr rest))))))))
2649
2650(define-public (notany pred . ls) (not (apply some pred ls)))
2651
2652(define-public (notevery pred . ls) (not (apply every pred ls)))
2653
2654(define-public (find-if t l)
2655 (cond ((null? l) #f)
2656 ((t (car l)) (car l))
2657 (else (find-if t (cdr l)))))
2658
2659(define-public (member-if t l)
2660 (cond ((null? l) #f)
2661 ((t (car l)) l)
2662 (else (member-if t (cdr l)))))
2663
2664(define-public (remove-if p l)
2665 (cond ((null? l) '())
2666 ((p (car l)) (remove-if p (cdr l)))
2667 (else (cons (car l) (remove-if p (cdr l))))))
2668
2669(define-public (delete-if! pred list)
2670 (let delete-if ((list list))
2671 (cond ((null? list) '())
2672 ((pred (car list)) (delete-if (cdr list)))
2673 (else
2674 (set-cdr! list (delete-if (cdr list)))
2675 list))))
2676
2677(define-public (delete-if-not! pred list)
2678 (let delete-if ((list list))
2679 (cond ((null? list) '())
2680 ((not (pred (car list))) (delete-if (cdr list)))
2681 (else
2682 (set-cdr! list (delete-if (cdr list)))
2683 list))))
2684
2685(define-public (butlast lst n)
2686 (letrec ((l (- (length lst) n))
2687 (bl (lambda (lst n)
2688 (cond ((null? lst) lst)
2689 ((positive? n)
2690 (cons (car lst) (bl (cdr lst) (+ -1 n))))
2691 (else '())))))
2692 (bl lst (if (negative? n)
2693 (slib:error "negative argument to butlast" n)
2694 l))))
2695
2696(define-public (and? . args)
2697 (cond ((null? args) #t)
2698 ((car args) (apply and? (cdr args)))
2699 (else #f)))
2700
2701(define-public (or? . args)
2702 (cond ((null? args) #f)
2703 ((car args) #t)
2704 (else (apply or? (cdr args)))))
2705
2706(define-public (has-duplicates? lst)
2707 (cond ((null? lst) #f)
2708 ((member (car lst) (cdr lst)) #t)
2709 (else (has-duplicates? (cdr lst)))))
2710
2711(define-public (list* x . y)
2712 (define (list*1 x)
2713 (if (null? (cdr x))
2714 (car x)
2715 (cons (car x) (list*1 (cdr x)))))
2716 (if (null? y)
2717 x
2718 (cons x (list*1 y))))
2719
2720;; pick p l
2721;; Apply P to each element of L, returning a list of elts
2722;; for which P returns a non-#f value.
2723;;
2724(define-public (pick p l)
2725 (let loop ((s '())
2726 (l l))
2727 (cond
2728 ((null? l) s)
2729 ((p (car l)) (loop (cons (car l) s) (cdr l)))
2730 (else (loop s (cdr l))))))
2731
2732;; pick p l
2733;; Apply P to each element of L, returning a list of the
2734;; non-#f return values of P.
2735;;
2736(define-public (pick-mappings p l)
2737 (let loop ((s '())
2738 (l l))
2739 (cond
2740 ((null? l) s)
2741 ((p (car l)) => (lambda (mapping) (loop (cons mapping s) (cdr l))))
2742 (else (loop s (cdr l))))))
2743
2744(define-public (uniq l)
2745 (if (null? l)
2746 '()
2747 (let ((u (uniq (cdr l))))
2748 (if (memq (car l) u)
2749 u
2750 (cons (car l) u)))))
2751
2752\f
44cf1f0f
JB
2753;;; {Functions for browsing modules}
2754
0f2d19dd
JB
2755(define-module (ice-9 ls)
2756 :use-module (ice-9 common-list))
2757
0f2d19dd
JB
2758;;;;
2759;;; local-definitions-in root name
8b718458
JB
2760;;; Returns a list of names defined locally in the named
2761;;; subdirectory of root.
0f2d19dd 2762;;; definitions-in root name
8b718458
JB
2763;;; Returns a list of all names defined in the named
2764;;; subdirectory of root. The list includes alll locally
2765;;; defined names as well as all names inherited from a
2766;;; member of a use-list.
0f2d19dd
JB
2767;;;
2768;;; A convenient interface for examining the nature of things:
2769;;;
2770;;; ls . various-names
2771;;;
8b718458
JB
2772;;; With just one argument, interpret that argument as the
2773;;; name of a subdirectory of the current module and
2774;;; return a list of names defined there.
0f2d19dd 2775;;;
8b718458
JB
2776;;; With more than one argument, still compute
2777;;; subdirectory lists, but return a list:
0f2d19dd
JB
2778;;; ((<subdir-name> . <names-defined-there>)
2779;;; (<subdir-name> . <names-defined-there>)
2780;;; ...)
2781;;;
2782
2783(define-public (local-definitions-in root names)
0dd5491c 2784 (let ((m (nested-ref root names))
0f2d19dd
JB
2785 (answer '()))
2786 (if (not (module? m))
2787 (set! answer m)
2788 (module-for-each (lambda (k v) (set! answer (cons k answer))) m))
2789 answer))
2790
2791(define-public (definitions-in root names)
0dd5491c 2792 (let ((m (nested-ref root names)))
0f2d19dd
JB
2793 (if (not (module? m))
2794 m
2795 (reduce union
2796 (cons (local-definitions-in m '())
8b718458
JB
2797 (map (lambda (m2) (definitions-in m2 '()))
2798 (module-uses m)))))))
0f2d19dd
JB
2799
2800(define-public (ls . various-refs)
2801 (and various-refs
2802 (if (cdr various-refs)
2803 (map (lambda (ref)
2804 (cons ref (definitions-in (current-module) ref)))
2805 various-refs)
2806 (definitions-in (current-module) (car various-refs)))))
2807
2808(define-public (lls . various-refs)
2809 (and various-refs
2810 (if (cdr various-refs)
2811 (map (lambda (ref)
2812 (cons ref (local-definitions-in (current-module) ref)))
2813 various-refs)
2814 (local-definitions-in (current-module) (car various-refs)))))
2815
0dd5491c 2816(define-public (recursive-local-define name value)
0f2d19dd
JB
2817 (let ((parent (reverse! (cdr (reverse name)))))
2818 (and parent (make-modules-in (current-module) parent))
0dd5491c 2819 (local-define name value)))
0f2d19dd 2820\f
44cf1f0f
JB
2821;;; {Queues}
2822
0f2d19dd
JB
2823(define-module (ice-9 q))
2824
2825;;;; Copyright (C) 1995 Free Software Foundation, Inc.
2826;;;;
2827;;;; This program is free software; you can redistribute it and/or modify
2828;;;; it under the terms of the GNU General Public License as published by
2829;;;; the Free Software Foundation; either version 2, or (at your option)
2830;;;; any later version.
2831;;;;
2832;;;; This program is distributed in the hope that it will be useful,
2833;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
2834;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2835;;;; GNU General Public License for more details.
2836;;;;
2837;;;; You should have received a copy of the GNU General Public License
2838;;;; along with this software; see the file COPYING. If not, write to
2839;;;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
2840;;;;
2841
0f2d19dd
JB
2842;;;;
2843;;; Q: Based on the interface to
2844;;;
2845;;; "queue.scm" Queues/Stacks for Scheme
2846;;; Written by Andrew Wilcox (awilcox@astro.psu.edu) on April 1, 1992.
2847;;;
2848
0f2d19dd
JB
2849;;;;
2850;;; {Q}
2851;;;
2852;;; A list is just a bunch of cons pairs that follows some constrains, right?
2853;;; Association lists are the same. Hash tables are just vectors and association
2854;;; lists. You can print them, read them, write them as constants, pun them off as other data
2855;;; structures etc. This is good. This is lisp. These structures are fast and compact
2856;;; and easy to manipulate arbitrarily because of their simple, regular structure and
2857;;; non-disjointedness (associations being lists and so forth).
2858;;;
2859;;; So I figured, queues should be the same -- just a "subtype" of cons-pair
2860;;; structures in general.
2861;;;
2862;;; A queue is a cons pair:
2863;;; ( <the-q> . <last-pair> )
2864;;;
2865;;; <the-q> is a list of things in the q. New elements go at the end of that list.
2866;;;
2867;;; <last-pair> is #f if the q is empty, and otherwise is the last pair of <the-q>.
2868;;;
2869;;; q's print nicely, but alas, they do not read well because the eq?-ness of
2870;;; <last-pair> and (last-pair <the-q>) is lost by read. The procedure
2871;;;
2872;;; (sync-q! q)
2873;;;
2874;;; recomputes and resets the <last-pair> component of a queue.
2875;;;
2876
2877(define-public (sync-q! obj) (set-cdr! obj (and (car obj) (last-pair (car obj)))))
2878
2879;;; make-q
2880;;; return a new q.
2881;;;
2882(define-public (make-q) (cons '() '()))
2883
2884;;; q? obj
2885;;; Return true if obj is a Q.
2886;;; An object is a queue if it is equal? to '(#f . #f) or
2887;;; if it is a pair P with (list? (car P)) and (eq? (cdr P) (last-pair P)).
2888;;;
2889(define-public (q? obj) (and (pair? obj)
2890 (or (and (null? (car obj))
2891 (null? (cdr obj)))
2892 (and
2893 (list? (car obj))
2894 (eq? (cdr obj) (last-pair (car obj)))))))
2895
2896;;; q-empty? obj
2897;;;
2898(define-public (q-empty? obj) (null? (car obj)))
2899
2900;;; q-empty-check q
2901;;; Throw a q-empty exception if Q is empty.
2902(define-public (q-empty-check q) (if (q-empty? q) (throw 'q-empty q)))
2903
2904
2905;;; q-front q
2906;;; Return the first element of Q.
2907(define-public (q-front q) (q-empty-check q) (caar q))
2908
2909;;; q-front q
2910;;; Return the last element of Q.
2911(define-public (q-rear q) (q-empty-check q) (cadr q))
2912
2913;;; q-remove! q obj
2914;;; Remove all occurences of obj from Q.
2915(define-public (q-remove! q obj)
2916 (while (memq obj (car q))
2917 (set-car! q (delq! obj (car q))))
2918 (set-cdr! q (last-pair (car q))))
2919
2920;;; q-push! q obj
2921;;; Add obj to the front of Q
2922(define-public (q-push! q d)
2923 (let ((h (cons d (car q))))
2924 (set-car! q h)
2925 (if (null? (cdr q))
2926 (set-cdr! q h))))
2927
2928;;; enq! q obj
2929;;; Add obj to the rear of Q
2930(define-public (enq! q d)
2931 (let ((h (cons d '())))
2932 (if (not (null? (cdr q)))
2933 (set-cdr! (cdr q) h)
2934 (set-car! q h))
2935 (set-cdr! q h)))
2936
2937;;; q-pop! q
2938;;; Take the front of Q and return it.
2939(define-public (q-pop! q)
2940 (q-empty-check q)
2941 (let ((it (caar q))
2942 (next (cdar q)))
2943 (if (not next)
2944 (set-cdr! q #f))
2945 (set-car! q next)
2946 it))
2947
2948;;; deq! q
2949;;; Take the front of Q and return it.
2950(define-public deq! q-pop!)
2951
2952;;; q-length q
2953;;; Return the number of enqueued elements.
2954;;;
2955(define-public (q-length q) (length (car q)))
2956
2957
2958
2959\f
44cf1f0f
JB
2960;;; {The runq data structure}
2961
0f2d19dd
JB
2962(define-module (ice-9 runq)
2963 :use-module (ice-9 q))
2964
0f2d19dd
JB
2965;;;; Copyright (C) 1996 Free Software Foundation, Inc.
2966;;;;
2967;;;; This program is free software; you can redistribute it and/or modify
2968;;;; it under the terms of the GNU General Public License as published by
2969;;;; the Free Software Foundation; either version 2, or (at your option)
2970;;;; any later version.
2971;;;;
2972;;;; This program is distributed in the hope that it will be useful,
2973;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
2974;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2975;;;; GNU General Public License for more details.
2976;;;;
2977;;;; You should have received a copy of the GNU General Public License
2978;;;; along with this software; see the file COPYING. If not, write to
2979;;;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
2980;;;;
2981
0f2d19dd 2982;;;;
0f2d19dd
JB
2983;;;
2984;;; One way to schedule parallel computations in a serial environment is
2985;;; to explicitly divide each task up into small, finite execution time,
2986;;; strips. Then you interleave the execution of strips from various
2987;;; tasks to achieve a kind of parallelism. Runqs are a handy data
2988;;; structure for this style of programming.
2989;;;
2990;;; We use thunks (nullary procedures) and lists of thunks to represent
2991;;; strips. By convention, the return value of a strip-thunk must either
2992;;; be another strip or the value #f.
2993;;;
2994;;; A runq is a procedure that manages a queue of strips. Called with no
2995;;; arguments, it processes one strip from the queue. Called with
2996;;; arguments, the arguments form a control message for the queue. The
2997;;; first argument is a symbol which is the message selector.
2998;;;
2999;;; A strip is processed this way: If the strip is a thunk, the thunk is
3000;;; called -- if it returns a strip, that strip is added back to the
3001;;; queue. To process a strip which is a list of thunks, the CAR of that
3002;;; list is called. After a call to that CAR, there are 0, 1, or 2 strips
3003;;; -- perhaps one returned by the thunk, and perhaps the CDR of the
3004;;; original strip if that CDR is not nil. The runq puts whichever of
3005;;; these strips exist back on the queue. (The exact order in which
3006;;; strips are put back on the queue determines the scheduling behavior of
3007;;; a particular queue -- it's a parameter.)
3008;;;
3009;;;
3010
3011
3012
3013;;;;
3014;;; (runq-control q msg . args)
3015;;;
3016;;; processes in the default way the control messages that
3017;;; can be sent to a runq. Q should be an ordinary
3018;;; Q (see utils/q.scm).
3019;;;
3020;;; The standard runq messages are:
3021;;;
3022;;; 'add! strip0 strip1... ;; to enqueue one or more strips
3023;;; 'enqueue! strip0 strip1... ;; to enqueue one or more strips
3024;;; 'push! strip0 ... ;; add strips to the front of the queue
3025;;; 'empty? ;; true if it is
3026;;; 'length ;; how many strips in the queue?
3027;;; 'kill! ;; empty the queue
3028;;; else ;; throw 'not-understood
3029;;;
3030(define-public (runq-control q msg . args)
3031 (case msg
3032 ((add!) (for-each (lambda (t) (enq! q t)) args) '*unspecified*)
3033 ((enque!) (for-each (lambda (t) (enq! q t)) args) '*unspecified*)
3034 ((push!) (for-each (lambda (t) (q-push! q t)) args) '*unspecified*)
3035 ((empty?) (q-empty? q))
3036 ((length) (q-length q))
3037 ((kill!) (set! q (make-q)))
3038 (else (throw 'not-understood msg args))))
3039
3040(define (run-strip thunk) (catch #t thunk (lambda ign (warn 'runq-strip thunk ign) #f)))
3041
3042;;;;
3043;;; make-void-runq
3044;;;
3045;;; Make a runq that discards all messages except "length", for which
3046;;; it returns 0.
3047;;;
3048(define-public (make-void-runq)
3049 (lambda opts
3050 (and opts
3051 (apply-to-args opts
3052 (lambda (msg . args)
3053 (case msg
3054 ((length) 0)
3055 (else #f)))))))
3056
3057;;;;
3058;;; (make-fair-runq)
3059;;;
3060;;; Returns a runq procedure.
3061;;; Called with no arguments, the procedure processes one strip from the queue.
3062;;; Called with arguments, it uses runq-control.
3063;;;
3064;;; In a fair runq, if a strip returns a new strip X, X is added
3065;;; to the end of the queue, meaning it will be the last to execute
3066;;; of all the remaining procedures.
3067;;;
3068(define-public (make-fair-runq)
3069 (letrec ((q (make-q))
3070 (self
3071 (lambda ctl
3072 (if ctl
3073 (apply runq-control q ctl)
3074 (and (not (q-empty? q))
3075 (let ((next-strip (deq! q)))
3076 (cond
3077 ((procedure? next-strip) (let ((k (run-strip next-strip)))
3078 (and k (enq! q k))))
3079 ((pair? next-strip) (let ((k (run-strip (car next-strip))))
3080 (and k (enq! q k)))
3081 (if (not (null? (cdr next-strip)))
3082 (enq! q (cdr next-strip)))))
3083 self))))))
3084 self))
3085
3086
3087;;;;
3088;;; (make-exclusive-runq)
3089;;;
3090;;; Returns a runq procedure.
3091;;; Called with no arguments, the procedure processes one strip from the queue.
3092;;; Called with arguments, it uses runq-control.
3093;;;
3094;;; In an exclusive runq, if a strip W returns a new strip X, X is added
3095;;; to the front of the queue, meaning it will be the next to execute
3096;;; of all the remaining procedures.
3097;;;
3098;;; An exception to this occurs if W was the CAR of a list of strips.
3099;;; In that case, after the return value of W is pushed onto the front
3100;;; of the queue, the CDR of the list of strips is pushed in front
3101;;; of that (if the CDR is not nil). This way, the rest of the thunks
3102;;; in the list that contained W have priority over the return value of W.
3103;;;
3104(define-public (make-exclusive-runq)
3105 (letrec ((q (make-q))
3106 (self
3107 (lambda ctl
3108 (if ctl
3109 (apply runq-control q ctl)
3110 (and (not (q-empty? q))
3111 (let ((next-strip (deq! q)))
3112 (cond
3113 ((procedure? next-strip) (let ((k (run-strip next-strip)))
3114 (and k (q-push! q k))))
3115 ((pair? next-strip) (let ((k (run-strip (car next-strip))))
3116 (and k (q-push! q k)))
3117 (if (not (null? (cdr next-strip)))
3118 (q-push! q (cdr next-strip)))))
3119 self))))))
3120 self))
3121
3122
3123;;;;
3124;;; (make-subordinate-runq-to superior basic-inferior)
3125;;;
3126;;; Returns a runq proxy for the runq basic-inferior.
3127;;;
3128;;; The proxy watches for operations on the basic-inferior that cause
3129;;; a transition from a queue length of 0 to a non-zero length and
3130;;; vice versa. While the basic-inferior queue is not empty,
3131;;; the proxy installs a task on the superior runq. Each strip
3132;;; of that task processes N strips from the basic-inferior where
3133;;; N is the length of the basic-inferior queue when the proxy
3134;;; strip is entered. [Countless scheduling variations are possible.]
3135;;;
3136(define-public (make-subordinate-runq-to superior-runq basic-runq)
3137 (let ((runq-task (cons #f #f)))
3138 (set-car! runq-task
3139 (lambda ()
3140 (if (basic-runq 'empty?)
3141 (set-cdr! runq-task #f)
3142 (do ((n (basic-runq 'length) (1- n)))
3143 ((<= n 0) #f)
3144 (basic-runq)))))
3145 (letrec ((self
3146 (lambda ctl
3147 (if (not ctl)
3148 (let ((answer (basic-runq)))
3149 (self 'empty?)
3150 answer)
3151 (begin
3152 (case (car ctl)
3153 ((suspend) (set-cdr! runq-task #f))
3154 (else (let ((answer (apply basic-runq ctl)))
3155 (if (and (not (cdr runq-task)) (not (basic-runq 'empty?)))
3156 (begin
3157 (set-cdr! runq-task runq-task)
3158 (superior-runq 'add! runq-task)))
3159 answer))))))))
3160 self)))
3161
3162;;;;
3163;;; (define fork-strips (lambda args args))
3164;;; Return a strip that starts several strips in
3165;;; parallel. If this strip is enqueued on a fair
3166;;; runq, strips of the parallel subtasks will run
3167;;; round-robin style.
3168;;;
3169(define fork-strips (lambda args args))
3170
3171
3172;;;;
3173;;; (strip-sequence . strips)
3174;;;
3175;;; Returns a new strip which is the concatenation of the argument strips.
3176;;;
3177(define-public ((strip-sequence . strips))
3178 (let loop ((st (let ((a strips)) (set! strips #f) a)))
3179 (and (not (null? st))
3180 (let ((then ((car st))))
3181 (if then
3182 (lambda () (loop (cons then (cdr st))))
3183 (lambda () (loop (cdr st))))))))
3184
3185
3186;;;;
3187;;; (fair-strip-subtask . initial-strips)
3188;;;
3189;;; Returns a new strip which is the synchronos, fair,
3190;;; parallel execution of the argument strips.
3191;;;
3192;;;
3193;;;
3194(define-public (fair-strip-subtask . initial-strips)
3195 (let ((st (make-fair-runq)))
3196 (apply st 'add! initial-strips)
3197 st))
3198
3199\f
44cf1f0f 3200;;; {String Fun}
0f2d19dd 3201
0f2d19dd
JB
3202(define-module (ice-9 string-fun))
3203
0f2d19dd 3204;;;;
0f2d19dd
JB
3205;;;
3206;;; Various string funcitons, particularly those that take
3207;;; advantage of the "shared substring" capability.
3208;;;
3209\f
44cf1f0f 3210;;; {String Fun: Dividing Strings Into Fields}
0f2d19dd
JB
3211;;;
3212;;; The names of these functions are very regular.
3213;;; Here is a grammar of a call to one of these:
3214;;;
3215;;; <string-function-invocation>
3216;;; := (<action>-<seperator-disposition>-<seperator-determination> <seperator-param> <str> <ret>)
3217;;;
3218;;; <str> = the string
3219;;;
3220;;; <ret> = The continuation. String functions generally return
3221;;; multiple values by passing them to this procedure.
3222;;;
3223;;; <action> = split
3224;;; | separate-fields
3225;;;
3226;;; "split" means to divide a string into two parts.
3227;;; <ret> will be called with two arguments.
3228;;;
3229;;; "separate-fields" means to divide a string into as many
3230;;; parts as possible. <ret> will be called with
3231;;; however many fields are found.
3232;;;
3233;;; <seperator-disposition> = before
3234;;; | after
3235;;; | discarding
3236;;;
3237;;; "before" means to leave the seperator attached to
3238;;; the beginning of the field to its right.
3239;;; "after" means to leave the seperator attached to
3240;;; the end of the field to its left.
3241;;; "discarding" means to discard seperators.
3242;;;
3243;;; Other dispositions might be handy. For example, "isolate"
3244;;; could mean to treat the separator as a field unto itself.
3245;;;
3246;;; <seperator-determination> = char
3247;;; | predicate
3248;;;
3249;;; "char" means to use a particular character as field seperator.
3250;;; "predicate" means to check each character using a particular predicate.
3251;;;
3252;;; Other determinations might be handy. For example, "character-set-member".
3253;;;
3254;;; <seperator-param> = A parameter that completes the meaning of the determinations.
3255;;; For example, if the determination is "char", then this parameter
3256;;; says which character. If it is "predicate", the parameter is the
3257;;; predicate.
3258;;;
3259;;;
3260;;; For example:
3261;;;
3262;;; (separate-fields-discarding-char #\, "foo, bar, baz, , bat" list)
3263;;; => ("foo" " bar" " baz" " " " bat")
3264;;;
3265;;; (split-after-char #\- 'an-example-of-split list)
3266;;; => ("an-" "example-of-split")
3267;;;
3268;;; As an alternative to using a determination "predicate", or to trying to do anything
3269;;; complicated with these functions, consider using regular expressions.
3270;;;
3271
3272(define-public (split-after-char char str ret)
3273 (let ((end (cond
3274 ((string-index str char) => 1+)
3275 (else (string-length str)))))
3276 (ret (make-shared-substring str 0 end)
3277 (make-shared-substring str end))))
3278
3279(define-public (split-before-char char str ret)
3280 (let ((end (or (string-index str char)
3281 (string-length str))))
3282 (ret (make-shared-substring str 0 end)
3283 (make-shared-substring str end))))
3284
3285(define-public (split-discarding-char char str ret)
3286 (let ((end (string-index str char)))
3287 (if (not end)
3288 (ret str "")
3289 (ret (make-shared-substring str 0 end)
3290 (make-shared-substring str (1+ end))))))
3291
3292(define-public (split-after-char-last char str ret)
3293 (let ((end (cond
3294 ((string-rindex str char) => 1+)
3295 (else 0))))
3296 (ret (make-shared-substring str 0 end)
3297 (make-shared-substring str end))))
3298
3299(define-public (split-before-char-last char str ret)
3300 (let ((end (or (string-rindex str char) 0)))
3301 (ret (make-shared-substring str 0 end)
3302 (make-shared-substring str end))))
3303
3304(define-public (split-discarding-char-last char str ret)
3305 (let ((end (string-rindex str char)))
3306 (if (not end)
3307 (ret str "")
3308 (ret (make-shared-substring str 0 end)
3309 (make-shared-substring str (1+ end))))))
3310
3311(define (split-before-predicate pred str ret)
3312 (let loop ((n 0))
3313 (cond
3314 ((= n (length str)) (ret str ""))
3315 ((not (pred (string-ref str n))) (loop (1+ n)))
3316 (else (ret (make-shared-substring str 0 n)
3317 (make-shared-substring str n))))))
3318(define (split-after-predicate pred str ret)
3319 (let loop ((n 0))
3320 (cond
3321 ((= n (length str)) (ret str ""))
3322 ((not (pred (string-ref str n))) (loop (1+ n)))
3323 (else (ret (make-shared-substring str 0 (1+ n))
3324 (make-shared-substring str (1+ n)))))))
3325
3326(define (split-discarding-predicate pred str ret)
3327 (let loop ((n 0))
3328 (cond
3329 ((= n (length str)) (ret str ""))
3330 ((not (pred (string-ref str n))) (loop (1+ n)))
3331 (else (ret (make-shared-substring str 0 n)
3332 (make-shared-substring str (1+ n)))))))
3333
21ed9efe 3334(define-public (separate-fields-discarding-char ch str ret)
0f2d19dd
JB
3335 (let loop ((fields '())
3336 (str str))
3337 (cond
3338 ((string-rindex str ch)
3339 => (lambda (pos) (loop (cons (make-shared-substring str (+ 1 w)) fields)
3340 (make-shared-substring str 0 w))))
3341 (else (ret (cons str fields))))))
3342
21ed9efe 3343(define-public (separate-fields-after-char ch str ret)
0f2d19dd
JB
3344 (let loop ((fields '())
3345 (str str))
3346 (cond
3347 ((string-rindex str ch)
3348 => (lambda (pos) (loop (cons (make-shared-substring str (+ 1 w)) fields)
3349 (make-shared-substring str 0 (+ 1 w)))))
3350 (else (ret (cons str fields))))))
3351
21ed9efe 3352(define-public (separate-fields-before-char ch str ret)
0f2d19dd
JB
3353 (let loop ((fields '())
3354 (str str))
3355 (cond
3356 ((string-rindex str ch)
3357 => (lambda (pos) (loop (cons (make-shared-substring str w) fields)
3358 (make-shared-substring str 0 w))))
3359 (else (ret (cons str fields))))))
3360
3361\f
44cf1f0f 3362;;; {String Fun: String Prefix Predicates}
0f2d19dd
JB
3363;;;
3364;;; Very simple:
3365;;;
21ed9efe 3366;;; (define-public ((string-prefix-predicate pred?) prefix str)
0f2d19dd
JB
3367;;; (and (<= (length prefix) (length str))
3368;;; (pred? prefix (make-shared-substring str 0 (length prefix)))))
3369;;;
3370;;; (define-public string-prefix=? (string-prefix-predicate string=?))
3371;;;
3372
3373(define-public ((string-prefix-predicate pred?) prefix str)
3374 (and (<= (length prefix) (length str))
3375 (pred? prefix (make-shared-substring str 0 (length prefix)))))
3376
3377(define-public string-prefix=? (string-prefix-predicate string=?))
3378
3379\f
44cf1f0f 3380;;; {String Fun: Strippers}
0f2d19dd
JB
3381;;;
3382;;; <stripper> = sans-<removable-part>
3383;;;
3384;;; <removable-part> = surrounding-whitespace
3385;;; | trailing-whitespace
3386;;; | leading-whitespace
3387;;; | final-newline
3388;;;
3389
3390(define-public (sans-surrounding-whitespace s)
3391 (let ((st 0)
3392 (end (string-length s)))
3393 (while (and (< st (string-length s))
3394 (char-whitespace? (string-ref s st)))
3395 (set! st (1+ st)))
3396 (while (and (< 0 end)
3397 (char-whitespace? (string-ref s (1- end))))
3398 (set! end (1- end)))
3399 (if (< end st)
3400 ""
3401 (make-shared-substring s st end))))
3402
3403(define-public (sans-trailing-whitespace s)
3404 (let ((st 0)
3405 (end (string-length s)))
3406 (while (and (< 0 end)
3407 (char-whitespace? (string-ref s (1- end))))
3408 (set! end (1- end)))
3409 (if (< end st)
3410 ""
3411 (make-shared-substring s st end))))
3412
3413(define-public (sans-leading-whitespace s)
3414 (let ((st 0)
3415 (end (string-length s)))
3416 (while (and (< st (string-length s))
3417 (char-whitespace? (string-ref s st)))
3418 (set! st (1+ st)))
3419 (if (< end st)
3420 ""
3421 (make-shared-substring s st end))))
3422
3423(define-public (sans-final-newline str)
3424 (cond
3425 ((= 0 (string-length str))
3426 str)
3427
3428 ((char=? #\nl (string-ref str (1- (string-length str))))
3429 (make-shared-substring str 0 (1- (string-length str))))
3430
3431 (else str)))
3432\f
44cf1f0f 3433;;; {String Fun: has-trailing-newline?}
0f2d19dd
JB
3434;;;
3435
3436(define-public (has-trailing-newline? str)
3437 (and (< 0 (string-length str))
3438 (char=? #\nl (string-ref str (1- (string-length str))))))
3439
3440
3441\f
44cf1f0f 3442;;; {String Fun: with-regexp-parts}
0f2d19dd
JB
3443
3444(define-public (with-regexp-parts regexp fields str return fail)
3445 (let ((parts (regexec regexp str fields)))
3446 (if (number? parts)
3447 (fail parts)
3448 (apply return parts))))
3449
3450\f
c56634ba
MD
3451;;; {Load debug extension code if debug extensions present.}
3452;;;
3453;;; *fixme* This is a temporary solution.
3454;;;
0f2d19dd 3455
c56634ba 3456(if (memq 'debug-extensions *features*)
90895e5c
MD
3457 (define-module (guile) :use-module (ice-9 debug)))
3458
3459\f
90895e5c
MD
3460;;; {Load thread code if threads are present.}
3461;;;
3462;;; *fixme* This is a temporary solution.
3463;;;
3464
3465(if (memq 'threads *features*)
3466 (define-module (guile) :use-module (ice-9 threads)))
3467
21ed9efe
MD
3468\f
3469;;; {Load emacs interface support if emacs option is given.}
3470;;;
3471;;; *fixme* This is a temporary solution.
3472;;;
3473
3474(if (or (member "-e" (cdr (program-arguments)))
3475 (member "--emacs" (cdr (program-arguments))))
3476 (define-module (guile) :use-module (ice-9 emacs)))
3477
3478\f
3479
90895e5c 3480(define-module (guile))
6fa8995c
GH
3481
3482(append! %load-path (cons "." ()))