* numbers.c (logand, logior, logxor): Handle 0 or 1 arguments.
[bpt/guile.git] / ice-9 / boot-9.scm
CommitLineData
0f2d19dd
JB
1;;; installed-scm-file
2
d0cbd20c 3;;;; Copyright (C) 1995, 1996, 1997 Free Software Foundation, Inc.
0f2d19dd
JB
4;;;;
5;;;; This program is free software; you can redistribute it and/or modify
6;;;; it under the terms of the GNU General Public License as published by
7;;;; the Free Software Foundation; either version 2, or (at your option)
8;;;; any later version.
9;;;;
10;;;; This program is distributed in the hope that it will be useful,
11;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13;;;; GNU General Public License for more details.
14;;;;
15;;;; You should have received a copy of the GNU General Public License
16;;;; along with this software; see the file COPYING. If not, write to
15328041
JB
17;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18;;;; Boston, MA 02111-1307 USA
0f2d19dd
JB
19;;;;
20\f
21
22;;; This file is the first thing loaded into Guile. It adds many mundane
23;;; definitions and a few that are interesting.
24;;;
25;;; The module system (hence the hierarchical namespace) are defined in this
26;;; file.
27;;;
28
29\f
21ed9efe
MD
30;;; {Features}
31;;
32
33(define (provide sym)
34 (if (not (memq sym *features*))
35 (set! *features* (cons sym *features*))))
36
37\f
79451588
JB
38;;; {R4RS compliance}
39
40(primitive-load-path "ice-9/r4rs.scm")
41
42\f
44cf1f0f 43;;; {Simple Debugging Tools}
0f2d19dd
JB
44;;
45
46
47;; peek takes any number of arguments, writes them to the
48;; current ouput port, and returns the last argument.
49;; It is handy to wrap around an expression to look at
50;; a value each time is evaluated, e.g.:
51;;
52;; (+ 10 (troublesome-fn))
53;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
54;;
55
56(define (peek . stuff)
57 (newline)
58 (display ";;; ")
59 (write stuff)
60 (newline)
61 (car (last-pair stuff)))
62
63(define pk peek)
64
65(define (warn . stuff)
66 (with-output-to-port (current-error-port)
67 (lambda ()
68 (newline)
69 (display ";;; WARNING ")
6355358a 70 (display stuff)
0f2d19dd
JB
71 (newline)
72 (car (last-pair stuff)))))
73
74\f
79451588 75;;; {Trivial Functions}
0f2d19dd 76;;;
79451588
JB
77
78(define (id x) x)
79(define (1+ n) (+ n 1))
80(define (-1+ n) (+ n -1))
81(define 1- -1+)
82(define return-it noop)
132e5fac 83(define (and=> value procedure) (and value (procedure value)))
79451588
JB
84(define (make-hash-table k) (make-vector k '()))
85
0f2d19dd
JB
86;;; apply-to-args is functionally redunant with apply and, worse,
87;;; is less general than apply since it only takes two arguments.
88;;;
89;;; On the other hand, apply-to-args is a syntacticly convenient way to
90;;; perform binding in many circumstances when the "let" family of
91;;; of forms don't cut it. E.g.:
92;;;
93;;; (apply-to-args (return-3d-mouse-coords)
94;;; (lambda (x y z)
95;;; ...))
96;;;
97
98(define (apply-to-args args fn) (apply fn args))
99
100\f
0f2d19dd
JB
101;;; {Integer Math}
102;;;
103
0f2d19dd
JB
104(define (ipow-by-squaring x k acc proc)
105 (cond ((zero? k) acc)
106 ((= 1 k) (proc acc x))
52c5a23a
JB
107 (else (ipow-by-squaring (proc x x)
108 (quotient k 2)
109 (if (even? k) acc (proc acc x))
110 proc))))
0f2d19dd
JB
111
112(define string-character-length string-length)
113
114
115
116;; A convenience function for combining flag bits. Like logior, but
117;; handles the cases of 0 and 1 arguments.
118;;
119(define (flags . args)
120 (cond
121 ((null? args) 0)
122 ((null? (cdr args)) (car args))
123 (else (apply logior args))))
124
125\f
0f2d19dd
JB
126;;; {Symbol Properties}
127;;;
128
129(define (symbol-property sym prop)
130 (let ((pair (assoc prop (symbol-pref sym))))
131 (and pair (cdr pair))))
132
133(define (set-symbol-property! sym prop val)
134 (let ((pair (assoc prop (symbol-pref sym))))
135 (if pair
136 (set-cdr! pair val)
137 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
138
139(define (symbol-property-remove! sym prop)
140 (let ((pair (assoc prop (symbol-pref sym))))
141 (if pair
142 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
143
144\f
1e531c3a
GH
145
146;;; {Line and Delimited I/O}
147
148;;; corresponds to SCM_LINE_INCREMENTORS in libguile.
149(define scm-line-incrementors "\n")
150
151(define (read-line! string . maybe-port)
152 (let* ((port (if (pair? maybe-port)
153 (car maybe-port)
154 (current-input-port))))
155 (let* ((rv (%read-delimited! scm-line-incrementors
156 string
157 #t
158 port))
159 (terminator (car rv))
160 (nchars (cdr rv)))
161 (cond ((and (= nchars 0)
162 (eof-object? terminator))
163 terminator)
164 ((not terminator) #f)
165 (else nchars)))))
166
167(define (read-delimited! delims buf . args)
168 (let* ((num-args (length args))
169 (port (if (> num-args 0)
170 (car args)
171 (current-input-port)))
172 (handle-delim (if (> num-args 1)
173 (cadr args)
174 'trim))
175 (start (if (> num-args 2)
176 (caddr args)
177 0))
178 (end (if (> num-args 3)
179 (cadddr args)
180 (string-length buf))))
181 (let* ((rv (%read-delimited! delims
182 buf
183 (not (eq? handle-delim 'peek))
184 port
185 start
186 end))
187 (terminator (car rv))
188 (nchars (cdr rv)))
189 (cond ((or (not terminator) ; buffer filled
190 (eof-object? terminator))
191 (if (zero? nchars)
192 (if (eq? handle-delim 'split)
193 (cons terminator terminator)
194 terminator)
195 (if (eq? handle-delim 'split)
196 (cons nchars terminator)
197 nchars)))
198 (else
199 (case handle-delim
200 ((trim peek) nchars)
201 ((concat) (string-set! buf nchars terminator)
202 (+ nchars 1))
203 ((split) (cons nchars terminator))
204 (else (error "unexpected handle-delim value: "
205 handle-delim))))))))
206
207(define (read-delimited delims . args)
208 (let* ((port (if (pair? args)
209 (let ((pt (car args)))
210 (set! args (cdr args))
211 pt)
212 (current-input-port)))
213 (handle-delim (if (pair? args)
214 (car args)
215 'trim)))
216 (let loop ((substrings ())
217 (total-chars 0)
218 (buf-size 100)) ; doubled each time through.
219 (let* ((buf (make-string buf-size))
220 (rv (%read-delimited! delims
221 buf
222 (not (eq? handle-delim 'peek))
223 port))
224 (terminator (car rv))
225 (nchars (cdr rv))
226 (join-substrings
227 (lambda ()
228 (apply string-append
229 (reverse
230 (cons (if (and (eq? handle-delim 'concat)
231 (not (eof-object? terminator)))
232 (string terminator)
233 "")
234 (cons (make-shared-substring buf 0 nchars)
235 substrings))))))
236 (new-total (+ total-chars nchars)))
237 (cond ((not terminator)
238 ;; buffer filled.
239 (loop (cons (substring buf 0 nchars) substrings)
240 new-total
241 (* buf-size 2)))
242 ((eof-object? terminator)
243 (if (zero? new-total)
244 (if (eq? handle-delim 'split)
245 (cons terminator terminator)
246 terminator)
247 (if (eq? handle-delim 'split)
248 (cons (join-substrings) terminator)
249 (join-substrings))))
250 (else
251 (case handle-delim
252 ((trim peek concat) (join-substrings))
253 ((split) (cons (join-substrings) terminator))
254 (else (error "unexpected handle-delim value: "
255 handle-delim)))))))))
256
257(define (read-line . args)
258 (apply read-delimited scm-line-incrementors args))
259
260\f
0f2d19dd
JB
261;;; {Arrays}
262;;;
263
264(begin
265 (define uniform-vector? array?)
266 (define make-uniform-vector dimensions->uniform-array)
267 ; (define uniform-vector-ref array-ref)
268 (define (uniform-vector-set! u i o)
c2132276 269 (uniform-array-set1! u o i))
0f2d19dd
JB
270 (define uniform-vector-fill! array-fill!)
271 (define uniform-vector-read! uniform-array-read!)
272 (define uniform-vector-write uniform-array-write)
273
274 (define (make-array fill . args)
275 (dimensions->uniform-array args () fill))
276 (define (make-uniform-array prot . args)
277 (dimensions->uniform-array args prot))
278 (define (list->array ndim lst)
279 (list->uniform-array ndim '() lst))
280 (define (list->uniform-vector prot lst)
281 (list->uniform-array 1 prot lst))
282 (define (array-shape a)
283 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
284 (array-dimensions a))))
285
286\f
287;;; {Keywords}
288;;;
289
290(define (symbol->keyword symbol)
291 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
292
293(define (keyword->symbol kw)
294 (let ((sym (keyword-dash-symbol kw)))
295 (string->symbol (substring sym 1 (length sym)))))
296
297(define (kw-arg-ref args kw)
298 (let ((rem (member kw args)))
299 (and rem (pair? (cdr rem)) (cadr rem))))
300
301\f
fa7e9274
MV
302
303;;; Printing structs
304
305;; The printing of structures can be customized by setting the builtin
306;; variable *struct-printer* to a procedure. A second dispatching
307;; step is implemented here to allow for struct-type specific printing
308;; procedures.
309;;
310;; A particular type of structures is characterized by its vtable. In
311;; addition to some internal fields, such a vtable can contain
312;; arbitrary user-defined fields. We use the first of these fields to
313;; hold the specific printing procedure. To avoid breaking code that
314;; already uses this first extra-field for some other purposes, we use
315;; a unique tag to decide whether it really contains a structure
316;; printer or not.
317;;
318;; XXX - Printing structures is probably fundamental enough that we
319;; can simply hardcode the vtable slot convention and expect everyone
320;; to obey it.
321;;
322;; A structure-type specific printer follows the same calling
323;; convention as the builtin *struct-printer*.
324
325;; A shorthand for one already hardcoded vtable convention
326
327(define (struct-layout s)
328 (struct-ref (struct-vtable s) 0))
329
330;; This is our new convention for storing printing procedures
331
332(define %struct-printer-tag (cons '%struct-printer-tag #f))
333
334(define (struct-printer s)
755da2fc 335 (let ((vtable (struct-vtable s)))
52c5a23a
JB
336 (and (> (string-length (struct-layout vtable))
337 (* 2 struct-vtable-offset))
755da2fc 338 (let ((p (struct-ref vtable struct-vtable-offset)))
52c5a23a
JB
339 (and (pair? p)
340 (eq? (car p) %struct-printer-tag)
755da2fc 341 (cdr p))))))
fa7e9274
MV
342
343(define (make-struct-printer printer)
344 (cons %struct-printer-tag printer))
345
346;; Note: While the printer is extracted from a structure itself, it
347;; has to be set in the vtable of the structure.
348
349(define (set-struct-printer-in-vtable! vtable printer)
350 (struct-set! vtable struct-vtable-offset (make-struct-printer printer)))
351
352;; The dispatcher
353
354(set! *struct-printer* (lambda (s p)
355 (let ((printer (struct-printer s)))
356 (and printer
357 (printer s p)))))
358
359\f
0f2d19dd
JB
360;;; {Records}
361;;;
362
fa7e9274
MV
363;; Printing records: by default, records are printed as
364;;
365;; #<type-name field1: val1 field2: val2 ...>
366;;
367;; You can change that by giving a custom printing function to
368;; MAKE-RECORD-TYPE (after the list of field symbols). This function
369;; will be called like
370;;
371;; (<printer> object port)
372;;
373;; It should print OBJECT to PORT.
374
375;; 0: printer, 1: type-name, 2: fields
376(define record-type-vtable
377 (make-vtable-vtable "prprpr" 0
378 (make-struct-printer
379 (lambda (s p)
380 (cond ((eq? s record-type-vtable)
381 (display "#<record-type-vtable>" p))
382 (else
383 (display "#<record-type " p)
384 (display (record-type-name s) p)
385 (display ">" p)))))))
0f2d19dd
JB
386
387(define (record-type? obj)
388 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
389
390(define (make-record-type type-name fields . opt)
8e693424 391 (let ((printer-fn (and (pair? opt) (car opt))))
0f2d19dd 392 (let ((struct (make-struct record-type-vtable 0
c7c03b9f
JB
393 (make-struct-layout
394 (apply symbol-append
395 (map (lambda (f) "pw") fields)))
fa7e9274
MV
396 (make-struct-printer
397 (or printer-fn
398 (lambda (s p)
399 (display "#<" p)
400 (display type-name p)
401 (let loop ((fields fields)
402 (off 0))
403 (cond
404 ((not (null? fields))
405 (display " " p)
406 (display (car fields) p)
407 (display ": " p)
408 (display (struct-ref s off) p)
409 (loop (cdr fields) (+ 1 off)))))
410 (display ">" p))))
0f2d19dd
JB
411 type-name
412 (copy-tree fields))))
0f2d19dd
JB
413 struct)))
414
415(define (record-type-name obj)
416 (if (record-type? obj)
fa7e9274 417 (struct-ref obj (+ 1 struct-vtable-offset))
0f2d19dd
JB
418 (error 'not-a-record-type obj)))
419
420(define (record-type-fields obj)
421 (if (record-type? obj)
fa7e9274 422 (struct-ref obj (+ 2 struct-vtable-offset))
0f2d19dd
JB
423 (error 'not-a-record-type obj)))
424
425(define (record-constructor rtd . opt)
8e693424 426 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
0f2d19dd
JB
427 (eval `(lambda ,field-names
428 (make-struct ',rtd 0 ,@(map (lambda (f)
429 (if (memq f field-names)
430 f
431 #f))
432 (record-type-fields rtd)))))))
433
434(define (record-predicate rtd)
435 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
436
437(define (record-accessor rtd field-name)
438 (let* ((pos (list-index (record-type-fields rtd) field-name)))
439 (if (not pos)
440 (error 'no-such-field field-name))
441 (eval `(lambda (obj)
442 (and (eq? ',rtd (record-type-descriptor obj))
443 (struct-ref obj ,pos))))))
444
445(define (record-modifier rtd field-name)
446 (let* ((pos (list-index (record-type-fields rtd) field-name)))
447 (if (not pos)
448 (error 'no-such-field field-name))
449 (eval `(lambda (obj val)
450 (and (eq? ',rtd (record-type-descriptor obj))
451 (struct-set! obj ,pos val))))))
452
453
454(define (record? obj)
455 (and (struct? obj) (record-type? (struct-vtable obj))))
456
457(define (record-type-descriptor obj)
458 (if (struct? obj)
459 (struct-vtable obj)
460 (error 'not-a-record obj)))
461
21ed9efe
MD
462(provide 'record)
463
0f2d19dd
JB
464\f
465;;; {Booleans}
466;;;
467
468(define (->bool x) (not (not x)))
469
470\f
471;;; {Symbols}
472;;;
473
474(define (symbol-append . args)
475 (string->symbol (apply string-append args)))
476
477(define (list->symbol . args)
478 (string->symbol (apply list->string args)))
479
480(define (symbol . args)
481 (string->symbol (apply string args)))
482
483(define (obarray-symbol-append ob . args)
484 (string->obarray-symbol (apply string-append ob args)))
485
486(define obarray-gensym
487 (let ((n -1))
488 (lambda (obarray . opt)
489 (if (null? opt)
490 (set! opt '(%%gensym)))
491 (let loop ((proposed-name (apply string-append opt)))
492 (if (string->obarray-symbol obarray proposed-name #t)
493 (loop (apply string-append (append opt (begin (set! n (1+ n)) (list (number->string n))))))
494 (string->obarray-symbol obarray proposed-name))))))
495
496(define (gensym . args) (apply obarray-gensym #f args))
497
498\f
499;;; {Lists}
500;;;
501
502(define (list-index l k)
503 (let loop ((n 0)
504 (l l))
505 (and (not (null? l))
506 (if (eq? (car l) k)
507 n
508 (loop (+ n 1) (cdr l))))))
509
75fd4fb6
JB
510(define (make-list n . init)
511 (if (pair? init) (set! init (car init)))
0f2d19dd
JB
512 (let loop ((answer '())
513 (n n))
514 (if (<= n 0)
515 answer
516 (loop (cons init answer) (- n 1)))))
517
518
519\f
520;;; {and-map, or-map, and map-in-order}
521;;;
522;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
523;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
524;;; (map-in-order fn lst) is like (map fn lst) but definately in order of lst.
525;;;
526
527;; and-map f l
528;;
529;; Apply f to successive elements of l until exhaustion or f returns #f.
530;; If returning early, return #f. Otherwise, return the last value returned
531;; by f. If f has never been called because l is empty, return #t.
532;;
533(define (and-map f lst)
534 (let loop ((result #t)
535 (l lst))
536 (and result
537 (or (and (null? l)
538 result)
539 (loop (f (car l)) (cdr l))))))
540
541;; or-map f l
542;;
543;; Apply f to successive elements of l until exhaustion or while f returns #f.
544;; If returning early, return the return value of f.
545;;
546(define (or-map f lst)
547 (let loop ((result #f)
548 (l lst))
549 (or result
550 (and (not (null? l))
551 (loop (f (car l)) (cdr l))))))
552
553;; map-in-order
554;;
555;; Like map, but guaranteed to process the list in order.
556;;
557(define (map-in-order fn l)
558 (if (null? l)
559 '()
560 (cons (fn (car l))
561 (map-in-order fn (cdr l)))))
562
563\f
59e1116d
MD
564;;; {Hooks}
565(define (run-hooks hook)
566 (for-each (lambda (thunk) (thunk)) hook))
567
568(define add-hook!
569 (procedure->macro
570 (lambda (exp env)
571 `(let ((thunk ,(caddr exp)))
572 (if (not (memq thunk ,(cadr exp)))
573 (set! ,(cadr exp)
574 (cons thunk ,(cadr exp))))))))
575
576\f
0f2d19dd
JB
577;;; {Files}
578;;; !!!! these should be implemented using Tcl commands, not fports.
579;;;
580
6fa8995c
GH
581(define (feature? feature)
582 (and (memq feature *features*) #t))
583
3afb28ce
GH
584;; Using the vector returned by stat directly is probably not a good
585;; idea (it could just as well be a record). Hence some accessors.
586(define (stat:dev f) (vector-ref f 0))
587(define (stat:ino f) (vector-ref f 1))
588(define (stat:mode f) (vector-ref f 2))
589(define (stat:nlink f) (vector-ref f 3))
590(define (stat:uid f) (vector-ref f 4))
591(define (stat:gid f) (vector-ref f 5))
592(define (stat:rdev f) (vector-ref f 6))
593(define (stat:size f) (vector-ref f 7))
594(define (stat:atime f) (vector-ref f 8))
595(define (stat:mtime f) (vector-ref f 9))
596(define (stat:ctime f) (vector-ref f 10))
597(define (stat:blksize f) (vector-ref f 11))
598(define (stat:blocks f) (vector-ref f 12))
599
600;; derived from stat mode.
601(define (stat:type f) (vector-ref f 13))
602(define (stat:perms f) (vector-ref f 14))
603
6fa8995c
GH
604(define file-exists?
605 (if (feature? 'posix)
606 (lambda (str)
607 (access? str F_OK))
608 (lambda (str)
609 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
610 (lambda args #f))))
611 (if port (begin (close-port port) #t)
612 #f)))))
613
614(define file-is-directory?
615 (if (feature? 'i/o-extensions)
616 (lambda (str)
3afb28ce 617 (eq? (stat:type (stat str)) 'directory))
6fa8995c
GH
618 (lambda (str)
619 (display str)
620 (newline)
621 (let ((port (catch 'system-error
622 (lambda () (open-file (string-append str "/.")
623 OPEN_READ))
624 (lambda args #f))))
625 (if port (begin (close-port port) #t)
626 #f)))))
0f2d19dd
JB
627
628(define (has-suffix? str suffix)
629 (let ((sufl (string-length suffix))
630 (sl (string-length str)))
631 (and (> sl sufl)
632 (string=? (substring str (- sl sufl) sl) suffix))))
633
0f2d19dd
JB
634\f
635;;; {Error Handling}
636;;;
637
0f2d19dd 638(define (error . args)
21ed9efe 639 (save-stack)
2194b6f0 640 (if (null? args)
5552355a 641 (scm-error 'misc-error #f "?" #f #f)
2194b6f0
GH
642 (let loop ((msg "%s")
643 (rest (cdr args)))
644 (if (not (null? rest))
645 (loop (string-append msg " %S")
646 (cdr rest))
5552355a 647 (scm-error 'misc-error #f msg args #f)))))
be2d2c70 648
1349bd53 649;; bad-throw is the hook that is called upon a throw to a an unhandled
9a0d70e2
GH
650;; key (unless the throw has four arguments, in which case
651;; it's usually interpreted as an error throw.)
652;; If the key has a default handler (a throw-handler-default property),
0f2d19dd
JB
653;; it is applied to the throw.
654;;
1349bd53 655(define (bad-throw key . args)
0f2d19dd
JB
656 (let ((default (symbol-property key 'throw-handler-default)))
657 (or (and default (apply default key args))
2194b6f0 658 (apply error "unhandled-exception:" key args))))
0f2d19dd 659
0f2d19dd 660\f
44cf1f0f
JB
661;;; {Non-polymorphic versions of POSIX functions}
662
02b754d3
GH
663(define (getgrnam name) (getgr name))
664(define (getgrgid id) (getgr id))
665(define (gethostbyaddr addr) (gethost addr))
666(define (gethostbyname name) (gethost name))
667(define (getnetbyaddr addr) (getnet addr))
668(define (getnetbyname name) (getnet name))
669(define (getprotobyname name) (getproto name))
670(define (getprotobynumber addr) (getproto addr))
671(define (getpwnam name) (getpw name))
672(define (getpwuid uid) (getpw uid))
920235cc
GH
673(define (getservbyname name proto) (getserv name proto))
674(define (getservbyport port proto) (getserv port proto))
0f2d19dd
JB
675(define (endgrent) (setgr))
676(define (endhostent) (sethost))
677(define (endnetent) (setnet))
678(define (endprotoent) (setproto))
679(define (endpwent) (setpw))
680(define (endservent) (setserv))
02b754d3
GH
681(define (getgrent) (getgr))
682(define (gethostent) (gethost))
683(define (getnetent) (getnet))
684(define (getprotoent) (getproto))
685(define (getpwent) (getpw))
686(define (getservent) (getserv))
0f2d19dd 687(define (reopen-file . args) (apply freopen args))
bce074ee
GH
688(define (setgrent) (setgr #f))
689(define (sethostent) (sethost #t))
690(define (setnetent) (setnet #t))
691(define (setprotoent) (setproto #t))
692(define (setpwent) (setpw #t))
693(define (setservent) (setserv #t))
694
695(define (passwd:name obj) (vector-ref obj 0))
696(define (passwd:passwd obj) (vector-ref obj 1))
697(define (passwd:uid obj) (vector-ref obj 2))
698(define (passwd:gid obj) (vector-ref obj 3))
699(define (passwd:gecos obj) (vector-ref obj 4))
700(define (passwd:dir obj) (vector-ref obj 5))
701(define (passwd:shell obj) (vector-ref obj 6))
702
703(define (group:name obj) (vector-ref obj 0))
704(define (group:passwd obj) (vector-ref obj 1))
705(define (group:gid obj) (vector-ref obj 2))
706(define (group:mem obj) (vector-ref obj 3))
707
708(define (hostent:name obj) (vector-ref obj 0))
709(define (hostent:aliases obj) (vector-ref obj 1))
710(define (hostent:addrtype obj) (vector-ref obj 2))
711(define (hostent:length obj) (vector-ref obj 3))
712(define (hostent:addr-list obj) (vector-ref obj 4))
713
714(define (netent:name obj) (vector-ref obj 0))
715(define (netent:aliases obj) (vector-ref obj 1))
9337637f
GH
716(define (netent:addrtype obj) (vector-ref obj 2))
717(define (netent:net obj) (vector-ref obj 3))
bce074ee
GH
718
719(define (protoent:name obj) (vector-ref obj 0))
720(define (protoent:aliases obj) (vector-ref obj 1))
721(define (protoent:proto obj) (vector-ref obj 2))
722
723(define (servent:name obj) (vector-ref obj 0))
724(define (servent:aliases obj) (vector-ref obj 1))
9337637f
GH
725(define (servent:port obj) (vector-ref obj 2))
726(define (servent:proto obj) (vector-ref obj 3))
727
728(define (sockaddr:fam obj) (vector-ref obj 0))
729(define (sockaddr:path obj) (vector-ref obj 1))
730(define (sockaddr:addr obj) (vector-ref obj 1))
731(define (sockaddr:port obj) (vector-ref obj 2))
732
733(define (utsname:sysname obj) (vector-ref obj 0))
734(define (utsname:nodename obj) (vector-ref obj 1))
735(define (utsname:release obj) (vector-ref obj 2))
736(define (utsname:version obj) (vector-ref obj 3))
737(define (utsname:machine obj) (vector-ref obj 4))
bce074ee 738
708bf0f3
GH
739(define (tm:sec obj) (vector-ref obj 0))
740(define (tm:min obj) (vector-ref obj 1))
741(define (tm:hour obj) (vector-ref obj 2))
742(define (tm:mday obj) (vector-ref obj 3))
743(define (tm:mon obj) (vector-ref obj 4))
744(define (tm:year obj) (vector-ref obj 5))
745(define (tm:wday obj) (vector-ref obj 6))
746(define (tm:yday obj) (vector-ref obj 7))
747(define (tm:isdst obj) (vector-ref obj 8))
748(define (tm:gmtoff obj) (vector-ref obj 9))
749(define (tm:zone obj) (vector-ref obj 10))
750
751(define (set-tm:sec obj val) (vector-set! obj 0 val))
752(define (set-tm:min obj val) (vector-set! obj 1 val))
753(define (set-tm:hour obj val) (vector-set! obj 2 val))
754(define (set-tm:mday obj val) (vector-set! obj 3 val))
755(define (set-tm:mon obj val) (vector-set! obj 4 val))
756(define (set-tm:year obj val) (vector-set! obj 5 val))
757(define (set-tm:wday obj val) (vector-set! obj 6 val))
758(define (set-tm:yday obj val) (vector-set! obj 7 val))
759(define (set-tm:isdst obj val) (vector-set! obj 8 val))
760(define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
761(define (set-tm:zone obj val) (vector-set! obj 10 val))
762
6afcd3b2
GH
763(define (tms:clock obj) (vector-ref obj 0))
764(define (tms:utime obj) (vector-ref obj 1))
765(define (tms:stime obj) (vector-ref obj 2))
766(define (tms:cutime obj) (vector-ref obj 3))
767(define (tms:cstime obj) (vector-ref obj 4))
768
bce074ee
GH
769(define (file-position . args) (apply ftell args))
770(define (file-set-position . args) (apply fseek args))
8b13c6b3 771
708bf0f3
GH
772(define (open-input-pipe command) (open-pipe command OPEN_READ))
773(define (open-output-pipe command) (open-pipe command OPEN_WRITE))
774
e38303a2
GH
775(define (move->fdes fd/port fd)
776 (cond ((integer? fd/port)
7a6f1ffa 777 (dup->fdes fd/port fd)
e38303a2
GH
778 (close fd/port)
779 fd)
780 (else
781 (primitive-move->fdes fd/port fd)
782 (set-port-revealed! fd/port 1)
783 fd/port)))
8b13c6b3
GH
784
785(define (release-port-handle port)
786 (let ((revealed (port-revealed port)))
787 (if (> revealed 0)
788 (set-port-revealed! port (- revealed 1)))))
0f2d19dd 789
e38303a2 790(define (dup->port port/fd mode . maybe-fd)
7a6f1ffa 791 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
e38303a2
GH
792 mode)))
793 (if (pair? maybe-fd)
794 (set-port-revealed! port 1))
795 port))
796
797(define (dup->inport port/fd . maybe-fd)
798 (apply dup->port port/fd "r" maybe-fd))
799
800(define (dup->outport port/fd . maybe-fd)
801 (apply dup->port port/fd "w" maybe-fd))
802
e38303a2
GH
803(define (dup port/fd . maybe-fd)
804 (if (integer? port/fd)
805 (apply dup->fdes port/fd maybe-fd)
806 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
807
808(define (duplicate-port port modes)
809 (dup->port port modes))
810
811(define (fdes->inport fdes)
812 (let loop ((rest-ports (fdes->ports fdes)))
813 (cond ((null? rest-ports)
814 (let ((result (fdopen fdes "r")))
815 (set-port-revealed! result 1)
816 result))
817 ((input-port? (car rest-ports))
818 (set-port-revealed! (car rest-ports)
819 (+ (port-revealed (car rest-ports)) 1))
820 (car rest-ports))
821 (else
822 (loop (cdr rest-ports))))))
823
824(define (fdes->outport fdes)
825 (let loop ((rest-ports (fdes->ports fdes)))
826 (cond ((null? rest-ports)
827 (let ((result (fdopen fdes "w")))
828 (set-port-revealed! result 1)
829 result))
830 ((output-port? (car rest-ports))
831 (set-port-revealed! (car rest-ports)
832 (+ (port-revealed (car rest-ports)) 1))
833 (car rest-ports))
834 (else
835 (loop (cdr rest-ports))))))
836
837(define (port->fdes port)
838 (set-port-revealed! port (+ (port-revealed port) 1))
839 (fileno port))
840
956055a9
GH
841(define (setenv name value)
842 (if value
843 (putenv (string-append name "=" value))
844 (putenv name)))
845
0f2d19dd
JB
846\f
847;;; {Load Paths}
848;;;
849
0f2d19dd
JB
850;;; Here for backward compatability
851;;
852(define scheme-file-suffix (lambda () ".scm"))
853
3cab8392
JB
854(define (in-vicinity vicinity file)
855 (let ((tail (let ((len (string-length vicinity)))
856 (if (zero? len) #f
857 (string-ref vicinity (- len 1))))))
858 (string-append vicinity
859 (if (eq? tail #\/) "" "/")
860 file)))
02ceadb8 861
0f2d19dd 862\f
ef00e7f4
JB
863;;; {Help for scm_shell}
864;;; The argument-processing code used by Guile-based shells generates
865;;; Scheme code based on the argument list. This page contains help
866;;; functions for the code it generates.
867
ef00e7f4
JB
868(define (command-line) (program-arguments))
869
5aa7fe69
JB
870;; This is mostly for the internal use of the code generated by
871;; scm_compile_shell_switches.
ef00e7f4
JB
872(define (load-user-init)
873 (define (has-init? dir)
874 (let ((path (in-vicinity dir ".guile")))
875 (catch 'system-error
876 (lambda ()
877 (let ((stats (stat path)))
878 (if (not (eq? (stat:type stats) 'directory))
879 path)))
880 (lambda dummy #f))))
4cd2a3e6
JB
881 (let ((path (or (has-init? (or (getenv "HOME") "/"))
882 (has-init? (passwd:dir (getpw (getuid)))))))
ef00e7f4
JB
883 (if path (primitive-load path))))
884
885\f
a06181a2
JB
886;;; {Loading by paths}
887
888;;; Load a Scheme source file named NAME, searching for it in the
889;;; directories listed in %load-path, and applying each of the file
890;;; name extensions listed in %load-extensions.
891(define (load-from-path name)
892 (start-stack 'load-stack
75a97b92 893 (primitive-load-path name)))
0f2d19dd 894
5552355a 895
0f2d19dd 896\f
0f2d19dd
JB
897;;; {Transcendental Functions}
898;;;
899;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
900;;; Copyright (C) 1992, 1993 Jerry D. Hedden.
901;;; See the file `COPYING' for terms applying to this program.
902;;;
903
904(define (exp z)
905 (if (real? z) ($exp z)
906 (make-polar ($exp (real-part z)) (imag-part z))))
907
908(define (log z)
909 (if (and (real? z) (>= z 0))
910 ($log z)
911 (make-rectangular ($log (magnitude z)) (angle z))))
912
913(define (sqrt z)
914 (if (real? z)
915 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
916 ($sqrt z))
917 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
918
919(define expt
920 (let ((integer-expt integer-expt))
921 (lambda (z1 z2)
922 (cond ((exact? z2)
923 (integer-expt z1 z2))
924 ((and (real? z2) (real? z1) (>= z1 0))
925 ($expt z1 z2))
926 (else
927 (exp (* z2 (log z1))))))))
928
929(define (sinh z)
930 (if (real? z) ($sinh z)
931 (let ((x (real-part z)) (y (imag-part z)))
932 (make-rectangular (* ($sinh x) ($cos y))
933 (* ($cosh x) ($sin y))))))
934(define (cosh z)
935 (if (real? z) ($cosh z)
936 (let ((x (real-part z)) (y (imag-part z)))
937 (make-rectangular (* ($cosh x) ($cos y))
938 (* ($sinh x) ($sin y))))))
939(define (tanh z)
940 (if (real? z) ($tanh z)
941 (let* ((x (* 2 (real-part z)))
942 (y (* 2 (imag-part z)))
943 (w (+ ($cosh x) ($cos y))))
944 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
945
946(define (asinh z)
947 (if (real? z) ($asinh z)
948 (log (+ z (sqrt (+ (* z z) 1))))))
949
950(define (acosh z)
951 (if (and (real? z) (>= z 1))
952 ($acosh z)
953 (log (+ z (sqrt (- (* z z) 1))))))
954
955(define (atanh z)
956 (if (and (real? z) (> z -1) (< z 1))
957 ($atanh z)
958 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
959
960(define (sin z)
961 (if (real? z) ($sin z)
962 (let ((x (real-part z)) (y (imag-part z)))
963 (make-rectangular (* ($sin x) ($cosh y))
964 (* ($cos x) ($sinh y))))))
965(define (cos z)
966 (if (real? z) ($cos z)
967 (let ((x (real-part z)) (y (imag-part z)))
968 (make-rectangular (* ($cos x) ($cosh y))
969 (- (* ($sin x) ($sinh y)))))))
970(define (tan z)
971 (if (real? z) ($tan z)
972 (let* ((x (* 2 (real-part z)))
973 (y (* 2 (imag-part z)))
974 (w (+ ($cos x) ($cosh y))))
975 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
976
977(define (asin z)
978 (if (and (real? z) (>= z -1) (<= z 1))
979 ($asin z)
980 (* -i (asinh (* +i z)))))
981
982(define (acos z)
983 (if (and (real? z) (>= z -1) (<= z 1))
984 ($acos z)
985 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
986
987(define (atan z . y)
988 (if (null? y)
989 (if (real? z) ($atan z)
990 (/ (log (/ (- +i z) (+ +i z))) +2i))
991 ($atan2 z (car y))))
992
993(set! abs magnitude)
994
65495221
GH
995(define (log10 arg)
996 (/ (log arg) (log 10)))
997
0f2d19dd 998\f
0f2d19dd
JB
999
1000;;; {Reader Extensions}
1001;;;
1002
1003;;; Reader code for various "#c" forms.
1004;;;
1005
fb6d1065
JB
1006;;; Parse the portion of a #/ list that comes after the first slash.
1007(define (read-path-list-notation slash port)
1008 (letrec
1009
1010 ;; Is C a delimiter?
1011 ((delimiter? (lambda (c) (or (eof-object? c)
1012 (char-whitespace? c)
1013 (string-index "()\";" c))))
1014
1015 ;; Read and return one component of a path list.
1016 (read-component
1017 (lambda ()
1018 (let loop ((reversed-chars '()))
1019 (let ((c (peek-char port)))
1020 (if (or (delimiter? c)
1021 (char=? c #\/))
1022 (string->symbol (list->string (reverse reversed-chars)))
1023 (loop (cons (read-char port) reversed-chars))))))))
1024
1025 ;; Read and return a path list.
1026 (let loop ((reversed-path (list (read-component))))
1027 (let ((c (peek-char port)))
1028 (if (and (char? c) (char=? c #\/))
1029 (begin
1030 (read-char port)
1031 (loop (cons (read-component) reversed-path)))
1032 (reverse reversed-path))))))
0f2d19dd 1033
75a97b92
GH
1034(read-hash-extend #\' (lambda (c port)
1035 (read port)))
1036(read-hash-extend #\. (lambda (c port)
1037 (eval (read port))))
1038
1039(if (feature? 'array)
1040 (begin
1041 (let ((make-array-proc (lambda (template)
1042 (lambda (c port)
1043 (read:uniform-vector template port)))))
1044 (for-each (lambda (char template)
1045 (read-hash-extend char
1046 (make-array-proc template)))
1047 '(#\b #\a #\u #\e #\s #\i #\c)
1048 '(#t #\a 1 -1 1.0 1/3 0+i)))
1049 (let ((array-proc (lambda (c port)
1050 (read:array c port))))
1051 (for-each (lambda (char) (read-hash-extend char array-proc))
1052 '(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)))))
1053
00c34e45
GH
1054;; pushed to the beginning of the alist since it's used more than the
1055;; others at present.
fb6d1065 1056(read-hash-extend #\/ read-path-list-notation)
00c34e45 1057
0f2d19dd
JB
1058(define (read:array digit port)
1059 (define chr0 (char->integer #\0))
1060 (let ((rank (let readnum ((val (- (char->integer digit) chr0)))
1061 (if (char-numeric? (peek-char port))
1062 (readnum (+ (* 10 val)
1063 (- (char->integer (read-char port)) chr0)))
1064 val)))
1065 (prot (if (eq? #\( (peek-char port))
1066 '()
1067 (let ((c (read-char port)))
1068 (case c ((#\b) #t)
1069 ((#\a) #\a)
1070 ((#\u) 1)
1071 ((#\e) -1)
1072 ((#\s) 1.0)
1073 ((#\i) 1/3)
1074 ((#\c) 0+i)
1075 (else (error "read:array unknown option " c)))))))
1076 (if (eq? (peek-char port) #\()
75a97b92 1077 (list->uniform-array rank prot (read port))
0f2d19dd
JB
1078 (error "read:array list not found"))))
1079
1080(define (read:uniform-vector proto port)
1081 (if (eq? #\( (peek-char port))
75a97b92 1082 (list->uniform-array 1 proto (read port))
0f2d19dd
JB
1083 (error "read:uniform-vector list not found")))
1084
0f2d19dd
JB
1085\f
1086;;; {Command Line Options}
1087;;;
1088
1089(define (get-option argv kw-opts kw-args return)
1090 (cond
1091 ((null? argv)
1092 (return #f #f argv))
1093
1094 ((or (not (eq? #\- (string-ref (car argv) 0)))
1095 (eq? (string-length (car argv)) 1))
1096 (return 'normal-arg (car argv) (cdr argv)))
1097
1098 ((eq? #\- (string-ref (car argv) 1))
1099 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
1100 (string-length (car argv))))
1101 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
1102 (kw-opt? (member kw kw-opts))
1103 (kw-arg? (member kw kw-args))
1104 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
1105 (substring (car argv)
1106 (+ kw-arg-pos 1)
1107 (string-length (car argv))))
1108 (and kw-arg?
1109 (begin (set! argv (cdr argv)) (car argv))))))
1110 (if (or kw-opt? kw-arg?)
1111 (return kw arg (cdr argv))
1112 (return 'usage-error kw (cdr argv)))))
1113
1114 (else
1115 (let* ((char (substring (car argv) 1 2))
1116 (kw (symbol->keyword char)))
1117 (cond
1118
1119 ((member kw kw-opts)
1120 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1121 (new-argv (if (= 0 (string-length rest-car))
1122 (cdr argv)
1123 (cons (string-append "-" rest-car) (cdr argv)))))
1124 (return kw #f new-argv)))
1125
1126 ((member kw kw-args)
1127 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1128 (arg (if (= 0 (string-length rest-car))
1129 (cadr argv)
1130 rest-car))
1131 (new-argv (if (= 0 (string-length rest-car))
1132 (cddr argv)
1133 (cdr argv))))
1134 (return kw arg new-argv)))
1135
1136 (else (return 'usage-error kw argv)))))))
1137
1138(define (for-next-option proc argv kw-opts kw-args)
1139 (let loop ((argv argv))
1140 (get-option argv kw-opts kw-args
1141 (lambda (opt opt-arg argv)
1142 (and opt (proc opt opt-arg argv loop))))))
1143
1144(define (display-usage-report kw-desc)
1145 (for-each
1146 (lambda (kw)
1147 (or (eq? (car kw) #t)
1148 (eq? (car kw) 'else)
1149 (let* ((opt-desc kw)
1150 (help (cadr opt-desc))
1151 (opts (car opt-desc))
1152 (opts-proper (if (string? (car opts)) (cdr opts) opts))
1153 (arg-name (if (string? (car opts))
1154 (string-append "<" (car opts) ">")
1155 ""))
1156 (left-part (string-append
1157 (with-output-to-string
1158 (lambda ()
1159 (map (lambda (x) (display (keyword-symbol x)) (display " "))
1160 opts-proper)))
1161 arg-name))
1162 (middle-part (if (and (< (length left-part) 30)
1163 (< (length help) 40))
1164 (make-string (- 30 (length left-part)) #\ )
1165 "\n\t")))
1166 (display left-part)
1167 (display middle-part)
1168 (display help)
1169 (newline))))
1170 kw-desc))
1171
1172
1173
0f2d19dd
JB
1174(define (transform-usage-lambda cases)
1175 (let* ((raw-usage (delq! 'else (map car cases)))
1176 (usage-sans-specials (map (lambda (x)
1177 (or (and (not (list? x)) x)
1178 (and (symbol? (car x)) #t)
1179 (and (boolean? (car x)) #t)
1180 x))
1181 raw-usage))
ed440df5 1182 (usage-desc (delq! #t usage-sans-specials))
0f2d19dd
JB
1183 (kw-desc (map car usage-desc))
1184 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
1185 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
1186 (transmogrified-cases (map (lambda (case)
1187 (cons (let ((opts (car case)))
1188 (if (or (boolean? opts) (eq? 'else opts))
1189 opts
1190 (cond
1191 ((symbol? (car opts)) opts)
1192 ((boolean? (car opts)) opts)
1193 ((string? (caar opts)) (cdar opts))
1194 (else (car opts)))))
1195 (cdr case)))
1196 cases)))
1197 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1198 (lambda (%argv)
1199 (let %next-arg ((%argv %argv))
1200 (get-option %argv
1201 ',kw-opts
1202 ',kw-args
1203 (lambda (%opt %arg %new-argv)
1204 (case %opt
1205 ,@ transmogrified-cases))))))))
1206
1207
1208\f
1209
1210;;; {Low Level Modules}
1211;;;
1212;;; These are the low level data structures for modules.
1213;;;
1214;;; !!! warning: The interface to lazy binder procedures is going
1215;;; to be changed in an incompatible way to permit all the basic
1216;;; module ops to be virtualized.
1217;;;
1218;;; (make-module size use-list lazy-binding-proc) => module
1219;;; module-{obarray,uses,binder}[|-set!]
1220;;; (module? obj) => [#t|#f]
1221;;; (module-locally-bound? module symbol) => [#t|#f]
1222;;; (module-bound? module symbol) => [#t|#f]
1223;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1224;;; (module-symbol-interned? module symbol) => [#t|#f]
1225;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1226;;; (module-variable module symbol) => [#<variable ...> | #f]
1227;;; (module-symbol-binding module symbol opt-value)
1228;;; => [ <obj> | opt-value | an error occurs ]
1229;;; (module-make-local-var! module symbol) => #<variable...>
1230;;; (module-add! module symbol var) => unspecified
1231;;; (module-remove! module symbol) => unspecified
1232;;; (module-for-each proc module) => unspecified
1233;;; (make-scm-module) => module ; a lazy copy of the symhash module
1234;;; (set-current-module module) => unspecified
1235;;; (current-module) => #<module...>
1236;;;
1237;;;
1238
1239\f
44cf1f0f
JB
1240;;; {Printing Modules}
1241;; This is how modules are printed. You can re-define it.
fa7e9274
MV
1242;; (Redefining is actually more complicated than simply redefining
1243;; %print-module because that would only change the binding and not
1244;; the value stored in the vtable that determines how record are
1245;; printed. Sigh.)
1246
1247(define (%print-module mod port) ; unused args: depth length style table)
0f2d19dd
JB
1248 (display "#<" port)
1249 (display (or (module-kind mod) "module") port)
1250 (let ((name (module-name mod)))
1251 (if name
1252 (begin
1253 (display " " port)
1254 (display name port))))
1255 (display " " port)
1256 (display (number->string (object-address mod) 16) port)
1257 (display ">" port))
1258
1259;; module-type
1260;;
1261;; A module is characterized by an obarray in which local symbols
1262;; are interned, a list of modules, "uses", from which non-local
1263;; bindings can be inherited, and an optional lazy-binder which
31d50456 1264;; is a (CLOSURE module symbol) which, as a last resort, can provide
0f2d19dd
JB
1265;; bindings that would otherwise not be found locally in the module.
1266;;
1267(define module-type
31d50456 1268 (make-record-type 'module '(obarray uses binder eval-closure name kind)
8b718458 1269 %print-module))
0f2d19dd 1270
8b718458 1271;; make-module &opt size uses binder
0f2d19dd 1272;;
8b718458
JB
1273;; Create a new module, perhaps with a particular size of obarray,
1274;; initial uses list, or binding procedure.
0f2d19dd 1275;;
0f2d19dd
JB
1276(define make-module
1277 (lambda args
0f2d19dd 1278
8b718458
JB
1279 (define (parse-arg index default)
1280 (if (> (length args) index)
1281 (list-ref args index)
1282 default))
1283
1284 (if (> (length args) 3)
1285 (error "Too many args to make-module." args))
0f2d19dd 1286
8b718458
JB
1287 (let ((size (parse-arg 0 1021))
1288 (uses (parse-arg 1 '()))
1289 (binder (parse-arg 2 #f)))
0f2d19dd 1290
8b718458
JB
1291 (if (not (integer? size))
1292 (error "Illegal size to make-module." size))
1293 (if (not (and (list? uses)
1294 (and-map module? uses)))
1295 (error "Incorrect use list." uses))
0f2d19dd
JB
1296 (if (and binder (not (procedure? binder)))
1297 (error
1298 "Lazy-binder expected to be a procedure or #f." binder))
1299
8b718458
JB
1300 (let ((module (module-constructor (make-vector size '())
1301 uses binder #f #f #f)))
1302
1303 ;; We can't pass this as an argument to module-constructor,
1304 ;; because we need it to close over a pointer to the module
1305 ;; itself.
31d50456 1306 (set-module-eval-closure! module
8b718458
JB
1307 (lambda (symbol define?)
1308 (if define?
1309 (module-make-local-var! module symbol)
1310 (module-variable module symbol))))
1311
1312 module))))
0f2d19dd 1313
8b718458 1314(define module-constructor (record-constructor module-type))
0f2d19dd
JB
1315(define module-obarray (record-accessor module-type 'obarray))
1316(define set-module-obarray! (record-modifier module-type 'obarray))
1317(define module-uses (record-accessor module-type 'uses))
1318(define set-module-uses! (record-modifier module-type 'uses))
1319(define module-binder (record-accessor module-type 'binder))
1320(define set-module-binder! (record-modifier module-type 'binder))
31d50456
JB
1321(define module-eval-closure (record-accessor module-type 'eval-closure))
1322(define set-module-eval-closure! (record-modifier module-type 'eval-closure))
0f2d19dd
JB
1323(define module-name (record-accessor module-type 'name))
1324(define set-module-name! (record-modifier module-type 'name))
1325(define module-kind (record-accessor module-type 'kind))
1326(define set-module-kind! (record-modifier module-type 'kind))
1327(define module? (record-predicate module-type))
1328
8b718458 1329
0f2d19dd 1330(define (eval-in-module exp module)
31d50456 1331 (eval2 exp (module-eval-closure module)))
0f2d19dd
JB
1332
1333\f
1334;;; {Module Searching in General}
1335;;;
1336;;; We sometimes want to look for properties of a symbol
1337;;; just within the obarray of one module. If the property
1338;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1339;;; DISPLAY is locally rebound in the module `safe-guile'.''
1340;;;
1341;;;
1342;;; Other times, we want to test for a symbol property in the obarray
1343;;; of M and, if it is not found there, try each of the modules in the
1344;;; uses list of M. This is the normal way of testing for some
1345;;; property, so we state these properties without qualification as
1346;;; in: ``The symbol 'fnord is interned in module M because it is
1347;;; interned locally in module M2 which is a member of the uses list
1348;;; of M.''
1349;;;
1350
1351;; module-search fn m
1352;;
1353;; return the first non-#f result of FN applied to M and then to
1354;; the modules in the uses of m, and so on recursively. If all applications
1355;; return #f, then so does this function.
1356;;
1357(define (module-search fn m v)
1358 (define (loop pos)
1359 (and (pair? pos)
1360 (or (module-search fn (car pos) v)
1361 (loop (cdr pos)))))
1362 (or (fn m v)
1363 (loop (module-uses m))))
1364
1365
1366;;; {Is a symbol bound in a module?}
1367;;;
1368;;; Symbol S in Module M is bound if S is interned in M and if the binding
1369;;; of S in M has been set to some well-defined value.
1370;;;
1371
1372;; module-locally-bound? module symbol
1373;;
1374;; Is a symbol bound (interned and defined) locally in a given module?
1375;;
1376(define (module-locally-bound? m v)
1377 (let ((var (module-local-variable m v)))
1378 (and var
1379 (variable-bound? var))))
1380
1381;; module-bound? module symbol
1382;;
1383;; Is a symbol bound (interned and defined) anywhere in a given module
1384;; or its uses?
1385;;
1386(define (module-bound? m v)
1387 (module-search module-locally-bound? m v))
1388
1389;;; {Is a symbol interned in a module?}
1390;;;
1391;;; Symbol S in Module M is interned if S occurs in
1392;;; of S in M has been set to some well-defined value.
1393;;;
1394;;; It is possible to intern a symbol in a module without providing
1395;;; an initial binding for the corresponding variable. This is done
1396;;; with:
1397;;; (module-add! module symbol (make-undefined-variable))
1398;;;
1399;;; In that case, the symbol is interned in the module, but not
1400;;; bound there. The unbound symbol shadows any binding for that
1401;;; symbol that might otherwise be inherited from a member of the uses list.
1402;;;
1403
1404(define (module-obarray-get-handle ob key)
1405 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1406
1407(define (module-obarray-ref ob key)
1408 ((if (symbol? key) hashq-ref hash-ref) ob key))
1409
1410(define (module-obarray-set! ob key val)
1411 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1412
1413(define (module-obarray-remove! ob key)
1414 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1415
1416;; module-symbol-locally-interned? module symbol
1417;;
1418;; is a symbol interned (not neccessarily defined) locally in a given module
1419;; or its uses? Interned symbols shadow inherited bindings even if
1420;; they are not themselves bound to a defined value.
1421;;
1422(define (module-symbol-locally-interned? m v)
1423 (not (not (module-obarray-get-handle (module-obarray m) v))))
1424
1425;; module-symbol-interned? module symbol
1426;;
1427;; is a symbol interned (not neccessarily defined) anywhere in a given module
1428;; or its uses? Interned symbols shadow inherited bindings even if
1429;; they are not themselves bound to a defined value.
1430;;
1431(define (module-symbol-interned? m v)
1432 (module-search module-symbol-locally-interned? m v))
1433
1434
1435;;; {Mapping modules x symbols --> variables}
1436;;;
1437
1438;; module-local-variable module symbol
1439;; return the local variable associated with a MODULE and SYMBOL.
1440;;
1441;;; This function is very important. It is the only function that can
1442;;; return a variable from a module other than the mutators that store
1443;;; new variables in modules. Therefore, this function is the location
1444;;; of the "lazy binder" hack.
1445;;;
1446;;; If symbol is defined in MODULE, and if the definition binds symbol
1447;;; to a variable, return that variable object.
1448;;;
1449;;; If the symbols is not found at first, but the module has a lazy binder,
1450;;; then try the binder.
1451;;;
1452;;; If the symbol is not found at all, return #f.
1453;;;
1454(define (module-local-variable m v)
6fa8995c
GH
1455; (caddr
1456; (list m v
0f2d19dd
JB
1457 (let ((b (module-obarray-ref (module-obarray m) v)))
1458 (or (and (variable? b) b)
1459 (and (module-binder m)
6fa8995c
GH
1460 ((module-binder m) m v #f)))))
1461;))
0f2d19dd
JB
1462
1463;; module-variable module symbol
1464;;
1465;; like module-local-variable, except search the uses in the
1466;; case V is not found in M.
1467;;
1468(define (module-variable m v)
1469 (module-search module-local-variable m v))
1470
1471
1472;;; {Mapping modules x symbols --> bindings}
1473;;;
1474;;; These are similar to the mapping to variables, except that the
1475;;; variable is dereferenced.
1476;;;
1477
1478;; module-symbol-binding module symbol opt-value
1479;;
1480;; return the binding of a variable specified by name within
1481;; a given module, signalling an error if the variable is unbound.
1482;; If the OPT-VALUE is passed, then instead of signalling an error,
1483;; return OPT-VALUE.
1484;;
1485(define (module-symbol-local-binding m v . opt-val)
1486 (let ((var (module-local-variable m v)))
1487 (if var
1488 (variable-ref var)
1489 (if (not (null? opt-val))
1490 (car opt-val)
1491 (error "Locally unbound variable." v)))))
1492
1493;; module-symbol-binding module symbol opt-value
1494;;
1495;; return the binding of a variable specified by name within
1496;; a given module, signalling an error if the variable is unbound.
1497;; If the OPT-VALUE is passed, then instead of signalling an error,
1498;; return OPT-VALUE.
1499;;
1500(define (module-symbol-binding m v . opt-val)
1501 (let ((var (module-variable m v)))
1502 (if var
1503 (variable-ref var)
1504 (if (not (null? opt-val))
1505 (car opt-val)
1506 (error "Unbound variable." v)))))
1507
1508
1509\f
1510;;; {Adding Variables to Modules}
1511;;;
1512;;;
1513
1514
1515;; module-make-local-var! module symbol
1516;;
1517;; ensure a variable for V in the local namespace of M.
1518;; If no variable was already there, then create a new and uninitialzied
1519;; variable.
1520;;
1521(define (module-make-local-var! m v)
1522 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1523 (and (variable? b) b))
1524 (and (module-binder m)
1525 ((module-binder m) m v #t))
1526 (begin
1527 (let ((answer (make-undefined-variable v)))
1528 (module-obarray-set! (module-obarray m) v answer)
1529 answer))))
1530
1531;; module-add! module symbol var
1532;;
1533;; ensure a particular variable for V in the local namespace of M.
1534;;
1535(define (module-add! m v var)
1536 (if (not (variable? var))
1537 (error "Bad variable to module-add!" var))
1538 (module-obarray-set! (module-obarray m) v var))
1539
1540;; module-remove!
1541;;
1542;; make sure that a symbol is undefined in the local namespace of M.
1543;;
1544(define (module-remove! m v)
1545 (module-obarray-remove! (module-obarray m) v))
1546
1547(define (module-clear! m)
1548 (vector-fill! (module-obarray m) '()))
1549
1550;; MODULE-FOR-EACH -- exported
1551;;
1552;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1553;;
1554(define (module-for-each proc module)
1555 (let ((obarray (module-obarray module)))
1556 (do ((index 0 (+ index 1))
1557 (end (vector-length obarray)))
1558 ((= index end))
1559 (for-each
1560 (lambda (bucket)
1561 (proc (car bucket) (cdr bucket)))
1562 (vector-ref obarray index)))))
1563
1564
1565(define (module-map proc module)
1566 (let* ((obarray (module-obarray module))
1567 (end (vector-length obarray)))
1568
1569 (let loop ((i 0)
1570 (answer '()))
1571 (if (= i end)
1572 answer
1573 (loop (+ 1 i)
1574 (append!
1575 (map (lambda (bucket)
1576 (proc (car bucket) (cdr bucket)))
1577 (vector-ref obarray i))
1578 answer))))))
1579\f
1580
1581;;; {Low Level Bootstrapping}
1582;;;
1583
1584;; make-root-module
1585
21ed9efe 1586;; A root module uses the symhash table (the system's privileged
0f2d19dd
JB
1587;; obarray). Being inside a root module is like using SCM without
1588;; any module system.
1589;;
1590
1591
31d50456 1592(define (root-module-closure m s define?)
0f2d19dd
JB
1593 (let ((bi (and (symbol-interned? #f s)
1594 (builtin-variable s))))
1595 (and bi
1596 (or define? (variable-bound? bi))
1597 (begin
1598 (module-add! m s bi)
1599 bi))))
1600
1601(define (make-root-module)
31d50456 1602 (make-module 1019 '() root-module-closure))
0f2d19dd
JB
1603
1604
1605;; make-scm-module
1606
1607;; An scm module is a module into which the lazy binder copies
1608;; variable bindings from the system symhash table. The mapping is
1609;; one way only; newly introduced bindings in an scm module are not
1610;; copied back into the system symhash table (and can be used to override
1611;; bindings from the symhash table).
1612;;
1613
1614(define (make-scm-module)
8b718458 1615 (make-module 1019 '()
0f2d19dd
JB
1616 (lambda (m s define?)
1617 (let ((bi (and (symbol-interned? #f s)
1618 (builtin-variable s))))
1619 (and bi
1620 (variable-bound? bi)
1621 (begin
1622 (module-add! m s bi)
1623 bi))))))
1624
1625
1626
1627
1628;; the-module
1629;;
1630(define the-module #f)
1631
1632;; set-current-module module
1633;;
1634;; set the current module as viewed by the normalizer.
1635;;
1636(define (set-current-module m)
1637 (set! the-module m)
1638 (if m
31d50456
JB
1639 (set! *top-level-lookup-closure* (module-eval-closure the-module))
1640 (set! *top-level-lookup-closure* #f)))
0f2d19dd
JB
1641
1642
1643;; current-module
1644;;
1645;; return the current module as viewed by the normalizer.
1646;;
1647(define (current-module) the-module)
1648\f
1649;;; {Module-based Loading}
1650;;;
1651
1652(define (save-module-excursion thunk)
1653 (let ((inner-module (current-module))
1654 (outer-module #f))
1655 (dynamic-wind (lambda ()
1656 (set! outer-module (current-module))
1657 (set-current-module inner-module)
1658 (set! inner-module #f))
1659 thunk
1660 (lambda ()
1661 (set! inner-module (current-module))
1662 (set-current-module outer-module)
1663 (set! outer-module #f)))))
1664
0f2d19dd
JB
1665(define basic-load load)
1666
0f2d19dd
JB
1667(define (load-module . args)
1668 (save-module-excursion (lambda () (apply basic-load args))))
1669
1670
1671\f
44cf1f0f 1672;;; {MODULE-REF -- exported}
0f2d19dd
JB
1673;;
1674;; Returns the value of a variable called NAME in MODULE or any of its
1675;; used modules. If there is no such variable, then if the optional third
1676;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1677;;
1678(define (module-ref module name . rest)
1679 (let ((variable (module-variable module name)))
1680 (if (and variable (variable-bound? variable))
1681 (variable-ref variable)
1682 (if (null? rest)
1683 (error "No variable named" name 'in module)
1684 (car rest) ; default value
1685 ))))
1686
1687;; MODULE-SET! -- exported
1688;;
1689;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1690;; to VALUE; if there is no such variable, an error is signaled.
1691;;
1692(define (module-set! module name value)
1693 (let ((variable (module-variable module name)))
1694 (if variable
1695 (variable-set! variable value)
1696 (error "No variable named" name 'in module))))
1697
1698;; MODULE-DEFINE! -- exported
1699;;
1700;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1701;; variable, it is added first.
1702;;
1703(define (module-define! module name value)
1704 (let ((variable (module-local-variable module name)))
1705 (if variable
1706 (variable-set! variable value)
1707 (module-add! module name (make-variable value name)))))
1708
ed218d98
MV
1709;; MODULE-DEFINED? -- exported
1710;;
1711;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1712;; uses)
1713;;
1714(define (module-defined? module name)
1715 (let ((variable (module-variable module name)))
1716 (and variable (variable-bound? variable))))
1717
0f2d19dd
JB
1718;; MODULE-USE! module interface
1719;;
1720;; Add INTERFACE to the list of interfaces used by MODULE.
1721;;
1722(define (module-use! module interface)
1723 (set-module-uses! module
1724 (cons interface (delq! interface (module-uses module)))))
1725
1726\f
0f2d19dd
JB
1727;;; {Recursive Namespaces}
1728;;;
1729;;;
1730;;; A hierarchical namespace emerges if we consider some module to be
1731;;; root, and variables bound to modules as nested namespaces.
1732;;;
1733;;; The routines in this file manage variable names in hierarchical namespace.
1734;;; Each variable name is a list of elements, looked up in successively nested
1735;;; modules.
1736;;;
0dd5491c 1737;;; (nested-ref some-root-module '(foo bar baz))
0f2d19dd
JB
1738;;; => <value of a variable named baz in the module bound to bar in
1739;;; the module bound to foo in some-root-module>
1740;;;
1741;;;
1742;;; There are:
1743;;;
1744;;; ;; a-root is a module
1745;;; ;; name is a list of symbols
1746;;;
0dd5491c
MD
1747;;; nested-ref a-root name
1748;;; nested-set! a-root name val
1749;;; nested-define! a-root name val
1750;;; nested-remove! a-root name
0f2d19dd
JB
1751;;;
1752;;;
1753;;; (current-module) is a natural choice for a-root so for convenience there are
1754;;; also:
1755;;;
0dd5491c
MD
1756;;; local-ref name == nested-ref (current-module) name
1757;;; local-set! name val == nested-set! (current-module) name val
1758;;; local-define! name val == nested-define! (current-module) name val
1759;;; local-remove! name == nested-remove! (current-module) name
0f2d19dd
JB
1760;;;
1761
1762
0dd5491c 1763(define (nested-ref root names)
0f2d19dd
JB
1764 (let loop ((cur root)
1765 (elts names))
1766 (cond
1767 ((null? elts) cur)
1768 ((not (module? cur)) #f)
1769 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1770
0dd5491c 1771(define (nested-set! root names val)
0f2d19dd
JB
1772 (let loop ((cur root)
1773 (elts names))
1774 (if (null? (cdr elts))
1775 (module-set! cur (car elts) val)
1776 (loop (module-ref cur (car elts)) (cdr elts)))))
1777
0dd5491c 1778(define (nested-define! root names val)
0f2d19dd
JB
1779 (let loop ((cur root)
1780 (elts names))
1781 (if (null? (cdr elts))
1782 (module-define! cur (car elts) val)
1783 (loop (module-ref cur (car elts)) (cdr elts)))))
1784
0dd5491c 1785(define (nested-remove! root names)
0f2d19dd
JB
1786 (let loop ((cur root)
1787 (elts names))
1788 (if (null? (cdr elts))
1789 (module-remove! cur (car elts))
1790 (loop (module-ref cur (car elts)) (cdr elts)))))
1791
0dd5491c
MD
1792(define (local-ref names) (nested-ref (current-module) names))
1793(define (local-set! names val) (nested-set! (current-module) names val))
1794(define (local-define names val) (nested-define! (current-module) names val))
1795(define (local-remove names) (nested-remove! (current-module) names))
0f2d19dd
JB
1796
1797
1798\f
8bb7330c 1799;;; {The (app) module}
0f2d19dd
JB
1800;;;
1801;;; The root of conventionally named objects not directly in the top level.
1802;;;
8bb7330c
JB
1803;;; (app modules)
1804;;; (app modules guile)
0f2d19dd
JB
1805;;;
1806;;; The directory of all modules and the standard root module.
1807;;;
1808
1809(define (module-public-interface m) (module-ref m '%module-public-interface #f))
1810(define (set-module-public-interface! m i) (module-define! m '%module-public-interface i))
1811(define the-root-module (make-root-module))
1812(define the-scm-module (make-scm-module))
1813(set-module-public-interface! the-root-module the-scm-module)
1814(set-module-name! the-root-module 'the-root-module)
1815(set-module-name! the-scm-module 'the-scm-module)
1816
1817(set-current-module the-root-module)
1818
1819(define app (make-module 31))
0dd5491c
MD
1820(local-define '(app modules) (make-module 31))
1821(local-define '(app modules guile) the-root-module)
0f2d19dd
JB
1822
1823;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1824
0209ca9a 1825(define (resolve-module name . maybe-autoload)
0f2d19dd 1826 (let ((full-name (append '(app modules) name)))
0dd5491c 1827 (let ((already (local-ref full-name)))
0f2d19dd
JB
1828 (or already
1829 (begin
0209ca9a 1830 (if (or (null? maybe-autoload) (car maybe-autoload))
d0cbd20c
MV
1831 (or (try-module-autoload name)
1832 (try-module-dynamic-link name)))
0f2d19dd
JB
1833 (make-modules-in (current-module) full-name))))))
1834
1835(define (beautify-user-module! module)
1836 (if (not (module-public-interface module))
1837 (let ((interface (make-module 31)))
1838 (set-module-name! interface (module-name module))
1839 (set-module-kind! interface 'interface)
1840 (set-module-public-interface! module interface)))
cc7f066c
MD
1841 (if (and (not (memq the-scm-module (module-uses module)))
1842 (not (eq? module the-root-module)))
0f2d19dd
JB
1843 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1844
1845(define (make-modules-in module name)
1846 (if (null? name)
1847 module
1848 (cond
1849 ((module-ref module (car name) #f) => (lambda (m) (make-modules-in m (cdr name))))
1850 (else (let ((m (make-module 31)))
1851 (set-module-kind! m 'directory)
1852 (set-module-name! m (car name))
1853 (module-define! module (car name) m)
1854 (make-modules-in m (cdr name)))))))
1855
1856(define (resolve-interface name)
1857 (let ((module (resolve-module name)))
1858 (and module (module-public-interface module))))
1859
1860
1861(define %autoloader-developer-mode #t)
1862
1863(define (process-define-module args)
1864 (let* ((module-id (car args))
0209ca9a 1865 (module (resolve-module module-id #f))
0f2d19dd
JB
1866 (kws (cdr args)))
1867 (beautify-user-module! module)
0209ca9a
MV
1868 (let loop ((kws kws)
1869 (reversed-interfaces '()))
1870 (if (null? kws)
1871 (for-each (lambda (interface)
1872 (module-use! module interface))
1873 reversed-interfaces)
04798288
MD
1874 (case (cond ((keyword? (car kws))
1875 (keyword->symbol (car kws)))
90268b35
MD
1876 ((and (symbol? (car kws))
1877 (eq? (string-ref (car kws) 0) #\:))
04798288 1878 (string->symbol (substring (car kws) 1)))
90268b35 1879 (else #f))
04798288 1880 ((use-module)
0209ca9a
MV
1881 (if (not (pair? (cdr kws)))
1882 (error "unrecognized defmodule argument" kws))
1883 (let* ((used-name (cadr kws))
1884 (used-module (resolve-module used-name)))
1885 (if (not (module-ref used-module '%module-public-interface #f))
1886 (begin
1887 ((if %autoloader-developer-mode warn error)
1888 "no code for module" (module-name used-module))
1889 (beautify-user-module! used-module)))
1890 (let ((interface (module-public-interface used-module)))
1891 (if (not interface)
1892 (error "missing interface for use-module" used-module))
1893 (loop (cddr kws) (cons interface reversed-interfaces)))))
1894 (else
1895 (error "unrecognized defmodule argument" kws)))))
0f2d19dd
JB
1896 module))
1897\f
44cf1f0f 1898;;; {Autoloading modules}
0f2d19dd
JB
1899
1900(define autoloads-in-progress '())
1901
1902(define (try-module-autoload module-name)
6fa8995c 1903
0f2d19dd
JB
1904 (define (sfx name) (string-append name (scheme-file-suffix)))
1905 (let* ((reverse-name (reverse module-name))
1906 (name (car reverse-name))
1907 (dir-hint-module-name (reverse (cdr reverse-name)))
1908 (dir-hint (apply symbol-append (map (lambda (elt) (symbol-append elt "/")) dir-hint-module-name))))
0209ca9a 1909 (resolve-module dir-hint-module-name #f)
0f2d19dd
JB
1910 (and (not (autoload-done-or-in-progress? dir-hint name))
1911 (let ((didit #f))
1912 (dynamic-wind
1913 (lambda () (autoload-in-progress! dir-hint name))
1914 (lambda ()
1915 (let loop ((dirs %load-path))
1916 (and (not (null? dirs))
1917 (or
1918 (let ((d (car dirs))
1919 (trys (list
1920 dir-hint
1921 (sfx dir-hint)
1922 (in-vicinity dir-hint name)
1923 (in-vicinity dir-hint (sfx name)))))
1924 (and (or-map (lambda (f)
1925 (let ((full (in-vicinity d f)))
1926 full
6fa8995c
GH
1927 (and (file-exists? full)
1928 (not (file-is-directory? full))
0f2d19dd
JB
1929 (begin
1930 (save-module-excursion
1931 (lambda ()
5552355a
GH
1932 (load (string-append
1933 d "/" f))))
0f2d19dd
JB
1934 #t))))
1935 trys)
1936 (begin
1937 (set! didit #t)
1938 #t)))
1939 (loop (cdr dirs))))))
1940 (lambda () (set-autoloaded! dir-hint name didit)))
1941 didit))))
1942
d0cbd20c
MV
1943;;; Dynamic linking of modules
1944
1945;; Initializing a module that is written in C is a two step process.
1946;; First the module's `module init' function is called. This function
1947;; is expected to call `scm_register_module_xxx' to register the `real
1948;; init' function. Later, when the module is referenced for the first
1949;; time, this real init function is called in the right context. See
1950;; gtcltk-lib/gtcltk-module.c for an example.
1951;;
1952;; The code for the module can be in a regular shared library (so that
1953;; the `module init' function will be called when libguile is
1954;; initialized). Or it can be dynamically linked.
1955;;
1956;; You can safely call `scm_register_module_xxx' before libguile
1957;; itself is initialized. You could call it from an C++ constructor
1958;; of a static object, for example.
1959;;
1960;; To make your Guile extension into a dynamic linkable module, follow
1961;; these easy steps:
1962;;
8bb7330c 1963;; - Find a name for your module, like (ice-9 gtcltk)
d0cbd20c
MV
1964;; - Write a function with a name like
1965;;
1966;; scm_init_ice_9_gtcltk_module
1967;;
1968;; This is your `module init' function. It should call
1969;;
1970;; scm_register_module_xxx ("ice-9 gtcltk", scm_init_gtcltk);
1971;;
1972;; "ice-9 gtcltk" is the C version of the module name. Slashes are
1973;; replaced by spaces, the rest is untouched. `scm_init_gtcltk' is
ed218d98 1974;; the real init function that executes the usual initializations
d0cbd20c
MV
1975;; like making new smobs, etc.
1976;;
1977;; - Make a shared library with your code and a name like
1978;;
1979;; ice-9/libgtcltk.so
1980;;
1981;; and put it somewhere in %load-path.
1982;;
8bb7330c 1983;; - Then you can simply write `:use-module (ice-9 gtcltk)' and it
d0cbd20c
MV
1984;; will be linked automatically.
1985;;
1986;; This is all very experimental.
1987
1988(define (split-c-module-name str)
1989 (let loop ((rev '())
1990 (start 0)
1991 (pos 0)
1992 (end (string-length str)))
1993 (cond
1994 ((= pos end)
1995 (reverse (cons (string->symbol (substring str start pos)) rev)))
1996 ((eq? (string-ref str pos) #\space)
1997 (loop (cons (string->symbol (substring str start pos)) rev)
1998 (+ pos 1)
1999 (+ pos 1)
2000 end))
2001 (else
2002 (loop rev start (+ pos 1) end)))))
2003
2004(define (convert-c-registered-modules dynobj)
2005 (let ((res (map (lambda (c)
2006 (list (split-c-module-name (car c)) (cdr c) dynobj))
2007 (c-registered-modules))))
2008 (c-clear-registered-modules)
2009 res))
2010
2011(define registered-modules (convert-c-registered-modules #f))
2012
2013(define (init-dynamic-module modname)
2014 (or-map (lambda (modinfo)
2015 (if (equal? (car modinfo) modname)
2016 (let ((mod (resolve-module modname #f)))
2017 (save-module-excursion
2018 (lambda ()
2019 (set-current-module mod)
2020 (dynamic-call (cadr modinfo) (caddr modinfo))
2021 (set-module-public-interface! mod mod)))
2022 (set! registered-modules (delq! modinfo registered-modules))
2023 #t)
2024 #f))
2025 registered-modules))
2026
2027(define (dynamic-maybe-call name dynobj)
2028 (catch #t ; could use false-if-exception here
2029 (lambda ()
2030 (dynamic-call name dynobj))
2031 (lambda args
2032 #f)))
2033
ed218d98
MV
2034(define (dynamic-maybe-link filename)
2035 (catch #t ; could use false-if-exception here
2036 (lambda ()
2037 (dynamic-link filename))
2038 (lambda args
2039 #f)))
2040
d0cbd20c
MV
2041(define (find-and-link-dynamic-module module-name)
2042 (define (make-init-name mod-name)
2043 (string-append 'scm_init
2044 (list->string (map (lambda (c)
2045 (if (or (char-alphabetic? c)
2046 (char-numeric? c))
2047 c
2048 #\_))
2049 (string->list mod-name)))
2050 '_module))
2051 (let ((libname
2052 (let loop ((dirs "")
2053 (syms module-name))
2054 (cond
2055 ((null? (cdr syms))
2056 (string-append dirs "lib" (car syms) ".so"))
2057 (else
2058 (loop (string-append dirs (car syms) "/") (cdr syms))))))
2059 (init (make-init-name (apply string-append
2060 (map (lambda (s)
2061 (string-append "_" s))
2062 module-name)))))
2063 ;; (pk 'libname libname 'init init)
2064 (or-map
2065 (lambda (dir)
2066 (let ((full (in-vicinity dir libname)))
2067 ;; (pk 'trying full)
2068 (if (file-exists? full)
2069 (begin
2070 (link-dynamic-module full init)
2071 #t)
2072 #f)))
2073 %load-path)))
2074
2075(define (link-dynamic-module filename initname)
6b856182
MV
2076 (let ((dynobj (dynamic-link filename)))
2077 (dynamic-call initname dynobj)
2078 (set! registered-modules
2079 (append! (convert-c-registered-modules dynobj)
2080 registered-modules))))
ed218d98 2081
d0cbd20c
MV
2082(define (try-module-dynamic-link module-name)
2083 (or (init-dynamic-module module-name)
2084 (and (find-and-link-dynamic-module module-name)
2085 (init-dynamic-module module-name))))
2086
ed218d98
MV
2087
2088
0f2d19dd
JB
2089(define autoloads-done '((guile . guile)))
2090
2091(define (autoload-done-or-in-progress? p m)
2092 (let ((n (cons p m)))
2093 (->bool (or (member n autoloads-done)
2094 (member n autoloads-in-progress)))))
2095
2096(define (autoload-done! p m)
2097 (let ((n (cons p m)))
2098 (set! autoloads-in-progress
2099 (delete! n autoloads-in-progress))
2100 (or (member n autoloads-done)
2101 (set! autoloads-done (cons n autoloads-done)))))
2102
2103(define (autoload-in-progress! p m)
2104 (let ((n (cons p m)))
2105 (set! autoloads-done
2106 (delete! n autoloads-done))
2107 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2108
2109(define (set-autoloaded! p m done?)
2110 (if done?
2111 (autoload-done! p m)
2112 (let ((n (cons p m)))
2113 (set! autoloads-done (delete! n autoloads-done))
2114 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2115
2116
2117
2118
2119\f
2120;;; {Macros}
2121;;;
2122
9591db87
MD
2123(define macro-table (make-weak-key-hash-table 523))
2124(define xformer-table (make-weak-key-hash-table 523))
0f2d19dd
JB
2125
2126(define (defmacro? m) (hashq-ref macro-table m))
2127(define (assert-defmacro?! m) (hashq-set! macro-table m #t))
2128(define (defmacro-transformer m) (hashq-ref xformer-table m))
2129(define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
2130
2131(define defmacro:transformer
2132 (lambda (f)
2133 (let* ((xform (lambda (exp env)
2134 (copy-tree (apply f (cdr exp)))))
2135 (a (procedure->memoizing-macro xform)))
2136 (assert-defmacro?! a)
2137 (set-defmacro-transformer! a f)
2138 a)))
2139
2140
2141(define defmacro
2142 (let ((defmacro-transformer
2143 (lambda (name parms . body)
2144 (let ((transformer `(lambda ,parms ,@body)))
2145 `(define ,name
2146 (,(lambda (transformer)
2147 (defmacro:transformer transformer))
2148 ,transformer))))))
2149 (defmacro:transformer defmacro-transformer)))
2150
2151(define defmacro:syntax-transformer
2152 (lambda (f)
2153 (procedure->syntax
2154 (lambda (exp env)
2155 (copy-tree (apply f (cdr exp)))))))
2156
ed218d98
MV
2157
2158;; XXX - should the definition of the car really be looked up in the
2159;; current module?
2160
0f2d19dd
JB
2161(define (macroexpand-1 e)
2162 (cond
2163 ((pair? e) (let* ((a (car e))
ed218d98 2164 (val (and (symbol? a) (local-ref (list a)))))
0f2d19dd
JB
2165 (if (defmacro? val)
2166 (apply (defmacro-transformer val) (cdr e))
2167 e)))
2168 (#t e)))
2169
2170(define (macroexpand e)
2171 (cond
2172 ((pair? e) (let* ((a (car e))
ed218d98 2173 (val (and (symbol? a) (local-ref (list a)))))
0f2d19dd
JB
2174 (if (defmacro? val)
2175 (macroexpand (apply (defmacro-transformer val) (cdr e)))
2176 e)))
2177 (#t e)))
2178
2179(define gentemp
2180 (let ((*gensym-counter* -1))
2181 (lambda ()
2182 (set! *gensym-counter* (+ *gensym-counter* 1))
2183 (string->symbol
2184 (string-append "scm:G" (number->string *gensym-counter*))))))
2185
2186
2187\f
2188
2189;;; {Running Repls}
2190;;;
2191
2192(define (repl read evaler print)
75a97b92 2193 (let loop ((source (read (current-input-port))))
0f2d19dd 2194 (print (evaler source))
75a97b92 2195 (loop (read (current-input-port)))))
0f2d19dd
JB
2196
2197;; A provisional repl that acts like the SCM repl:
2198;;
2199(define scm-repl-silent #f)
2200(define (assert-repl-silence v) (set! scm-repl-silent v))
2201
21ed9efe
MD
2202(define *unspecified* (if #f #f))
2203(define (unspecified? v) (eq? v *unspecified*))
2204
2205(define scm-repl-print-unspecified #f)
2206(define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2207
79451588 2208(define scm-repl-verbose #f)
0f2d19dd
JB
2209(define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2210
e6875011 2211(define scm-repl-prompt "guile> ")
0f2d19dd 2212
e6875011
MD
2213(define (set-repl-prompt! v) (set! scm-repl-prompt v))
2214
d5d34fa1
MD
2215(define (default-lazy-handler key . args)
2216 (save-stack lazy-handler-dispatch)
2217 (apply throw key args))
2218
2219(define apply-frame-handler default-lazy-handler)
2220(define exit-frame-handler default-lazy-handler)
2221
2222(define (lazy-handler-dispatch key . args)
2223 (case key
2224 ((apply-frame)
2225 (apply apply-frame-handler key args))
2226 ((exit-frame)
2227 (apply exit-frame-handler key args))
2228 (else
2229 (apply default-lazy-handler key args))))
0f2d19dd 2230
59e1116d
MD
2231(define abort-hook '())
2232
0f2d19dd 2233(define (error-catching-loop thunk)
8e44e7a0
GH
2234 (let ((status #f))
2235 (define (loop first)
2236 (let ((next
2237 (catch #t
9a0d70e2 2238
8e44e7a0
GH
2239 (lambda ()
2240 (lazy-catch #t
2241 (lambda ()
2242 (dynamic-wind
2243 (lambda () (unmask-signals))
2244 (lambda ()
2245 (first)
2246
2247 ;; This line is needed because mark
2248 ;; doesn't do closures quite right.
2249 ;; Unreferenced locals should be
2250 ;; collected.
2251 ;;
2252 (set! first #f)
2253 (let loop ((v (thunk)))
2254 (loop (thunk)))
2255 #f)
2256 (lambda () (mask-signals))))
2257
2258 lazy-handler-dispatch))
2259
2260 (lambda (key . args)
2261 (case key
2262 ((quit)
8e44e7a0
GH
2263 (force-output)
2264 (set! status args)
2265 #f)
2266
2267 ((switch-repl)
2268 (apply throw 'switch-repl args))
2269
2270 ((abort)
2271 ;; This is one of the closures that require
2272 ;; (set! first #f) above
2273 ;;
2274 (lambda ()
2275 (run-hooks abort-hook)
2276 (force-output)
2277 (display "ABORT: " (current-error-port))
2278 (write args (current-error-port))
2279 (newline (current-error-port))
2280 (if (and (not has-shown-debugger-hint?)
2281 (not (memq 'backtrace
2282 (debug-options-interface)))
2283 (stack? the-last-stack))
2284 (begin
2285 (newline (current-error-port))
2286 (display
2287 "Type \"(backtrace)\" to get more information.\n"
2288 (current-error-port))
2289 (set! has-shown-debugger-hint? #t)))
2290 (set! stack-saved? #f)))
2291
2292 (else
2293 ;; This is the other cons-leak closure...
2294 (lambda ()
2295 (cond ((= (length args) 4)
2296 (apply handle-system-error key args))
2297 (else
2298 (apply bad-throw key args))))))))))
2299 (if next (loop next) status)))
2300 (loop (lambda () #t))))
0f2d19dd 2301
d590bbf6 2302;;(define the-last-stack #f) Defined by scm_init_backtrace ()
21ed9efe
MD
2303(define stack-saved? #f)
2304
2305(define (save-stack . narrowing)
2306 (cond (stack-saved?)
2307 ((not (memq 'debug (debug-options-interface)))
2308 (set! the-last-stack #f)
2309 (set! stack-saved? #t))
2310 (else
2311 (set! the-last-stack
2312 (case (stack-id #t)
2313 ((repl-stack)
2314 (apply make-stack #t save-stack eval narrowing))
2315 ((load-stack)
096d5f90 2316 (apply make-stack #t save-stack 0 narrowing))
21ed9efe
MD
2317 ((tk-stack)
2318 (apply make-stack #t save-stack tk-stack-mark narrowing))
2319 ((#t)
e6875011 2320 (apply make-stack #t save-stack 0 1 narrowing))
21ed9efe
MD
2321 (else (let ((id (stack-id #t)))
2322 (and (procedure? id)
2323 (apply make-stack #t save-stack id narrowing))))))
2324 (set! stack-saved? #t))))
1c6cd8e8 2325
59e1116d
MD
2326(define before-error-hook '())
2327(define after-error-hook '())
2328(define before-backtrace-hook '())
2329(define after-backtrace-hook '())
1c6cd8e8 2330
21ed9efe
MD
2331(define has-shown-debugger-hint? #f)
2332
35c5db87
GH
2333(define (handle-system-error key . args)
2334 (let ((cep (current-error-port)))
21ed9efe
MD
2335 (cond ((not (stack? the-last-stack)))
2336 ((memq 'backtrace (debug-options-interface))
59e1116d 2337 (run-hooks before-backtrace-hook)
21ed9efe
MD
2338 (newline cep)
2339 (display-backtrace the-last-stack cep)
2340 (newline cep)
59e1116d
MD
2341 (run-hooks after-backtrace-hook)))
2342 (run-hooks before-error-hook)
c27659c8 2343 (apply display-error the-last-stack cep args)
59e1116d 2344 (run-hooks after-error-hook)
35c5db87
GH
2345 (force-output cep)
2346 (throw 'abort key)))
21ed9efe 2347
0f2d19dd
JB
2348(define (quit . args)
2349 (apply throw 'quit args))
2350
7950df7c
GH
2351(define exit quit)
2352
d590bbf6
MD
2353;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2354
2355;; Replaced by C code:
2356;;(define (backtrace)
2357;; (if the-last-stack
2358;; (begin
2359;; (newline)
2360;; (display-backtrace the-last-stack (current-output-port))
2361;; (newline)
2362;; (if (and (not has-shown-backtrace-hint?)
2363;; (not (memq 'backtrace (debug-options-interface))))
2364;; (begin
2365;; (display
2366;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2367;;automatically if an error occurs in the future.\n")
2368;; (set! has-shown-backtrace-hint? #t))))
2369;; (display "No backtrace available.\n")))
21ed9efe 2370
0f2d19dd
JB
2371(define (error-catching-repl r e p)
2372 (error-catching-loop (lambda () (p (e (r))))))
2373
2374(define (gc-run-time)
2375 (cdr (assq 'gc-time-taken (gc-stats))))
2376
59e1116d
MD
2377(define before-read-hook '())
2378(define after-read-hook '())
1c6cd8e8 2379
0f2d19dd
JB
2380(define (scm-style-repl)
2381 (letrec (
2382 (start-gc-rt #f)
2383 (start-rt #f)
2384 (repl-report-reset (lambda () #f))
2385 (repl-report-start-timing (lambda ()
2386 (set! start-gc-rt (gc-run-time))
2387 (set! start-rt (get-internal-run-time))))
2388 (repl-report (lambda ()
2389 (display ";;; ")
2390 (display (inexact->exact
2391 (* 1000 (/ (- (get-internal-run-time) start-rt)
2392 internal-time-units-per-second))))
2393 (display " msec (")
2394 (display (inexact->exact
2395 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2396 internal-time-units-per-second))))
2397 (display " msec in gc)\n")))
480977d0
JB
2398
2399 (consume-trailing-whitespace
2400 (lambda ()
2401 (let ((ch (peek-char)))
2402 (cond
2403 ((eof-object? ch))
2404 ((or (char=? ch #\space) (char=? ch #\tab))
2405 (read-char)
2406 (consume-trailing-whitespace))
2407 ((char=? ch #\newline)
2408 (read-char))))))
0f2d19dd
JB
2409 (-read (lambda ()
2410 (if scm-repl-prompt
2411 (begin
e6875011
MD
2412 (display (cond ((string? scm-repl-prompt)
2413 scm-repl-prompt)
2414 ((thunk? scm-repl-prompt)
2415 (scm-repl-prompt))
2416 (else "> ")))
0f2d19dd
JB
2417 (force-output)
2418 (repl-report-reset)))
59e1116d 2419 (run-hooks before-read-hook)
75a97b92 2420 (let ((val (read (current-input-port))))
480977d0
JB
2421 ;; As described in R4RS, the READ procedure updates the
2422 ;; port to point to the first characetr past the end of
2423 ;; the external representation of the object. This
2424 ;; means that it doesn't consume the newline typically
2425 ;; found after an expression. This means that, when
2426 ;; debugging Guile with GDB, GDB gets the newline, which
2427 ;; it often interprets as a "continue" command, making
2428 ;; breakpoints kind of useless. So, consume any
2429 ;; trailing newline here, as well as any whitespace
2430 ;; before it.
2431 (consume-trailing-whitespace)
59e1116d 2432 (run-hooks after-read-hook)
0f2d19dd
JB
2433 (if (eof-object? val)
2434 (begin
7950df7c 2435 (repl-report-start-timing)
0f2d19dd
JB
2436 (if scm-repl-verbose
2437 (begin
2438 (newline)
2439 (display ";;; EOF -- quitting")
2440 (newline)))
2441 (quit 0)))
2442 val)))
2443
2444 (-eval (lambda (sourc)
2445 (repl-report-start-timing)
4cdee789 2446 (start-stack 'repl-stack (eval sourc))))
0f2d19dd
JB
2447
2448 (-print (lambda (result)
2449 (if (not scm-repl-silent)
2450 (begin
21ed9efe
MD
2451 (if (or scm-repl-print-unspecified
2452 (not (unspecified? result)))
2453 (begin
2454 (write result)
2455 (newline)))
0f2d19dd
JB
2456 (if scm-repl-verbose
2457 (repl-report))
2458 (force-output)))))
2459
8e44e7a0 2460 (-quit (lambda (args)
0f2d19dd
JB
2461 (if scm-repl-verbose
2462 (begin
2463 (display ";;; QUIT executed, repl exitting")
2464 (newline)
2465 (repl-report)))
8e44e7a0 2466 args))
0f2d19dd
JB
2467
2468 (-abort (lambda ()
2469 (if scm-repl-verbose
2470 (begin
2471 (display ";;; ABORT executed.")
2472 (newline)
2473 (repl-report)))
2474 (repl -read -eval -print))))
2475
8e44e7a0
GH
2476 (let ((status (error-catching-repl -read
2477 -eval
2478 -print)))
2479 (-quit status))))
2480
0f2d19dd 2481
0f2d19dd 2482\f
44cf1f0f 2483;;; {IOTA functions: generating lists of numbers}
0f2d19dd
JB
2484
2485(define (reverse-iota n) (if (> n 0) (cons (1- n) (reverse-iota (1- n))) '()))
2486(define (iota n) (list-reverse! (reverse-iota n)))
2487
2488\f
2489;;; {While}
2490;;;
2491;;; with `continue' and `break'.
2492;;;
2493
2494(defmacro while (cond . body)
2495 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2496 (break (lambda val (apply throw 'break val))))
2497 (catch 'break
2498 (lambda () (continue))
2499 (lambda v (cadr v)))))
2500
2501
8a6a8671
MV
2502;;; {with-fluids}
2503
2504;; with-fluids is a convenience wrapper for the builtin procedure
2505;; `with-fluids*'. The syntax is just like `let':
2506;;
2507;; (with-fluids ((fluid val)
2508;; ...)
2509;; body)
2510
2511(defmacro with-fluids (bindings . body)
2512 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2513 (lambda () ,@body)))
2514
0f2d19dd
JB
2515\f
2516
2517;;; {Macros}
2518;;;
2519
2520;; actually....hobbit might be able to hack these with a little
2521;; coaxing
2522;;
2523
2524(defmacro define-macro (first . rest)
2525 (let ((name (if (symbol? first) first (car first)))
2526 (transformer
2527 (if (symbol? first)
2528 (car rest)
2529 `(lambda ,(cdr first) ,@rest))))
2530 `(define ,name (defmacro:transformer ,transformer))))
2531
2532
2533(defmacro define-syntax-macro (first . rest)
2534 (let ((name (if (symbol? first) first (car first)))
2535 (transformer
2536 (if (symbol? first)
2537 (car rest)
2538 `(lambda ,(cdr first) ,@rest))))
2539 `(define ,name (defmacro:syntax-transformer ,transformer))))
2540\f
2541;;; {Module System Macros}
2542;;;
2543
2544(defmacro define-module args
2545 `(let* ((process-define-module process-define-module)
2546 (set-current-module set-current-module)
2547 (module (process-define-module ',args)))
2548 (set-current-module module)
2549 module))
2550
89da9036
MV
2551;; the guts of the use-modules macro. add the interfaces of the named
2552;; modules to the use-list of the current module, in order
2553(define (process-use-modules module-names)
2554 (for-each (lambda (module-name)
2555 (let ((mod-iface (resolve-interface module-name)))
2556 (or mod-iface
2557 (error "no such module" module-name))
2558 (module-use! (current-module) mod-iface)))
2559 (reverse module-names)))
2560
33cf699f 2561(defmacro use-modules modules
89da9036 2562 `(process-use-modules ',modules))
33cf699f 2563
0f2d19dd
JB
2564(define define-private define)
2565
2566(defmacro define-public args
2567 (define (syntax)
2568 (error "bad syntax" (list 'define-public args)))
2569 (define (defined-name n)
2570 (cond
3c5af9ef
JB
2571 ((symbol? n) n)
2572 ((pair? n) (defined-name (car n)))
2573 (else (syntax))))
0f2d19dd 2574 (cond
3c5af9ef
JB
2575 ((null? args) (syntax))
2576
2577 (#t (let ((name (defined-name (car args))))
2578 `(begin
2579 (let ((public-i (module-public-interface (current-module))))
2580 ;; Make sure there is a local variable:
2581 ;;
2582 (module-define! (current-module)
2583 ',name
2584 (module-ref (current-module) ',name #f))
0f2d19dd 2585
3c5af9ef
JB
2586 ;; Make sure that local is exported:
2587 ;;
2588 (module-add! public-i ',name
2589 (module-variable (current-module) ',name)))
0f2d19dd 2590
3c5af9ef
JB
2591 ;; Now (re)define the var normally. Bernard URBAN
2592 ;; suggests we use eval here to accomodate Hobbit; it lets
2593 ;; the interpreter handle the define-private form, which
2594 ;; Hobbit can't digest.
2595 (eval '(define-private ,@ args)))))))
0f2d19dd
JB
2596
2597
2598
2599(defmacro defmacro-public args
2600 (define (syntax)
2601 (error "bad syntax" (list 'defmacro-public args)))
2602 (define (defined-name n)
2603 (cond
2604 ((symbol? n) n)
2605 (else (syntax))))
2606 (cond
2607 ((null? args) (syntax))
2608
2609 (#t (let ((name (defined-name (car args))))
2610 `(begin
2611 (let ((public-i (module-public-interface (current-module))))
2612 ;; Make sure there is a local variable:
2613 ;;
2614 (module-define! (current-module)
2615 ',name
2616 (module-ref (current-module) ',name #f))
2617
2618 ;; Make sure that local is exported:
2619 ;;
2620 (module-add! public-i ',name (module-variable (current-module) ',name)))
2621
2622 ;; Now (re)define the var normally.
2623 ;;
2624 (defmacro ,@ args))))))
2625
2626
2627
2628
0f2d19dd 2629(define load load-module)
1c6cd8e8
MD
2630;(define (load . args)
2631; (start-stack 'load-stack (apply load-module args)))
0f2d19dd
JB
2632
2633
2634\f
44cf1f0f 2635;;; {I/O functions for Tcl channels (disabled)}
0f2d19dd
JB
2636
2637;; (define in-ch (get-standard-channel TCL_STDIN))
2638;; (define out-ch (get-standard-channel TCL_STDOUT))
2639;; (define err-ch (get-standard-channel TCL_STDERR))
2640;;
2641;; (define inp (%make-channel-port in-ch "r"))
2642;; (define outp (%make-channel-port out-ch "w"))
2643;; (define errp (%make-channel-port err-ch "w"))
2644;;
2645;; (define %system-char-ready? char-ready?)
2646;;
2647;; (define (char-ready? p)
2648;; (if (not (channel-port? p))
2649;; (%system-char-ready? p)
2650;; (let* ((channel (%channel-port-channel p))
2651;; (old-blocking (channel-option-ref channel :blocking)))
2652;; (dynamic-wind
2653;; (lambda () (set-channel-option the-root-tcl-interpreter channel :blocking "0"))
2654;; (lambda () (not (eof-object? (peek-char p))))
2655;; (lambda () (set-channel-option the-root-tcl-interpreter channel :blocking old-blocking))))))
2656;;
2657;; (define (top-repl)
2658;; (with-input-from-port inp
2659;; (lambda ()
2660;; (with-output-to-port outp
2661;; (lambda ()
2662;; (with-error-to-port errp
2663;; (lambda ()
2664;; (scm-style-repl))))))))
2665;;
2666;; (set-current-input-port inp)
2667;; (set-current-output-port outp)
2668;; (set-current-error-port errp)
2669
e1a191a8
GH
2670;; this is just (scm-style-repl) with a wrapper to install and remove
2671;; signal handlers.
8e44e7a0 2672(define (top-repl)
e1a191a8
GH
2673 (let ((old-handlers #f)
2674 (signals `((,SIGINT . "User interrupt")
2675 (,SIGFPE . "Arithmetic error")
2676 (,SIGBUS . "Bad memory access (bus error)")
2677 (,SIGSEGV . "Bad memory access (Segmentation violation)"))))
2678
2679 (dynamic-wind
2680
2681 ;; call at entry
2682 (lambda ()
2683 (let ((make-handler (lambda (msg)
2684 (lambda (sig)
096d5f90 2685 (save-stack %deliver-signals)
e1a191a8
GH
2686 (scm-error 'signal
2687 #f
2688 msg
2689 #f
2690 (list sig))))))
2691 (set! old-handlers
2692 (map (lambda (sig-msg)
2693 (sigaction (car sig-msg)
2694 (make-handler (cdr sig-msg))))
2695 signals))))
2696
2697 ;; the protected thunk.
2698 (lambda ()
2699 (scm-style-repl))
2700
2701 ;; call at exit.
2702 (lambda ()
2703 (map (lambda (sig-msg old-handler)
2704 (if (not (car old-handler))
2705 ;; restore original C handler.
2706 (sigaction (car sig-msg) #f)
2707 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
2708 (sigaction (car sig-msg)
2709 (car old-handler)
2710 (cdr old-handler))))
2711 signals old-handlers)))))
0f2d19dd 2712
02b754d3
GH
2713(defmacro false-if-exception (expr)
2714 `(catch #t (lambda () ,expr)
2715 (lambda args #f)))
2716
0f2d19dd 2717\f
44cf1f0f 2718;;; {Calling Conventions}
0f2d19dd
JB
2719(define-module (ice-9 calling))
2720
2721;;;;
0f2d19dd
JB
2722;;;
2723;;; This file contains a number of macros that support
2724;;; common calling conventions.
2725
2726;;;
2727;;; with-excursion-function <vars> proc
2728;;; <vars> is an unevaluated list of names that are bound in the caller.
2729;;; proc is a procedure, called:
2730;;; (proc excursion)
2731;;;
2732;;; excursion is a procedure isolates all changes to <vars>
2733;;; in the dynamic scope of the call to proc. In other words,
2734;;; the values of <vars> are saved when proc is entered, and when
2735;;; proc returns, those values are restored. Values are also restored
2736;;; entering and leaving the call to proc non-locally, such as using
2737;;; call-with-current-continuation, error, or throw.
2738;;;
2739(defmacro-public with-excursion-function (vars proc)
2740 `(,proc ,(excursion-function-syntax vars)))
2741
2742
2743
2744;;; with-getter-and-setter <vars> proc
2745;;; <vars> is an unevaluated list of names that are bound in the caller.
2746;;; proc is a procedure, called:
2747;;; (proc getter setter)
2748;;;
2749;;; getter and setter are procedures used to access
2750;;; or modify <vars>.
2751;;;
2752;;; setter, called with keywords arguments, modifies the named
2753;;; values. If "foo" and "bar" are among <vars>, then:
2754;;;
2755;;; (setter :foo 1 :bar 2)
2756;;; == (set! foo 1 bar 2)
2757;;;
2758;;; getter, called with just keywords, returns
2759;;; a list of the corresponding values. For example,
2760;;; if "foo" and "bar" are among the <vars>, then
2761;;;
2762;;; (getter :foo :bar)
2763;;; => (<value-of-foo> <value-of-bar>)
2764;;;
2765;;; getter, called with no arguments, returns a list of all accepted
2766;;; keywords and the corresponding values. If "foo" and "bar" are
2767;;; the *only* <vars>, then:
2768;;;
2769;;; (getter)
2770;;; => (:foo <value-of-bar> :bar <value-of-foo>)
2771;;;
2772;;; The unusual calling sequence of a getter supports too handy
2773;;; idioms:
2774;;;
2775;;; (apply setter (getter)) ;; save and restore
2776;;;
2777;;; (apply-to-args (getter :foo :bar) ;; fetch and bind
2778;;; (lambda (foo bar) ....))
2779;;;
2780;;; ;; [ "apply-to-args" is just like two-argument "apply" except that it
2781;;; ;; takes its arguments in a different order.
2782;;;
2783;;;
2784(defmacro-public with-getter-and-setter (vars proc)
2785 `(,proc ,@ (getter-and-setter-syntax vars)))
2786
2787;;; with-getter vars proc
2788;;; A short-hand for a call to with-getter-and-setter.
2789;;; The procedure is called:
2790;;; (proc getter)
2791;;;
2792(defmacro-public with-getter (vars proc)
2793 `(,proc ,(car (getter-and-setter-syntax vars))))
2794
2795
2796;;; with-delegating-getter-and-setter <vars> get-delegate set-delegate proc
2797;;; Compose getters and setters.
2798;;;
2799;;; <vars> is an unevaluated list of names that are bound in the caller.
2800;;;
2801;;; get-delegate is called by the new getter to extend the set of
2802;;; gettable variables beyond just <vars>
2803;;; set-delegate is called by the new setter to extend the set of
2804;;; gettable variables beyond just <vars>
2805;;;
2806;;; proc is a procedure that is called
2807;;; (proc getter setter)
2808;;;
2809(defmacro-public with-delegating-getter-and-setter (vars get-delegate set-delegate proc)
2810 `(,proc ,@ (delegating-getter-and-setter-syntax vars get-delegate set-delegate)))
2811
2812
52c5a23a 2813;;; with-excursion-getter-and-setter <vars> proc
0f2d19dd
JB
2814;;; <vars> is an unevaluated list of names that are bound in the caller.
2815;;; proc is called:
2816;;;
2817;;; (proc excursion getter setter)
2818;;;
2819;;; See also:
2820;;; with-getter-and-setter
2821;;; with-excursion-function
2822;;;
2823(defmacro-public with-excursion-getter-and-setter (vars proc)
2824 `(,proc ,(excursion-function-syntax vars)
2825 ,@ (getter-and-setter-syntax vars)))
2826
2827
2828(define (excursion-function-syntax vars)
2829 (let ((saved-value-names (map gensym vars))
2830 (tmp-var-name (gensym 'temp))
2831 (swap-fn-name (gensym 'swap))
2832 (thunk-name (gensym 'thunk)))
2833 `(lambda (,thunk-name)
2834 (letrec ((,tmp-var-name #f)
2835 (,swap-fn-name
2836 (lambda () ,@ (map (lambda (n sn) `(set! ,tmp-var-name ,n ,n ,sn ,sn ,tmp-var-name))
2837 vars saved-value-names)))
2838 ,@ (map (lambda (sn n) `(,sn ,n)) saved-value-names vars))
2839 (dynamic-wind
2840 ,swap-fn-name
2841 ,thunk-name
2842 ,swap-fn-name)))))
2843
2844
2845(define (getter-and-setter-syntax vars)
2846 (let ((args-name (gensym 'args))
2847 (an-arg-name (gensym 'an-arg))
2848 (new-val-name (gensym 'new-value))
2849 (loop-name (gensym 'loop))
2850 (kws (map symbol->keyword vars)))
2851 (list `(lambda ,args-name
2852 (let ,loop-name ((,args-name ,args-name))
2853 (if (null? ,args-name)
2854 ,(if (null? kws)
2855 ''()
2856 `(let ((all-vals (,loop-name ',kws)))
2857 (let ,loop-name ((vals all-vals)
2858 (kws ',kws))
2859 (if (null? vals)
2860 '()
2861 `(,(car kws) ,(car vals) ,@(,loop-name (cdr vals) (cdr kws)))))))
2862 (map (lambda (,an-arg-name)
2863 (case ,an-arg-name
2864 ,@ (append
2865 (map (lambda (kw v) `((,kw) ,v)) kws vars)
2866 `((else (throw 'bad-get-option ,an-arg-name))))))
2867 ,args-name))))
2868
2869 `(lambda ,args-name
2870 (let ,loop-name ((,args-name ,args-name))
2871 (or (null? ,args-name)
2872 (null? (cdr ,args-name))
2873 (let ((,an-arg-name (car ,args-name))
2874 (,new-val-name (cadr ,args-name)))
2875 (case ,an-arg-name
2876 ,@ (append
2877 (map (lambda (kw v) `((,kw) (set! ,v ,new-val-name))) kws vars)
2878 `((else (throw 'bad-set-option ,an-arg-name)))))
2879 (,loop-name (cddr ,args-name)))))))))
2880
2881(define (delegating-getter-and-setter-syntax vars get-delegate set-delegate)
2882 (let ((args-name (gensym 'args))
2883 (an-arg-name (gensym 'an-arg))
2884 (new-val-name (gensym 'new-value))
2885 (loop-name (gensym 'loop))
2886 (kws (map symbol->keyword vars)))
2887 (list `(lambda ,args-name
2888 (let ,loop-name ((,args-name ,args-name))
2889 (if (null? ,args-name)
2890 (append!
2891 ,(if (null? kws)
2892 ''()
2893 `(let ((all-vals (,loop-name ',kws)))
2894 (let ,loop-name ((vals all-vals)
2895 (kws ',kws))
2896 (if (null? vals)
2897 '()
2898 `(,(car kws) ,(car vals) ,@(,loop-name (cdr vals) (cdr kws)))))))
2899 (,get-delegate))
2900 (map (lambda (,an-arg-name)
2901 (case ,an-arg-name
2902 ,@ (append
2903 (map (lambda (kw v) `((,kw) ,v)) kws vars)
2904 `((else (car (,get-delegate ,an-arg-name)))))))
2905 ,args-name))))
2906
2907 `(lambda ,args-name
2908 (let ,loop-name ((,args-name ,args-name))
2909 (or (null? ,args-name)
2910 (null? (cdr ,args-name))
2911 (let ((,an-arg-name (car ,args-name))
2912 (,new-val-name (cadr ,args-name)))
2913 (case ,an-arg-name
2914 ,@ (append
2915 (map (lambda (kw v) `((,kw) (set! ,v ,new-val-name))) kws vars)
2916 `((else (,set-delegate ,an-arg-name ,new-val-name)))))
2917 (,loop-name (cddr ,args-name)))))))))
2918
2919
2920
2921
2922;;; with-configuration-getter-and-setter <vars-etc> proc
2923;;;
2924;;; Create a getter and setter that can trigger arbitrary computation.
2925;;;
2926;;; <vars-etc> is a list of variable specifiers, explained below.
2927;;; proc is called:
2928;;;
2929;;; (proc getter setter)
2930;;;
2931;;; Each element of the <vars-etc> list is of the form:
2932;;;
2933;;; (<var> getter-hook setter-hook)
2934;;;
2935;;; Both hook elements are evaluated; the variable name is not.
2936;;; Either hook may be #f or procedure.
2937;;;
2938;;; A getter hook is a thunk that returns a value for the corresponding
2939;;; variable. If omitted (#f is passed), the binding of <var> is
2940;;; returned.
2941;;;
2942;;; A setter hook is a procedure of one argument that accepts a new value
2943;;; for the corresponding variable. If omitted, the binding of <var>
2944;;; is simply set using set!.
2945;;;
2946(defmacro-public with-configuration-getter-and-setter (vars-etc proc)
2947 `((lambda (simpler-get simpler-set body-proc)
2948 (with-delegating-getter-and-setter ()
2949 simpler-get simpler-set body-proc))
2950
2951 (lambda (kw)
2952 (case kw
2953 ,@(map (lambda (v) `((,(symbol->keyword (car v)))
2954 ,(cond
2955 ((cadr v) => list)
2956 (else `(list ,(car v))))))
2957 vars-etc)))
2958
2959 (lambda (kw new-val)
2960 (case kw
2961 ,@(map (lambda (v) `((,(symbol->keyword (car v)))
2962 ,(cond
2963 ((caddr v) => (lambda (proc) `(,proc new-val)))
2964 (else `(set! ,(car v) new-val)))))
2965 vars-etc)))
2966
2967 ,proc))
2968
2969(defmacro-public with-delegating-configuration-getter-and-setter (vars-etc delegate-get delegate-set proc)
2970 `((lambda (simpler-get simpler-set body-proc)
2971 (with-delegating-getter-and-setter ()
2972 simpler-get simpler-set body-proc))
2973
2974 (lambda (kw)
2975 (case kw
2976 ,@(append! (map (lambda (v) `((,(symbol->keyword (car v)))
2977 ,(cond
2978 ((cadr v) => list)
2979 (else `(list ,(car v))))))
2980 vars-etc)
2981 `((else (,delegate-get kw))))))
2982
2983 (lambda (kw new-val)
2984 (case kw
2985 ,@(append! (map (lambda (v) `((,(symbol->keyword (car v)))
2986 ,(cond
2987 ((caddr v) => (lambda (proc) `(,proc new-val)))
2988 (else `(set! ,(car v) new-val)))))
2989 vars-etc)
2990 `((else (,delegate-set kw new-val))))))
2991
2992 ,proc))
2993
2994
2995;;; let-configuration-getter-and-setter <vars-etc> proc
2996;;;
2997;;; This procedure is like with-configuration-getter-and-setter (q.v.)
2998;;; except that each element of <vars-etc> is:
2999;;;
3000;;; (<var> initial-value getter-hook setter-hook)
3001;;;
3002;;; Unlike with-configuration-getter-and-setter, let-configuration-getter-and-setter
3003;;; introduces bindings for the variables named in <vars-etc>.
3004;;; It is short-hand for:
3005;;;
3006;;; (let ((<var1> initial-value-1)
3007;;; (<var2> initial-value-2)
3008;;; ...)
3009;;; (with-configuration-getter-and-setter ((<var1> v1-get v1-set) ...) proc))
3010;;;
3011(defmacro-public let-with-configuration-getter-and-setter (vars-etc proc)
3012 `(let ,(map (lambda (v) `(,(car v) ,(cadr v))) vars-etc)
3013 (with-configuration-getter-and-setter ,(map (lambda (v) `(,(car v) ,(caddr v) ,(cadddr v))) vars-etc)
3014 ,proc)))
3015
3016
3017
3018\f
44cf1f0f
JB
3019;;; {Implementation of COMMON LISP list functions for Scheme}
3020
0f2d19dd
JB
3021(define-module (ice-9 common-list))
3022
3023;;"comlist.scm" Implementation of COMMON LISP list functions for Scheme
3024; Copyright (C) 1991, 1993, 1995 Aubrey Jaffer.
3025;
3026;Permission to copy this software, to redistribute it, and to use it
3027;for any purpose is granted, subject to the following restrictions and
3028;understandings.
3029;
3030;1. Any copy made of this software must include this copyright notice
3031;in full.
3032;
3033;2. I have made no warrantee or representation that the operation of
3034;this software will be error-free, and I am under no obligation to
3035;provide any services, by way of maintenance, update, or otherwise.
3036;
3037;3. In conjunction with products arising from the use of this
3038;material, there shall be no use of my name in any advertising,
3039;promotional, or sales literature without prior written consent in
3040;each case.
3041
0f2d19dd
JB
3042(define-public (adjoin e l) (if (memq e l) l (cons e l)))
3043
3044(define-public (union l1 l2)
3045 (cond ((null? l1) l2)
3046 ((null? l2) l1)
3047 (else (union (cdr l1) (adjoin (car l1) l2)))))
3048
3049(define-public (intersection l1 l2)
3050 (cond ((null? l1) l1)
3051 ((null? l2) l2)
3052 ((memv (car l1) l2) (cons (car l1) (intersection (cdr l1) l2)))
3053 (else (intersection (cdr l1) l2))))
3054
3055(define-public (set-difference l1 l2)
3056 (cond ((null? l1) l1)
3057 ((memv (car l1) l2) (set-difference (cdr l1) l2))
3058 (else (cons (car l1) (set-difference (cdr l1) l2)))))
3059
3060(define-public (reduce-init p init l)
3061 (if (null? l)
3062 init
3063 (reduce-init p (p init (car l)) (cdr l))))
3064
3065(define-public (reduce p l)
3066 (cond ((null? l) l)
3067 ((null? (cdr l)) (car l))
3068 (else (reduce-init p (car l) (cdr l)))))
3069
3070(define-public (some pred l . rest)
3071 (cond ((null? rest)
3072 (let mapf ((l l))
3073 (and (not (null? l))
3074 (or (pred (car l)) (mapf (cdr l))))))
3075 (else (let mapf ((l l) (rest rest))
3076 (and (not (null? l))
3077 (or (apply pred (car l) (map car rest))
3078 (mapf (cdr l) (map cdr rest))))))))
3079
3080(define-public (every pred l . rest)
3081 (cond ((null? rest)
3082 (let mapf ((l l))
3083 (or (null? l)
3084 (and (pred (car l)) (mapf (cdr l))))))
3085 (else (let mapf ((l l) (rest rest))
3086 (or (null? l)
3087 (and (apply pred (car l) (map car rest))
3088 (mapf (cdr l) (map cdr rest))))))))
3089
3090(define-public (notany pred . ls) (not (apply some pred ls)))
3091
3092(define-public (notevery pred . ls) (not (apply every pred ls)))
3093
3094(define-public (find-if t l)
3095 (cond ((null? l) #f)
3096 ((t (car l)) (car l))
3097 (else (find-if t (cdr l)))))
3098
3099(define-public (member-if t l)
3100 (cond ((null? l) #f)
3101 ((t (car l)) l)
3102 (else (member-if t (cdr l)))))
3103
3104(define-public (remove-if p l)
3105 (cond ((null? l) '())
3106 ((p (car l)) (remove-if p (cdr l)))
3107 (else (cons (car l) (remove-if p (cdr l))))))
3108
3109(define-public (delete-if! pred list)
3110 (let delete-if ((list list))
3111 (cond ((null? list) '())
3112 ((pred (car list)) (delete-if (cdr list)))
3113 (else
3114 (set-cdr! list (delete-if (cdr list)))
3115 list))))
3116
3117(define-public (delete-if-not! pred list)
3118 (let delete-if ((list list))
3119 (cond ((null? list) '())
3120 ((not (pred (car list))) (delete-if (cdr list)))
3121 (else
3122 (set-cdr! list (delete-if (cdr list)))
3123 list))))
3124
3125(define-public (butlast lst n)
3126 (letrec ((l (- (length lst) n))
3127 (bl (lambda (lst n)
3128 (cond ((null? lst) lst)
3129 ((positive? n)
3130 (cons (car lst) (bl (cdr lst) (+ -1 n))))
3131 (else '())))))
3132 (bl lst (if (negative? n)
52c5a23a 3133 (error "negative argument to butlast" n)
0f2d19dd
JB
3134 l))))
3135
3136(define-public (and? . args)
3137 (cond ((null? args) #t)
3138 ((car args) (apply and? (cdr args)))
3139 (else #f)))
3140
3141(define-public (or? . args)
3142 (cond ((null? args) #f)
3143 ((car args) #t)
3144 (else (apply or? (cdr args)))))
3145
3146(define-public (has-duplicates? lst)
3147 (cond ((null? lst) #f)
3148 ((member (car lst) (cdr lst)) #t)
3149 (else (has-duplicates? (cdr lst)))))
3150
3151(define-public (list* x . y)
3152 (define (list*1 x)
3153 (if (null? (cdr x))
3154 (car x)
3155 (cons (car x) (list*1 (cdr x)))))
3156 (if (null? y)
3157 x
3158 (cons x (list*1 y))))
3159
3160;; pick p l
3161;; Apply P to each element of L, returning a list of elts
3162;; for which P returns a non-#f value.
3163;;
3164(define-public (pick p l)
3165 (let loop ((s '())
3166 (l l))
3167 (cond
3168 ((null? l) s)
3169 ((p (car l)) (loop (cons (car l) s) (cdr l)))
3170 (else (loop s (cdr l))))))
3171
3172;; pick p l
3173;; Apply P to each element of L, returning a list of the
3174;; non-#f return values of P.
3175;;
3176(define-public (pick-mappings p l)
3177 (let loop ((s '())
3178 (l l))
3179 (cond
3180 ((null? l) s)
3181 ((p (car l)) => (lambda (mapping) (loop (cons mapping s) (cdr l))))
3182 (else (loop s (cdr l))))))
3183
3184(define-public (uniq l)
3185 (if (null? l)
3186 '()
3187 (let ((u (uniq (cdr l))))
3188 (if (memq (car l) u)
3189 u
3190 (cons (car l) u)))))
3191
3192\f
44cf1f0f
JB
3193;;; {Functions for browsing modules}
3194
0f2d19dd
JB
3195(define-module (ice-9 ls)
3196 :use-module (ice-9 common-list))
3197
0f2d19dd
JB
3198;;;;
3199;;; local-definitions-in root name
8b718458
JB
3200;;; Returns a list of names defined locally in the named
3201;;; subdirectory of root.
0f2d19dd 3202;;; definitions-in root name
8b718458
JB
3203;;; Returns a list of all names defined in the named
3204;;; subdirectory of root. The list includes alll locally
3205;;; defined names as well as all names inherited from a
3206;;; member of a use-list.
0f2d19dd
JB
3207;;;
3208;;; A convenient interface for examining the nature of things:
3209;;;
3210;;; ls . various-names
3211;;;
8b718458
JB
3212;;; With just one argument, interpret that argument as the
3213;;; name of a subdirectory of the current module and
3214;;; return a list of names defined there.
0f2d19dd 3215;;;
8b718458
JB
3216;;; With more than one argument, still compute
3217;;; subdirectory lists, but return a list:
0f2d19dd
JB
3218;;; ((<subdir-name> . <names-defined-there>)
3219;;; (<subdir-name> . <names-defined-there>)
3220;;; ...)
3221;;;
3222
3223(define-public (local-definitions-in root names)
0dd5491c 3224 (let ((m (nested-ref root names))
0f2d19dd
JB
3225 (answer '()))
3226 (if (not (module? m))
3227 (set! answer m)
3228 (module-for-each (lambda (k v) (set! answer (cons k answer))) m))
3229 answer))
3230
3231(define-public (definitions-in root names)
0dd5491c 3232 (let ((m (nested-ref root names)))
0f2d19dd
JB
3233 (if (not (module? m))
3234 m
3235 (reduce union
3236 (cons (local-definitions-in m '())
8b718458
JB
3237 (map (lambda (m2) (definitions-in m2 '()))
3238 (module-uses m)))))))
0f2d19dd
JB
3239
3240(define-public (ls . various-refs)
3241 (and various-refs
3242 (if (cdr various-refs)
3243 (map (lambda (ref)
3244 (cons ref (definitions-in (current-module) ref)))
3245 various-refs)
3246 (definitions-in (current-module) (car various-refs)))))
3247
3248(define-public (lls . various-refs)
3249 (and various-refs
3250 (if (cdr various-refs)
3251 (map (lambda (ref)
3252 (cons ref (local-definitions-in (current-module) ref)))
3253 various-refs)
3254 (local-definitions-in (current-module) (car various-refs)))))
3255
0dd5491c 3256(define-public (recursive-local-define name value)
0f2d19dd
JB
3257 (let ((parent (reverse! (cdr (reverse name)))))
3258 (and parent (make-modules-in (current-module) parent))
0dd5491c 3259 (local-define name value)))
0f2d19dd 3260\f
44cf1f0f
JB
3261;;; {Queues}
3262
0f2d19dd
JB
3263(define-module (ice-9 q))
3264
3265;;;; Copyright (C) 1995 Free Software Foundation, Inc.
3266;;;;
3267;;;; This program is free software; you can redistribute it and/or modify
3268;;;; it under the terms of the GNU General Public License as published by
3269;;;; the Free Software Foundation; either version 2, or (at your option)
3270;;;; any later version.
3271;;;;
3272;;;; This program is distributed in the hope that it will be useful,
3273;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
3274;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
3275;;;; GNU General Public License for more details.
3276;;;;
3277;;;; You should have received a copy of the GNU General Public License
3278;;;; along with this software; see the file COPYING. If not, write to
15328041
JB
3279;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
3280;;;; Boston, MA 02111-1307 USA
0f2d19dd
JB
3281;;;;
3282
0f2d19dd
JB
3283;;;;
3284;;; Q: Based on the interface to
3285;;;
3286;;; "queue.scm" Queues/Stacks for Scheme
3287;;; Written by Andrew Wilcox (awilcox@astro.psu.edu) on April 1, 1992.
3288;;;
3289
0f2d19dd
JB
3290;;;;
3291;;; {Q}
3292;;;
3293;;; A list is just a bunch of cons pairs that follows some constrains, right?
3294;;; Association lists are the same. Hash tables are just vectors and association
3295;;; lists. You can print them, read them, write them as constants, pun them off as other data
3296;;; structures etc. This is good. This is lisp. These structures are fast and compact
3297;;; and easy to manipulate arbitrarily because of their simple, regular structure and
3298;;; non-disjointedness (associations being lists and so forth).
3299;;;
3300;;; So I figured, queues should be the same -- just a "subtype" of cons-pair
3301;;; structures in general.
3302;;;
3303;;; A queue is a cons pair:
3304;;; ( <the-q> . <last-pair> )
3305;;;
3306;;; <the-q> is a list of things in the q. New elements go at the end of that list.
3307;;;
3308;;; <last-pair> is #f if the q is empty, and otherwise is the last pair of <the-q>.
3309;;;
3310;;; q's print nicely, but alas, they do not read well because the eq?-ness of
3311;;; <last-pair> and (last-pair <the-q>) is lost by read. The procedure
3312;;;
3313;;; (sync-q! q)
3314;;;
3315;;; recomputes and resets the <last-pair> component of a queue.
3316;;;
3317
3318(define-public (sync-q! obj) (set-cdr! obj (and (car obj) (last-pair (car obj)))))
3319
3320;;; make-q
3321;;; return a new q.
3322;;;
3323(define-public (make-q) (cons '() '()))
3324
3325;;; q? obj
3326;;; Return true if obj is a Q.
3327;;; An object is a queue if it is equal? to '(#f . #f) or
3328;;; if it is a pair P with (list? (car P)) and (eq? (cdr P) (last-pair P)).
3329;;;
3330(define-public (q? obj) (and (pair? obj)
3331 (or (and (null? (car obj))
3332 (null? (cdr obj)))
3333 (and
3334 (list? (car obj))
3335 (eq? (cdr obj) (last-pair (car obj)))))))
3336
3337;;; q-empty? obj
3338;;;
3339(define-public (q-empty? obj) (null? (car obj)))
3340
3341;;; q-empty-check q
3342;;; Throw a q-empty exception if Q is empty.
3343(define-public (q-empty-check q) (if (q-empty? q) (throw 'q-empty q)))
3344
3345
3346;;; q-front q
3347;;; Return the first element of Q.
3348(define-public (q-front q) (q-empty-check q) (caar q))
3349
52c5a23a 3350;;; q-rear q
0f2d19dd
JB
3351;;; Return the last element of Q.
3352(define-public (q-rear q) (q-empty-check q) (cadr q))
3353
3354;;; q-remove! q obj
3355;;; Remove all occurences of obj from Q.
3356(define-public (q-remove! q obj)
3357 (while (memq obj (car q))
3358 (set-car! q (delq! obj (car q))))
3359 (set-cdr! q (last-pair (car q))))
3360
3361;;; q-push! q obj
3362;;; Add obj to the front of Q
3363(define-public (q-push! q d)
3364 (let ((h (cons d (car q))))
3365 (set-car! q h)
3366 (if (null? (cdr q))
3367 (set-cdr! q h))))
3368
3369;;; enq! q obj
3370;;; Add obj to the rear of Q
3371(define-public (enq! q d)
3372 (let ((h (cons d '())))
3373 (if (not (null? (cdr q)))
3374 (set-cdr! (cdr q) h)
3375 (set-car! q h))
3376 (set-cdr! q h)))
3377
3378;;; q-pop! q
3379;;; Take the front of Q and return it.
3380(define-public (q-pop! q)
3381 (q-empty-check q)
3382 (let ((it (caar q))
3383 (next (cdar q)))
3384 (if (not next)
3385 (set-cdr! q #f))
3386 (set-car! q next)
3387 it))
3388
3389;;; deq! q
3390;;; Take the front of Q and return it.
3391(define-public deq! q-pop!)
3392
3393;;; q-length q
3394;;; Return the number of enqueued elements.
3395;;;
3396(define-public (q-length q) (length (car q)))
3397
3398
3399
3400\f
44cf1f0f
JB
3401;;; {The runq data structure}
3402
0f2d19dd
JB
3403(define-module (ice-9 runq)
3404 :use-module (ice-9 q))
3405
0f2d19dd
JB
3406;;;; Copyright (C) 1996 Free Software Foundation, Inc.
3407;;;;
3408;;;; This program is free software; you can redistribute it and/or modify
3409;;;; it under the terms of the GNU General Public License as published by
3410;;;; the Free Software Foundation; either version 2, or (at your option)
3411;;;; any later version.
3412;;;;
3413;;;; This program is distributed in the hope that it will be useful,
3414;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
3415;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
3416;;;; GNU General Public License for more details.
3417;;;;
3418;;;; You should have received a copy of the GNU General Public License
3419;;;; along with this software; see the file COPYING. If not, write to
15328041
JB
3420;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
3421;;;; Boston, MA 02111-1307 USA
0f2d19dd
JB
3422;;;;
3423
0f2d19dd 3424;;;;
0f2d19dd
JB
3425;;;
3426;;; One way to schedule parallel computations in a serial environment is
3427;;; to explicitly divide each task up into small, finite execution time,
3428;;; strips. Then you interleave the execution of strips from various
3429;;; tasks to achieve a kind of parallelism. Runqs are a handy data
3430;;; structure for this style of programming.
3431;;;
3432;;; We use thunks (nullary procedures) and lists of thunks to represent
3433;;; strips. By convention, the return value of a strip-thunk must either
3434;;; be another strip or the value #f.
3435;;;
3436;;; A runq is a procedure that manages a queue of strips. Called with no
3437;;; arguments, it processes one strip from the queue. Called with
3438;;; arguments, the arguments form a control message for the queue. The
3439;;; first argument is a symbol which is the message selector.
3440;;;
3441;;; A strip is processed this way: If the strip is a thunk, the thunk is
3442;;; called -- if it returns a strip, that strip is added back to the
3443;;; queue. To process a strip which is a list of thunks, the CAR of that
3444;;; list is called. After a call to that CAR, there are 0, 1, or 2 strips
3445;;; -- perhaps one returned by the thunk, and perhaps the CDR of the
3446;;; original strip if that CDR is not nil. The runq puts whichever of
3447;;; these strips exist back on the queue. (The exact order in which
3448;;; strips are put back on the queue determines the scheduling behavior of
3449;;; a particular queue -- it's a parameter.)
3450;;;
3451;;;
3452
3453
3454
3455;;;;
3456;;; (runq-control q msg . args)
3457;;;
3458;;; processes in the default way the control messages that
3459;;; can be sent to a runq. Q should be an ordinary
3460;;; Q (see utils/q.scm).
3461;;;
3462;;; The standard runq messages are:
3463;;;
3464;;; 'add! strip0 strip1... ;; to enqueue one or more strips
3465;;; 'enqueue! strip0 strip1... ;; to enqueue one or more strips
3466;;; 'push! strip0 ... ;; add strips to the front of the queue
3467;;; 'empty? ;; true if it is
3468;;; 'length ;; how many strips in the queue?
3469;;; 'kill! ;; empty the queue
3470;;; else ;; throw 'not-understood
3471;;;
3472(define-public (runq-control q msg . args)
3473 (case msg
3474 ((add!) (for-each (lambda (t) (enq! q t)) args) '*unspecified*)
3475 ((enque!) (for-each (lambda (t) (enq! q t)) args) '*unspecified*)
3476 ((push!) (for-each (lambda (t) (q-push! q t)) args) '*unspecified*)
3477 ((empty?) (q-empty? q))
3478 ((length) (q-length q))
3479 ((kill!) (set! q (make-q)))
3480 (else (throw 'not-understood msg args))))
3481
3482(define (run-strip thunk) (catch #t thunk (lambda ign (warn 'runq-strip thunk ign) #f)))
3483
3484;;;;
3485;;; make-void-runq
3486;;;
3487;;; Make a runq that discards all messages except "length", for which
3488;;; it returns 0.
3489;;;
3490(define-public (make-void-runq)
3491 (lambda opts
3492 (and opts
3493 (apply-to-args opts
3494 (lambda (msg . args)
3495 (case msg
3496 ((length) 0)
3497 (else #f)))))))
3498
3499;;;;
3500;;; (make-fair-runq)
3501;;;
3502;;; Returns a runq procedure.
3503;;; Called with no arguments, the procedure processes one strip from the queue.
3504;;; Called with arguments, it uses runq-control.
3505;;;
3506;;; In a fair runq, if a strip returns a new strip X, X is added
3507;;; to the end of the queue, meaning it will be the last to execute
3508;;; of all the remaining procedures.
3509;;;
3510(define-public (make-fair-runq)
3511 (letrec ((q (make-q))
3512 (self
3513 (lambda ctl
3514 (if ctl
3515 (apply runq-control q ctl)
3516 (and (not (q-empty? q))
3517 (let ((next-strip (deq! q)))
3518 (cond
3519 ((procedure? next-strip) (let ((k (run-strip next-strip)))
3520 (and k (enq! q k))))
3521 ((pair? next-strip) (let ((k (run-strip (car next-strip))))
3522 (and k (enq! q k)))
3523 (if (not (null? (cdr next-strip)))
3524 (enq! q (cdr next-strip)))))
3525 self))))))
3526 self))
3527
3528
3529;;;;
3530;;; (make-exclusive-runq)
3531;;;
3532;;; Returns a runq procedure.
3533;;; Called with no arguments, the procedure processes one strip from the queue.
3534;;; Called with arguments, it uses runq-control.
3535;;;
3536;;; In an exclusive runq, if a strip W returns a new strip X, X is added
3537;;; to the front of the queue, meaning it will be the next to execute
3538;;; of all the remaining procedures.
3539;;;
3540;;; An exception to this occurs if W was the CAR of a list of strips.
3541;;; In that case, after the return value of W is pushed onto the front
3542;;; of the queue, the CDR of the list of strips is pushed in front
3543;;; of that (if the CDR is not nil). This way, the rest of the thunks
3544;;; in the list that contained W have priority over the return value of W.
3545;;;
3546(define-public (make-exclusive-runq)
3547 (letrec ((q (make-q))
3548 (self
3549 (lambda ctl
3550 (if ctl
3551 (apply runq-control q ctl)
3552 (and (not (q-empty? q))
3553 (let ((next-strip (deq! q)))
3554 (cond
3555 ((procedure? next-strip) (let ((k (run-strip next-strip)))
3556 (and k (q-push! q k))))
3557 ((pair? next-strip) (let ((k (run-strip (car next-strip))))
3558 (and k (q-push! q k)))
3559 (if (not (null? (cdr next-strip)))
3560 (q-push! q (cdr next-strip)))))
3561 self))))))
3562 self))
3563
3564
3565;;;;
3566;;; (make-subordinate-runq-to superior basic-inferior)
3567;;;
3568;;; Returns a runq proxy for the runq basic-inferior.
3569;;;
3570;;; The proxy watches for operations on the basic-inferior that cause
3571;;; a transition from a queue length of 0 to a non-zero length and
3572;;; vice versa. While the basic-inferior queue is not empty,
3573;;; the proxy installs a task on the superior runq. Each strip
3574;;; of that task processes N strips from the basic-inferior where
3575;;; N is the length of the basic-inferior queue when the proxy
3576;;; strip is entered. [Countless scheduling variations are possible.]
3577;;;
3578(define-public (make-subordinate-runq-to superior-runq basic-runq)
3579 (let ((runq-task (cons #f #f)))
3580 (set-car! runq-task
3581 (lambda ()
3582 (if (basic-runq 'empty?)
3583 (set-cdr! runq-task #f)
3584 (do ((n (basic-runq 'length) (1- n)))
3585 ((<= n 0) #f)
3586 (basic-runq)))))
3587 (letrec ((self
3588 (lambda ctl
3589 (if (not ctl)
3590 (let ((answer (basic-runq)))
3591 (self 'empty?)
3592 answer)
3593 (begin
3594 (case (car ctl)
3595 ((suspend) (set-cdr! runq-task #f))
3596 (else (let ((answer (apply basic-runq ctl)))
3597 (if (and (not (cdr runq-task)) (not (basic-runq 'empty?)))
3598 (begin
3599 (set-cdr! runq-task runq-task)
3600 (superior-runq 'add! runq-task)))
3601 answer))))))))
3602 self)))
3603
3604;;;;
3605;;; (define fork-strips (lambda args args))
3606;;; Return a strip that starts several strips in
3607;;; parallel. If this strip is enqueued on a fair
3608;;; runq, strips of the parallel subtasks will run
3609;;; round-robin style.
3610;;;
3611(define fork-strips (lambda args args))
3612
3613
3614;;;;
3615;;; (strip-sequence . strips)
3616;;;
3617;;; Returns a new strip which is the concatenation of the argument strips.
3618;;;
3619(define-public ((strip-sequence . strips))
3620 (let loop ((st (let ((a strips)) (set! strips #f) a)))
3621 (and (not (null? st))
3622 (let ((then ((car st))))
3623 (if then
3624 (lambda () (loop (cons then (cdr st))))
3625 (lambda () (loop (cdr st))))))))
3626
3627
3628;;;;
3629;;; (fair-strip-subtask . initial-strips)
3630;;;
3631;;; Returns a new strip which is the synchronos, fair,
3632;;; parallel execution of the argument strips.
3633;;;
3634;;;
3635;;;
3636(define-public (fair-strip-subtask . initial-strips)
3637 (let ((st (make-fair-runq)))
3638 (apply st 'add! initial-strips)
3639 st))
3640
3641\f
44cf1f0f 3642;;; {String Fun}
0f2d19dd 3643
0f2d19dd
JB
3644(define-module (ice-9 string-fun))
3645
0f2d19dd 3646;;;;
0f2d19dd
JB
3647;;;
3648;;; Various string funcitons, particularly those that take
3649;;; advantage of the "shared substring" capability.
3650;;;
3651\f
44cf1f0f 3652;;; {String Fun: Dividing Strings Into Fields}
0f2d19dd
JB
3653;;;
3654;;; The names of these functions are very regular.
3655;;; Here is a grammar of a call to one of these:
3656;;;
3657;;; <string-function-invocation>
3658;;; := (<action>-<seperator-disposition>-<seperator-determination> <seperator-param> <str> <ret>)
3659;;;
3660;;; <str> = the string
3661;;;
3662;;; <ret> = The continuation. String functions generally return
3663;;; multiple values by passing them to this procedure.
3664;;;
3665;;; <action> = split
3666;;; | separate-fields
3667;;;
3668;;; "split" means to divide a string into two parts.
3669;;; <ret> will be called with two arguments.
3670;;;
3671;;; "separate-fields" means to divide a string into as many
3672;;; parts as possible. <ret> will be called with
3673;;; however many fields are found.
3674;;;
3675;;; <seperator-disposition> = before
3676;;; | after
3677;;; | discarding
3678;;;
3679;;; "before" means to leave the seperator attached to
3680;;; the beginning of the field to its right.
3681;;; "after" means to leave the seperator attached to
3682;;; the end of the field to its left.
3683;;; "discarding" means to discard seperators.
3684;;;
3685;;; Other dispositions might be handy. For example, "isolate"
3686;;; could mean to treat the separator as a field unto itself.
3687;;;
3688;;; <seperator-determination> = char
3689;;; | predicate
3690;;;
3691;;; "char" means to use a particular character as field seperator.
3692;;; "predicate" means to check each character using a particular predicate.
3693;;;
3694;;; Other determinations might be handy. For example, "character-set-member".
3695;;;
3696;;; <seperator-param> = A parameter that completes the meaning of the determinations.
3697;;; For example, if the determination is "char", then this parameter
3698;;; says which character. If it is "predicate", the parameter is the
3699;;; predicate.
3700;;;
3701;;;
3702;;; For example:
3703;;;
3704;;; (separate-fields-discarding-char #\, "foo, bar, baz, , bat" list)
3705;;; => ("foo" " bar" " baz" " " " bat")
3706;;;
3707;;; (split-after-char #\- 'an-example-of-split list)
3708;;; => ("an-" "example-of-split")
3709;;;
3710;;; As an alternative to using a determination "predicate", or to trying to do anything
3711;;; complicated with these functions, consider using regular expressions.
3712;;;
3713
3714(define-public (split-after-char char str ret)
3715 (let ((end (cond
3716 ((string-index str char) => 1+)
3717 (else (string-length str)))))
3718 (ret (make-shared-substring str 0 end)
3719 (make-shared-substring str end))))
3720
3721(define-public (split-before-char char str ret)
3722 (let ((end (or (string-index str char)
3723 (string-length str))))
3724 (ret (make-shared-substring str 0 end)
3725 (make-shared-substring str end))))
3726
3727(define-public (split-discarding-char char str ret)
3728 (let ((end (string-index str char)))
3729 (if (not end)
3730 (ret str "")
3731 (ret (make-shared-substring str 0 end)
3732 (make-shared-substring str (1+ end))))))
3733
3734(define-public (split-after-char-last char str ret)
3735 (let ((end (cond
3736 ((string-rindex str char) => 1+)
3737 (else 0))))
3738 (ret (make-shared-substring str 0 end)
3739 (make-shared-substring str end))))
3740
3741(define-public (split-before-char-last char str ret)
3742 (let ((end (or (string-rindex str char) 0)))
3743 (ret (make-shared-substring str 0 end)
3744 (make-shared-substring str end))))
3745
3746(define-public (split-discarding-char-last char str ret)
3747 (let ((end (string-rindex str char)))
3748 (if (not end)
3749 (ret str "")
3750 (ret (make-shared-substring str 0 end)
3751 (make-shared-substring str (1+ end))))))
3752
3753(define (split-before-predicate pred str ret)
3754 (let loop ((n 0))
3755 (cond
3756 ((= n (length str)) (ret str ""))
3757 ((not (pred (string-ref str n))) (loop (1+ n)))
3758 (else (ret (make-shared-substring str 0 n)
3759 (make-shared-substring str n))))))
3760(define (split-after-predicate pred str ret)
3761 (let loop ((n 0))
3762 (cond
3763 ((= n (length str)) (ret str ""))
3764 ((not (pred (string-ref str n))) (loop (1+ n)))
3765 (else (ret (make-shared-substring str 0 (1+ n))
3766 (make-shared-substring str (1+ n)))))))
3767
3768(define (split-discarding-predicate pred str ret)
3769 (let loop ((n 0))
3770 (cond
3771 ((= n (length str)) (ret str ""))
3772 ((not (pred (string-ref str n))) (loop (1+ n)))
3773 (else (ret (make-shared-substring str 0 n)
3774 (make-shared-substring str (1+ n)))))))
3775
21ed9efe 3776(define-public (separate-fields-discarding-char ch str ret)
0f2d19dd
JB
3777 (let loop ((fields '())
3778 (str str))
3779 (cond
3780 ((string-rindex str ch)
3781 => (lambda (pos) (loop (cons (make-shared-substring str (+ 1 w)) fields)
3782 (make-shared-substring str 0 w))))
3783 (else (ret (cons str fields))))))
3784
21ed9efe 3785(define-public (separate-fields-after-char ch str ret)
0f2d19dd
JB
3786 (let loop ((fields '())
3787 (str str))
3788 (cond
3789 ((string-rindex str ch)
3790 => (lambda (pos) (loop (cons (make-shared-substring str (+ 1 w)) fields)
3791 (make-shared-substring str 0 (+ 1 w)))))
3792 (else (ret (cons str fields))))))
3793
21ed9efe 3794(define-public (separate-fields-before-char ch str ret)
0f2d19dd
JB
3795 (let loop ((fields '())
3796 (str str))
3797 (cond
3798 ((string-rindex str ch)
3799 => (lambda (pos) (loop (cons (make-shared-substring str w) fields)
3800 (make-shared-substring str 0 w))))
3801 (else (ret (cons str fields))))))
3802
3803\f
44cf1f0f 3804;;; {String Fun: String Prefix Predicates}
0f2d19dd
JB
3805;;;
3806;;; Very simple:
3807;;;
21ed9efe 3808;;; (define-public ((string-prefix-predicate pred?) prefix str)
0f2d19dd
JB
3809;;; (and (<= (length prefix) (length str))
3810;;; (pred? prefix (make-shared-substring str 0 (length prefix)))))
3811;;;
3812;;; (define-public string-prefix=? (string-prefix-predicate string=?))
3813;;;
3814
3815(define-public ((string-prefix-predicate pred?) prefix str)
3816 (and (<= (length prefix) (length str))
3817 (pred? prefix (make-shared-substring str 0 (length prefix)))))
3818
3819(define-public string-prefix=? (string-prefix-predicate string=?))
3820
3821\f
44cf1f0f 3822;;; {String Fun: Strippers}
0f2d19dd
JB
3823;;;
3824;;; <stripper> = sans-<removable-part>
3825;;;
3826;;; <removable-part> = surrounding-whitespace
3827;;; | trailing-whitespace
3828;;; | leading-whitespace
3829;;; | final-newline
3830;;;
3831
3832(define-public (sans-surrounding-whitespace s)
3833 (let ((st 0)
3834 (end (string-length s)))
3835 (while (and (< st (string-length s))
3836 (char-whitespace? (string-ref s st)))
3837 (set! st (1+ st)))
3838 (while (and (< 0 end)
3839 (char-whitespace? (string-ref s (1- end))))
3840 (set! end (1- end)))
3841 (if (< end st)
3842 ""
3843 (make-shared-substring s st end))))
3844
3845(define-public (sans-trailing-whitespace s)
3846 (let ((st 0)
3847 (end (string-length s)))
3848 (while (and (< 0 end)
3849 (char-whitespace? (string-ref s (1- end))))
3850 (set! end (1- end)))
3851 (if (< end st)
3852 ""
3853 (make-shared-substring s st end))))
3854
3855(define-public (sans-leading-whitespace s)
3856 (let ((st 0)
3857 (end (string-length s)))
3858 (while (and (< st (string-length s))
3859 (char-whitespace? (string-ref s st)))
3860 (set! st (1+ st)))
3861 (if (< end st)
3862 ""
3863 (make-shared-substring s st end))))
3864
3865(define-public (sans-final-newline str)
3866 (cond
3867 ((= 0 (string-length str))
3868 str)
3869
3870 ((char=? #\nl (string-ref str (1- (string-length str))))
3871 (make-shared-substring str 0 (1- (string-length str))))
3872
3873 (else str)))
3874\f
44cf1f0f 3875;;; {String Fun: has-trailing-newline?}
0f2d19dd
JB
3876;;;
3877
3878(define-public (has-trailing-newline? str)
3879 (and (< 0 (string-length str))
3880 (char=? #\nl (string-ref str (1- (string-length str))))))
3881
3882
3883\f
44cf1f0f 3884;;; {String Fun: with-regexp-parts}
0f2d19dd 3885
52c5a23a
JB
3886;;; This relies on the older, hairier regexp interface, which we don't
3887;;; particularly want to implement, and it's not used anywhere, so
3888;;; we're just going to drop it for now.
3889;;; (define-public (with-regexp-parts regexp fields str return fail)
3890;;; (let ((parts (regexec regexp str fields)))
3891;;; (if (number? parts)
3892;;; (fail parts)
3893;;; (apply return parts))))
0f2d19dd
JB
3894
3895\f
c56634ba
MD
3896;;; {Load debug extension code if debug extensions present.}
3897;;;
3898;;; *fixme* This is a temporary solution.
3899;;;
0f2d19dd 3900
c56634ba 3901(if (memq 'debug-extensions *features*)
90895e5c
MD
3902 (define-module (guile) :use-module (ice-9 debug)))
3903
3904\f
90d5e280
MD
3905;;; {Load session support if present.}
3906;;;
3907;;; *fixme* This is a temporary solution.
3908;;;
3909
3910(if (%search-load-path "ice-9/session.scm")
3911 (define-module (guile) :use-module (ice-9 session)))
3912
3913\f
90895e5c
MD
3914;;; {Load thread code if threads are present.}
3915;;;
3916;;; *fixme* This is a temporary solution.
3917;;;
3918
3919(if (memq 'threads *features*)
3920 (define-module (guile) :use-module (ice-9 threads)))
3921
21ed9efe
MD
3922\f
3923;;; {Load emacs interface support if emacs option is given.}
3924;;;
3925;;; *fixme* This is a temporary solution.
3926;;;
3927
2e3fbd8d
MD
3928(if (and (module-defined? the-root-module 'use-emacs-interface)
3929 use-emacs-interface)
8309a10d
MD
3930 (begin
3931 (if (memq 'debug-extensions *features*)
3932 (debug-enable 'backtrace))
3933 (define-module (guile) :use-module (ice-9 emacs))))
21ed9efe
MD
3934
3935\f
05817d9e
JB
3936;;; {Load regexp code if regexp primitives are available.}
3937
3938(if (memq 'regex *features*)
3939 (define-module (guile) :use-module (ice-9 regex)))
3940
3941\f
9946dd45
JB
3942;;; {Check that the interpreter and scheme code match up.}
3943
3944(let ((show-line
3945 (lambda args
3946 (with-output-to-port (current-error-port)
3947 (lambda ()
3948 (display (car (command-line)))
3949 (display ": ")
3950 (for-each (lambda (string) (display string))
3951 args)
3952 (newline))))))
3953
3954 (load-from-path "ice-9/version.scm")
3955
3956 (if (not (string=?
3957 (libguile-config-stamp) ; from the interprpreter
3958 (ice-9-config-stamp))) ; from the Scheme code
3959 (begin
3960 (show-line "warning: different versions of libguile and ice-9:")
3961 (show-line "libguile: configured on " (libguile-config-stamp))
3962 (show-line "ice-9: configured on " (ice-9-config-stamp)))))
3963
3964\f
21ed9efe 3965
90895e5c 3966(define-module (guile))
6fa8995c
GH
3967
3968(append! %load-path (cons "." ()))