Update copyright.
[bpt/emacs.git] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* NOTES:
22
23 Have to ensure that we can't put symbol nil on a plist, or some
24 functions may work incorrectly.
25
26 An idea: Have the owner of the tree keep count of splits and/or
27 insertion lengths (in intervals), and balance after every N.
28
29 Need to call *_left_hook when buffer is killed.
30
31 Scan for zero-length, or 0-length to see notes about handling
32 zero length interval-markers.
33
34 There are comments around about freeing intervals. It might be
35 faster to explicitly free them (put them on the free list) than
36 to GC them.
37
38 */
39
40
41 #include <config.h>
42 #include "lisp.h"
43 #include "intervals.h"
44 #include "buffer.h"
45 #include "puresize.h"
46 #include "keyboard.h"
47
48 /* The rest of the file is within this conditional. */
49 #ifdef USE_TEXT_PROPERTIES
50
51 /* Test for membership, allowing for t (actually any non-cons) to mean the
52 universal set. */
53
54 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
55
56 #define min(x, y) ((x) < (y) ? (x) : (y))
57
58 Lisp_Object merge_properties_sticky ();
59 \f
60 /* Utility functions for intervals. */
61
62
63 /* Create the root interval of some object, a buffer or string. */
64
65 INTERVAL
66 create_root_interval (parent)
67 Lisp_Object parent;
68 {
69 INTERVAL new;
70
71 CHECK_IMPURE (parent);
72
73 new = make_interval ();
74
75 if (BUFFERP (parent))
76 {
77 new->total_length = (BUF_Z (XBUFFER (parent))
78 - BUF_BEG (XBUFFER (parent)));
79 BUF_INTERVALS (XBUFFER (parent)) = new;
80 }
81 else if (STRINGP (parent))
82 {
83 new->total_length = XSTRING (parent)->size;
84 XSTRING (parent)->intervals = new;
85 }
86
87 new->parent = (INTERVAL) parent;
88 new->position = 1;
89
90 return new;
91 }
92
93 /* Make the interval TARGET have exactly the properties of SOURCE */
94
95 void
96 copy_properties (source, target)
97 register INTERVAL source, target;
98 {
99 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
100 return;
101
102 COPY_INTERVAL_CACHE (source, target);
103 target->plist = Fcopy_sequence (source->plist);
104 }
105
106 /* Merge the properties of interval SOURCE into the properties
107 of interval TARGET. That is to say, each property in SOURCE
108 is added to TARGET if TARGET has no such property as yet. */
109
110 static void
111 merge_properties (source, target)
112 register INTERVAL source, target;
113 {
114 register Lisp_Object o, sym, val;
115
116 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
117 return;
118
119 MERGE_INTERVAL_CACHE (source, target);
120
121 o = source->plist;
122 while (! EQ (o, Qnil))
123 {
124 sym = Fcar (o);
125 val = Fmemq (sym, target->plist);
126
127 if (NILP (val))
128 {
129 o = Fcdr (o);
130 val = Fcar (o);
131 target->plist = Fcons (sym, Fcons (val, target->plist));
132 o = Fcdr (o);
133 }
134 else
135 o = Fcdr (Fcdr (o));
136 }
137 }
138
139 /* Return 1 if the two intervals have the same properties,
140 0 otherwise. */
141
142 int
143 intervals_equal (i0, i1)
144 INTERVAL i0, i1;
145 {
146 register Lisp_Object i0_cdr, i0_sym, i1_val;
147 register i1_len;
148
149 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
150 return 1;
151
152 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
153 return 0;
154
155 i1_len = XFASTINT (Flength (i1->plist));
156 if (i1_len & 0x1) /* Paranoia -- plists are always even */
157 abort ();
158 i1_len /= 2;
159 i0_cdr = i0->plist;
160 while (!NILP (i0_cdr))
161 {
162 /* Lengths of the two plists were unequal. */
163 if (i1_len == 0)
164 return 0;
165
166 i0_sym = Fcar (i0_cdr);
167 i1_val = Fmemq (i0_sym, i1->plist);
168
169 /* i0 has something i1 doesn't. */
170 if (EQ (i1_val, Qnil))
171 return 0;
172
173 /* i0 and i1 both have sym, but it has different values in each. */
174 i0_cdr = Fcdr (i0_cdr);
175 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
176 return 0;
177
178 i0_cdr = Fcdr (i0_cdr);
179 i1_len--;
180 }
181
182 /* Lengths of the two plists were unequal. */
183 if (i1_len > 0)
184 return 0;
185
186 return 1;
187 }
188 \f
189 static int icount;
190 static int idepth;
191 static int zero_length;
192
193 /* Traverse an interval tree TREE, performing FUNCTION on each node.
194 Pass FUNCTION two args: an interval, and ARG. */
195
196 void
197 traverse_intervals (tree, position, depth, function, arg)
198 INTERVAL tree;
199 int position, depth;
200 void (* function) ();
201 Lisp_Object arg;
202 {
203 if (NULL_INTERVAL_P (tree))
204 return;
205
206 traverse_intervals (tree->left, position, depth + 1, function, arg);
207 position += LEFT_TOTAL_LENGTH (tree);
208 tree->position = position;
209 (*function) (tree, arg);
210 position += LENGTH (tree);
211 traverse_intervals (tree->right, position, depth + 1, function, arg);
212 }
213 \f
214 #if 0
215 /* These functions are temporary, for debugging purposes only. */
216
217 INTERVAL search_interval, found_interval;
218
219 void
220 check_for_interval (i)
221 register INTERVAL i;
222 {
223 if (i == search_interval)
224 {
225 found_interval = i;
226 icount++;
227 }
228 }
229
230 INTERVAL
231 search_for_interval (i, tree)
232 register INTERVAL i, tree;
233 {
234 icount = 0;
235 search_interval = i;
236 found_interval = NULL_INTERVAL;
237 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
238 return found_interval;
239 }
240
241 static void
242 inc_interval_count (i)
243 INTERVAL i;
244 {
245 icount++;
246 if (LENGTH (i) == 0)
247 zero_length++;
248 if (depth > idepth)
249 idepth = depth;
250 }
251
252 int
253 count_intervals (i)
254 register INTERVAL i;
255 {
256 icount = 0;
257 idepth = 0;
258 zero_length = 0;
259 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
260
261 return icount;
262 }
263
264 static INTERVAL
265 root_interval (interval)
266 INTERVAL interval;
267 {
268 register INTERVAL i = interval;
269
270 while (! ROOT_INTERVAL_P (i))
271 i = i->parent;
272
273 return i;
274 }
275 #endif
276 \f
277 /* Assuming that a left child exists, perform the following operation:
278
279 A B
280 / \ / \
281 B => A
282 / \ / \
283 c c
284 */
285
286 static INTERVAL
287 rotate_right (interval)
288 INTERVAL interval;
289 {
290 INTERVAL i;
291 INTERVAL B = interval->left;
292 int old_total = interval->total_length;
293
294 /* Deal with any Parent of A; make it point to B. */
295 if (! ROOT_INTERVAL_P (interval))
296 if (AM_LEFT_CHILD (interval))
297 interval->parent->left = B;
298 else
299 interval->parent->right = B;
300 B->parent = interval->parent;
301
302 /* Make B the parent of A */
303 i = B->right;
304 B->right = interval;
305 interval->parent = B;
306
307 /* Make A point to c */
308 interval->left = i;
309 if (! NULL_INTERVAL_P (i))
310 i->parent = interval;
311
312 /* A's total length is decreased by the length of B and its left child. */
313 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
314
315 /* B must have the same total length of A. */
316 B->total_length = old_total;
317
318 return B;
319 }
320
321 /* Assuming that a right child exists, perform the following operation:
322
323 A B
324 / \ / \
325 B => A
326 / \ / \
327 c c
328 */
329
330 static INTERVAL
331 rotate_left (interval)
332 INTERVAL interval;
333 {
334 INTERVAL i;
335 INTERVAL B = interval->right;
336 int old_total = interval->total_length;
337
338 /* Deal with any parent of A; make it point to B. */
339 if (! ROOT_INTERVAL_P (interval))
340 if (AM_LEFT_CHILD (interval))
341 interval->parent->left = B;
342 else
343 interval->parent->right = B;
344 B->parent = interval->parent;
345
346 /* Make B the parent of A */
347 i = B->left;
348 B->left = interval;
349 interval->parent = B;
350
351 /* Make A point to c */
352 interval->right = i;
353 if (! NULL_INTERVAL_P (i))
354 i->parent = interval;
355
356 /* A's total length is decreased by the length of B and its right child. */
357 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
358
359 /* B must have the same total length of A. */
360 B->total_length = old_total;
361
362 return B;
363 }
364 \f
365 /* Balance an interval tree with the assumption that the subtrees
366 themselves are already balanced. */
367
368 static INTERVAL
369 balance_an_interval (i)
370 INTERVAL i;
371 {
372 register int old_diff, new_diff;
373
374 while (1)
375 {
376 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
377 if (old_diff > 0)
378 {
379 new_diff = i->total_length - i->left->total_length
380 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
381 if (abs (new_diff) >= old_diff)
382 break;
383 i = rotate_right (i);
384 balance_an_interval (i->right);
385 }
386 else if (old_diff < 0)
387 {
388 new_diff = i->total_length - i->right->total_length
389 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
390 if (abs (new_diff) >= -old_diff)
391 break;
392 i = rotate_left (i);
393 balance_an_interval (i->left);
394 }
395 else
396 break;
397 }
398 return i;
399 }
400
401 /* Balance INTERVAL, potentially stuffing it back into its parent
402 Lisp Object. */
403
404 static INLINE INTERVAL
405 balance_possible_root_interval (interval)
406 register INTERVAL interval;
407 {
408 Lisp_Object parent;
409
410 if (interval->parent == NULL_INTERVAL)
411 return interval;
412
413 parent = (Lisp_Object) (interval->parent);
414 interval = balance_an_interval (interval);
415
416 if (BUFFERP (parent))
417 BUF_INTERVALS (XBUFFER (parent)) = interval;
418 else if (STRINGP (parent))
419 XSTRING (parent)->intervals = interval;
420
421 return interval;
422 }
423
424 /* Balance the interval tree TREE. Balancing is by weight
425 (the amount of text). */
426
427 static INTERVAL
428 balance_intervals_internal (tree)
429 register INTERVAL tree;
430 {
431 /* Balance within each side. */
432 if (tree->left)
433 balance_intervals (tree->left);
434 if (tree->right)
435 balance_intervals (tree->right);
436 return balance_an_interval (tree);
437 }
438
439 /* Advertised interface to balance intervals. */
440
441 INTERVAL
442 balance_intervals (tree)
443 INTERVAL tree;
444 {
445 if (tree == NULL_INTERVAL)
446 return NULL_INTERVAL;
447
448 return balance_intervals_internal (tree);
449 }
450 \f
451 /* Split INTERVAL into two pieces, starting the second piece at
452 character position OFFSET (counting from 0), relative to INTERVAL.
453 INTERVAL becomes the left-hand piece, and the right-hand piece
454 (second, lexicographically) is returned.
455
456 The size and position fields of the two intervals are set based upon
457 those of the original interval. The property list of the new interval
458 is reset, thus it is up to the caller to do the right thing with the
459 result.
460
461 Note that this does not change the position of INTERVAL; if it is a root,
462 it is still a root after this operation. */
463
464 INTERVAL
465 split_interval_right (interval, offset)
466 INTERVAL interval;
467 int offset;
468 {
469 INTERVAL new = make_interval ();
470 int position = interval->position;
471 int new_length = LENGTH (interval) - offset;
472
473 new->position = position + offset;
474 new->parent = interval;
475
476 if (NULL_RIGHT_CHILD (interval))
477 {
478 interval->right = new;
479 new->total_length = new_length;
480
481 return new;
482 }
483
484 /* Insert the new node between INTERVAL and its right child. */
485 new->right = interval->right;
486 interval->right->parent = new;
487 interval->right = new;
488 new->total_length = new_length + new->right->total_length;
489
490 balance_an_interval (new);
491 balance_possible_root_interval (interval);
492
493 return new;
494 }
495
496 /* Split INTERVAL into two pieces, starting the second piece at
497 character position OFFSET (counting from 0), relative to INTERVAL.
498 INTERVAL becomes the right-hand piece, and the left-hand piece
499 (first, lexicographically) is returned.
500
501 The size and position fields of the two intervals are set based upon
502 those of the original interval. The property list of the new interval
503 is reset, thus it is up to the caller to do the right thing with the
504 result.
505
506 Note that this does not change the position of INTERVAL; if it is a root,
507 it is still a root after this operation. */
508
509 INTERVAL
510 split_interval_left (interval, offset)
511 INTERVAL interval;
512 int offset;
513 {
514 INTERVAL new = make_interval ();
515 int position = interval->position;
516 int new_length = offset;
517
518 new->position = interval->position;
519 interval->position = interval->position + offset;
520 new->parent = interval;
521
522 if (NULL_LEFT_CHILD (interval))
523 {
524 interval->left = new;
525 new->total_length = new_length;
526
527 return new;
528 }
529
530 /* Insert the new node between INTERVAL and its left child. */
531 new->left = interval->left;
532 new->left->parent = new;
533 interval->left = new;
534 new->total_length = new_length + new->left->total_length;
535
536 balance_an_interval (new);
537 balance_possible_root_interval (interval);
538
539 return new;
540 }
541 \f
542 /* Find the interval containing text position POSITION in the text
543 represented by the interval tree TREE. POSITION is a buffer
544 position; the earliest position is 1. If POSITION is at the end of
545 the buffer, return the interval containing the last character.
546
547 The `position' field, which is a cache of an interval's position,
548 is updated in the interval found. Other functions (e.g., next_interval)
549 will update this cache based on the result of find_interval. */
550
551 INLINE INTERVAL
552 find_interval (tree, position)
553 register INTERVAL tree;
554 register int position;
555 {
556 /* The distance from the left edge of the subtree at TREE
557 to POSITION. */
558 register int relative_position = position - BEG;
559
560 if (NULL_INTERVAL_P (tree))
561 return NULL_INTERVAL;
562
563 if (relative_position > TOTAL_LENGTH (tree))
564 abort (); /* Paranoia */
565
566 tree = balance_possible_root_interval (tree);
567
568 while (1)
569 {
570 if (relative_position < LEFT_TOTAL_LENGTH (tree))
571 {
572 tree = tree->left;
573 }
574 else if (! NULL_RIGHT_CHILD (tree)
575 && relative_position >= (TOTAL_LENGTH (tree)
576 - RIGHT_TOTAL_LENGTH (tree)))
577 {
578 relative_position -= (TOTAL_LENGTH (tree)
579 - RIGHT_TOTAL_LENGTH (tree));
580 tree = tree->right;
581 }
582 else
583 {
584 tree->position =
585 (position - relative_position /* the left edge of *tree */
586 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
587
588 return tree;
589 }
590 }
591 }
592 \f
593 /* Find the succeeding interval (lexicographically) to INTERVAL.
594 Sets the `position' field based on that of INTERVAL (see
595 find_interval). */
596
597 INTERVAL
598 next_interval (interval)
599 register INTERVAL interval;
600 {
601 register INTERVAL i = interval;
602 register int next_position;
603
604 if (NULL_INTERVAL_P (i))
605 return NULL_INTERVAL;
606 next_position = interval->position + LENGTH (interval);
607
608 if (! NULL_RIGHT_CHILD (i))
609 {
610 i = i->right;
611 while (! NULL_LEFT_CHILD (i))
612 i = i->left;
613
614 i->position = next_position;
615 return i;
616 }
617
618 while (! NULL_PARENT (i))
619 {
620 if (AM_LEFT_CHILD (i))
621 {
622 i = i->parent;
623 i->position = next_position;
624 return i;
625 }
626
627 i = i->parent;
628 }
629
630 return NULL_INTERVAL;
631 }
632
633 /* Find the preceding interval (lexicographically) to INTERVAL.
634 Sets the `position' field based on that of INTERVAL (see
635 find_interval). */
636
637 INTERVAL
638 previous_interval (interval)
639 register INTERVAL interval;
640 {
641 register INTERVAL i;
642 register position_of_previous;
643
644 if (NULL_INTERVAL_P (interval))
645 return NULL_INTERVAL;
646
647 if (! NULL_LEFT_CHILD (interval))
648 {
649 i = interval->left;
650 while (! NULL_RIGHT_CHILD (i))
651 i = i->right;
652
653 i->position = interval->position - LENGTH (i);
654 return i;
655 }
656
657 i = interval;
658 while (! NULL_PARENT (i))
659 {
660 if (AM_RIGHT_CHILD (i))
661 {
662 i = i->parent;
663
664 i->position = interval->position - LENGTH (i);
665 return i;
666 }
667 i = i->parent;
668 }
669
670 return NULL_INTERVAL;
671 }
672 \f
673 #if 0
674 /* Traverse a path down the interval tree TREE to the interval
675 containing POSITION, adjusting all nodes on the path for
676 an addition of LENGTH characters. Insertion between two intervals
677 (i.e., point == i->position, where i is second interval) means
678 text goes into second interval.
679
680 Modifications are needed to handle the hungry bits -- after simply
681 finding the interval at position (don't add length going down),
682 if it's the beginning of the interval, get the previous interval
683 and check the hugry bits of both. Then add the length going back up
684 to the root. */
685
686 static INTERVAL
687 adjust_intervals_for_insertion (tree, position, length)
688 INTERVAL tree;
689 int position, length;
690 {
691 register int relative_position;
692 register INTERVAL this;
693
694 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
695 abort ();
696
697 /* If inserting at point-max of a buffer, that position
698 will be out of range */
699 if (position > TOTAL_LENGTH (tree))
700 position = TOTAL_LENGTH (tree);
701 relative_position = position;
702 this = tree;
703
704 while (1)
705 {
706 if (relative_position <= LEFT_TOTAL_LENGTH (this))
707 {
708 this->total_length += length;
709 this = this->left;
710 }
711 else if (relative_position > (TOTAL_LENGTH (this)
712 - RIGHT_TOTAL_LENGTH (this)))
713 {
714 relative_position -= (TOTAL_LENGTH (this)
715 - RIGHT_TOTAL_LENGTH (this));
716 this->total_length += length;
717 this = this->right;
718 }
719 else
720 {
721 /* If we are to use zero-length intervals as buffer pointers,
722 then this code will have to change. */
723 this->total_length += length;
724 this->position = LEFT_TOTAL_LENGTH (this)
725 + position - relative_position + 1;
726 return tree;
727 }
728 }
729 }
730 #endif
731
732 /* Effect an adjustment corresponding to the addition of LENGTH characters
733 of text. Do this by finding the interval containing POSITION in the
734 interval tree TREE, and then adjusting all of its ancestors by adding
735 LENGTH to them.
736
737 If POSITION is the first character of an interval, meaning that point
738 is actually between the two intervals, make the new text belong to
739 the interval which is "sticky".
740
741 If both intervals are "sticky", then make them belong to the left-most
742 interval. Another possibility would be to create a new interval for
743 this text, and make it have the merged properties of both ends. */
744
745 static INTERVAL
746 adjust_intervals_for_insertion (tree, position, length)
747 INTERVAL tree;
748 int position, length;
749 {
750 register INTERVAL i;
751 register INTERVAL temp;
752 int eobp = 0;
753
754 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
755 abort ();
756
757 /* If inserting at point-max of a buffer, that position will be out
758 of range. Remember that buffer positions are 1-based. */
759 if (position >= BEG + TOTAL_LENGTH (tree)){
760 position = BEG + TOTAL_LENGTH (tree);
761 eobp = 1;
762 }
763
764 i = find_interval (tree, position);
765
766 /* If in middle of an interval which is not sticky either way,
767 we must not just give its properties to the insertion.
768 So split this interval at the insertion point. */
769 if (! (position == i->position || eobp)
770 && END_NONSTICKY_P (i)
771 && ! FRONT_STICKY_P (i))
772 {
773 temp = split_interval_right (i, position - i->position);
774 copy_properties (i, temp);
775 i = temp;
776 }
777
778 /* If we are positioned between intervals, check the stickiness of
779 both of them. We have to do this too, if we are at BEG or Z. */
780 if (position == i->position || eobp)
781 {
782 register INTERVAL prev;
783
784 if (position == BEG)
785 prev = 0;
786 else if (eobp)
787 {
788 prev = i;
789 i = 0;
790 }
791 else
792 prev = previous_interval (i);
793
794 /* Even if we are positioned between intervals, we default
795 to the left one if it exists. We extend it now and split
796 off a part later, if stickyness demands it. */
797 for (temp = prev ? prev : i;! NULL_INTERVAL_P (temp); temp = temp->parent)
798 {
799 temp->total_length += length;
800 temp = balance_possible_root_interval (temp);
801 }
802
803 /* If at least one interval has sticky properties,
804 we check the stickyness property by property. */
805 if (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
806 {
807 Lisp_Object pleft, pright;
808 struct interval newi;
809
810 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
811 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
812 newi.plist = merge_properties_sticky (pleft, pright);
813
814 if(! prev) /* i.e. position == BEG */
815 {
816 if (! intervals_equal (i, &newi))
817 {
818 i = split_interval_left (i, length);
819 i->plist = newi.plist;
820 }
821 }
822 else if (! intervals_equal (prev, &newi))
823 {
824 prev = split_interval_right (prev,
825 position - prev->position);
826 prev->plist = newi.plist;
827 if (! NULL_INTERVAL_P (i)
828 && intervals_equal (prev, i))
829 merge_interval_right (prev);
830 }
831
832 /* We will need to update the cache here later. */
833 }
834 else if (! prev && ! NILP (i->plist))
835 {
836 /* Just split off a new interval at the left.
837 Since I wasn't front-sticky, the empty plist is ok. */
838 i = split_interval_left (i, length);
839 }
840 }
841
842 /* Otherwise just extend the interval. */
843 else
844 {
845 for (temp = i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
846 {
847 temp->total_length += length;
848 temp = balance_possible_root_interval (temp);
849 }
850 }
851
852 return tree;
853 }
854
855 /* Any property might be front-sticky on the left, rear-sticky on the left,
856 front-sticky on the right, or rear-sticky on the right; the 16 combinations
857 can be arranged in a matrix with rows denoting the left conditions and
858 columns denoting the right conditions:
859 _ __ _
860 _ FR FR FR FR
861 FR__ 0 1 2 3
862 _FR 4 5 6 7
863 FR 8 9 A B
864 FR C D E F
865
866 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
867 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
868 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
869 p8 L p9 L pa L pb L pc L pd L pe L pf L)
870 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
871 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
872 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
873 p8 R p9 R pa R pb R pc R pd R pe R pf R)
874
875 We inherit from whoever has a sticky side facing us. If both sides
876 do (cases 2, 3, E, and F), then we inherit from whichever side has a
877 non-nil value for the current property. If both sides do, then we take
878 from the left.
879
880 When we inherit a property, we get its stickiness as well as its value.
881 So, when we merge the above two lists, we expect to get this:
882
883 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
884 rear-nonsticky (p6 pa)
885 p0 L p1 L p2 L p3 L p6 R p7 R
886 pa R pb R pc L pd L pe L pf L)
887
888 The optimizable special cases are:
889 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
890 left rear-nonsticky = t, right front-sticky = t (inherit right)
891 left rear-nonsticky = t, right front-sticky = nil (inherit none)
892 */
893
894 Lisp_Object
895 merge_properties_sticky (pleft, pright)
896 Lisp_Object pleft, pright;
897 {
898 register Lisp_Object props, front, rear;
899 Lisp_Object lfront, lrear, rfront, rrear;
900 register Lisp_Object tail1, tail2, sym, lval, rval;
901 int use_left, use_right;
902
903 props = Qnil;
904 front = Qnil;
905 rear = Qnil;
906 lfront = textget (pleft, Qfront_sticky);
907 lrear = textget (pleft, Qrear_nonsticky);
908 rfront = textget (pright, Qfront_sticky);
909 rrear = textget (pright, Qrear_nonsticky);
910
911 /* Go through each element of PRIGHT. */
912 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
913 {
914 sym = Fcar (tail1);
915
916 /* Sticky properties get special treatment. */
917 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
918 continue;
919
920 rval = Fcar (Fcdr (tail1));
921 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
922 if (EQ (sym, Fcar (tail2)))
923 break;
924 lval = (NILP (tail2) ? Qnil : Fcar( Fcdr (tail2)));
925
926 use_left = ! TMEM (sym, lrear);
927 use_right = TMEM (sym, rfront);
928 if (use_left && use_right)
929 {
930 use_left = ! NILP (lval);
931 use_right = ! NILP (rval);
932 }
933 if (use_left)
934 {
935 /* We build props as (value sym ...) rather than (sym value ...)
936 because we plan to nreverse it when we're done. */
937 if (! NILP (lval))
938 props = Fcons (lval, Fcons (sym, props));
939 if (TMEM (sym, lfront))
940 front = Fcons (sym, front);
941 if (TMEM (sym, lrear))
942 rear = Fcons (sym, rear);
943 }
944 else if (use_right)
945 {
946 if (! NILP (rval))
947 props = Fcons (rval, Fcons (sym, props));
948 if (TMEM (sym, rfront))
949 front = Fcons (sym, front);
950 if (TMEM (sym, rrear))
951 rear = Fcons (sym, rear);
952 }
953 }
954
955 /* Now go through each element of PLEFT. */
956 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
957 {
958 sym = Fcar (tail2);
959
960 /* Sticky properties get special treatment. */
961 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
962 continue;
963
964 /* If sym is in PRIGHT, we've already considered it. */
965 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
966 if (EQ (sym, Fcar (tail1)))
967 break;
968 if (! NILP (tail1))
969 continue;
970
971 lval = Fcar (Fcdr (tail2));
972
973 /* Since rval is known to be nil in this loop, the test simplifies. */
974 if (! TMEM (sym, lrear))
975 {
976 if (! NILP (lval))
977 props = Fcons (lval, Fcons (sym, props));
978 if (TMEM (sym, lfront))
979 front = Fcons (sym, front);
980 }
981 else if (TMEM (sym, rfront))
982 {
983 /* The value is nil, but we still inherit the stickiness
984 from the right. */
985 front = Fcons (sym, front);
986 if (TMEM (sym, rrear))
987 rear = Fcons (sym, rear);
988 }
989 }
990 props = Fnreverse (props);
991 if (! NILP (rear))
992 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
993 if (! NILP (front))
994 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
995 return props;
996 }
997
998 \f
999 /* Delete an node I from its interval tree by merging its subtrees
1000 into one subtree which is then returned. Caller is responsible for
1001 storing the resulting subtree into its parent. */
1002
1003 static INTERVAL
1004 delete_node (i)
1005 register INTERVAL i;
1006 {
1007 register INTERVAL migrate, this;
1008 register int migrate_amt;
1009
1010 if (NULL_INTERVAL_P (i->left))
1011 return i->right;
1012 if (NULL_INTERVAL_P (i->right))
1013 return i->left;
1014
1015 migrate = i->left;
1016 migrate_amt = i->left->total_length;
1017 this = i->right;
1018 this->total_length += migrate_amt;
1019 while (! NULL_INTERVAL_P (this->left))
1020 {
1021 this = this->left;
1022 this->total_length += migrate_amt;
1023 }
1024 this->left = migrate;
1025 migrate->parent = this;
1026
1027 return i->right;
1028 }
1029
1030 /* Delete interval I from its tree by calling `delete_node'
1031 and properly connecting the resultant subtree.
1032
1033 I is presumed to be empty; that is, no adjustments are made
1034 for the length of I. */
1035
1036 void
1037 delete_interval (i)
1038 register INTERVAL i;
1039 {
1040 register INTERVAL parent;
1041 int amt = LENGTH (i);
1042
1043 if (amt > 0) /* Only used on zero-length intervals now. */
1044 abort ();
1045
1046 if (ROOT_INTERVAL_P (i))
1047 {
1048 Lisp_Object owner;
1049 owner = (Lisp_Object) i->parent;
1050 parent = delete_node (i);
1051 if (! NULL_INTERVAL_P (parent))
1052 parent->parent = (INTERVAL) owner;
1053
1054 if (BUFFERP (owner))
1055 BUF_INTERVALS (XBUFFER (owner)) = parent;
1056 else if (STRINGP (owner))
1057 XSTRING (owner)->intervals = parent;
1058 else
1059 abort ();
1060
1061 return;
1062 }
1063
1064 parent = i->parent;
1065 if (AM_LEFT_CHILD (i))
1066 {
1067 parent->left = delete_node (i);
1068 if (! NULL_INTERVAL_P (parent->left))
1069 parent->left->parent = parent;
1070 }
1071 else
1072 {
1073 parent->right = delete_node (i);
1074 if (! NULL_INTERVAL_P (parent->right))
1075 parent->right->parent = parent;
1076 }
1077 }
1078 \f
1079 /* Find the interval in TREE corresponding to the relative position
1080 FROM and delete as much as possible of AMOUNT from that interval.
1081 Return the amount actually deleted, and if the interval was
1082 zeroed-out, delete that interval node from the tree.
1083
1084 Note that FROM is actually origin zero, aka relative to the
1085 leftmost edge of tree. This is appropriate since we call ourselves
1086 recursively on subtrees.
1087
1088 Do this by recursing down TREE to the interval in question, and
1089 deleting the appropriate amount of text. */
1090
1091 static int
1092 interval_deletion_adjustment (tree, from, amount)
1093 register INTERVAL tree;
1094 register int from, amount;
1095 {
1096 register int relative_position = from;
1097
1098 if (NULL_INTERVAL_P (tree))
1099 return 0;
1100
1101 /* Left branch */
1102 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1103 {
1104 int subtract = interval_deletion_adjustment (tree->left,
1105 relative_position,
1106 amount);
1107 tree->total_length -= subtract;
1108 return subtract;
1109 }
1110 /* Right branch */
1111 else if (relative_position >= (TOTAL_LENGTH (tree)
1112 - RIGHT_TOTAL_LENGTH (tree)))
1113 {
1114 int subtract;
1115
1116 relative_position -= (tree->total_length
1117 - RIGHT_TOTAL_LENGTH (tree));
1118 subtract = interval_deletion_adjustment (tree->right,
1119 relative_position,
1120 amount);
1121 tree->total_length -= subtract;
1122 return subtract;
1123 }
1124 /* Here -- this node. */
1125 else
1126 {
1127 /* How much can we delete from this interval? */
1128 int my_amount = ((tree->total_length
1129 - RIGHT_TOTAL_LENGTH (tree))
1130 - relative_position);
1131
1132 if (amount > my_amount)
1133 amount = my_amount;
1134
1135 tree->total_length -= amount;
1136 if (LENGTH (tree) == 0)
1137 delete_interval (tree);
1138
1139 return amount;
1140 }
1141
1142 /* Never reach here. */
1143 }
1144
1145 /* Effect the adjustments necessary to the interval tree of BUFFER to
1146 correspond to the deletion of LENGTH characters from that buffer
1147 text. The deletion is effected at position START (which is a
1148 buffer position, i.e. origin 1). */
1149
1150 static void
1151 adjust_intervals_for_deletion (buffer, start, length)
1152 struct buffer *buffer;
1153 int start, length;
1154 {
1155 register int left_to_delete = length;
1156 register INTERVAL tree = BUF_INTERVALS (buffer);
1157 register int deleted;
1158
1159 if (NULL_INTERVAL_P (tree))
1160 return;
1161
1162 if (start > BEG + TOTAL_LENGTH (tree)
1163 || start + length > BEG + TOTAL_LENGTH (tree))
1164 abort ();
1165
1166 if (length == TOTAL_LENGTH (tree))
1167 {
1168 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1169 return;
1170 }
1171
1172 if (ONLY_INTERVAL_P (tree))
1173 {
1174 tree->total_length -= length;
1175 return;
1176 }
1177
1178 if (start > BEG + TOTAL_LENGTH (tree))
1179 start = BEG + TOTAL_LENGTH (tree);
1180 while (left_to_delete > 0)
1181 {
1182 left_to_delete -= interval_deletion_adjustment (tree, start - 1,
1183 left_to_delete);
1184 tree = BUF_INTERVALS (buffer);
1185 if (left_to_delete == tree->total_length)
1186 {
1187 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1188 return;
1189 }
1190 }
1191 }
1192 \f
1193 /* Make the adjustments necessary to the interval tree of BUFFER to
1194 represent an addition or deletion of LENGTH characters starting
1195 at position START. Addition or deletion is indicated by the sign
1196 of LENGTH. */
1197
1198 INLINE void
1199 offset_intervals (buffer, start, length)
1200 struct buffer *buffer;
1201 int start, length;
1202 {
1203 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1204 return;
1205
1206 if (length > 0)
1207 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1208 else
1209 adjust_intervals_for_deletion (buffer, start, -length);
1210 }
1211 \f
1212 /* Merge interval I with its lexicographic successor. The resulting
1213 interval is returned, and has the properties of the original
1214 successor. The properties of I are lost. I is removed from the
1215 interval tree.
1216
1217 IMPORTANT:
1218 The caller must verify that this is not the last (rightmost)
1219 interval. */
1220
1221 INTERVAL
1222 merge_interval_right (i)
1223 register INTERVAL i;
1224 {
1225 register int absorb = LENGTH (i);
1226 register INTERVAL successor;
1227
1228 /* Zero out this interval. */
1229 i->total_length -= absorb;
1230
1231 /* Find the succeeding interval. */
1232 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1233 as we descend. */
1234 {
1235 successor = i->right;
1236 while (! NULL_LEFT_CHILD (successor))
1237 {
1238 successor->total_length += absorb;
1239 successor = successor->left;
1240 }
1241
1242 successor->total_length += absorb;
1243 delete_interval (i);
1244 return successor;
1245 }
1246
1247 successor = i;
1248 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1249 we ascend. */
1250 {
1251 if (AM_LEFT_CHILD (successor))
1252 {
1253 successor = successor->parent;
1254 delete_interval (i);
1255 return successor;
1256 }
1257
1258 successor = successor->parent;
1259 successor->total_length -= absorb;
1260 }
1261
1262 /* This must be the rightmost or last interval and cannot
1263 be merged right. The caller should have known. */
1264 abort ();
1265 }
1266 \f
1267 /* Merge interval I with its lexicographic predecessor. The resulting
1268 interval is returned, and has the properties of the original predecessor.
1269 The properties of I are lost. Interval node I is removed from the tree.
1270
1271 IMPORTANT:
1272 The caller must verify that this is not the first (leftmost) interval. */
1273
1274 INTERVAL
1275 merge_interval_left (i)
1276 register INTERVAL i;
1277 {
1278 register int absorb = LENGTH (i);
1279 register INTERVAL predecessor;
1280
1281 /* Zero out this interval. */
1282 i->total_length -= absorb;
1283
1284 /* Find the preceding interval. */
1285 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1286 adding ABSORB as we go. */
1287 {
1288 predecessor = i->left;
1289 while (! NULL_RIGHT_CHILD (predecessor))
1290 {
1291 predecessor->total_length += absorb;
1292 predecessor = predecessor->right;
1293 }
1294
1295 predecessor->total_length += absorb;
1296 delete_interval (i);
1297 return predecessor;
1298 }
1299
1300 predecessor = i;
1301 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1302 subtracting ABSORB. */
1303 {
1304 if (AM_RIGHT_CHILD (predecessor))
1305 {
1306 predecessor = predecessor->parent;
1307 delete_interval (i);
1308 return predecessor;
1309 }
1310
1311 predecessor = predecessor->parent;
1312 predecessor->total_length -= absorb;
1313 }
1314
1315 /* This must be the leftmost or first interval and cannot
1316 be merged left. The caller should have known. */
1317 abort ();
1318 }
1319 \f
1320 /* Make an exact copy of interval tree SOURCE which descends from
1321 PARENT. This is done by recursing through SOURCE, copying
1322 the current interval and its properties, and then adjusting
1323 the pointers of the copy. */
1324
1325 static INTERVAL
1326 reproduce_tree (source, parent)
1327 INTERVAL source, parent;
1328 {
1329 register INTERVAL t = make_interval ();
1330
1331 bcopy (source, t, INTERVAL_SIZE);
1332 copy_properties (source, t);
1333 t->parent = parent;
1334 if (! NULL_LEFT_CHILD (source))
1335 t->left = reproduce_tree (source->left, t);
1336 if (! NULL_RIGHT_CHILD (source))
1337 t->right = reproduce_tree (source->right, t);
1338
1339 return t;
1340 }
1341
1342 #if 0
1343 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1344
1345 /* Make a new interval of length LENGTH starting at START in the
1346 group of intervals INTERVALS, which is actually an interval tree.
1347 Returns the new interval.
1348
1349 Generate an error if the new positions would overlap an existing
1350 interval. */
1351
1352 static INTERVAL
1353 make_new_interval (intervals, start, length)
1354 INTERVAL intervals;
1355 int start, length;
1356 {
1357 INTERVAL slot;
1358
1359 slot = find_interval (intervals, start);
1360 if (start + length > slot->position + LENGTH (slot))
1361 error ("Interval would overlap");
1362
1363 if (start == slot->position && length == LENGTH (slot))
1364 return slot;
1365
1366 if (slot->position == start)
1367 {
1368 /* New right node. */
1369 split_interval_right (slot, length);
1370 return slot;
1371 }
1372
1373 if (slot->position + LENGTH (slot) == start + length)
1374 {
1375 /* New left node. */
1376 split_interval_left (slot, LENGTH (slot) - length);
1377 return slot;
1378 }
1379
1380 /* Convert interval SLOT into three intervals. */
1381 split_interval_left (slot, start - slot->position);
1382 split_interval_right (slot, length);
1383 return slot;
1384 }
1385 #endif
1386 \f
1387 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1388 LENGTH is the length of the text in SOURCE.
1389
1390 This is used in insdel.c when inserting Lisp_Strings into the
1391 buffer. The text corresponding to SOURCE is already in the buffer
1392 when this is called. The intervals of new tree are a copy of those
1393 belonging to the string being inserted; intervals are never
1394 shared.
1395
1396 If the inserted text had no intervals associated, and we don't
1397 want to inherit the surrounding text's properties, this function
1398 simply returns -- offset_intervals should handle placing the
1399 text in the correct interval, depending on the sticky bits.
1400
1401 If the inserted text had properties (intervals), then there are two
1402 cases -- either insertion happened in the middle of some interval,
1403 or between two intervals.
1404
1405 If the text goes into the middle of an interval, then new
1406 intervals are created in the middle with only the properties of
1407 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1408 which case the new text has the union of its properties and those
1409 of the text into which it was inserted.
1410
1411 If the text goes between two intervals, then if neither interval
1412 had its appropriate sticky property set (front_sticky, rear_sticky),
1413 the new text has only its properties. If one of the sticky properties
1414 is set, then the new text "sticks" to that region and its properties
1415 depend on merging as above. If both the preceding and succeeding
1416 intervals to the new text are "sticky", then the new text retains
1417 only its properties, as if neither sticky property were set. Perhaps
1418 we should consider merging all three sets of properties onto the new
1419 text... */
1420
1421 void
1422 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1423 INTERVAL source;
1424 int position, length;
1425 struct buffer *buffer;
1426 int inherit;
1427 {
1428 register INTERVAL under, over, this, prev;
1429 register INTERVAL tree;
1430 int middle;
1431
1432 tree = BUF_INTERVALS (buffer);
1433
1434 /* If the new text has no properties, it becomes part of whatever
1435 interval it was inserted into. */
1436 if (NULL_INTERVAL_P (source))
1437 {
1438 Lisp_Object buf;
1439 if (!inherit && ! NULL_INTERVAL_P (tree))
1440 {
1441 XSETBUFFER (buf, buffer);
1442 Fset_text_properties (make_number (position),
1443 make_number (position + length),
1444 Qnil, buf);
1445 }
1446 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1447 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1448 return;
1449 }
1450
1451 if (NULL_INTERVAL_P (tree))
1452 {
1453 /* The inserted text constitutes the whole buffer, so
1454 simply copy over the interval structure. */
1455 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1456 {
1457 Lisp_Object buf;
1458 XSETBUFFER (buf, buffer);
1459 BUF_INTERVALS (buffer) = reproduce_tree (source, buf);
1460 /* Explicitly free the old tree here. */
1461
1462 return;
1463 }
1464
1465 /* Create an interval tree in which to place a copy
1466 of the intervals of the inserted string. */
1467 {
1468 Lisp_Object buf;
1469 XSETBUFFER (buf, buffer);
1470 tree = create_root_interval (buf);
1471 }
1472 }
1473 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1474 /* If the buffer contains only the new string, but
1475 there was already some interval tree there, then it may be
1476 some zero length intervals. Eventually, do something clever
1477 about inserting properly. For now, just waste the old intervals. */
1478 {
1479 BUF_INTERVALS (buffer) = reproduce_tree (source, tree->parent);
1480 /* Explicitly free the old tree here. */
1481
1482 return;
1483 }
1484 /* Paranoia -- the text has already been added, so this buffer
1485 should be of non-zero length. */
1486 else if (TOTAL_LENGTH (tree) == 0)
1487 abort ();
1488
1489 this = under = find_interval (tree, position);
1490 if (NULL_INTERVAL_P (under)) /* Paranoia */
1491 abort ();
1492 over = find_interval (source, 1);
1493
1494 /* Here for insertion in the middle of an interval.
1495 Split off an equivalent interval to the right,
1496 then don't bother with it any more. */
1497
1498 if (position > under->position)
1499 {
1500 INTERVAL end_unchanged
1501 = split_interval_left (this, position - under->position);
1502 copy_properties (under, end_unchanged);
1503 under->position = position;
1504 prev = 0;
1505 middle = 1;
1506 }
1507 else
1508 {
1509 prev = previous_interval (under);
1510 if (prev && !END_NONSTICKY_P (prev))
1511 prev = 0;
1512 }
1513
1514 /* Insertion is now at beginning of UNDER. */
1515
1516 /* The inserted text "sticks" to the interval `under',
1517 which means it gets those properties.
1518 The properties of under are the result of
1519 adjust_intervals_for_insertion, so stickyness has
1520 already been taken care of. */
1521
1522 while (! NULL_INTERVAL_P (over))
1523 {
1524 if (LENGTH (over) < LENGTH (under))
1525 {
1526 this = split_interval_left (under, LENGTH (over));
1527 copy_properties (under, this);
1528 }
1529 else
1530 this = under;
1531 copy_properties (over, this);
1532 if (inherit)
1533 merge_properties (over, this);
1534 else
1535 copy_properties (over, this);
1536 over = next_interval (over);
1537 }
1538
1539 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1540 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1541 return;
1542 }
1543
1544 /* Get the value of property PROP from PLIST,
1545 which is the plist of an interval.
1546 We check for direct properties, for categories with property PROP,
1547 and for PROP appearing on the default-text-properties list. */
1548
1549 Lisp_Object
1550 textget (plist, prop)
1551 Lisp_Object plist;
1552 register Lisp_Object prop;
1553 {
1554 register Lisp_Object tail, fallback;
1555 fallback = Qnil;
1556
1557 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1558 {
1559 register Lisp_Object tem;
1560 tem = Fcar (tail);
1561 if (EQ (prop, tem))
1562 return Fcar (Fcdr (tail));
1563 if (EQ (tem, Qcategory))
1564 {
1565 tem = Fcar (Fcdr (tail));
1566 if (SYMBOLP (tem))
1567 fallback = Fget (tem, prop);
1568 }
1569 }
1570
1571 if (! NILP (fallback))
1572 return fallback;
1573 if (CONSP (Vdefault_text_properties))
1574 return Fplist_get (Vdefault_text_properties, prop);
1575 return Qnil;
1576 }
1577
1578 \f
1579 /* Set point in BUFFER to POSITION. If the target position is
1580 before an intangible character, move to an ok place. */
1581
1582 void
1583 set_point (position, buffer)
1584 register int position;
1585 register struct buffer *buffer;
1586 {
1587 register INTERVAL to, from, toprev, fromprev, target;
1588 int buffer_point;
1589 register Lisp_Object obj;
1590 int backwards = (position < BUF_PT (buffer)) ? 1 : 0;
1591 int old_position = BUF_PT (buffer);
1592
1593 buffer->point_before_scroll = Qnil;
1594
1595 if (position == BUF_PT (buffer))
1596 return;
1597
1598 /* Check this now, before checking if the buffer has any intervals.
1599 That way, we can catch conditions which break this sanity check
1600 whether or not there are intervals in the buffer. */
1601 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1602 abort ();
1603
1604 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1605 {
1606
1607 BUF_PT (buffer) = position;
1608 return;
1609 }
1610
1611 /* Set TO to the interval containing the char after POSITION,
1612 and TOPREV to the interval containing the char before POSITION.
1613 Either one may be null. They may be equal. */
1614 to = find_interval (BUF_INTERVALS (buffer), position);
1615 if (position == BUF_BEGV (buffer))
1616 toprev = 0;
1617 else if (to->position == position)
1618 toprev = previous_interval (to);
1619 else
1620 toprev = to;
1621
1622 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1623 ? BUF_ZV (buffer) - 1
1624 : BUF_PT (buffer));
1625
1626 /* Set FROM to the interval containing the char after PT,
1627 and FROMPREV to the interval containing the char before PT.
1628 Either one may be null. They may be equal. */
1629 /* We could cache this and save time. */
1630 from = find_interval (BUF_INTERVALS (buffer), buffer_point);
1631 if (buffer_point == BUF_BEGV (buffer))
1632 fromprev = 0;
1633 else if (from->position == BUF_PT (buffer))
1634 fromprev = previous_interval (from);
1635 else if (buffer_point != BUF_PT (buffer))
1636 fromprev = from, from = 0;
1637 else
1638 fromprev = from;
1639
1640 /* Moving within an interval. */
1641 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to))
1642 {
1643 BUF_PT (buffer) = position;
1644 return;
1645 }
1646
1647 /* If the new position is between two intangible characters,
1648 move forward or backward across all such characters. */
1649 if (NILP (Vinhibit_point_motion_hooks) && ! NULL_INTERVAL_P (to)
1650 && ! NULL_INTERVAL_P (toprev))
1651 {
1652 if (backwards)
1653 {
1654 /* Make sure the following character is intangible
1655 if the previous one is. */
1656 if (toprev == to
1657 || ! NILP (textget (to->plist, Qintangible)))
1658 /* Ok, that is so. Back up across intangible text. */
1659 while (! NULL_INTERVAL_P (toprev)
1660 && ! NILP (textget (toprev->plist, Qintangible)))
1661 {
1662 to = toprev;
1663 toprev = previous_interval (toprev);
1664 if (NULL_INTERVAL_P (toprev))
1665 position = BUF_BEGV (buffer);
1666 else
1667 /* This is the only line that's not
1668 dual to the following loop.
1669 That's because we want the position
1670 at the end of TOPREV. */
1671 position = to->position;
1672 }
1673 }
1674 else
1675 {
1676 /* Make sure the previous character is intangible
1677 if the following one is. */
1678 if (toprev == to
1679 || ! NILP (textget (toprev->plist, Qintangible)))
1680 /* Ok, that is so. Advance across intangible text. */
1681 while (! NULL_INTERVAL_P (to)
1682 && ! NILP (textget (to->plist, Qintangible)))
1683 {
1684 toprev = to;
1685 to = next_interval (to);
1686 if (NULL_INTERVAL_P (to))
1687 position = BUF_ZV (buffer);
1688 else
1689 position = to->position;
1690 }
1691 }
1692 /* Here TO is the interval after the stopping point
1693 and TOPREV is the interval before the stopping point.
1694 One or the other may be null. */
1695 }
1696
1697 BUF_PT (buffer) = position;
1698
1699 /* We run point-left and point-entered hooks here, iff the
1700 two intervals are not equivalent. These hooks take
1701 (old_point, new_point) as arguments. */
1702 if (NILP (Vinhibit_point_motion_hooks)
1703 && (! intervals_equal (from, to)
1704 || ! intervals_equal (fromprev, toprev)))
1705 {
1706 Lisp_Object leave_after, leave_before, enter_after, enter_before;
1707
1708 if (fromprev)
1709 leave_after = textget (fromprev->plist, Qpoint_left);
1710 else
1711 leave_after = Qnil;
1712 if (from)
1713 leave_before = textget (from->plist, Qpoint_left);
1714 else
1715 leave_before = Qnil;
1716
1717 if (toprev)
1718 enter_after = textget (toprev->plist, Qpoint_entered);
1719 else
1720 enter_after = Qnil;
1721 if (to)
1722 enter_before = textget (to->plist, Qpoint_entered);
1723 else
1724 enter_before = Qnil;
1725
1726 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
1727 call2 (leave_before, old_position, position);
1728 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
1729 call2 (leave_after, old_position, position);
1730
1731 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
1732 call2 (enter_before, old_position, position);
1733 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
1734 call2 (enter_after, old_position, position);
1735 }
1736 }
1737
1738 /* Set point temporarily, without checking any text properties. */
1739
1740 INLINE void
1741 temp_set_point (position, buffer)
1742 int position;
1743 struct buffer *buffer;
1744 {
1745 BUF_PT (buffer) = position;
1746 }
1747 \f
1748 /* Return the proper local map for position POSITION in BUFFER.
1749 Use the map specified by the local-map property, if any.
1750 Otherwise, use BUFFER's local map. */
1751
1752 Lisp_Object
1753 get_local_map (position, buffer)
1754 register int position;
1755 register struct buffer *buffer;
1756 {
1757 register INTERVAL interval;
1758 Lisp_Object prop, tem;
1759
1760 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1761 return buffer->keymap;
1762
1763 /* Perhaps we should just change `position' to the limit. */
1764 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1765 abort ();
1766
1767 interval = find_interval (BUF_INTERVALS (buffer), position);
1768 prop = textget (interval->plist, Qlocal_map);
1769 if (NILP (prop))
1770 return buffer->keymap;
1771
1772 /* Use the local map only if it is valid. */
1773 tem = Fkeymapp (prop);
1774 if (!NILP (tem))
1775 return prop;
1776
1777 return buffer->keymap;
1778 }
1779 \f
1780 /* Call the modification hook functions in LIST, each with START and END. */
1781
1782 static void
1783 call_mod_hooks (list, start, end)
1784 Lisp_Object list, start, end;
1785 {
1786 struct gcpro gcpro1;
1787 GCPRO1 (list);
1788 while (!NILP (list))
1789 {
1790 call2 (Fcar (list), start, end);
1791 list = Fcdr (list);
1792 }
1793 UNGCPRO;
1794 }
1795
1796 /* Check for read-only intervals and signal an error if we find one.
1797 Then check for any modification hooks in the range START up to
1798 (but not including) END. Create a list of all these hooks in
1799 lexicographic order, eliminating consecutive extra copies of the
1800 same hook. Then call those hooks in order, with START and END - 1
1801 as arguments. */
1802
1803 void
1804 verify_interval_modification (buf, start, end)
1805 struct buffer *buf;
1806 int start, end;
1807 {
1808 register INTERVAL intervals = BUF_INTERVALS (buf);
1809 register INTERVAL i, prev;
1810 Lisp_Object hooks;
1811 register Lisp_Object prev_mod_hooks;
1812 Lisp_Object mod_hooks;
1813 struct gcpro gcpro1;
1814
1815 hooks = Qnil;
1816 prev_mod_hooks = Qnil;
1817 mod_hooks = Qnil;
1818
1819 if (NULL_INTERVAL_P (intervals))
1820 return;
1821
1822 if (start > end)
1823 {
1824 int temp = start;
1825 start = end;
1826 end = temp;
1827 }
1828
1829 /* For an insert operation, check the two chars around the position. */
1830 if (start == end)
1831 {
1832 INTERVAL prev;
1833 Lisp_Object before, after;
1834
1835 /* Set I to the interval containing the char after START,
1836 and PREV to the interval containing the char before START.
1837 Either one may be null. They may be equal. */
1838 i = find_interval (intervals, start);
1839
1840 if (start == BUF_BEGV (buf))
1841 prev = 0;
1842 else if (i->position == start)
1843 prev = previous_interval (i);
1844 else if (i->position < start)
1845 prev = i;
1846 if (start == BUF_ZV (buf))
1847 i = 0;
1848
1849 /* If Vinhibit_read_only is set and is not a list, we can
1850 skip the read_only checks. */
1851 if (NILP (Vinhibit_read_only) || CONSP (Vinhibit_read_only))
1852 {
1853 /* If I and PREV differ we need to check for the read-only
1854 property together with its stickyness. If either I or
1855 PREV are 0, this check is all we need.
1856 We have to take special care, since read-only may be
1857 indirectly defined via the category property. */
1858 if (i != prev)
1859 {
1860 if (! NULL_INTERVAL_P (i))
1861 {
1862 after = textget (i->plist, Qread_only);
1863
1864 /* If interval I is read-only and read-only is
1865 front-sticky, inhibit insertion.
1866 Check for read-only as well as category. */
1867 if (! NILP (after)
1868 && NILP (Fmemq (after, Vinhibit_read_only)))
1869 {
1870 Lisp_Object tem;
1871
1872 tem = textget (i->plist, Qfront_sticky);
1873 if (TMEM (Qread_only, tem)
1874 || (NILP (Fplist_get (i->plist, Qread_only))
1875 && TMEM (Qcategory, tem)))
1876 error ("Attempt to insert within read-only text");
1877 }
1878 }
1879
1880 if (! NULL_INTERVAL_P (prev))
1881 {
1882 before = textget (prev->plist, Qread_only);
1883
1884 /* If interval PREV is read-only and read-only isn't
1885 rear-nonsticky, inhibit insertion.
1886 Check for read-only as well as category. */
1887 if (! NILP (before)
1888 && NILP (Fmemq (before, Vinhibit_read_only)))
1889 {
1890 Lisp_Object tem;
1891
1892 tem = textget (prev->plist, Qrear_nonsticky);
1893 if (! TMEM (Qread_only, tem)
1894 && (! NILP (Fplist_get (prev->plist,Qread_only))
1895 || ! TMEM (Qcategory, tem)))
1896 error ("Attempt to insert within read-only text");
1897 }
1898 }
1899 }
1900 else if (! NULL_INTERVAL_P (i))
1901 {
1902 after = textget (i->plist, Qread_only);
1903
1904 /* If interval I is read-only and read-only is
1905 front-sticky, inhibit insertion.
1906 Check for read-only as well as category. */
1907 if (! NILP (after) && NILP (Fmemq (after, Vinhibit_read_only)))
1908 {
1909 Lisp_Object tem;
1910
1911 tem = textget (i->plist, Qfront_sticky);
1912 if (TMEM (Qread_only, tem)
1913 || (NILP (Fplist_get (i->plist, Qread_only))
1914 && TMEM (Qcategory, tem)))
1915 error ("Attempt to insert within read-only text");
1916
1917 tem = textget (prev->plist, Qrear_nonsticky);
1918 if (! TMEM (Qread_only, tem)
1919 && (! NILP (Fplist_get (prev->plist, Qread_only))
1920 || ! TMEM (Qcategory, tem)))
1921 error ("Attempt to insert within read-only text");
1922 }
1923 }
1924 }
1925
1926 /* Run both insert hooks (just once if they're the same). */
1927 if (!NULL_INTERVAL_P (prev))
1928 prev_mod_hooks = textget (prev->plist, Qinsert_behind_hooks);
1929 if (!NULL_INTERVAL_P (i))
1930 mod_hooks = textget (i->plist, Qinsert_in_front_hooks);
1931 GCPRO1 (mod_hooks);
1932 if (! NILP (prev_mod_hooks))
1933 call_mod_hooks (prev_mod_hooks, make_number (start),
1934 make_number (end));
1935 UNGCPRO;
1936 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1937 call_mod_hooks (mod_hooks, make_number (start), make_number (end));
1938 }
1939 else
1940 {
1941 /* Loop over intervals on or next to START...END,
1942 collecting their hooks. */
1943
1944 i = find_interval (intervals, start);
1945 do
1946 {
1947 if (! INTERVAL_WRITABLE_P (i))
1948 error ("Attempt to modify read-only text");
1949
1950 mod_hooks = textget (i->plist, Qmodification_hooks);
1951 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1952 {
1953 hooks = Fcons (mod_hooks, hooks);
1954 prev_mod_hooks = mod_hooks;
1955 }
1956
1957 i = next_interval (i);
1958 }
1959 /* Keep going thru the interval containing the char before END. */
1960 while (! NULL_INTERVAL_P (i) && i->position < end);
1961
1962 GCPRO1 (hooks);
1963 hooks = Fnreverse (hooks);
1964 while (! EQ (hooks, Qnil))
1965 {
1966 call_mod_hooks (Fcar (hooks), make_number (start),
1967 make_number (end));
1968 hooks = Fcdr (hooks);
1969 }
1970 UNGCPRO;
1971 }
1972 }
1973
1974 /* Produce an interval tree reflecting the intervals in
1975 TREE from START to START + LENGTH. */
1976
1977 INTERVAL
1978 copy_intervals (tree, start, length)
1979 INTERVAL tree;
1980 int start, length;
1981 {
1982 register INTERVAL i, new, t;
1983 register int got, prevlen;
1984
1985 if (NULL_INTERVAL_P (tree) || length <= 0)
1986 return NULL_INTERVAL;
1987
1988 i = find_interval (tree, start);
1989 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
1990 abort ();
1991
1992 /* If there is only one interval and it's the default, return nil. */
1993 if ((start - i->position + 1 + length) < LENGTH (i)
1994 && DEFAULT_INTERVAL_P (i))
1995 return NULL_INTERVAL;
1996
1997 new = make_interval ();
1998 new->position = 1;
1999 got = (LENGTH (i) - (start - i->position));
2000 new->total_length = length;
2001 copy_properties (i, new);
2002
2003 t = new;
2004 prevlen = got;
2005 while (got < length)
2006 {
2007 i = next_interval (i);
2008 t = split_interval_right (t, prevlen);
2009 copy_properties (i, t);
2010 prevlen = LENGTH (i);
2011 got += prevlen;
2012 }
2013
2014 return balance_an_interval (new);
2015 }
2016
2017 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2018
2019 INLINE void
2020 copy_intervals_to_string (string, buffer, position, length)
2021 Lisp_Object string, buffer;
2022 int position, length;
2023 {
2024 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (XBUFFER (buffer)),
2025 position, length);
2026 if (NULL_INTERVAL_P (interval_copy))
2027 return;
2028
2029 interval_copy->parent = (INTERVAL) string;
2030 XSTRING (string)->intervals = interval_copy;
2031 }
2032 \f
2033 /* Return 1 if string S1 and S2 have identical properties; 0 otherwise.
2034 Assume they have identical characters. */
2035
2036 int
2037 compare_string_intervals (s1, s2)
2038 Lisp_Object s1, s2;
2039 {
2040 INTERVAL i1, i2;
2041 int pos = 1;
2042 int end = XSTRING (s1)->size + 1;
2043
2044 /* We specify 1 as position because the interval functions
2045 always use positions starting at 1. */
2046 i1 = find_interval (XSTRING (s1)->intervals, 1);
2047 i2 = find_interval (XSTRING (s2)->intervals, 1);
2048
2049 while (pos < end)
2050 {
2051 /* Determine how far we can go before we reach the end of I1 or I2. */
2052 int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2053 int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2054 int distance = min (len1, len2);
2055
2056 /* If we ever find a mismatch between the strings,
2057 they differ. */
2058 if (! intervals_equal (i1, i2))
2059 return 0;
2060
2061 /* Advance POS till the end of the shorter interval,
2062 and advance one or both interval pointers for the new position. */
2063 pos += distance;
2064 if (len1 == distance)
2065 i1 = next_interval (i1);
2066 if (len2 == distance)
2067 i2 = next_interval (i2);
2068 }
2069 return 1;
2070 }
2071
2072 #endif /* USE_TEXT_PROPERTIES */