Block-based vector allocation of small vectors.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "character.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 EMACS_INT consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* Nonzero during GC. */
181
182 int gc_in_progress;
183
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 int abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
204
205 #define SPARE_MEMORY (1 << 14)
206
207 /* Number of extra blocks malloc should get when it needs more core. */
208
209 static int malloc_hysteresis;
210
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
216
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
219
220 /* Pointer to the pure area, and its size. */
221
222 static char *purebeg;
223 static ptrdiff_t pure_size;
224
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
228 static ptrdiff_t pure_bytes_used_before_overflow;
229
230 /* Value is non-zero if P points into pure space. */
231
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
234
235 /* Index in pure at which next pure Lisp object will be allocated.. */
236
237 static ptrdiff_t pure_bytes_used_lisp;
238
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
240
241 static ptrdiff_t pure_bytes_used_non_lisp;
242
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
246 const char *pending_malloc_warning;
247
248 /* Maximum amount of C stack to save when a GC happens. */
249
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
253
254 /* Buffer in which we save a copy of the C stack at each GC. */
255
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
260
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
264 static int ignore_warnings;
265
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_buffer (Lisp_Object);
274 static void mark_terminals (void);
275 static void gc_sweep (void);
276 static Lisp_Object make_pure_vector (ptrdiff_t);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static struct Lisp_String *allocate_string (void);
284 static void compact_small_strings (void);
285 static void free_large_strings (void);
286 static void sweep_strings (void);
287 static void free_misc (Lisp_Object);
288 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
289
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294 enum mem_type
295 {
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
310 };
311
312 static void *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325 #define DEADP(x) EQ (x, Vdead)
326
327 #ifdef GC_MALLOC_CHECK
328
329 enum mem_type allocated_mem_type;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
394 static void lisp_free (void *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *);
405 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 #endif
410 static void mem_rotate_left (struct mem_node *);
411 static void mem_rotate_right (struct mem_node *);
412 static void mem_delete (struct mem_node *);
413 static void mem_delete_fixup (struct mem_node *);
414 static inline struct mem_node *mem_find (void *);
415
416
417 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
418 static void check_gcpros (void);
419 #endif
420
421 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
422
423 #ifndef DEADP
424 # define DEADP(x) 0
425 #endif
426
427 /* Recording what needs to be marked for gc. */
428
429 struct gcpro *gcprolist;
430
431 /* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
433
434 #define NSTATICS 0x640
435 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
436
437 /* Index of next unused slot in staticvec. */
438
439 static int staticidx = 0;
440
441 static void *pure_alloc (size_t, int);
442
443
444 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
446
447 #define ALIGN(ptr, ALIGNMENT) \
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
450
451
452 \f
453 /************************************************************************
454 Malloc
455 ************************************************************************/
456
457 /* Function malloc calls this if it finds we are near exhausting storage. */
458
459 void
460 malloc_warning (const char *str)
461 {
462 pending_malloc_warning = str;
463 }
464
465
466 /* Display an already-pending malloc warning. */
467
468 void
469 display_malloc_warning (void)
470 {
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
475 pending_malloc_warning = 0;
476 }
477 \f
478 /* Called if we can't allocate relocatable space for a buffer. */
479
480 void
481 buffer_memory_full (ptrdiff_t nbytes)
482 {
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
489
490 #ifndef REL_ALLOC
491 memory_full (nbytes);
492 #endif
493
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 }
498
499 /* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502 #define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
504
505 #ifndef XMALLOC_OVERRUN_CHECK
506 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
507 #else
508
509 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
511
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
516
517 The header is used to detect whether this block has been allocated
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
520
521 #define XMALLOC_OVERRUN_CHECK_SIZE 16
522 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
524
525 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528 #define XMALLOC_BASE_ALIGNMENT \
529 offsetof ( \
530 struct { \
531 union { long double d; intmax_t i; void *p; } u; \
532 char c; \
533 }, \
534 c)
535
536 #ifdef USE_LSB_TAG
537 # define XMALLOC_HEADER_ALIGNMENT \
538 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
539 #else
540 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
541 #endif
542 #define XMALLOC_OVERRUN_SIZE_SIZE \
543 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
544 + XMALLOC_HEADER_ALIGNMENT - 1) \
545 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
546 - XMALLOC_OVERRUN_CHECK_SIZE)
547
548 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\x9a', '\x9b', '\xae', '\xaf',
550 '\xbf', '\xbe', '\xce', '\xcf',
551 '\xea', '\xeb', '\xec', '\xed',
552 '\xdf', '\xde', '\x9c', '\x9d' };
553
554 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
555 { '\xaa', '\xab', '\xac', '\xad',
556 '\xba', '\xbb', '\xbc', '\xbd',
557 '\xca', '\xcb', '\xcc', '\xcd',
558 '\xda', '\xdb', '\xdc', '\xdd' };
559
560 /* Insert and extract the block size in the header. */
561
562 static void
563 xmalloc_put_size (unsigned char *ptr, size_t size)
564 {
565 int i;
566 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
567 {
568 *--ptr = size & ((1 << CHAR_BIT) - 1);
569 size >>= CHAR_BIT;
570 }
571 }
572
573 static size_t
574 xmalloc_get_size (unsigned char *ptr)
575 {
576 size_t size = 0;
577 int i;
578 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
579 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
580 {
581 size <<= CHAR_BIT;
582 size += *ptr++;
583 }
584 return size;
585 }
586
587
588 /* The call depth in overrun_check functions. For example, this might happen:
589 xmalloc()
590 overrun_check_malloc()
591 -> malloc -> (via hook)_-> emacs_blocked_malloc
592 -> overrun_check_malloc
593 call malloc (hooks are NULL, so real malloc is called).
594 malloc returns 10000.
595 add overhead, return 10016.
596 <- (back in overrun_check_malloc)
597 add overhead again, return 10032
598 xmalloc returns 10032.
599
600 (time passes).
601
602 xfree(10032)
603 overrun_check_free(10032)
604 decrease overhead
605 free(10016) <- crash, because 10000 is the original pointer. */
606
607 static ptrdiff_t check_depth;
608
609 /* Like malloc, but wraps allocated block with header and trailer. */
610
611 static void *
612 overrun_check_malloc (size_t size)
613 {
614 register unsigned char *val;
615 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
616 if (SIZE_MAX - overhead < size)
617 abort ();
618
619 val = (unsigned char *) malloc (size + overhead);
620 if (val && check_depth == 1)
621 {
622 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
623 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
624 xmalloc_put_size (val, size);
625 memcpy (val + size, xmalloc_overrun_check_trailer,
626 XMALLOC_OVERRUN_CHECK_SIZE);
627 }
628 --check_depth;
629 return val;
630 }
631
632
633 /* Like realloc, but checks old block for overrun, and wraps new block
634 with header and trailer. */
635
636 static void *
637 overrun_check_realloc (void *block, size_t size)
638 {
639 register unsigned char *val = (unsigned char *) block;
640 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
641 if (SIZE_MAX - overhead < size)
642 abort ();
643
644 if (val
645 && check_depth == 1
646 && memcmp (xmalloc_overrun_check_header,
647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
649 {
650 size_t osize = xmalloc_get_size (val);
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
653 abort ();
654 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
657 }
658
659 val = realloc (val, size + overhead);
660
661 if (val && check_depth == 1)
662 {
663 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
664 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 xmalloc_put_size (val, size);
666 memcpy (val + size, xmalloc_overrun_check_trailer,
667 XMALLOC_OVERRUN_CHECK_SIZE);
668 }
669 --check_depth;
670 return val;
671 }
672
673 /* Like free, but checks block for overrun. */
674
675 static void
676 overrun_check_free (void *block)
677 {
678 unsigned char *val = (unsigned char *) block;
679
680 ++check_depth;
681 if (val
682 && check_depth == 1
683 && memcmp (xmalloc_overrun_check_header,
684 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
685 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
686 {
687 size_t osize = xmalloc_get_size (val);
688 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
689 XMALLOC_OVERRUN_CHECK_SIZE))
690 abort ();
691 #ifdef XMALLOC_CLEAR_FREE_MEMORY
692 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
693 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
694 #else
695 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
696 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
697 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
698 #endif
699 }
700
701 free (val);
702 --check_depth;
703 }
704
705 #undef malloc
706 #undef realloc
707 #undef free
708 #define malloc overrun_check_malloc
709 #define realloc overrun_check_realloc
710 #define free overrun_check_free
711 #endif
712
713 #ifdef SYNC_INPUT
714 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
715 there's no need to block input around malloc. */
716 #define MALLOC_BLOCK_INPUT ((void)0)
717 #define MALLOC_UNBLOCK_INPUT ((void)0)
718 #else
719 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
720 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
721 #endif
722
723 /* Like malloc but check for no memory and block interrupt input.. */
724
725 void *
726 xmalloc (size_t size)
727 {
728 void *val;
729
730 MALLOC_BLOCK_INPUT;
731 val = malloc (size);
732 MALLOC_UNBLOCK_INPUT;
733
734 if (!val && size)
735 memory_full (size);
736 return val;
737 }
738
739
740 /* Like realloc but check for no memory and block interrupt input.. */
741
742 void *
743 xrealloc (void *block, size_t size)
744 {
745 void *val;
746
747 MALLOC_BLOCK_INPUT;
748 /* We must call malloc explicitly when BLOCK is 0, since some
749 reallocs don't do this. */
750 if (! block)
751 val = malloc (size);
752 else
753 val = realloc (block, size);
754 MALLOC_UNBLOCK_INPUT;
755
756 if (!val && size)
757 memory_full (size);
758 return val;
759 }
760
761
762 /* Like free but block interrupt input. */
763
764 void
765 xfree (void *block)
766 {
767 if (!block)
768 return;
769 MALLOC_BLOCK_INPUT;
770 free (block);
771 MALLOC_UNBLOCK_INPUT;
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
775 }
776
777
778 /* Other parts of Emacs pass large int values to allocator functions
779 expecting ptrdiff_t. This is portable in practice, but check it to
780 be safe. */
781 verify (INT_MAX <= PTRDIFF_MAX);
782
783
784 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
785 Signal an error on memory exhaustion, and block interrupt input. */
786
787 void *
788 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
789 {
790 xassert (0 <= nitems && 0 < item_size);
791 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
792 memory_full (SIZE_MAX);
793 return xmalloc (nitems * item_size);
794 }
795
796
797 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
798 Signal an error on memory exhaustion, and block interrupt input. */
799
800 void *
801 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
802 {
803 xassert (0 <= nitems && 0 < item_size);
804 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
805 memory_full (SIZE_MAX);
806 return xrealloc (pa, nitems * item_size);
807 }
808
809
810 /* Grow PA, which points to an array of *NITEMS items, and return the
811 location of the reallocated array, updating *NITEMS to reflect its
812 new size. The new array will contain at least NITEMS_INCR_MIN more
813 items, but will not contain more than NITEMS_MAX items total.
814 ITEM_SIZE is the size of each item, in bytes.
815
816 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
817 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
818 infinity.
819
820 If PA is null, then allocate a new array instead of reallocating
821 the old one. Thus, to grow an array A without saving its old
822 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
823 &NITEMS, ...).
824
825 Block interrupt input as needed. If memory exhaustion occurs, set
826 *NITEMS to zero if PA is null, and signal an error (i.e., do not
827 return). */
828
829 void *
830 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
831 ptrdiff_t nitems_max, ptrdiff_t item_size)
832 {
833 /* The approximate size to use for initial small allocation
834 requests. This is the largest "small" request for the GNU C
835 library malloc. */
836 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
837
838 /* If the array is tiny, grow it to about (but no greater than)
839 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
840 ptrdiff_t n = *nitems;
841 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
842 ptrdiff_t half_again = n >> 1;
843 ptrdiff_t incr_estimate = max (tiny_max, half_again);
844
845 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
846 NITEMS_MAX, and what the C language can represent safely. */
847 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
848 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
849 ? nitems_max : C_language_max);
850 ptrdiff_t nitems_incr_max = n_max - n;
851 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
852
853 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
854 if (! pa)
855 *nitems = 0;
856 if (nitems_incr_max < incr)
857 memory_full (SIZE_MAX);
858 n += incr;
859 pa = xrealloc (pa, n * item_size);
860 *nitems = n;
861 return pa;
862 }
863
864
865 /* Like strdup, but uses xmalloc. */
866
867 char *
868 xstrdup (const char *s)
869 {
870 size_t len = strlen (s) + 1;
871 char *p = (char *) xmalloc (len);
872 memcpy (p, s, len);
873 return p;
874 }
875
876
877 /* Unwind for SAFE_ALLOCA */
878
879 Lisp_Object
880 safe_alloca_unwind (Lisp_Object arg)
881 {
882 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
883
884 p->dogc = 0;
885 xfree (p->pointer);
886 p->pointer = 0;
887 free_misc (arg);
888 return Qnil;
889 }
890
891
892 /* Like malloc but used for allocating Lisp data. NBYTES is the
893 number of bytes to allocate, TYPE describes the intended use of the
894 allocated memory block (for strings, for conses, ...). */
895
896 #ifndef USE_LSB_TAG
897 static void *lisp_malloc_loser;
898 #endif
899
900 static void *
901 lisp_malloc (size_t nbytes, enum mem_type type)
902 {
903 register void *val;
904
905 MALLOC_BLOCK_INPUT;
906
907 #ifdef GC_MALLOC_CHECK
908 allocated_mem_type = type;
909 #endif
910
911 val = (void *) malloc (nbytes);
912
913 #ifndef USE_LSB_TAG
914 /* If the memory just allocated cannot be addressed thru a Lisp
915 object's pointer, and it needs to be,
916 that's equivalent to running out of memory. */
917 if (val && type != MEM_TYPE_NON_LISP)
918 {
919 Lisp_Object tem;
920 XSETCONS (tem, (char *) val + nbytes - 1);
921 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
922 {
923 lisp_malloc_loser = val;
924 free (val);
925 val = 0;
926 }
927 }
928 #endif
929
930 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
931 if (val && type != MEM_TYPE_NON_LISP)
932 mem_insert (val, (char *) val + nbytes, type);
933 #endif
934
935 MALLOC_UNBLOCK_INPUT;
936 if (!val && nbytes)
937 memory_full (nbytes);
938 return val;
939 }
940
941 /* Free BLOCK. This must be called to free memory allocated with a
942 call to lisp_malloc. */
943
944 static void
945 lisp_free (void *block)
946 {
947 MALLOC_BLOCK_INPUT;
948 free (block);
949 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
950 mem_delete (mem_find (block));
951 #endif
952 MALLOC_UNBLOCK_INPUT;
953 }
954
955 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
956
957 /* The entry point is lisp_align_malloc which returns blocks of at most
958 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
959
960 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
961 #define USE_POSIX_MEMALIGN 1
962 #endif
963
964 /* BLOCK_ALIGN has to be a power of 2. */
965 #define BLOCK_ALIGN (1 << 10)
966
967 /* Padding to leave at the end of a malloc'd block. This is to give
968 malloc a chance to minimize the amount of memory wasted to alignment.
969 It should be tuned to the particular malloc library used.
970 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
971 posix_memalign on the other hand would ideally prefer a value of 4
972 because otherwise, there's 1020 bytes wasted between each ablocks.
973 In Emacs, testing shows that those 1020 can most of the time be
974 efficiently used by malloc to place other objects, so a value of 0 can
975 still preferable unless you have a lot of aligned blocks and virtually
976 nothing else. */
977 #define BLOCK_PADDING 0
978 #define BLOCK_BYTES \
979 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
980
981 /* Internal data structures and constants. */
982
983 #define ABLOCKS_SIZE 16
984
985 /* An aligned block of memory. */
986 struct ablock
987 {
988 union
989 {
990 char payload[BLOCK_BYTES];
991 struct ablock *next_free;
992 } x;
993 /* `abase' is the aligned base of the ablocks. */
994 /* It is overloaded to hold the virtual `busy' field that counts
995 the number of used ablock in the parent ablocks.
996 The first ablock has the `busy' field, the others have the `abase'
997 field. To tell the difference, we assume that pointers will have
998 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
999 is used to tell whether the real base of the parent ablocks is `abase'
1000 (if not, the word before the first ablock holds a pointer to the
1001 real base). */
1002 struct ablocks *abase;
1003 /* The padding of all but the last ablock is unused. The padding of
1004 the last ablock in an ablocks is not allocated. */
1005 #if BLOCK_PADDING
1006 char padding[BLOCK_PADDING];
1007 #endif
1008 };
1009
1010 /* A bunch of consecutive aligned blocks. */
1011 struct ablocks
1012 {
1013 struct ablock blocks[ABLOCKS_SIZE];
1014 };
1015
1016 /* Size of the block requested from malloc or posix_memalign. */
1017 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1018
1019 #define ABLOCK_ABASE(block) \
1020 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1021 ? (struct ablocks *)(block) \
1022 : (block)->abase)
1023
1024 /* Virtual `busy' field. */
1025 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1026
1027 /* Pointer to the (not necessarily aligned) malloc block. */
1028 #ifdef USE_POSIX_MEMALIGN
1029 #define ABLOCKS_BASE(abase) (abase)
1030 #else
1031 #define ABLOCKS_BASE(abase) \
1032 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1033 #endif
1034
1035 /* The list of free ablock. */
1036 static struct ablock *free_ablock;
1037
1038 /* Allocate an aligned block of nbytes.
1039 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1040 smaller or equal to BLOCK_BYTES. */
1041 static void *
1042 lisp_align_malloc (size_t nbytes, enum mem_type type)
1043 {
1044 void *base, *val;
1045 struct ablocks *abase;
1046
1047 eassert (nbytes <= BLOCK_BYTES);
1048
1049 MALLOC_BLOCK_INPUT;
1050
1051 #ifdef GC_MALLOC_CHECK
1052 allocated_mem_type = type;
1053 #endif
1054
1055 if (!free_ablock)
1056 {
1057 int i;
1058 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1059
1060 #ifdef DOUG_LEA_MALLOC
1061 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1062 because mapped region contents are not preserved in
1063 a dumped Emacs. */
1064 mallopt (M_MMAP_MAX, 0);
1065 #endif
1066
1067 #ifdef USE_POSIX_MEMALIGN
1068 {
1069 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1070 if (err)
1071 base = NULL;
1072 abase = base;
1073 }
1074 #else
1075 base = malloc (ABLOCKS_BYTES);
1076 abase = ALIGN (base, BLOCK_ALIGN);
1077 #endif
1078
1079 if (base == 0)
1080 {
1081 MALLOC_UNBLOCK_INPUT;
1082 memory_full (ABLOCKS_BYTES);
1083 }
1084
1085 aligned = (base == abase);
1086 if (!aligned)
1087 ((void**)abase)[-1] = base;
1088
1089 #ifdef DOUG_LEA_MALLOC
1090 /* Back to a reasonable maximum of mmap'ed areas. */
1091 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1092 #endif
1093
1094 #ifndef USE_LSB_TAG
1095 /* If the memory just allocated cannot be addressed thru a Lisp
1096 object's pointer, and it needs to be, that's equivalent to
1097 running out of memory. */
1098 if (type != MEM_TYPE_NON_LISP)
1099 {
1100 Lisp_Object tem;
1101 char *end = (char *) base + ABLOCKS_BYTES - 1;
1102 XSETCONS (tem, end);
1103 if ((char *) XCONS (tem) != end)
1104 {
1105 lisp_malloc_loser = base;
1106 free (base);
1107 MALLOC_UNBLOCK_INPUT;
1108 memory_full (SIZE_MAX);
1109 }
1110 }
1111 #endif
1112
1113 /* Initialize the blocks and put them on the free list.
1114 If `base' was not properly aligned, we can't use the last block. */
1115 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1116 {
1117 abase->blocks[i].abase = abase;
1118 abase->blocks[i].x.next_free = free_ablock;
1119 free_ablock = &abase->blocks[i];
1120 }
1121 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1122
1123 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1124 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1125 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1126 eassert (ABLOCKS_BASE (abase) == base);
1127 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1128 }
1129
1130 abase = ABLOCK_ABASE (free_ablock);
1131 ABLOCKS_BUSY (abase) =
1132 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1133 val = free_ablock;
1134 free_ablock = free_ablock->x.next_free;
1135
1136 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1137 if (type != MEM_TYPE_NON_LISP)
1138 mem_insert (val, (char *) val + nbytes, type);
1139 #endif
1140
1141 MALLOC_UNBLOCK_INPUT;
1142
1143 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1144 return val;
1145 }
1146
1147 static void
1148 lisp_align_free (void *block)
1149 {
1150 struct ablock *ablock = block;
1151 struct ablocks *abase = ABLOCK_ABASE (ablock);
1152
1153 MALLOC_BLOCK_INPUT;
1154 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1155 mem_delete (mem_find (block));
1156 #endif
1157 /* Put on free list. */
1158 ablock->x.next_free = free_ablock;
1159 free_ablock = ablock;
1160 /* Update busy count. */
1161 ABLOCKS_BUSY (abase)
1162 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1163
1164 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1165 { /* All the blocks are free. */
1166 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1167 struct ablock **tem = &free_ablock;
1168 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1169
1170 while (*tem)
1171 {
1172 if (*tem >= (struct ablock *) abase && *tem < atop)
1173 {
1174 i++;
1175 *tem = (*tem)->x.next_free;
1176 }
1177 else
1178 tem = &(*tem)->x.next_free;
1179 }
1180 eassert ((aligned & 1) == aligned);
1181 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1182 #ifdef USE_POSIX_MEMALIGN
1183 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1184 #endif
1185 free (ABLOCKS_BASE (abase));
1186 }
1187 MALLOC_UNBLOCK_INPUT;
1188 }
1189
1190 /* Return a new buffer structure allocated from the heap with
1191 a call to lisp_malloc. */
1192
1193 struct buffer *
1194 allocate_buffer (void)
1195 {
1196 struct buffer *b
1197 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1198 MEM_TYPE_BUFFER);
1199 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1200 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1201 / sizeof (EMACS_INT)));
1202 return b;
1203 }
1204
1205 \f
1206 #ifndef SYSTEM_MALLOC
1207
1208 /* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1217
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1221
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1231
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1237
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1241
1242 static size_t bytes_used_when_reconsidered;
1243
1244 /* Value of _bytes_used, when spare_memory was freed. */
1245
1246 static size_t bytes_used_when_full;
1247
1248 /* This function is used as the hook for free to call. */
1249
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1252 {
1253 BLOCK_INPUT_ALLOC;
1254
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1257 {
1258 struct mem_node *m;
1259
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
1273 #endif /* GC_MALLOC_CHECK */
1274
1275 __free_hook = old_free_hook;
1276 free (ptr);
1277
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1290
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1293 }
1294
1295
1296 /* This function is the malloc hook that Emacs uses. */
1297
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1300 {
1301 void *value;
1302
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1311
1312 value = (void *) malloc (size);
1313
1314 #ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333 #endif /* GC_MALLOC_CHECK */
1334
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1337
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1340 }
1341
1342
1343 /* This function is the realloc hook that Emacs uses. */
1344
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1347 {
1348 void *value;
1349
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1352
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
1367
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1369
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1373
1374 value = (void *) realloc (ptr, size);
1375
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
1390
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1393
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1396
1397 return value;
1398 }
1399
1400
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407 void
1408 reset_malloc_hooks (void)
1409 {
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1413 }
1414 #endif /* HAVE_PTHREAD */
1415
1416
1417 /* Called from main to set up malloc to use our hooks. */
1418
1419 void
1420 uninterrupt_malloc (void)
1421 {
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1425
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1437
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1441
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1445
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1449 }
1450
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1453
1454
1455 \f
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1459
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
1469 struct interval_block
1470 {
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1474 };
1475
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
1479 static struct interval_block *interval_block;
1480
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1483
1484 static int interval_block_index;
1485
1486 /* Number of free and live intervals. */
1487
1488 static EMACS_INT total_free_intervals, total_intervals;
1489
1490 /* List of free intervals. */
1491
1492 static INTERVAL interval_free_list;
1493
1494
1495 /* Initialize interval allocation. */
1496
1497 static void
1498 init_intervals (void)
1499 {
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1503 }
1504
1505
1506 /* Return a new interval. */
1507
1508 INTERVAL
1509 make_interval (void)
1510 {
1511 INTERVAL val;
1512
1513 /* eassert (!handling_signal); */
1514
1515 MALLOC_BLOCK_INPUT;
1516
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
1526 register struct interval_block *newi;
1527
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
1530
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1534 }
1535 val = &interval_block->intervals[interval_block_index++];
1536 }
1537
1538 MALLOC_UNBLOCK_INPUT;
1539
1540 consing_since_gc += sizeof (struct interval);
1541 intervals_consed++;
1542 RESET_INTERVAL (val);
1543 val->gcmarkbit = 0;
1544 return val;
1545 }
1546
1547
1548 /* Mark Lisp objects in interval I. */
1549
1550 static void
1551 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 {
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
1555 mark_object (i->plist);
1556 }
1557
1558
1559 /* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1561
1562 static void
1563 mark_interval_tree (register INTERVAL tree)
1564 {
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1568
1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
1570 }
1571
1572
1573 /* Mark the interval tree rooted in I. */
1574
1575 #define MARK_INTERVAL_TREE(i) \
1576 do { \
1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1578 mark_interval_tree (i); \
1579 } while (0)
1580
1581
1582 #define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
1585 (i) = balance_intervals (i); \
1586 } while (0)
1587
1588 \f
1589 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1590 can't create number objects in macros. */
1591 #ifndef make_number
1592 Lisp_Object
1593 make_number (EMACS_INT n)
1594 {
1595 Lisp_Object obj;
1596 obj.s.val = n;
1597 obj.s.type = Lisp_Int;
1598 return obj;
1599 }
1600 #endif
1601 \f
1602 /* Convert the pointer-sized word P to EMACS_INT while preserving its
1603 type and ptr fields. */
1604 static Lisp_Object
1605 widen_to_Lisp_Object (void *p)
1606 {
1607 intptr_t i = (intptr_t) p;
1608 #ifdef USE_LISP_UNION_TYPE
1609 Lisp_Object obj;
1610 obj.i = i;
1611 return obj;
1612 #else
1613 return i;
1614 #endif
1615 }
1616 \f
1617 /***********************************************************************
1618 String Allocation
1619 ***********************************************************************/
1620
1621 /* Lisp_Strings are allocated in string_block structures. When a new
1622 string_block is allocated, all the Lisp_Strings it contains are
1623 added to a free-list string_free_list. When a new Lisp_String is
1624 needed, it is taken from that list. During the sweep phase of GC,
1625 string_blocks that are entirely free are freed, except two which
1626 we keep.
1627
1628 String data is allocated from sblock structures. Strings larger
1629 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1630 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1631
1632 Sblocks consist internally of sdata structures, one for each
1633 Lisp_String. The sdata structure points to the Lisp_String it
1634 belongs to. The Lisp_String points back to the `u.data' member of
1635 its sdata structure.
1636
1637 When a Lisp_String is freed during GC, it is put back on
1638 string_free_list, and its `data' member and its sdata's `string'
1639 pointer is set to null. The size of the string is recorded in the
1640 `u.nbytes' member of the sdata. So, sdata structures that are no
1641 longer used, can be easily recognized, and it's easy to compact the
1642 sblocks of small strings which we do in compact_small_strings. */
1643
1644 /* Size in bytes of an sblock structure used for small strings. This
1645 is 8192 minus malloc overhead. */
1646
1647 #define SBLOCK_SIZE 8188
1648
1649 /* Strings larger than this are considered large strings. String data
1650 for large strings is allocated from individual sblocks. */
1651
1652 #define LARGE_STRING_BYTES 1024
1653
1654 /* Structure describing string memory sub-allocated from an sblock.
1655 This is where the contents of Lisp strings are stored. */
1656
1657 struct sdata
1658 {
1659 /* Back-pointer to the string this sdata belongs to. If null, this
1660 structure is free, and the NBYTES member of the union below
1661 contains the string's byte size (the same value that STRING_BYTES
1662 would return if STRING were non-null). If non-null, STRING_BYTES
1663 (STRING) is the size of the data, and DATA contains the string's
1664 contents. */
1665 struct Lisp_String *string;
1666
1667 #ifdef GC_CHECK_STRING_BYTES
1668
1669 ptrdiff_t nbytes;
1670 unsigned char data[1];
1671
1672 #define SDATA_NBYTES(S) (S)->nbytes
1673 #define SDATA_DATA(S) (S)->data
1674 #define SDATA_SELECTOR(member) member
1675
1676 #else /* not GC_CHECK_STRING_BYTES */
1677
1678 union
1679 {
1680 /* When STRING is non-null. */
1681 unsigned char data[1];
1682
1683 /* When STRING is null. */
1684 ptrdiff_t nbytes;
1685 } u;
1686
1687 #define SDATA_NBYTES(S) (S)->u.nbytes
1688 #define SDATA_DATA(S) (S)->u.data
1689 #define SDATA_SELECTOR(member) u.member
1690
1691 #endif /* not GC_CHECK_STRING_BYTES */
1692
1693 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1694 };
1695
1696
1697 /* Structure describing a block of memory which is sub-allocated to
1698 obtain string data memory for strings. Blocks for small strings
1699 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1700 as large as needed. */
1701
1702 struct sblock
1703 {
1704 /* Next in list. */
1705 struct sblock *next;
1706
1707 /* Pointer to the next free sdata block. This points past the end
1708 of the sblock if there isn't any space left in this block. */
1709 struct sdata *next_free;
1710
1711 /* Start of data. */
1712 struct sdata first_data;
1713 };
1714
1715 /* Number of Lisp strings in a string_block structure. The 1020 is
1716 1024 minus malloc overhead. */
1717
1718 #define STRING_BLOCK_SIZE \
1719 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1720
1721 /* Structure describing a block from which Lisp_String structures
1722 are allocated. */
1723
1724 struct string_block
1725 {
1726 /* Place `strings' first, to preserve alignment. */
1727 struct Lisp_String strings[STRING_BLOCK_SIZE];
1728 struct string_block *next;
1729 };
1730
1731 /* Head and tail of the list of sblock structures holding Lisp string
1732 data. We always allocate from current_sblock. The NEXT pointers
1733 in the sblock structures go from oldest_sblock to current_sblock. */
1734
1735 static struct sblock *oldest_sblock, *current_sblock;
1736
1737 /* List of sblocks for large strings. */
1738
1739 static struct sblock *large_sblocks;
1740
1741 /* List of string_block structures. */
1742
1743 static struct string_block *string_blocks;
1744
1745 /* Free-list of Lisp_Strings. */
1746
1747 static struct Lisp_String *string_free_list;
1748
1749 /* Number of live and free Lisp_Strings. */
1750
1751 static EMACS_INT total_strings, total_free_strings;
1752
1753 /* Number of bytes used by live strings. */
1754
1755 static EMACS_INT total_string_size;
1756
1757 /* Given a pointer to a Lisp_String S which is on the free-list
1758 string_free_list, return a pointer to its successor in the
1759 free-list. */
1760
1761 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1762
1763 /* Return a pointer to the sdata structure belonging to Lisp string S.
1764 S must be live, i.e. S->data must not be null. S->data is actually
1765 a pointer to the `u.data' member of its sdata structure; the
1766 structure starts at a constant offset in front of that. */
1767
1768 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1769
1770
1771 #ifdef GC_CHECK_STRING_OVERRUN
1772
1773 /* We check for overrun in string data blocks by appending a small
1774 "cookie" after each allocated string data block, and check for the
1775 presence of this cookie during GC. */
1776
1777 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1778 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1779 { '\xde', '\xad', '\xbe', '\xef' };
1780
1781 #else
1782 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1783 #endif
1784
1785 /* Value is the size of an sdata structure large enough to hold NBYTES
1786 bytes of string data. The value returned includes a terminating
1787 NUL byte, the size of the sdata structure, and padding. */
1788
1789 #ifdef GC_CHECK_STRING_BYTES
1790
1791 #define SDATA_SIZE(NBYTES) \
1792 ((SDATA_DATA_OFFSET \
1793 + (NBYTES) + 1 \
1794 + sizeof (ptrdiff_t) - 1) \
1795 & ~(sizeof (ptrdiff_t) - 1))
1796
1797 #else /* not GC_CHECK_STRING_BYTES */
1798
1799 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1800 less than the size of that member. The 'max' is not needed when
1801 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1802 alignment code reserves enough space. */
1803
1804 #define SDATA_SIZE(NBYTES) \
1805 ((SDATA_DATA_OFFSET \
1806 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1807 ? NBYTES \
1808 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1809 + 1 \
1810 + sizeof (ptrdiff_t) - 1) \
1811 & ~(sizeof (ptrdiff_t) - 1))
1812
1813 #endif /* not GC_CHECK_STRING_BYTES */
1814
1815 /* Extra bytes to allocate for each string. */
1816
1817 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1818
1819 /* Exact bound on the number of bytes in a string, not counting the
1820 terminating null. A string cannot contain more bytes than
1821 STRING_BYTES_BOUND, nor can it be so long that the size_t
1822 arithmetic in allocate_string_data would overflow while it is
1823 calculating a value to be passed to malloc. */
1824 #define STRING_BYTES_MAX \
1825 min (STRING_BYTES_BOUND, \
1826 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1827 - GC_STRING_EXTRA \
1828 - offsetof (struct sblock, first_data) \
1829 - SDATA_DATA_OFFSET) \
1830 & ~(sizeof (EMACS_INT) - 1)))
1831
1832 /* Initialize string allocation. Called from init_alloc_once. */
1833
1834 static void
1835 init_strings (void)
1836 {
1837 total_strings = total_free_strings = total_string_size = 0;
1838 oldest_sblock = current_sblock = large_sblocks = NULL;
1839 string_blocks = NULL;
1840 string_free_list = NULL;
1841 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1842 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1843 }
1844
1845
1846 #ifdef GC_CHECK_STRING_BYTES
1847
1848 static int check_string_bytes_count;
1849
1850 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1851
1852
1853 /* Like GC_STRING_BYTES, but with debugging check. */
1854
1855 ptrdiff_t
1856 string_bytes (struct Lisp_String *s)
1857 {
1858 ptrdiff_t nbytes =
1859 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1860
1861 if (!PURE_POINTER_P (s)
1862 && s->data
1863 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1864 abort ();
1865 return nbytes;
1866 }
1867
1868 /* Check validity of Lisp strings' string_bytes member in B. */
1869
1870 static void
1871 check_sblock (struct sblock *b)
1872 {
1873 struct sdata *from, *end, *from_end;
1874
1875 end = b->next_free;
1876
1877 for (from = &b->first_data; from < end; from = from_end)
1878 {
1879 /* Compute the next FROM here because copying below may
1880 overwrite data we need to compute it. */
1881 ptrdiff_t nbytes;
1882
1883 /* Check that the string size recorded in the string is the
1884 same as the one recorded in the sdata structure. */
1885 if (from->string)
1886 CHECK_STRING_BYTES (from->string);
1887
1888 if (from->string)
1889 nbytes = GC_STRING_BYTES (from->string);
1890 else
1891 nbytes = SDATA_NBYTES (from);
1892
1893 nbytes = SDATA_SIZE (nbytes);
1894 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1895 }
1896 }
1897
1898
1899 /* Check validity of Lisp strings' string_bytes member. ALL_P
1900 non-zero means check all strings, otherwise check only most
1901 recently allocated strings. Used for hunting a bug. */
1902
1903 static void
1904 check_string_bytes (int all_p)
1905 {
1906 if (all_p)
1907 {
1908 struct sblock *b;
1909
1910 for (b = large_sblocks; b; b = b->next)
1911 {
1912 struct Lisp_String *s = b->first_data.string;
1913 if (s)
1914 CHECK_STRING_BYTES (s);
1915 }
1916
1917 for (b = oldest_sblock; b; b = b->next)
1918 check_sblock (b);
1919 }
1920 else
1921 check_sblock (current_sblock);
1922 }
1923
1924 #endif /* GC_CHECK_STRING_BYTES */
1925
1926 #ifdef GC_CHECK_STRING_FREE_LIST
1927
1928 /* Walk through the string free list looking for bogus next pointers.
1929 This may catch buffer overrun from a previous string. */
1930
1931 static void
1932 check_string_free_list (void)
1933 {
1934 struct Lisp_String *s;
1935
1936 /* Pop a Lisp_String off the free-list. */
1937 s = string_free_list;
1938 while (s != NULL)
1939 {
1940 if ((uintptr_t) s < 1024)
1941 abort ();
1942 s = NEXT_FREE_LISP_STRING (s);
1943 }
1944 }
1945 #else
1946 #define check_string_free_list()
1947 #endif
1948
1949 /* Return a new Lisp_String. */
1950
1951 static struct Lisp_String *
1952 allocate_string (void)
1953 {
1954 struct Lisp_String *s;
1955
1956 /* eassert (!handling_signal); */
1957
1958 MALLOC_BLOCK_INPUT;
1959
1960 /* If the free-list is empty, allocate a new string_block, and
1961 add all the Lisp_Strings in it to the free-list. */
1962 if (string_free_list == NULL)
1963 {
1964 struct string_block *b;
1965 int i;
1966
1967 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1968 memset (b, 0, sizeof *b);
1969 b->next = string_blocks;
1970 string_blocks = b;
1971
1972 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1973 {
1974 s = b->strings + i;
1975 NEXT_FREE_LISP_STRING (s) = string_free_list;
1976 string_free_list = s;
1977 }
1978
1979 total_free_strings += STRING_BLOCK_SIZE;
1980 }
1981
1982 check_string_free_list ();
1983
1984 /* Pop a Lisp_String off the free-list. */
1985 s = string_free_list;
1986 string_free_list = NEXT_FREE_LISP_STRING (s);
1987
1988 MALLOC_UNBLOCK_INPUT;
1989
1990 /* Probably not strictly necessary, but play it safe. */
1991 memset (s, 0, sizeof *s);
1992
1993 --total_free_strings;
1994 ++total_strings;
1995 ++strings_consed;
1996 consing_since_gc += sizeof *s;
1997
1998 #ifdef GC_CHECK_STRING_BYTES
1999 if (!noninteractive)
2000 {
2001 if (++check_string_bytes_count == 200)
2002 {
2003 check_string_bytes_count = 0;
2004 check_string_bytes (1);
2005 }
2006 else
2007 check_string_bytes (0);
2008 }
2009 #endif /* GC_CHECK_STRING_BYTES */
2010
2011 return s;
2012 }
2013
2014
2015 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
2016 plus a NUL byte at the end. Allocate an sdata structure for S, and
2017 set S->data to its `u.data' member. Store a NUL byte at the end of
2018 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
2019 S->data if it was initially non-null. */
2020
2021 void
2022 allocate_string_data (struct Lisp_String *s,
2023 EMACS_INT nchars, EMACS_INT nbytes)
2024 {
2025 struct sdata *data, *old_data;
2026 struct sblock *b;
2027 ptrdiff_t needed, old_nbytes;
2028
2029 if (STRING_BYTES_MAX < nbytes)
2030 string_overflow ();
2031
2032 /* Determine the number of bytes needed to store NBYTES bytes
2033 of string data. */
2034 needed = SDATA_SIZE (nbytes);
2035 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2036 old_nbytes = GC_STRING_BYTES (s);
2037
2038 MALLOC_BLOCK_INPUT;
2039
2040 if (nbytes > LARGE_STRING_BYTES)
2041 {
2042 size_t size = offsetof (struct sblock, first_data) + needed;
2043
2044 #ifdef DOUG_LEA_MALLOC
2045 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2046 because mapped region contents are not preserved in
2047 a dumped Emacs.
2048
2049 In case you think of allowing it in a dumped Emacs at the
2050 cost of not being able to re-dump, there's another reason:
2051 mmap'ed data typically have an address towards the top of the
2052 address space, which won't fit into an EMACS_INT (at least on
2053 32-bit systems with the current tagging scheme). --fx */
2054 mallopt (M_MMAP_MAX, 0);
2055 #endif
2056
2057 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2058
2059 #ifdef DOUG_LEA_MALLOC
2060 /* Back to a reasonable maximum of mmap'ed areas. */
2061 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2062 #endif
2063
2064 b->next_free = &b->first_data;
2065 b->first_data.string = NULL;
2066 b->next = large_sblocks;
2067 large_sblocks = b;
2068 }
2069 else if (current_sblock == NULL
2070 || (((char *) current_sblock + SBLOCK_SIZE
2071 - (char *) current_sblock->next_free)
2072 < (needed + GC_STRING_EXTRA)))
2073 {
2074 /* Not enough room in the current sblock. */
2075 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2076 b->next_free = &b->first_data;
2077 b->first_data.string = NULL;
2078 b->next = NULL;
2079
2080 if (current_sblock)
2081 current_sblock->next = b;
2082 else
2083 oldest_sblock = b;
2084 current_sblock = b;
2085 }
2086 else
2087 b = current_sblock;
2088
2089 data = b->next_free;
2090 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2091
2092 MALLOC_UNBLOCK_INPUT;
2093
2094 data->string = s;
2095 s->data = SDATA_DATA (data);
2096 #ifdef GC_CHECK_STRING_BYTES
2097 SDATA_NBYTES (data) = nbytes;
2098 #endif
2099 s->size = nchars;
2100 s->size_byte = nbytes;
2101 s->data[nbytes] = '\0';
2102 #ifdef GC_CHECK_STRING_OVERRUN
2103 memcpy ((char *) data + needed, string_overrun_cookie,
2104 GC_STRING_OVERRUN_COOKIE_SIZE);
2105 #endif
2106
2107 /* If S had already data assigned, mark that as free by setting its
2108 string back-pointer to null, and recording the size of the data
2109 in it. */
2110 if (old_data)
2111 {
2112 SDATA_NBYTES (old_data) = old_nbytes;
2113 old_data->string = NULL;
2114 }
2115
2116 consing_since_gc += needed;
2117 }
2118
2119
2120 /* Sweep and compact strings. */
2121
2122 static void
2123 sweep_strings (void)
2124 {
2125 struct string_block *b, *next;
2126 struct string_block *live_blocks = NULL;
2127
2128 string_free_list = NULL;
2129 total_strings = total_free_strings = 0;
2130 total_string_size = 0;
2131
2132 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2133 for (b = string_blocks; b; b = next)
2134 {
2135 int i, nfree = 0;
2136 struct Lisp_String *free_list_before = string_free_list;
2137
2138 next = b->next;
2139
2140 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2141 {
2142 struct Lisp_String *s = b->strings + i;
2143
2144 if (s->data)
2145 {
2146 /* String was not on free-list before. */
2147 if (STRING_MARKED_P (s))
2148 {
2149 /* String is live; unmark it and its intervals. */
2150 UNMARK_STRING (s);
2151
2152 if (!NULL_INTERVAL_P (s->intervals))
2153 UNMARK_BALANCE_INTERVALS (s->intervals);
2154
2155 ++total_strings;
2156 total_string_size += STRING_BYTES (s);
2157 }
2158 else
2159 {
2160 /* String is dead. Put it on the free-list. */
2161 struct sdata *data = SDATA_OF_STRING (s);
2162
2163 /* Save the size of S in its sdata so that we know
2164 how large that is. Reset the sdata's string
2165 back-pointer so that we know it's free. */
2166 #ifdef GC_CHECK_STRING_BYTES
2167 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2168 abort ();
2169 #else
2170 data->u.nbytes = GC_STRING_BYTES (s);
2171 #endif
2172 data->string = NULL;
2173
2174 /* Reset the strings's `data' member so that we
2175 know it's free. */
2176 s->data = NULL;
2177
2178 /* Put the string on the free-list. */
2179 NEXT_FREE_LISP_STRING (s) = string_free_list;
2180 string_free_list = s;
2181 ++nfree;
2182 }
2183 }
2184 else
2185 {
2186 /* S was on the free-list before. Put it there again. */
2187 NEXT_FREE_LISP_STRING (s) = string_free_list;
2188 string_free_list = s;
2189 ++nfree;
2190 }
2191 }
2192
2193 /* Free blocks that contain free Lisp_Strings only, except
2194 the first two of them. */
2195 if (nfree == STRING_BLOCK_SIZE
2196 && total_free_strings > STRING_BLOCK_SIZE)
2197 {
2198 lisp_free (b);
2199 string_free_list = free_list_before;
2200 }
2201 else
2202 {
2203 total_free_strings += nfree;
2204 b->next = live_blocks;
2205 live_blocks = b;
2206 }
2207 }
2208
2209 check_string_free_list ();
2210
2211 string_blocks = live_blocks;
2212 free_large_strings ();
2213 compact_small_strings ();
2214
2215 check_string_free_list ();
2216 }
2217
2218
2219 /* Free dead large strings. */
2220
2221 static void
2222 free_large_strings (void)
2223 {
2224 struct sblock *b, *next;
2225 struct sblock *live_blocks = NULL;
2226
2227 for (b = large_sblocks; b; b = next)
2228 {
2229 next = b->next;
2230
2231 if (b->first_data.string == NULL)
2232 lisp_free (b);
2233 else
2234 {
2235 b->next = live_blocks;
2236 live_blocks = b;
2237 }
2238 }
2239
2240 large_sblocks = live_blocks;
2241 }
2242
2243
2244 /* Compact data of small strings. Free sblocks that don't contain
2245 data of live strings after compaction. */
2246
2247 static void
2248 compact_small_strings (void)
2249 {
2250 struct sblock *b, *tb, *next;
2251 struct sdata *from, *to, *end, *tb_end;
2252 struct sdata *to_end, *from_end;
2253
2254 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2255 to, and TB_END is the end of TB. */
2256 tb = oldest_sblock;
2257 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2258 to = &tb->first_data;
2259
2260 /* Step through the blocks from the oldest to the youngest. We
2261 expect that old blocks will stabilize over time, so that less
2262 copying will happen this way. */
2263 for (b = oldest_sblock; b; b = b->next)
2264 {
2265 end = b->next_free;
2266 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2267
2268 for (from = &b->first_data; from < end; from = from_end)
2269 {
2270 /* Compute the next FROM here because copying below may
2271 overwrite data we need to compute it. */
2272 ptrdiff_t nbytes;
2273
2274 #ifdef GC_CHECK_STRING_BYTES
2275 /* Check that the string size recorded in the string is the
2276 same as the one recorded in the sdata structure. */
2277 if (from->string
2278 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2279 abort ();
2280 #endif /* GC_CHECK_STRING_BYTES */
2281
2282 if (from->string)
2283 nbytes = GC_STRING_BYTES (from->string);
2284 else
2285 nbytes = SDATA_NBYTES (from);
2286
2287 if (nbytes > LARGE_STRING_BYTES)
2288 abort ();
2289
2290 nbytes = SDATA_SIZE (nbytes);
2291 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2292
2293 #ifdef GC_CHECK_STRING_OVERRUN
2294 if (memcmp (string_overrun_cookie,
2295 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2296 GC_STRING_OVERRUN_COOKIE_SIZE))
2297 abort ();
2298 #endif
2299
2300 /* FROM->string non-null means it's alive. Copy its data. */
2301 if (from->string)
2302 {
2303 /* If TB is full, proceed with the next sblock. */
2304 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2305 if (to_end > tb_end)
2306 {
2307 tb->next_free = to;
2308 tb = tb->next;
2309 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2310 to = &tb->first_data;
2311 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2312 }
2313
2314 /* Copy, and update the string's `data' pointer. */
2315 if (from != to)
2316 {
2317 xassert (tb != b || to < from);
2318 memmove (to, from, nbytes + GC_STRING_EXTRA);
2319 to->string->data = SDATA_DATA (to);
2320 }
2321
2322 /* Advance past the sdata we copied to. */
2323 to = to_end;
2324 }
2325 }
2326 }
2327
2328 /* The rest of the sblocks following TB don't contain live data, so
2329 we can free them. */
2330 for (b = tb->next; b; b = next)
2331 {
2332 next = b->next;
2333 lisp_free (b);
2334 }
2335
2336 tb->next_free = to;
2337 tb->next = NULL;
2338 current_sblock = tb;
2339 }
2340
2341 void
2342 string_overflow (void)
2343 {
2344 error ("Maximum string size exceeded");
2345 }
2346
2347 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2348 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2349 LENGTH must be an integer.
2350 INIT must be an integer that represents a character. */)
2351 (Lisp_Object length, Lisp_Object init)
2352 {
2353 register Lisp_Object val;
2354 register unsigned char *p, *end;
2355 int c;
2356 EMACS_INT nbytes;
2357
2358 CHECK_NATNUM (length);
2359 CHECK_CHARACTER (init);
2360
2361 c = XFASTINT (init);
2362 if (ASCII_CHAR_P (c))
2363 {
2364 nbytes = XINT (length);
2365 val = make_uninit_string (nbytes);
2366 p = SDATA (val);
2367 end = p + SCHARS (val);
2368 while (p != end)
2369 *p++ = c;
2370 }
2371 else
2372 {
2373 unsigned char str[MAX_MULTIBYTE_LENGTH];
2374 int len = CHAR_STRING (c, str);
2375 EMACS_INT string_len = XINT (length);
2376
2377 if (string_len > STRING_BYTES_MAX / len)
2378 string_overflow ();
2379 nbytes = len * string_len;
2380 val = make_uninit_multibyte_string (string_len, nbytes);
2381 p = SDATA (val);
2382 end = p + nbytes;
2383 while (p != end)
2384 {
2385 memcpy (p, str, len);
2386 p += len;
2387 }
2388 }
2389
2390 *p = 0;
2391 return val;
2392 }
2393
2394
2395 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2396 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2397 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2398 (Lisp_Object length, Lisp_Object init)
2399 {
2400 register Lisp_Object val;
2401 struct Lisp_Bool_Vector *p;
2402 ptrdiff_t length_in_chars;
2403 EMACS_INT length_in_elts;
2404 int bits_per_value;
2405
2406 CHECK_NATNUM (length);
2407
2408 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2409
2410 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2411
2412 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2413 slot `size' of the struct Lisp_Bool_Vector. */
2414 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2415
2416 /* No Lisp_Object to trace in there. */
2417 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2418
2419 p = XBOOL_VECTOR (val);
2420 p->size = XFASTINT (length);
2421
2422 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2423 / BOOL_VECTOR_BITS_PER_CHAR);
2424 if (length_in_chars)
2425 {
2426 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2427
2428 /* Clear any extraneous bits in the last byte. */
2429 p->data[length_in_chars - 1]
2430 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2431 }
2432
2433 return val;
2434 }
2435
2436
2437 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2438 of characters from the contents. This string may be unibyte or
2439 multibyte, depending on the contents. */
2440
2441 Lisp_Object
2442 make_string (const char *contents, ptrdiff_t nbytes)
2443 {
2444 register Lisp_Object val;
2445 ptrdiff_t nchars, multibyte_nbytes;
2446
2447 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2448 &nchars, &multibyte_nbytes);
2449 if (nbytes == nchars || nbytes != multibyte_nbytes)
2450 /* CONTENTS contains no multibyte sequences or contains an invalid
2451 multibyte sequence. We must make unibyte string. */
2452 val = make_unibyte_string (contents, nbytes);
2453 else
2454 val = make_multibyte_string (contents, nchars, nbytes);
2455 return val;
2456 }
2457
2458
2459 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2460
2461 Lisp_Object
2462 make_unibyte_string (const char *contents, ptrdiff_t length)
2463 {
2464 register Lisp_Object val;
2465 val = make_uninit_string (length);
2466 memcpy (SDATA (val), contents, length);
2467 return val;
2468 }
2469
2470
2471 /* Make a multibyte string from NCHARS characters occupying NBYTES
2472 bytes at CONTENTS. */
2473
2474 Lisp_Object
2475 make_multibyte_string (const char *contents,
2476 ptrdiff_t nchars, ptrdiff_t nbytes)
2477 {
2478 register Lisp_Object val;
2479 val = make_uninit_multibyte_string (nchars, nbytes);
2480 memcpy (SDATA (val), contents, nbytes);
2481 return val;
2482 }
2483
2484
2485 /* Make a string from NCHARS characters occupying NBYTES bytes at
2486 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2487
2488 Lisp_Object
2489 make_string_from_bytes (const char *contents,
2490 ptrdiff_t nchars, ptrdiff_t nbytes)
2491 {
2492 register Lisp_Object val;
2493 val = make_uninit_multibyte_string (nchars, nbytes);
2494 memcpy (SDATA (val), contents, nbytes);
2495 if (SBYTES (val) == SCHARS (val))
2496 STRING_SET_UNIBYTE (val);
2497 return val;
2498 }
2499
2500
2501 /* Make a string from NCHARS characters occupying NBYTES bytes at
2502 CONTENTS. The argument MULTIBYTE controls whether to label the
2503 string as multibyte. If NCHARS is negative, it counts the number of
2504 characters by itself. */
2505
2506 Lisp_Object
2507 make_specified_string (const char *contents,
2508 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2509 {
2510 register Lisp_Object val;
2511
2512 if (nchars < 0)
2513 {
2514 if (multibyte)
2515 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2516 nbytes);
2517 else
2518 nchars = nbytes;
2519 }
2520 val = make_uninit_multibyte_string (nchars, nbytes);
2521 memcpy (SDATA (val), contents, nbytes);
2522 if (!multibyte)
2523 STRING_SET_UNIBYTE (val);
2524 return val;
2525 }
2526
2527
2528 /* Make a string from the data at STR, treating it as multibyte if the
2529 data warrants. */
2530
2531 Lisp_Object
2532 build_string (const char *str)
2533 {
2534 return make_string (str, strlen (str));
2535 }
2536
2537
2538 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2539 occupying LENGTH bytes. */
2540
2541 Lisp_Object
2542 make_uninit_string (EMACS_INT length)
2543 {
2544 Lisp_Object val;
2545
2546 if (!length)
2547 return empty_unibyte_string;
2548 val = make_uninit_multibyte_string (length, length);
2549 STRING_SET_UNIBYTE (val);
2550 return val;
2551 }
2552
2553
2554 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2555 which occupy NBYTES bytes. */
2556
2557 Lisp_Object
2558 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2559 {
2560 Lisp_Object string;
2561 struct Lisp_String *s;
2562
2563 if (nchars < 0)
2564 abort ();
2565 if (!nbytes)
2566 return empty_multibyte_string;
2567
2568 s = allocate_string ();
2569 allocate_string_data (s, nchars, nbytes);
2570 XSETSTRING (string, s);
2571 string_chars_consed += nbytes;
2572 return string;
2573 }
2574
2575
2576 \f
2577 /***********************************************************************
2578 Float Allocation
2579 ***********************************************************************/
2580
2581 /* We store float cells inside of float_blocks, allocating a new
2582 float_block with malloc whenever necessary. Float cells reclaimed
2583 by GC are put on a free list to be reallocated before allocating
2584 any new float cells from the latest float_block. */
2585
2586 #define FLOAT_BLOCK_SIZE \
2587 (((BLOCK_BYTES - sizeof (struct float_block *) \
2588 /* The compiler might add padding at the end. */ \
2589 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2590 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2591
2592 #define GETMARKBIT(block,n) \
2593 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2594 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2595 & 1)
2596
2597 #define SETMARKBIT(block,n) \
2598 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2599 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2600
2601 #define UNSETMARKBIT(block,n) \
2602 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2603 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2604
2605 #define FLOAT_BLOCK(fptr) \
2606 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2607
2608 #define FLOAT_INDEX(fptr) \
2609 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2610
2611 struct float_block
2612 {
2613 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2614 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2615 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2616 struct float_block *next;
2617 };
2618
2619 #define FLOAT_MARKED_P(fptr) \
2620 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2621
2622 #define FLOAT_MARK(fptr) \
2623 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2624
2625 #define FLOAT_UNMARK(fptr) \
2626 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2627
2628 /* Current float_block. */
2629
2630 static struct float_block *float_block;
2631
2632 /* Index of first unused Lisp_Float in the current float_block. */
2633
2634 static int float_block_index;
2635
2636 /* Free-list of Lisp_Floats. */
2637
2638 static struct Lisp_Float *float_free_list;
2639
2640
2641 /* Initialize float allocation. */
2642
2643 static void
2644 init_float (void)
2645 {
2646 float_block = NULL;
2647 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2648 float_free_list = 0;
2649 }
2650
2651
2652 /* Return a new float object with value FLOAT_VALUE. */
2653
2654 Lisp_Object
2655 make_float (double float_value)
2656 {
2657 register Lisp_Object val;
2658
2659 /* eassert (!handling_signal); */
2660
2661 MALLOC_BLOCK_INPUT;
2662
2663 if (float_free_list)
2664 {
2665 /* We use the data field for chaining the free list
2666 so that we won't use the same field that has the mark bit. */
2667 XSETFLOAT (val, float_free_list);
2668 float_free_list = float_free_list->u.chain;
2669 }
2670 else
2671 {
2672 if (float_block_index == FLOAT_BLOCK_SIZE)
2673 {
2674 register struct float_block *new;
2675
2676 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2677 MEM_TYPE_FLOAT);
2678 new->next = float_block;
2679 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2680 float_block = new;
2681 float_block_index = 0;
2682 }
2683 XSETFLOAT (val, &float_block->floats[float_block_index]);
2684 float_block_index++;
2685 }
2686
2687 MALLOC_UNBLOCK_INPUT;
2688
2689 XFLOAT_INIT (val, float_value);
2690 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2691 consing_since_gc += sizeof (struct Lisp_Float);
2692 floats_consed++;
2693 return val;
2694 }
2695
2696
2697 \f
2698 /***********************************************************************
2699 Cons Allocation
2700 ***********************************************************************/
2701
2702 /* We store cons cells inside of cons_blocks, allocating a new
2703 cons_block with malloc whenever necessary. Cons cells reclaimed by
2704 GC are put on a free list to be reallocated before allocating
2705 any new cons cells from the latest cons_block. */
2706
2707 #define CONS_BLOCK_SIZE \
2708 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2709 /* The compiler might add padding at the end. */ \
2710 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2711 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2712
2713 #define CONS_BLOCK(fptr) \
2714 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2715
2716 #define CONS_INDEX(fptr) \
2717 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2718
2719 struct cons_block
2720 {
2721 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2722 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2723 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2724 struct cons_block *next;
2725 };
2726
2727 #define CONS_MARKED_P(fptr) \
2728 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2729
2730 #define CONS_MARK(fptr) \
2731 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2732
2733 #define CONS_UNMARK(fptr) \
2734 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2735
2736 /* Current cons_block. */
2737
2738 static struct cons_block *cons_block;
2739
2740 /* Index of first unused Lisp_Cons in the current block. */
2741
2742 static int cons_block_index;
2743
2744 /* Free-list of Lisp_Cons structures. */
2745
2746 static struct Lisp_Cons *cons_free_list;
2747
2748
2749 /* Initialize cons allocation. */
2750
2751 static void
2752 init_cons (void)
2753 {
2754 cons_block = NULL;
2755 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2756 cons_free_list = 0;
2757 }
2758
2759
2760 /* Explicitly free a cons cell by putting it on the free-list. */
2761
2762 void
2763 free_cons (struct Lisp_Cons *ptr)
2764 {
2765 ptr->u.chain = cons_free_list;
2766 #if GC_MARK_STACK
2767 ptr->car = Vdead;
2768 #endif
2769 cons_free_list = ptr;
2770 }
2771
2772 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2773 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2774 (Lisp_Object car, Lisp_Object cdr)
2775 {
2776 register Lisp_Object val;
2777
2778 /* eassert (!handling_signal); */
2779
2780 MALLOC_BLOCK_INPUT;
2781
2782 if (cons_free_list)
2783 {
2784 /* We use the cdr for chaining the free list
2785 so that we won't use the same field that has the mark bit. */
2786 XSETCONS (val, cons_free_list);
2787 cons_free_list = cons_free_list->u.chain;
2788 }
2789 else
2790 {
2791 if (cons_block_index == CONS_BLOCK_SIZE)
2792 {
2793 register struct cons_block *new;
2794 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2795 MEM_TYPE_CONS);
2796 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2797 new->next = cons_block;
2798 cons_block = new;
2799 cons_block_index = 0;
2800 }
2801 XSETCONS (val, &cons_block->conses[cons_block_index]);
2802 cons_block_index++;
2803 }
2804
2805 MALLOC_UNBLOCK_INPUT;
2806
2807 XSETCAR (val, car);
2808 XSETCDR (val, cdr);
2809 eassert (!CONS_MARKED_P (XCONS (val)));
2810 consing_since_gc += sizeof (struct Lisp_Cons);
2811 cons_cells_consed++;
2812 return val;
2813 }
2814
2815 #ifdef GC_CHECK_CONS_LIST
2816 /* Get an error now if there's any junk in the cons free list. */
2817 void
2818 check_cons_list (void)
2819 {
2820 struct Lisp_Cons *tail = cons_free_list;
2821
2822 while (tail)
2823 tail = tail->u.chain;
2824 }
2825 #endif
2826
2827 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2828
2829 Lisp_Object
2830 list1 (Lisp_Object arg1)
2831 {
2832 return Fcons (arg1, Qnil);
2833 }
2834
2835 Lisp_Object
2836 list2 (Lisp_Object arg1, Lisp_Object arg2)
2837 {
2838 return Fcons (arg1, Fcons (arg2, Qnil));
2839 }
2840
2841
2842 Lisp_Object
2843 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2844 {
2845 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2846 }
2847
2848
2849 Lisp_Object
2850 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2851 {
2852 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2853 }
2854
2855
2856 Lisp_Object
2857 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2858 {
2859 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2860 Fcons (arg5, Qnil)))));
2861 }
2862
2863
2864 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2865 doc: /* Return a newly created list with specified arguments as elements.
2866 Any number of arguments, even zero arguments, are allowed.
2867 usage: (list &rest OBJECTS) */)
2868 (ptrdiff_t nargs, Lisp_Object *args)
2869 {
2870 register Lisp_Object val;
2871 val = Qnil;
2872
2873 while (nargs > 0)
2874 {
2875 nargs--;
2876 val = Fcons (args[nargs], val);
2877 }
2878 return val;
2879 }
2880
2881
2882 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2883 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2884 (register Lisp_Object length, Lisp_Object init)
2885 {
2886 register Lisp_Object val;
2887 register EMACS_INT size;
2888
2889 CHECK_NATNUM (length);
2890 size = XFASTINT (length);
2891
2892 val = Qnil;
2893 while (size > 0)
2894 {
2895 val = Fcons (init, val);
2896 --size;
2897
2898 if (size > 0)
2899 {
2900 val = Fcons (init, val);
2901 --size;
2902
2903 if (size > 0)
2904 {
2905 val = Fcons (init, val);
2906 --size;
2907
2908 if (size > 0)
2909 {
2910 val = Fcons (init, val);
2911 --size;
2912
2913 if (size > 0)
2914 {
2915 val = Fcons (init, val);
2916 --size;
2917 }
2918 }
2919 }
2920 }
2921
2922 QUIT;
2923 }
2924
2925 return val;
2926 }
2927
2928
2929 \f
2930 /***********************************************************************
2931 Vector Allocation
2932 ***********************************************************************/
2933
2934 /* This value is balanced well enough to avoid too much internal overhead
2935 for the most common cases; it's not required to be a power of two, but
2936 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2937
2938 #define VECTOR_BLOCK_SIZE 4096
2939
2940 /* Handy constants for vectorlike objects. */
2941 enum
2942 {
2943 header_size = offsetof (struct Lisp_Vector, contents),
2944 word_size = sizeof (Lisp_Object),
2945 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2946 #ifdef USE_LSB_TAG
2947 8 /* Helps to maintain alignment constraints imposed by
2948 assumption that least 3 bits of pointers are always 0. */
2949 #else
2950 1 /* If alignment doesn't matter, should round up
2951 to sizeof (Lisp_Object) at least. */
2952 #endif
2953 )
2954 };
2955
2956 /* Round up X to nearest mult-of-ROUNDUP_SIZE,
2957 assuming ROUNDUP_SIZE is a power of 2. */
2958
2959 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2960
2961 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2962
2963 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2964
2965 /* Size of the minimal vector allocated from block. */
2966
2967 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2968
2969 /* Size of the largest vector allocated from block. */
2970
2971 #define VBLOCK_BYTES_MAX \
2972 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2973
2974 /* We maintain one free list for each possible block-allocated
2975 vector size, and this is the number of free lists we have. */
2976
2977 #define VECTOR_MAX_FREE_LIST_INDEX \
2978 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2979
2980 /* When the vector is on a free list, vectorlike_header.SIZE is set to
2981 this special value ORed with vector's memory footprint size. */
2982
2983 #define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2984 | (VECTOR_BLOCK_SIZE - 1)))
2985
2986 /* Common shortcut to advance vector pointer over a block data. */
2987
2988 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2989
2990 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2991
2992 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2993
2994 /* Common shortcut to setup vector on a free list. */
2995
2996 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2997 do { \
2998 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2999 eassert ((nbytes) % roundup_size == 0); \
3000 (index) = VINDEX (nbytes); \
3001 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
3002 (v)->header.next.vector = vector_free_lists[index]; \
3003 vector_free_lists[index] = (v); \
3004 } while (0)
3005
3006 struct vector_block
3007 {
3008 char data[VECTOR_BLOCK_BYTES];
3009 struct vector_block *next;
3010 };
3011
3012 /* Chain of vector blocks. */
3013
3014 static struct vector_block *vector_blocks;
3015
3016 /* Vector free lists, where NTH item points to a chain of free
3017 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3018
3019 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3020
3021 /* Singly-linked list of large vectors. */
3022
3023 static struct Lisp_Vector *large_vectors;
3024
3025 /* The only vector with 0 slots, allocated from pure space. */
3026
3027 static struct Lisp_Vector *zero_vector;
3028
3029 /* Get a new vector block. */
3030
3031 static struct vector_block *
3032 allocate_vector_block (void)
3033 {
3034 struct vector_block *block;
3035
3036 #ifdef DOUG_LEA_MALLOC
3037 mallopt (M_MMAP_MAX, 0);
3038 #endif
3039
3040 block = xmalloc (sizeof (struct vector_block));
3041
3042 #ifdef DOUG_LEA_MALLOC
3043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3044 #endif
3045
3046 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3047 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3048 MEM_TYPE_VECTOR_BLOCK);
3049 #endif
3050
3051 block->next = vector_blocks;
3052 vector_blocks = block;
3053 return block;
3054 }
3055
3056 /* Called once to initialize vector allocation. */
3057
3058 static void
3059 init_vectors (void)
3060 {
3061 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3062 zero_vector->header.size = 0;
3063 }
3064
3065 /* Allocate vector from a vector block. */
3066
3067 static struct Lisp_Vector *
3068 allocate_vector_from_block (size_t nbytes)
3069 {
3070 struct Lisp_Vector *vector, *rest;
3071 struct vector_block *block;
3072 size_t index, restbytes;
3073
3074 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3075 eassert (nbytes % roundup_size == 0);
3076
3077 /* First, try to allocate from a free list
3078 containing vectors of the requested size. */
3079 index = VINDEX (nbytes);
3080 if (vector_free_lists[index])
3081 {
3082 vector = vector_free_lists[index];
3083 vector_free_lists[index] = vector->header.next.vector;
3084 vector->header.next.nbytes = nbytes;
3085 return vector;
3086 }
3087
3088 /* Next, check free lists containing larger vectors. Since
3089 we will split the result, we should have remaining space
3090 large enough to use for one-slot vector at least. */
3091 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3092 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3093 if (vector_free_lists[index])
3094 {
3095 /* This vector is larger than requested. */
3096 vector = vector_free_lists[index];
3097 vector_free_lists[index] = vector->header.next.vector;
3098 vector->header.next.nbytes = nbytes;
3099
3100 /* Excess bytes are used for the smaller vector,
3101 which should be set on an appropriate free list. */
3102 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3103 eassert (restbytes % roundup_size == 0);
3104 rest = ADVANCE (vector, nbytes);
3105 SETUP_ON_FREE_LIST (rest, restbytes, index);
3106 return vector;
3107 }
3108
3109 /* Finally, need a new vector block. */
3110 block = allocate_vector_block ();
3111
3112 /* New vector will be at the beginning of this block. */
3113 vector = (struct Lisp_Vector *) block->data;
3114 vector->header.next.nbytes = nbytes;
3115
3116 /* If the rest of space from this block is large enough
3117 for one-slot vector at least, set up it on a free list. */
3118 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3119 if (restbytes >= VBLOCK_BYTES_MIN)
3120 {
3121 eassert (restbytes % roundup_size == 0);
3122 rest = ADVANCE (vector, nbytes);
3123 SETUP_ON_FREE_LIST (rest, restbytes, index);
3124 }
3125 return vector;
3126 }
3127
3128 /* Return how many Lisp_Objects can be stored in V. */
3129
3130 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3131 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3132 (v)->header.size)
3133
3134 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3135
3136 #define VECTOR_IN_BLOCK(vector, block) \
3137 ((char *) (vector) <= (block)->data \
3138 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3139
3140 /* Reclaim space used by unmarked vectors. */
3141
3142 static void
3143 sweep_vectors (void)
3144 {
3145 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3146 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3147
3148 total_vector_size = 0;
3149 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3150
3151 /* Looking through vector blocks. */
3152
3153 for (block = vector_blocks; block; block = *bprev)
3154 {
3155 int free_this_block = 0;
3156
3157 for (vector = (struct Lisp_Vector *) block->data;
3158 VECTOR_IN_BLOCK (vector, block); vector = next)
3159 {
3160 if (VECTOR_MARKED_P (vector))
3161 {
3162 VECTOR_UNMARK (vector);
3163 total_vector_size += VECTOR_SIZE (vector);
3164 next = ADVANCE (vector, vector->header.next.nbytes);
3165 }
3166 else
3167 {
3168 ptrdiff_t nbytes;
3169
3170 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3171 == VECTOR_FREE_LIST_FLAG)
3172 vector->header.next.nbytes =
3173 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
3174
3175 next = ADVANCE (vector, vector->header.next.nbytes);
3176
3177 /* While NEXT is not marked, try to coalesce with VECTOR,
3178 thus making VECTOR of the largest possible size. */
3179
3180 while (VECTOR_IN_BLOCK (next, block))
3181 {
3182 if (VECTOR_MARKED_P (next))
3183 break;
3184 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3185 == VECTOR_FREE_LIST_FLAG)
3186 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3187 else
3188 nbytes = next->header.next.nbytes;
3189 vector->header.next.nbytes += nbytes;
3190 next = ADVANCE (next, nbytes);
3191 }
3192
3193 eassert (vector->header.next.nbytes % roundup_size == 0);
3194
3195 if (vector == (struct Lisp_Vector *) block->data
3196 && !VECTOR_IN_BLOCK (next, block))
3197 /* This block should be freed because all of it's
3198 space was coalesced into the only free vector. */
3199 free_this_block = 1;
3200 else
3201 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3202 }
3203 }
3204
3205 if (free_this_block)
3206 {
3207 *bprev = block->next;
3208 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3209 mem_delete (mem_find (block->data));
3210 #endif
3211 xfree (block);
3212 }
3213 else
3214 bprev = &block->next;
3215 }
3216
3217 /* Sweep large vectors. */
3218
3219 for (vector = large_vectors; vector; vector = *vprev)
3220 {
3221 if (VECTOR_MARKED_P (vector))
3222 {
3223 VECTOR_UNMARK (vector);
3224 total_vector_size += VECTOR_SIZE (vector);
3225 vprev = &vector->header.next.vector;
3226 }
3227 else
3228 {
3229 *vprev = vector->header.next.vector;
3230 lisp_free (vector);
3231 }
3232 }
3233 }
3234
3235 /* Value is a pointer to a newly allocated Lisp_Vector structure
3236 with room for LEN Lisp_Objects. */
3237
3238 static struct Lisp_Vector *
3239 allocate_vectorlike (ptrdiff_t len)
3240 {
3241 struct Lisp_Vector *p;
3242 size_t nbytes;
3243
3244 MALLOC_BLOCK_INPUT;
3245
3246 #ifdef DOUG_LEA_MALLOC
3247 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3248 because mapped region contents are not preserved in
3249 a dumped Emacs. */
3250 mallopt (M_MMAP_MAX, 0);
3251 #endif
3252
3253 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3254 /* eassert (!handling_signal); */
3255
3256 if (len == 0)
3257 return zero_vector;
3258
3259 nbytes = header_size + len * word_size;
3260
3261 if (nbytes <= VBLOCK_BYTES_MAX)
3262 p = allocate_vector_from_block (vroundup (nbytes));
3263 else
3264 {
3265 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3266 p->header.next.vector = large_vectors;
3267 large_vectors = p;
3268 }
3269
3270 #ifdef DOUG_LEA_MALLOC
3271 /* Back to a reasonable maximum of mmap'ed areas. */
3272 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3273 #endif
3274
3275 consing_since_gc += nbytes;
3276 vector_cells_consed += len;
3277
3278 MALLOC_UNBLOCK_INPUT;
3279
3280 return p;
3281 }
3282
3283
3284 /* Allocate a vector with LEN slots. */
3285
3286 struct Lisp_Vector *
3287 allocate_vector (EMACS_INT len)
3288 {
3289 struct Lisp_Vector *v;
3290 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3291
3292 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3293 memory_full (SIZE_MAX);
3294 v = allocate_vectorlike (len);
3295 v->header.size = len;
3296 return v;
3297 }
3298
3299
3300 /* Allocate other vector-like structures. */
3301
3302 struct Lisp_Vector *
3303 allocate_pseudovector (int memlen, int lisplen, int tag)
3304 {
3305 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3306 int i;
3307
3308 /* Only the first lisplen slots will be traced normally by the GC. */
3309 for (i = 0; i < lisplen; ++i)
3310 v->contents[i] = Qnil;
3311
3312 XSETPVECTYPESIZE (v, tag, lisplen);
3313 return v;
3314 }
3315
3316 struct Lisp_Hash_Table *
3317 allocate_hash_table (void)
3318 {
3319 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3320 }
3321
3322
3323 struct window *
3324 allocate_window (void)
3325 {
3326 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3327 }
3328
3329
3330 struct terminal *
3331 allocate_terminal (void)
3332 {
3333 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3334 next_terminal, PVEC_TERMINAL);
3335 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3336 memset (&t->next_terminal, 0,
3337 (char*) (t + 1) - (char*) &t->next_terminal);
3338
3339 return t;
3340 }
3341
3342 struct frame *
3343 allocate_frame (void)
3344 {
3345 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3346 face_cache, PVEC_FRAME);
3347 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3348 memset (&f->face_cache, 0,
3349 (char *) (f + 1) - (char *) &f->face_cache);
3350 return f;
3351 }
3352
3353
3354 struct Lisp_Process *
3355 allocate_process (void)
3356 {
3357 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3358 }
3359
3360
3361 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3362 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3363 See also the function `vector'. */)
3364 (register Lisp_Object length, Lisp_Object init)
3365 {
3366 Lisp_Object vector;
3367 register ptrdiff_t sizei;
3368 register ptrdiff_t i;
3369 register struct Lisp_Vector *p;
3370
3371 CHECK_NATNUM (length);
3372
3373 p = allocate_vector (XFASTINT (length));
3374 sizei = XFASTINT (length);
3375 for (i = 0; i < sizei; i++)
3376 p->contents[i] = init;
3377
3378 XSETVECTOR (vector, p);
3379 return vector;
3380 }
3381
3382
3383 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3384 doc: /* Return a newly created vector with specified arguments as elements.
3385 Any number of arguments, even zero arguments, are allowed.
3386 usage: (vector &rest OBJECTS) */)
3387 (ptrdiff_t nargs, Lisp_Object *args)
3388 {
3389 register Lisp_Object len, val;
3390 ptrdiff_t i;
3391 register struct Lisp_Vector *p;
3392
3393 XSETFASTINT (len, nargs);
3394 val = Fmake_vector (len, Qnil);
3395 p = XVECTOR (val);
3396 for (i = 0; i < nargs; i++)
3397 p->contents[i] = args[i];
3398 return val;
3399 }
3400
3401
3402 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3403 doc: /* Create a byte-code object with specified arguments as elements.
3404 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3405 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3406 and (optional) INTERACTIVE-SPEC.
3407 The first four arguments are required; at most six have any
3408 significance.
3409 The ARGLIST can be either like the one of `lambda', in which case the arguments
3410 will be dynamically bound before executing the byte code, or it can be an
3411 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3412 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3413 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3414 argument to catch the left-over arguments. If such an integer is used, the
3415 arguments will not be dynamically bound but will be instead pushed on the
3416 stack before executing the byte-code.
3417 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3418 (ptrdiff_t nargs, Lisp_Object *args)
3419 {
3420 register Lisp_Object len, val;
3421 ptrdiff_t i;
3422 register struct Lisp_Vector *p;
3423
3424 XSETFASTINT (len, nargs);
3425 if (!NILP (Vpurify_flag))
3426 val = make_pure_vector (nargs);
3427 else
3428 val = Fmake_vector (len, Qnil);
3429
3430 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3431 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3432 earlier because they produced a raw 8-bit string for byte-code
3433 and now such a byte-code string is loaded as multibyte while
3434 raw 8-bit characters converted to multibyte form. Thus, now we
3435 must convert them back to the original unibyte form. */
3436 args[1] = Fstring_as_unibyte (args[1]);
3437
3438 p = XVECTOR (val);
3439 for (i = 0; i < nargs; i++)
3440 {
3441 if (!NILP (Vpurify_flag))
3442 args[i] = Fpurecopy (args[i]);
3443 p->contents[i] = args[i];
3444 }
3445 XSETPVECTYPE (p, PVEC_COMPILED);
3446 XSETCOMPILED (val, p);
3447 return val;
3448 }
3449
3450
3451 \f
3452 /***********************************************************************
3453 Symbol Allocation
3454 ***********************************************************************/
3455
3456 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3457 of the required alignment if LSB tags are used. */
3458
3459 union aligned_Lisp_Symbol
3460 {
3461 struct Lisp_Symbol s;
3462 #ifdef USE_LSB_TAG
3463 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3464 & -(1 << GCTYPEBITS)];
3465 #endif
3466 };
3467
3468 /* Each symbol_block is just under 1020 bytes long, since malloc
3469 really allocates in units of powers of two and uses 4 bytes for its
3470 own overhead. */
3471
3472 #define SYMBOL_BLOCK_SIZE \
3473 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3474
3475 struct symbol_block
3476 {
3477 /* Place `symbols' first, to preserve alignment. */
3478 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3479 struct symbol_block *next;
3480 };
3481
3482 /* Current symbol block and index of first unused Lisp_Symbol
3483 structure in it. */
3484
3485 static struct symbol_block *symbol_block;
3486 static int symbol_block_index;
3487
3488 /* List of free symbols. */
3489
3490 static struct Lisp_Symbol *symbol_free_list;
3491
3492
3493 /* Initialize symbol allocation. */
3494
3495 static void
3496 init_symbol (void)
3497 {
3498 symbol_block = NULL;
3499 symbol_block_index = SYMBOL_BLOCK_SIZE;
3500 symbol_free_list = 0;
3501 }
3502
3503
3504 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3505 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3506 Its value and function definition are void, and its property list is nil. */)
3507 (Lisp_Object name)
3508 {
3509 register Lisp_Object val;
3510 register struct Lisp_Symbol *p;
3511
3512 CHECK_STRING (name);
3513
3514 /* eassert (!handling_signal); */
3515
3516 MALLOC_BLOCK_INPUT;
3517
3518 if (symbol_free_list)
3519 {
3520 XSETSYMBOL (val, symbol_free_list);
3521 symbol_free_list = symbol_free_list->next;
3522 }
3523 else
3524 {
3525 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3526 {
3527 struct symbol_block *new;
3528 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3529 MEM_TYPE_SYMBOL);
3530 new->next = symbol_block;
3531 symbol_block = new;
3532 symbol_block_index = 0;
3533 }
3534 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3535 symbol_block_index++;
3536 }
3537
3538 MALLOC_UNBLOCK_INPUT;
3539
3540 p = XSYMBOL (val);
3541 p->xname = name;
3542 p->plist = Qnil;
3543 p->redirect = SYMBOL_PLAINVAL;
3544 SET_SYMBOL_VAL (p, Qunbound);
3545 p->function = Qunbound;
3546 p->next = NULL;
3547 p->gcmarkbit = 0;
3548 p->interned = SYMBOL_UNINTERNED;
3549 p->constant = 0;
3550 p->declared_special = 0;
3551 consing_since_gc += sizeof (struct Lisp_Symbol);
3552 symbols_consed++;
3553 return val;
3554 }
3555
3556
3557 \f
3558 /***********************************************************************
3559 Marker (Misc) Allocation
3560 ***********************************************************************/
3561
3562 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3563 the required alignment when LSB tags are used. */
3564
3565 union aligned_Lisp_Misc
3566 {
3567 union Lisp_Misc m;
3568 #ifdef USE_LSB_TAG
3569 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3570 & -(1 << GCTYPEBITS)];
3571 #endif
3572 };
3573
3574 /* Allocation of markers and other objects that share that structure.
3575 Works like allocation of conses. */
3576
3577 #define MARKER_BLOCK_SIZE \
3578 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3579
3580 struct marker_block
3581 {
3582 /* Place `markers' first, to preserve alignment. */
3583 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3584 struct marker_block *next;
3585 };
3586
3587 static struct marker_block *marker_block;
3588 static int marker_block_index;
3589
3590 static union Lisp_Misc *marker_free_list;
3591
3592 static void
3593 init_marker (void)
3594 {
3595 marker_block = NULL;
3596 marker_block_index = MARKER_BLOCK_SIZE;
3597 marker_free_list = 0;
3598 }
3599
3600 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3601
3602 Lisp_Object
3603 allocate_misc (void)
3604 {
3605 Lisp_Object val;
3606
3607 /* eassert (!handling_signal); */
3608
3609 MALLOC_BLOCK_INPUT;
3610
3611 if (marker_free_list)
3612 {
3613 XSETMISC (val, marker_free_list);
3614 marker_free_list = marker_free_list->u_free.chain;
3615 }
3616 else
3617 {
3618 if (marker_block_index == MARKER_BLOCK_SIZE)
3619 {
3620 struct marker_block *new;
3621 new = (struct marker_block *) lisp_malloc (sizeof *new,
3622 MEM_TYPE_MISC);
3623 new->next = marker_block;
3624 marker_block = new;
3625 marker_block_index = 0;
3626 total_free_markers += MARKER_BLOCK_SIZE;
3627 }
3628 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3629 marker_block_index++;
3630 }
3631
3632 MALLOC_UNBLOCK_INPUT;
3633
3634 --total_free_markers;
3635 consing_since_gc += sizeof (union Lisp_Misc);
3636 misc_objects_consed++;
3637 XMISCANY (val)->gcmarkbit = 0;
3638 return val;
3639 }
3640
3641 /* Free a Lisp_Misc object */
3642
3643 static void
3644 free_misc (Lisp_Object misc)
3645 {
3646 XMISCTYPE (misc) = Lisp_Misc_Free;
3647 XMISC (misc)->u_free.chain = marker_free_list;
3648 marker_free_list = XMISC (misc);
3649
3650 total_free_markers++;
3651 }
3652
3653 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3654 INTEGER. This is used to package C values to call record_unwind_protect.
3655 The unwind function can get the C values back using XSAVE_VALUE. */
3656
3657 Lisp_Object
3658 make_save_value (void *pointer, ptrdiff_t integer)
3659 {
3660 register Lisp_Object val;
3661 register struct Lisp_Save_Value *p;
3662
3663 val = allocate_misc ();
3664 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3665 p = XSAVE_VALUE (val);
3666 p->pointer = pointer;
3667 p->integer = integer;
3668 p->dogc = 0;
3669 return val;
3670 }
3671
3672 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3673 doc: /* Return a newly allocated marker which does not point at any place. */)
3674 (void)
3675 {
3676 register Lisp_Object val;
3677 register struct Lisp_Marker *p;
3678
3679 val = allocate_misc ();
3680 XMISCTYPE (val) = Lisp_Misc_Marker;
3681 p = XMARKER (val);
3682 p->buffer = 0;
3683 p->bytepos = 0;
3684 p->charpos = 0;
3685 p->next = NULL;
3686 p->insertion_type = 0;
3687 return val;
3688 }
3689
3690 /* Put MARKER back on the free list after using it temporarily. */
3691
3692 void
3693 free_marker (Lisp_Object marker)
3694 {
3695 unchain_marker (XMARKER (marker));
3696 free_misc (marker);
3697 }
3698
3699 \f
3700 /* Return a newly created vector or string with specified arguments as
3701 elements. If all the arguments are characters that can fit
3702 in a string of events, make a string; otherwise, make a vector.
3703
3704 Any number of arguments, even zero arguments, are allowed. */
3705
3706 Lisp_Object
3707 make_event_array (register int nargs, Lisp_Object *args)
3708 {
3709 int i;
3710
3711 for (i = 0; i < nargs; i++)
3712 /* The things that fit in a string
3713 are characters that are in 0...127,
3714 after discarding the meta bit and all the bits above it. */
3715 if (!INTEGERP (args[i])
3716 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3717 return Fvector (nargs, args);
3718
3719 /* Since the loop exited, we know that all the things in it are
3720 characters, so we can make a string. */
3721 {
3722 Lisp_Object result;
3723
3724 result = Fmake_string (make_number (nargs), make_number (0));
3725 for (i = 0; i < nargs; i++)
3726 {
3727 SSET (result, i, XINT (args[i]));
3728 /* Move the meta bit to the right place for a string char. */
3729 if (XINT (args[i]) & CHAR_META)
3730 SSET (result, i, SREF (result, i) | 0x80);
3731 }
3732
3733 return result;
3734 }
3735 }
3736
3737
3738 \f
3739 /************************************************************************
3740 Memory Full Handling
3741 ************************************************************************/
3742
3743
3744 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3745 there may have been size_t overflow so that malloc was never
3746 called, or perhaps malloc was invoked successfully but the
3747 resulting pointer had problems fitting into a tagged EMACS_INT. In
3748 either case this counts as memory being full even though malloc did
3749 not fail. */
3750
3751 void
3752 memory_full (size_t nbytes)
3753 {
3754 /* Do not go into hysterics merely because a large request failed. */
3755 int enough_free_memory = 0;
3756 if (SPARE_MEMORY < nbytes)
3757 {
3758 void *p;
3759
3760 MALLOC_BLOCK_INPUT;
3761 p = malloc (SPARE_MEMORY);
3762 if (p)
3763 {
3764 free (p);
3765 enough_free_memory = 1;
3766 }
3767 MALLOC_UNBLOCK_INPUT;
3768 }
3769
3770 if (! enough_free_memory)
3771 {
3772 int i;
3773
3774 Vmemory_full = Qt;
3775
3776 memory_full_cons_threshold = sizeof (struct cons_block);
3777
3778 /* The first time we get here, free the spare memory. */
3779 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3780 if (spare_memory[i])
3781 {
3782 if (i == 0)
3783 free (spare_memory[i]);
3784 else if (i >= 1 && i <= 4)
3785 lisp_align_free (spare_memory[i]);
3786 else
3787 lisp_free (spare_memory[i]);
3788 spare_memory[i] = 0;
3789 }
3790
3791 /* Record the space now used. When it decreases substantially,
3792 we can refill the memory reserve. */
3793 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3794 bytes_used_when_full = BYTES_USED;
3795 #endif
3796 }
3797
3798 /* This used to call error, but if we've run out of memory, we could
3799 get infinite recursion trying to build the string. */
3800 xsignal (Qnil, Vmemory_signal_data);
3801 }
3802
3803 /* If we released our reserve (due to running out of memory),
3804 and we have a fair amount free once again,
3805 try to set aside another reserve in case we run out once more.
3806
3807 This is called when a relocatable block is freed in ralloc.c,
3808 and also directly from this file, in case we're not using ralloc.c. */
3809
3810 void
3811 refill_memory_reserve (void)
3812 {
3813 #ifndef SYSTEM_MALLOC
3814 if (spare_memory[0] == 0)
3815 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3816 if (spare_memory[1] == 0)
3817 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3818 MEM_TYPE_CONS);
3819 if (spare_memory[2] == 0)
3820 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3821 MEM_TYPE_CONS);
3822 if (spare_memory[3] == 0)
3823 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3824 MEM_TYPE_CONS);
3825 if (spare_memory[4] == 0)
3826 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3827 MEM_TYPE_CONS);
3828 if (spare_memory[5] == 0)
3829 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3830 MEM_TYPE_STRING);
3831 if (spare_memory[6] == 0)
3832 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3833 MEM_TYPE_STRING);
3834 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3835 Vmemory_full = Qnil;
3836 #endif
3837 }
3838 \f
3839 /************************************************************************
3840 C Stack Marking
3841 ************************************************************************/
3842
3843 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3844
3845 /* Conservative C stack marking requires a method to identify possibly
3846 live Lisp objects given a pointer value. We do this by keeping
3847 track of blocks of Lisp data that are allocated in a red-black tree
3848 (see also the comment of mem_node which is the type of nodes in
3849 that tree). Function lisp_malloc adds information for an allocated
3850 block to the red-black tree with calls to mem_insert, and function
3851 lisp_free removes it with mem_delete. Functions live_string_p etc
3852 call mem_find to lookup information about a given pointer in the
3853 tree, and use that to determine if the pointer points to a Lisp
3854 object or not. */
3855
3856 /* Initialize this part of alloc.c. */
3857
3858 static void
3859 mem_init (void)
3860 {
3861 mem_z.left = mem_z.right = MEM_NIL;
3862 mem_z.parent = NULL;
3863 mem_z.color = MEM_BLACK;
3864 mem_z.start = mem_z.end = NULL;
3865 mem_root = MEM_NIL;
3866 }
3867
3868
3869 /* Value is a pointer to the mem_node containing START. Value is
3870 MEM_NIL if there is no node in the tree containing START. */
3871
3872 static inline struct mem_node *
3873 mem_find (void *start)
3874 {
3875 struct mem_node *p;
3876
3877 if (start < min_heap_address || start > max_heap_address)
3878 return MEM_NIL;
3879
3880 /* Make the search always successful to speed up the loop below. */
3881 mem_z.start = start;
3882 mem_z.end = (char *) start + 1;
3883
3884 p = mem_root;
3885 while (start < p->start || start >= p->end)
3886 p = start < p->start ? p->left : p->right;
3887 return p;
3888 }
3889
3890
3891 /* Insert a new node into the tree for a block of memory with start
3892 address START, end address END, and type TYPE. Value is a
3893 pointer to the node that was inserted. */
3894
3895 static struct mem_node *
3896 mem_insert (void *start, void *end, enum mem_type type)
3897 {
3898 struct mem_node *c, *parent, *x;
3899
3900 if (min_heap_address == NULL || start < min_heap_address)
3901 min_heap_address = start;
3902 if (max_heap_address == NULL || end > max_heap_address)
3903 max_heap_address = end;
3904
3905 /* See where in the tree a node for START belongs. In this
3906 particular application, it shouldn't happen that a node is already
3907 present. For debugging purposes, let's check that. */
3908 c = mem_root;
3909 parent = NULL;
3910
3911 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3912
3913 while (c != MEM_NIL)
3914 {
3915 if (start >= c->start && start < c->end)
3916 abort ();
3917 parent = c;
3918 c = start < c->start ? c->left : c->right;
3919 }
3920
3921 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3922
3923 while (c != MEM_NIL)
3924 {
3925 parent = c;
3926 c = start < c->start ? c->left : c->right;
3927 }
3928
3929 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3930
3931 /* Create a new node. */
3932 #ifdef GC_MALLOC_CHECK
3933 x = (struct mem_node *) _malloc_internal (sizeof *x);
3934 if (x == NULL)
3935 abort ();
3936 #else
3937 x = (struct mem_node *) xmalloc (sizeof *x);
3938 #endif
3939 x->start = start;
3940 x->end = end;
3941 x->type = type;
3942 x->parent = parent;
3943 x->left = x->right = MEM_NIL;
3944 x->color = MEM_RED;
3945
3946 /* Insert it as child of PARENT or install it as root. */
3947 if (parent)
3948 {
3949 if (start < parent->start)
3950 parent->left = x;
3951 else
3952 parent->right = x;
3953 }
3954 else
3955 mem_root = x;
3956
3957 /* Re-establish red-black tree properties. */
3958 mem_insert_fixup (x);
3959
3960 return x;
3961 }
3962
3963
3964 /* Re-establish the red-black properties of the tree, and thereby
3965 balance the tree, after node X has been inserted; X is always red. */
3966
3967 static void
3968 mem_insert_fixup (struct mem_node *x)
3969 {
3970 while (x != mem_root && x->parent->color == MEM_RED)
3971 {
3972 /* X is red and its parent is red. This is a violation of
3973 red-black tree property #3. */
3974
3975 if (x->parent == x->parent->parent->left)
3976 {
3977 /* We're on the left side of our grandparent, and Y is our
3978 "uncle". */
3979 struct mem_node *y = x->parent->parent->right;
3980
3981 if (y->color == MEM_RED)
3982 {
3983 /* Uncle and parent are red but should be black because
3984 X is red. Change the colors accordingly and proceed
3985 with the grandparent. */
3986 x->parent->color = MEM_BLACK;
3987 y->color = MEM_BLACK;
3988 x->parent->parent->color = MEM_RED;
3989 x = x->parent->parent;
3990 }
3991 else
3992 {
3993 /* Parent and uncle have different colors; parent is
3994 red, uncle is black. */
3995 if (x == x->parent->right)
3996 {
3997 x = x->parent;
3998 mem_rotate_left (x);
3999 }
4000
4001 x->parent->color = MEM_BLACK;
4002 x->parent->parent->color = MEM_RED;
4003 mem_rotate_right (x->parent->parent);
4004 }
4005 }
4006 else
4007 {
4008 /* This is the symmetrical case of above. */
4009 struct mem_node *y = x->parent->parent->left;
4010
4011 if (y->color == MEM_RED)
4012 {
4013 x->parent->color = MEM_BLACK;
4014 y->color = MEM_BLACK;
4015 x->parent->parent->color = MEM_RED;
4016 x = x->parent->parent;
4017 }
4018 else
4019 {
4020 if (x == x->parent->left)
4021 {
4022 x = x->parent;
4023 mem_rotate_right (x);
4024 }
4025
4026 x->parent->color = MEM_BLACK;
4027 x->parent->parent->color = MEM_RED;
4028 mem_rotate_left (x->parent->parent);
4029 }
4030 }
4031 }
4032
4033 /* The root may have been changed to red due to the algorithm. Set
4034 it to black so that property #5 is satisfied. */
4035 mem_root->color = MEM_BLACK;
4036 }
4037
4038
4039 /* (x) (y)
4040 / \ / \
4041 a (y) ===> (x) c
4042 / \ / \
4043 b c a b */
4044
4045 static void
4046 mem_rotate_left (struct mem_node *x)
4047 {
4048 struct mem_node *y;
4049
4050 /* Turn y's left sub-tree into x's right sub-tree. */
4051 y = x->right;
4052 x->right = y->left;
4053 if (y->left != MEM_NIL)
4054 y->left->parent = x;
4055
4056 /* Y's parent was x's parent. */
4057 if (y != MEM_NIL)
4058 y->parent = x->parent;
4059
4060 /* Get the parent to point to y instead of x. */
4061 if (x->parent)
4062 {
4063 if (x == x->parent->left)
4064 x->parent->left = y;
4065 else
4066 x->parent->right = y;
4067 }
4068 else
4069 mem_root = y;
4070
4071 /* Put x on y's left. */
4072 y->left = x;
4073 if (x != MEM_NIL)
4074 x->parent = y;
4075 }
4076
4077
4078 /* (x) (Y)
4079 / \ / \
4080 (y) c ===> a (x)
4081 / \ / \
4082 a b b c */
4083
4084 static void
4085 mem_rotate_right (struct mem_node *x)
4086 {
4087 struct mem_node *y = x->left;
4088
4089 x->left = y->right;
4090 if (y->right != MEM_NIL)
4091 y->right->parent = x;
4092
4093 if (y != MEM_NIL)
4094 y->parent = x->parent;
4095 if (x->parent)
4096 {
4097 if (x == x->parent->right)
4098 x->parent->right = y;
4099 else
4100 x->parent->left = y;
4101 }
4102 else
4103 mem_root = y;
4104
4105 y->right = x;
4106 if (x != MEM_NIL)
4107 x->parent = y;
4108 }
4109
4110
4111 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4112
4113 static void
4114 mem_delete (struct mem_node *z)
4115 {
4116 struct mem_node *x, *y;
4117
4118 if (!z || z == MEM_NIL)
4119 return;
4120
4121 if (z->left == MEM_NIL || z->right == MEM_NIL)
4122 y = z;
4123 else
4124 {
4125 y = z->right;
4126 while (y->left != MEM_NIL)
4127 y = y->left;
4128 }
4129
4130 if (y->left != MEM_NIL)
4131 x = y->left;
4132 else
4133 x = y->right;
4134
4135 x->parent = y->parent;
4136 if (y->parent)
4137 {
4138 if (y == y->parent->left)
4139 y->parent->left = x;
4140 else
4141 y->parent->right = x;
4142 }
4143 else
4144 mem_root = x;
4145
4146 if (y != z)
4147 {
4148 z->start = y->start;
4149 z->end = y->end;
4150 z->type = y->type;
4151 }
4152
4153 if (y->color == MEM_BLACK)
4154 mem_delete_fixup (x);
4155
4156 #ifdef GC_MALLOC_CHECK
4157 _free_internal (y);
4158 #else
4159 xfree (y);
4160 #endif
4161 }
4162
4163
4164 /* Re-establish the red-black properties of the tree, after a
4165 deletion. */
4166
4167 static void
4168 mem_delete_fixup (struct mem_node *x)
4169 {
4170 while (x != mem_root && x->color == MEM_BLACK)
4171 {
4172 if (x == x->parent->left)
4173 {
4174 struct mem_node *w = x->parent->right;
4175
4176 if (w->color == MEM_RED)
4177 {
4178 w->color = MEM_BLACK;
4179 x->parent->color = MEM_RED;
4180 mem_rotate_left (x->parent);
4181 w = x->parent->right;
4182 }
4183
4184 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4185 {
4186 w->color = MEM_RED;
4187 x = x->parent;
4188 }
4189 else
4190 {
4191 if (w->right->color == MEM_BLACK)
4192 {
4193 w->left->color = MEM_BLACK;
4194 w->color = MEM_RED;
4195 mem_rotate_right (w);
4196 w = x->parent->right;
4197 }
4198 w->color = x->parent->color;
4199 x->parent->color = MEM_BLACK;
4200 w->right->color = MEM_BLACK;
4201 mem_rotate_left (x->parent);
4202 x = mem_root;
4203 }
4204 }
4205 else
4206 {
4207 struct mem_node *w = x->parent->left;
4208
4209 if (w->color == MEM_RED)
4210 {
4211 w->color = MEM_BLACK;
4212 x->parent->color = MEM_RED;
4213 mem_rotate_right (x->parent);
4214 w = x->parent->left;
4215 }
4216
4217 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4218 {
4219 w->color = MEM_RED;
4220 x = x->parent;
4221 }
4222 else
4223 {
4224 if (w->left->color == MEM_BLACK)
4225 {
4226 w->right->color = MEM_BLACK;
4227 w->color = MEM_RED;
4228 mem_rotate_left (w);
4229 w = x->parent->left;
4230 }
4231
4232 w->color = x->parent->color;
4233 x->parent->color = MEM_BLACK;
4234 w->left->color = MEM_BLACK;
4235 mem_rotate_right (x->parent);
4236 x = mem_root;
4237 }
4238 }
4239 }
4240
4241 x->color = MEM_BLACK;
4242 }
4243
4244
4245 /* Value is non-zero if P is a pointer to a live Lisp string on
4246 the heap. M is a pointer to the mem_block for P. */
4247
4248 static inline int
4249 live_string_p (struct mem_node *m, void *p)
4250 {
4251 if (m->type == MEM_TYPE_STRING)
4252 {
4253 struct string_block *b = (struct string_block *) m->start;
4254 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4255
4256 /* P must point to the start of a Lisp_String structure, and it
4257 must not be on the free-list. */
4258 return (offset >= 0
4259 && offset % sizeof b->strings[0] == 0
4260 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4261 && ((struct Lisp_String *) p)->data != NULL);
4262 }
4263 else
4264 return 0;
4265 }
4266
4267
4268 /* Value is non-zero if P is a pointer to a live Lisp cons on
4269 the heap. M is a pointer to the mem_block for P. */
4270
4271 static inline int
4272 live_cons_p (struct mem_node *m, void *p)
4273 {
4274 if (m->type == MEM_TYPE_CONS)
4275 {
4276 struct cons_block *b = (struct cons_block *) m->start;
4277 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4278
4279 /* P must point to the start of a Lisp_Cons, not be
4280 one of the unused cells in the current cons block,
4281 and not be on the free-list. */
4282 return (offset >= 0
4283 && offset % sizeof b->conses[0] == 0
4284 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4285 && (b != cons_block
4286 || offset / sizeof b->conses[0] < cons_block_index)
4287 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4288 }
4289 else
4290 return 0;
4291 }
4292
4293
4294 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4295 the heap. M is a pointer to the mem_block for P. */
4296
4297 static inline int
4298 live_symbol_p (struct mem_node *m, void *p)
4299 {
4300 if (m->type == MEM_TYPE_SYMBOL)
4301 {
4302 struct symbol_block *b = (struct symbol_block *) m->start;
4303 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4304
4305 /* P must point to the start of a Lisp_Symbol, not be
4306 one of the unused cells in the current symbol block,
4307 and not be on the free-list. */
4308 return (offset >= 0
4309 && offset % sizeof b->symbols[0] == 0
4310 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4311 && (b != symbol_block
4312 || offset / sizeof b->symbols[0] < symbol_block_index)
4313 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4314 }
4315 else
4316 return 0;
4317 }
4318
4319
4320 /* Value is non-zero if P is a pointer to a live Lisp float on
4321 the heap. M is a pointer to the mem_block for P. */
4322
4323 static inline int
4324 live_float_p (struct mem_node *m, void *p)
4325 {
4326 if (m->type == MEM_TYPE_FLOAT)
4327 {
4328 struct float_block *b = (struct float_block *) m->start;
4329 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4330
4331 /* P must point to the start of a Lisp_Float and not be
4332 one of the unused cells in the current float block. */
4333 return (offset >= 0
4334 && offset % sizeof b->floats[0] == 0
4335 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4336 && (b != float_block
4337 || offset / sizeof b->floats[0] < float_block_index));
4338 }
4339 else
4340 return 0;
4341 }
4342
4343
4344 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4345 the heap. M is a pointer to the mem_block for P. */
4346
4347 static inline int
4348 live_misc_p (struct mem_node *m, void *p)
4349 {
4350 if (m->type == MEM_TYPE_MISC)
4351 {
4352 struct marker_block *b = (struct marker_block *) m->start;
4353 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4354
4355 /* P must point to the start of a Lisp_Misc, not be
4356 one of the unused cells in the current misc block,
4357 and not be on the free-list. */
4358 return (offset >= 0
4359 && offset % sizeof b->markers[0] == 0
4360 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4361 && (b != marker_block
4362 || offset / sizeof b->markers[0] < marker_block_index)
4363 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4364 }
4365 else
4366 return 0;
4367 }
4368
4369
4370 /* Value is non-zero if P is a pointer to a live vector-like object.
4371 M is a pointer to the mem_block for P. */
4372
4373 static inline int
4374 live_vector_p (struct mem_node *m, void *p)
4375 {
4376 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4377 {
4378 /* This memory node corresponds to a vector block. */
4379 struct vector_block *block = (struct vector_block *) m->start;
4380 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4381
4382 /* P is in the block's allocation range. Scan the block
4383 up to P and see whether P points to the start of some
4384 vector which is not on a free list. FIXME: check whether
4385 some allocation patterns (probably a lot of short vectors)
4386 may cause a substantial overhead of this loop. */
4387 while (VECTOR_IN_BLOCK (vector, block)
4388 && vector <= (struct Lisp_Vector *) p)
4389 {
4390 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4391 == VECTOR_FREE_LIST_FLAG)
4392 vector = ADVANCE (vector, (vector->header.size
4393 & (VECTOR_BLOCK_SIZE - 1)));
4394 else if (vector == p)
4395 return 1;
4396 else
4397 vector = ADVANCE (vector, vector->header.next.nbytes);
4398 }
4399 }
4400 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4401 /* This memory node corresponds to a large vector. */
4402 return 1;
4403 return 0;
4404 }
4405
4406
4407 /* Value is non-zero if P is a pointer to a live buffer. M is a
4408 pointer to the mem_block for P. */
4409
4410 static inline int
4411 live_buffer_p (struct mem_node *m, void *p)
4412 {
4413 /* P must point to the start of the block, and the buffer
4414 must not have been killed. */
4415 return (m->type == MEM_TYPE_BUFFER
4416 && p == m->start
4417 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4418 }
4419
4420 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4421
4422 #if GC_MARK_STACK
4423
4424 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4425
4426 /* Array of objects that are kept alive because the C stack contains
4427 a pattern that looks like a reference to them . */
4428
4429 #define MAX_ZOMBIES 10
4430 static Lisp_Object zombies[MAX_ZOMBIES];
4431
4432 /* Number of zombie objects. */
4433
4434 static EMACS_INT nzombies;
4435
4436 /* Number of garbage collections. */
4437
4438 static EMACS_INT ngcs;
4439
4440 /* Average percentage of zombies per collection. */
4441
4442 static double avg_zombies;
4443
4444 /* Max. number of live and zombie objects. */
4445
4446 static EMACS_INT max_live, max_zombies;
4447
4448 /* Average number of live objects per GC. */
4449
4450 static double avg_live;
4451
4452 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4453 doc: /* Show information about live and zombie objects. */)
4454 (void)
4455 {
4456 Lisp_Object args[8], zombie_list = Qnil;
4457 EMACS_INT i;
4458 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4459 zombie_list = Fcons (zombies[i], zombie_list);
4460 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4461 args[1] = make_number (ngcs);
4462 args[2] = make_float (avg_live);
4463 args[3] = make_float (avg_zombies);
4464 args[4] = make_float (avg_zombies / avg_live / 100);
4465 args[5] = make_number (max_live);
4466 args[6] = make_number (max_zombies);
4467 args[7] = zombie_list;
4468 return Fmessage (8, args);
4469 }
4470
4471 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4472
4473
4474 /* Mark OBJ if we can prove it's a Lisp_Object. */
4475
4476 static inline void
4477 mark_maybe_object (Lisp_Object obj)
4478 {
4479 void *po;
4480 struct mem_node *m;
4481
4482 if (INTEGERP (obj))
4483 return;
4484
4485 po = (void *) XPNTR (obj);
4486 m = mem_find (po);
4487
4488 if (m != MEM_NIL)
4489 {
4490 int mark_p = 0;
4491
4492 switch (XTYPE (obj))
4493 {
4494 case Lisp_String:
4495 mark_p = (live_string_p (m, po)
4496 && !STRING_MARKED_P ((struct Lisp_String *) po));
4497 break;
4498
4499 case Lisp_Cons:
4500 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4501 break;
4502
4503 case Lisp_Symbol:
4504 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4505 break;
4506
4507 case Lisp_Float:
4508 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4509 break;
4510
4511 case Lisp_Vectorlike:
4512 /* Note: can't check BUFFERP before we know it's a
4513 buffer because checking that dereferences the pointer
4514 PO which might point anywhere. */
4515 if (live_vector_p (m, po))
4516 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4517 else if (live_buffer_p (m, po))
4518 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4519 break;
4520
4521 case Lisp_Misc:
4522 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4523 break;
4524
4525 default:
4526 break;
4527 }
4528
4529 if (mark_p)
4530 {
4531 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4532 if (nzombies < MAX_ZOMBIES)
4533 zombies[nzombies] = obj;
4534 ++nzombies;
4535 #endif
4536 mark_object (obj);
4537 }
4538 }
4539 }
4540
4541
4542 /* If P points to Lisp data, mark that as live if it isn't already
4543 marked. */
4544
4545 static inline void
4546 mark_maybe_pointer (void *p)
4547 {
4548 struct mem_node *m;
4549
4550 /* Quickly rule out some values which can't point to Lisp data. */
4551 if ((intptr_t) p %
4552 #ifdef USE_LSB_TAG
4553 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4554 #else
4555 2 /* We assume that Lisp data is aligned on even addresses. */
4556 #endif
4557 )
4558 return;
4559
4560 m = mem_find (p);
4561 if (m != MEM_NIL)
4562 {
4563 Lisp_Object obj = Qnil;
4564
4565 switch (m->type)
4566 {
4567 case MEM_TYPE_NON_LISP:
4568 /* Nothing to do; not a pointer to Lisp memory. */
4569 break;
4570
4571 case MEM_TYPE_BUFFER:
4572 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4573 XSETVECTOR (obj, p);
4574 break;
4575
4576 case MEM_TYPE_CONS:
4577 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4578 XSETCONS (obj, p);
4579 break;
4580
4581 case MEM_TYPE_STRING:
4582 if (live_string_p (m, p)
4583 && !STRING_MARKED_P ((struct Lisp_String *) p))
4584 XSETSTRING (obj, p);
4585 break;
4586
4587 case MEM_TYPE_MISC:
4588 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4589 XSETMISC (obj, p);
4590 break;
4591
4592 case MEM_TYPE_SYMBOL:
4593 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4594 XSETSYMBOL (obj, p);
4595 break;
4596
4597 case MEM_TYPE_FLOAT:
4598 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4599 XSETFLOAT (obj, p);
4600 break;
4601
4602 case MEM_TYPE_VECTORLIKE:
4603 case MEM_TYPE_VECTOR_BLOCK:
4604 if (live_vector_p (m, p))
4605 {
4606 Lisp_Object tem;
4607 XSETVECTOR (tem, p);
4608 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4609 obj = tem;
4610 }
4611 break;
4612
4613 default:
4614 abort ();
4615 }
4616
4617 if (!NILP (obj))
4618 mark_object (obj);
4619 }
4620 }
4621
4622
4623 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4624 a smaller alignment than GCC's __alignof__ and mark_memory might
4625 miss objects if __alignof__ were used. */
4626 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4627
4628 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4629 not suffice, which is the typical case. A host where a Lisp_Object is
4630 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4631 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4632 suffice to widen it to to a Lisp_Object and check it that way. */
4633 #if defined USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4634 # if !defined USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4635 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4636 nor mark_maybe_object can follow the pointers. This should not occur on
4637 any practical porting target. */
4638 # error "MSB type bits straddle pointer-word boundaries"
4639 # endif
4640 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4641 pointer words that hold pointers ORed with type bits. */
4642 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4643 #else
4644 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4645 words that hold unmodified pointers. */
4646 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4647 #endif
4648
4649 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4650 or END+OFFSET..START. */
4651
4652 static void
4653 mark_memory (void *start, void *end)
4654 {
4655 void **pp;
4656 int i;
4657
4658 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4659 nzombies = 0;
4660 #endif
4661
4662 /* Make START the pointer to the start of the memory region,
4663 if it isn't already. */
4664 if (end < start)
4665 {
4666 void *tem = start;
4667 start = end;
4668 end = tem;
4669 }
4670
4671 /* Mark Lisp data pointed to. This is necessary because, in some
4672 situations, the C compiler optimizes Lisp objects away, so that
4673 only a pointer to them remains. Example:
4674
4675 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4676 ()
4677 {
4678 Lisp_Object obj = build_string ("test");
4679 struct Lisp_String *s = XSTRING (obj);
4680 Fgarbage_collect ();
4681 fprintf (stderr, "test `%s'\n", s->data);
4682 return Qnil;
4683 }
4684
4685 Here, `obj' isn't really used, and the compiler optimizes it
4686 away. The only reference to the life string is through the
4687 pointer `s'. */
4688
4689 for (pp = start; (void *) pp < end; pp++)
4690 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4691 {
4692 void *p = *(void **) ((char *) pp + i);
4693 mark_maybe_pointer (p);
4694 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4695 mark_maybe_object (widen_to_Lisp_Object (p));
4696 }
4697 }
4698
4699 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4700 the GCC system configuration. In gcc 3.2, the only systems for
4701 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4702 by others?) and ns32k-pc532-min. */
4703
4704 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4705
4706 static int setjmp_tested_p, longjmps_done;
4707
4708 #define SETJMP_WILL_LIKELY_WORK "\
4709 \n\
4710 Emacs garbage collector has been changed to use conservative stack\n\
4711 marking. Emacs has determined that the method it uses to do the\n\
4712 marking will likely work on your system, but this isn't sure.\n\
4713 \n\
4714 If you are a system-programmer, or can get the help of a local wizard\n\
4715 who is, please take a look at the function mark_stack in alloc.c, and\n\
4716 verify that the methods used are appropriate for your system.\n\
4717 \n\
4718 Please mail the result to <emacs-devel@gnu.org>.\n\
4719 "
4720
4721 #define SETJMP_WILL_NOT_WORK "\
4722 \n\
4723 Emacs garbage collector has been changed to use conservative stack\n\
4724 marking. Emacs has determined that the default method it uses to do the\n\
4725 marking will not work on your system. We will need a system-dependent\n\
4726 solution for your system.\n\
4727 \n\
4728 Please take a look at the function mark_stack in alloc.c, and\n\
4729 try to find a way to make it work on your system.\n\
4730 \n\
4731 Note that you may get false negatives, depending on the compiler.\n\
4732 In particular, you need to use -O with GCC for this test.\n\
4733 \n\
4734 Please mail the result to <emacs-devel@gnu.org>.\n\
4735 "
4736
4737
4738 /* Perform a quick check if it looks like setjmp saves registers in a
4739 jmp_buf. Print a message to stderr saying so. When this test
4740 succeeds, this is _not_ a proof that setjmp is sufficient for
4741 conservative stack marking. Only the sources or a disassembly
4742 can prove that. */
4743
4744 static void
4745 test_setjmp (void)
4746 {
4747 char buf[10];
4748 register int x;
4749 jmp_buf jbuf;
4750 int result = 0;
4751
4752 /* Arrange for X to be put in a register. */
4753 sprintf (buf, "1");
4754 x = strlen (buf);
4755 x = 2 * x - 1;
4756
4757 setjmp (jbuf);
4758 if (longjmps_done == 1)
4759 {
4760 /* Came here after the longjmp at the end of the function.
4761
4762 If x == 1, the longjmp has restored the register to its
4763 value before the setjmp, and we can hope that setjmp
4764 saves all such registers in the jmp_buf, although that
4765 isn't sure.
4766
4767 For other values of X, either something really strange is
4768 taking place, or the setjmp just didn't save the register. */
4769
4770 if (x == 1)
4771 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4772 else
4773 {
4774 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4775 exit (1);
4776 }
4777 }
4778
4779 ++longjmps_done;
4780 x = 2;
4781 if (longjmps_done == 1)
4782 longjmp (jbuf, 1);
4783 }
4784
4785 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4786
4787
4788 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4789
4790 /* Abort if anything GCPRO'd doesn't survive the GC. */
4791
4792 static void
4793 check_gcpros (void)
4794 {
4795 struct gcpro *p;
4796 ptrdiff_t i;
4797
4798 for (p = gcprolist; p; p = p->next)
4799 for (i = 0; i < p->nvars; ++i)
4800 if (!survives_gc_p (p->var[i]))
4801 /* FIXME: It's not necessarily a bug. It might just be that the
4802 GCPRO is unnecessary or should release the object sooner. */
4803 abort ();
4804 }
4805
4806 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4807
4808 static void
4809 dump_zombies (void)
4810 {
4811 int i;
4812
4813 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4814 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4815 {
4816 fprintf (stderr, " %d = ", i);
4817 debug_print (zombies[i]);
4818 }
4819 }
4820
4821 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4822
4823
4824 /* Mark live Lisp objects on the C stack.
4825
4826 There are several system-dependent problems to consider when
4827 porting this to new architectures:
4828
4829 Processor Registers
4830
4831 We have to mark Lisp objects in CPU registers that can hold local
4832 variables or are used to pass parameters.
4833
4834 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4835 something that either saves relevant registers on the stack, or
4836 calls mark_maybe_object passing it each register's contents.
4837
4838 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4839 implementation assumes that calling setjmp saves registers we need
4840 to see in a jmp_buf which itself lies on the stack. This doesn't
4841 have to be true! It must be verified for each system, possibly
4842 by taking a look at the source code of setjmp.
4843
4844 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4845 can use it as a machine independent method to store all registers
4846 to the stack. In this case the macros described in the previous
4847 two paragraphs are not used.
4848
4849 Stack Layout
4850
4851 Architectures differ in the way their processor stack is organized.
4852 For example, the stack might look like this
4853
4854 +----------------+
4855 | Lisp_Object | size = 4
4856 +----------------+
4857 | something else | size = 2
4858 +----------------+
4859 | Lisp_Object | size = 4
4860 +----------------+
4861 | ... |
4862
4863 In such a case, not every Lisp_Object will be aligned equally. To
4864 find all Lisp_Object on the stack it won't be sufficient to walk
4865 the stack in steps of 4 bytes. Instead, two passes will be
4866 necessary, one starting at the start of the stack, and a second
4867 pass starting at the start of the stack + 2. Likewise, if the
4868 minimal alignment of Lisp_Objects on the stack is 1, four passes
4869 would be necessary, each one starting with one byte more offset
4870 from the stack start. */
4871
4872 static void
4873 mark_stack (void)
4874 {
4875 void *end;
4876
4877 #ifdef HAVE___BUILTIN_UNWIND_INIT
4878 /* Force callee-saved registers and register windows onto the stack.
4879 This is the preferred method if available, obviating the need for
4880 machine dependent methods. */
4881 __builtin_unwind_init ();
4882 end = &end;
4883 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4884 #ifndef GC_SAVE_REGISTERS_ON_STACK
4885 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4886 union aligned_jmpbuf {
4887 Lisp_Object o;
4888 jmp_buf j;
4889 } j;
4890 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4891 #endif
4892 /* This trick flushes the register windows so that all the state of
4893 the process is contained in the stack. */
4894 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4895 needed on ia64 too. See mach_dep.c, where it also says inline
4896 assembler doesn't work with relevant proprietary compilers. */
4897 #ifdef __sparc__
4898 #if defined (__sparc64__) && defined (__FreeBSD__)
4899 /* FreeBSD does not have a ta 3 handler. */
4900 asm ("flushw");
4901 #else
4902 asm ("ta 3");
4903 #endif
4904 #endif
4905
4906 /* Save registers that we need to see on the stack. We need to see
4907 registers used to hold register variables and registers used to
4908 pass parameters. */
4909 #ifdef GC_SAVE_REGISTERS_ON_STACK
4910 GC_SAVE_REGISTERS_ON_STACK (end);
4911 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4912
4913 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4914 setjmp will definitely work, test it
4915 and print a message with the result
4916 of the test. */
4917 if (!setjmp_tested_p)
4918 {
4919 setjmp_tested_p = 1;
4920 test_setjmp ();
4921 }
4922 #endif /* GC_SETJMP_WORKS */
4923
4924 setjmp (j.j);
4925 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4926 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4927 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4928
4929 /* This assumes that the stack is a contiguous region in memory. If
4930 that's not the case, something has to be done here to iterate
4931 over the stack segments. */
4932 mark_memory (stack_base, end);
4933
4934 /* Allow for marking a secondary stack, like the register stack on the
4935 ia64. */
4936 #ifdef GC_MARK_SECONDARY_STACK
4937 GC_MARK_SECONDARY_STACK ();
4938 #endif
4939
4940 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4941 check_gcpros ();
4942 #endif
4943 }
4944
4945 #endif /* GC_MARK_STACK != 0 */
4946
4947
4948 /* Determine whether it is safe to access memory at address P. */
4949 static int
4950 valid_pointer_p (void *p)
4951 {
4952 #ifdef WINDOWSNT
4953 return w32_valid_pointer_p (p, 16);
4954 #else
4955 int fd[2];
4956
4957 /* Obviously, we cannot just access it (we would SEGV trying), so we
4958 trick the o/s to tell us whether p is a valid pointer.
4959 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4960 not validate p in that case. */
4961
4962 if (pipe (fd) == 0)
4963 {
4964 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4965 emacs_close (fd[1]);
4966 emacs_close (fd[0]);
4967 return valid;
4968 }
4969
4970 return -1;
4971 #endif
4972 }
4973
4974 /* Return 1 if OBJ is a valid lisp object.
4975 Return 0 if OBJ is NOT a valid lisp object.
4976 Return -1 if we cannot validate OBJ.
4977 This function can be quite slow,
4978 so it should only be used in code for manual debugging. */
4979
4980 int
4981 valid_lisp_object_p (Lisp_Object obj)
4982 {
4983 void *p;
4984 #if GC_MARK_STACK
4985 struct mem_node *m;
4986 #endif
4987
4988 if (INTEGERP (obj))
4989 return 1;
4990
4991 p = (void *) XPNTR (obj);
4992 if (PURE_POINTER_P (p))
4993 return 1;
4994
4995 #if !GC_MARK_STACK
4996 return valid_pointer_p (p);
4997 #else
4998
4999 m = mem_find (p);
5000
5001 if (m == MEM_NIL)
5002 {
5003 int valid = valid_pointer_p (p);
5004 if (valid <= 0)
5005 return valid;
5006
5007 if (SUBRP (obj))
5008 return 1;
5009
5010 return 0;
5011 }
5012
5013 switch (m->type)
5014 {
5015 case MEM_TYPE_NON_LISP:
5016 return 0;
5017
5018 case MEM_TYPE_BUFFER:
5019 return live_buffer_p (m, p);
5020
5021 case MEM_TYPE_CONS:
5022 return live_cons_p (m, p);
5023
5024 case MEM_TYPE_STRING:
5025 return live_string_p (m, p);
5026
5027 case MEM_TYPE_MISC:
5028 return live_misc_p (m, p);
5029
5030 case MEM_TYPE_SYMBOL:
5031 return live_symbol_p (m, p);
5032
5033 case MEM_TYPE_FLOAT:
5034 return live_float_p (m, p);
5035
5036 case MEM_TYPE_VECTORLIKE:
5037 case MEM_TYPE_VECTOR_BLOCK:
5038 return live_vector_p (m, p);
5039
5040 default:
5041 break;
5042 }
5043
5044 return 0;
5045 #endif
5046 }
5047
5048
5049
5050 \f
5051 /***********************************************************************
5052 Pure Storage Management
5053 ***********************************************************************/
5054
5055 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5056 pointer to it. TYPE is the Lisp type for which the memory is
5057 allocated. TYPE < 0 means it's not used for a Lisp object. */
5058
5059 static void *
5060 pure_alloc (size_t size, int type)
5061 {
5062 void *result;
5063 #ifdef USE_LSB_TAG
5064 size_t alignment = (1 << GCTYPEBITS);
5065 #else
5066 size_t alignment = sizeof (EMACS_INT);
5067
5068 /* Give Lisp_Floats an extra alignment. */
5069 if (type == Lisp_Float)
5070 {
5071 #if defined __GNUC__ && __GNUC__ >= 2
5072 alignment = __alignof (struct Lisp_Float);
5073 #else
5074 alignment = sizeof (struct Lisp_Float);
5075 #endif
5076 }
5077 #endif
5078
5079 again:
5080 if (type >= 0)
5081 {
5082 /* Allocate space for a Lisp object from the beginning of the free
5083 space with taking account of alignment. */
5084 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5085 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5086 }
5087 else
5088 {
5089 /* Allocate space for a non-Lisp object from the end of the free
5090 space. */
5091 pure_bytes_used_non_lisp += size;
5092 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5093 }
5094 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5095
5096 if (pure_bytes_used <= pure_size)
5097 return result;
5098
5099 /* Don't allocate a large amount here,
5100 because it might get mmap'd and then its address
5101 might not be usable. */
5102 purebeg = (char *) xmalloc (10000);
5103 pure_size = 10000;
5104 pure_bytes_used_before_overflow += pure_bytes_used - size;
5105 pure_bytes_used = 0;
5106 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5107 goto again;
5108 }
5109
5110
5111 /* Print a warning if PURESIZE is too small. */
5112
5113 void
5114 check_pure_size (void)
5115 {
5116 if (pure_bytes_used_before_overflow)
5117 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5118 " bytes needed)"),
5119 pure_bytes_used + pure_bytes_used_before_overflow);
5120 }
5121
5122
5123 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5124 the non-Lisp data pool of the pure storage, and return its start
5125 address. Return NULL if not found. */
5126
5127 static char *
5128 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5129 {
5130 int i;
5131 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5132 const unsigned char *p;
5133 char *non_lisp_beg;
5134
5135 if (pure_bytes_used_non_lisp <= nbytes)
5136 return NULL;
5137
5138 /* Set up the Boyer-Moore table. */
5139 skip = nbytes + 1;
5140 for (i = 0; i < 256; i++)
5141 bm_skip[i] = skip;
5142
5143 p = (const unsigned char *) data;
5144 while (--skip > 0)
5145 bm_skip[*p++] = skip;
5146
5147 last_char_skip = bm_skip['\0'];
5148
5149 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5150 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5151
5152 /* See the comments in the function `boyer_moore' (search.c) for the
5153 use of `infinity'. */
5154 infinity = pure_bytes_used_non_lisp + 1;
5155 bm_skip['\0'] = infinity;
5156
5157 p = (const unsigned char *) non_lisp_beg + nbytes;
5158 start = 0;
5159 do
5160 {
5161 /* Check the last character (== '\0'). */
5162 do
5163 {
5164 start += bm_skip[*(p + start)];
5165 }
5166 while (start <= start_max);
5167
5168 if (start < infinity)
5169 /* Couldn't find the last character. */
5170 return NULL;
5171
5172 /* No less than `infinity' means we could find the last
5173 character at `p[start - infinity]'. */
5174 start -= infinity;
5175
5176 /* Check the remaining characters. */
5177 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5178 /* Found. */
5179 return non_lisp_beg + start;
5180
5181 start += last_char_skip;
5182 }
5183 while (start <= start_max);
5184
5185 return NULL;
5186 }
5187
5188
5189 /* Return a string allocated in pure space. DATA is a buffer holding
5190 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5191 non-zero means make the result string multibyte.
5192
5193 Must get an error if pure storage is full, since if it cannot hold
5194 a large string it may be able to hold conses that point to that
5195 string; then the string is not protected from gc. */
5196
5197 Lisp_Object
5198 make_pure_string (const char *data,
5199 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5200 {
5201 Lisp_Object string;
5202 struct Lisp_String *s;
5203
5204 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5205 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5206 if (s->data == NULL)
5207 {
5208 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5209 memcpy (s->data, data, nbytes);
5210 s->data[nbytes] = '\0';
5211 }
5212 s->size = nchars;
5213 s->size_byte = multibyte ? nbytes : -1;
5214 s->intervals = NULL_INTERVAL;
5215 XSETSTRING (string, s);
5216 return string;
5217 }
5218
5219 /* Return a string a string allocated in pure space. Do not allocate
5220 the string data, just point to DATA. */
5221
5222 Lisp_Object
5223 make_pure_c_string (const char *data)
5224 {
5225 Lisp_Object string;
5226 struct Lisp_String *s;
5227 ptrdiff_t nchars = strlen (data);
5228
5229 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5230 s->size = nchars;
5231 s->size_byte = -1;
5232 s->data = (unsigned char *) data;
5233 s->intervals = NULL_INTERVAL;
5234 XSETSTRING (string, s);
5235 return string;
5236 }
5237
5238 /* Return a cons allocated from pure space. Give it pure copies
5239 of CAR as car and CDR as cdr. */
5240
5241 Lisp_Object
5242 pure_cons (Lisp_Object car, Lisp_Object cdr)
5243 {
5244 register Lisp_Object new;
5245 struct Lisp_Cons *p;
5246
5247 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5248 XSETCONS (new, p);
5249 XSETCAR (new, Fpurecopy (car));
5250 XSETCDR (new, Fpurecopy (cdr));
5251 return new;
5252 }
5253
5254
5255 /* Value is a float object with value NUM allocated from pure space. */
5256
5257 static Lisp_Object
5258 make_pure_float (double num)
5259 {
5260 register Lisp_Object new;
5261 struct Lisp_Float *p;
5262
5263 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5264 XSETFLOAT (new, p);
5265 XFLOAT_INIT (new, num);
5266 return new;
5267 }
5268
5269
5270 /* Return a vector with room for LEN Lisp_Objects allocated from
5271 pure space. */
5272
5273 static Lisp_Object
5274 make_pure_vector (ptrdiff_t len)
5275 {
5276 Lisp_Object new;
5277 struct Lisp_Vector *p;
5278 size_t size = (offsetof (struct Lisp_Vector, contents)
5279 + len * sizeof (Lisp_Object));
5280
5281 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5282 XSETVECTOR (new, p);
5283 XVECTOR (new)->header.size = len;
5284 return new;
5285 }
5286
5287
5288 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5289 doc: /* Make a copy of object OBJ in pure storage.
5290 Recursively copies contents of vectors and cons cells.
5291 Does not copy symbols. Copies strings without text properties. */)
5292 (register Lisp_Object obj)
5293 {
5294 if (NILP (Vpurify_flag))
5295 return obj;
5296
5297 if (PURE_POINTER_P (XPNTR (obj)))
5298 return obj;
5299
5300 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5301 {
5302 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5303 if (!NILP (tmp))
5304 return tmp;
5305 }
5306
5307 if (CONSP (obj))
5308 obj = pure_cons (XCAR (obj), XCDR (obj));
5309 else if (FLOATP (obj))
5310 obj = make_pure_float (XFLOAT_DATA (obj));
5311 else if (STRINGP (obj))
5312 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5313 SBYTES (obj),
5314 STRING_MULTIBYTE (obj));
5315 else if (COMPILEDP (obj) || VECTORP (obj))
5316 {
5317 register struct Lisp_Vector *vec;
5318 register ptrdiff_t i;
5319 ptrdiff_t size;
5320
5321 size = ASIZE (obj);
5322 if (size & PSEUDOVECTOR_FLAG)
5323 size &= PSEUDOVECTOR_SIZE_MASK;
5324 vec = XVECTOR (make_pure_vector (size));
5325 for (i = 0; i < size; i++)
5326 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
5327 if (COMPILEDP (obj))
5328 {
5329 XSETPVECTYPE (vec, PVEC_COMPILED);
5330 XSETCOMPILED (obj, vec);
5331 }
5332 else
5333 XSETVECTOR (obj, vec);
5334 }
5335 else if (MARKERP (obj))
5336 error ("Attempt to copy a marker to pure storage");
5337 else
5338 /* Not purified, don't hash-cons. */
5339 return obj;
5340
5341 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5342 Fputhash (obj, obj, Vpurify_flag);
5343
5344 return obj;
5345 }
5346
5347
5348 \f
5349 /***********************************************************************
5350 Protection from GC
5351 ***********************************************************************/
5352
5353 /* Put an entry in staticvec, pointing at the variable with address
5354 VARADDRESS. */
5355
5356 void
5357 staticpro (Lisp_Object *varaddress)
5358 {
5359 staticvec[staticidx++] = varaddress;
5360 if (staticidx >= NSTATICS)
5361 abort ();
5362 }
5363
5364 \f
5365 /***********************************************************************
5366 Protection from GC
5367 ***********************************************************************/
5368
5369 /* Temporarily prevent garbage collection. */
5370
5371 ptrdiff_t
5372 inhibit_garbage_collection (void)
5373 {
5374 ptrdiff_t count = SPECPDL_INDEX ();
5375
5376 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5377 return count;
5378 }
5379
5380
5381 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5382 doc: /* Reclaim storage for Lisp objects no longer needed.
5383 Garbage collection happens automatically if you cons more than
5384 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5385 `garbage-collect' normally returns a list with info on amount of space in use:
5386 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5387 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5388 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5389 (USED-STRINGS . FREE-STRINGS))
5390 However, if there was overflow in pure space, `garbage-collect'
5391 returns nil, because real GC can't be done.
5392 See Info node `(elisp)Garbage Collection'. */)
5393 (void)
5394 {
5395 register struct specbinding *bind;
5396 char stack_top_variable;
5397 ptrdiff_t i;
5398 int message_p;
5399 Lisp_Object total[8];
5400 ptrdiff_t count = SPECPDL_INDEX ();
5401 EMACS_TIME t1, t2, t3;
5402
5403 if (abort_on_gc)
5404 abort ();
5405
5406 /* Can't GC if pure storage overflowed because we can't determine
5407 if something is a pure object or not. */
5408 if (pure_bytes_used_before_overflow)
5409 return Qnil;
5410
5411 CHECK_CONS_LIST ();
5412
5413 /* Don't keep undo information around forever.
5414 Do this early on, so it is no problem if the user quits. */
5415 {
5416 register struct buffer *nextb = all_buffers;
5417
5418 while (nextb)
5419 {
5420 /* If a buffer's undo list is Qt, that means that undo is
5421 turned off in that buffer. Calling truncate_undo_list on
5422 Qt tends to return NULL, which effectively turns undo back on.
5423 So don't call truncate_undo_list if undo_list is Qt. */
5424 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5425 truncate_undo_list (nextb);
5426
5427 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5428 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5429 && ! nextb->text->inhibit_shrinking)
5430 {
5431 /* If a buffer's gap size is more than 10% of the buffer
5432 size, or larger than 2000 bytes, then shrink it
5433 accordingly. Keep a minimum size of 20 bytes. */
5434 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5435
5436 if (nextb->text->gap_size > size)
5437 {
5438 struct buffer *save_current = current_buffer;
5439 current_buffer = nextb;
5440 make_gap (-(nextb->text->gap_size - size));
5441 current_buffer = save_current;
5442 }
5443 }
5444
5445 nextb = nextb->header.next.buffer;
5446 }
5447 }
5448
5449 EMACS_GET_TIME (t1);
5450
5451 /* In case user calls debug_print during GC,
5452 don't let that cause a recursive GC. */
5453 consing_since_gc = 0;
5454
5455 /* Save what's currently displayed in the echo area. */
5456 message_p = push_message ();
5457 record_unwind_protect (pop_message_unwind, Qnil);
5458
5459 /* Save a copy of the contents of the stack, for debugging. */
5460 #if MAX_SAVE_STACK > 0
5461 if (NILP (Vpurify_flag))
5462 {
5463 char *stack;
5464 ptrdiff_t stack_size;
5465 if (&stack_top_variable < stack_bottom)
5466 {
5467 stack = &stack_top_variable;
5468 stack_size = stack_bottom - &stack_top_variable;
5469 }
5470 else
5471 {
5472 stack = stack_bottom;
5473 stack_size = &stack_top_variable - stack_bottom;
5474 }
5475 if (stack_size <= MAX_SAVE_STACK)
5476 {
5477 if (stack_copy_size < stack_size)
5478 {
5479 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5480 stack_copy_size = stack_size;
5481 }
5482 memcpy (stack_copy, stack, stack_size);
5483 }
5484 }
5485 #endif /* MAX_SAVE_STACK > 0 */
5486
5487 if (garbage_collection_messages)
5488 message1_nolog ("Garbage collecting...");
5489
5490 BLOCK_INPUT;
5491
5492 shrink_regexp_cache ();
5493
5494 gc_in_progress = 1;
5495
5496 /* clear_marks (); */
5497
5498 /* Mark all the special slots that serve as the roots of accessibility. */
5499
5500 for (i = 0; i < staticidx; i++)
5501 mark_object (*staticvec[i]);
5502
5503 for (bind = specpdl; bind != specpdl_ptr; bind++)
5504 {
5505 mark_object (bind->symbol);
5506 mark_object (bind->old_value);
5507 }
5508 mark_terminals ();
5509 mark_kboards ();
5510 mark_ttys ();
5511
5512 #ifdef USE_GTK
5513 {
5514 extern void xg_mark_data (void);
5515 xg_mark_data ();
5516 }
5517 #endif
5518
5519 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5520 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5521 mark_stack ();
5522 #else
5523 {
5524 register struct gcpro *tail;
5525 for (tail = gcprolist; tail; tail = tail->next)
5526 for (i = 0; i < tail->nvars; i++)
5527 mark_object (tail->var[i]);
5528 }
5529 mark_byte_stack ();
5530 {
5531 struct catchtag *catch;
5532 struct handler *handler;
5533
5534 for (catch = catchlist; catch; catch = catch->next)
5535 {
5536 mark_object (catch->tag);
5537 mark_object (catch->val);
5538 }
5539 for (handler = handlerlist; handler; handler = handler->next)
5540 {
5541 mark_object (handler->handler);
5542 mark_object (handler->var);
5543 }
5544 }
5545 mark_backtrace ();
5546 #endif
5547
5548 #ifdef HAVE_WINDOW_SYSTEM
5549 mark_fringe_data ();
5550 #endif
5551
5552 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5553 mark_stack ();
5554 #endif
5555
5556 /* Everything is now marked, except for the things that require special
5557 finalization, i.e. the undo_list.
5558 Look thru every buffer's undo list
5559 for elements that update markers that were not marked,
5560 and delete them. */
5561 {
5562 register struct buffer *nextb = all_buffers;
5563
5564 while (nextb)
5565 {
5566 /* If a buffer's undo list is Qt, that means that undo is
5567 turned off in that buffer. Calling truncate_undo_list on
5568 Qt tends to return NULL, which effectively turns undo back on.
5569 So don't call truncate_undo_list if undo_list is Qt. */
5570 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5571 {
5572 Lisp_Object tail, prev;
5573 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5574 prev = Qnil;
5575 while (CONSP (tail))
5576 {
5577 if (CONSP (XCAR (tail))
5578 && MARKERP (XCAR (XCAR (tail)))
5579 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5580 {
5581 if (NILP (prev))
5582 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5583 else
5584 {
5585 tail = XCDR (tail);
5586 XSETCDR (prev, tail);
5587 }
5588 }
5589 else
5590 {
5591 prev = tail;
5592 tail = XCDR (tail);
5593 }
5594 }
5595 }
5596 /* Now that we have stripped the elements that need not be in the
5597 undo_list any more, we can finally mark the list. */
5598 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5599
5600 nextb = nextb->header.next.buffer;
5601 }
5602 }
5603
5604 gc_sweep ();
5605
5606 /* Clear the mark bits that we set in certain root slots. */
5607
5608 unmark_byte_stack ();
5609 VECTOR_UNMARK (&buffer_defaults);
5610 VECTOR_UNMARK (&buffer_local_symbols);
5611
5612 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5613 dump_zombies ();
5614 #endif
5615
5616 UNBLOCK_INPUT;
5617
5618 CHECK_CONS_LIST ();
5619
5620 /* clear_marks (); */
5621 gc_in_progress = 0;
5622
5623 consing_since_gc = 0;
5624 if (gc_cons_threshold < 10000)
5625 gc_cons_threshold = 10000;
5626
5627 gc_relative_threshold = 0;
5628 if (FLOATP (Vgc_cons_percentage))
5629 { /* Set gc_cons_combined_threshold. */
5630 double tot = 0;
5631
5632 tot += total_conses * sizeof (struct Lisp_Cons);
5633 tot += total_symbols * sizeof (struct Lisp_Symbol);
5634 tot += total_markers * sizeof (union Lisp_Misc);
5635 tot += total_string_size;
5636 tot += total_vector_size * sizeof (Lisp_Object);
5637 tot += total_floats * sizeof (struct Lisp_Float);
5638 tot += total_intervals * sizeof (struct interval);
5639 tot += total_strings * sizeof (struct Lisp_String);
5640
5641 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5642 if (0 < tot)
5643 {
5644 if (tot < TYPE_MAXIMUM (EMACS_INT))
5645 gc_relative_threshold = tot;
5646 else
5647 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5648 }
5649 }
5650
5651 if (garbage_collection_messages)
5652 {
5653 if (message_p || minibuf_level > 0)
5654 restore_message ();
5655 else
5656 message1_nolog ("Garbage collecting...done");
5657 }
5658
5659 unbind_to (count, Qnil);
5660
5661 total[0] = Fcons (make_number (total_conses),
5662 make_number (total_free_conses));
5663 total[1] = Fcons (make_number (total_symbols),
5664 make_number (total_free_symbols));
5665 total[2] = Fcons (make_number (total_markers),
5666 make_number (total_free_markers));
5667 total[3] = make_number (total_string_size);
5668 total[4] = make_number (total_vector_size);
5669 total[5] = Fcons (make_number (total_floats),
5670 make_number (total_free_floats));
5671 total[6] = Fcons (make_number (total_intervals),
5672 make_number (total_free_intervals));
5673 total[7] = Fcons (make_number (total_strings),
5674 make_number (total_free_strings));
5675
5676 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5677 {
5678 /* Compute average percentage of zombies. */
5679 double nlive = 0;
5680
5681 for (i = 0; i < 7; ++i)
5682 if (CONSP (total[i]))
5683 nlive += XFASTINT (XCAR (total[i]));
5684
5685 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5686 max_live = max (nlive, max_live);
5687 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5688 max_zombies = max (nzombies, max_zombies);
5689 ++ngcs;
5690 }
5691 #endif
5692
5693 if (!NILP (Vpost_gc_hook))
5694 {
5695 ptrdiff_t gc_count = inhibit_garbage_collection ();
5696 safe_run_hooks (Qpost_gc_hook);
5697 unbind_to (gc_count, Qnil);
5698 }
5699
5700 /* Accumulate statistics. */
5701 EMACS_GET_TIME (t2);
5702 EMACS_SUB_TIME (t3, t2, t1);
5703 if (FLOATP (Vgc_elapsed))
5704 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5705 EMACS_SECS (t3) +
5706 EMACS_USECS (t3) * 1.0e-6);
5707 gcs_done++;
5708
5709 return Flist (sizeof total / sizeof *total, total);
5710 }
5711
5712
5713 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5714 only interesting objects referenced from glyphs are strings. */
5715
5716 static void
5717 mark_glyph_matrix (struct glyph_matrix *matrix)
5718 {
5719 struct glyph_row *row = matrix->rows;
5720 struct glyph_row *end = row + matrix->nrows;
5721
5722 for (; row < end; ++row)
5723 if (row->enabled_p)
5724 {
5725 int area;
5726 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5727 {
5728 struct glyph *glyph = row->glyphs[area];
5729 struct glyph *end_glyph = glyph + row->used[area];
5730
5731 for (; glyph < end_glyph; ++glyph)
5732 if (STRINGP (glyph->object)
5733 && !STRING_MARKED_P (XSTRING (glyph->object)))
5734 mark_object (glyph->object);
5735 }
5736 }
5737 }
5738
5739
5740 /* Mark Lisp faces in the face cache C. */
5741
5742 static void
5743 mark_face_cache (struct face_cache *c)
5744 {
5745 if (c)
5746 {
5747 int i, j;
5748 for (i = 0; i < c->used; ++i)
5749 {
5750 struct face *face = FACE_FROM_ID (c->f, i);
5751
5752 if (face)
5753 {
5754 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5755 mark_object (face->lface[j]);
5756 }
5757 }
5758 }
5759 }
5760
5761
5762 \f
5763 /* Mark reference to a Lisp_Object.
5764 If the object referred to has not been seen yet, recursively mark
5765 all the references contained in it. */
5766
5767 #define LAST_MARKED_SIZE 500
5768 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5769 static int last_marked_index;
5770
5771 /* For debugging--call abort when we cdr down this many
5772 links of a list, in mark_object. In debugging,
5773 the call to abort will hit a breakpoint.
5774 Normally this is zero and the check never goes off. */
5775 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5776
5777 static void
5778 mark_vectorlike (struct Lisp_Vector *ptr)
5779 {
5780 ptrdiff_t size = ptr->header.size;
5781 ptrdiff_t i;
5782
5783 eassert (!VECTOR_MARKED_P (ptr));
5784 VECTOR_MARK (ptr); /* Else mark it */
5785 if (size & PSEUDOVECTOR_FLAG)
5786 size &= PSEUDOVECTOR_SIZE_MASK;
5787
5788 /* Note that this size is not the memory-footprint size, but only
5789 the number of Lisp_Object fields that we should trace.
5790 The distinction is used e.g. by Lisp_Process which places extra
5791 non-Lisp_Object fields at the end of the structure. */
5792 for (i = 0; i < size; i++) /* and then mark its elements */
5793 mark_object (ptr->contents[i]);
5794 }
5795
5796 /* Like mark_vectorlike but optimized for char-tables (and
5797 sub-char-tables) assuming that the contents are mostly integers or
5798 symbols. */
5799
5800 static void
5801 mark_char_table (struct Lisp_Vector *ptr)
5802 {
5803 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5804 int i;
5805
5806 eassert (!VECTOR_MARKED_P (ptr));
5807 VECTOR_MARK (ptr);
5808 for (i = 0; i < size; i++)
5809 {
5810 Lisp_Object val = ptr->contents[i];
5811
5812 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5813 continue;
5814 if (SUB_CHAR_TABLE_P (val))
5815 {
5816 if (! VECTOR_MARKED_P (XVECTOR (val)))
5817 mark_char_table (XVECTOR (val));
5818 }
5819 else
5820 mark_object (val);
5821 }
5822 }
5823
5824 void
5825 mark_object (Lisp_Object arg)
5826 {
5827 register Lisp_Object obj = arg;
5828 #ifdef GC_CHECK_MARKED_OBJECTS
5829 void *po;
5830 struct mem_node *m;
5831 #endif
5832 ptrdiff_t cdr_count = 0;
5833
5834 loop:
5835
5836 if (PURE_POINTER_P (XPNTR (obj)))
5837 return;
5838
5839 last_marked[last_marked_index++] = obj;
5840 if (last_marked_index == LAST_MARKED_SIZE)
5841 last_marked_index = 0;
5842
5843 /* Perform some sanity checks on the objects marked here. Abort if
5844 we encounter an object we know is bogus. This increases GC time
5845 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5846 #ifdef GC_CHECK_MARKED_OBJECTS
5847
5848 po = (void *) XPNTR (obj);
5849
5850 /* Check that the object pointed to by PO is known to be a Lisp
5851 structure allocated from the heap. */
5852 #define CHECK_ALLOCATED() \
5853 do { \
5854 m = mem_find (po); \
5855 if (m == MEM_NIL) \
5856 abort (); \
5857 } while (0)
5858
5859 /* Check that the object pointed to by PO is live, using predicate
5860 function LIVEP. */
5861 #define CHECK_LIVE(LIVEP) \
5862 do { \
5863 if (!LIVEP (m, po)) \
5864 abort (); \
5865 } while (0)
5866
5867 /* Check both of the above conditions. */
5868 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5869 do { \
5870 CHECK_ALLOCATED (); \
5871 CHECK_LIVE (LIVEP); \
5872 } while (0) \
5873
5874 #else /* not GC_CHECK_MARKED_OBJECTS */
5875
5876 #define CHECK_LIVE(LIVEP) (void) 0
5877 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5878
5879 #endif /* not GC_CHECK_MARKED_OBJECTS */
5880
5881 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5882 {
5883 case Lisp_String:
5884 {
5885 register struct Lisp_String *ptr = XSTRING (obj);
5886 if (STRING_MARKED_P (ptr))
5887 break;
5888 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5889 MARK_INTERVAL_TREE (ptr->intervals);
5890 MARK_STRING (ptr);
5891 #ifdef GC_CHECK_STRING_BYTES
5892 /* Check that the string size recorded in the string is the
5893 same as the one recorded in the sdata structure. */
5894 CHECK_STRING_BYTES (ptr);
5895 #endif /* GC_CHECK_STRING_BYTES */
5896 }
5897 break;
5898
5899 case Lisp_Vectorlike:
5900 if (VECTOR_MARKED_P (XVECTOR (obj)))
5901 break;
5902 #ifdef GC_CHECK_MARKED_OBJECTS
5903 m = mem_find (po);
5904 if (m == MEM_NIL && !SUBRP (obj)
5905 && po != &buffer_defaults
5906 && po != &buffer_local_symbols)
5907 abort ();
5908 #endif /* GC_CHECK_MARKED_OBJECTS */
5909
5910 if (BUFFERP (obj))
5911 {
5912 #ifdef GC_CHECK_MARKED_OBJECTS
5913 if (po != &buffer_defaults && po != &buffer_local_symbols)
5914 {
5915 struct buffer *b;
5916 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5917 ;
5918 if (b == NULL)
5919 abort ();
5920 }
5921 #endif /* GC_CHECK_MARKED_OBJECTS */
5922 mark_buffer (obj);
5923 }
5924 else if (SUBRP (obj))
5925 break;
5926 else if (COMPILEDP (obj))
5927 /* We could treat this just like a vector, but it is better to
5928 save the COMPILED_CONSTANTS element for last and avoid
5929 recursion there. */
5930 {
5931 register struct Lisp_Vector *ptr = XVECTOR (obj);
5932 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5933 int i;
5934
5935 CHECK_LIVE (live_vector_p);
5936 VECTOR_MARK (ptr); /* Else mark it */
5937 for (i = 0; i < size; i++) /* and then mark its elements */
5938 {
5939 if (i != COMPILED_CONSTANTS)
5940 mark_object (ptr->contents[i]);
5941 }
5942 obj = ptr->contents[COMPILED_CONSTANTS];
5943 goto loop;
5944 }
5945 else if (FRAMEP (obj))
5946 {
5947 register struct frame *ptr = XFRAME (obj);
5948 mark_vectorlike (XVECTOR (obj));
5949 mark_face_cache (ptr->face_cache);
5950 }
5951 else if (WINDOWP (obj))
5952 {
5953 register struct Lisp_Vector *ptr = XVECTOR (obj);
5954 struct window *w = XWINDOW (obj);
5955 mark_vectorlike (ptr);
5956 /* Mark glyphs for leaf windows. Marking window matrices is
5957 sufficient because frame matrices use the same glyph
5958 memory. */
5959 if (NILP (w->hchild)
5960 && NILP (w->vchild)
5961 && w->current_matrix)
5962 {
5963 mark_glyph_matrix (w->current_matrix);
5964 mark_glyph_matrix (w->desired_matrix);
5965 }
5966 }
5967 else if (HASH_TABLE_P (obj))
5968 {
5969 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5970 mark_vectorlike ((struct Lisp_Vector *)h);
5971 /* If hash table is not weak, mark all keys and values.
5972 For weak tables, mark only the vector. */
5973 if (NILP (h->weak))
5974 mark_object (h->key_and_value);
5975 else
5976 VECTOR_MARK (XVECTOR (h->key_and_value));
5977 }
5978 else if (CHAR_TABLE_P (obj))
5979 mark_char_table (XVECTOR (obj));
5980 else
5981 mark_vectorlike (XVECTOR (obj));
5982 break;
5983
5984 case Lisp_Symbol:
5985 {
5986 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5987 struct Lisp_Symbol *ptrx;
5988
5989 if (ptr->gcmarkbit)
5990 break;
5991 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5992 ptr->gcmarkbit = 1;
5993 mark_object (ptr->function);
5994 mark_object (ptr->plist);
5995 switch (ptr->redirect)
5996 {
5997 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5998 case SYMBOL_VARALIAS:
5999 {
6000 Lisp_Object tem;
6001 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6002 mark_object (tem);
6003 break;
6004 }
6005 case SYMBOL_LOCALIZED:
6006 {
6007 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6008 /* If the value is forwarded to a buffer or keyboard field,
6009 these are marked when we see the corresponding object.
6010 And if it's forwarded to a C variable, either it's not
6011 a Lisp_Object var, or it's staticpro'd already. */
6012 mark_object (blv->where);
6013 mark_object (blv->valcell);
6014 mark_object (blv->defcell);
6015 break;
6016 }
6017 case SYMBOL_FORWARDED:
6018 /* If the value is forwarded to a buffer or keyboard field,
6019 these are marked when we see the corresponding object.
6020 And if it's forwarded to a C variable, either it's not
6021 a Lisp_Object var, or it's staticpro'd already. */
6022 break;
6023 default: abort ();
6024 }
6025 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6026 MARK_STRING (XSTRING (ptr->xname));
6027 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6028
6029 ptr = ptr->next;
6030 if (ptr)
6031 {
6032 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
6033 XSETSYMBOL (obj, ptrx);
6034 goto loop;
6035 }
6036 }
6037 break;
6038
6039 case Lisp_Misc:
6040 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6041 if (XMISCANY (obj)->gcmarkbit)
6042 break;
6043 XMISCANY (obj)->gcmarkbit = 1;
6044
6045 switch (XMISCTYPE (obj))
6046 {
6047
6048 case Lisp_Misc_Marker:
6049 /* DO NOT mark thru the marker's chain.
6050 The buffer's markers chain does not preserve markers from gc;
6051 instead, markers are removed from the chain when freed by gc. */
6052 break;
6053
6054 case Lisp_Misc_Save_Value:
6055 #if GC_MARK_STACK
6056 {
6057 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6058 /* If DOGC is set, POINTER is the address of a memory
6059 area containing INTEGER potential Lisp_Objects. */
6060 if (ptr->dogc)
6061 {
6062 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6063 ptrdiff_t nelt;
6064 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6065 mark_maybe_object (*p);
6066 }
6067 }
6068 #endif
6069 break;
6070
6071 case Lisp_Misc_Overlay:
6072 {
6073 struct Lisp_Overlay *ptr = XOVERLAY (obj);
6074 mark_object (ptr->start);
6075 mark_object (ptr->end);
6076 mark_object (ptr->plist);
6077 if (ptr->next)
6078 {
6079 XSETMISC (obj, ptr->next);
6080 goto loop;
6081 }
6082 }
6083 break;
6084
6085 default:
6086 abort ();
6087 }
6088 break;
6089
6090 case Lisp_Cons:
6091 {
6092 register struct Lisp_Cons *ptr = XCONS (obj);
6093 if (CONS_MARKED_P (ptr))
6094 break;
6095 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6096 CONS_MARK (ptr);
6097 /* If the cdr is nil, avoid recursion for the car. */
6098 if (EQ (ptr->u.cdr, Qnil))
6099 {
6100 obj = ptr->car;
6101 cdr_count = 0;
6102 goto loop;
6103 }
6104 mark_object (ptr->car);
6105 obj = ptr->u.cdr;
6106 cdr_count++;
6107 if (cdr_count == mark_object_loop_halt)
6108 abort ();
6109 goto loop;
6110 }
6111
6112 case Lisp_Float:
6113 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6114 FLOAT_MARK (XFLOAT (obj));
6115 break;
6116
6117 case_Lisp_Int:
6118 break;
6119
6120 default:
6121 abort ();
6122 }
6123
6124 #undef CHECK_LIVE
6125 #undef CHECK_ALLOCATED
6126 #undef CHECK_ALLOCATED_AND_LIVE
6127 }
6128
6129 /* Mark the pointers in a buffer structure. */
6130
6131 static void
6132 mark_buffer (Lisp_Object buf)
6133 {
6134 register struct buffer *buffer = XBUFFER (buf);
6135 register Lisp_Object *ptr, tmp;
6136 Lisp_Object base_buffer;
6137
6138 eassert (!VECTOR_MARKED_P (buffer));
6139 VECTOR_MARK (buffer);
6140
6141 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
6142
6143 /* For now, we just don't mark the undo_list. It's done later in
6144 a special way just before the sweep phase, and after stripping
6145 some of its elements that are not needed any more. */
6146
6147 if (buffer->overlays_before)
6148 {
6149 XSETMISC (tmp, buffer->overlays_before);
6150 mark_object (tmp);
6151 }
6152 if (buffer->overlays_after)
6153 {
6154 XSETMISC (tmp, buffer->overlays_after);
6155 mark_object (tmp);
6156 }
6157
6158 /* buffer-local Lisp variables start at `undo_list',
6159 tho only the ones from `name' on are GC'd normally. */
6160 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
6161 ptr <= &PER_BUFFER_VALUE (buffer,
6162 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
6163 ptr++)
6164 mark_object (*ptr);
6165
6166 /* If this is an indirect buffer, mark its base buffer. */
6167 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6168 {
6169 XSETBUFFER (base_buffer, buffer->base_buffer);
6170 mark_buffer (base_buffer);
6171 }
6172 }
6173
6174 /* Mark the Lisp pointers in the terminal objects.
6175 Called by Fgarbage_collect. */
6176
6177 static void
6178 mark_terminals (void)
6179 {
6180 struct terminal *t;
6181 for (t = terminal_list; t; t = t->next_terminal)
6182 {
6183 eassert (t->name != NULL);
6184 #ifdef HAVE_WINDOW_SYSTEM
6185 /* If a terminal object is reachable from a stacpro'ed object,
6186 it might have been marked already. Make sure the image cache
6187 gets marked. */
6188 mark_image_cache (t->image_cache);
6189 #endif /* HAVE_WINDOW_SYSTEM */
6190 if (!VECTOR_MARKED_P (t))
6191 mark_vectorlike ((struct Lisp_Vector *)t);
6192 }
6193 }
6194
6195
6196
6197 /* Value is non-zero if OBJ will survive the current GC because it's
6198 either marked or does not need to be marked to survive. */
6199
6200 int
6201 survives_gc_p (Lisp_Object obj)
6202 {
6203 int survives_p;
6204
6205 switch (XTYPE (obj))
6206 {
6207 case_Lisp_Int:
6208 survives_p = 1;
6209 break;
6210
6211 case Lisp_Symbol:
6212 survives_p = XSYMBOL (obj)->gcmarkbit;
6213 break;
6214
6215 case Lisp_Misc:
6216 survives_p = XMISCANY (obj)->gcmarkbit;
6217 break;
6218
6219 case Lisp_String:
6220 survives_p = STRING_MARKED_P (XSTRING (obj));
6221 break;
6222
6223 case Lisp_Vectorlike:
6224 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6225 break;
6226
6227 case Lisp_Cons:
6228 survives_p = CONS_MARKED_P (XCONS (obj));
6229 break;
6230
6231 case Lisp_Float:
6232 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6233 break;
6234
6235 default:
6236 abort ();
6237 }
6238
6239 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6240 }
6241
6242
6243 \f
6244 /* Sweep: find all structures not marked, and free them. */
6245
6246 static void
6247 gc_sweep (void)
6248 {
6249 /* Remove or mark entries in weak hash tables.
6250 This must be done before any object is unmarked. */
6251 sweep_weak_hash_tables ();
6252
6253 sweep_strings ();
6254 #ifdef GC_CHECK_STRING_BYTES
6255 if (!noninteractive)
6256 check_string_bytes (1);
6257 #endif
6258
6259 /* Put all unmarked conses on free list */
6260 {
6261 register struct cons_block *cblk;
6262 struct cons_block **cprev = &cons_block;
6263 register int lim = cons_block_index;
6264 EMACS_INT num_free = 0, num_used = 0;
6265
6266 cons_free_list = 0;
6267
6268 for (cblk = cons_block; cblk; cblk = *cprev)
6269 {
6270 register int i = 0;
6271 int this_free = 0;
6272 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6273
6274 /* Scan the mark bits an int at a time. */
6275 for (i = 0; i < ilim; i++)
6276 {
6277 if (cblk->gcmarkbits[i] == -1)
6278 {
6279 /* Fast path - all cons cells for this int are marked. */
6280 cblk->gcmarkbits[i] = 0;
6281 num_used += BITS_PER_INT;
6282 }
6283 else
6284 {
6285 /* Some cons cells for this int are not marked.
6286 Find which ones, and free them. */
6287 int start, pos, stop;
6288
6289 start = i * BITS_PER_INT;
6290 stop = lim - start;
6291 if (stop > BITS_PER_INT)
6292 stop = BITS_PER_INT;
6293 stop += start;
6294
6295 for (pos = start; pos < stop; pos++)
6296 {
6297 if (!CONS_MARKED_P (&cblk->conses[pos]))
6298 {
6299 this_free++;
6300 cblk->conses[pos].u.chain = cons_free_list;
6301 cons_free_list = &cblk->conses[pos];
6302 #if GC_MARK_STACK
6303 cons_free_list->car = Vdead;
6304 #endif
6305 }
6306 else
6307 {
6308 num_used++;
6309 CONS_UNMARK (&cblk->conses[pos]);
6310 }
6311 }
6312 }
6313 }
6314
6315 lim = CONS_BLOCK_SIZE;
6316 /* If this block contains only free conses and we have already
6317 seen more than two blocks worth of free conses then deallocate
6318 this block. */
6319 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6320 {
6321 *cprev = cblk->next;
6322 /* Unhook from the free list. */
6323 cons_free_list = cblk->conses[0].u.chain;
6324 lisp_align_free (cblk);
6325 }
6326 else
6327 {
6328 num_free += this_free;
6329 cprev = &cblk->next;
6330 }
6331 }
6332 total_conses = num_used;
6333 total_free_conses = num_free;
6334 }
6335
6336 /* Put all unmarked floats on free list */
6337 {
6338 register struct float_block *fblk;
6339 struct float_block **fprev = &float_block;
6340 register int lim = float_block_index;
6341 EMACS_INT num_free = 0, num_used = 0;
6342
6343 float_free_list = 0;
6344
6345 for (fblk = float_block; fblk; fblk = *fprev)
6346 {
6347 register int i;
6348 int this_free = 0;
6349 for (i = 0; i < lim; i++)
6350 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6351 {
6352 this_free++;
6353 fblk->floats[i].u.chain = float_free_list;
6354 float_free_list = &fblk->floats[i];
6355 }
6356 else
6357 {
6358 num_used++;
6359 FLOAT_UNMARK (&fblk->floats[i]);
6360 }
6361 lim = FLOAT_BLOCK_SIZE;
6362 /* If this block contains only free floats and we have already
6363 seen more than two blocks worth of free floats then deallocate
6364 this block. */
6365 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6366 {
6367 *fprev = fblk->next;
6368 /* Unhook from the free list. */
6369 float_free_list = fblk->floats[0].u.chain;
6370 lisp_align_free (fblk);
6371 }
6372 else
6373 {
6374 num_free += this_free;
6375 fprev = &fblk->next;
6376 }
6377 }
6378 total_floats = num_used;
6379 total_free_floats = num_free;
6380 }
6381
6382 /* Put all unmarked intervals on free list */
6383 {
6384 register struct interval_block *iblk;
6385 struct interval_block **iprev = &interval_block;
6386 register int lim = interval_block_index;
6387 EMACS_INT num_free = 0, num_used = 0;
6388
6389 interval_free_list = 0;
6390
6391 for (iblk = interval_block; iblk; iblk = *iprev)
6392 {
6393 register int i;
6394 int this_free = 0;
6395
6396 for (i = 0; i < lim; i++)
6397 {
6398 if (!iblk->intervals[i].gcmarkbit)
6399 {
6400 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6401 interval_free_list = &iblk->intervals[i];
6402 this_free++;
6403 }
6404 else
6405 {
6406 num_used++;
6407 iblk->intervals[i].gcmarkbit = 0;
6408 }
6409 }
6410 lim = INTERVAL_BLOCK_SIZE;
6411 /* If this block contains only free intervals and we have already
6412 seen more than two blocks worth of free intervals then
6413 deallocate this block. */
6414 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6415 {
6416 *iprev = iblk->next;
6417 /* Unhook from the free list. */
6418 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6419 lisp_free (iblk);
6420 }
6421 else
6422 {
6423 num_free += this_free;
6424 iprev = &iblk->next;
6425 }
6426 }
6427 total_intervals = num_used;
6428 total_free_intervals = num_free;
6429 }
6430
6431 /* Put all unmarked symbols on free list */
6432 {
6433 register struct symbol_block *sblk;
6434 struct symbol_block **sprev = &symbol_block;
6435 register int lim = symbol_block_index;
6436 EMACS_INT num_free = 0, num_used = 0;
6437
6438 symbol_free_list = NULL;
6439
6440 for (sblk = symbol_block; sblk; sblk = *sprev)
6441 {
6442 int this_free = 0;
6443 union aligned_Lisp_Symbol *sym = sblk->symbols;
6444 union aligned_Lisp_Symbol *end = sym + lim;
6445
6446 for (; sym < end; ++sym)
6447 {
6448 /* Check if the symbol was created during loadup. In such a case
6449 it might be pointed to by pure bytecode which we don't trace,
6450 so we conservatively assume that it is live. */
6451 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6452
6453 if (!sym->s.gcmarkbit && !pure_p)
6454 {
6455 if (sym->s.redirect == SYMBOL_LOCALIZED)
6456 xfree (SYMBOL_BLV (&sym->s));
6457 sym->s.next = symbol_free_list;
6458 symbol_free_list = &sym->s;
6459 #if GC_MARK_STACK
6460 symbol_free_list->function = Vdead;
6461 #endif
6462 ++this_free;
6463 }
6464 else
6465 {
6466 ++num_used;
6467 if (!pure_p)
6468 UNMARK_STRING (XSTRING (sym->s.xname));
6469 sym->s.gcmarkbit = 0;
6470 }
6471 }
6472
6473 lim = SYMBOL_BLOCK_SIZE;
6474 /* If this block contains only free symbols and we have already
6475 seen more than two blocks worth of free symbols then deallocate
6476 this block. */
6477 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6478 {
6479 *sprev = sblk->next;
6480 /* Unhook from the free list. */
6481 symbol_free_list = sblk->symbols[0].s.next;
6482 lisp_free (sblk);
6483 }
6484 else
6485 {
6486 num_free += this_free;
6487 sprev = &sblk->next;
6488 }
6489 }
6490 total_symbols = num_used;
6491 total_free_symbols = num_free;
6492 }
6493
6494 /* Put all unmarked misc's on free list.
6495 For a marker, first unchain it from the buffer it points into. */
6496 {
6497 register struct marker_block *mblk;
6498 struct marker_block **mprev = &marker_block;
6499 register int lim = marker_block_index;
6500 EMACS_INT num_free = 0, num_used = 0;
6501
6502 marker_free_list = 0;
6503
6504 for (mblk = marker_block; mblk; mblk = *mprev)
6505 {
6506 register int i;
6507 int this_free = 0;
6508
6509 for (i = 0; i < lim; i++)
6510 {
6511 if (!mblk->markers[i].m.u_any.gcmarkbit)
6512 {
6513 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6514 unchain_marker (&mblk->markers[i].m.u_marker);
6515 /* Set the type of the freed object to Lisp_Misc_Free.
6516 We could leave the type alone, since nobody checks it,
6517 but this might catch bugs faster. */
6518 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6519 mblk->markers[i].m.u_free.chain = marker_free_list;
6520 marker_free_list = &mblk->markers[i].m;
6521 this_free++;
6522 }
6523 else
6524 {
6525 num_used++;
6526 mblk->markers[i].m.u_any.gcmarkbit = 0;
6527 }
6528 }
6529 lim = MARKER_BLOCK_SIZE;
6530 /* If this block contains only free markers and we have already
6531 seen more than two blocks worth of free markers then deallocate
6532 this block. */
6533 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6534 {
6535 *mprev = mblk->next;
6536 /* Unhook from the free list. */
6537 marker_free_list = mblk->markers[0].m.u_free.chain;
6538 lisp_free (mblk);
6539 }
6540 else
6541 {
6542 num_free += this_free;
6543 mprev = &mblk->next;
6544 }
6545 }
6546
6547 total_markers = num_used;
6548 total_free_markers = num_free;
6549 }
6550
6551 /* Free all unmarked buffers */
6552 {
6553 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6554
6555 while (buffer)
6556 if (!VECTOR_MARKED_P (buffer))
6557 {
6558 if (prev)
6559 prev->header.next = buffer->header.next;
6560 else
6561 all_buffers = buffer->header.next.buffer;
6562 next = buffer->header.next.buffer;
6563 lisp_free (buffer);
6564 buffer = next;
6565 }
6566 else
6567 {
6568 VECTOR_UNMARK (buffer);
6569 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6570 prev = buffer, buffer = buffer->header.next.buffer;
6571 }
6572 }
6573
6574 sweep_vectors ();
6575
6576 #ifdef GC_CHECK_STRING_BYTES
6577 if (!noninteractive)
6578 check_string_bytes (1);
6579 #endif
6580 }
6581
6582
6583
6584 \f
6585 /* Debugging aids. */
6586
6587 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6588 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6589 This may be helpful in debugging Emacs's memory usage.
6590 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6591 (void)
6592 {
6593 Lisp_Object end;
6594
6595 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6596
6597 return end;
6598 }
6599
6600 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6601 doc: /* Return a list of counters that measure how much consing there has been.
6602 Each of these counters increments for a certain kind of object.
6603 The counters wrap around from the largest positive integer to zero.
6604 Garbage collection does not decrease them.
6605 The elements of the value are as follows:
6606 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6607 All are in units of 1 = one object consed
6608 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6609 objects consed.
6610 MISCS include overlays, markers, and some internal types.
6611 Frames, windows, buffers, and subprocesses count as vectors
6612 (but the contents of a buffer's text do not count here). */)
6613 (void)
6614 {
6615 Lisp_Object consed[8];
6616
6617 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6618 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6619 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6620 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6621 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6622 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6623 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6624 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6625
6626 return Flist (8, consed);
6627 }
6628
6629 /* Find at most FIND_MAX symbols which have OBJ as their value or
6630 function. This is used in gdbinit's `xwhichsymbols' command. */
6631
6632 Lisp_Object
6633 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6634 {
6635 struct symbol_block *sblk;
6636 ptrdiff_t gc_count = inhibit_garbage_collection ();
6637 Lisp_Object found = Qnil;
6638
6639 if (! DEADP (obj))
6640 {
6641 for (sblk = symbol_block; sblk; sblk = sblk->next)
6642 {
6643 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6644 int bn;
6645
6646 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6647 {
6648 struct Lisp_Symbol *sym = &aligned_sym->s;
6649 Lisp_Object val;
6650 Lisp_Object tem;
6651
6652 if (sblk == symbol_block && bn >= symbol_block_index)
6653 break;
6654
6655 XSETSYMBOL (tem, sym);
6656 val = find_symbol_value (tem);
6657 if (EQ (val, obj)
6658 || EQ (sym->function, obj)
6659 || (!NILP (sym->function)
6660 && COMPILEDP (sym->function)
6661 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6662 || (!NILP (val)
6663 && COMPILEDP (val)
6664 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6665 {
6666 found = Fcons (tem, found);
6667 if (--find_max == 0)
6668 goto out;
6669 }
6670 }
6671 }
6672 }
6673
6674 out:
6675 unbind_to (gc_count, Qnil);
6676 return found;
6677 }
6678
6679 #ifdef ENABLE_CHECKING
6680 int suppress_checking;
6681
6682 void
6683 die (const char *msg, const char *file, int line)
6684 {
6685 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6686 file, line, msg);
6687 abort ();
6688 }
6689 #endif
6690 \f
6691 /* Initialization */
6692
6693 void
6694 init_alloc_once (void)
6695 {
6696 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6697 purebeg = PUREBEG;
6698 pure_size = PURESIZE;
6699 pure_bytes_used = 0;
6700 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6701 pure_bytes_used_before_overflow = 0;
6702
6703 /* Initialize the list of free aligned blocks. */
6704 free_ablock = NULL;
6705
6706 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6707 mem_init ();
6708 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6709 #endif
6710
6711 ignore_warnings = 1;
6712 #ifdef DOUG_LEA_MALLOC
6713 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6714 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6715 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6716 #endif
6717 init_strings ();
6718 init_cons ();
6719 init_symbol ();
6720 init_marker ();
6721 init_float ();
6722 init_intervals ();
6723 init_vectors ();
6724 init_weak_hash_tables ();
6725
6726 #ifdef REL_ALLOC
6727 malloc_hysteresis = 32;
6728 #else
6729 malloc_hysteresis = 0;
6730 #endif
6731
6732 refill_memory_reserve ();
6733
6734 ignore_warnings = 0;
6735 gcprolist = 0;
6736 byte_stack_list = 0;
6737 staticidx = 0;
6738 consing_since_gc = 0;
6739 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6740 gc_relative_threshold = 0;
6741 }
6742
6743 void
6744 init_alloc (void)
6745 {
6746 gcprolist = 0;
6747 byte_stack_list = 0;
6748 #if GC_MARK_STACK
6749 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6750 setjmp_tested_p = longjmps_done = 0;
6751 #endif
6752 #endif
6753 Vgc_elapsed = make_float (0.0);
6754 gcs_done = 0;
6755 }
6756
6757 void
6758 syms_of_alloc (void)
6759 {
6760 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6761 doc: /* Number of bytes of consing between garbage collections.
6762 Garbage collection can happen automatically once this many bytes have been
6763 allocated since the last garbage collection. All data types count.
6764
6765 Garbage collection happens automatically only when `eval' is called.
6766
6767 By binding this temporarily to a large number, you can effectively
6768 prevent garbage collection during a part of the program.
6769 See also `gc-cons-percentage'. */);
6770
6771 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6772 doc: /* Portion of the heap used for allocation.
6773 Garbage collection can happen automatically once this portion of the heap
6774 has been allocated since the last garbage collection.
6775 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6776 Vgc_cons_percentage = make_float (0.1);
6777
6778 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6779 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6780
6781 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6782 doc: /* Number of cons cells that have been consed so far. */);
6783
6784 DEFVAR_INT ("floats-consed", floats_consed,
6785 doc: /* Number of floats that have been consed so far. */);
6786
6787 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6788 doc: /* Number of vector cells that have been consed so far. */);
6789
6790 DEFVAR_INT ("symbols-consed", symbols_consed,
6791 doc: /* Number of symbols that have been consed so far. */);
6792
6793 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6794 doc: /* Number of string characters that have been consed so far. */);
6795
6796 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6797 doc: /* Number of miscellaneous objects that have been consed so far.
6798 These include markers and overlays, plus certain objects not visible
6799 to users. */);
6800
6801 DEFVAR_INT ("intervals-consed", intervals_consed,
6802 doc: /* Number of intervals that have been consed so far. */);
6803
6804 DEFVAR_INT ("strings-consed", strings_consed,
6805 doc: /* Number of strings that have been consed so far. */);
6806
6807 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6808 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6809 This means that certain objects should be allocated in shared (pure) space.
6810 It can also be set to a hash-table, in which case this table is used to
6811 do hash-consing of the objects allocated to pure space. */);
6812
6813 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6814 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6815 garbage_collection_messages = 0;
6816
6817 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6818 doc: /* Hook run after garbage collection has finished. */);
6819 Vpost_gc_hook = Qnil;
6820 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6821
6822 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6823 doc: /* Precomputed `signal' argument for memory-full error. */);
6824 /* We build this in advance because if we wait until we need it, we might
6825 not be able to allocate the memory to hold it. */
6826 Vmemory_signal_data
6827 = pure_cons (Qerror,
6828 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6829
6830 DEFVAR_LISP ("memory-full", Vmemory_full,
6831 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6832 Vmemory_full = Qnil;
6833
6834 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6835 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6836
6837 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6838 doc: /* Accumulated time elapsed in garbage collections.
6839 The time is in seconds as a floating point value. */);
6840 DEFVAR_INT ("gcs-done", gcs_done,
6841 doc: /* Accumulated number of garbage collections done. */);
6842
6843 defsubr (&Scons);
6844 defsubr (&Slist);
6845 defsubr (&Svector);
6846 defsubr (&Smake_byte_code);
6847 defsubr (&Smake_list);
6848 defsubr (&Smake_vector);
6849 defsubr (&Smake_string);
6850 defsubr (&Smake_bool_vector);
6851 defsubr (&Smake_symbol);
6852 defsubr (&Smake_marker);
6853 defsubr (&Spurecopy);
6854 defsubr (&Sgarbage_collect);
6855 defsubr (&Smemory_limit);
6856 defsubr (&Smemory_use_counts);
6857
6858 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6859 defsubr (&Sgc_status);
6860 #endif
6861 }