Merge from emacs-24; up to 2012-04-24T21:47:24Z!michael.albinus@gmx.de
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23 #include <setjmp.h>
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "buffer.h"
28 #include "character.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 char posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104 static void matcher_overflow (void) NO_RETURN;
105
106 static void
107 matcher_overflow (void)
108 {
109 error ("Stack overflow in regexp matcher");
110 }
111
112 /* Compile a regexp and signal a Lisp error if anything goes wrong.
113 PATTERN is the pattern to compile.
114 CP is the place to put the result.
115 TRANSLATE is a translation table for ignoring case, or nil for none.
116 POSIX is nonzero if we want full backtracking (POSIX style)
117 for this pattern. 0 means backtrack only enough to get a valid match.
118
119 The behavior also depends on Vsearch_spaces_regexp. */
120
121 static void
122 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
136
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
144
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
149
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
152
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
156
157 re_set_whitespace_regexp (NULL);
158
159 re_set_syntax (old);
160 /* UNBLOCK_INPUT; */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
163
164 cp->regexp = Fcopy_sequence (pattern);
165 }
166
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
170
171 void
172 shrink_regexp_cache (void)
173 {
174 struct regexp_cache *cp;
175
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
177 {
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer
180 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
181 }
182 }
183
184 /* Clear the regexp cache w.r.t. a particular syntax table,
185 because it was changed.
186 There is no danger of memory leak here because re_compile_pattern
187 automagically manages the memory in each re_pattern_buffer struct,
188 based on its `allocated' and `buffer' values. */
189 void
190 clear_regexp_cache (void)
191 {
192 int i;
193
194 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
195 /* It's tempting to compare with the syntax-table we've actually changed,
196 but it's not sufficient because char-table inheritance means that
197 modifying one syntax-table can change others at the same time. */
198 if (!EQ (searchbufs[i].syntax_table, Qt))
199 searchbufs[i].regexp = Qnil;
200 }
201
202 /* Compile a regexp if necessary, but first check to see if there's one in
203 the cache.
204 PATTERN is the pattern to compile.
205 TRANSLATE is a translation table for ignoring case, or nil for none.
206 REGP is the structure that says where to store the "register"
207 values that will result from matching this pattern.
208 If it is 0, we should compile the pattern not to record any
209 subexpression bounds.
210 POSIX is nonzero if we want full backtracking (POSIX style)
211 for this pattern. 0 means backtrack only enough to get a valid match. */
212
213 struct re_pattern_buffer *
214 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
215 {
216 struct regexp_cache *cp, **cpp;
217
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
219 {
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
238
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
243 {
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
247 }
248 }
249
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
256
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
261
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
265
266 return &cp->buf;
267 }
268
269 \f
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, int posix)
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 ptrdiff_t s1, s2;
276 register ptrdiff_t i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
284 = BVAR (current_buffer, case_eqv_table);
285
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
294
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
297
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
300
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
306 {
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
310 }
311 if (s2 < 0)
312 {
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
315 }
316
317 re_match_object = Qnil;
318
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
325
326 if (i == -2)
327 matcher_overflow ();
328
329 val = (0 <= i ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 for (i = 0; i < search_regs.num_regs; i++)
332 if (search_regs.start[i] >= 0)
333 {
334 search_regs.start[i]
335 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
336 search_regs.end[i]
337 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
338 }
339
340 /* Set last_thing_searched only when match data is changed. */
341 if (NILP (Vinhibit_changing_match_data))
342 XSETBUFFER (last_thing_searched, current_buffer);
343
344 return val;
345 }
346
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
364 {
365 return looking_at_1 (regexp, 1);
366 }
367 \f
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
370 {
371 ptrdiff_t val;
372 struct re_pattern_buffer *bufp;
373 EMACS_INT pos;
374 ptrdiff_t pos_byte, i;
375
376 if (running_asynch_code)
377 save_search_regs ();
378
379 CHECK_STRING (regexp);
380 CHECK_STRING (string);
381
382 if (NILP (start))
383 pos = 0, pos_byte = 0;
384 else
385 {
386 ptrdiff_t len = SCHARS (string);
387
388 CHECK_NUMBER (start);
389 pos = XINT (start);
390 if (pos < 0 && -pos <= len)
391 pos = len + pos;
392 else if (0 > pos || pos > len)
393 args_out_of_range (string, start);
394 pos_byte = string_char_to_byte (string, pos);
395 }
396
397 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
398 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
399 = BVAR (current_buffer, case_eqv_table);
400
401 bufp = compile_pattern (regexp,
402 (NILP (Vinhibit_changing_match_data)
403 ? &search_regs : NULL),
404 (!NILP (BVAR (current_buffer, case_fold_search))
405 ? BVAR (current_buffer, case_canon_table) : Qnil),
406 posix,
407 STRING_MULTIBYTE (string));
408 immediate_quit = 1;
409 re_match_object = string;
410
411 val = re_search (bufp, SSDATA (string),
412 SBYTES (string), pos_byte,
413 SBYTES (string) - pos_byte,
414 (NILP (Vinhibit_changing_match_data)
415 ? &search_regs : NULL));
416 immediate_quit = 0;
417
418 /* Set last_thing_searched only when match data is changed. */
419 if (NILP (Vinhibit_changing_match_data))
420 last_thing_searched = Qt;
421
422 if (val == -2)
423 matcher_overflow ();
424 if (val < 0) return Qnil;
425
426 if (NILP (Vinhibit_changing_match_data))
427 for (i = 0; i < search_regs.num_regs; i++)
428 if (search_regs.start[i] >= 0)
429 {
430 search_regs.start[i]
431 = string_byte_to_char (string, search_regs.start[i]);
432 search_regs.end[i]
433 = string_byte_to_char (string, search_regs.end[i]);
434 }
435
436 return make_number (string_byte_to_char (string, val));
437 }
438
439 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
440 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
441 Matching ignores case if `case-fold-search' is non-nil.
442 If third arg START is non-nil, start search at that index in STRING.
443 For index of first char beyond the match, do (match-end 0).
444 `match-end' and `match-beginning' also give indices of substrings
445 matched by parenthesis constructs in the pattern.
446
447 You can use the function `match-string' to extract the substrings
448 matched by the parenthesis constructions in REGEXP. */)
449 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
450 {
451 return string_match_1 (regexp, string, start, 0);
452 }
453
454 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
455 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
456 Find the longest match, in accord with Posix regular expression rules.
457 Case is ignored if `case-fold-search' is non-nil in the current buffer.
458 If third arg START is non-nil, start search at that index in STRING.
459 For index of first char beyond the match, do (match-end 0).
460 `match-end' and `match-beginning' also give indices of substrings
461 matched by parenthesis constructs in the pattern. */)
462 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
463 {
464 return string_match_1 (regexp, string, start, 1);
465 }
466
467 /* Match REGEXP against STRING, searching all of STRING,
468 and return the index of the match, or negative on failure.
469 This does not clobber the match data. */
470
471 ptrdiff_t
472 fast_string_match (Lisp_Object regexp, Lisp_Object string)
473 {
474 ptrdiff_t val;
475 struct re_pattern_buffer *bufp;
476
477 bufp = compile_pattern (regexp, 0, Qnil,
478 0, STRING_MULTIBYTE (string));
479 immediate_quit = 1;
480 re_match_object = string;
481
482 val = re_search (bufp, SSDATA (string),
483 SBYTES (string), 0,
484 SBYTES (string), 0);
485 immediate_quit = 0;
486 return val;
487 }
488
489 /* Match REGEXP against STRING, searching all of STRING ignoring case,
490 and return the index of the match, or negative on failure.
491 This does not clobber the match data.
492 We assume that STRING contains single-byte characters. */
493
494 ptrdiff_t
495 fast_c_string_match_ignore_case (Lisp_Object regexp, const char *string)
496 {
497 ptrdiff_t val;
498 struct re_pattern_buffer *bufp;
499 size_t len = strlen (string);
500
501 regexp = string_make_unibyte (regexp);
502 re_match_object = Qt;
503 bufp = compile_pattern (regexp, 0,
504 Vascii_canon_table, 0,
505 0);
506 immediate_quit = 1;
507 val = re_search (bufp, string, len, 0, len, 0);
508 immediate_quit = 0;
509 return val;
510 }
511
512 /* Like fast_string_match but ignore case. */
513
514 ptrdiff_t
515 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
516 {
517 ptrdiff_t val;
518 struct re_pattern_buffer *bufp;
519
520 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
521 0, STRING_MULTIBYTE (string));
522 immediate_quit = 1;
523 re_match_object = string;
524
525 val = re_search (bufp, SSDATA (string),
526 SBYTES (string), 0,
527 SBYTES (string), 0);
528 immediate_quit = 0;
529 return val;
530 }
531 \f
532 /* Match REGEXP against the characters after POS to LIMIT, and return
533 the number of matched characters. If STRING is non-nil, match
534 against the characters in it. In that case, POS and LIMIT are
535 indices into the string. This function doesn't modify the match
536 data. */
537
538 ptrdiff_t
539 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
540 {
541 int multibyte;
542 struct re_pattern_buffer *buf;
543 unsigned char *p1, *p2;
544 ptrdiff_t s1, s2;
545 ptrdiff_t len;
546
547 if (STRINGP (string))
548 {
549 if (pos_byte < 0)
550 pos_byte = string_char_to_byte (string, pos);
551 if (limit_byte < 0)
552 limit_byte = string_char_to_byte (string, limit);
553 p1 = NULL;
554 s1 = 0;
555 p2 = SDATA (string);
556 s2 = SBYTES (string);
557 re_match_object = string;
558 multibyte = STRING_MULTIBYTE (string);
559 }
560 else
561 {
562 if (pos_byte < 0)
563 pos_byte = CHAR_TO_BYTE (pos);
564 if (limit_byte < 0)
565 limit_byte = CHAR_TO_BYTE (limit);
566 pos_byte -= BEGV_BYTE;
567 limit_byte -= BEGV_BYTE;
568 p1 = BEGV_ADDR;
569 s1 = GPT_BYTE - BEGV_BYTE;
570 p2 = GAP_END_ADDR;
571 s2 = ZV_BYTE - GPT_BYTE;
572 if (s1 < 0)
573 {
574 p2 = p1;
575 s2 = ZV_BYTE - BEGV_BYTE;
576 s1 = 0;
577 }
578 if (s2 < 0)
579 {
580 s1 = ZV_BYTE - BEGV_BYTE;
581 s2 = 0;
582 }
583 re_match_object = Qnil;
584 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
585 }
586
587 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
588 immediate_quit = 1;
589 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
590 pos_byte, NULL, limit_byte);
591 immediate_quit = 0;
592
593 return len;
594 }
595
596 \f
597 /* The newline cache: remembering which sections of text have no newlines. */
598
599 /* If the user has requested newline caching, make sure it's on.
600 Otherwise, make sure it's off.
601 This is our cheezy way of associating an action with the change of
602 state of a buffer-local variable. */
603 static void
604 newline_cache_on_off (struct buffer *buf)
605 {
606 if (NILP (BVAR (buf, cache_long_line_scans)))
607 {
608 /* It should be off. */
609 if (buf->newline_cache)
610 {
611 free_region_cache (buf->newline_cache);
612 buf->newline_cache = 0;
613 }
614 }
615 else
616 {
617 /* It should be on. */
618 if (buf->newline_cache == 0)
619 buf->newline_cache = new_region_cache ();
620 }
621 }
622
623 \f
624 /* Search for COUNT instances of the character TARGET between START and END.
625
626 If COUNT is positive, search forwards; END must be >= START.
627 If COUNT is negative, search backwards for the -COUNTth instance;
628 END must be <= START.
629 If COUNT is zero, do anything you please; run rogue, for all I care.
630
631 If END is zero, use BEGV or ZV instead, as appropriate for the
632 direction indicated by COUNT.
633
634 If we find COUNT instances, set *SHORTAGE to zero, and return the
635 position past the COUNTth match. Note that for reverse motion
636 this is not the same as the usual convention for Emacs motion commands.
637
638 If we don't find COUNT instances before reaching END, set *SHORTAGE
639 to the number of TARGETs left unfound, and return END.
640
641 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
642 except when inside redisplay. */
643
644 ptrdiff_t
645 scan_buffer (register int target, ptrdiff_t start, ptrdiff_t end,
646 ptrdiff_t count, ptrdiff_t *shortage, int allow_quit)
647 {
648 struct region_cache *newline_cache;
649 int direction;
650
651 if (count > 0)
652 {
653 direction = 1;
654 if (! end) end = ZV;
655 }
656 else
657 {
658 direction = -1;
659 if (! end) end = BEGV;
660 }
661
662 newline_cache_on_off (current_buffer);
663 newline_cache = current_buffer->newline_cache;
664
665 if (shortage != 0)
666 *shortage = 0;
667
668 immediate_quit = allow_quit;
669
670 if (count > 0)
671 while (start != end)
672 {
673 /* Our innermost scanning loop is very simple; it doesn't know
674 about gaps, buffer ends, or the newline cache. ceiling is
675 the position of the last character before the next such
676 obstacle --- the last character the dumb search loop should
677 examine. */
678 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end) - 1;
679 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
680 ptrdiff_t tem;
681
682 /* If we're looking for a newline, consult the newline cache
683 to see where we can avoid some scanning. */
684 if (target == '\n' && newline_cache)
685 {
686 ptrdiff_t next_change;
687 immediate_quit = 0;
688 while (region_cache_forward
689 (current_buffer, newline_cache, start_byte, &next_change))
690 start_byte = next_change;
691 immediate_quit = allow_quit;
692
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
696
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (next_change - 1, ceiling_byte);
700 }
701
702 /* The dumb loop can only scan text stored in contiguous
703 bytes. BUFFER_CEILING_OF returns the last character
704 position that is contiguous, so the ceiling is the
705 position after that. */
706 tem = BUFFER_CEILING_OF (start_byte);
707 ceiling_byte = min (tem, ceiling_byte);
708
709 {
710 /* The termination address of the dumb loop. */
711 register unsigned char *ceiling_addr
712 = BYTE_POS_ADDR (ceiling_byte) + 1;
713 register unsigned char *cursor
714 = BYTE_POS_ADDR (start_byte);
715 unsigned char *base = cursor;
716
717 while (cursor < ceiling_addr)
718 {
719 unsigned char *scan_start = cursor;
720
721 /* The dumb loop. */
722 while (*cursor != target && ++cursor < ceiling_addr)
723 ;
724
725 /* If we're looking for newlines, cache the fact that
726 the region from start to cursor is free of them. */
727 if (target == '\n' && newline_cache)
728 know_region_cache (current_buffer, newline_cache,
729 BYTE_TO_CHAR (start_byte + scan_start - base),
730 BYTE_TO_CHAR (start_byte + cursor - base));
731
732 /* Did we find the target character? */
733 if (cursor < ceiling_addr)
734 {
735 if (--count == 0)
736 {
737 immediate_quit = 0;
738 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
739 }
740 cursor++;
741 }
742 }
743
744 start = BYTE_TO_CHAR (start_byte + cursor - base);
745 }
746 }
747 else
748 while (start > end)
749 {
750 /* The last character to check before the next obstacle. */
751 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end);
752 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
753 ptrdiff_t tem;
754
755 /* Consult the newline cache, if appropriate. */
756 if (target == '\n' && newline_cache)
757 {
758 ptrdiff_t next_change;
759 immediate_quit = 0;
760 while (region_cache_backward
761 (current_buffer, newline_cache, start_byte, &next_change))
762 start_byte = next_change;
763 immediate_quit = allow_quit;
764
765 /* Start should never be at or before end. */
766 if (start_byte <= ceiling_byte)
767 start_byte = ceiling_byte + 1;
768
769 /* Now the text before start is an unknown region, and
770 next_change is the position of the next known region. */
771 ceiling_byte = max (next_change, ceiling_byte);
772 }
773
774 /* Stop scanning before the gap. */
775 tem = BUFFER_FLOOR_OF (start_byte - 1);
776 ceiling_byte = max (tem, ceiling_byte);
777
778 {
779 /* The termination address of the dumb loop. */
780 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
781 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
782 unsigned char *base = cursor;
783
784 while (cursor >= ceiling_addr)
785 {
786 unsigned char *scan_start = cursor;
787
788 while (*cursor != target && --cursor >= ceiling_addr)
789 ;
790
791 /* If we're looking for newlines, cache the fact that
792 the region from after the cursor to start is free of them. */
793 if (target == '\n' && newline_cache)
794 know_region_cache (current_buffer, newline_cache,
795 BYTE_TO_CHAR (start_byte + cursor - base),
796 BYTE_TO_CHAR (start_byte + scan_start - base));
797
798 /* Did we find the target character? */
799 if (cursor >= ceiling_addr)
800 {
801 if (++count >= 0)
802 {
803 immediate_quit = 0;
804 return BYTE_TO_CHAR (start_byte + cursor - base);
805 }
806 cursor--;
807 }
808 }
809
810 start = BYTE_TO_CHAR (start_byte + cursor - base);
811 }
812 }
813
814 immediate_quit = 0;
815 if (shortage != 0)
816 *shortage = count * direction;
817 return start;
818 }
819 \f
820 /* Search for COUNT instances of a line boundary, which means either a
821 newline or (if selective display enabled) a carriage return.
822 Start at START. If COUNT is negative, search backwards.
823
824 We report the resulting position by calling TEMP_SET_PT_BOTH.
825
826 If we find COUNT instances. we position after (always after,
827 even if scanning backwards) the COUNTth match, and return 0.
828
829 If we don't find COUNT instances before reaching the end of the
830 buffer (or the beginning, if scanning backwards), we return
831 the number of line boundaries left unfound, and position at
832 the limit we bumped up against.
833
834 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
835 except in special cases. */
836
837 EMACS_INT
838 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
839 ptrdiff_t limit, ptrdiff_t limit_byte,
840 register EMACS_INT count, int allow_quit)
841 {
842 int direction = ((count > 0) ? 1 : -1);
843
844 register unsigned char *cursor;
845 unsigned char *base;
846
847 ptrdiff_t ceiling;
848 register unsigned char *ceiling_addr;
849
850 int old_immediate_quit = immediate_quit;
851
852 /* The code that follows is like scan_buffer
853 but checks for either newline or carriage return. */
854
855 if (allow_quit)
856 immediate_quit++;
857
858 start_byte = CHAR_TO_BYTE (start);
859
860 if (count > 0)
861 {
862 while (start_byte < limit_byte)
863 {
864 ceiling = BUFFER_CEILING_OF (start_byte);
865 ceiling = min (limit_byte - 1, ceiling);
866 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
867 base = (cursor = BYTE_POS_ADDR (start_byte));
868 while (1)
869 {
870 while (*cursor != '\n' && ++cursor != ceiling_addr)
871 ;
872
873 if (cursor != ceiling_addr)
874 {
875 if (--count == 0)
876 {
877 immediate_quit = old_immediate_quit;
878 start_byte = start_byte + cursor - base + 1;
879 start = BYTE_TO_CHAR (start_byte);
880 TEMP_SET_PT_BOTH (start, start_byte);
881 return 0;
882 }
883 else
884 if (++cursor == ceiling_addr)
885 break;
886 }
887 else
888 break;
889 }
890 start_byte += cursor - base;
891 }
892 }
893 else
894 {
895 while (start_byte > limit_byte)
896 {
897 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
898 ceiling = max (limit_byte, ceiling);
899 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
900 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
901 while (1)
902 {
903 while (--cursor != ceiling_addr && *cursor != '\n')
904 ;
905
906 if (cursor != ceiling_addr)
907 {
908 if (++count == 0)
909 {
910 immediate_quit = old_immediate_quit;
911 /* Return the position AFTER the match we found. */
912 start_byte = start_byte + cursor - base + 1;
913 start = BYTE_TO_CHAR (start_byte);
914 TEMP_SET_PT_BOTH (start, start_byte);
915 return 0;
916 }
917 }
918 else
919 break;
920 }
921 /* Here we add 1 to compensate for the last decrement
922 of CURSOR, which took it past the valid range. */
923 start_byte += cursor - base + 1;
924 }
925 }
926
927 TEMP_SET_PT_BOTH (limit, limit_byte);
928 immediate_quit = old_immediate_quit;
929
930 return count * direction;
931 }
932
933 ptrdiff_t
934 find_next_newline_no_quit (ptrdiff_t from, ptrdiff_t cnt)
935 {
936 return scan_buffer ('\n', from, 0, cnt, (ptrdiff_t *) 0, 0);
937 }
938
939 /* Like find_next_newline, but returns position before the newline,
940 not after, and only search up to TO. This isn't just
941 find_next_newline (...)-1, because you might hit TO. */
942
943 ptrdiff_t
944 find_before_next_newline (ptrdiff_t from, ptrdiff_t to, ptrdiff_t cnt)
945 {
946 ptrdiff_t shortage;
947 ptrdiff_t pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
948
949 if (shortage == 0)
950 pos--;
951
952 return pos;
953 }
954 \f
955 /* Subroutines of Lisp buffer search functions. */
956
957 static Lisp_Object
958 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
959 Lisp_Object count, int direction, int RE, int posix)
960 {
961 register EMACS_INT np;
962 EMACS_INT lim;
963 ptrdiff_t lim_byte;
964 EMACS_INT n = direction;
965
966 if (!NILP (count))
967 {
968 CHECK_NUMBER (count);
969 n *= XINT (count);
970 }
971
972 CHECK_STRING (string);
973 if (NILP (bound))
974 {
975 if (n > 0)
976 lim = ZV, lim_byte = ZV_BYTE;
977 else
978 lim = BEGV, lim_byte = BEGV_BYTE;
979 }
980 else
981 {
982 CHECK_NUMBER_COERCE_MARKER (bound);
983 lim = XINT (bound);
984 if (n > 0 ? lim < PT : lim > PT)
985 error ("Invalid search bound (wrong side of point)");
986 if (lim > ZV)
987 lim = ZV, lim_byte = ZV_BYTE;
988 else if (lim < BEGV)
989 lim = BEGV, lim_byte = BEGV_BYTE;
990 else
991 lim_byte = CHAR_TO_BYTE (lim);
992 }
993
994 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
995 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
996 = BVAR (current_buffer, case_eqv_table);
997
998 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
999 (!NILP (BVAR (current_buffer, case_fold_search))
1000 ? BVAR (current_buffer, case_canon_table)
1001 : Qnil),
1002 (!NILP (BVAR (current_buffer, case_fold_search))
1003 ? BVAR (current_buffer, case_eqv_table)
1004 : Qnil),
1005 posix);
1006 if (np <= 0)
1007 {
1008 if (NILP (noerror))
1009 xsignal1 (Qsearch_failed, string);
1010
1011 if (!EQ (noerror, Qt))
1012 {
1013 if (lim < BEGV || lim > ZV)
1014 abort ();
1015 SET_PT_BOTH (lim, lim_byte);
1016 return Qnil;
1017 #if 0 /* This would be clean, but maybe programs depend on
1018 a value of nil here. */
1019 np = lim;
1020 #endif
1021 }
1022 else
1023 return Qnil;
1024 }
1025
1026 if (np < BEGV || np > ZV)
1027 abort ();
1028
1029 SET_PT (np);
1030
1031 return make_number (np);
1032 }
1033 \f
1034 /* Return 1 if REGEXP it matches just one constant string. */
1035
1036 static int
1037 trivial_regexp_p (Lisp_Object regexp)
1038 {
1039 ptrdiff_t len = SBYTES (regexp);
1040 unsigned char *s = SDATA (regexp);
1041 while (--len >= 0)
1042 {
1043 switch (*s++)
1044 {
1045 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1046 return 0;
1047 case '\\':
1048 if (--len < 0)
1049 return 0;
1050 switch (*s++)
1051 {
1052 case '|': case '(': case ')': case '`': case '\'': case 'b':
1053 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1054 case 'S': case '=': case '{': case '}': case '_':
1055 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1056 case '1': case '2': case '3': case '4': case '5':
1057 case '6': case '7': case '8': case '9':
1058 return 0;
1059 }
1060 }
1061 }
1062 return 1;
1063 }
1064
1065 /* Search for the n'th occurrence of STRING in the current buffer,
1066 starting at position POS and stopping at position LIM,
1067 treating STRING as a literal string if RE is false or as
1068 a regular expression if RE is true.
1069
1070 If N is positive, searching is forward and LIM must be greater than POS.
1071 If N is negative, searching is backward and LIM must be less than POS.
1072
1073 Returns -x if x occurrences remain to be found (x > 0),
1074 or else the position at the beginning of the Nth occurrence
1075 (if searching backward) or the end (if searching forward).
1076
1077 POSIX is nonzero if we want full backtracking (POSIX style)
1078 for this pattern. 0 means backtrack only enough to get a valid match. */
1079
1080 #define TRANSLATE(out, trt, d) \
1081 do \
1082 { \
1083 if (! NILP (trt)) \
1084 { \
1085 Lisp_Object temp; \
1086 temp = Faref (trt, make_number (d)); \
1087 if (INTEGERP (temp)) \
1088 out = XINT (temp); \
1089 else \
1090 out = d; \
1091 } \
1092 else \
1093 out = d; \
1094 } \
1095 while (0)
1096
1097 /* Only used in search_buffer, to record the end position of the match
1098 when searching regexps and SEARCH_REGS should not be changed
1099 (i.e. Vinhibit_changing_match_data is non-nil). */
1100 static struct re_registers search_regs_1;
1101
1102 static EMACS_INT
1103 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1104 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1105 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1106 {
1107 ptrdiff_t len = SCHARS (string);
1108 ptrdiff_t len_byte = SBYTES (string);
1109 register ptrdiff_t i;
1110
1111 if (running_asynch_code)
1112 save_search_regs ();
1113
1114 /* Searching 0 times means don't move. */
1115 /* Null string is found at starting position. */
1116 if (len == 0 || n == 0)
1117 {
1118 set_search_regs (pos_byte, 0);
1119 return pos;
1120 }
1121
1122 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1123 {
1124 unsigned char *p1, *p2;
1125 ptrdiff_t s1, s2;
1126 struct re_pattern_buffer *bufp;
1127
1128 bufp = compile_pattern (string,
1129 (NILP (Vinhibit_changing_match_data)
1130 ? &search_regs : &search_regs_1),
1131 trt, posix,
1132 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1133
1134 immediate_quit = 1; /* Quit immediately if user types ^G,
1135 because letting this function finish
1136 can take too long. */
1137 QUIT; /* Do a pending quit right away,
1138 to avoid paradoxical behavior */
1139 /* Get pointers and sizes of the two strings
1140 that make up the visible portion of the buffer. */
1141
1142 p1 = BEGV_ADDR;
1143 s1 = GPT_BYTE - BEGV_BYTE;
1144 p2 = GAP_END_ADDR;
1145 s2 = ZV_BYTE - GPT_BYTE;
1146 if (s1 < 0)
1147 {
1148 p2 = p1;
1149 s2 = ZV_BYTE - BEGV_BYTE;
1150 s1 = 0;
1151 }
1152 if (s2 < 0)
1153 {
1154 s1 = ZV_BYTE - BEGV_BYTE;
1155 s2 = 0;
1156 }
1157 re_match_object = Qnil;
1158
1159 while (n < 0)
1160 {
1161 ptrdiff_t val;
1162
1163 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1164 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1165 (NILP (Vinhibit_changing_match_data)
1166 ? &search_regs : &search_regs_1),
1167 /* Don't allow match past current point */
1168 pos_byte - BEGV_BYTE);
1169 if (val == -2)
1170 {
1171 matcher_overflow ();
1172 }
1173 if (val >= 0)
1174 {
1175 if (NILP (Vinhibit_changing_match_data))
1176 {
1177 pos_byte = search_regs.start[0] + BEGV_BYTE;
1178 for (i = 0; i < search_regs.num_regs; i++)
1179 if (search_regs.start[i] >= 0)
1180 {
1181 search_regs.start[i]
1182 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1183 search_regs.end[i]
1184 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1185 }
1186 XSETBUFFER (last_thing_searched, current_buffer);
1187 /* Set pos to the new position. */
1188 pos = search_regs.start[0];
1189 }
1190 else
1191 {
1192 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1193 /* Set pos to the new position. */
1194 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1195 }
1196 }
1197 else
1198 {
1199 immediate_quit = 0;
1200 return (n);
1201 }
1202 n++;
1203 }
1204 while (n > 0)
1205 {
1206 ptrdiff_t val;
1207
1208 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1209 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1210 (NILP (Vinhibit_changing_match_data)
1211 ? &search_regs : &search_regs_1),
1212 lim_byte - BEGV_BYTE);
1213 if (val == -2)
1214 {
1215 matcher_overflow ();
1216 }
1217 if (val >= 0)
1218 {
1219 if (NILP (Vinhibit_changing_match_data))
1220 {
1221 pos_byte = search_regs.end[0] + BEGV_BYTE;
1222 for (i = 0; i < search_regs.num_regs; i++)
1223 if (search_regs.start[i] >= 0)
1224 {
1225 search_regs.start[i]
1226 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1227 search_regs.end[i]
1228 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1229 }
1230 XSETBUFFER (last_thing_searched, current_buffer);
1231 pos = search_regs.end[0];
1232 }
1233 else
1234 {
1235 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1236 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1237 }
1238 }
1239 else
1240 {
1241 immediate_quit = 0;
1242 return (0 - n);
1243 }
1244 n--;
1245 }
1246 immediate_quit = 0;
1247 return (pos);
1248 }
1249 else /* non-RE case */
1250 {
1251 unsigned char *raw_pattern, *pat;
1252 ptrdiff_t raw_pattern_size;
1253 ptrdiff_t raw_pattern_size_byte;
1254 unsigned char *patbuf;
1255 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1256 unsigned char *base_pat;
1257 /* Set to positive if we find a non-ASCII char that need
1258 translation. Otherwise set to zero later. */
1259 int char_base = -1;
1260 int boyer_moore_ok = 1;
1261
1262 /* MULTIBYTE says whether the text to be searched is multibyte.
1263 We must convert PATTERN to match that, or we will not really
1264 find things right. */
1265
1266 if (multibyte == STRING_MULTIBYTE (string))
1267 {
1268 raw_pattern = SDATA (string);
1269 raw_pattern_size = SCHARS (string);
1270 raw_pattern_size_byte = SBYTES (string);
1271 }
1272 else if (multibyte)
1273 {
1274 raw_pattern_size = SCHARS (string);
1275 raw_pattern_size_byte
1276 = count_size_as_multibyte (SDATA (string),
1277 raw_pattern_size);
1278 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1279 copy_text (SDATA (string), raw_pattern,
1280 SCHARS (string), 0, 1);
1281 }
1282 else
1283 {
1284 /* Converting multibyte to single-byte.
1285
1286 ??? Perhaps this conversion should be done in a special way
1287 by subtracting nonascii-insert-offset from each non-ASCII char,
1288 so that only the multibyte chars which really correspond to
1289 the chosen single-byte character set can possibly match. */
1290 raw_pattern_size = SCHARS (string);
1291 raw_pattern_size_byte = SCHARS (string);
1292 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1293 copy_text (SDATA (string), raw_pattern,
1294 SBYTES (string), 1, 0);
1295 }
1296
1297 /* Copy and optionally translate the pattern. */
1298 len = raw_pattern_size;
1299 len_byte = raw_pattern_size_byte;
1300 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1301 pat = patbuf;
1302 base_pat = raw_pattern;
1303 if (multibyte)
1304 {
1305 /* Fill patbuf by translated characters in STRING while
1306 checking if we can use boyer-moore search. If TRT is
1307 non-nil, we can use boyer-moore search only if TRT can be
1308 represented by the byte array of 256 elements. For that,
1309 all non-ASCII case-equivalents of all case-sensitive
1310 characters in STRING must belong to the same charset and
1311 row. */
1312
1313 while (--len >= 0)
1314 {
1315 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1316 int c, translated, inverse;
1317 int in_charlen, charlen;
1318
1319 /* If we got here and the RE flag is set, it's because we're
1320 dealing with a regexp known to be trivial, so the backslash
1321 just quotes the next character. */
1322 if (RE && *base_pat == '\\')
1323 {
1324 len--;
1325 raw_pattern_size--;
1326 len_byte--;
1327 base_pat++;
1328 }
1329
1330 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1331
1332 if (NILP (trt))
1333 {
1334 str = base_pat;
1335 charlen = in_charlen;
1336 }
1337 else
1338 {
1339 /* Translate the character. */
1340 TRANSLATE (translated, trt, c);
1341 charlen = CHAR_STRING (translated, str_base);
1342 str = str_base;
1343
1344 /* Check if C has any other case-equivalents. */
1345 TRANSLATE (inverse, inverse_trt, c);
1346 /* If so, check if we can use boyer-moore. */
1347 if (c != inverse && boyer_moore_ok)
1348 {
1349 /* Check if all equivalents belong to the same
1350 group of characters. Note that the check of C
1351 itself is done by the last iteration. */
1352 int this_char_base = -1;
1353
1354 while (boyer_moore_ok)
1355 {
1356 if (ASCII_BYTE_P (inverse))
1357 {
1358 if (this_char_base > 0)
1359 boyer_moore_ok = 0;
1360 else
1361 this_char_base = 0;
1362 }
1363 else if (CHAR_BYTE8_P (inverse))
1364 /* Boyer-moore search can't handle a
1365 translation of an eight-bit
1366 character. */
1367 boyer_moore_ok = 0;
1368 else if (this_char_base < 0)
1369 {
1370 this_char_base = inverse & ~0x3F;
1371 if (char_base < 0)
1372 char_base = this_char_base;
1373 else if (this_char_base != char_base)
1374 boyer_moore_ok = 0;
1375 }
1376 else if ((inverse & ~0x3F) != this_char_base)
1377 boyer_moore_ok = 0;
1378 if (c == inverse)
1379 break;
1380 TRANSLATE (inverse, inverse_trt, inverse);
1381 }
1382 }
1383 }
1384
1385 /* Store this character into the translated pattern. */
1386 memcpy (pat, str, charlen);
1387 pat += charlen;
1388 base_pat += in_charlen;
1389 len_byte -= in_charlen;
1390 }
1391
1392 /* If char_base is still negative we didn't find any translated
1393 non-ASCII characters. */
1394 if (char_base < 0)
1395 char_base = 0;
1396 }
1397 else
1398 {
1399 /* Unibyte buffer. */
1400 char_base = 0;
1401 while (--len >= 0)
1402 {
1403 int c, translated;
1404
1405 /* If we got here and the RE flag is set, it's because we're
1406 dealing with a regexp known to be trivial, so the backslash
1407 just quotes the next character. */
1408 if (RE && *base_pat == '\\')
1409 {
1410 len--;
1411 raw_pattern_size--;
1412 base_pat++;
1413 }
1414 c = *base_pat++;
1415 TRANSLATE (translated, trt, c);
1416 *pat++ = translated;
1417 }
1418 }
1419
1420 len_byte = pat - patbuf;
1421 pat = base_pat = patbuf;
1422
1423 if (boyer_moore_ok)
1424 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1425 pos_byte, lim_byte,
1426 char_base);
1427 else
1428 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1429 pos, pos_byte, lim, lim_byte);
1430 }
1431 }
1432 \f
1433 /* Do a simple string search N times for the string PAT,
1434 whose length is LEN/LEN_BYTE,
1435 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1436 TRT is the translation table.
1437
1438 Return the character position where the match is found.
1439 Otherwise, if M matches remained to be found, return -M.
1440
1441 This kind of search works regardless of what is in PAT and
1442 regardless of what is in TRT. It is used in cases where
1443 boyer_moore cannot work. */
1444
1445 static EMACS_INT
1446 simple_search (EMACS_INT n, unsigned char *pat,
1447 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1448 ptrdiff_t pos, ptrdiff_t pos_byte,
1449 ptrdiff_t lim, ptrdiff_t lim_byte)
1450 {
1451 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1452 int forward = n > 0;
1453 /* Number of buffer bytes matched. Note that this may be different
1454 from len_byte in a multibyte buffer. */
1455 ptrdiff_t match_byte;
1456
1457 if (lim > pos && multibyte)
1458 while (n > 0)
1459 {
1460 while (1)
1461 {
1462 /* Try matching at position POS. */
1463 ptrdiff_t this_pos = pos;
1464 ptrdiff_t this_pos_byte = pos_byte;
1465 ptrdiff_t this_len = len;
1466 unsigned char *p = pat;
1467 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1468 goto stop;
1469
1470 while (this_len > 0)
1471 {
1472 int charlen, buf_charlen;
1473 int pat_ch, buf_ch;
1474
1475 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1476 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1477 buf_charlen);
1478 TRANSLATE (buf_ch, trt, buf_ch);
1479
1480 if (buf_ch != pat_ch)
1481 break;
1482
1483 this_len--;
1484 p += charlen;
1485
1486 this_pos_byte += buf_charlen;
1487 this_pos++;
1488 }
1489
1490 if (this_len == 0)
1491 {
1492 match_byte = this_pos_byte - pos_byte;
1493 pos += len;
1494 pos_byte += match_byte;
1495 break;
1496 }
1497
1498 INC_BOTH (pos, pos_byte);
1499 }
1500
1501 n--;
1502 }
1503 else if (lim > pos)
1504 while (n > 0)
1505 {
1506 while (1)
1507 {
1508 /* Try matching at position POS. */
1509 ptrdiff_t this_pos = pos;
1510 ptrdiff_t this_len = len;
1511 unsigned char *p = pat;
1512
1513 if (pos + len > lim)
1514 goto stop;
1515
1516 while (this_len > 0)
1517 {
1518 int pat_ch = *p++;
1519 int buf_ch = FETCH_BYTE (this_pos);
1520 TRANSLATE (buf_ch, trt, buf_ch);
1521
1522 if (buf_ch != pat_ch)
1523 break;
1524
1525 this_len--;
1526 this_pos++;
1527 }
1528
1529 if (this_len == 0)
1530 {
1531 match_byte = len;
1532 pos += len;
1533 break;
1534 }
1535
1536 pos++;
1537 }
1538
1539 n--;
1540 }
1541 /* Backwards search. */
1542 else if (lim < pos && multibyte)
1543 while (n < 0)
1544 {
1545 while (1)
1546 {
1547 /* Try matching at position POS. */
1548 ptrdiff_t this_pos = pos;
1549 ptrdiff_t this_pos_byte = pos_byte;
1550 ptrdiff_t this_len = len;
1551 const unsigned char *p = pat + len_byte;
1552
1553 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1554 goto stop;
1555
1556 while (this_len > 0)
1557 {
1558 int pat_ch, buf_ch;
1559
1560 DEC_BOTH (this_pos, this_pos_byte);
1561 PREV_CHAR_BOUNDARY (p, pat);
1562 pat_ch = STRING_CHAR (p);
1563 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1564 TRANSLATE (buf_ch, trt, buf_ch);
1565
1566 if (buf_ch != pat_ch)
1567 break;
1568
1569 this_len--;
1570 }
1571
1572 if (this_len == 0)
1573 {
1574 match_byte = pos_byte - this_pos_byte;
1575 pos = this_pos;
1576 pos_byte = this_pos_byte;
1577 break;
1578 }
1579
1580 DEC_BOTH (pos, pos_byte);
1581 }
1582
1583 n++;
1584 }
1585 else if (lim < pos)
1586 while (n < 0)
1587 {
1588 while (1)
1589 {
1590 /* Try matching at position POS. */
1591 ptrdiff_t this_pos = pos - len;
1592 ptrdiff_t this_len = len;
1593 unsigned char *p = pat;
1594
1595 if (this_pos < lim)
1596 goto stop;
1597
1598 while (this_len > 0)
1599 {
1600 int pat_ch = *p++;
1601 int buf_ch = FETCH_BYTE (this_pos);
1602 TRANSLATE (buf_ch, trt, buf_ch);
1603
1604 if (buf_ch != pat_ch)
1605 break;
1606 this_len--;
1607 this_pos++;
1608 }
1609
1610 if (this_len == 0)
1611 {
1612 match_byte = len;
1613 pos -= len;
1614 break;
1615 }
1616
1617 pos--;
1618 }
1619
1620 n++;
1621 }
1622
1623 stop:
1624 if (n == 0)
1625 {
1626 if (forward)
1627 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1628 else
1629 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1630
1631 return pos;
1632 }
1633 else if (n > 0)
1634 return -n;
1635 else
1636 return n;
1637 }
1638 \f
1639 /* Do Boyer-Moore search N times for the string BASE_PAT,
1640 whose length is LEN_BYTE,
1641 from buffer position POS_BYTE until LIM_BYTE.
1642 DIRECTION says which direction we search in.
1643 TRT and INVERSE_TRT are translation tables.
1644 Characters in PAT are already translated by TRT.
1645
1646 This kind of search works if all the characters in BASE_PAT that
1647 have nontrivial translation are the same aside from the last byte.
1648 This makes it possible to translate just the last byte of a
1649 character, and do so after just a simple test of the context.
1650 CHAR_BASE is nonzero if there is such a non-ASCII character.
1651
1652 If that criterion is not satisfied, do not call this function. */
1653
1654 static EMACS_INT
1655 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1656 ptrdiff_t len_byte,
1657 Lisp_Object trt, Lisp_Object inverse_trt,
1658 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1659 int char_base)
1660 {
1661 int direction = ((n > 0) ? 1 : -1);
1662 register ptrdiff_t dirlen;
1663 ptrdiff_t limit;
1664 int stride_for_teases = 0;
1665 int BM_tab[0400];
1666 register unsigned char *cursor, *p_limit;
1667 register ptrdiff_t i;
1668 register int j;
1669 unsigned char *pat, *pat_end;
1670 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1671
1672 unsigned char simple_translate[0400];
1673 /* These are set to the preceding bytes of a byte to be translated
1674 if char_base is nonzero. As the maximum byte length of a
1675 multibyte character is 5, we have to check at most four previous
1676 bytes. */
1677 int translate_prev_byte1 = 0;
1678 int translate_prev_byte2 = 0;
1679 int translate_prev_byte3 = 0;
1680
1681 /* The general approach is that we are going to maintain that we know
1682 the first (closest to the present position, in whatever direction
1683 we're searching) character that could possibly be the last
1684 (furthest from present position) character of a valid match. We
1685 advance the state of our knowledge by looking at that character
1686 and seeing whether it indeed matches the last character of the
1687 pattern. If it does, we take a closer look. If it does not, we
1688 move our pointer (to putative last characters) as far as is
1689 logically possible. This amount of movement, which I call a
1690 stride, will be the length of the pattern if the actual character
1691 appears nowhere in the pattern, otherwise it will be the distance
1692 from the last occurrence of that character to the end of the
1693 pattern. If the amount is zero we have a possible match. */
1694
1695 /* Here we make a "mickey mouse" BM table. The stride of the search
1696 is determined only by the last character of the putative match.
1697 If that character does not match, we will stride the proper
1698 distance to propose a match that superimposes it on the last
1699 instance of a character that matches it (per trt), or misses
1700 it entirely if there is none. */
1701
1702 dirlen = len_byte * direction;
1703
1704 /* Record position after the end of the pattern. */
1705 pat_end = base_pat + len_byte;
1706 /* BASE_PAT points to a character that we start scanning from.
1707 It is the first character in a forward search,
1708 the last character in a backward search. */
1709 if (direction < 0)
1710 base_pat = pat_end - 1;
1711
1712 /* A character that does not appear in the pattern induces a
1713 stride equal to the pattern length. */
1714 for (i = 0; i < 0400; i++)
1715 BM_tab[i] = dirlen;
1716
1717 /* We use this for translation, instead of TRT itself.
1718 We fill this in to handle the characters that actually
1719 occur in the pattern. Others don't matter anyway! */
1720 for (i = 0; i < 0400; i++)
1721 simple_translate[i] = i;
1722
1723 if (char_base)
1724 {
1725 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1726 byte following them are the target of translation. */
1727 unsigned char str[MAX_MULTIBYTE_LENGTH];
1728 int cblen = CHAR_STRING (char_base, str);
1729
1730 translate_prev_byte1 = str[cblen - 2];
1731 if (cblen > 2)
1732 {
1733 translate_prev_byte2 = str[cblen - 3];
1734 if (cblen > 3)
1735 translate_prev_byte3 = str[cblen - 4];
1736 }
1737 }
1738
1739 i = 0;
1740 while (i != dirlen)
1741 {
1742 unsigned char *ptr = base_pat + i;
1743 i += direction;
1744 if (! NILP (trt))
1745 {
1746 /* If the byte currently looking at is the last of a
1747 character to check case-equivalents, set CH to that
1748 character. An ASCII character and a non-ASCII character
1749 matching with CHAR_BASE are to be checked. */
1750 int ch = -1;
1751
1752 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1753 ch = *ptr;
1754 else if (char_base
1755 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1756 {
1757 unsigned char *charstart = ptr - 1;
1758
1759 while (! (CHAR_HEAD_P (*charstart)))
1760 charstart--;
1761 ch = STRING_CHAR (charstart);
1762 if (char_base != (ch & ~0x3F))
1763 ch = -1;
1764 }
1765
1766 if (ch >= 0200 && multibyte)
1767 j = (ch & 0x3F) | 0200;
1768 else
1769 j = *ptr;
1770
1771 if (i == dirlen)
1772 stride_for_teases = BM_tab[j];
1773
1774 BM_tab[j] = dirlen - i;
1775 /* A translation table is accompanied by its inverse -- see
1776 comment following downcase_table for details. */
1777 if (ch >= 0)
1778 {
1779 int starting_ch = ch;
1780 int starting_j = j;
1781
1782 while (1)
1783 {
1784 TRANSLATE (ch, inverse_trt, ch);
1785 if (ch >= 0200 && multibyte)
1786 j = (ch & 0x3F) | 0200;
1787 else
1788 j = ch;
1789
1790 /* For all the characters that map into CH,
1791 set up simple_translate to map the last byte
1792 into STARTING_J. */
1793 simple_translate[j] = starting_j;
1794 if (ch == starting_ch)
1795 break;
1796 BM_tab[j] = dirlen - i;
1797 }
1798 }
1799 }
1800 else
1801 {
1802 j = *ptr;
1803
1804 if (i == dirlen)
1805 stride_for_teases = BM_tab[j];
1806 BM_tab[j] = dirlen - i;
1807 }
1808 /* stride_for_teases tells how much to stride if we get a
1809 match on the far character but are subsequently
1810 disappointed, by recording what the stride would have been
1811 for that character if the last character had been
1812 different. */
1813 }
1814 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1815 /* loop invariant - POS_BYTE points at where last char (first
1816 char if reverse) of pattern would align in a possible match. */
1817 while (n != 0)
1818 {
1819 ptrdiff_t tail_end;
1820 unsigned char *tail_end_ptr;
1821
1822 /* It's been reported that some (broken) compiler thinks that
1823 Boolean expressions in an arithmetic context are unsigned.
1824 Using an explicit ?1:0 prevents this. */
1825 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1826 < 0)
1827 return (n * (0 - direction));
1828 /* First we do the part we can by pointers (maybe nothing) */
1829 QUIT;
1830 pat = base_pat;
1831 limit = pos_byte - dirlen + direction;
1832 if (direction > 0)
1833 {
1834 limit = BUFFER_CEILING_OF (limit);
1835 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1836 can take on without hitting edge of buffer or the gap. */
1837 limit = min (limit, pos_byte + 20000);
1838 limit = min (limit, lim_byte - 1);
1839 }
1840 else
1841 {
1842 limit = BUFFER_FLOOR_OF (limit);
1843 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1844 can take on without hitting edge of buffer or the gap. */
1845 limit = max (limit, pos_byte - 20000);
1846 limit = max (limit, lim_byte);
1847 }
1848 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1849 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1850
1851 if ((limit - pos_byte) * direction > 20)
1852 {
1853 unsigned char *p2;
1854
1855 p_limit = BYTE_POS_ADDR (limit);
1856 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1857 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1858 while (1) /* use one cursor setting as long as i can */
1859 {
1860 if (direction > 0) /* worth duplicating */
1861 {
1862 while (cursor <= p_limit)
1863 {
1864 if (BM_tab[*cursor] == 0)
1865 goto hit;
1866 cursor += BM_tab[*cursor];
1867 }
1868 }
1869 else
1870 {
1871 while (cursor >= p_limit)
1872 {
1873 if (BM_tab[*cursor] == 0)
1874 goto hit;
1875 cursor += BM_tab[*cursor];
1876 }
1877 }
1878 /* If you are here, cursor is beyond the end of the
1879 searched region. You fail to match within the
1880 permitted region and would otherwise try a character
1881 beyond that region. */
1882 break;
1883
1884 hit:
1885 i = dirlen - direction;
1886 if (! NILP (trt))
1887 {
1888 while ((i -= direction) + direction != 0)
1889 {
1890 int ch;
1891 cursor -= direction;
1892 /* Translate only the last byte of a character. */
1893 if (! multibyte
1894 || ((cursor == tail_end_ptr
1895 || CHAR_HEAD_P (cursor[1]))
1896 && (CHAR_HEAD_P (cursor[0])
1897 /* Check if this is the last byte of
1898 a translatable character. */
1899 || (translate_prev_byte1 == cursor[-1]
1900 && (CHAR_HEAD_P (translate_prev_byte1)
1901 || (translate_prev_byte2 == cursor[-2]
1902 && (CHAR_HEAD_P (translate_prev_byte2)
1903 || (translate_prev_byte3 == cursor[-3]))))))))
1904 ch = simple_translate[*cursor];
1905 else
1906 ch = *cursor;
1907 if (pat[i] != ch)
1908 break;
1909 }
1910 }
1911 else
1912 {
1913 while ((i -= direction) + direction != 0)
1914 {
1915 cursor -= direction;
1916 if (pat[i] != *cursor)
1917 break;
1918 }
1919 }
1920 cursor += dirlen - i - direction; /* fix cursor */
1921 if (i + direction == 0)
1922 {
1923 ptrdiff_t position, start, end;
1924
1925 cursor -= direction;
1926
1927 position = pos_byte + cursor - p2 + ((direction > 0)
1928 ? 1 - len_byte : 0);
1929 set_search_regs (position, len_byte);
1930
1931 if (NILP (Vinhibit_changing_match_data))
1932 {
1933 start = search_regs.start[0];
1934 end = search_regs.end[0];
1935 }
1936 else
1937 /* If Vinhibit_changing_match_data is non-nil,
1938 search_regs will not be changed. So let's
1939 compute start and end here. */
1940 {
1941 start = BYTE_TO_CHAR (position);
1942 end = BYTE_TO_CHAR (position + len_byte);
1943 }
1944
1945 if ((n -= direction) != 0)
1946 cursor += dirlen; /* to resume search */
1947 else
1948 return direction > 0 ? end : start;
1949 }
1950 else
1951 cursor += stride_for_teases; /* <sigh> we lose - */
1952 }
1953 pos_byte += cursor - p2;
1954 }
1955 else
1956 /* Now we'll pick up a clump that has to be done the hard
1957 way because it covers a discontinuity. */
1958 {
1959 limit = ((direction > 0)
1960 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1961 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1962 limit = ((direction > 0)
1963 ? min (limit + len_byte, lim_byte - 1)
1964 : max (limit - len_byte, lim_byte));
1965 /* LIMIT is now the last value POS_BYTE can have
1966 and still be valid for a possible match. */
1967 while (1)
1968 {
1969 /* This loop can be coded for space rather than
1970 speed because it will usually run only once.
1971 (the reach is at most len + 21, and typically
1972 does not exceed len). */
1973 while ((limit - pos_byte) * direction >= 0)
1974 {
1975 int ch = FETCH_BYTE (pos_byte);
1976 if (BM_tab[ch] == 0)
1977 goto hit2;
1978 pos_byte += BM_tab[ch];
1979 }
1980 break; /* ran off the end */
1981
1982 hit2:
1983 /* Found what might be a match. */
1984 i = dirlen - direction;
1985 while ((i -= direction) + direction != 0)
1986 {
1987 int ch;
1988 unsigned char *ptr;
1989 pos_byte -= direction;
1990 ptr = BYTE_POS_ADDR (pos_byte);
1991 /* Translate only the last byte of a character. */
1992 if (! multibyte
1993 || ((ptr == tail_end_ptr
1994 || CHAR_HEAD_P (ptr[1]))
1995 && (CHAR_HEAD_P (ptr[0])
1996 /* Check if this is the last byte of a
1997 translatable character. */
1998 || (translate_prev_byte1 == ptr[-1]
1999 && (CHAR_HEAD_P (translate_prev_byte1)
2000 || (translate_prev_byte2 == ptr[-2]
2001 && (CHAR_HEAD_P (translate_prev_byte2)
2002 || translate_prev_byte3 == ptr[-3])))))))
2003 ch = simple_translate[*ptr];
2004 else
2005 ch = *ptr;
2006 if (pat[i] != ch)
2007 break;
2008 }
2009 /* Above loop has moved POS_BYTE part or all the way
2010 back to the first pos (last pos if reverse).
2011 Set it once again at the last (first if reverse) char. */
2012 pos_byte += dirlen - i - direction;
2013 if (i + direction == 0)
2014 {
2015 ptrdiff_t position, start, end;
2016 pos_byte -= direction;
2017
2018 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2019 set_search_regs (position, len_byte);
2020
2021 if (NILP (Vinhibit_changing_match_data))
2022 {
2023 start = search_regs.start[0];
2024 end = search_regs.end[0];
2025 }
2026 else
2027 /* If Vinhibit_changing_match_data is non-nil,
2028 search_regs will not be changed. So let's
2029 compute start and end here. */
2030 {
2031 start = BYTE_TO_CHAR (position);
2032 end = BYTE_TO_CHAR (position + len_byte);
2033 }
2034
2035 if ((n -= direction) != 0)
2036 pos_byte += dirlen; /* to resume search */
2037 else
2038 return direction > 0 ? end : start;
2039 }
2040 else
2041 pos_byte += stride_for_teases;
2042 }
2043 }
2044 /* We have done one clump. Can we continue? */
2045 if ((lim_byte - pos_byte) * direction < 0)
2046 return ((0 - n) * direction);
2047 }
2048 return BYTE_TO_CHAR (pos_byte);
2049 }
2050
2051 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2052 for the overall match just found in the current buffer.
2053 Also clear out the match data for registers 1 and up. */
2054
2055 static void
2056 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2057 {
2058 ptrdiff_t i;
2059
2060 if (!NILP (Vinhibit_changing_match_data))
2061 return;
2062
2063 /* Make sure we have registers in which to store
2064 the match position. */
2065 if (search_regs.num_regs == 0)
2066 {
2067 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2068 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2069 search_regs.num_regs = 2;
2070 }
2071
2072 /* Clear out the other registers. */
2073 for (i = 1; i < search_regs.num_regs; i++)
2074 {
2075 search_regs.start[i] = -1;
2076 search_regs.end[i] = -1;
2077 }
2078
2079 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2080 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2081 XSETBUFFER (last_thing_searched, current_buffer);
2082 }
2083 \f
2084 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2085 "MSearch backward: ",
2086 doc: /* Search backward from point for STRING.
2087 Set point to the beginning of the occurrence found, and return point.
2088 An optional second argument bounds the search; it is a buffer position.
2089 The match found must not extend before that position.
2090 Optional third argument, if t, means if fail just return nil (no error).
2091 If not nil and not t, position at limit of search and return nil.
2092 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2093 successive occurrences. If COUNT is negative, search forward,
2094 instead of backward, for -COUNT occurrences.
2095
2096 Search case-sensitivity is determined by the value of the variable
2097 `case-fold-search', which see.
2098
2099 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2100 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2101 {
2102 return search_command (string, bound, noerror, count, -1, 0, 0);
2103 }
2104
2105 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2106 doc: /* Search forward from point for STRING.
2107 Set point to the end of the occurrence found, and return point.
2108 An optional second argument bounds the search; it is a buffer position.
2109 The match found must not extend after that position. A value of nil is
2110 equivalent to (point-max).
2111 Optional third argument, if t, means if fail just return nil (no error).
2112 If not nil and not t, move to limit of search and return nil.
2113 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2114 successive occurrences. If COUNT is negative, search backward,
2115 instead of forward, for -COUNT occurrences.
2116
2117 Search case-sensitivity is determined by the value of the variable
2118 `case-fold-search', which see.
2119
2120 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2121 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2122 {
2123 return search_command (string, bound, noerror, count, 1, 0, 0);
2124 }
2125
2126 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2127 "sRE search backward: ",
2128 doc: /* Search backward from point for match for regular expression REGEXP.
2129 Set point to the beginning of the match, and return point.
2130 The match found is the one starting last in the buffer
2131 and yet ending before the origin of the search.
2132 An optional second argument bounds the search; it is a buffer position.
2133 The match found must start at or after that position.
2134 Optional third argument, if t, means if fail just return nil (no error).
2135 If not nil and not t, move to limit of search and return nil.
2136 Optional fourth argument is repeat count--search for successive occurrences.
2137
2138 Search case-sensitivity is determined by the value of the variable
2139 `case-fold-search', which see.
2140
2141 See also the functions `match-beginning', `match-end', `match-string',
2142 and `replace-match'. */)
2143 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2144 {
2145 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2146 }
2147
2148 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2149 "sRE search: ",
2150 doc: /* Search forward from point for regular expression REGEXP.
2151 Set point to the end of the occurrence found, and return point.
2152 An optional second argument bounds the search; it is a buffer position.
2153 The match found must not extend after that position.
2154 Optional third argument, if t, means if fail just return nil (no error).
2155 If not nil and not t, move to limit of search and return nil.
2156 Optional fourth argument is repeat count--search for successive occurrences.
2157
2158 Search case-sensitivity is determined by the value of the variable
2159 `case-fold-search', which see.
2160
2161 See also the functions `match-beginning', `match-end', `match-string',
2162 and `replace-match'. */)
2163 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2164 {
2165 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2166 }
2167
2168 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2169 "sPosix search backward: ",
2170 doc: /* Search backward from point for match for regular expression REGEXP.
2171 Find the longest match in accord with Posix regular expression rules.
2172 Set point to the beginning of the match, and return point.
2173 The match found is the one starting last in the buffer
2174 and yet ending before the origin of the search.
2175 An optional second argument bounds the search; it is a buffer position.
2176 The match found must start at or after that position.
2177 Optional third argument, if t, means if fail just return nil (no error).
2178 If not nil and not t, move to limit of search and return nil.
2179 Optional fourth argument is repeat count--search for successive occurrences.
2180
2181 Search case-sensitivity is determined by the value of the variable
2182 `case-fold-search', which see.
2183
2184 See also the functions `match-beginning', `match-end', `match-string',
2185 and `replace-match'. */)
2186 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2187 {
2188 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2189 }
2190
2191 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2192 "sPosix search: ",
2193 doc: /* Search forward from point for regular expression REGEXP.
2194 Find the longest match in accord with Posix regular expression rules.
2195 Set point to the end of the occurrence found, and return point.
2196 An optional second argument bounds the search; it is a buffer position.
2197 The match found must not extend after that position.
2198 Optional third argument, if t, means if fail just return nil (no error).
2199 If not nil and not t, move to limit of search and return nil.
2200 Optional fourth argument is repeat count--search for successive occurrences.
2201
2202 Search case-sensitivity is determined by the value of the variable
2203 `case-fold-search', which see.
2204
2205 See also the functions `match-beginning', `match-end', `match-string',
2206 and `replace-match'. */)
2207 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2208 {
2209 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2210 }
2211 \f
2212 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2213 doc: /* Replace text matched by last search with NEWTEXT.
2214 Leave point at the end of the replacement text.
2215
2216 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2217 Otherwise maybe capitalize the whole text, or maybe just word initials,
2218 based on the replaced text.
2219 If the replaced text has only capital letters
2220 and has at least one multiletter word, convert NEWTEXT to all caps.
2221 Otherwise if all words are capitalized in the replaced text,
2222 capitalize each word in NEWTEXT.
2223
2224 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2225 Otherwise treat `\\' as special:
2226 `\\&' in NEWTEXT means substitute original matched text.
2227 `\\N' means substitute what matched the Nth `\\(...\\)'.
2228 If Nth parens didn't match, substitute nothing.
2229 `\\\\' means insert one `\\'.
2230 Case conversion does not apply to these substitutions.
2231
2232 FIXEDCASE and LITERAL are optional arguments.
2233
2234 The optional fourth argument STRING can be a string to modify.
2235 This is meaningful when the previous match was done against STRING,
2236 using `string-match'. When used this way, `replace-match'
2237 creates and returns a new string made by copying STRING and replacing
2238 the part of STRING that was matched.
2239
2240 The optional fifth argument SUBEXP specifies a subexpression;
2241 it says to replace just that subexpression with NEWTEXT,
2242 rather than replacing the entire matched text.
2243 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2244 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2245 NEWTEXT in place of subexp N.
2246 This is useful only after a regular expression search or match,
2247 since only regular expressions have distinguished subexpressions. */)
2248 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2249 {
2250 enum { nochange, all_caps, cap_initial } case_action;
2251 register ptrdiff_t pos, pos_byte;
2252 int some_multiletter_word;
2253 int some_lowercase;
2254 int some_uppercase;
2255 int some_nonuppercase_initial;
2256 register int c, prevc;
2257 ptrdiff_t sub;
2258 ptrdiff_t opoint, newpoint;
2259
2260 CHECK_STRING (newtext);
2261
2262 if (! NILP (string))
2263 CHECK_STRING (string);
2264
2265 case_action = nochange; /* We tried an initialization */
2266 /* but some C compilers blew it */
2267
2268 if (search_regs.num_regs <= 0)
2269 error ("`replace-match' called before any match found");
2270
2271 if (NILP (subexp))
2272 sub = 0;
2273 else
2274 {
2275 CHECK_NUMBER (subexp);
2276 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2277 args_out_of_range (subexp, make_number (search_regs.num_regs));
2278 sub = XINT (subexp);
2279 }
2280
2281 if (NILP (string))
2282 {
2283 if (search_regs.start[sub] < BEGV
2284 || search_regs.start[sub] > search_regs.end[sub]
2285 || search_regs.end[sub] > ZV)
2286 args_out_of_range (make_number (search_regs.start[sub]),
2287 make_number (search_regs.end[sub]));
2288 }
2289 else
2290 {
2291 if (search_regs.start[sub] < 0
2292 || search_regs.start[sub] > search_regs.end[sub]
2293 || search_regs.end[sub] > SCHARS (string))
2294 args_out_of_range (make_number (search_regs.start[sub]),
2295 make_number (search_regs.end[sub]));
2296 }
2297
2298 if (NILP (fixedcase))
2299 {
2300 /* Decide how to casify by examining the matched text. */
2301 ptrdiff_t last;
2302
2303 pos = search_regs.start[sub];
2304 last = search_regs.end[sub];
2305
2306 if (NILP (string))
2307 pos_byte = CHAR_TO_BYTE (pos);
2308 else
2309 pos_byte = string_char_to_byte (string, pos);
2310
2311 prevc = '\n';
2312 case_action = all_caps;
2313
2314 /* some_multiletter_word is set nonzero if any original word
2315 is more than one letter long. */
2316 some_multiletter_word = 0;
2317 some_lowercase = 0;
2318 some_nonuppercase_initial = 0;
2319 some_uppercase = 0;
2320
2321 while (pos < last)
2322 {
2323 if (NILP (string))
2324 {
2325 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2326 INC_BOTH (pos, pos_byte);
2327 }
2328 else
2329 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2330
2331 if (lowercasep (c))
2332 {
2333 /* Cannot be all caps if any original char is lower case */
2334
2335 some_lowercase = 1;
2336 if (SYNTAX (prevc) != Sword)
2337 some_nonuppercase_initial = 1;
2338 else
2339 some_multiletter_word = 1;
2340 }
2341 else if (uppercasep (c))
2342 {
2343 some_uppercase = 1;
2344 if (SYNTAX (prevc) != Sword)
2345 ;
2346 else
2347 some_multiletter_word = 1;
2348 }
2349 else
2350 {
2351 /* If the initial is a caseless word constituent,
2352 treat that like a lowercase initial. */
2353 if (SYNTAX (prevc) != Sword)
2354 some_nonuppercase_initial = 1;
2355 }
2356
2357 prevc = c;
2358 }
2359
2360 /* Convert to all caps if the old text is all caps
2361 and has at least one multiletter word. */
2362 if (! some_lowercase && some_multiletter_word)
2363 case_action = all_caps;
2364 /* Capitalize each word, if the old text has all capitalized words. */
2365 else if (!some_nonuppercase_initial && some_multiletter_word)
2366 case_action = cap_initial;
2367 else if (!some_nonuppercase_initial && some_uppercase)
2368 /* Should x -> yz, operating on X, give Yz or YZ?
2369 We'll assume the latter. */
2370 case_action = all_caps;
2371 else
2372 case_action = nochange;
2373 }
2374
2375 /* Do replacement in a string. */
2376 if (!NILP (string))
2377 {
2378 Lisp_Object before, after;
2379
2380 before = Fsubstring (string, make_number (0),
2381 make_number (search_regs.start[sub]));
2382 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2383
2384 /* Substitute parts of the match into NEWTEXT
2385 if desired. */
2386 if (NILP (literal))
2387 {
2388 ptrdiff_t lastpos = 0;
2389 ptrdiff_t lastpos_byte = 0;
2390 /* We build up the substituted string in ACCUM. */
2391 Lisp_Object accum;
2392 Lisp_Object middle;
2393 ptrdiff_t length = SBYTES (newtext);
2394
2395 accum = Qnil;
2396
2397 for (pos_byte = 0, pos = 0; pos_byte < length;)
2398 {
2399 ptrdiff_t substart = -1;
2400 ptrdiff_t subend = 0;
2401 int delbackslash = 0;
2402
2403 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2404
2405 if (c == '\\')
2406 {
2407 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2408
2409 if (c == '&')
2410 {
2411 substart = search_regs.start[sub];
2412 subend = search_regs.end[sub];
2413 }
2414 else if (c >= '1' && c <= '9')
2415 {
2416 if (c - '0' < search_regs.num_regs
2417 && 0 <= search_regs.start[c - '0'])
2418 {
2419 substart = search_regs.start[c - '0'];
2420 subend = search_regs.end[c - '0'];
2421 }
2422 else
2423 {
2424 /* If that subexp did not match,
2425 replace \\N with nothing. */
2426 substart = 0;
2427 subend = 0;
2428 }
2429 }
2430 else if (c == '\\')
2431 delbackslash = 1;
2432 else
2433 error ("Invalid use of `\\' in replacement text");
2434 }
2435 if (substart >= 0)
2436 {
2437 if (pos - 2 != lastpos)
2438 middle = substring_both (newtext, lastpos,
2439 lastpos_byte,
2440 pos - 2, pos_byte - 2);
2441 else
2442 middle = Qnil;
2443 accum = concat3 (accum, middle,
2444 Fsubstring (string,
2445 make_number (substart),
2446 make_number (subend)));
2447 lastpos = pos;
2448 lastpos_byte = pos_byte;
2449 }
2450 else if (delbackslash)
2451 {
2452 middle = substring_both (newtext, lastpos,
2453 lastpos_byte,
2454 pos - 1, pos_byte - 1);
2455
2456 accum = concat2 (accum, middle);
2457 lastpos = pos;
2458 lastpos_byte = pos_byte;
2459 }
2460 }
2461
2462 if (pos != lastpos)
2463 middle = substring_both (newtext, lastpos,
2464 lastpos_byte,
2465 pos, pos_byte);
2466 else
2467 middle = Qnil;
2468
2469 newtext = concat2 (accum, middle);
2470 }
2471
2472 /* Do case substitution in NEWTEXT if desired. */
2473 if (case_action == all_caps)
2474 newtext = Fupcase (newtext);
2475 else if (case_action == cap_initial)
2476 newtext = Fupcase_initials (newtext);
2477
2478 return concat3 (before, newtext, after);
2479 }
2480
2481 /* Record point, then move (quietly) to the start of the match. */
2482 if (PT >= search_regs.end[sub])
2483 opoint = PT - ZV;
2484 else if (PT > search_regs.start[sub])
2485 opoint = search_regs.end[sub] - ZV;
2486 else
2487 opoint = PT;
2488
2489 /* If we want non-literal replacement,
2490 perform substitution on the replacement string. */
2491 if (NILP (literal))
2492 {
2493 ptrdiff_t length = SBYTES (newtext);
2494 unsigned char *substed;
2495 ptrdiff_t substed_alloc_size, substed_len;
2496 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2497 int str_multibyte = STRING_MULTIBYTE (newtext);
2498 int really_changed = 0;
2499
2500 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2501 ? STRING_BYTES_BOUND
2502 : length * 2 + 100);
2503 substed = (unsigned char *) xmalloc (substed_alloc_size);
2504 substed_len = 0;
2505
2506 /* Go thru NEWTEXT, producing the actual text to insert in
2507 SUBSTED while adjusting multibyteness to that of the current
2508 buffer. */
2509
2510 for (pos_byte = 0, pos = 0; pos_byte < length;)
2511 {
2512 unsigned char str[MAX_MULTIBYTE_LENGTH];
2513 const unsigned char *add_stuff = NULL;
2514 ptrdiff_t add_len = 0;
2515 ptrdiff_t idx = -1;
2516
2517 if (str_multibyte)
2518 {
2519 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2520 if (!buf_multibyte)
2521 c = multibyte_char_to_unibyte (c);
2522 }
2523 else
2524 {
2525 /* Note that we don't have to increment POS. */
2526 c = SREF (newtext, pos_byte++);
2527 if (buf_multibyte)
2528 MAKE_CHAR_MULTIBYTE (c);
2529 }
2530
2531 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2532 or set IDX to a match index, which means put that part
2533 of the buffer text into SUBSTED. */
2534
2535 if (c == '\\')
2536 {
2537 really_changed = 1;
2538
2539 if (str_multibyte)
2540 {
2541 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2542 pos, pos_byte);
2543 if (!buf_multibyte && !ASCII_CHAR_P (c))
2544 c = multibyte_char_to_unibyte (c);
2545 }
2546 else
2547 {
2548 c = SREF (newtext, pos_byte++);
2549 if (buf_multibyte)
2550 MAKE_CHAR_MULTIBYTE (c);
2551 }
2552
2553 if (c == '&')
2554 idx = sub;
2555 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2556 {
2557 if (search_regs.start[c - '0'] >= 1)
2558 idx = c - '0';
2559 }
2560 else if (c == '\\')
2561 add_len = 1, add_stuff = (unsigned char *) "\\";
2562 else
2563 {
2564 xfree (substed);
2565 error ("Invalid use of `\\' in replacement text");
2566 }
2567 }
2568 else
2569 {
2570 add_len = CHAR_STRING (c, str);
2571 add_stuff = str;
2572 }
2573
2574 /* If we want to copy part of a previous match,
2575 set up ADD_STUFF and ADD_LEN to point to it. */
2576 if (idx >= 0)
2577 {
2578 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2579 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2580 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2581 move_gap (search_regs.start[idx]);
2582 add_stuff = BYTE_POS_ADDR (begbyte);
2583 }
2584
2585 /* Now the stuff we want to add to SUBSTED
2586 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2587
2588 /* Make sure SUBSTED is big enough. */
2589 if (substed_alloc_size - substed_len < add_len)
2590 substed =
2591 xpalloc (substed, &substed_alloc_size,
2592 add_len - (substed_alloc_size - substed_len),
2593 STRING_BYTES_BOUND, 1);
2594
2595 /* Now add to the end of SUBSTED. */
2596 if (add_stuff)
2597 {
2598 memcpy (substed + substed_len, add_stuff, add_len);
2599 substed_len += add_len;
2600 }
2601 }
2602
2603 if (really_changed)
2604 {
2605 if (buf_multibyte)
2606 {
2607 ptrdiff_t nchars =
2608 multibyte_chars_in_text (substed, substed_len);
2609
2610 newtext = make_multibyte_string ((char *) substed, nchars,
2611 substed_len);
2612 }
2613 else
2614 newtext = make_unibyte_string ((char *) substed, substed_len);
2615 }
2616 xfree (substed);
2617 }
2618
2619 /* Replace the old text with the new in the cleanest possible way. */
2620 replace_range (search_regs.start[sub], search_regs.end[sub],
2621 newtext, 1, 0, 1);
2622 newpoint = search_regs.start[sub] + SCHARS (newtext);
2623
2624 if (case_action == all_caps)
2625 Fupcase_region (make_number (search_regs.start[sub]),
2626 make_number (newpoint));
2627 else if (case_action == cap_initial)
2628 Fupcase_initials_region (make_number (search_regs.start[sub]),
2629 make_number (newpoint));
2630
2631 /* Adjust search data for this change. */
2632 {
2633 ptrdiff_t oldend = search_regs.end[sub];
2634 ptrdiff_t oldstart = search_regs.start[sub];
2635 ptrdiff_t change = newpoint - search_regs.end[sub];
2636 ptrdiff_t i;
2637
2638 for (i = 0; i < search_regs.num_regs; i++)
2639 {
2640 if (search_regs.start[i] >= oldend)
2641 search_regs.start[i] += change;
2642 else if (search_regs.start[i] > oldstart)
2643 search_regs.start[i] = oldstart;
2644 if (search_regs.end[i] >= oldend)
2645 search_regs.end[i] += change;
2646 else if (search_regs.end[i] > oldstart)
2647 search_regs.end[i] = oldstart;
2648 }
2649 }
2650
2651 /* Put point back where it was in the text. */
2652 if (opoint <= 0)
2653 TEMP_SET_PT (opoint + ZV);
2654 else
2655 TEMP_SET_PT (opoint);
2656
2657 /* Now move point "officially" to the start of the inserted replacement. */
2658 move_if_not_intangible (newpoint);
2659
2660 return Qnil;
2661 }
2662 \f
2663 static Lisp_Object
2664 match_limit (Lisp_Object num, int beginningp)
2665 {
2666 EMACS_INT n;
2667
2668 CHECK_NUMBER (num);
2669 n = XINT (num);
2670 if (n < 0)
2671 args_out_of_range (num, make_number (0));
2672 if (search_regs.num_regs <= 0)
2673 error ("No match data, because no search succeeded");
2674 if (n >= search_regs.num_regs
2675 || search_regs.start[n] < 0)
2676 return Qnil;
2677 return (make_number ((beginningp) ? search_regs.start[n]
2678 : search_regs.end[n]));
2679 }
2680
2681 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2682 doc: /* Return position of start of text matched by last search.
2683 SUBEXP, a number, specifies which parenthesized expression in the last
2684 regexp.
2685 Value is nil if SUBEXPth pair didn't match, or there were less than
2686 SUBEXP pairs.
2687 Zero means the entire text matched by the whole regexp or whole string. */)
2688 (Lisp_Object subexp)
2689 {
2690 return match_limit (subexp, 1);
2691 }
2692
2693 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2694 doc: /* Return position of end of text matched by last search.
2695 SUBEXP, a number, specifies which parenthesized expression in the last
2696 regexp.
2697 Value is nil if SUBEXPth pair didn't match, or there were less than
2698 SUBEXP pairs.
2699 Zero means the entire text matched by the whole regexp or whole string. */)
2700 (Lisp_Object subexp)
2701 {
2702 return match_limit (subexp, 0);
2703 }
2704
2705 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2706 doc: /* Return a list containing all info on what the last search matched.
2707 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2708 All the elements are markers or nil (nil if the Nth pair didn't match)
2709 if the last match was on a buffer; integers or nil if a string was matched.
2710 Use `set-match-data' to reinstate the data in this list.
2711
2712 If INTEGERS (the optional first argument) is non-nil, always use
2713 integers \(rather than markers) to represent buffer positions. In
2714 this case, and if the last match was in a buffer, the buffer will get
2715 stored as one additional element at the end of the list.
2716
2717 If REUSE is a list, reuse it as part of the value. If REUSE is long
2718 enough to hold all the values, and if INTEGERS is non-nil, no consing
2719 is done.
2720
2721 If optional third arg RESEAT is non-nil, any previous markers on the
2722 REUSE list will be modified to point to nowhere.
2723
2724 Return value is undefined if the last search failed. */)
2725 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2726 {
2727 Lisp_Object tail, prev;
2728 Lisp_Object *data;
2729 ptrdiff_t i, len;
2730
2731 if (!NILP (reseat))
2732 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2733 if (MARKERP (XCAR (tail)))
2734 {
2735 unchain_marker (XMARKER (XCAR (tail)));
2736 XSETCAR (tail, Qnil);
2737 }
2738
2739 if (NILP (last_thing_searched))
2740 return Qnil;
2741
2742 prev = Qnil;
2743
2744 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2745 * sizeof (Lisp_Object));
2746
2747 len = 0;
2748 for (i = 0; i < search_regs.num_regs; i++)
2749 {
2750 ptrdiff_t start = search_regs.start[i];
2751 if (start >= 0)
2752 {
2753 if (EQ (last_thing_searched, Qt)
2754 || ! NILP (integers))
2755 {
2756 XSETFASTINT (data[2 * i], start);
2757 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2758 }
2759 else if (BUFFERP (last_thing_searched))
2760 {
2761 data[2 * i] = Fmake_marker ();
2762 Fset_marker (data[2 * i],
2763 make_number (start),
2764 last_thing_searched);
2765 data[2 * i + 1] = Fmake_marker ();
2766 Fset_marker (data[2 * i + 1],
2767 make_number (search_regs.end[i]),
2768 last_thing_searched);
2769 }
2770 else
2771 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2772 abort ();
2773
2774 len = 2 * i + 2;
2775 }
2776 else
2777 data[2 * i] = data[2 * i + 1] = Qnil;
2778 }
2779
2780 if (BUFFERP (last_thing_searched) && !NILP (integers))
2781 {
2782 data[len] = last_thing_searched;
2783 len++;
2784 }
2785
2786 /* If REUSE is not usable, cons up the values and return them. */
2787 if (! CONSP (reuse))
2788 return Flist (len, data);
2789
2790 /* If REUSE is a list, store as many value elements as will fit
2791 into the elements of REUSE. */
2792 for (i = 0, tail = reuse; CONSP (tail);
2793 i++, tail = XCDR (tail))
2794 {
2795 if (i < len)
2796 XSETCAR (tail, data[i]);
2797 else
2798 XSETCAR (tail, Qnil);
2799 prev = tail;
2800 }
2801
2802 /* If we couldn't fit all value elements into REUSE,
2803 cons up the rest of them and add them to the end of REUSE. */
2804 if (i < len)
2805 XSETCDR (prev, Flist (len - i, data + i));
2806
2807 return reuse;
2808 }
2809
2810 /* We used to have an internal use variant of `reseat' described as:
2811
2812 If RESEAT is `evaporate', put the markers back on the free list
2813 immediately. No other references to the markers must exist in this
2814 case, so it is used only internally on the unwind stack and
2815 save-match-data from Lisp.
2816
2817 But it was ill-conceived: those supposedly-internal markers get exposed via
2818 the undo-list, so freeing them here is unsafe. */
2819
2820 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2821 doc: /* Set internal data on last search match from elements of LIST.
2822 LIST should have been created by calling `match-data' previously.
2823
2824 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2825 (register Lisp_Object list, Lisp_Object reseat)
2826 {
2827 ptrdiff_t i;
2828 register Lisp_Object marker;
2829
2830 if (running_asynch_code)
2831 save_search_regs ();
2832
2833 CHECK_LIST (list);
2834
2835 /* Unless we find a marker with a buffer or an explicit buffer
2836 in LIST, assume that this match data came from a string. */
2837 last_thing_searched = Qt;
2838
2839 /* Allocate registers if they don't already exist. */
2840 {
2841 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2842
2843 if (length > search_regs.num_regs)
2844 {
2845 ptrdiff_t num_regs = search_regs.num_regs;
2846 if (PTRDIFF_MAX < length)
2847 memory_full (SIZE_MAX);
2848 search_regs.start =
2849 xpalloc (search_regs.start, &num_regs, length - num_regs,
2850 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2851 search_regs.end =
2852 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2853
2854 for (i = search_regs.num_regs; i < num_regs; i++)
2855 search_regs.start[i] = -1;
2856
2857 search_regs.num_regs = num_regs;
2858 }
2859
2860 for (i = 0; CONSP (list); i++)
2861 {
2862 marker = XCAR (list);
2863 if (BUFFERP (marker))
2864 {
2865 last_thing_searched = marker;
2866 break;
2867 }
2868 if (i >= length)
2869 break;
2870 if (NILP (marker))
2871 {
2872 search_regs.start[i] = -1;
2873 list = XCDR (list);
2874 }
2875 else
2876 {
2877 Lisp_Object from;
2878 Lisp_Object m;
2879
2880 m = marker;
2881 if (MARKERP (marker))
2882 {
2883 if (XMARKER (marker)->buffer == 0)
2884 XSETFASTINT (marker, 0);
2885 else
2886 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2887 }
2888
2889 CHECK_NUMBER_COERCE_MARKER (marker);
2890 from = marker;
2891
2892 if (!NILP (reseat) && MARKERP (m))
2893 {
2894 unchain_marker (XMARKER (m));
2895 XSETCAR (list, Qnil);
2896 }
2897
2898 if ((list = XCDR (list), !CONSP (list)))
2899 break;
2900
2901 m = marker = XCAR (list);
2902
2903 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2904 XSETFASTINT (marker, 0);
2905
2906 CHECK_NUMBER_COERCE_MARKER (marker);
2907 if ((XINT (from) < 0
2908 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2909 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2910 && (XINT (marker) < 0
2911 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2912 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2913 {
2914 search_regs.start[i] = XINT (from);
2915 search_regs.end[i] = XINT (marker);
2916 }
2917 else
2918 {
2919 search_regs.start[i] = -1;
2920 }
2921
2922 if (!NILP (reseat) && MARKERP (m))
2923 {
2924 unchain_marker (XMARKER (m));
2925 XSETCAR (list, Qnil);
2926 }
2927 }
2928 list = XCDR (list);
2929 }
2930
2931 for (; i < search_regs.num_regs; i++)
2932 search_regs.start[i] = -1;
2933 }
2934
2935 return Qnil;
2936 }
2937
2938 /* If non-zero the match data have been saved in saved_search_regs
2939 during the execution of a sentinel or filter. */
2940 static int search_regs_saved;
2941 static struct re_registers saved_search_regs;
2942 static Lisp_Object saved_last_thing_searched;
2943
2944 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2945 if asynchronous code (filter or sentinel) is running. */
2946 static void
2947 save_search_regs (void)
2948 {
2949 if (!search_regs_saved)
2950 {
2951 saved_search_regs.num_regs = search_regs.num_regs;
2952 saved_search_regs.start = search_regs.start;
2953 saved_search_regs.end = search_regs.end;
2954 saved_last_thing_searched = last_thing_searched;
2955 last_thing_searched = Qnil;
2956 search_regs.num_regs = 0;
2957 search_regs.start = 0;
2958 search_regs.end = 0;
2959
2960 search_regs_saved = 1;
2961 }
2962 }
2963
2964 /* Called upon exit from filters and sentinels. */
2965 void
2966 restore_search_regs (void)
2967 {
2968 if (search_regs_saved)
2969 {
2970 if (search_regs.num_regs > 0)
2971 {
2972 xfree (search_regs.start);
2973 xfree (search_regs.end);
2974 }
2975 search_regs.num_regs = saved_search_regs.num_regs;
2976 search_regs.start = saved_search_regs.start;
2977 search_regs.end = saved_search_regs.end;
2978 last_thing_searched = saved_last_thing_searched;
2979 saved_last_thing_searched = Qnil;
2980 search_regs_saved = 0;
2981 }
2982 }
2983
2984 static Lisp_Object
2985 unwind_set_match_data (Lisp_Object list)
2986 {
2987 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
2988 return Fset_match_data (list, Qt);
2989 }
2990
2991 /* Called to unwind protect the match data. */
2992 void
2993 record_unwind_save_match_data (void)
2994 {
2995 record_unwind_protect (unwind_set_match_data,
2996 Fmatch_data (Qnil, Qnil, Qnil));
2997 }
2998
2999 /* Quote a string to deactivate reg-expr chars */
3000
3001 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3002 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3003 (Lisp_Object string)
3004 {
3005 register char *in, *out, *end;
3006 register char *temp;
3007 int backslashes_added = 0;
3008
3009 CHECK_STRING (string);
3010
3011 temp = (char *) alloca (SBYTES (string) * 2);
3012
3013 /* Now copy the data into the new string, inserting escapes. */
3014
3015 in = SSDATA (string);
3016 end = in + SBYTES (string);
3017 out = temp;
3018
3019 for (; in != end; in++)
3020 {
3021 if (*in == '['
3022 || *in == '*' || *in == '.' || *in == '\\'
3023 || *in == '?' || *in == '+'
3024 || *in == '^' || *in == '$')
3025 *out++ = '\\', backslashes_added++;
3026 *out++ = *in;
3027 }
3028
3029 return make_specified_string (temp,
3030 SCHARS (string) + backslashes_added,
3031 out - temp,
3032 STRING_MULTIBYTE (string));
3033 }
3034 \f
3035 void
3036 syms_of_search (void)
3037 {
3038 register int i;
3039
3040 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3041 {
3042 searchbufs[i].buf.allocated = 100;
3043 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3044 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3045 searchbufs[i].regexp = Qnil;
3046 searchbufs[i].whitespace_regexp = Qnil;
3047 searchbufs[i].syntax_table = Qnil;
3048 staticpro (&searchbufs[i].regexp);
3049 staticpro (&searchbufs[i].whitespace_regexp);
3050 staticpro (&searchbufs[i].syntax_table);
3051 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3052 }
3053 searchbuf_head = &searchbufs[0];
3054
3055 DEFSYM (Qsearch_failed, "search-failed");
3056 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3057
3058 Fput (Qsearch_failed, Qerror_conditions,
3059 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3060 Fput (Qsearch_failed, Qerror_message,
3061 make_pure_c_string ("Search failed"));
3062
3063 Fput (Qinvalid_regexp, Qerror_conditions,
3064 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3065 Fput (Qinvalid_regexp, Qerror_message,
3066 make_pure_c_string ("Invalid regexp"));
3067
3068 last_thing_searched = Qnil;
3069 staticpro (&last_thing_searched);
3070
3071 saved_last_thing_searched = Qnil;
3072 staticpro (&saved_last_thing_searched);
3073
3074 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3075 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3076 Some commands use this for user-specified regexps.
3077 Spaces that occur inside character classes or repetition operators
3078 or other such regexp constructs are not replaced with this.
3079 A value of nil (which is the normal value) means treat spaces literally. */);
3080 Vsearch_spaces_regexp = Qnil;
3081
3082 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3083 doc: /* Internal use only.
3084 If non-nil, the primitive searching and matching functions
3085 such as `looking-at', `string-match', `re-search-forward', etc.,
3086 do not set the match data. The proper way to use this variable
3087 is to bind it with `let' around a small expression. */);
3088 Vinhibit_changing_match_data = Qnil;
3089
3090 defsubr (&Slooking_at);
3091 defsubr (&Sposix_looking_at);
3092 defsubr (&Sstring_match);
3093 defsubr (&Sposix_string_match);
3094 defsubr (&Ssearch_forward);
3095 defsubr (&Ssearch_backward);
3096 defsubr (&Sre_search_forward);
3097 defsubr (&Sre_search_backward);
3098 defsubr (&Sposix_search_forward);
3099 defsubr (&Sposix_search_backward);
3100 defsubr (&Sreplace_match);
3101 defsubr (&Smatch_beginning);
3102 defsubr (&Smatch_end);
3103 defsubr (&Smatch_data);
3104 defsubr (&Sset_match_data);
3105 defsubr (&Sregexp_quote);
3106 }