Merge from trunk.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #ifdef HAVE_MENUS
40 #if defined (HAVE_X_WINDOWS)
41 #include "xterm.h"
42 #endif
43 #endif /* HAVE_MENUS */
44
45 #ifndef NULL
46 #define NULL ((POINTER_TYPE *)0)
47 #endif
48
49 Lisp_Object Qstring_lessp;
50 static Lisp_Object Qprovide, Qrequire;
51 static Lisp_Object Qyes_or_no_p_history;
52 Lisp_Object Qcursor_in_echo_area;
53 static Lisp_Object Qwidget_type;
54 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
55
56 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
57
58 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
59
60 #ifndef HAVE_UNISTD_H
61 extern long time ();
62 #endif
63 \f
64 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
65 doc: /* Return the argument unchanged. */)
66 (Lisp_Object arg)
67 {
68 return arg;
69 }
70
71 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
72 doc: /* Return a pseudo-random number.
73 All integers representable in Lisp are equally likely.
74 On most systems, this is 29 bits' worth.
75 With positive integer LIMIT, return random number in interval [0,LIMIT).
76 With argument t, set the random number seed from the current time and pid.
77 Other values of LIMIT are ignored. */)
78 (Lisp_Object limit)
79 {
80 EMACS_INT val;
81 Lisp_Object lispy_val;
82
83 if (EQ (limit, Qt))
84 {
85 EMACS_TIME t;
86 EMACS_GET_TIME (t);
87 seed_random (getpid () ^ EMACS_SECS (t) ^ EMACS_USECS (t));
88 }
89
90 if (NATNUMP (limit) && XFASTINT (limit) != 0)
91 {
92 /* Try to take our random number from the higher bits of VAL,
93 not the lower, since (says Gentzel) the low bits of `random'
94 are less random than the higher ones. We do this by using the
95 quotient rather than the remainder. At the high end of the RNG
96 it's possible to get a quotient larger than n; discarding
97 these values eliminates the bias that would otherwise appear
98 when using a large n. */
99 EMACS_INT denominator = (INTMASK + 1) / XFASTINT (limit);
100 do
101 val = get_random () / denominator;
102 while (val >= XFASTINT (limit));
103 }
104 else
105 val = get_random ();
106 XSETINT (lispy_val, val);
107 return lispy_val;
108 }
109 \f
110 /* Heuristic on how many iterations of a tight loop can be safely done
111 before it's time to do a QUIT. This must be a power of 2. */
112 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
113
114 /* Random data-structure functions */
115
116 DEFUN ("length", Flength, Slength, 1, 1, 0,
117 doc: /* Return the length of vector, list or string SEQUENCE.
118 A byte-code function object is also allowed.
119 If the string contains multibyte characters, this is not necessarily
120 the number of bytes in the string; it is the number of characters.
121 To get the number of bytes, use `string-bytes'. */)
122 (register Lisp_Object sequence)
123 {
124 register Lisp_Object val;
125
126 if (STRINGP (sequence))
127 XSETFASTINT (val, SCHARS (sequence));
128 else if (VECTORP (sequence))
129 XSETFASTINT (val, ASIZE (sequence));
130 else if (CHAR_TABLE_P (sequence))
131 XSETFASTINT (val, MAX_CHAR);
132 else if (BOOL_VECTOR_P (sequence))
133 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
134 else if (COMPILEDP (sequence))
135 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
136 else if (CONSP (sequence))
137 {
138 EMACS_INT i = 0;
139
140 do
141 {
142 ++i;
143 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
144 {
145 if (MOST_POSITIVE_FIXNUM < i)
146 error ("List too long");
147 QUIT;
148 }
149 sequence = XCDR (sequence);
150 }
151 while (CONSP (sequence));
152
153 CHECK_LIST_END (sequence, sequence);
154
155 val = make_number (i);
156 }
157 else if (NILP (sequence))
158 XSETFASTINT (val, 0);
159 else
160 wrong_type_argument (Qsequencep, sequence);
161
162 return val;
163 }
164
165 /* This does not check for quits. That is safe since it must terminate. */
166
167 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
168 doc: /* Return the length of a list, but avoid error or infinite loop.
169 This function never gets an error. If LIST is not really a list,
170 it returns 0. If LIST is circular, it returns a finite value
171 which is at least the number of distinct elements. */)
172 (Lisp_Object list)
173 {
174 Lisp_Object tail, halftail;
175 double hilen = 0;
176 uintmax_t lolen = 1;
177
178 if (! CONSP (list))
179 return make_number (0);
180
181 /* halftail is used to detect circular lists. */
182 for (tail = halftail = list; ; )
183 {
184 tail = XCDR (tail);
185 if (! CONSP (tail))
186 break;
187 if (EQ (tail, halftail))
188 break;
189 lolen++;
190 if ((lolen & 1) == 0)
191 {
192 halftail = XCDR (halftail);
193 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
194 {
195 QUIT;
196 if (lolen == 0)
197 hilen += UINTMAX_MAX + 1.0;
198 }
199 }
200 }
201
202 /* If the length does not fit into a fixnum, return a float.
203 On all known practical machines this returns an upper bound on
204 the true length. */
205 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
206 }
207
208 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
209 doc: /* Return the number of bytes in STRING.
210 If STRING is multibyte, this may be greater than the length of STRING. */)
211 (Lisp_Object string)
212 {
213 CHECK_STRING (string);
214 return make_number (SBYTES (string));
215 }
216
217 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
218 doc: /* Return t if two strings have identical contents.
219 Case is significant, but text properties are ignored.
220 Symbols are also allowed; their print names are used instead. */)
221 (register Lisp_Object s1, Lisp_Object s2)
222 {
223 if (SYMBOLP (s1))
224 s1 = SYMBOL_NAME (s1);
225 if (SYMBOLP (s2))
226 s2 = SYMBOL_NAME (s2);
227 CHECK_STRING (s1);
228 CHECK_STRING (s2);
229
230 if (SCHARS (s1) != SCHARS (s2)
231 || SBYTES (s1) != SBYTES (s2)
232 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
233 return Qnil;
234 return Qt;
235 }
236
237 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
238 doc: /* Compare the contents of two strings, converting to multibyte if needed.
239 In string STR1, skip the first START1 characters and stop at END1.
240 In string STR2, skip the first START2 characters and stop at END2.
241 END1 and END2 default to the full lengths of the respective strings.
242
243 Case is significant in this comparison if IGNORE-CASE is nil.
244 Unibyte strings are converted to multibyte for comparison.
245
246 The value is t if the strings (or specified portions) match.
247 If string STR1 is less, the value is a negative number N;
248 - 1 - N is the number of characters that match at the beginning.
249 If string STR1 is greater, the value is a positive number N;
250 N - 1 is the number of characters that match at the beginning. */)
251 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
252 {
253 register ptrdiff_t end1_char, end2_char;
254 register ptrdiff_t i1, i1_byte, i2, i2_byte;
255
256 CHECK_STRING (str1);
257 CHECK_STRING (str2);
258 if (NILP (start1))
259 start1 = make_number (0);
260 if (NILP (start2))
261 start2 = make_number (0);
262 CHECK_NATNUM (start1);
263 CHECK_NATNUM (start2);
264 if (! NILP (end1))
265 CHECK_NATNUM (end1);
266 if (! NILP (end2))
267 CHECK_NATNUM (end2);
268
269 end1_char = SCHARS (str1);
270 if (! NILP (end1) && end1_char > XINT (end1))
271 end1_char = XINT (end1);
272 if (end1_char < XINT (start1))
273 args_out_of_range (str1, start1);
274
275 end2_char = SCHARS (str2);
276 if (! NILP (end2) && end2_char > XINT (end2))
277 end2_char = XINT (end2);
278 if (end2_char < XINT (start2))
279 args_out_of_range (str2, start2);
280
281 i1 = XINT (start1);
282 i2 = XINT (start2);
283
284 i1_byte = string_char_to_byte (str1, i1);
285 i2_byte = string_char_to_byte (str2, i2);
286
287 while (i1 < end1_char && i2 < end2_char)
288 {
289 /* When we find a mismatch, we must compare the
290 characters, not just the bytes. */
291 int c1, c2;
292
293 if (STRING_MULTIBYTE (str1))
294 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
295 else
296 {
297 c1 = SREF (str1, i1++);
298 MAKE_CHAR_MULTIBYTE (c1);
299 }
300
301 if (STRING_MULTIBYTE (str2))
302 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
303 else
304 {
305 c2 = SREF (str2, i2++);
306 MAKE_CHAR_MULTIBYTE (c2);
307 }
308
309 if (c1 == c2)
310 continue;
311
312 if (! NILP (ignore_case))
313 {
314 Lisp_Object tem;
315
316 tem = Fupcase (make_number (c1));
317 c1 = XINT (tem);
318 tem = Fupcase (make_number (c2));
319 c2 = XINT (tem);
320 }
321
322 if (c1 == c2)
323 continue;
324
325 /* Note that I1 has already been incremented
326 past the character that we are comparing;
327 hence we don't add or subtract 1 here. */
328 if (c1 < c2)
329 return make_number (- i1 + XINT (start1));
330 else
331 return make_number (i1 - XINT (start1));
332 }
333
334 if (i1 < end1_char)
335 return make_number (i1 - XINT (start1) + 1);
336 if (i2 < end2_char)
337 return make_number (- i1 + XINT (start1) - 1);
338
339 return Qt;
340 }
341
342 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
343 doc: /* Return t if first arg string is less than second in lexicographic order.
344 Case is significant.
345 Symbols are also allowed; their print names are used instead. */)
346 (register Lisp_Object s1, Lisp_Object s2)
347 {
348 register ptrdiff_t end;
349 register ptrdiff_t i1, i1_byte, i2, i2_byte;
350
351 if (SYMBOLP (s1))
352 s1 = SYMBOL_NAME (s1);
353 if (SYMBOLP (s2))
354 s2 = SYMBOL_NAME (s2);
355 CHECK_STRING (s1);
356 CHECK_STRING (s2);
357
358 i1 = i1_byte = i2 = i2_byte = 0;
359
360 end = SCHARS (s1);
361 if (end > SCHARS (s2))
362 end = SCHARS (s2);
363
364 while (i1 < end)
365 {
366 /* When we find a mismatch, we must compare the
367 characters, not just the bytes. */
368 int c1, c2;
369
370 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
371 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
372
373 if (c1 != c2)
374 return c1 < c2 ? Qt : Qnil;
375 }
376 return i1 < SCHARS (s2) ? Qt : Qnil;
377 }
378 \f
379 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
380 enum Lisp_Type target_type, int last_special);
381
382 /* ARGSUSED */
383 Lisp_Object
384 concat2 (Lisp_Object s1, Lisp_Object s2)
385 {
386 Lisp_Object args[2];
387 args[0] = s1;
388 args[1] = s2;
389 return concat (2, args, Lisp_String, 0);
390 }
391
392 /* ARGSUSED */
393 Lisp_Object
394 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
395 {
396 Lisp_Object args[3];
397 args[0] = s1;
398 args[1] = s2;
399 args[2] = s3;
400 return concat (3, args, Lisp_String, 0);
401 }
402
403 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
404 doc: /* Concatenate all the arguments and make the result a list.
405 The result is a list whose elements are the elements of all the arguments.
406 Each argument may be a list, vector or string.
407 The last argument is not copied, just used as the tail of the new list.
408 usage: (append &rest SEQUENCES) */)
409 (ptrdiff_t nargs, Lisp_Object *args)
410 {
411 return concat (nargs, args, Lisp_Cons, 1);
412 }
413
414 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
415 doc: /* Concatenate all the arguments and make the result a string.
416 The result is a string whose elements are the elements of all the arguments.
417 Each argument may be a string or a list or vector of characters (integers).
418 usage: (concat &rest SEQUENCES) */)
419 (ptrdiff_t nargs, Lisp_Object *args)
420 {
421 return concat (nargs, args, Lisp_String, 0);
422 }
423
424 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
425 doc: /* Concatenate all the arguments and make the result a vector.
426 The result is a vector whose elements are the elements of all the arguments.
427 Each argument may be a list, vector or string.
428 usage: (vconcat &rest SEQUENCES) */)
429 (ptrdiff_t nargs, Lisp_Object *args)
430 {
431 return concat (nargs, args, Lisp_Vectorlike, 0);
432 }
433
434
435 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
436 doc: /* Return a copy of a list, vector, string or char-table.
437 The elements of a list or vector are not copied; they are shared
438 with the original. */)
439 (Lisp_Object arg)
440 {
441 if (NILP (arg)) return arg;
442
443 if (CHAR_TABLE_P (arg))
444 {
445 return copy_char_table (arg);
446 }
447
448 if (BOOL_VECTOR_P (arg))
449 {
450 Lisp_Object val;
451 ptrdiff_t size_in_chars
452 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
453 / BOOL_VECTOR_BITS_PER_CHAR);
454
455 val = Fmake_bool_vector (Flength (arg), Qnil);
456 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
457 size_in_chars);
458 return val;
459 }
460
461 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
462 wrong_type_argument (Qsequencep, arg);
463
464 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
465 }
466
467 /* This structure holds information of an argument of `concat' that is
468 a string and has text properties to be copied. */
469 struct textprop_rec
470 {
471 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
472 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
473 ptrdiff_t to; /* refer to VAL (the target string) */
474 };
475
476 static Lisp_Object
477 concat (ptrdiff_t nargs, Lisp_Object *args,
478 enum Lisp_Type target_type, int last_special)
479 {
480 Lisp_Object val;
481 register Lisp_Object tail;
482 register Lisp_Object this;
483 ptrdiff_t toindex;
484 ptrdiff_t toindex_byte = 0;
485 register EMACS_INT result_len;
486 register EMACS_INT result_len_byte;
487 ptrdiff_t argnum;
488 Lisp_Object last_tail;
489 Lisp_Object prev;
490 int some_multibyte;
491 /* When we make a multibyte string, we can't copy text properties
492 while concatenating each string because the length of resulting
493 string can't be decided until we finish the whole concatenation.
494 So, we record strings that have text properties to be copied
495 here, and copy the text properties after the concatenation. */
496 struct textprop_rec *textprops = NULL;
497 /* Number of elements in textprops. */
498 ptrdiff_t num_textprops = 0;
499 USE_SAFE_ALLOCA;
500
501 tail = Qnil;
502
503 /* In append, the last arg isn't treated like the others */
504 if (last_special && nargs > 0)
505 {
506 nargs--;
507 last_tail = args[nargs];
508 }
509 else
510 last_tail = Qnil;
511
512 /* Check each argument. */
513 for (argnum = 0; argnum < nargs; argnum++)
514 {
515 this = args[argnum];
516 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
517 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
518 wrong_type_argument (Qsequencep, this);
519 }
520
521 /* Compute total length in chars of arguments in RESULT_LEN.
522 If desired output is a string, also compute length in bytes
523 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
524 whether the result should be a multibyte string. */
525 result_len_byte = 0;
526 result_len = 0;
527 some_multibyte = 0;
528 for (argnum = 0; argnum < nargs; argnum++)
529 {
530 EMACS_INT len;
531 this = args[argnum];
532 len = XFASTINT (Flength (this));
533 if (target_type == Lisp_String)
534 {
535 /* We must count the number of bytes needed in the string
536 as well as the number of characters. */
537 ptrdiff_t i;
538 Lisp_Object ch;
539 int c;
540 ptrdiff_t this_len_byte;
541
542 if (VECTORP (this) || COMPILEDP (this))
543 for (i = 0; i < len; i++)
544 {
545 ch = AREF (this, i);
546 CHECK_CHARACTER (ch);
547 c = XFASTINT (ch);
548 this_len_byte = CHAR_BYTES (c);
549 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
550 string_overflow ();
551 result_len_byte += this_len_byte;
552 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
553 some_multibyte = 1;
554 }
555 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
556 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
557 else if (CONSP (this))
558 for (; CONSP (this); this = XCDR (this))
559 {
560 ch = XCAR (this);
561 CHECK_CHARACTER (ch);
562 c = XFASTINT (ch);
563 this_len_byte = CHAR_BYTES (c);
564 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
565 string_overflow ();
566 result_len_byte += this_len_byte;
567 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
568 some_multibyte = 1;
569 }
570 else if (STRINGP (this))
571 {
572 if (STRING_MULTIBYTE (this))
573 {
574 some_multibyte = 1;
575 this_len_byte = SBYTES (this);
576 }
577 else
578 this_len_byte = count_size_as_multibyte (SDATA (this),
579 SCHARS (this));
580 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
581 string_overflow ();
582 result_len_byte += this_len_byte;
583 }
584 }
585
586 result_len += len;
587 if (MOST_POSITIVE_FIXNUM < result_len)
588 memory_full (SIZE_MAX);
589 }
590
591 if (! some_multibyte)
592 result_len_byte = result_len;
593
594 /* Create the output object. */
595 if (target_type == Lisp_Cons)
596 val = Fmake_list (make_number (result_len), Qnil);
597 else if (target_type == Lisp_Vectorlike)
598 val = Fmake_vector (make_number (result_len), Qnil);
599 else if (some_multibyte)
600 val = make_uninit_multibyte_string (result_len, result_len_byte);
601 else
602 val = make_uninit_string (result_len);
603
604 /* In `append', if all but last arg are nil, return last arg. */
605 if (target_type == Lisp_Cons && EQ (val, Qnil))
606 return last_tail;
607
608 /* Copy the contents of the args into the result. */
609 if (CONSP (val))
610 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
611 else
612 toindex = 0, toindex_byte = 0;
613
614 prev = Qnil;
615 if (STRINGP (val))
616 SAFE_NALLOCA (textprops, 1, nargs);
617
618 for (argnum = 0; argnum < nargs; argnum++)
619 {
620 Lisp_Object thislen;
621 ptrdiff_t thisleni = 0;
622 register ptrdiff_t thisindex = 0;
623 register ptrdiff_t thisindex_byte = 0;
624
625 this = args[argnum];
626 if (!CONSP (this))
627 thislen = Flength (this), thisleni = XINT (thislen);
628
629 /* Between strings of the same kind, copy fast. */
630 if (STRINGP (this) && STRINGP (val)
631 && STRING_MULTIBYTE (this) == some_multibyte)
632 {
633 ptrdiff_t thislen_byte = SBYTES (this);
634
635 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
636 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
637 {
638 textprops[num_textprops].argnum = argnum;
639 textprops[num_textprops].from = 0;
640 textprops[num_textprops++].to = toindex;
641 }
642 toindex_byte += thislen_byte;
643 toindex += thisleni;
644 }
645 /* Copy a single-byte string to a multibyte string. */
646 else if (STRINGP (this) && STRINGP (val))
647 {
648 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
649 {
650 textprops[num_textprops].argnum = argnum;
651 textprops[num_textprops].from = 0;
652 textprops[num_textprops++].to = toindex;
653 }
654 toindex_byte += copy_text (SDATA (this),
655 SDATA (val) + toindex_byte,
656 SCHARS (this), 0, 1);
657 toindex += thisleni;
658 }
659 else
660 /* Copy element by element. */
661 while (1)
662 {
663 register Lisp_Object elt;
664
665 /* Fetch next element of `this' arg into `elt', or break if
666 `this' is exhausted. */
667 if (NILP (this)) break;
668 if (CONSP (this))
669 elt = XCAR (this), this = XCDR (this);
670 else if (thisindex >= thisleni)
671 break;
672 else if (STRINGP (this))
673 {
674 int c;
675 if (STRING_MULTIBYTE (this))
676 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
677 thisindex,
678 thisindex_byte);
679 else
680 {
681 c = SREF (this, thisindex); thisindex++;
682 if (some_multibyte && !ASCII_CHAR_P (c))
683 c = BYTE8_TO_CHAR (c);
684 }
685 XSETFASTINT (elt, c);
686 }
687 else if (BOOL_VECTOR_P (this))
688 {
689 int byte;
690 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
691 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
692 elt = Qt;
693 else
694 elt = Qnil;
695 thisindex++;
696 }
697 else
698 {
699 elt = AREF (this, thisindex);
700 thisindex++;
701 }
702
703 /* Store this element into the result. */
704 if (toindex < 0)
705 {
706 XSETCAR (tail, elt);
707 prev = tail;
708 tail = XCDR (tail);
709 }
710 else if (VECTORP (val))
711 {
712 ASET (val, toindex, elt);
713 toindex++;
714 }
715 else
716 {
717 int c;
718 CHECK_CHARACTER (elt);
719 c = XFASTINT (elt);
720 if (some_multibyte)
721 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
722 else
723 SSET (val, toindex_byte++, c);
724 toindex++;
725 }
726 }
727 }
728 if (!NILP (prev))
729 XSETCDR (prev, last_tail);
730
731 if (num_textprops > 0)
732 {
733 Lisp_Object props;
734 ptrdiff_t last_to_end = -1;
735
736 for (argnum = 0; argnum < num_textprops; argnum++)
737 {
738 this = args[textprops[argnum].argnum];
739 props = text_property_list (this,
740 make_number (0),
741 make_number (SCHARS (this)),
742 Qnil);
743 /* If successive arguments have properties, be sure that the
744 value of `composition' property be the copy. */
745 if (last_to_end == textprops[argnum].to)
746 make_composition_value_copy (props);
747 add_text_properties_from_list (val, props,
748 make_number (textprops[argnum].to));
749 last_to_end = textprops[argnum].to + SCHARS (this);
750 }
751 }
752
753 SAFE_FREE ();
754 return val;
755 }
756 \f
757 static Lisp_Object string_char_byte_cache_string;
758 static ptrdiff_t string_char_byte_cache_charpos;
759 static ptrdiff_t string_char_byte_cache_bytepos;
760
761 void
762 clear_string_char_byte_cache (void)
763 {
764 string_char_byte_cache_string = Qnil;
765 }
766
767 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
768
769 ptrdiff_t
770 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
771 {
772 ptrdiff_t i_byte;
773 ptrdiff_t best_below, best_below_byte;
774 ptrdiff_t best_above, best_above_byte;
775
776 best_below = best_below_byte = 0;
777 best_above = SCHARS (string);
778 best_above_byte = SBYTES (string);
779 if (best_above == best_above_byte)
780 return char_index;
781
782 if (EQ (string, string_char_byte_cache_string))
783 {
784 if (string_char_byte_cache_charpos < char_index)
785 {
786 best_below = string_char_byte_cache_charpos;
787 best_below_byte = string_char_byte_cache_bytepos;
788 }
789 else
790 {
791 best_above = string_char_byte_cache_charpos;
792 best_above_byte = string_char_byte_cache_bytepos;
793 }
794 }
795
796 if (char_index - best_below < best_above - char_index)
797 {
798 unsigned char *p = SDATA (string) + best_below_byte;
799
800 while (best_below < char_index)
801 {
802 p += BYTES_BY_CHAR_HEAD (*p);
803 best_below++;
804 }
805 i_byte = p - SDATA (string);
806 }
807 else
808 {
809 unsigned char *p = SDATA (string) + best_above_byte;
810
811 while (best_above > char_index)
812 {
813 p--;
814 while (!CHAR_HEAD_P (*p)) p--;
815 best_above--;
816 }
817 i_byte = p - SDATA (string);
818 }
819
820 string_char_byte_cache_bytepos = i_byte;
821 string_char_byte_cache_charpos = char_index;
822 string_char_byte_cache_string = string;
823
824 return i_byte;
825 }
826 \f
827 /* Return the character index corresponding to BYTE_INDEX in STRING. */
828
829 ptrdiff_t
830 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
831 {
832 ptrdiff_t i, i_byte;
833 ptrdiff_t best_below, best_below_byte;
834 ptrdiff_t best_above, best_above_byte;
835
836 best_below = best_below_byte = 0;
837 best_above = SCHARS (string);
838 best_above_byte = SBYTES (string);
839 if (best_above == best_above_byte)
840 return byte_index;
841
842 if (EQ (string, string_char_byte_cache_string))
843 {
844 if (string_char_byte_cache_bytepos < byte_index)
845 {
846 best_below = string_char_byte_cache_charpos;
847 best_below_byte = string_char_byte_cache_bytepos;
848 }
849 else
850 {
851 best_above = string_char_byte_cache_charpos;
852 best_above_byte = string_char_byte_cache_bytepos;
853 }
854 }
855
856 if (byte_index - best_below_byte < best_above_byte - byte_index)
857 {
858 unsigned char *p = SDATA (string) + best_below_byte;
859 unsigned char *pend = SDATA (string) + byte_index;
860
861 while (p < pend)
862 {
863 p += BYTES_BY_CHAR_HEAD (*p);
864 best_below++;
865 }
866 i = best_below;
867 i_byte = p - SDATA (string);
868 }
869 else
870 {
871 unsigned char *p = SDATA (string) + best_above_byte;
872 unsigned char *pbeg = SDATA (string) + byte_index;
873
874 while (p > pbeg)
875 {
876 p--;
877 while (!CHAR_HEAD_P (*p)) p--;
878 best_above--;
879 }
880 i = best_above;
881 i_byte = p - SDATA (string);
882 }
883
884 string_char_byte_cache_bytepos = i_byte;
885 string_char_byte_cache_charpos = i;
886 string_char_byte_cache_string = string;
887
888 return i;
889 }
890 \f
891 /* Convert STRING to a multibyte string. */
892
893 static Lisp_Object
894 string_make_multibyte (Lisp_Object string)
895 {
896 unsigned char *buf;
897 ptrdiff_t nbytes;
898 Lisp_Object ret;
899 USE_SAFE_ALLOCA;
900
901 if (STRING_MULTIBYTE (string))
902 return string;
903
904 nbytes = count_size_as_multibyte (SDATA (string),
905 SCHARS (string));
906 /* If all the chars are ASCII, they won't need any more bytes
907 once converted. In that case, we can return STRING itself. */
908 if (nbytes == SBYTES (string))
909 return string;
910
911 SAFE_ALLOCA (buf, unsigned char *, nbytes);
912 copy_text (SDATA (string), buf, SBYTES (string),
913 0, 1);
914
915 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
916 SAFE_FREE ();
917
918 return ret;
919 }
920
921
922 /* Convert STRING (if unibyte) to a multibyte string without changing
923 the number of characters. Characters 0200 trough 0237 are
924 converted to eight-bit characters. */
925
926 Lisp_Object
927 string_to_multibyte (Lisp_Object string)
928 {
929 unsigned char *buf;
930 ptrdiff_t nbytes;
931 Lisp_Object ret;
932 USE_SAFE_ALLOCA;
933
934 if (STRING_MULTIBYTE (string))
935 return string;
936
937 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
938 /* If all the chars are ASCII, they won't need any more bytes once
939 converted. */
940 if (nbytes == SBYTES (string))
941 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
942
943 SAFE_ALLOCA (buf, unsigned char *, nbytes);
944 memcpy (buf, SDATA (string), SBYTES (string));
945 str_to_multibyte (buf, nbytes, SBYTES (string));
946
947 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
948 SAFE_FREE ();
949
950 return ret;
951 }
952
953
954 /* Convert STRING to a single-byte string. */
955
956 Lisp_Object
957 string_make_unibyte (Lisp_Object string)
958 {
959 ptrdiff_t nchars;
960 unsigned char *buf;
961 Lisp_Object ret;
962 USE_SAFE_ALLOCA;
963
964 if (! STRING_MULTIBYTE (string))
965 return string;
966
967 nchars = SCHARS (string);
968
969 SAFE_ALLOCA (buf, unsigned char *, nchars);
970 copy_text (SDATA (string), buf, SBYTES (string),
971 1, 0);
972
973 ret = make_unibyte_string ((char *) buf, nchars);
974 SAFE_FREE ();
975
976 return ret;
977 }
978
979 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
980 1, 1, 0,
981 doc: /* Return the multibyte equivalent of STRING.
982 If STRING is unibyte and contains non-ASCII characters, the function
983 `unibyte-char-to-multibyte' is used to convert each unibyte character
984 to a multibyte character. In this case, the returned string is a
985 newly created string with no text properties. If STRING is multibyte
986 or entirely ASCII, it is returned unchanged. In particular, when
987 STRING is unibyte and entirely ASCII, the returned string is unibyte.
988 \(When the characters are all ASCII, Emacs primitives will treat the
989 string the same way whether it is unibyte or multibyte.) */)
990 (Lisp_Object string)
991 {
992 CHECK_STRING (string);
993
994 return string_make_multibyte (string);
995 }
996
997 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
998 1, 1, 0,
999 doc: /* Return the unibyte equivalent of STRING.
1000 Multibyte character codes are converted to unibyte according to
1001 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1002 If the lookup in the translation table fails, this function takes just
1003 the low 8 bits of each character. */)
1004 (Lisp_Object string)
1005 {
1006 CHECK_STRING (string);
1007
1008 return string_make_unibyte (string);
1009 }
1010
1011 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1012 1, 1, 0,
1013 doc: /* Return a unibyte string with the same individual bytes as STRING.
1014 If STRING is unibyte, the result is STRING itself.
1015 Otherwise it is a newly created string, with no text properties.
1016 If STRING is multibyte and contains a character of charset
1017 `eight-bit', it is converted to the corresponding single byte. */)
1018 (Lisp_Object string)
1019 {
1020 CHECK_STRING (string);
1021
1022 if (STRING_MULTIBYTE (string))
1023 {
1024 ptrdiff_t bytes = SBYTES (string);
1025 unsigned char *str = (unsigned char *) xmalloc (bytes);
1026
1027 memcpy (str, SDATA (string), bytes);
1028 bytes = str_as_unibyte (str, bytes);
1029 string = make_unibyte_string ((char *) str, bytes);
1030 xfree (str);
1031 }
1032 return string;
1033 }
1034
1035 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1036 1, 1, 0,
1037 doc: /* Return a multibyte string with the same individual bytes as STRING.
1038 If STRING is multibyte, the result is STRING itself.
1039 Otherwise it is a newly created string, with no text properties.
1040
1041 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1042 part of a correct utf-8 sequence), it is converted to the corresponding
1043 multibyte character of charset `eight-bit'.
1044 See also `string-to-multibyte'.
1045
1046 Beware, this often doesn't really do what you think it does.
1047 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1048 If you're not sure, whether to use `string-as-multibyte' or
1049 `string-to-multibyte', use `string-to-multibyte'. */)
1050 (Lisp_Object string)
1051 {
1052 CHECK_STRING (string);
1053
1054 if (! STRING_MULTIBYTE (string))
1055 {
1056 Lisp_Object new_string;
1057 ptrdiff_t nchars, nbytes;
1058
1059 parse_str_as_multibyte (SDATA (string),
1060 SBYTES (string),
1061 &nchars, &nbytes);
1062 new_string = make_uninit_multibyte_string (nchars, nbytes);
1063 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1064 if (nbytes != SBYTES (string))
1065 str_as_multibyte (SDATA (new_string), nbytes,
1066 SBYTES (string), NULL);
1067 string = new_string;
1068 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1069 }
1070 return string;
1071 }
1072
1073 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1074 1, 1, 0,
1075 doc: /* Return a multibyte string with the same individual chars as STRING.
1076 If STRING is multibyte, the result is STRING itself.
1077 Otherwise it is a newly created string, with no text properties.
1078
1079 If STRING is unibyte and contains an 8-bit byte, it is converted to
1080 the corresponding multibyte character of charset `eight-bit'.
1081
1082 This differs from `string-as-multibyte' by converting each byte of a correct
1083 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1084 correct sequence. */)
1085 (Lisp_Object string)
1086 {
1087 CHECK_STRING (string);
1088
1089 return string_to_multibyte (string);
1090 }
1091
1092 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1093 1, 1, 0,
1094 doc: /* Return a unibyte string with the same individual chars as STRING.
1095 If STRING is unibyte, the result is STRING itself.
1096 Otherwise it is a newly created string, with no text properties,
1097 where each `eight-bit' character is converted to the corresponding byte.
1098 If STRING contains a non-ASCII, non-`eight-bit' character,
1099 an error is signaled. */)
1100 (Lisp_Object string)
1101 {
1102 CHECK_STRING (string);
1103
1104 if (STRING_MULTIBYTE (string))
1105 {
1106 ptrdiff_t chars = SCHARS (string);
1107 unsigned char *str = (unsigned char *) xmalloc (chars);
1108 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars, 0);
1109
1110 if (converted < chars)
1111 error ("Can't convert the %"pD"dth character to unibyte", converted);
1112 string = make_unibyte_string ((char *) str, chars);
1113 xfree (str);
1114 }
1115 return string;
1116 }
1117
1118 \f
1119 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1120 doc: /* Return a copy of ALIST.
1121 This is an alist which represents the same mapping from objects to objects,
1122 but does not share the alist structure with ALIST.
1123 The objects mapped (cars and cdrs of elements of the alist)
1124 are shared, however.
1125 Elements of ALIST that are not conses are also shared. */)
1126 (Lisp_Object alist)
1127 {
1128 register Lisp_Object tem;
1129
1130 CHECK_LIST (alist);
1131 if (NILP (alist))
1132 return alist;
1133 alist = concat (1, &alist, Lisp_Cons, 0);
1134 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1135 {
1136 register Lisp_Object car;
1137 car = XCAR (tem);
1138
1139 if (CONSP (car))
1140 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1141 }
1142 return alist;
1143 }
1144
1145 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1146 doc: /* Return a new string whose contents are a substring of STRING.
1147 The returned string consists of the characters between index FROM
1148 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1149 zero-indexed: 0 means the first character of STRING. Negative values
1150 are counted from the end of STRING. If TO is nil, the substring runs
1151 to the end of STRING.
1152
1153 The STRING argument may also be a vector. In that case, the return
1154 value is a new vector that contains the elements between index FROM
1155 \(inclusive) and index TO (exclusive) of that vector argument. */)
1156 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1157 {
1158 Lisp_Object res;
1159 ptrdiff_t size;
1160 EMACS_INT from_char, to_char;
1161
1162 CHECK_VECTOR_OR_STRING (string);
1163 CHECK_NUMBER (from);
1164
1165 if (STRINGP (string))
1166 size = SCHARS (string);
1167 else
1168 size = ASIZE (string);
1169
1170 if (NILP (to))
1171 to_char = size;
1172 else
1173 {
1174 CHECK_NUMBER (to);
1175
1176 to_char = XINT (to);
1177 if (to_char < 0)
1178 to_char += size;
1179 }
1180
1181 from_char = XINT (from);
1182 if (from_char < 0)
1183 from_char += size;
1184 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1185 args_out_of_range_3 (string, make_number (from_char),
1186 make_number (to_char));
1187 if (STRINGP (string))
1188 {
1189 ptrdiff_t to_byte =
1190 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1191 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1192 res = make_specified_string (SSDATA (string) + from_byte,
1193 to_char - from_char, to_byte - from_byte,
1194 STRING_MULTIBYTE (string));
1195 copy_text_properties (make_number (from_char), make_number (to_char),
1196 string, make_number (0), res, Qnil);
1197 }
1198 else
1199 res = Fvector (to_char - from_char, &AREF (string, from_char));
1200
1201 return res;
1202 }
1203
1204
1205 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1206 doc: /* Return a substring of STRING, without text properties.
1207 It starts at index FROM and ends before TO.
1208 TO may be nil or omitted; then the substring runs to the end of STRING.
1209 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1210 If FROM or TO is negative, it counts from the end.
1211
1212 With one argument, just copy STRING without its properties. */)
1213 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1214 {
1215 ptrdiff_t size;
1216 EMACS_INT from_char, to_char;
1217 ptrdiff_t from_byte, to_byte;
1218
1219 CHECK_STRING (string);
1220
1221 size = SCHARS (string);
1222
1223 if (NILP (from))
1224 from_char = 0;
1225 else
1226 {
1227 CHECK_NUMBER (from);
1228 from_char = XINT (from);
1229 if (from_char < 0)
1230 from_char += size;
1231 }
1232
1233 if (NILP (to))
1234 to_char = size;
1235 else
1236 {
1237 CHECK_NUMBER (to);
1238 to_char = XINT (to);
1239 if (to_char < 0)
1240 to_char += size;
1241 }
1242
1243 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1244 args_out_of_range_3 (string, make_number (from_char),
1245 make_number (to_char));
1246
1247 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1248 to_byte =
1249 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1250 return make_specified_string (SSDATA (string) + from_byte,
1251 to_char - from_char, to_byte - from_byte,
1252 STRING_MULTIBYTE (string));
1253 }
1254
1255 /* Extract a substring of STRING, giving start and end positions
1256 both in characters and in bytes. */
1257
1258 Lisp_Object
1259 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1260 ptrdiff_t to, ptrdiff_t to_byte)
1261 {
1262 Lisp_Object res;
1263 ptrdiff_t size;
1264
1265 CHECK_VECTOR_OR_STRING (string);
1266
1267 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1268
1269 if (!(0 <= from && from <= to && to <= size))
1270 args_out_of_range_3 (string, make_number (from), make_number (to));
1271
1272 if (STRINGP (string))
1273 {
1274 res = make_specified_string (SSDATA (string) + from_byte,
1275 to - from, to_byte - from_byte,
1276 STRING_MULTIBYTE (string));
1277 copy_text_properties (make_number (from), make_number (to),
1278 string, make_number (0), res, Qnil);
1279 }
1280 else
1281 res = Fvector (to - from, &AREF (string, from));
1282
1283 return res;
1284 }
1285 \f
1286 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1287 doc: /* Take cdr N times on LIST, return the result. */)
1288 (Lisp_Object n, Lisp_Object list)
1289 {
1290 EMACS_INT i, num;
1291 CHECK_NUMBER (n);
1292 num = XINT (n);
1293 for (i = 0; i < num && !NILP (list); i++)
1294 {
1295 QUIT;
1296 CHECK_LIST_CONS (list, list);
1297 list = XCDR (list);
1298 }
1299 return list;
1300 }
1301
1302 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1303 doc: /* Return the Nth element of LIST.
1304 N counts from zero. If LIST is not that long, nil is returned. */)
1305 (Lisp_Object n, Lisp_Object list)
1306 {
1307 return Fcar (Fnthcdr (n, list));
1308 }
1309
1310 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1311 doc: /* Return element of SEQUENCE at index N. */)
1312 (register Lisp_Object sequence, Lisp_Object n)
1313 {
1314 CHECK_NUMBER (n);
1315 if (CONSP (sequence) || NILP (sequence))
1316 return Fcar (Fnthcdr (n, sequence));
1317
1318 /* Faref signals a "not array" error, so check here. */
1319 CHECK_ARRAY (sequence, Qsequencep);
1320 return Faref (sequence, n);
1321 }
1322
1323 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1324 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1325 The value is actually the tail of LIST whose car is ELT. */)
1326 (register Lisp_Object elt, Lisp_Object list)
1327 {
1328 register Lisp_Object tail;
1329 for (tail = list; CONSP (tail); tail = XCDR (tail))
1330 {
1331 register Lisp_Object tem;
1332 CHECK_LIST_CONS (tail, list);
1333 tem = XCAR (tail);
1334 if (! NILP (Fequal (elt, tem)))
1335 return tail;
1336 QUIT;
1337 }
1338 return Qnil;
1339 }
1340
1341 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1342 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1343 The value is actually the tail of LIST whose car is ELT. */)
1344 (register Lisp_Object elt, Lisp_Object list)
1345 {
1346 while (1)
1347 {
1348 if (!CONSP (list) || EQ (XCAR (list), elt))
1349 break;
1350
1351 list = XCDR (list);
1352 if (!CONSP (list) || EQ (XCAR (list), elt))
1353 break;
1354
1355 list = XCDR (list);
1356 if (!CONSP (list) || EQ (XCAR (list), elt))
1357 break;
1358
1359 list = XCDR (list);
1360 QUIT;
1361 }
1362
1363 CHECK_LIST (list);
1364 return list;
1365 }
1366
1367 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1368 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1369 The value is actually the tail of LIST whose car is ELT. */)
1370 (register Lisp_Object elt, Lisp_Object list)
1371 {
1372 register Lisp_Object tail;
1373
1374 if (!FLOATP (elt))
1375 return Fmemq (elt, list);
1376
1377 for (tail = list; CONSP (tail); tail = XCDR (tail))
1378 {
1379 register Lisp_Object tem;
1380 CHECK_LIST_CONS (tail, list);
1381 tem = XCAR (tail);
1382 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1383 return tail;
1384 QUIT;
1385 }
1386 return Qnil;
1387 }
1388
1389 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1390 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1391 The value is actually the first element of LIST whose car is KEY.
1392 Elements of LIST that are not conses are ignored. */)
1393 (Lisp_Object key, Lisp_Object list)
1394 {
1395 while (1)
1396 {
1397 if (!CONSP (list)
1398 || (CONSP (XCAR (list))
1399 && EQ (XCAR (XCAR (list)), key)))
1400 break;
1401
1402 list = XCDR (list);
1403 if (!CONSP (list)
1404 || (CONSP (XCAR (list))
1405 && EQ (XCAR (XCAR (list)), key)))
1406 break;
1407
1408 list = XCDR (list);
1409 if (!CONSP (list)
1410 || (CONSP (XCAR (list))
1411 && EQ (XCAR (XCAR (list)), key)))
1412 break;
1413
1414 list = XCDR (list);
1415 QUIT;
1416 }
1417
1418 return CAR (list);
1419 }
1420
1421 /* Like Fassq but never report an error and do not allow quits.
1422 Use only on lists known never to be circular. */
1423
1424 Lisp_Object
1425 assq_no_quit (Lisp_Object key, Lisp_Object list)
1426 {
1427 while (CONSP (list)
1428 && (!CONSP (XCAR (list))
1429 || !EQ (XCAR (XCAR (list)), key)))
1430 list = XCDR (list);
1431
1432 return CAR_SAFE (list);
1433 }
1434
1435 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1436 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1437 The value is actually the first element of LIST whose car equals KEY. */)
1438 (Lisp_Object key, Lisp_Object list)
1439 {
1440 Lisp_Object car;
1441
1442 while (1)
1443 {
1444 if (!CONSP (list)
1445 || (CONSP (XCAR (list))
1446 && (car = XCAR (XCAR (list)),
1447 EQ (car, key) || !NILP (Fequal (car, key)))))
1448 break;
1449
1450 list = XCDR (list);
1451 if (!CONSP (list)
1452 || (CONSP (XCAR (list))
1453 && (car = XCAR (XCAR (list)),
1454 EQ (car, key) || !NILP (Fequal (car, key)))))
1455 break;
1456
1457 list = XCDR (list);
1458 if (!CONSP (list)
1459 || (CONSP (XCAR (list))
1460 && (car = XCAR (XCAR (list)),
1461 EQ (car, key) || !NILP (Fequal (car, key)))))
1462 break;
1463
1464 list = XCDR (list);
1465 QUIT;
1466 }
1467
1468 return CAR (list);
1469 }
1470
1471 /* Like Fassoc but never report an error and do not allow quits.
1472 Use only on lists known never to be circular. */
1473
1474 Lisp_Object
1475 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1476 {
1477 while (CONSP (list)
1478 && (!CONSP (XCAR (list))
1479 || (!EQ (XCAR (XCAR (list)), key)
1480 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1481 list = XCDR (list);
1482
1483 return CONSP (list) ? XCAR (list) : Qnil;
1484 }
1485
1486 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1487 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1488 The value is actually the first element of LIST whose cdr is KEY. */)
1489 (register Lisp_Object key, Lisp_Object list)
1490 {
1491 while (1)
1492 {
1493 if (!CONSP (list)
1494 || (CONSP (XCAR (list))
1495 && EQ (XCDR (XCAR (list)), key)))
1496 break;
1497
1498 list = XCDR (list);
1499 if (!CONSP (list)
1500 || (CONSP (XCAR (list))
1501 && EQ (XCDR (XCAR (list)), key)))
1502 break;
1503
1504 list = XCDR (list);
1505 if (!CONSP (list)
1506 || (CONSP (XCAR (list))
1507 && EQ (XCDR (XCAR (list)), key)))
1508 break;
1509
1510 list = XCDR (list);
1511 QUIT;
1512 }
1513
1514 return CAR (list);
1515 }
1516
1517 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1518 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1519 The value is actually the first element of LIST whose cdr equals KEY. */)
1520 (Lisp_Object key, Lisp_Object list)
1521 {
1522 Lisp_Object cdr;
1523
1524 while (1)
1525 {
1526 if (!CONSP (list)
1527 || (CONSP (XCAR (list))
1528 && (cdr = XCDR (XCAR (list)),
1529 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1530 break;
1531
1532 list = XCDR (list);
1533 if (!CONSP (list)
1534 || (CONSP (XCAR (list))
1535 && (cdr = XCDR (XCAR (list)),
1536 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1537 break;
1538
1539 list = XCDR (list);
1540 if (!CONSP (list)
1541 || (CONSP (XCAR (list))
1542 && (cdr = XCDR (XCAR (list)),
1543 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1544 break;
1545
1546 list = XCDR (list);
1547 QUIT;
1548 }
1549
1550 return CAR (list);
1551 }
1552 \f
1553 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1554 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1555 The modified LIST is returned. Comparison is done with `eq'.
1556 If the first member of LIST is ELT, there is no way to remove it by side effect;
1557 therefore, write `(setq foo (delq element foo))'
1558 to be sure of changing the value of `foo'. */)
1559 (register Lisp_Object elt, Lisp_Object list)
1560 {
1561 register Lisp_Object tail, prev;
1562 register Lisp_Object tem;
1563
1564 tail = list;
1565 prev = Qnil;
1566 while (!NILP (tail))
1567 {
1568 CHECK_LIST_CONS (tail, list);
1569 tem = XCAR (tail);
1570 if (EQ (elt, tem))
1571 {
1572 if (NILP (prev))
1573 list = XCDR (tail);
1574 else
1575 Fsetcdr (prev, XCDR (tail));
1576 }
1577 else
1578 prev = tail;
1579 tail = XCDR (tail);
1580 QUIT;
1581 }
1582 return list;
1583 }
1584
1585 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1586 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1587 SEQ must be a list, a vector, or a string.
1588 The modified SEQ is returned. Comparison is done with `equal'.
1589 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1590 is not a side effect; it is simply using a different sequence.
1591 Therefore, write `(setq foo (delete element foo))'
1592 to be sure of changing the value of `foo'. */)
1593 (Lisp_Object elt, Lisp_Object seq)
1594 {
1595 if (VECTORP (seq))
1596 {
1597 ptrdiff_t i, n;
1598
1599 for (i = n = 0; i < ASIZE (seq); ++i)
1600 if (NILP (Fequal (AREF (seq, i), elt)))
1601 ++n;
1602
1603 if (n != ASIZE (seq))
1604 {
1605 struct Lisp_Vector *p = allocate_vector (n);
1606
1607 for (i = n = 0; i < ASIZE (seq); ++i)
1608 if (NILP (Fequal (AREF (seq, i), elt)))
1609 p->contents[n++] = AREF (seq, i);
1610
1611 XSETVECTOR (seq, p);
1612 }
1613 }
1614 else if (STRINGP (seq))
1615 {
1616 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1617 int c;
1618
1619 for (i = nchars = nbytes = ibyte = 0;
1620 i < SCHARS (seq);
1621 ++i, ibyte += cbytes)
1622 {
1623 if (STRING_MULTIBYTE (seq))
1624 {
1625 c = STRING_CHAR (SDATA (seq) + ibyte);
1626 cbytes = CHAR_BYTES (c);
1627 }
1628 else
1629 {
1630 c = SREF (seq, i);
1631 cbytes = 1;
1632 }
1633
1634 if (!INTEGERP (elt) || c != XINT (elt))
1635 {
1636 ++nchars;
1637 nbytes += cbytes;
1638 }
1639 }
1640
1641 if (nchars != SCHARS (seq))
1642 {
1643 Lisp_Object tem;
1644
1645 tem = make_uninit_multibyte_string (nchars, nbytes);
1646 if (!STRING_MULTIBYTE (seq))
1647 STRING_SET_UNIBYTE (tem);
1648
1649 for (i = nchars = nbytes = ibyte = 0;
1650 i < SCHARS (seq);
1651 ++i, ibyte += cbytes)
1652 {
1653 if (STRING_MULTIBYTE (seq))
1654 {
1655 c = STRING_CHAR (SDATA (seq) + ibyte);
1656 cbytes = CHAR_BYTES (c);
1657 }
1658 else
1659 {
1660 c = SREF (seq, i);
1661 cbytes = 1;
1662 }
1663
1664 if (!INTEGERP (elt) || c != XINT (elt))
1665 {
1666 unsigned char *from = SDATA (seq) + ibyte;
1667 unsigned char *to = SDATA (tem) + nbytes;
1668 ptrdiff_t n;
1669
1670 ++nchars;
1671 nbytes += cbytes;
1672
1673 for (n = cbytes; n--; )
1674 *to++ = *from++;
1675 }
1676 }
1677
1678 seq = tem;
1679 }
1680 }
1681 else
1682 {
1683 Lisp_Object tail, prev;
1684
1685 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1686 {
1687 CHECK_LIST_CONS (tail, seq);
1688
1689 if (!NILP (Fequal (elt, XCAR (tail))))
1690 {
1691 if (NILP (prev))
1692 seq = XCDR (tail);
1693 else
1694 Fsetcdr (prev, XCDR (tail));
1695 }
1696 else
1697 prev = tail;
1698 QUIT;
1699 }
1700 }
1701
1702 return seq;
1703 }
1704
1705 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1706 doc: /* Reverse LIST by modifying cdr pointers.
1707 Return the reversed list. */)
1708 (Lisp_Object list)
1709 {
1710 register Lisp_Object prev, tail, next;
1711
1712 if (NILP (list)) return list;
1713 prev = Qnil;
1714 tail = list;
1715 while (!NILP (tail))
1716 {
1717 QUIT;
1718 CHECK_LIST_CONS (tail, list);
1719 next = XCDR (tail);
1720 Fsetcdr (tail, prev);
1721 prev = tail;
1722 tail = next;
1723 }
1724 return prev;
1725 }
1726
1727 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1728 doc: /* Reverse LIST, copying. Return the reversed list.
1729 See also the function `nreverse', which is used more often. */)
1730 (Lisp_Object list)
1731 {
1732 Lisp_Object new;
1733
1734 for (new = Qnil; CONSP (list); list = XCDR (list))
1735 {
1736 QUIT;
1737 new = Fcons (XCAR (list), new);
1738 }
1739 CHECK_LIST_END (list, list);
1740 return new;
1741 }
1742 \f
1743 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1744
1745 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1746 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1747 Returns the sorted list. LIST is modified by side effects.
1748 PREDICATE is called with two elements of LIST, and should return non-nil
1749 if the first element should sort before the second. */)
1750 (Lisp_Object list, Lisp_Object predicate)
1751 {
1752 Lisp_Object front, back;
1753 register Lisp_Object len, tem;
1754 struct gcpro gcpro1, gcpro2;
1755 EMACS_INT length;
1756
1757 front = list;
1758 len = Flength (list);
1759 length = XINT (len);
1760 if (length < 2)
1761 return list;
1762
1763 XSETINT (len, (length / 2) - 1);
1764 tem = Fnthcdr (len, list);
1765 back = Fcdr (tem);
1766 Fsetcdr (tem, Qnil);
1767
1768 GCPRO2 (front, back);
1769 front = Fsort (front, predicate);
1770 back = Fsort (back, predicate);
1771 UNGCPRO;
1772 return merge (front, back, predicate);
1773 }
1774
1775 Lisp_Object
1776 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1777 {
1778 Lisp_Object value;
1779 register Lisp_Object tail;
1780 Lisp_Object tem;
1781 register Lisp_Object l1, l2;
1782 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1783
1784 l1 = org_l1;
1785 l2 = org_l2;
1786 tail = Qnil;
1787 value = Qnil;
1788
1789 /* It is sufficient to protect org_l1 and org_l2.
1790 When l1 and l2 are updated, we copy the new values
1791 back into the org_ vars. */
1792 GCPRO4 (org_l1, org_l2, pred, value);
1793
1794 while (1)
1795 {
1796 if (NILP (l1))
1797 {
1798 UNGCPRO;
1799 if (NILP (tail))
1800 return l2;
1801 Fsetcdr (tail, l2);
1802 return value;
1803 }
1804 if (NILP (l2))
1805 {
1806 UNGCPRO;
1807 if (NILP (tail))
1808 return l1;
1809 Fsetcdr (tail, l1);
1810 return value;
1811 }
1812 tem = call2 (pred, Fcar (l2), Fcar (l1));
1813 if (NILP (tem))
1814 {
1815 tem = l1;
1816 l1 = Fcdr (l1);
1817 org_l1 = l1;
1818 }
1819 else
1820 {
1821 tem = l2;
1822 l2 = Fcdr (l2);
1823 org_l2 = l2;
1824 }
1825 if (NILP (tail))
1826 value = tem;
1827 else
1828 Fsetcdr (tail, tem);
1829 tail = tem;
1830 }
1831 }
1832
1833 \f
1834 /* This does not check for quits. That is safe since it must terminate. */
1835
1836 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1837 doc: /* Extract a value from a property list.
1838 PLIST is a property list, which is a list of the form
1839 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1840 corresponding to the given PROP, or nil if PROP is not one of the
1841 properties on the list. This function never signals an error. */)
1842 (Lisp_Object plist, Lisp_Object prop)
1843 {
1844 Lisp_Object tail, halftail;
1845
1846 /* halftail is used to detect circular lists. */
1847 tail = halftail = plist;
1848 while (CONSP (tail) && CONSP (XCDR (tail)))
1849 {
1850 if (EQ (prop, XCAR (tail)))
1851 return XCAR (XCDR (tail));
1852
1853 tail = XCDR (XCDR (tail));
1854 halftail = XCDR (halftail);
1855 if (EQ (tail, halftail))
1856 break;
1857
1858 #if 0 /* Unsafe version. */
1859 /* This function can be called asynchronously
1860 (setup_coding_system). Don't QUIT in that case. */
1861 if (!interrupt_input_blocked)
1862 QUIT;
1863 #endif
1864 }
1865
1866 return Qnil;
1867 }
1868
1869 DEFUN ("get", Fget, Sget, 2, 2, 0,
1870 doc: /* Return the value of SYMBOL's PROPNAME property.
1871 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1872 (Lisp_Object symbol, Lisp_Object propname)
1873 {
1874 CHECK_SYMBOL (symbol);
1875 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1876 }
1877
1878 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1879 doc: /* Change value in PLIST of PROP to VAL.
1880 PLIST is a property list, which is a list of the form
1881 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1882 If PROP is already a property on the list, its value is set to VAL,
1883 otherwise the new PROP VAL pair is added. The new plist is returned;
1884 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1885 The PLIST is modified by side effects. */)
1886 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1887 {
1888 register Lisp_Object tail, prev;
1889 Lisp_Object newcell;
1890 prev = Qnil;
1891 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1892 tail = XCDR (XCDR (tail)))
1893 {
1894 if (EQ (prop, XCAR (tail)))
1895 {
1896 Fsetcar (XCDR (tail), val);
1897 return plist;
1898 }
1899
1900 prev = tail;
1901 QUIT;
1902 }
1903 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1904 if (NILP (prev))
1905 return newcell;
1906 else
1907 Fsetcdr (XCDR (prev), newcell);
1908 return plist;
1909 }
1910
1911 DEFUN ("put", Fput, Sput, 3, 3, 0,
1912 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1913 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1914 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1915 {
1916 CHECK_SYMBOL (symbol);
1917 XSYMBOL (symbol)->plist
1918 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1919 return value;
1920 }
1921 \f
1922 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1923 doc: /* Extract a value from a property list, comparing with `equal'.
1924 PLIST is a property list, which is a list of the form
1925 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1926 corresponding to the given PROP, or nil if PROP is not
1927 one of the properties on the list. */)
1928 (Lisp_Object plist, Lisp_Object prop)
1929 {
1930 Lisp_Object tail;
1931
1932 for (tail = plist;
1933 CONSP (tail) && CONSP (XCDR (tail));
1934 tail = XCDR (XCDR (tail)))
1935 {
1936 if (! NILP (Fequal (prop, XCAR (tail))))
1937 return XCAR (XCDR (tail));
1938
1939 QUIT;
1940 }
1941
1942 CHECK_LIST_END (tail, prop);
1943
1944 return Qnil;
1945 }
1946
1947 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1948 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1949 PLIST is a property list, which is a list of the form
1950 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1951 If PROP is already a property on the list, its value is set to VAL,
1952 otherwise the new PROP VAL pair is added. The new plist is returned;
1953 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1954 The PLIST is modified by side effects. */)
1955 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1956 {
1957 register Lisp_Object tail, prev;
1958 Lisp_Object newcell;
1959 prev = Qnil;
1960 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1961 tail = XCDR (XCDR (tail)))
1962 {
1963 if (! NILP (Fequal (prop, XCAR (tail))))
1964 {
1965 Fsetcar (XCDR (tail), val);
1966 return plist;
1967 }
1968
1969 prev = tail;
1970 QUIT;
1971 }
1972 newcell = Fcons (prop, Fcons (val, Qnil));
1973 if (NILP (prev))
1974 return newcell;
1975 else
1976 Fsetcdr (XCDR (prev), newcell);
1977 return plist;
1978 }
1979 \f
1980 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1981 doc: /* Return t if the two args are the same Lisp object.
1982 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1983 (Lisp_Object obj1, Lisp_Object obj2)
1984 {
1985 if (FLOATP (obj1))
1986 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1987 else
1988 return EQ (obj1, obj2) ? Qt : Qnil;
1989 }
1990
1991 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1992 doc: /* Return t if two Lisp objects have similar structure and contents.
1993 They must have the same data type.
1994 Conses are compared by comparing the cars and the cdrs.
1995 Vectors and strings are compared element by element.
1996 Numbers are compared by value, but integers cannot equal floats.
1997 (Use `=' if you want integers and floats to be able to be equal.)
1998 Symbols must match exactly. */)
1999 (register Lisp_Object o1, Lisp_Object o2)
2000 {
2001 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2002 }
2003
2004 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2005 doc: /* Return t if two Lisp objects have similar structure and contents.
2006 This is like `equal' except that it compares the text properties
2007 of strings. (`equal' ignores text properties.) */)
2008 (register Lisp_Object o1, Lisp_Object o2)
2009 {
2010 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2011 }
2012
2013 /* DEPTH is current depth of recursion. Signal an error if it
2014 gets too deep.
2015 PROPS, if non-nil, means compare string text properties too. */
2016
2017 static int
2018 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2019 {
2020 if (depth > 200)
2021 error ("Stack overflow in equal");
2022
2023 tail_recurse:
2024 QUIT;
2025 if (EQ (o1, o2))
2026 return 1;
2027 if (XTYPE (o1) != XTYPE (o2))
2028 return 0;
2029
2030 switch (XTYPE (o1))
2031 {
2032 case Lisp_Float:
2033 {
2034 double d1, d2;
2035
2036 d1 = extract_float (o1);
2037 d2 = extract_float (o2);
2038 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2039 though they are not =. */
2040 return d1 == d2 || (d1 != d1 && d2 != d2);
2041 }
2042
2043 case Lisp_Cons:
2044 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2045 return 0;
2046 o1 = XCDR (o1);
2047 o2 = XCDR (o2);
2048 goto tail_recurse;
2049
2050 case Lisp_Misc:
2051 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2052 return 0;
2053 if (OVERLAYP (o1))
2054 {
2055 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2056 depth + 1, props)
2057 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2058 depth + 1, props))
2059 return 0;
2060 o1 = XOVERLAY (o1)->plist;
2061 o2 = XOVERLAY (o2)->plist;
2062 goto tail_recurse;
2063 }
2064 if (MARKERP (o1))
2065 {
2066 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2067 && (XMARKER (o1)->buffer == 0
2068 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2069 }
2070 break;
2071
2072 case Lisp_Vectorlike:
2073 {
2074 register int i;
2075 ptrdiff_t size = ASIZE (o1);
2076 /* Pseudovectors have the type encoded in the size field, so this test
2077 actually checks that the objects have the same type as well as the
2078 same size. */
2079 if (ASIZE (o2) != size)
2080 return 0;
2081 /* Boolvectors are compared much like strings. */
2082 if (BOOL_VECTOR_P (o1))
2083 {
2084 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2085 return 0;
2086 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2087 ((XBOOL_VECTOR (o1)->size
2088 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2089 / BOOL_VECTOR_BITS_PER_CHAR)))
2090 return 0;
2091 return 1;
2092 }
2093 if (WINDOW_CONFIGURATIONP (o1))
2094 return compare_window_configurations (o1, o2, 0);
2095
2096 /* Aside from them, only true vectors, char-tables, compiled
2097 functions, and fonts (font-spec, font-entity, font-object)
2098 are sensible to compare, so eliminate the others now. */
2099 if (size & PSEUDOVECTOR_FLAG)
2100 {
2101 if (!(size & (PVEC_COMPILED
2102 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2103 return 0;
2104 size &= PSEUDOVECTOR_SIZE_MASK;
2105 }
2106 for (i = 0; i < size; i++)
2107 {
2108 Lisp_Object v1, v2;
2109 v1 = AREF (o1, i);
2110 v2 = AREF (o2, i);
2111 if (!internal_equal (v1, v2, depth + 1, props))
2112 return 0;
2113 }
2114 return 1;
2115 }
2116 break;
2117
2118 case Lisp_String:
2119 if (SCHARS (o1) != SCHARS (o2))
2120 return 0;
2121 if (SBYTES (o1) != SBYTES (o2))
2122 return 0;
2123 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2124 return 0;
2125 if (props && !compare_string_intervals (o1, o2))
2126 return 0;
2127 return 1;
2128
2129 default:
2130 break;
2131 }
2132
2133 return 0;
2134 }
2135 \f
2136
2137 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2138 doc: /* Store each element of ARRAY with ITEM.
2139 ARRAY is a vector, string, char-table, or bool-vector. */)
2140 (Lisp_Object array, Lisp_Object item)
2141 {
2142 register ptrdiff_t size, idx;
2143
2144 if (VECTORP (array))
2145 {
2146 register Lisp_Object *p = XVECTOR (array)->contents;
2147 size = ASIZE (array);
2148 for (idx = 0; idx < size; idx++)
2149 p[idx] = item;
2150 }
2151 else if (CHAR_TABLE_P (array))
2152 {
2153 int i;
2154
2155 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2156 XCHAR_TABLE (array)->contents[i] = item;
2157 XCHAR_TABLE (array)->defalt = item;
2158 }
2159 else if (STRINGP (array))
2160 {
2161 register unsigned char *p = SDATA (array);
2162 int charval;
2163 CHECK_CHARACTER (item);
2164 charval = XFASTINT (item);
2165 size = SCHARS (array);
2166 if (STRING_MULTIBYTE (array))
2167 {
2168 unsigned char str[MAX_MULTIBYTE_LENGTH];
2169 int len = CHAR_STRING (charval, str);
2170 ptrdiff_t size_byte = SBYTES (array);
2171
2172 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2173 || SCHARS (array) * len != size_byte)
2174 error ("Attempt to change byte length of a string");
2175 for (idx = 0; idx < size_byte; idx++)
2176 *p++ = str[idx % len];
2177 }
2178 else
2179 for (idx = 0; idx < size; idx++)
2180 p[idx] = charval;
2181 }
2182 else if (BOOL_VECTOR_P (array))
2183 {
2184 register unsigned char *p = XBOOL_VECTOR (array)->data;
2185 size =
2186 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2187 / BOOL_VECTOR_BITS_PER_CHAR);
2188
2189 if (size)
2190 {
2191 memset (p, ! NILP (item) ? -1 : 0, size);
2192
2193 /* Clear any extraneous bits in the last byte. */
2194 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2195 }
2196 }
2197 else
2198 wrong_type_argument (Qarrayp, array);
2199 return array;
2200 }
2201
2202 DEFUN ("clear-string", Fclear_string, Sclear_string,
2203 1, 1, 0,
2204 doc: /* Clear the contents of STRING.
2205 This makes STRING unibyte and may change its length. */)
2206 (Lisp_Object string)
2207 {
2208 ptrdiff_t len;
2209 CHECK_STRING (string);
2210 len = SBYTES (string);
2211 memset (SDATA (string), 0, len);
2212 STRING_SET_CHARS (string, len);
2213 STRING_SET_UNIBYTE (string);
2214 return Qnil;
2215 }
2216 \f
2217 /* ARGSUSED */
2218 Lisp_Object
2219 nconc2 (Lisp_Object s1, Lisp_Object s2)
2220 {
2221 Lisp_Object args[2];
2222 args[0] = s1;
2223 args[1] = s2;
2224 return Fnconc (2, args);
2225 }
2226
2227 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2228 doc: /* Concatenate any number of lists by altering them.
2229 Only the last argument is not altered, and need not be a list.
2230 usage: (nconc &rest LISTS) */)
2231 (ptrdiff_t nargs, Lisp_Object *args)
2232 {
2233 ptrdiff_t argnum;
2234 register Lisp_Object tail, tem, val;
2235
2236 val = tail = Qnil;
2237
2238 for (argnum = 0; argnum < nargs; argnum++)
2239 {
2240 tem = args[argnum];
2241 if (NILP (tem)) continue;
2242
2243 if (NILP (val))
2244 val = tem;
2245
2246 if (argnum + 1 == nargs) break;
2247
2248 CHECK_LIST_CONS (tem, tem);
2249
2250 while (CONSP (tem))
2251 {
2252 tail = tem;
2253 tem = XCDR (tail);
2254 QUIT;
2255 }
2256
2257 tem = args[argnum + 1];
2258 Fsetcdr (tail, tem);
2259 if (NILP (tem))
2260 args[argnum + 1] = tail;
2261 }
2262
2263 return val;
2264 }
2265 \f
2266 /* This is the guts of all mapping functions.
2267 Apply FN to each element of SEQ, one by one,
2268 storing the results into elements of VALS, a C vector of Lisp_Objects.
2269 LENI is the length of VALS, which should also be the length of SEQ. */
2270
2271 static void
2272 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2273 {
2274 register Lisp_Object tail;
2275 Lisp_Object dummy;
2276 register EMACS_INT i;
2277 struct gcpro gcpro1, gcpro2, gcpro3;
2278
2279 if (vals)
2280 {
2281 /* Don't let vals contain any garbage when GC happens. */
2282 for (i = 0; i < leni; i++)
2283 vals[i] = Qnil;
2284
2285 GCPRO3 (dummy, fn, seq);
2286 gcpro1.var = vals;
2287 gcpro1.nvars = leni;
2288 }
2289 else
2290 GCPRO2 (fn, seq);
2291 /* We need not explicitly protect `tail' because it is used only on lists, and
2292 1) lists are not relocated and 2) the list is marked via `seq' so will not
2293 be freed */
2294
2295 if (VECTORP (seq) || COMPILEDP (seq))
2296 {
2297 for (i = 0; i < leni; i++)
2298 {
2299 dummy = call1 (fn, AREF (seq, i));
2300 if (vals)
2301 vals[i] = dummy;
2302 }
2303 }
2304 else if (BOOL_VECTOR_P (seq))
2305 {
2306 for (i = 0; i < leni; i++)
2307 {
2308 unsigned char byte;
2309 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2310 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2311 dummy = call1 (fn, dummy);
2312 if (vals)
2313 vals[i] = dummy;
2314 }
2315 }
2316 else if (STRINGP (seq))
2317 {
2318 ptrdiff_t i_byte;
2319
2320 for (i = 0, i_byte = 0; i < leni;)
2321 {
2322 int c;
2323 ptrdiff_t i_before = i;
2324
2325 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2326 XSETFASTINT (dummy, c);
2327 dummy = call1 (fn, dummy);
2328 if (vals)
2329 vals[i_before] = dummy;
2330 }
2331 }
2332 else /* Must be a list, since Flength did not get an error */
2333 {
2334 tail = seq;
2335 for (i = 0; i < leni && CONSP (tail); i++)
2336 {
2337 dummy = call1 (fn, XCAR (tail));
2338 if (vals)
2339 vals[i] = dummy;
2340 tail = XCDR (tail);
2341 }
2342 }
2343
2344 UNGCPRO;
2345 }
2346
2347 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2348 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2349 In between each pair of results, stick in SEPARATOR. Thus, " " as
2350 SEPARATOR results in spaces between the values returned by FUNCTION.
2351 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2352 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2353 {
2354 Lisp_Object len;
2355 register EMACS_INT leni;
2356 EMACS_INT nargs;
2357 ptrdiff_t i;
2358 register Lisp_Object *args;
2359 struct gcpro gcpro1;
2360 Lisp_Object ret;
2361 USE_SAFE_ALLOCA;
2362
2363 len = Flength (sequence);
2364 if (CHAR_TABLE_P (sequence))
2365 wrong_type_argument (Qlistp, sequence);
2366 leni = XINT (len);
2367 nargs = leni + leni - 1;
2368 if (nargs < 0) return empty_unibyte_string;
2369
2370 SAFE_ALLOCA_LISP (args, nargs);
2371
2372 GCPRO1 (separator);
2373 mapcar1 (leni, args, function, sequence);
2374 UNGCPRO;
2375
2376 for (i = leni - 1; i > 0; i--)
2377 args[i + i] = args[i];
2378
2379 for (i = 1; i < nargs; i += 2)
2380 args[i] = separator;
2381
2382 ret = Fconcat (nargs, args);
2383 SAFE_FREE ();
2384
2385 return ret;
2386 }
2387
2388 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2389 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2390 The result is a list just as long as SEQUENCE.
2391 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2392 (Lisp_Object function, Lisp_Object sequence)
2393 {
2394 register Lisp_Object len;
2395 register EMACS_INT leni;
2396 register Lisp_Object *args;
2397 Lisp_Object ret;
2398 USE_SAFE_ALLOCA;
2399
2400 len = Flength (sequence);
2401 if (CHAR_TABLE_P (sequence))
2402 wrong_type_argument (Qlistp, sequence);
2403 leni = XFASTINT (len);
2404
2405 SAFE_ALLOCA_LISP (args, leni);
2406
2407 mapcar1 (leni, args, function, sequence);
2408
2409 ret = Flist (leni, args);
2410 SAFE_FREE ();
2411
2412 return ret;
2413 }
2414
2415 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2416 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2417 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2418 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2419 (Lisp_Object function, Lisp_Object sequence)
2420 {
2421 register EMACS_INT leni;
2422
2423 leni = XFASTINT (Flength (sequence));
2424 if (CHAR_TABLE_P (sequence))
2425 wrong_type_argument (Qlistp, sequence);
2426 mapcar1 (leni, 0, function, sequence);
2427
2428 return sequence;
2429 }
2430 \f
2431 /* This is how C code calls `yes-or-no-p' and allows the user
2432 to redefined it.
2433
2434 Anything that calls this function must protect from GC! */
2435
2436 Lisp_Object
2437 do_yes_or_no_p (Lisp_Object prompt)
2438 {
2439 return call1 (intern ("yes-or-no-p"), prompt);
2440 }
2441
2442 /* Anything that calls this function must protect from GC! */
2443
2444 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2445 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2446 PROMPT is the string to display to ask the question. It should end in
2447 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2448
2449 The user must confirm the answer with RET, and can edit it until it
2450 has been confirmed.
2451
2452 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2453 is nil, and `use-dialog-box' is non-nil. */)
2454 (Lisp_Object prompt)
2455 {
2456 register Lisp_Object ans;
2457 Lisp_Object args[2];
2458 struct gcpro gcpro1;
2459
2460 CHECK_STRING (prompt);
2461
2462 #ifdef HAVE_MENUS
2463 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2464 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2465 && use_dialog_box
2466 && have_menus_p ())
2467 {
2468 Lisp_Object pane, menu, obj;
2469 redisplay_preserve_echo_area (4);
2470 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2471 Fcons (Fcons (build_string ("No"), Qnil),
2472 Qnil));
2473 GCPRO1 (pane);
2474 menu = Fcons (prompt, pane);
2475 obj = Fx_popup_dialog (Qt, menu, Qnil);
2476 UNGCPRO;
2477 return obj;
2478 }
2479 #endif /* HAVE_MENUS */
2480
2481 args[0] = prompt;
2482 args[1] = build_string ("(yes or no) ");
2483 prompt = Fconcat (2, args);
2484
2485 GCPRO1 (prompt);
2486
2487 while (1)
2488 {
2489 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2490 Qyes_or_no_p_history, Qnil,
2491 Qnil));
2492 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2493 {
2494 UNGCPRO;
2495 return Qt;
2496 }
2497 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2498 {
2499 UNGCPRO;
2500 return Qnil;
2501 }
2502
2503 Fding (Qnil);
2504 Fdiscard_input ();
2505 message ("Please answer yes or no.");
2506 Fsleep_for (make_number (2), Qnil);
2507 }
2508 }
2509 \f
2510 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2511 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2512
2513 Each of the three load averages is multiplied by 100, then converted
2514 to integer.
2515
2516 When USE-FLOATS is non-nil, floats will be used instead of integers.
2517 These floats are not multiplied by 100.
2518
2519 If the 5-minute or 15-minute load averages are not available, return a
2520 shortened list, containing only those averages which are available.
2521
2522 An error is thrown if the load average can't be obtained. In some
2523 cases making it work would require Emacs being installed setuid or
2524 setgid so that it can read kernel information, and that usually isn't
2525 advisable. */)
2526 (Lisp_Object use_floats)
2527 {
2528 double load_ave[3];
2529 int loads = getloadavg (load_ave, 3);
2530 Lisp_Object ret = Qnil;
2531
2532 if (loads < 0)
2533 error ("load-average not implemented for this operating system");
2534
2535 while (loads-- > 0)
2536 {
2537 Lisp_Object load = (NILP (use_floats)
2538 ? make_number (100.0 * load_ave[loads])
2539 : make_float (load_ave[loads]));
2540 ret = Fcons (load, ret);
2541 }
2542
2543 return ret;
2544 }
2545 \f
2546 static Lisp_Object Qsubfeatures;
2547
2548 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2549 doc: /* Return t if FEATURE is present in this Emacs.
2550
2551 Use this to conditionalize execution of lisp code based on the
2552 presence or absence of Emacs or environment extensions.
2553 Use `provide' to declare that a feature is available. This function
2554 looks at the value of the variable `features'. The optional argument
2555 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2556 (Lisp_Object feature, Lisp_Object subfeature)
2557 {
2558 register Lisp_Object tem;
2559 CHECK_SYMBOL (feature);
2560 tem = Fmemq (feature, Vfeatures);
2561 if (!NILP (tem) && !NILP (subfeature))
2562 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2563 return (NILP (tem)) ? Qnil : Qt;
2564 }
2565
2566 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2567 doc: /* Announce that FEATURE is a feature of the current Emacs.
2568 The optional argument SUBFEATURES should be a list of symbols listing
2569 particular subfeatures supported in this version of FEATURE. */)
2570 (Lisp_Object feature, Lisp_Object subfeatures)
2571 {
2572 register Lisp_Object tem;
2573 CHECK_SYMBOL (feature);
2574 CHECK_LIST (subfeatures);
2575 if (!NILP (Vautoload_queue))
2576 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2577 Vautoload_queue);
2578 tem = Fmemq (feature, Vfeatures);
2579 if (NILP (tem))
2580 Vfeatures = Fcons (feature, Vfeatures);
2581 if (!NILP (subfeatures))
2582 Fput (feature, Qsubfeatures, subfeatures);
2583 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2584
2585 /* Run any load-hooks for this file. */
2586 tem = Fassq (feature, Vafter_load_alist);
2587 if (CONSP (tem))
2588 Fprogn (XCDR (tem));
2589
2590 return feature;
2591 }
2592 \f
2593 /* `require' and its subroutines. */
2594
2595 /* List of features currently being require'd, innermost first. */
2596
2597 static Lisp_Object require_nesting_list;
2598
2599 static Lisp_Object
2600 require_unwind (Lisp_Object old_value)
2601 {
2602 return require_nesting_list = old_value;
2603 }
2604
2605 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2606 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2607 If FEATURE is not a member of the list `features', then the feature
2608 is not loaded; so load the file FILENAME.
2609 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2610 and `load' will try to load this name appended with the suffix `.elc' or
2611 `.el', in that order. The name without appended suffix will not be used.
2612 See `get-load-suffixes' for the complete list of suffixes.
2613 If the optional third argument NOERROR is non-nil,
2614 then return nil if the file is not found instead of signaling an error.
2615 Normally the return value is FEATURE.
2616 The normal messages at start and end of loading FILENAME are suppressed. */)
2617 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2618 {
2619 register Lisp_Object tem;
2620 struct gcpro gcpro1, gcpro2;
2621 int from_file = load_in_progress;
2622
2623 CHECK_SYMBOL (feature);
2624
2625 /* Record the presence of `require' in this file
2626 even if the feature specified is already loaded.
2627 But not more than once in any file,
2628 and not when we aren't loading or reading from a file. */
2629 if (!from_file)
2630 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2631 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2632 from_file = 1;
2633
2634 if (from_file)
2635 {
2636 tem = Fcons (Qrequire, feature);
2637 if (NILP (Fmember (tem, Vcurrent_load_list)))
2638 LOADHIST_ATTACH (tem);
2639 }
2640 tem = Fmemq (feature, Vfeatures);
2641
2642 if (NILP (tem))
2643 {
2644 ptrdiff_t count = SPECPDL_INDEX ();
2645 int nesting = 0;
2646
2647 /* This is to make sure that loadup.el gives a clear picture
2648 of what files are preloaded and when. */
2649 if (! NILP (Vpurify_flag))
2650 error ("(require %s) while preparing to dump",
2651 SDATA (SYMBOL_NAME (feature)));
2652
2653 /* A certain amount of recursive `require' is legitimate,
2654 but if we require the same feature recursively 3 times,
2655 signal an error. */
2656 tem = require_nesting_list;
2657 while (! NILP (tem))
2658 {
2659 if (! NILP (Fequal (feature, XCAR (tem))))
2660 nesting++;
2661 tem = XCDR (tem);
2662 }
2663 if (nesting > 3)
2664 error ("Recursive `require' for feature `%s'",
2665 SDATA (SYMBOL_NAME (feature)));
2666
2667 /* Update the list for any nested `require's that occur. */
2668 record_unwind_protect (require_unwind, require_nesting_list);
2669 require_nesting_list = Fcons (feature, require_nesting_list);
2670
2671 /* Value saved here is to be restored into Vautoload_queue */
2672 record_unwind_protect (un_autoload, Vautoload_queue);
2673 Vautoload_queue = Qt;
2674
2675 /* Load the file. */
2676 GCPRO2 (feature, filename);
2677 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2678 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2679 UNGCPRO;
2680
2681 /* If load failed entirely, return nil. */
2682 if (NILP (tem))
2683 return unbind_to (count, Qnil);
2684
2685 tem = Fmemq (feature, Vfeatures);
2686 if (NILP (tem))
2687 error ("Required feature `%s' was not provided",
2688 SDATA (SYMBOL_NAME (feature)));
2689
2690 /* Once loading finishes, don't undo it. */
2691 Vautoload_queue = Qt;
2692 feature = unbind_to (count, feature);
2693 }
2694
2695 return feature;
2696 }
2697 \f
2698 /* Primitives for work of the "widget" library.
2699 In an ideal world, this section would not have been necessary.
2700 However, lisp function calls being as slow as they are, it turns
2701 out that some functions in the widget library (wid-edit.el) are the
2702 bottleneck of Widget operation. Here is their translation to C,
2703 for the sole reason of efficiency. */
2704
2705 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2706 doc: /* Return non-nil if PLIST has the property PROP.
2707 PLIST is a property list, which is a list of the form
2708 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2709 Unlike `plist-get', this allows you to distinguish between a missing
2710 property and a property with the value nil.
2711 The value is actually the tail of PLIST whose car is PROP. */)
2712 (Lisp_Object plist, Lisp_Object prop)
2713 {
2714 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2715 {
2716 QUIT;
2717 plist = XCDR (plist);
2718 plist = CDR (plist);
2719 }
2720 return plist;
2721 }
2722
2723 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2724 doc: /* In WIDGET, set PROPERTY to VALUE.
2725 The value can later be retrieved with `widget-get'. */)
2726 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2727 {
2728 CHECK_CONS (widget);
2729 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2730 return value;
2731 }
2732
2733 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2734 doc: /* In WIDGET, get the value of PROPERTY.
2735 The value could either be specified when the widget was created, or
2736 later with `widget-put'. */)
2737 (Lisp_Object widget, Lisp_Object property)
2738 {
2739 Lisp_Object tmp;
2740
2741 while (1)
2742 {
2743 if (NILP (widget))
2744 return Qnil;
2745 CHECK_CONS (widget);
2746 tmp = Fplist_member (XCDR (widget), property);
2747 if (CONSP (tmp))
2748 {
2749 tmp = XCDR (tmp);
2750 return CAR (tmp);
2751 }
2752 tmp = XCAR (widget);
2753 if (NILP (tmp))
2754 return Qnil;
2755 widget = Fget (tmp, Qwidget_type);
2756 }
2757 }
2758
2759 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2760 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2761 ARGS are passed as extra arguments to the function.
2762 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2763 (ptrdiff_t nargs, Lisp_Object *args)
2764 {
2765 /* This function can GC. */
2766 Lisp_Object newargs[3];
2767 struct gcpro gcpro1, gcpro2;
2768 Lisp_Object result;
2769
2770 newargs[0] = Fwidget_get (args[0], args[1]);
2771 newargs[1] = args[0];
2772 newargs[2] = Flist (nargs - 2, args + 2);
2773 GCPRO2 (newargs[0], newargs[2]);
2774 result = Fapply (3, newargs);
2775 UNGCPRO;
2776 return result;
2777 }
2778
2779 #ifdef HAVE_LANGINFO_CODESET
2780 #include <langinfo.h>
2781 #endif
2782
2783 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2784 doc: /* Access locale data ITEM for the current C locale, if available.
2785 ITEM should be one of the following:
2786
2787 `codeset', returning the character set as a string (locale item CODESET);
2788
2789 `days', returning a 7-element vector of day names (locale items DAY_n);
2790
2791 `months', returning a 12-element vector of month names (locale items MON_n);
2792
2793 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2794 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2795
2796 If the system can't provide such information through a call to
2797 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2798
2799 See also Info node `(libc)Locales'.
2800
2801 The data read from the system are decoded using `locale-coding-system'. */)
2802 (Lisp_Object item)
2803 {
2804 char *str = NULL;
2805 #ifdef HAVE_LANGINFO_CODESET
2806 Lisp_Object val;
2807 if (EQ (item, Qcodeset))
2808 {
2809 str = nl_langinfo (CODESET);
2810 return build_string (str);
2811 }
2812 #ifdef DAY_1
2813 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2814 {
2815 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2816 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2817 int i;
2818 struct gcpro gcpro1;
2819 GCPRO1 (v);
2820 synchronize_system_time_locale ();
2821 for (i = 0; i < 7; i++)
2822 {
2823 str = nl_langinfo (days[i]);
2824 val = make_unibyte_string (str, strlen (str));
2825 /* Fixme: Is this coding system necessarily right, even if
2826 it is consistent with CODESET? If not, what to do? */
2827 Faset (v, make_number (i),
2828 code_convert_string_norecord (val, Vlocale_coding_system,
2829 0));
2830 }
2831 UNGCPRO;
2832 return v;
2833 }
2834 #endif /* DAY_1 */
2835 #ifdef MON_1
2836 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2837 {
2838 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2839 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2840 MON_8, MON_9, MON_10, MON_11, MON_12};
2841 int i;
2842 struct gcpro gcpro1;
2843 GCPRO1 (v);
2844 synchronize_system_time_locale ();
2845 for (i = 0; i < 12; i++)
2846 {
2847 str = nl_langinfo (months[i]);
2848 val = make_unibyte_string (str, strlen (str));
2849 Faset (v, make_number (i),
2850 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2851 }
2852 UNGCPRO;
2853 return v;
2854 }
2855 #endif /* MON_1 */
2856 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2857 but is in the locale files. This could be used by ps-print. */
2858 #ifdef PAPER_WIDTH
2859 else if (EQ (item, Qpaper))
2860 {
2861 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2862 make_number (nl_langinfo (PAPER_HEIGHT)));
2863 }
2864 #endif /* PAPER_WIDTH */
2865 #endif /* HAVE_LANGINFO_CODESET*/
2866 return Qnil;
2867 }
2868 \f
2869 /* base64 encode/decode functions (RFC 2045).
2870 Based on code from GNU recode. */
2871
2872 #define MIME_LINE_LENGTH 76
2873
2874 #define IS_ASCII(Character) \
2875 ((Character) < 128)
2876 #define IS_BASE64(Character) \
2877 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2878 #define IS_BASE64_IGNORABLE(Character) \
2879 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2880 || (Character) == '\f' || (Character) == '\r')
2881
2882 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2883 character or return retval if there are no characters left to
2884 process. */
2885 #define READ_QUADRUPLET_BYTE(retval) \
2886 do \
2887 { \
2888 if (i == length) \
2889 { \
2890 if (nchars_return) \
2891 *nchars_return = nchars; \
2892 return (retval); \
2893 } \
2894 c = from[i++]; \
2895 } \
2896 while (IS_BASE64_IGNORABLE (c))
2897
2898 /* Table of characters coding the 64 values. */
2899 static const char base64_value_to_char[64] =
2900 {
2901 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2902 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2903 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2904 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2905 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2906 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2907 '8', '9', '+', '/' /* 60-63 */
2908 };
2909
2910 /* Table of base64 values for first 128 characters. */
2911 static const short base64_char_to_value[128] =
2912 {
2913 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2914 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2915 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2916 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2917 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2918 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2919 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2920 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2921 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2922 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2923 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2924 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2925 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2926 };
2927
2928 /* The following diagram shows the logical steps by which three octets
2929 get transformed into four base64 characters.
2930
2931 .--------. .--------. .--------.
2932 |aaaaaabb| |bbbbcccc| |ccdddddd|
2933 `--------' `--------' `--------'
2934 6 2 4 4 2 6
2935 .--------+--------+--------+--------.
2936 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2937 `--------+--------+--------+--------'
2938
2939 .--------+--------+--------+--------.
2940 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2941 `--------+--------+--------+--------'
2942
2943 The octets are divided into 6 bit chunks, which are then encoded into
2944 base64 characters. */
2945
2946
2947 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, int, int);
2948 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, int,
2949 ptrdiff_t *);
2950
2951 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2952 2, 3, "r",
2953 doc: /* Base64-encode the region between BEG and END.
2954 Return the length of the encoded text.
2955 Optional third argument NO-LINE-BREAK means do not break long lines
2956 into shorter lines. */)
2957 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2958 {
2959 char *encoded;
2960 ptrdiff_t allength, length;
2961 ptrdiff_t ibeg, iend, encoded_length;
2962 ptrdiff_t old_pos = PT;
2963 USE_SAFE_ALLOCA;
2964
2965 validate_region (&beg, &end);
2966
2967 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2968 iend = CHAR_TO_BYTE (XFASTINT (end));
2969 move_gap_both (XFASTINT (beg), ibeg);
2970
2971 /* We need to allocate enough room for encoding the text.
2972 We need 33 1/3% more space, plus a newline every 76
2973 characters, and then we round up. */
2974 length = iend - ibeg;
2975 allength = length + length/3 + 1;
2976 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2977
2978 SAFE_ALLOCA (encoded, char *, allength);
2979 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2980 encoded, length, NILP (no_line_break),
2981 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2982 if (encoded_length > allength)
2983 abort ();
2984
2985 if (encoded_length < 0)
2986 {
2987 /* The encoding wasn't possible. */
2988 SAFE_FREE ();
2989 error ("Multibyte character in data for base64 encoding");
2990 }
2991
2992 /* Now we have encoded the region, so we insert the new contents
2993 and delete the old. (Insert first in order to preserve markers.) */
2994 SET_PT_BOTH (XFASTINT (beg), ibeg);
2995 insert (encoded, encoded_length);
2996 SAFE_FREE ();
2997 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2998
2999 /* If point was outside of the region, restore it exactly; else just
3000 move to the beginning of the region. */
3001 if (old_pos >= XFASTINT (end))
3002 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3003 else if (old_pos > XFASTINT (beg))
3004 old_pos = XFASTINT (beg);
3005 SET_PT (old_pos);
3006
3007 /* We return the length of the encoded text. */
3008 return make_number (encoded_length);
3009 }
3010
3011 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3012 1, 2, 0,
3013 doc: /* Base64-encode STRING and return the result.
3014 Optional second argument NO-LINE-BREAK means do not break long lines
3015 into shorter lines. */)
3016 (Lisp_Object string, Lisp_Object no_line_break)
3017 {
3018 ptrdiff_t allength, length, encoded_length;
3019 char *encoded;
3020 Lisp_Object encoded_string;
3021 USE_SAFE_ALLOCA;
3022
3023 CHECK_STRING (string);
3024
3025 /* We need to allocate enough room for encoding the text.
3026 We need 33 1/3% more space, plus a newline every 76
3027 characters, and then we round up. */
3028 length = SBYTES (string);
3029 allength = length + length/3 + 1;
3030 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3031
3032 /* We need to allocate enough room for decoding the text. */
3033 SAFE_ALLOCA (encoded, char *, allength);
3034
3035 encoded_length = base64_encode_1 (SSDATA (string),
3036 encoded, length, NILP (no_line_break),
3037 STRING_MULTIBYTE (string));
3038 if (encoded_length > allength)
3039 abort ();
3040
3041 if (encoded_length < 0)
3042 {
3043 /* The encoding wasn't possible. */
3044 SAFE_FREE ();
3045 error ("Multibyte character in data for base64 encoding");
3046 }
3047
3048 encoded_string = make_unibyte_string (encoded, encoded_length);
3049 SAFE_FREE ();
3050
3051 return encoded_string;
3052 }
3053
3054 static ptrdiff_t
3055 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3056 int line_break, int multibyte)
3057 {
3058 int counter = 0;
3059 ptrdiff_t i = 0;
3060 char *e = to;
3061 int c;
3062 unsigned int value;
3063 int bytes;
3064
3065 while (i < length)
3066 {
3067 if (multibyte)
3068 {
3069 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3070 if (CHAR_BYTE8_P (c))
3071 c = CHAR_TO_BYTE8 (c);
3072 else if (c >= 256)
3073 return -1;
3074 i += bytes;
3075 }
3076 else
3077 c = from[i++];
3078
3079 /* Wrap line every 76 characters. */
3080
3081 if (line_break)
3082 {
3083 if (counter < MIME_LINE_LENGTH / 4)
3084 counter++;
3085 else
3086 {
3087 *e++ = '\n';
3088 counter = 1;
3089 }
3090 }
3091
3092 /* Process first byte of a triplet. */
3093
3094 *e++ = base64_value_to_char[0x3f & c >> 2];
3095 value = (0x03 & c) << 4;
3096
3097 /* Process second byte of a triplet. */
3098
3099 if (i == length)
3100 {
3101 *e++ = base64_value_to_char[value];
3102 *e++ = '=';
3103 *e++ = '=';
3104 break;
3105 }
3106
3107 if (multibyte)
3108 {
3109 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3110 if (CHAR_BYTE8_P (c))
3111 c = CHAR_TO_BYTE8 (c);
3112 else if (c >= 256)
3113 return -1;
3114 i += bytes;
3115 }
3116 else
3117 c = from[i++];
3118
3119 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3120 value = (0x0f & c) << 2;
3121
3122 /* Process third byte of a triplet. */
3123
3124 if (i == length)
3125 {
3126 *e++ = base64_value_to_char[value];
3127 *e++ = '=';
3128 break;
3129 }
3130
3131 if (multibyte)
3132 {
3133 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3134 if (CHAR_BYTE8_P (c))
3135 c = CHAR_TO_BYTE8 (c);
3136 else if (c >= 256)
3137 return -1;
3138 i += bytes;
3139 }
3140 else
3141 c = from[i++];
3142
3143 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3144 *e++ = base64_value_to_char[0x3f & c];
3145 }
3146
3147 return e - to;
3148 }
3149
3150
3151 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3152 2, 2, "r",
3153 doc: /* Base64-decode the region between BEG and END.
3154 Return the length of the decoded text.
3155 If the region can't be decoded, signal an error and don't modify the buffer. */)
3156 (Lisp_Object beg, Lisp_Object end)
3157 {
3158 ptrdiff_t ibeg, iend, length, allength;
3159 char *decoded;
3160 ptrdiff_t old_pos = PT;
3161 ptrdiff_t decoded_length;
3162 ptrdiff_t inserted_chars;
3163 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3164 USE_SAFE_ALLOCA;
3165
3166 validate_region (&beg, &end);
3167
3168 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3169 iend = CHAR_TO_BYTE (XFASTINT (end));
3170
3171 length = iend - ibeg;
3172
3173 /* We need to allocate enough room for decoding the text. If we are
3174 working on a multibyte buffer, each decoded code may occupy at
3175 most two bytes. */
3176 allength = multibyte ? length * 2 : length;
3177 SAFE_ALLOCA (decoded, char *, allength);
3178
3179 move_gap_both (XFASTINT (beg), ibeg);
3180 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3181 decoded, length,
3182 multibyte, &inserted_chars);
3183 if (decoded_length > allength)
3184 abort ();
3185
3186 if (decoded_length < 0)
3187 {
3188 /* The decoding wasn't possible. */
3189 SAFE_FREE ();
3190 error ("Invalid base64 data");
3191 }
3192
3193 /* Now we have decoded the region, so we insert the new contents
3194 and delete the old. (Insert first in order to preserve markers.) */
3195 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3196 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3197 SAFE_FREE ();
3198
3199 /* Delete the original text. */
3200 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3201 iend + decoded_length, 1);
3202
3203 /* If point was outside of the region, restore it exactly; else just
3204 move to the beginning of the region. */
3205 if (old_pos >= XFASTINT (end))
3206 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3207 else if (old_pos > XFASTINT (beg))
3208 old_pos = XFASTINT (beg);
3209 SET_PT (old_pos > ZV ? ZV : old_pos);
3210
3211 return make_number (inserted_chars);
3212 }
3213
3214 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3215 1, 1, 0,
3216 doc: /* Base64-decode STRING and return the result. */)
3217 (Lisp_Object string)
3218 {
3219 char *decoded;
3220 ptrdiff_t length, decoded_length;
3221 Lisp_Object decoded_string;
3222 USE_SAFE_ALLOCA;
3223
3224 CHECK_STRING (string);
3225
3226 length = SBYTES (string);
3227 /* We need to allocate enough room for decoding the text. */
3228 SAFE_ALLOCA (decoded, char *, length);
3229
3230 /* The decoded result should be unibyte. */
3231 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3232 0, NULL);
3233 if (decoded_length > length)
3234 abort ();
3235 else if (decoded_length >= 0)
3236 decoded_string = make_unibyte_string (decoded, decoded_length);
3237 else
3238 decoded_string = Qnil;
3239
3240 SAFE_FREE ();
3241 if (!STRINGP (decoded_string))
3242 error ("Invalid base64 data");
3243
3244 return decoded_string;
3245 }
3246
3247 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3248 MULTIBYTE is nonzero, the decoded result should be in multibyte
3249 form. If NCHARS_RETRUN is not NULL, store the number of produced
3250 characters in *NCHARS_RETURN. */
3251
3252 static ptrdiff_t
3253 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3254 int multibyte, ptrdiff_t *nchars_return)
3255 {
3256 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3257 char *e = to;
3258 unsigned char c;
3259 unsigned long value;
3260 ptrdiff_t nchars = 0;
3261
3262 while (1)
3263 {
3264 /* Process first byte of a quadruplet. */
3265
3266 READ_QUADRUPLET_BYTE (e-to);
3267
3268 if (!IS_BASE64 (c))
3269 return -1;
3270 value = base64_char_to_value[c] << 18;
3271
3272 /* Process second byte of a quadruplet. */
3273
3274 READ_QUADRUPLET_BYTE (-1);
3275
3276 if (!IS_BASE64 (c))
3277 return -1;
3278 value |= base64_char_to_value[c] << 12;
3279
3280 c = (unsigned char) (value >> 16);
3281 if (multibyte && c >= 128)
3282 e += BYTE8_STRING (c, e);
3283 else
3284 *e++ = c;
3285 nchars++;
3286
3287 /* Process third byte of a quadruplet. */
3288
3289 READ_QUADRUPLET_BYTE (-1);
3290
3291 if (c == '=')
3292 {
3293 READ_QUADRUPLET_BYTE (-1);
3294
3295 if (c != '=')
3296 return -1;
3297 continue;
3298 }
3299
3300 if (!IS_BASE64 (c))
3301 return -1;
3302 value |= base64_char_to_value[c] << 6;
3303
3304 c = (unsigned char) (0xff & value >> 8);
3305 if (multibyte && c >= 128)
3306 e += BYTE8_STRING (c, e);
3307 else
3308 *e++ = c;
3309 nchars++;
3310
3311 /* Process fourth byte of a quadruplet. */
3312
3313 READ_QUADRUPLET_BYTE (-1);
3314
3315 if (c == '=')
3316 continue;
3317
3318 if (!IS_BASE64 (c))
3319 return -1;
3320 value |= base64_char_to_value[c];
3321
3322 c = (unsigned char) (0xff & value);
3323 if (multibyte && c >= 128)
3324 e += BYTE8_STRING (c, e);
3325 else
3326 *e++ = c;
3327 nchars++;
3328 }
3329 }
3330
3331
3332 \f
3333 /***********************************************************************
3334 ***** *****
3335 ***** Hash Tables *****
3336 ***** *****
3337 ***********************************************************************/
3338
3339 /* Implemented by gerd@gnu.org. This hash table implementation was
3340 inspired by CMUCL hash tables. */
3341
3342 /* Ideas:
3343
3344 1. For small tables, association lists are probably faster than
3345 hash tables because they have lower overhead.
3346
3347 For uses of hash tables where the O(1) behavior of table
3348 operations is not a requirement, it might therefore be a good idea
3349 not to hash. Instead, we could just do a linear search in the
3350 key_and_value vector of the hash table. This could be done
3351 if a `:linear-search t' argument is given to make-hash-table. */
3352
3353
3354 /* The list of all weak hash tables. Don't staticpro this one. */
3355
3356 static struct Lisp_Hash_Table *weak_hash_tables;
3357
3358 /* Various symbols. */
3359
3360 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3361 Lisp_Object Qeq, Qeql, Qequal;
3362 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3363 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3364
3365 /* Function prototypes. */
3366
3367 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3368 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3369 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3370 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3371
3372
3373 \f
3374 /***********************************************************************
3375 Utilities
3376 ***********************************************************************/
3377
3378 /* If OBJ is a Lisp hash table, return a pointer to its struct
3379 Lisp_Hash_Table. Otherwise, signal an error. */
3380
3381 static struct Lisp_Hash_Table *
3382 check_hash_table (Lisp_Object obj)
3383 {
3384 CHECK_HASH_TABLE (obj);
3385 return XHASH_TABLE (obj);
3386 }
3387
3388
3389 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3390 number. A number is "almost" a prime number if it is not divisible
3391 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3392
3393 EMACS_INT
3394 next_almost_prime (EMACS_INT n)
3395 {
3396 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3397 for (n |= 1; ; n += 2)
3398 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3399 return n;
3400 }
3401
3402
3403 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3404 which USED[I] is non-zero. If found at index I in ARGS, set
3405 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3406 0. This function is used to extract a keyword/argument pair from
3407 a DEFUN parameter list. */
3408
3409 static ptrdiff_t
3410 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3411 {
3412 ptrdiff_t i;
3413
3414 for (i = 1; i < nargs; i++)
3415 if (!used[i - 1] && EQ (args[i - 1], key))
3416 {
3417 used[i - 1] = 1;
3418 used[i] = 1;
3419 return i;
3420 }
3421
3422 return 0;
3423 }
3424
3425
3426 /* Return a Lisp vector which has the same contents as VEC but has
3427 at least INCR_MIN more entries, where INCR_MIN is positive.
3428 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3429 than NITEMS_MAX. Entries in the resulting
3430 vector that are not copied from VEC are set to nil. */
3431
3432 Lisp_Object
3433 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t size_max)
3434 {
3435 struct Lisp_Vector *v;
3436 ptrdiff_t i, incr, incr_max, old_size, new_size;
3437 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3438 ptrdiff_t n_max = (0 <= size_max && size_max < C_language_max
3439 ? size_max : C_language_max);
3440 xassert (VECTORP (vec));
3441 xassert (0 < incr_min && -1 <= size_max);
3442 old_size = ASIZE (vec);
3443 incr_max = n_max - old_size;
3444 incr = max (incr_min, min (old_size >> 1, incr_max));
3445 if (incr_max < incr)
3446 memory_full (SIZE_MAX);
3447 new_size = old_size + incr;
3448 v = allocate_vector (new_size);
3449 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3450 for (i = old_size; i < new_size; ++i)
3451 v->contents[i] = Qnil;
3452 XSETVECTOR (vec, v);
3453 return vec;
3454 }
3455
3456
3457 /***********************************************************************
3458 Low-level Functions
3459 ***********************************************************************/
3460
3461 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3462 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3463 KEY2 are the same. */
3464
3465 static int
3466 cmpfn_eql (struct Lisp_Hash_Table *h,
3467 Lisp_Object key1, EMACS_UINT hash1,
3468 Lisp_Object key2, EMACS_UINT hash2)
3469 {
3470 return (FLOATP (key1)
3471 && FLOATP (key2)
3472 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3473 }
3474
3475
3476 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3477 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3478 KEY2 are the same. */
3479
3480 static int
3481 cmpfn_equal (struct Lisp_Hash_Table *h,
3482 Lisp_Object key1, EMACS_UINT hash1,
3483 Lisp_Object key2, EMACS_UINT hash2)
3484 {
3485 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3486 }
3487
3488
3489 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3490 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3491 if KEY1 and KEY2 are the same. */
3492
3493 static int
3494 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3495 Lisp_Object key1, EMACS_UINT hash1,
3496 Lisp_Object key2, EMACS_UINT hash2)
3497 {
3498 if (hash1 == hash2)
3499 {
3500 Lisp_Object args[3];
3501
3502 args[0] = h->user_cmp_function;
3503 args[1] = key1;
3504 args[2] = key2;
3505 return !NILP (Ffuncall (3, args));
3506 }
3507 else
3508 return 0;
3509 }
3510
3511
3512 /* Value is a hash code for KEY for use in hash table H which uses
3513 `eq' to compare keys. The hash code returned is guaranteed to fit
3514 in a Lisp integer. */
3515
3516 static EMACS_UINT
3517 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3518 {
3519 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3520 xassert ((hash & ~INTMASK) == 0);
3521 return hash;
3522 }
3523
3524
3525 /* Value is a hash code for KEY for use in hash table H which uses
3526 `eql' to compare keys. The hash code returned is guaranteed to fit
3527 in a Lisp integer. */
3528
3529 static EMACS_UINT
3530 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3531 {
3532 EMACS_UINT hash;
3533 if (FLOATP (key))
3534 hash = sxhash (key, 0);
3535 else
3536 hash = XUINT (key) ^ XTYPE (key);
3537 xassert ((hash & ~INTMASK) == 0);
3538 return hash;
3539 }
3540
3541
3542 /* Value is a hash code for KEY for use in hash table H which uses
3543 `equal' to compare keys. The hash code returned is guaranteed to fit
3544 in a Lisp integer. */
3545
3546 static EMACS_UINT
3547 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3548 {
3549 EMACS_UINT hash = sxhash (key, 0);
3550 xassert ((hash & ~INTMASK) == 0);
3551 return hash;
3552 }
3553
3554
3555 /* Value is a hash code for KEY for use in hash table H which uses as
3556 user-defined function to compare keys. The hash code returned is
3557 guaranteed to fit in a Lisp integer. */
3558
3559 static EMACS_UINT
3560 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3561 {
3562 Lisp_Object args[2], hash;
3563
3564 args[0] = h->user_hash_function;
3565 args[1] = key;
3566 hash = Ffuncall (2, args);
3567 if (!INTEGERP (hash))
3568 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3569 return XUINT (hash);
3570 }
3571
3572 /* An upper bound on the size of a hash table index. It must fit in
3573 ptrdiff_t and be a valid Emacs fixnum. */
3574 #define INDEX_SIZE_BOUND \
3575 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / sizeof (Lisp_Object)))
3576
3577 /* Create and initialize a new hash table.
3578
3579 TEST specifies the test the hash table will use to compare keys.
3580 It must be either one of the predefined tests `eq', `eql' or
3581 `equal' or a symbol denoting a user-defined test named TEST with
3582 test and hash functions USER_TEST and USER_HASH.
3583
3584 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3585
3586 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3587 new size when it becomes full is computed by adding REHASH_SIZE to
3588 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3589 table's new size is computed by multiplying its old size with
3590 REHASH_SIZE.
3591
3592 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3593 be resized when the ratio of (number of entries in the table) /
3594 (table size) is >= REHASH_THRESHOLD.
3595
3596 WEAK specifies the weakness of the table. If non-nil, it must be
3597 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3598
3599 Lisp_Object
3600 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3601 Lisp_Object rehash_threshold, Lisp_Object weak,
3602 Lisp_Object user_test, Lisp_Object user_hash)
3603 {
3604 struct Lisp_Hash_Table *h;
3605 Lisp_Object table;
3606 EMACS_INT index_size, sz;
3607 ptrdiff_t i;
3608 double index_float;
3609
3610 /* Preconditions. */
3611 xassert (SYMBOLP (test));
3612 xassert (INTEGERP (size) && XINT (size) >= 0);
3613 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3614 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3615 xassert (FLOATP (rehash_threshold)
3616 && 0 < XFLOAT_DATA (rehash_threshold)
3617 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3618
3619 if (XFASTINT (size) == 0)
3620 size = make_number (1);
3621
3622 sz = XFASTINT (size);
3623 index_float = sz / XFLOAT_DATA (rehash_threshold);
3624 index_size = (index_float < INDEX_SIZE_BOUND + 1
3625 ? next_almost_prime (index_float)
3626 : INDEX_SIZE_BOUND + 1);
3627 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3628 error ("Hash table too large");
3629
3630 /* Allocate a table and initialize it. */
3631 h = allocate_hash_table ();
3632
3633 /* Initialize hash table slots. */
3634 h->test = test;
3635 if (EQ (test, Qeql))
3636 {
3637 h->cmpfn = cmpfn_eql;
3638 h->hashfn = hashfn_eql;
3639 }
3640 else if (EQ (test, Qeq))
3641 {
3642 h->cmpfn = NULL;
3643 h->hashfn = hashfn_eq;
3644 }
3645 else if (EQ (test, Qequal))
3646 {
3647 h->cmpfn = cmpfn_equal;
3648 h->hashfn = hashfn_equal;
3649 }
3650 else
3651 {
3652 h->user_cmp_function = user_test;
3653 h->user_hash_function = user_hash;
3654 h->cmpfn = cmpfn_user_defined;
3655 h->hashfn = hashfn_user_defined;
3656 }
3657
3658 h->weak = weak;
3659 h->rehash_threshold = rehash_threshold;
3660 h->rehash_size = rehash_size;
3661 h->count = 0;
3662 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3663 h->hash = Fmake_vector (size, Qnil);
3664 h->next = Fmake_vector (size, Qnil);
3665 h->index = Fmake_vector (make_number (index_size), Qnil);
3666
3667 /* Set up the free list. */
3668 for (i = 0; i < sz - 1; ++i)
3669 HASH_NEXT (h, i) = make_number (i + 1);
3670 h->next_free = make_number (0);
3671
3672 XSET_HASH_TABLE (table, h);
3673 xassert (HASH_TABLE_P (table));
3674 xassert (XHASH_TABLE (table) == h);
3675
3676 /* Maybe add this hash table to the list of all weak hash tables. */
3677 if (NILP (h->weak))
3678 h->next_weak = NULL;
3679 else
3680 {
3681 h->next_weak = weak_hash_tables;
3682 weak_hash_tables = h;
3683 }
3684
3685 return table;
3686 }
3687
3688
3689 /* Return a copy of hash table H1. Keys and values are not copied,
3690 only the table itself is. */
3691
3692 static Lisp_Object
3693 copy_hash_table (struct Lisp_Hash_Table *h1)
3694 {
3695 Lisp_Object table;
3696 struct Lisp_Hash_Table *h2;
3697 struct Lisp_Vector *next;
3698
3699 h2 = allocate_hash_table ();
3700 next = h2->header.next.vector;
3701 memcpy (h2, h1, sizeof *h2);
3702 h2->header.next.vector = next;
3703 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3704 h2->hash = Fcopy_sequence (h1->hash);
3705 h2->next = Fcopy_sequence (h1->next);
3706 h2->index = Fcopy_sequence (h1->index);
3707 XSET_HASH_TABLE (table, h2);
3708
3709 /* Maybe add this hash table to the list of all weak hash tables. */
3710 if (!NILP (h2->weak))
3711 {
3712 h2->next_weak = weak_hash_tables;
3713 weak_hash_tables = h2;
3714 }
3715
3716 return table;
3717 }
3718
3719
3720 /* Resize hash table H if it's too full. If H cannot be resized
3721 because it's already too large, throw an error. */
3722
3723 static inline void
3724 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3725 {
3726 if (NILP (h->next_free))
3727 {
3728 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3729 EMACS_INT new_size, index_size, nsize;
3730 ptrdiff_t i;
3731 double index_float;
3732
3733 if (INTEGERP (h->rehash_size))
3734 new_size = old_size + XFASTINT (h->rehash_size);
3735 else
3736 {
3737 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3738 if (float_new_size < INDEX_SIZE_BOUND + 1)
3739 {
3740 new_size = float_new_size;
3741 if (new_size <= old_size)
3742 new_size = old_size + 1;
3743 }
3744 else
3745 new_size = INDEX_SIZE_BOUND + 1;
3746 }
3747 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3748 index_size = (index_float < INDEX_SIZE_BOUND + 1
3749 ? next_almost_prime (index_float)
3750 : INDEX_SIZE_BOUND + 1);
3751 nsize = max (index_size, 2 * new_size);
3752 if (INDEX_SIZE_BOUND < nsize)
3753 error ("Hash table too large to resize");
3754
3755 h->key_and_value = larger_vector (h->key_and_value,
3756 2 * (new_size - old_size), -1);
3757 h->next = larger_vector (h->next, new_size - old_size, -1);
3758 h->hash = larger_vector (h->hash, new_size - old_size, -1);
3759 h->index = Fmake_vector (make_number (index_size), Qnil);
3760
3761 /* Update the free list. Do it so that new entries are added at
3762 the end of the free list. This makes some operations like
3763 maphash faster. */
3764 for (i = old_size; i < new_size - 1; ++i)
3765 HASH_NEXT (h, i) = make_number (i + 1);
3766
3767 if (!NILP (h->next_free))
3768 {
3769 Lisp_Object last, next;
3770
3771 last = h->next_free;
3772 while (next = HASH_NEXT (h, XFASTINT (last)),
3773 !NILP (next))
3774 last = next;
3775
3776 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3777 }
3778 else
3779 XSETFASTINT (h->next_free, old_size);
3780
3781 /* Rehash. */
3782 for (i = 0; i < old_size; ++i)
3783 if (!NILP (HASH_HASH (h, i)))
3784 {
3785 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3786 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3787 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3788 HASH_INDEX (h, start_of_bucket) = make_number (i);
3789 }
3790 }
3791 }
3792
3793
3794 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3795 the hash code of KEY. Value is the index of the entry in H
3796 matching KEY, or -1 if not found. */
3797
3798 ptrdiff_t
3799 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3800 {
3801 EMACS_UINT hash_code;
3802 ptrdiff_t start_of_bucket;
3803 Lisp_Object idx;
3804
3805 hash_code = h->hashfn (h, key);
3806 if (hash)
3807 *hash = hash_code;
3808
3809 start_of_bucket = hash_code % ASIZE (h->index);
3810 idx = HASH_INDEX (h, start_of_bucket);
3811
3812 /* We need not gcpro idx since it's either an integer or nil. */
3813 while (!NILP (idx))
3814 {
3815 ptrdiff_t i = XFASTINT (idx);
3816 if (EQ (key, HASH_KEY (h, i))
3817 || (h->cmpfn
3818 && h->cmpfn (h, key, hash_code,
3819 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3820 break;
3821 idx = HASH_NEXT (h, i);
3822 }
3823
3824 return NILP (idx) ? -1 : XFASTINT (idx);
3825 }
3826
3827
3828 /* Put an entry into hash table H that associates KEY with VALUE.
3829 HASH is a previously computed hash code of KEY.
3830 Value is the index of the entry in H matching KEY. */
3831
3832 ptrdiff_t
3833 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3834 EMACS_UINT hash)
3835 {
3836 ptrdiff_t start_of_bucket, i;
3837
3838 xassert ((hash & ~INTMASK) == 0);
3839
3840 /* Increment count after resizing because resizing may fail. */
3841 maybe_resize_hash_table (h);
3842 h->count++;
3843
3844 /* Store key/value in the key_and_value vector. */
3845 i = XFASTINT (h->next_free);
3846 h->next_free = HASH_NEXT (h, i);
3847 HASH_KEY (h, i) = key;
3848 HASH_VALUE (h, i) = value;
3849
3850 /* Remember its hash code. */
3851 HASH_HASH (h, i) = make_number (hash);
3852
3853 /* Add new entry to its collision chain. */
3854 start_of_bucket = hash % ASIZE (h->index);
3855 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3856 HASH_INDEX (h, start_of_bucket) = make_number (i);
3857 return i;
3858 }
3859
3860
3861 /* Remove the entry matching KEY from hash table H, if there is one. */
3862
3863 static void
3864 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3865 {
3866 EMACS_UINT hash_code;
3867 ptrdiff_t start_of_bucket;
3868 Lisp_Object idx, prev;
3869
3870 hash_code = h->hashfn (h, key);
3871 start_of_bucket = hash_code % ASIZE (h->index);
3872 idx = HASH_INDEX (h, start_of_bucket);
3873 prev = Qnil;
3874
3875 /* We need not gcpro idx, prev since they're either integers or nil. */
3876 while (!NILP (idx))
3877 {
3878 ptrdiff_t i = XFASTINT (idx);
3879
3880 if (EQ (key, HASH_KEY (h, i))
3881 || (h->cmpfn
3882 && h->cmpfn (h, key, hash_code,
3883 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3884 {
3885 /* Take entry out of collision chain. */
3886 if (NILP (prev))
3887 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3888 else
3889 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3890
3891 /* Clear slots in key_and_value and add the slots to
3892 the free list. */
3893 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3894 HASH_NEXT (h, i) = h->next_free;
3895 h->next_free = make_number (i);
3896 h->count--;
3897 xassert (h->count >= 0);
3898 break;
3899 }
3900 else
3901 {
3902 prev = idx;
3903 idx = HASH_NEXT (h, i);
3904 }
3905 }
3906 }
3907
3908
3909 /* Clear hash table H. */
3910
3911 static void
3912 hash_clear (struct Lisp_Hash_Table *h)
3913 {
3914 if (h->count > 0)
3915 {
3916 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3917
3918 for (i = 0; i < size; ++i)
3919 {
3920 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3921 HASH_KEY (h, i) = Qnil;
3922 HASH_VALUE (h, i) = Qnil;
3923 HASH_HASH (h, i) = Qnil;
3924 }
3925
3926 for (i = 0; i < ASIZE (h->index); ++i)
3927 ASET (h->index, i, Qnil);
3928
3929 h->next_free = make_number (0);
3930 h->count = 0;
3931 }
3932 }
3933
3934
3935 \f
3936 /************************************************************************
3937 Weak Hash Tables
3938 ************************************************************************/
3939
3940 void
3941 init_weak_hash_tables (void)
3942 {
3943 weak_hash_tables = NULL;
3944 }
3945
3946 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3947 entries from the table that don't survive the current GC.
3948 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3949 non-zero if anything was marked. */
3950
3951 static int
3952 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3953 {
3954 ptrdiff_t bucket, n;
3955 int marked;
3956
3957 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3958 marked = 0;
3959
3960 for (bucket = 0; bucket < n; ++bucket)
3961 {
3962 Lisp_Object idx, next, prev;
3963
3964 /* Follow collision chain, removing entries that
3965 don't survive this garbage collection. */
3966 prev = Qnil;
3967 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3968 {
3969 ptrdiff_t i = XFASTINT (idx);
3970 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3971 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3972 int remove_p;
3973
3974 if (EQ (h->weak, Qkey))
3975 remove_p = !key_known_to_survive_p;
3976 else if (EQ (h->weak, Qvalue))
3977 remove_p = !value_known_to_survive_p;
3978 else if (EQ (h->weak, Qkey_or_value))
3979 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3980 else if (EQ (h->weak, Qkey_and_value))
3981 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3982 else
3983 abort ();
3984
3985 next = HASH_NEXT (h, i);
3986
3987 if (remove_entries_p)
3988 {
3989 if (remove_p)
3990 {
3991 /* Take out of collision chain. */
3992 if (NILP (prev))
3993 HASH_INDEX (h, bucket) = next;
3994 else
3995 HASH_NEXT (h, XFASTINT (prev)) = next;
3996
3997 /* Add to free list. */
3998 HASH_NEXT (h, i) = h->next_free;
3999 h->next_free = idx;
4000
4001 /* Clear key, value, and hash. */
4002 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4003 HASH_HASH (h, i) = Qnil;
4004
4005 h->count--;
4006 }
4007 else
4008 {
4009 prev = idx;
4010 }
4011 }
4012 else
4013 {
4014 if (!remove_p)
4015 {
4016 /* Make sure key and value survive. */
4017 if (!key_known_to_survive_p)
4018 {
4019 mark_object (HASH_KEY (h, i));
4020 marked = 1;
4021 }
4022
4023 if (!value_known_to_survive_p)
4024 {
4025 mark_object (HASH_VALUE (h, i));
4026 marked = 1;
4027 }
4028 }
4029 }
4030 }
4031 }
4032
4033 return marked;
4034 }
4035
4036 /* Remove elements from weak hash tables that don't survive the
4037 current garbage collection. Remove weak tables that don't survive
4038 from Vweak_hash_tables. Called from gc_sweep. */
4039
4040 void
4041 sweep_weak_hash_tables (void)
4042 {
4043 struct Lisp_Hash_Table *h, *used, *next;
4044 int marked;
4045
4046 /* Mark all keys and values that are in use. Keep on marking until
4047 there is no more change. This is necessary for cases like
4048 value-weak table A containing an entry X -> Y, where Y is used in a
4049 key-weak table B, Z -> Y. If B comes after A in the list of weak
4050 tables, X -> Y might be removed from A, although when looking at B
4051 one finds that it shouldn't. */
4052 do
4053 {
4054 marked = 0;
4055 for (h = weak_hash_tables; h; h = h->next_weak)
4056 {
4057 if (h->header.size & ARRAY_MARK_FLAG)
4058 marked |= sweep_weak_table (h, 0);
4059 }
4060 }
4061 while (marked);
4062
4063 /* Remove tables and entries that aren't used. */
4064 for (h = weak_hash_tables, used = NULL; h; h = next)
4065 {
4066 next = h->next_weak;
4067
4068 if (h->header.size & ARRAY_MARK_FLAG)
4069 {
4070 /* TABLE is marked as used. Sweep its contents. */
4071 if (h->count > 0)
4072 sweep_weak_table (h, 1);
4073
4074 /* Add table to the list of used weak hash tables. */
4075 h->next_weak = used;
4076 used = h;
4077 }
4078 }
4079
4080 weak_hash_tables = used;
4081 }
4082
4083
4084 \f
4085 /***********************************************************************
4086 Hash Code Computation
4087 ***********************************************************************/
4088
4089 /* Maximum depth up to which to dive into Lisp structures. */
4090
4091 #define SXHASH_MAX_DEPTH 3
4092
4093 /* Maximum length up to which to take list and vector elements into
4094 account. */
4095
4096 #define SXHASH_MAX_LEN 7
4097
4098 /* Combine two integers X and Y for hashing. The result might not fit
4099 into a Lisp integer. */
4100
4101 #define SXHASH_COMBINE(X, Y) \
4102 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4103 + (EMACS_UINT) (Y))
4104
4105 /* Hash X, returning a value that fits into a Lisp integer. */
4106 #define SXHASH_REDUCE(X) \
4107 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4108
4109 /* Return a hash for string PTR which has length LEN. The hash value
4110 can be any EMACS_UINT value. */
4111
4112 EMACS_UINT
4113 hash_string (char const *ptr, ptrdiff_t len)
4114 {
4115 char const *p = ptr;
4116 char const *end = p + len;
4117 unsigned char c;
4118 EMACS_UINT hash = 0;
4119
4120 while (p != end)
4121 {
4122 c = *p++;
4123 hash = SXHASH_COMBINE (hash, c);
4124 }
4125
4126 return hash;
4127 }
4128
4129 /* Return a hash for string PTR which has length LEN. The hash
4130 code returned is guaranteed to fit in a Lisp integer. */
4131
4132 static EMACS_UINT
4133 sxhash_string (char const *ptr, ptrdiff_t len)
4134 {
4135 EMACS_UINT hash = hash_string (ptr, len);
4136 return SXHASH_REDUCE (hash);
4137 }
4138
4139 /* Return a hash for the floating point value VAL. */
4140
4141 static EMACS_INT
4142 sxhash_float (double val)
4143 {
4144 EMACS_UINT hash = 0;
4145 enum {
4146 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4147 + (sizeof val % sizeof hash != 0))
4148 };
4149 union {
4150 double val;
4151 EMACS_UINT word[WORDS_PER_DOUBLE];
4152 } u;
4153 int i;
4154 u.val = val;
4155 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4156 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4157 hash = SXHASH_COMBINE (hash, u.word[i]);
4158 return SXHASH_REDUCE (hash);
4159 }
4160
4161 /* Return a hash for list LIST. DEPTH is the current depth in the
4162 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4163
4164 static EMACS_UINT
4165 sxhash_list (Lisp_Object list, int depth)
4166 {
4167 EMACS_UINT hash = 0;
4168 int i;
4169
4170 if (depth < SXHASH_MAX_DEPTH)
4171 for (i = 0;
4172 CONSP (list) && i < SXHASH_MAX_LEN;
4173 list = XCDR (list), ++i)
4174 {
4175 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4176 hash = SXHASH_COMBINE (hash, hash2);
4177 }
4178
4179 if (!NILP (list))
4180 {
4181 EMACS_UINT hash2 = sxhash (list, depth + 1);
4182 hash = SXHASH_COMBINE (hash, hash2);
4183 }
4184
4185 return SXHASH_REDUCE (hash);
4186 }
4187
4188
4189 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4190 the Lisp structure. */
4191
4192 static EMACS_UINT
4193 sxhash_vector (Lisp_Object vec, int depth)
4194 {
4195 EMACS_UINT hash = ASIZE (vec);
4196 int i, n;
4197
4198 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4199 for (i = 0; i < n; ++i)
4200 {
4201 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4202 hash = SXHASH_COMBINE (hash, hash2);
4203 }
4204
4205 return SXHASH_REDUCE (hash);
4206 }
4207
4208 /* Return a hash for bool-vector VECTOR. */
4209
4210 static EMACS_UINT
4211 sxhash_bool_vector (Lisp_Object vec)
4212 {
4213 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4214 int i, n;
4215
4216 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4217 for (i = 0; i < n; ++i)
4218 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4219
4220 return SXHASH_REDUCE (hash);
4221 }
4222
4223
4224 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4225 structure. Value is an unsigned integer clipped to INTMASK. */
4226
4227 EMACS_UINT
4228 sxhash (Lisp_Object obj, int depth)
4229 {
4230 EMACS_UINT hash;
4231
4232 if (depth > SXHASH_MAX_DEPTH)
4233 return 0;
4234
4235 switch (XTYPE (obj))
4236 {
4237 case_Lisp_Int:
4238 hash = XUINT (obj);
4239 break;
4240
4241 case Lisp_Misc:
4242 hash = XUINT (obj);
4243 break;
4244
4245 case Lisp_Symbol:
4246 obj = SYMBOL_NAME (obj);
4247 /* Fall through. */
4248
4249 case Lisp_String:
4250 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4251 break;
4252
4253 /* This can be everything from a vector to an overlay. */
4254 case Lisp_Vectorlike:
4255 if (VECTORP (obj))
4256 /* According to the CL HyperSpec, two arrays are equal only if
4257 they are `eq', except for strings and bit-vectors. In
4258 Emacs, this works differently. We have to compare element
4259 by element. */
4260 hash = sxhash_vector (obj, depth);
4261 else if (BOOL_VECTOR_P (obj))
4262 hash = sxhash_bool_vector (obj);
4263 else
4264 /* Others are `equal' if they are `eq', so let's take their
4265 address as hash. */
4266 hash = XUINT (obj);
4267 break;
4268
4269 case Lisp_Cons:
4270 hash = sxhash_list (obj, depth);
4271 break;
4272
4273 case Lisp_Float:
4274 hash = sxhash_float (XFLOAT_DATA (obj));
4275 break;
4276
4277 default:
4278 abort ();
4279 }
4280
4281 return hash;
4282 }
4283
4284
4285 \f
4286 /***********************************************************************
4287 Lisp Interface
4288 ***********************************************************************/
4289
4290
4291 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4292 doc: /* Compute a hash code for OBJ and return it as integer. */)
4293 (Lisp_Object obj)
4294 {
4295 EMACS_UINT hash = sxhash (obj, 0);
4296 return make_number (hash);
4297 }
4298
4299
4300 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4301 doc: /* Create and return a new hash table.
4302
4303 Arguments are specified as keyword/argument pairs. The following
4304 arguments are defined:
4305
4306 :test TEST -- TEST must be a symbol that specifies how to compare
4307 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4308 `equal'. User-supplied test and hash functions can be specified via
4309 `define-hash-table-test'.
4310
4311 :size SIZE -- A hint as to how many elements will be put in the table.
4312 Default is 65.
4313
4314 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4315 fills up. If REHASH-SIZE is an integer, increase the size by that
4316 amount. If it is a float, it must be > 1.0, and the new size is the
4317 old size multiplied by that factor. Default is 1.5.
4318
4319 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4320 Resize the hash table when the ratio (number of entries / table size)
4321 is greater than or equal to THRESHOLD. Default is 0.8.
4322
4323 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4324 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4325 returned is a weak table. Key/value pairs are removed from a weak
4326 hash table when there are no non-weak references pointing to their
4327 key, value, one of key or value, or both key and value, depending on
4328 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4329 is nil.
4330
4331 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4332 (ptrdiff_t nargs, Lisp_Object *args)
4333 {
4334 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4335 Lisp_Object user_test, user_hash;
4336 char *used;
4337 ptrdiff_t i;
4338
4339 /* The vector `used' is used to keep track of arguments that
4340 have been consumed. */
4341 used = (char *) alloca (nargs * sizeof *used);
4342 memset (used, 0, nargs * sizeof *used);
4343
4344 /* See if there's a `:test TEST' among the arguments. */
4345 i = get_key_arg (QCtest, nargs, args, used);
4346 test = i ? args[i] : Qeql;
4347 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4348 {
4349 /* See if it is a user-defined test. */
4350 Lisp_Object prop;
4351
4352 prop = Fget (test, Qhash_table_test);
4353 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4354 signal_error ("Invalid hash table test", test);
4355 user_test = XCAR (prop);
4356 user_hash = XCAR (XCDR (prop));
4357 }
4358 else
4359 user_test = user_hash = Qnil;
4360
4361 /* See if there's a `:size SIZE' argument. */
4362 i = get_key_arg (QCsize, nargs, args, used);
4363 size = i ? args[i] : Qnil;
4364 if (NILP (size))
4365 size = make_number (DEFAULT_HASH_SIZE);
4366 else if (!INTEGERP (size) || XINT (size) < 0)
4367 signal_error ("Invalid hash table size", size);
4368
4369 /* Look for `:rehash-size SIZE'. */
4370 i = get_key_arg (QCrehash_size, nargs, args, used);
4371 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4372 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4373 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4374 signal_error ("Invalid hash table rehash size", rehash_size);
4375
4376 /* Look for `:rehash-threshold THRESHOLD'. */
4377 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4378 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4379 if (! (FLOATP (rehash_threshold)
4380 && 0 < XFLOAT_DATA (rehash_threshold)
4381 && XFLOAT_DATA (rehash_threshold) <= 1))
4382 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4383
4384 /* Look for `:weakness WEAK'. */
4385 i = get_key_arg (QCweakness, nargs, args, used);
4386 weak = i ? args[i] : Qnil;
4387 if (EQ (weak, Qt))
4388 weak = Qkey_and_value;
4389 if (!NILP (weak)
4390 && !EQ (weak, Qkey)
4391 && !EQ (weak, Qvalue)
4392 && !EQ (weak, Qkey_or_value)
4393 && !EQ (weak, Qkey_and_value))
4394 signal_error ("Invalid hash table weakness", weak);
4395
4396 /* Now, all args should have been used up, or there's a problem. */
4397 for (i = 0; i < nargs; ++i)
4398 if (!used[i])
4399 signal_error ("Invalid argument list", args[i]);
4400
4401 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4402 user_test, user_hash);
4403 }
4404
4405
4406 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4407 doc: /* Return a copy of hash table TABLE. */)
4408 (Lisp_Object table)
4409 {
4410 return copy_hash_table (check_hash_table (table));
4411 }
4412
4413
4414 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4415 doc: /* Return the number of elements in TABLE. */)
4416 (Lisp_Object table)
4417 {
4418 return make_number (check_hash_table (table)->count);
4419 }
4420
4421
4422 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4423 Shash_table_rehash_size, 1, 1, 0,
4424 doc: /* Return the current rehash size of TABLE. */)
4425 (Lisp_Object table)
4426 {
4427 return check_hash_table (table)->rehash_size;
4428 }
4429
4430
4431 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4432 Shash_table_rehash_threshold, 1, 1, 0,
4433 doc: /* Return the current rehash threshold of TABLE. */)
4434 (Lisp_Object table)
4435 {
4436 return check_hash_table (table)->rehash_threshold;
4437 }
4438
4439
4440 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4441 doc: /* Return the size of TABLE.
4442 The size can be used as an argument to `make-hash-table' to create
4443 a hash table than can hold as many elements as TABLE holds
4444 without need for resizing. */)
4445 (Lisp_Object table)
4446 {
4447 struct Lisp_Hash_Table *h = check_hash_table (table);
4448 return make_number (HASH_TABLE_SIZE (h));
4449 }
4450
4451
4452 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4453 doc: /* Return the test TABLE uses. */)
4454 (Lisp_Object table)
4455 {
4456 return check_hash_table (table)->test;
4457 }
4458
4459
4460 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4461 1, 1, 0,
4462 doc: /* Return the weakness of TABLE. */)
4463 (Lisp_Object table)
4464 {
4465 return check_hash_table (table)->weak;
4466 }
4467
4468
4469 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4470 doc: /* Return t if OBJ is a Lisp hash table object. */)
4471 (Lisp_Object obj)
4472 {
4473 return HASH_TABLE_P (obj) ? Qt : Qnil;
4474 }
4475
4476
4477 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4478 doc: /* Clear hash table TABLE and return it. */)
4479 (Lisp_Object table)
4480 {
4481 hash_clear (check_hash_table (table));
4482 /* Be compatible with XEmacs. */
4483 return table;
4484 }
4485
4486
4487 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4488 doc: /* Look up KEY in TABLE and return its associated value.
4489 If KEY is not found, return DFLT which defaults to nil. */)
4490 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4491 {
4492 struct Lisp_Hash_Table *h = check_hash_table (table);
4493 ptrdiff_t i = hash_lookup (h, key, NULL);
4494 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4495 }
4496
4497
4498 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4499 doc: /* Associate KEY with VALUE in hash table TABLE.
4500 If KEY is already present in table, replace its current value with
4501 VALUE. In any case, return VALUE. */)
4502 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4503 {
4504 struct Lisp_Hash_Table *h = check_hash_table (table);
4505 ptrdiff_t i;
4506 EMACS_UINT hash;
4507
4508 i = hash_lookup (h, key, &hash);
4509 if (i >= 0)
4510 HASH_VALUE (h, i) = value;
4511 else
4512 hash_put (h, key, value, hash);
4513
4514 return value;
4515 }
4516
4517
4518 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4519 doc: /* Remove KEY from TABLE. */)
4520 (Lisp_Object key, Lisp_Object table)
4521 {
4522 struct Lisp_Hash_Table *h = check_hash_table (table);
4523 hash_remove_from_table (h, key);
4524 return Qnil;
4525 }
4526
4527
4528 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4529 doc: /* Call FUNCTION for all entries in hash table TABLE.
4530 FUNCTION is called with two arguments, KEY and VALUE. */)
4531 (Lisp_Object function, Lisp_Object table)
4532 {
4533 struct Lisp_Hash_Table *h = check_hash_table (table);
4534 Lisp_Object args[3];
4535 ptrdiff_t i;
4536
4537 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4538 if (!NILP (HASH_HASH (h, i)))
4539 {
4540 args[0] = function;
4541 args[1] = HASH_KEY (h, i);
4542 args[2] = HASH_VALUE (h, i);
4543 Ffuncall (3, args);
4544 }
4545
4546 return Qnil;
4547 }
4548
4549
4550 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4551 Sdefine_hash_table_test, 3, 3, 0,
4552 doc: /* Define a new hash table test with name NAME, a symbol.
4553
4554 In hash tables created with NAME specified as test, use TEST to
4555 compare keys, and HASH for computing hash codes of keys.
4556
4557 TEST must be a function taking two arguments and returning non-nil if
4558 both arguments are the same. HASH must be a function taking one
4559 argument and return an integer that is the hash code of the argument.
4560 Hash code computation should use the whole value range of integers,
4561 including negative integers. */)
4562 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4563 {
4564 return Fput (name, Qhash_table_test, list2 (test, hash));
4565 }
4566
4567
4568 \f
4569 /************************************************************************
4570 MD5, SHA-1, and SHA-2
4571 ************************************************************************/
4572
4573 #include "md5.h"
4574 #include "sha1.h"
4575 #include "sha256.h"
4576 #include "sha512.h"
4577
4578 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4579
4580 static Lisp_Object
4581 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4582 {
4583 int i;
4584 ptrdiff_t size;
4585 EMACS_INT start_char = 0, end_char = 0;
4586 ptrdiff_t start_byte, end_byte;
4587 register EMACS_INT b, e;
4588 register struct buffer *bp;
4589 EMACS_INT temp;
4590 int digest_size;
4591 void *(*hash_func) (const char *, size_t, void *);
4592 Lisp_Object digest;
4593
4594 CHECK_SYMBOL (algorithm);
4595
4596 if (STRINGP (object))
4597 {
4598 if (NILP (coding_system))
4599 {
4600 /* Decide the coding-system to encode the data with. */
4601
4602 if (STRING_MULTIBYTE (object))
4603 /* use default, we can't guess correct value */
4604 coding_system = preferred_coding_system ();
4605 else
4606 coding_system = Qraw_text;
4607 }
4608
4609 if (NILP (Fcoding_system_p (coding_system)))
4610 {
4611 /* Invalid coding system. */
4612
4613 if (!NILP (noerror))
4614 coding_system = Qraw_text;
4615 else
4616 xsignal1 (Qcoding_system_error, coding_system);
4617 }
4618
4619 if (STRING_MULTIBYTE (object))
4620 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4621
4622 size = SCHARS (object);
4623
4624 if (!NILP (start))
4625 {
4626 CHECK_NUMBER (start);
4627
4628 start_char = XINT (start);
4629
4630 if (start_char < 0)
4631 start_char += size;
4632 }
4633
4634 if (NILP (end))
4635 end_char = size;
4636 else
4637 {
4638 CHECK_NUMBER (end);
4639
4640 end_char = XINT (end);
4641
4642 if (end_char < 0)
4643 end_char += size;
4644 }
4645
4646 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4647 args_out_of_range_3 (object, make_number (start_char),
4648 make_number (end_char));
4649
4650 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4651 end_byte =
4652 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4653 }
4654 else
4655 {
4656 struct buffer *prev = current_buffer;
4657
4658 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4659
4660 CHECK_BUFFER (object);
4661
4662 bp = XBUFFER (object);
4663 if (bp != current_buffer)
4664 set_buffer_internal (bp);
4665
4666 if (NILP (start))
4667 b = BEGV;
4668 else
4669 {
4670 CHECK_NUMBER_COERCE_MARKER (start);
4671 b = XINT (start);
4672 }
4673
4674 if (NILP (end))
4675 e = ZV;
4676 else
4677 {
4678 CHECK_NUMBER_COERCE_MARKER (end);
4679 e = XINT (end);
4680 }
4681
4682 if (b > e)
4683 temp = b, b = e, e = temp;
4684
4685 if (!(BEGV <= b && e <= ZV))
4686 args_out_of_range (start, end);
4687
4688 if (NILP (coding_system))
4689 {
4690 /* Decide the coding-system to encode the data with.
4691 See fileio.c:Fwrite-region */
4692
4693 if (!NILP (Vcoding_system_for_write))
4694 coding_system = Vcoding_system_for_write;
4695 else
4696 {
4697 int force_raw_text = 0;
4698
4699 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4700 if (NILP (coding_system)
4701 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4702 {
4703 coding_system = Qnil;
4704 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4705 force_raw_text = 1;
4706 }
4707
4708 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4709 {
4710 /* Check file-coding-system-alist. */
4711 Lisp_Object args[4], val;
4712
4713 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4714 args[3] = Fbuffer_file_name (object);
4715 val = Ffind_operation_coding_system (4, args);
4716 if (CONSP (val) && !NILP (XCDR (val)))
4717 coding_system = XCDR (val);
4718 }
4719
4720 if (NILP (coding_system)
4721 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4722 {
4723 /* If we still have not decided a coding system, use the
4724 default value of buffer-file-coding-system. */
4725 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4726 }
4727
4728 if (!force_raw_text
4729 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4730 /* Confirm that VAL can surely encode the current region. */
4731 coding_system = call4 (Vselect_safe_coding_system_function,
4732 make_number (b), make_number (e),
4733 coding_system, Qnil);
4734
4735 if (force_raw_text)
4736 coding_system = Qraw_text;
4737 }
4738
4739 if (NILP (Fcoding_system_p (coding_system)))
4740 {
4741 /* Invalid coding system. */
4742
4743 if (!NILP (noerror))
4744 coding_system = Qraw_text;
4745 else
4746 xsignal1 (Qcoding_system_error, coding_system);
4747 }
4748 }
4749
4750 object = make_buffer_string (b, e, 0);
4751 if (prev != current_buffer)
4752 set_buffer_internal (prev);
4753 /* Discard the unwind protect for recovering the current
4754 buffer. */
4755 specpdl_ptr--;
4756
4757 if (STRING_MULTIBYTE (object))
4758 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4759 start_byte = 0;
4760 end_byte = SBYTES (object);
4761 }
4762
4763 if (EQ (algorithm, Qmd5))
4764 {
4765 digest_size = MD5_DIGEST_SIZE;
4766 hash_func = md5_buffer;
4767 }
4768 else if (EQ (algorithm, Qsha1))
4769 {
4770 digest_size = SHA1_DIGEST_SIZE;
4771 hash_func = sha1_buffer;
4772 }
4773 else if (EQ (algorithm, Qsha224))
4774 {
4775 digest_size = SHA224_DIGEST_SIZE;
4776 hash_func = sha224_buffer;
4777 }
4778 else if (EQ (algorithm, Qsha256))
4779 {
4780 digest_size = SHA256_DIGEST_SIZE;
4781 hash_func = sha256_buffer;
4782 }
4783 else if (EQ (algorithm, Qsha384))
4784 {
4785 digest_size = SHA384_DIGEST_SIZE;
4786 hash_func = sha384_buffer;
4787 }
4788 else if (EQ (algorithm, Qsha512))
4789 {
4790 digest_size = SHA512_DIGEST_SIZE;
4791 hash_func = sha512_buffer;
4792 }
4793 else
4794 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4795
4796 /* allocate 2 x digest_size so that it can be re-used to hold the
4797 hexified value */
4798 digest = make_uninit_string (digest_size * 2);
4799
4800 hash_func (SSDATA (object) + start_byte,
4801 end_byte - start_byte,
4802 SSDATA (digest));
4803
4804 if (NILP (binary))
4805 {
4806 unsigned char *p = SDATA (digest);
4807 for (i = digest_size - 1; i >= 0; i--)
4808 {
4809 static char const hexdigit[16] = "0123456789abcdef";
4810 int p_i = p[i];
4811 p[2 * i] = hexdigit[p_i >> 4];
4812 p[2 * i + 1] = hexdigit[p_i & 0xf];
4813 }
4814 return digest;
4815 }
4816 else
4817 return make_unibyte_string (SSDATA (digest), digest_size);
4818 }
4819
4820 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4821 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4822
4823 A message digest is a cryptographic checksum of a document, and the
4824 algorithm to calculate it is defined in RFC 1321.
4825
4826 The two optional arguments START and END are character positions
4827 specifying for which part of OBJECT the message digest should be
4828 computed. If nil or omitted, the digest is computed for the whole
4829 OBJECT.
4830
4831 The MD5 message digest is computed from the result of encoding the
4832 text in a coding system, not directly from the internal Emacs form of
4833 the text. The optional fourth argument CODING-SYSTEM specifies which
4834 coding system to encode the text with. It should be the same coding
4835 system that you used or will use when actually writing the text into a
4836 file.
4837
4838 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4839 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4840 system would be chosen by default for writing this text into a file.
4841
4842 If OBJECT is a string, the most preferred coding system (see the
4843 command `prefer-coding-system') is used.
4844
4845 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4846 guesswork fails. Normally, an error is signaled in such case. */)
4847 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4848 {
4849 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4850 }
4851
4852 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4853 doc: /* Return the secure hash of an OBJECT.
4854 ALGORITHM is a symbol: md5, sha1, sha224, sha256, sha384 or sha512.
4855 OBJECT is either a string or a buffer.
4856 Optional arguments START and END are character positions specifying
4857 which portion of OBJECT for computing the hash. If BINARY is non-nil,
4858 return a string in binary form. */)
4859 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4860 {
4861 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4862 }
4863 \f
4864 void
4865 syms_of_fns (void)
4866 {
4867 DEFSYM (Qmd5, "md5");
4868 DEFSYM (Qsha1, "sha1");
4869 DEFSYM (Qsha224, "sha224");
4870 DEFSYM (Qsha256, "sha256");
4871 DEFSYM (Qsha384, "sha384");
4872 DEFSYM (Qsha512, "sha512");
4873
4874 /* Hash table stuff. */
4875 DEFSYM (Qhash_table_p, "hash-table-p");
4876 DEFSYM (Qeq, "eq");
4877 DEFSYM (Qeql, "eql");
4878 DEFSYM (Qequal, "equal");
4879 DEFSYM (QCtest, ":test");
4880 DEFSYM (QCsize, ":size");
4881 DEFSYM (QCrehash_size, ":rehash-size");
4882 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4883 DEFSYM (QCweakness, ":weakness");
4884 DEFSYM (Qkey, "key");
4885 DEFSYM (Qvalue, "value");
4886 DEFSYM (Qhash_table_test, "hash-table-test");
4887 DEFSYM (Qkey_or_value, "key-or-value");
4888 DEFSYM (Qkey_and_value, "key-and-value");
4889
4890 defsubr (&Ssxhash);
4891 defsubr (&Smake_hash_table);
4892 defsubr (&Scopy_hash_table);
4893 defsubr (&Shash_table_count);
4894 defsubr (&Shash_table_rehash_size);
4895 defsubr (&Shash_table_rehash_threshold);
4896 defsubr (&Shash_table_size);
4897 defsubr (&Shash_table_test);
4898 defsubr (&Shash_table_weakness);
4899 defsubr (&Shash_table_p);
4900 defsubr (&Sclrhash);
4901 defsubr (&Sgethash);
4902 defsubr (&Sputhash);
4903 defsubr (&Sremhash);
4904 defsubr (&Smaphash);
4905 defsubr (&Sdefine_hash_table_test);
4906
4907 DEFSYM (Qstring_lessp, "string-lessp");
4908 DEFSYM (Qprovide, "provide");
4909 DEFSYM (Qrequire, "require");
4910 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4911 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4912 DEFSYM (Qwidget_type, "widget-type");
4913
4914 staticpro (&string_char_byte_cache_string);
4915 string_char_byte_cache_string = Qnil;
4916
4917 require_nesting_list = Qnil;
4918 staticpro (&require_nesting_list);
4919
4920 Fset (Qyes_or_no_p_history, Qnil);
4921
4922 DEFVAR_LISP ("features", Vfeatures,
4923 doc: /* A list of symbols which are the features of the executing Emacs.
4924 Used by `featurep' and `require', and altered by `provide'. */);
4925 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4926 DEFSYM (Qsubfeatures, "subfeatures");
4927
4928 #ifdef HAVE_LANGINFO_CODESET
4929 DEFSYM (Qcodeset, "codeset");
4930 DEFSYM (Qdays, "days");
4931 DEFSYM (Qmonths, "months");
4932 DEFSYM (Qpaper, "paper");
4933 #endif /* HAVE_LANGINFO_CODESET */
4934
4935 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4936 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4937 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4938 invoked by mouse clicks and mouse menu items.
4939
4940 On some platforms, file selection dialogs are also enabled if this is
4941 non-nil. */);
4942 use_dialog_box = 1;
4943
4944 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4945 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4946 This applies to commands from menus and tool bar buttons even when
4947 they are initiated from the keyboard. If `use-dialog-box' is nil,
4948 that disables the use of a file dialog, regardless of the value of
4949 this variable. */);
4950 use_file_dialog = 1;
4951
4952 defsubr (&Sidentity);
4953 defsubr (&Srandom);
4954 defsubr (&Slength);
4955 defsubr (&Ssafe_length);
4956 defsubr (&Sstring_bytes);
4957 defsubr (&Sstring_equal);
4958 defsubr (&Scompare_strings);
4959 defsubr (&Sstring_lessp);
4960 defsubr (&Sappend);
4961 defsubr (&Sconcat);
4962 defsubr (&Svconcat);
4963 defsubr (&Scopy_sequence);
4964 defsubr (&Sstring_make_multibyte);
4965 defsubr (&Sstring_make_unibyte);
4966 defsubr (&Sstring_as_multibyte);
4967 defsubr (&Sstring_as_unibyte);
4968 defsubr (&Sstring_to_multibyte);
4969 defsubr (&Sstring_to_unibyte);
4970 defsubr (&Scopy_alist);
4971 defsubr (&Ssubstring);
4972 defsubr (&Ssubstring_no_properties);
4973 defsubr (&Snthcdr);
4974 defsubr (&Snth);
4975 defsubr (&Selt);
4976 defsubr (&Smember);
4977 defsubr (&Smemq);
4978 defsubr (&Smemql);
4979 defsubr (&Sassq);
4980 defsubr (&Sassoc);
4981 defsubr (&Srassq);
4982 defsubr (&Srassoc);
4983 defsubr (&Sdelq);
4984 defsubr (&Sdelete);
4985 defsubr (&Snreverse);
4986 defsubr (&Sreverse);
4987 defsubr (&Ssort);
4988 defsubr (&Splist_get);
4989 defsubr (&Sget);
4990 defsubr (&Splist_put);
4991 defsubr (&Sput);
4992 defsubr (&Slax_plist_get);
4993 defsubr (&Slax_plist_put);
4994 defsubr (&Seql);
4995 defsubr (&Sequal);
4996 defsubr (&Sequal_including_properties);
4997 defsubr (&Sfillarray);
4998 defsubr (&Sclear_string);
4999 defsubr (&Snconc);
5000 defsubr (&Smapcar);
5001 defsubr (&Smapc);
5002 defsubr (&Smapconcat);
5003 defsubr (&Syes_or_no_p);
5004 defsubr (&Sload_average);
5005 defsubr (&Sfeaturep);
5006 defsubr (&Srequire);
5007 defsubr (&Sprovide);
5008 defsubr (&Splist_member);
5009 defsubr (&Swidget_put);
5010 defsubr (&Swidget_get);
5011 defsubr (&Swidget_apply);
5012 defsubr (&Sbase64_encode_region);
5013 defsubr (&Sbase64_decode_region);
5014 defsubr (&Sbase64_encode_string);
5015 defsubr (&Sbase64_decode_string);
5016 defsubr (&Smd5);
5017 defsubr (&Ssecure_hash);
5018 defsubr (&Slocale_info);
5019 }
5020
5021
5022 void
5023 init_fns (void)
5024 {
5025 }