Whitespace fixes for recently-added code.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
56
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
62
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
68
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
72
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
77
78 #include <unistd.h>
79 #include <fcntl.h>
80
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
88
89 #ifdef DOUG_LEA_MALLOC
90
91 #include <malloc.h>
92
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
96 #define MMAP_MAX_AREAS 100000000
97
98 #endif /* not DOUG_LEA_MALLOC */
99
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
102
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
106
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
110
111 /* Default value of gc_cons_threshold (see below). */
112
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
114
115 /* Global variables. */
116 struct emacs_globals globals;
117
118 /* Number of bytes of consing done since the last gc. */
119
120 EMACS_INT consing_since_gc;
121
122 /* Similar minimum, computed from Vgc_cons_percentage. */
123
124 EMACS_INT gc_relative_threshold;
125
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
128
129 EMACS_INT memory_full_cons_threshold;
130
131 /* True during GC. */
132
133 bool gc_in_progress;
134
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
138
139 bool abort_on_gc;
140
141 /* Number of live and free conses etc. */
142
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
146
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
150
151 static char *spare_memory[7];
152
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
155
156 #define SPARE_MEMORY (1 << 14)
157
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
163
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
166
167 /* Pointer to the pure area, and its size. */
168
169 static char *purebeg;
170 static ptrdiff_t pure_size;
171
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
174
175 static ptrdiff_t pure_bytes_used_before_overflow;
176
177 /* True if P points into pure space. */
178
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
181
182 /* Index in pure at which next pure Lisp object will be allocated.. */
183
184 static ptrdiff_t pure_bytes_used_lisp;
185
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
187
188 static ptrdiff_t pure_bytes_used_non_lisp;
189
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
192
193 const char *pending_malloc_warning;
194
195 /* Maximum amount of C stack to save when a GC happens. */
196
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
200
201 /* Buffer in which we save a copy of the C stack at each GC. */
202
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
206
207 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
208 avoiding any address sanitization. */
209
210 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
211 no_sanitize_memcpy (void *dest, void const *src, size_t size)
212 {
213 if (! ADDRESS_SANITIZER)
214 return memcpy (dest, src, size);
215 else
216 {
217 size_t i;
218 char *d = dest;
219 char const *s = src;
220 for (i = 0; i < size; i++)
221 d[i] = s[i];
222 return dest;
223 }
224 }
225
226 #endif /* MAX_SAVE_STACK > 0 */
227
228 static Lisp_Object Qconses;
229 static Lisp_Object Qsymbols;
230 static Lisp_Object Qmiscs;
231 static Lisp_Object Qstrings;
232 static Lisp_Object Qvectors;
233 static Lisp_Object Qfloats;
234 static Lisp_Object Qintervals;
235 static Lisp_Object Qbuffers;
236 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
237 static Lisp_Object Qgc_cons_threshold;
238 Lisp_Object Qautomatic_gc;
239 Lisp_Object Qchar_table_extra_slots;
240
241 /* Hook run after GC has finished. */
242
243 static Lisp_Object Qpost_gc_hook;
244
245 static void mark_terminals (void);
246 static void gc_sweep (void);
247 static Lisp_Object make_pure_vector (ptrdiff_t);
248 static void mark_buffer (struct buffer *);
249
250 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
251 static void refill_memory_reserve (void);
252 #endif
253 static void compact_small_strings (void);
254 static void free_large_strings (void);
255 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
256
257 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
258 what memory allocated via lisp_malloc and lisp_align_malloc is intended
259 for what purpose. This enumeration specifies the type of memory. */
260
261 enum mem_type
262 {
263 MEM_TYPE_NON_LISP,
264 MEM_TYPE_BUFFER,
265 MEM_TYPE_CONS,
266 MEM_TYPE_STRING,
267 MEM_TYPE_MISC,
268 MEM_TYPE_SYMBOL,
269 MEM_TYPE_FLOAT,
270 /* Since all non-bool pseudovectors are small enough to be
271 allocated from vector blocks, this memory type denotes
272 large regular vectors and large bool pseudovectors. */
273 MEM_TYPE_VECTORLIKE,
274 /* Special type to denote vector blocks. */
275 MEM_TYPE_VECTOR_BLOCK,
276 /* Special type to denote reserved memory. */
277 MEM_TYPE_SPARE
278 };
279
280 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
281
282 /* A unique object in pure space used to make some Lisp objects
283 on free lists recognizable in O(1). */
284
285 static Lisp_Object Vdead;
286 #define DEADP(x) EQ (x, Vdead)
287
288 #ifdef GC_MALLOC_CHECK
289
290 enum mem_type allocated_mem_type;
291
292 #endif /* GC_MALLOC_CHECK */
293
294 /* A node in the red-black tree describing allocated memory containing
295 Lisp data. Each such block is recorded with its start and end
296 address when it is allocated, and removed from the tree when it
297 is freed.
298
299 A red-black tree is a balanced binary tree with the following
300 properties:
301
302 1. Every node is either red or black.
303 2. Every leaf is black.
304 3. If a node is red, then both of its children are black.
305 4. Every simple path from a node to a descendant leaf contains
306 the same number of black nodes.
307 5. The root is always black.
308
309 When nodes are inserted into the tree, or deleted from the tree,
310 the tree is "fixed" so that these properties are always true.
311
312 A red-black tree with N internal nodes has height at most 2
313 log(N+1). Searches, insertions and deletions are done in O(log N).
314 Please see a text book about data structures for a detailed
315 description of red-black trees. Any book worth its salt should
316 describe them. */
317
318 struct mem_node
319 {
320 /* Children of this node. These pointers are never NULL. When there
321 is no child, the value is MEM_NIL, which points to a dummy node. */
322 struct mem_node *left, *right;
323
324 /* The parent of this node. In the root node, this is NULL. */
325 struct mem_node *parent;
326
327 /* Start and end of allocated region. */
328 void *start, *end;
329
330 /* Node color. */
331 enum {MEM_BLACK, MEM_RED} color;
332
333 /* Memory type. */
334 enum mem_type type;
335 };
336
337 /* Base address of stack. Set in main. */
338
339 Lisp_Object *stack_base;
340
341 /* Root of the tree describing allocated Lisp memory. */
342
343 static struct mem_node *mem_root;
344
345 /* Lowest and highest known address in the heap. */
346
347 static void *min_heap_address, *max_heap_address;
348
349 /* Sentinel node of the tree. */
350
351 static struct mem_node mem_z;
352 #define MEM_NIL &mem_z
353
354 static struct mem_node *mem_insert (void *, void *, enum mem_type);
355 static void mem_insert_fixup (struct mem_node *);
356 static void mem_rotate_left (struct mem_node *);
357 static void mem_rotate_right (struct mem_node *);
358 static void mem_delete (struct mem_node *);
359 static void mem_delete_fixup (struct mem_node *);
360 static struct mem_node *mem_find (void *);
361
362 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
363
364 #ifndef DEADP
365 # define DEADP(x) 0
366 #endif
367
368 /* Recording what needs to be marked for gc. */
369
370 struct gcpro *gcprolist;
371
372 /* Addresses of staticpro'd variables. Initialize it to a nonzero
373 value; otherwise some compilers put it into BSS. */
374
375 enum { NSTATICS = 2048 };
376 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
377
378 /* Index of next unused slot in staticvec. */
379
380 static int staticidx;
381
382 static void *pure_alloc (size_t, int);
383
384 /* Return X rounded to the next multiple of Y. Arguments should not
385 have side effects, as they are evaluated more than once. Assume X
386 + Y - 1 does not overflow. Tune for Y being a power of 2. */
387
388 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
389 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
390 : ((x) + (y) - 1) & ~ ((y) - 1))
391
392 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
393
394 static void *
395 ALIGN (void *ptr, int alignment)
396 {
397 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
398 }
399
400 static void
401 XFLOAT_INIT (Lisp_Object f, double n)
402 {
403 XFLOAT (f)->u.data = n;
404 }
405
406 \f
407 /************************************************************************
408 Malloc
409 ************************************************************************/
410
411 /* Function malloc calls this if it finds we are near exhausting storage. */
412
413 void
414 malloc_warning (const char *str)
415 {
416 pending_malloc_warning = str;
417 }
418
419
420 /* Display an already-pending malloc warning. */
421
422 void
423 display_malloc_warning (void)
424 {
425 call3 (intern ("display-warning"),
426 intern ("alloc"),
427 build_string (pending_malloc_warning),
428 intern ("emergency"));
429 pending_malloc_warning = 0;
430 }
431 \f
432 /* Called if we can't allocate relocatable space for a buffer. */
433
434 void
435 buffer_memory_full (ptrdiff_t nbytes)
436 {
437 /* If buffers use the relocating allocator, no need to free
438 spare_memory, because we may have plenty of malloc space left
439 that we could get, and if we don't, the malloc that fails will
440 itself cause spare_memory to be freed. If buffers don't use the
441 relocating allocator, treat this like any other failing
442 malloc. */
443
444 #ifndef REL_ALLOC
445 memory_full (nbytes);
446 #else
447 /* This used to call error, but if we've run out of memory, we could
448 get infinite recursion trying to build the string. */
449 xsignal (Qnil, Vmemory_signal_data);
450 #endif
451 }
452
453 /* A common multiple of the positive integers A and B. Ideally this
454 would be the least common multiple, but there's no way to do that
455 as a constant expression in C, so do the best that we can easily do. */
456 #define COMMON_MULTIPLE(a, b) \
457 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
458
459 #ifndef XMALLOC_OVERRUN_CHECK
460 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
461 #else
462
463 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
464 around each block.
465
466 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
467 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
468 block size in little-endian order. The trailer consists of
469 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
470
471 The header is used to detect whether this block has been allocated
472 through these functions, as some low-level libc functions may
473 bypass the malloc hooks. */
474
475 #define XMALLOC_OVERRUN_CHECK_SIZE 16
476 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
477 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
478
479 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
480 hold a size_t value and (2) the header size is a multiple of the
481 alignment that Emacs needs for C types and for USE_LSB_TAG. */
482 #define XMALLOC_BASE_ALIGNMENT \
483 alignof (union { long double d; intmax_t i; void *p; })
484
485 #if USE_LSB_TAG
486 # define XMALLOC_HEADER_ALIGNMENT \
487 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
488 #else
489 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
490 #endif
491 #define XMALLOC_OVERRUN_SIZE_SIZE \
492 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
493 + XMALLOC_HEADER_ALIGNMENT - 1) \
494 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
495 - XMALLOC_OVERRUN_CHECK_SIZE)
496
497 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
498 { '\x9a', '\x9b', '\xae', '\xaf',
499 '\xbf', '\xbe', '\xce', '\xcf',
500 '\xea', '\xeb', '\xec', '\xed',
501 '\xdf', '\xde', '\x9c', '\x9d' };
502
503 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
504 { '\xaa', '\xab', '\xac', '\xad',
505 '\xba', '\xbb', '\xbc', '\xbd',
506 '\xca', '\xcb', '\xcc', '\xcd',
507 '\xda', '\xdb', '\xdc', '\xdd' };
508
509 /* Insert and extract the block size in the header. */
510
511 static void
512 xmalloc_put_size (unsigned char *ptr, size_t size)
513 {
514 int i;
515 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
516 {
517 *--ptr = size & ((1 << CHAR_BIT) - 1);
518 size >>= CHAR_BIT;
519 }
520 }
521
522 static size_t
523 xmalloc_get_size (unsigned char *ptr)
524 {
525 size_t size = 0;
526 int i;
527 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
528 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
529 {
530 size <<= CHAR_BIT;
531 size += *ptr++;
532 }
533 return size;
534 }
535
536
537 /* Like malloc, but wraps allocated block with header and trailer. */
538
539 static void *
540 overrun_check_malloc (size_t size)
541 {
542 register unsigned char *val;
543 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
544 emacs_abort ();
545
546 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
547 if (val)
548 {
549 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
550 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
551 xmalloc_put_size (val, size);
552 memcpy (val + size, xmalloc_overrun_check_trailer,
553 XMALLOC_OVERRUN_CHECK_SIZE);
554 }
555 return val;
556 }
557
558
559 /* Like realloc, but checks old block for overrun, and wraps new block
560 with header and trailer. */
561
562 static void *
563 overrun_check_realloc (void *block, size_t size)
564 {
565 register unsigned char *val = (unsigned char *) block;
566 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
567 emacs_abort ();
568
569 if (val
570 && memcmp (xmalloc_overrun_check_header,
571 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
572 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
573 {
574 size_t osize = xmalloc_get_size (val);
575 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
576 XMALLOC_OVERRUN_CHECK_SIZE))
577 emacs_abort ();
578 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
579 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
580 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
581 }
582
583 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584
585 if (val)
586 {
587 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
588 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
589 xmalloc_put_size (val, size);
590 memcpy (val + size, xmalloc_overrun_check_trailer,
591 XMALLOC_OVERRUN_CHECK_SIZE);
592 }
593 return val;
594 }
595
596 /* Like free, but checks block for overrun. */
597
598 static void
599 overrun_check_free (void *block)
600 {
601 unsigned char *val = (unsigned char *) block;
602
603 if (val
604 && memcmp (xmalloc_overrun_check_header,
605 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
606 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
607 {
608 size_t osize = xmalloc_get_size (val);
609 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
610 XMALLOC_OVERRUN_CHECK_SIZE))
611 emacs_abort ();
612 #ifdef XMALLOC_CLEAR_FREE_MEMORY
613 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
614 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
615 #else
616 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
617 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
618 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
619 #endif
620 }
621
622 free (val);
623 }
624
625 #undef malloc
626 #undef realloc
627 #undef free
628 #define malloc overrun_check_malloc
629 #define realloc overrun_check_realloc
630 #define free overrun_check_free
631 #endif
632
633 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
634 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
635 If that variable is set, block input while in one of Emacs's memory
636 allocation functions. There should be no need for this debugging
637 option, since signal handlers do not allocate memory, but Emacs
638 formerly allocated memory in signal handlers and this compile-time
639 option remains as a way to help debug the issue should it rear its
640 ugly head again. */
641 #ifdef XMALLOC_BLOCK_INPUT_CHECK
642 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
643 static void
644 malloc_block_input (void)
645 {
646 if (block_input_in_memory_allocators)
647 block_input ();
648 }
649 static void
650 malloc_unblock_input (void)
651 {
652 if (block_input_in_memory_allocators)
653 unblock_input ();
654 }
655 # define MALLOC_BLOCK_INPUT malloc_block_input ()
656 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
657 #else
658 # define MALLOC_BLOCK_INPUT ((void) 0)
659 # define MALLOC_UNBLOCK_INPUT ((void) 0)
660 #endif
661
662 #define MALLOC_PROBE(size) \
663 do { \
664 if (profiler_memory_running) \
665 malloc_probe (size); \
666 } while (0)
667
668
669 /* Like malloc but check for no memory and block interrupt input.. */
670
671 void *
672 xmalloc (size_t size)
673 {
674 void *val;
675
676 MALLOC_BLOCK_INPUT;
677 val = malloc (size);
678 MALLOC_UNBLOCK_INPUT;
679
680 if (!val && size)
681 memory_full (size);
682 MALLOC_PROBE (size);
683 return val;
684 }
685
686 /* Like the above, but zeroes out the memory just allocated. */
687
688 void *
689 xzalloc (size_t size)
690 {
691 void *val;
692
693 MALLOC_BLOCK_INPUT;
694 val = malloc (size);
695 MALLOC_UNBLOCK_INPUT;
696
697 if (!val && size)
698 memory_full (size);
699 memset (val, 0, size);
700 MALLOC_PROBE (size);
701 return val;
702 }
703
704 /* Like realloc but check for no memory and block interrupt input.. */
705
706 void *
707 xrealloc (void *block, size_t size)
708 {
709 void *val;
710
711 MALLOC_BLOCK_INPUT;
712 /* We must call malloc explicitly when BLOCK is 0, since some
713 reallocs don't do this. */
714 if (! block)
715 val = malloc (size);
716 else
717 val = realloc (block, size);
718 MALLOC_UNBLOCK_INPUT;
719
720 if (!val && size)
721 memory_full (size);
722 MALLOC_PROBE (size);
723 return val;
724 }
725
726
727 /* Like free but block interrupt input. */
728
729 void
730 xfree (void *block)
731 {
732 if (!block)
733 return;
734 MALLOC_BLOCK_INPUT;
735 free (block);
736 MALLOC_UNBLOCK_INPUT;
737 /* We don't call refill_memory_reserve here
738 because in practice the call in r_alloc_free seems to suffice. */
739 }
740
741
742 /* Other parts of Emacs pass large int values to allocator functions
743 expecting ptrdiff_t. This is portable in practice, but check it to
744 be safe. */
745 verify (INT_MAX <= PTRDIFF_MAX);
746
747
748 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
749 Signal an error on memory exhaustion, and block interrupt input. */
750
751 void *
752 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
753 {
754 eassert (0 <= nitems && 0 < item_size);
755 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
756 memory_full (SIZE_MAX);
757 return xmalloc (nitems * item_size);
758 }
759
760
761 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
762 Signal an error on memory exhaustion, and block interrupt input. */
763
764 void *
765 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
766 {
767 eassert (0 <= nitems && 0 < item_size);
768 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
769 memory_full (SIZE_MAX);
770 return xrealloc (pa, nitems * item_size);
771 }
772
773
774 /* Grow PA, which points to an array of *NITEMS items, and return the
775 location of the reallocated array, updating *NITEMS to reflect its
776 new size. The new array will contain at least NITEMS_INCR_MIN more
777 items, but will not contain more than NITEMS_MAX items total.
778 ITEM_SIZE is the size of each item, in bytes.
779
780 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
781 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
782 infinity.
783
784 If PA is null, then allocate a new array instead of reallocating
785 the old one.
786
787 Block interrupt input as needed. If memory exhaustion occurs, set
788 *NITEMS to zero if PA is null, and signal an error (i.e., do not
789 return).
790
791 Thus, to grow an array A without saving its old contents, do
792 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
793 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
794 and signals an error, and later this code is reexecuted and
795 attempts to free A. */
796
797 void *
798 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
799 ptrdiff_t nitems_max, ptrdiff_t item_size)
800 {
801 /* The approximate size to use for initial small allocation
802 requests. This is the largest "small" request for the GNU C
803 library malloc. */
804 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
805
806 /* If the array is tiny, grow it to about (but no greater than)
807 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
808 ptrdiff_t n = *nitems;
809 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
810 ptrdiff_t half_again = n >> 1;
811 ptrdiff_t incr_estimate = max (tiny_max, half_again);
812
813 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
814 NITEMS_MAX, and what the C language can represent safely. */
815 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
816 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
817 ? nitems_max : C_language_max);
818 ptrdiff_t nitems_incr_max = n_max - n;
819 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
820
821 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
822 if (! pa)
823 *nitems = 0;
824 if (nitems_incr_max < incr)
825 memory_full (SIZE_MAX);
826 n += incr;
827 pa = xrealloc (pa, n * item_size);
828 *nitems = n;
829 return pa;
830 }
831
832
833 /* Like strdup, but uses xmalloc. */
834
835 char *
836 xstrdup (const char *s)
837 {
838 ptrdiff_t size;
839 eassert (s);
840 size = strlen (s) + 1;
841 return memcpy (xmalloc (size), s, size);
842 }
843
844 /* Like above, but duplicates Lisp string to C string. */
845
846 char *
847 xlispstrdup (Lisp_Object string)
848 {
849 ptrdiff_t size = SBYTES (string) + 1;
850 return memcpy (xmalloc (size), SSDATA (string), size);
851 }
852
853 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
854 argument is a const pointer. */
855
856 void
857 xputenv (char const *string)
858 {
859 if (putenv ((char *) string) != 0)
860 memory_full (0);
861 }
862
863 /* Return a newly allocated memory block of SIZE bytes, remembering
864 to free it when unwinding. */
865 void *
866 record_xmalloc (size_t size)
867 {
868 void *p = xmalloc (size);
869 record_unwind_protect_ptr (xfree, p);
870 return p;
871 }
872
873
874 /* Like malloc but used for allocating Lisp data. NBYTES is the
875 number of bytes to allocate, TYPE describes the intended use of the
876 allocated memory block (for strings, for conses, ...). */
877
878 #if ! USE_LSB_TAG
879 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
880 #endif
881
882 static void *
883 lisp_malloc (size_t nbytes, enum mem_type type)
884 {
885 register void *val;
886
887 MALLOC_BLOCK_INPUT;
888
889 #ifdef GC_MALLOC_CHECK
890 allocated_mem_type = type;
891 #endif
892
893 val = malloc (nbytes);
894
895 #if ! USE_LSB_TAG
896 /* If the memory just allocated cannot be addressed thru a Lisp
897 object's pointer, and it needs to be,
898 that's equivalent to running out of memory. */
899 if (val && type != MEM_TYPE_NON_LISP)
900 {
901 Lisp_Object tem;
902 XSETCONS (tem, (char *) val + nbytes - 1);
903 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
904 {
905 lisp_malloc_loser = val;
906 free (val);
907 val = 0;
908 }
909 }
910 #endif
911
912 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
913 if (val && type != MEM_TYPE_NON_LISP)
914 mem_insert (val, (char *) val + nbytes, type);
915 #endif
916
917 MALLOC_UNBLOCK_INPUT;
918 if (!val && nbytes)
919 memory_full (nbytes);
920 MALLOC_PROBE (nbytes);
921 return val;
922 }
923
924 /* Free BLOCK. This must be called to free memory allocated with a
925 call to lisp_malloc. */
926
927 static void
928 lisp_free (void *block)
929 {
930 MALLOC_BLOCK_INPUT;
931 free (block);
932 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
933 mem_delete (mem_find (block));
934 #endif
935 MALLOC_UNBLOCK_INPUT;
936 }
937
938 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
939
940 /* The entry point is lisp_align_malloc which returns blocks of at most
941 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
942
943 /* Use aligned_alloc if it or a simple substitute is available.
944 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
945 clang 3.3 anyway. */
946
947 #if ! ADDRESS_SANITIZER
948 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
949 # define USE_ALIGNED_ALLOC 1
950 /* Defined in gmalloc.c. */
951 void *aligned_alloc (size_t, size_t);
952 # elif defined HAVE_ALIGNED_ALLOC
953 # define USE_ALIGNED_ALLOC 1
954 # elif defined HAVE_POSIX_MEMALIGN
955 # define USE_ALIGNED_ALLOC 1
956 static void *
957 aligned_alloc (size_t alignment, size_t size)
958 {
959 void *p;
960 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
961 }
962 # endif
963 #endif
964
965 /* BLOCK_ALIGN has to be a power of 2. */
966 #define BLOCK_ALIGN (1 << 10)
967
968 /* Padding to leave at the end of a malloc'd block. This is to give
969 malloc a chance to minimize the amount of memory wasted to alignment.
970 It should be tuned to the particular malloc library used.
971 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
972 aligned_alloc on the other hand would ideally prefer a value of 4
973 because otherwise, there's 1020 bytes wasted between each ablocks.
974 In Emacs, testing shows that those 1020 can most of the time be
975 efficiently used by malloc to place other objects, so a value of 0 can
976 still preferable unless you have a lot of aligned blocks and virtually
977 nothing else. */
978 #define BLOCK_PADDING 0
979 #define BLOCK_BYTES \
980 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
981
982 /* Internal data structures and constants. */
983
984 #define ABLOCKS_SIZE 16
985
986 /* An aligned block of memory. */
987 struct ablock
988 {
989 union
990 {
991 char payload[BLOCK_BYTES];
992 struct ablock *next_free;
993 } x;
994 /* `abase' is the aligned base of the ablocks. */
995 /* It is overloaded to hold the virtual `busy' field that counts
996 the number of used ablock in the parent ablocks.
997 The first ablock has the `busy' field, the others have the `abase'
998 field. To tell the difference, we assume that pointers will have
999 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1000 is used to tell whether the real base of the parent ablocks is `abase'
1001 (if not, the word before the first ablock holds a pointer to the
1002 real base). */
1003 struct ablocks *abase;
1004 /* The padding of all but the last ablock is unused. The padding of
1005 the last ablock in an ablocks is not allocated. */
1006 #if BLOCK_PADDING
1007 char padding[BLOCK_PADDING];
1008 #endif
1009 };
1010
1011 /* A bunch of consecutive aligned blocks. */
1012 struct ablocks
1013 {
1014 struct ablock blocks[ABLOCKS_SIZE];
1015 };
1016
1017 /* Size of the block requested from malloc or aligned_alloc. */
1018 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1019
1020 #define ABLOCK_ABASE(block) \
1021 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1022 ? (struct ablocks *)(block) \
1023 : (block)->abase)
1024
1025 /* Virtual `busy' field. */
1026 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1027
1028 /* Pointer to the (not necessarily aligned) malloc block. */
1029 #ifdef USE_ALIGNED_ALLOC
1030 #define ABLOCKS_BASE(abase) (abase)
1031 #else
1032 #define ABLOCKS_BASE(abase) \
1033 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1034 #endif
1035
1036 /* The list of free ablock. */
1037 static struct ablock *free_ablock;
1038
1039 /* Allocate an aligned block of nbytes.
1040 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1041 smaller or equal to BLOCK_BYTES. */
1042 static void *
1043 lisp_align_malloc (size_t nbytes, enum mem_type type)
1044 {
1045 void *base, *val;
1046 struct ablocks *abase;
1047
1048 eassert (nbytes <= BLOCK_BYTES);
1049
1050 MALLOC_BLOCK_INPUT;
1051
1052 #ifdef GC_MALLOC_CHECK
1053 allocated_mem_type = type;
1054 #endif
1055
1056 if (!free_ablock)
1057 {
1058 int i;
1059 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1060
1061 #ifdef DOUG_LEA_MALLOC
1062 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1063 because mapped region contents are not preserved in
1064 a dumped Emacs. */
1065 mallopt (M_MMAP_MAX, 0);
1066 #endif
1067
1068 #ifdef USE_ALIGNED_ALLOC
1069 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1070 #else
1071 base = malloc (ABLOCKS_BYTES);
1072 abase = ALIGN (base, BLOCK_ALIGN);
1073 #endif
1074
1075 if (base == 0)
1076 {
1077 MALLOC_UNBLOCK_INPUT;
1078 memory_full (ABLOCKS_BYTES);
1079 }
1080
1081 aligned = (base == abase);
1082 if (!aligned)
1083 ((void **) abase)[-1] = base;
1084
1085 #ifdef DOUG_LEA_MALLOC
1086 /* Back to a reasonable maximum of mmap'ed areas. */
1087 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1088 #endif
1089
1090 #if ! USE_LSB_TAG
1091 /* If the memory just allocated cannot be addressed thru a Lisp
1092 object's pointer, and it needs to be, that's equivalent to
1093 running out of memory. */
1094 if (type != MEM_TYPE_NON_LISP)
1095 {
1096 Lisp_Object tem;
1097 char *end = (char *) base + ABLOCKS_BYTES - 1;
1098 XSETCONS (tem, end);
1099 if ((char *) XCONS (tem) != end)
1100 {
1101 lisp_malloc_loser = base;
1102 free (base);
1103 MALLOC_UNBLOCK_INPUT;
1104 memory_full (SIZE_MAX);
1105 }
1106 }
1107 #endif
1108
1109 /* Initialize the blocks and put them on the free list.
1110 If `base' was not properly aligned, we can't use the last block. */
1111 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1112 {
1113 abase->blocks[i].abase = abase;
1114 abase->blocks[i].x.next_free = free_ablock;
1115 free_ablock = &abase->blocks[i];
1116 }
1117 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1118
1119 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1120 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1121 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1122 eassert (ABLOCKS_BASE (abase) == base);
1123 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1124 }
1125
1126 abase = ABLOCK_ABASE (free_ablock);
1127 ABLOCKS_BUSY (abase) =
1128 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1129 val = free_ablock;
1130 free_ablock = free_ablock->x.next_free;
1131
1132 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1133 if (type != MEM_TYPE_NON_LISP)
1134 mem_insert (val, (char *) val + nbytes, type);
1135 #endif
1136
1137 MALLOC_UNBLOCK_INPUT;
1138
1139 MALLOC_PROBE (nbytes);
1140
1141 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1142 return val;
1143 }
1144
1145 static void
1146 lisp_align_free (void *block)
1147 {
1148 struct ablock *ablock = block;
1149 struct ablocks *abase = ABLOCK_ABASE (ablock);
1150
1151 MALLOC_BLOCK_INPUT;
1152 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1153 mem_delete (mem_find (block));
1154 #endif
1155 /* Put on free list. */
1156 ablock->x.next_free = free_ablock;
1157 free_ablock = ablock;
1158 /* Update busy count. */
1159 ABLOCKS_BUSY (abase)
1160 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1161
1162 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1163 { /* All the blocks are free. */
1164 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1165 struct ablock **tem = &free_ablock;
1166 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1167
1168 while (*tem)
1169 {
1170 if (*tem >= (struct ablock *) abase && *tem < atop)
1171 {
1172 i++;
1173 *tem = (*tem)->x.next_free;
1174 }
1175 else
1176 tem = &(*tem)->x.next_free;
1177 }
1178 eassert ((aligned & 1) == aligned);
1179 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1180 #ifdef USE_POSIX_MEMALIGN
1181 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1182 #endif
1183 free (ABLOCKS_BASE (abase));
1184 }
1185 MALLOC_UNBLOCK_INPUT;
1186 }
1187
1188 \f
1189 /***********************************************************************
1190 Interval Allocation
1191 ***********************************************************************/
1192
1193 /* Number of intervals allocated in an interval_block structure.
1194 The 1020 is 1024 minus malloc overhead. */
1195
1196 #define INTERVAL_BLOCK_SIZE \
1197 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1198
1199 /* Intervals are allocated in chunks in the form of an interval_block
1200 structure. */
1201
1202 struct interval_block
1203 {
1204 /* Place `intervals' first, to preserve alignment. */
1205 struct interval intervals[INTERVAL_BLOCK_SIZE];
1206 struct interval_block *next;
1207 };
1208
1209 /* Current interval block. Its `next' pointer points to older
1210 blocks. */
1211
1212 static struct interval_block *interval_block;
1213
1214 /* Index in interval_block above of the next unused interval
1215 structure. */
1216
1217 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1218
1219 /* Number of free and live intervals. */
1220
1221 static EMACS_INT total_free_intervals, total_intervals;
1222
1223 /* List of free intervals. */
1224
1225 static INTERVAL interval_free_list;
1226
1227 /* Return a new interval. */
1228
1229 INTERVAL
1230 make_interval (void)
1231 {
1232 INTERVAL val;
1233
1234 MALLOC_BLOCK_INPUT;
1235
1236 if (interval_free_list)
1237 {
1238 val = interval_free_list;
1239 interval_free_list = INTERVAL_PARENT (interval_free_list);
1240 }
1241 else
1242 {
1243 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1244 {
1245 struct interval_block *newi
1246 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1247
1248 newi->next = interval_block;
1249 interval_block = newi;
1250 interval_block_index = 0;
1251 total_free_intervals += INTERVAL_BLOCK_SIZE;
1252 }
1253 val = &interval_block->intervals[interval_block_index++];
1254 }
1255
1256 MALLOC_UNBLOCK_INPUT;
1257
1258 consing_since_gc += sizeof (struct interval);
1259 intervals_consed++;
1260 total_free_intervals--;
1261 RESET_INTERVAL (val);
1262 val->gcmarkbit = 0;
1263 return val;
1264 }
1265
1266
1267 /* Mark Lisp objects in interval I. */
1268
1269 static void
1270 mark_interval (register INTERVAL i, Lisp_Object dummy)
1271 {
1272 /* Intervals should never be shared. So, if extra internal checking is
1273 enabled, GC aborts if it seems to have visited an interval twice. */
1274 eassert (!i->gcmarkbit);
1275 i->gcmarkbit = 1;
1276 mark_object (i->plist);
1277 }
1278
1279 /* Mark the interval tree rooted in I. */
1280
1281 #define MARK_INTERVAL_TREE(i) \
1282 do { \
1283 if (i && !i->gcmarkbit) \
1284 traverse_intervals_noorder (i, mark_interval, Qnil); \
1285 } while (0)
1286
1287 /***********************************************************************
1288 String Allocation
1289 ***********************************************************************/
1290
1291 /* Lisp_Strings are allocated in string_block structures. When a new
1292 string_block is allocated, all the Lisp_Strings it contains are
1293 added to a free-list string_free_list. When a new Lisp_String is
1294 needed, it is taken from that list. During the sweep phase of GC,
1295 string_blocks that are entirely free are freed, except two which
1296 we keep.
1297
1298 String data is allocated from sblock structures. Strings larger
1299 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1300 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1301
1302 Sblocks consist internally of sdata structures, one for each
1303 Lisp_String. The sdata structure points to the Lisp_String it
1304 belongs to. The Lisp_String points back to the `u.data' member of
1305 its sdata structure.
1306
1307 When a Lisp_String is freed during GC, it is put back on
1308 string_free_list, and its `data' member and its sdata's `string'
1309 pointer is set to null. The size of the string is recorded in the
1310 `n.nbytes' member of the sdata. So, sdata structures that are no
1311 longer used, can be easily recognized, and it's easy to compact the
1312 sblocks of small strings which we do in compact_small_strings. */
1313
1314 /* Size in bytes of an sblock structure used for small strings. This
1315 is 8192 minus malloc overhead. */
1316
1317 #define SBLOCK_SIZE 8188
1318
1319 /* Strings larger than this are considered large strings. String data
1320 for large strings is allocated from individual sblocks. */
1321
1322 #define LARGE_STRING_BYTES 1024
1323
1324 /* The SDATA typedef is a struct or union describing string memory
1325 sub-allocated from an sblock. This is where the contents of Lisp
1326 strings are stored. */
1327
1328 struct sdata
1329 {
1330 /* Back-pointer to the string this sdata belongs to. If null, this
1331 structure is free, and NBYTES (in this structure or in the union below)
1332 contains the string's byte size (the same value that STRING_BYTES
1333 would return if STRING were non-null). If non-null, STRING_BYTES
1334 (STRING) is the size of the data, and DATA contains the string's
1335 contents. */
1336 struct Lisp_String *string;
1337
1338 #ifdef GC_CHECK_STRING_BYTES
1339 ptrdiff_t nbytes;
1340 #endif
1341
1342 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1343 };
1344
1345 #ifdef GC_CHECK_STRING_BYTES
1346
1347 typedef struct sdata sdata;
1348 #define SDATA_NBYTES(S) (S)->nbytes
1349 #define SDATA_DATA(S) (S)->data
1350
1351 #else
1352
1353 typedef union
1354 {
1355 struct Lisp_String *string;
1356
1357 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1358 which has a flexible array member. However, if implemented by
1359 giving this union a member of type 'struct sdata', the union
1360 could not be the last (flexible) member of 'struct sblock',
1361 because C99 prohibits a flexible array member from having a type
1362 that is itself a flexible array. So, comment this member out here,
1363 but remember that the option's there when using this union. */
1364 #if 0
1365 struct sdata u;
1366 #endif
1367
1368 /* When STRING is null. */
1369 struct
1370 {
1371 struct Lisp_String *string;
1372 ptrdiff_t nbytes;
1373 } n;
1374 } sdata;
1375
1376 #define SDATA_NBYTES(S) (S)->n.nbytes
1377 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1378
1379 #endif /* not GC_CHECK_STRING_BYTES */
1380
1381 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1382
1383 /* Structure describing a block of memory which is sub-allocated to
1384 obtain string data memory for strings. Blocks for small strings
1385 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1386 as large as needed. */
1387
1388 struct sblock
1389 {
1390 /* Next in list. */
1391 struct sblock *next;
1392
1393 /* Pointer to the next free sdata block. This points past the end
1394 of the sblock if there isn't any space left in this block. */
1395 sdata *next_free;
1396
1397 /* String data. */
1398 sdata data[FLEXIBLE_ARRAY_MEMBER];
1399 };
1400
1401 /* Number of Lisp strings in a string_block structure. The 1020 is
1402 1024 minus malloc overhead. */
1403
1404 #define STRING_BLOCK_SIZE \
1405 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1406
1407 /* Structure describing a block from which Lisp_String structures
1408 are allocated. */
1409
1410 struct string_block
1411 {
1412 /* Place `strings' first, to preserve alignment. */
1413 struct Lisp_String strings[STRING_BLOCK_SIZE];
1414 struct string_block *next;
1415 };
1416
1417 /* Head and tail of the list of sblock structures holding Lisp string
1418 data. We always allocate from current_sblock. The NEXT pointers
1419 in the sblock structures go from oldest_sblock to current_sblock. */
1420
1421 static struct sblock *oldest_sblock, *current_sblock;
1422
1423 /* List of sblocks for large strings. */
1424
1425 static struct sblock *large_sblocks;
1426
1427 /* List of string_block structures. */
1428
1429 static struct string_block *string_blocks;
1430
1431 /* Free-list of Lisp_Strings. */
1432
1433 static struct Lisp_String *string_free_list;
1434
1435 /* Number of live and free Lisp_Strings. */
1436
1437 static EMACS_INT total_strings, total_free_strings;
1438
1439 /* Number of bytes used by live strings. */
1440
1441 static EMACS_INT total_string_bytes;
1442
1443 /* Given a pointer to a Lisp_String S which is on the free-list
1444 string_free_list, return a pointer to its successor in the
1445 free-list. */
1446
1447 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1448
1449 /* Return a pointer to the sdata structure belonging to Lisp string S.
1450 S must be live, i.e. S->data must not be null. S->data is actually
1451 a pointer to the `u.data' member of its sdata structure; the
1452 structure starts at a constant offset in front of that. */
1453
1454 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1455
1456
1457 #ifdef GC_CHECK_STRING_OVERRUN
1458
1459 /* We check for overrun in string data blocks by appending a small
1460 "cookie" after each allocated string data block, and check for the
1461 presence of this cookie during GC. */
1462
1463 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1464 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1465 { '\xde', '\xad', '\xbe', '\xef' };
1466
1467 #else
1468 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1469 #endif
1470
1471 /* Value is the size of an sdata structure large enough to hold NBYTES
1472 bytes of string data. The value returned includes a terminating
1473 NUL byte, the size of the sdata structure, and padding. */
1474
1475 #ifdef GC_CHECK_STRING_BYTES
1476
1477 #define SDATA_SIZE(NBYTES) \
1478 ((SDATA_DATA_OFFSET \
1479 + (NBYTES) + 1 \
1480 + sizeof (ptrdiff_t) - 1) \
1481 & ~(sizeof (ptrdiff_t) - 1))
1482
1483 #else /* not GC_CHECK_STRING_BYTES */
1484
1485 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1486 less than the size of that member. The 'max' is not needed when
1487 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1488 alignment code reserves enough space. */
1489
1490 #define SDATA_SIZE(NBYTES) \
1491 ((SDATA_DATA_OFFSET \
1492 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1493 ? NBYTES \
1494 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1495 + 1 \
1496 + sizeof (ptrdiff_t) - 1) \
1497 & ~(sizeof (ptrdiff_t) - 1))
1498
1499 #endif /* not GC_CHECK_STRING_BYTES */
1500
1501 /* Extra bytes to allocate for each string. */
1502
1503 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1504
1505 /* Exact bound on the number of bytes in a string, not counting the
1506 terminating null. A string cannot contain more bytes than
1507 STRING_BYTES_BOUND, nor can it be so long that the size_t
1508 arithmetic in allocate_string_data would overflow while it is
1509 calculating a value to be passed to malloc. */
1510 static ptrdiff_t const STRING_BYTES_MAX =
1511 min (STRING_BYTES_BOUND,
1512 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1513 - GC_STRING_EXTRA
1514 - offsetof (struct sblock, data)
1515 - SDATA_DATA_OFFSET)
1516 & ~(sizeof (EMACS_INT) - 1)));
1517
1518 /* Initialize string allocation. Called from init_alloc_once. */
1519
1520 static void
1521 init_strings (void)
1522 {
1523 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1524 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1525 }
1526
1527
1528 #ifdef GC_CHECK_STRING_BYTES
1529
1530 static int check_string_bytes_count;
1531
1532 /* Like STRING_BYTES, but with debugging check. Can be
1533 called during GC, so pay attention to the mark bit. */
1534
1535 ptrdiff_t
1536 string_bytes (struct Lisp_String *s)
1537 {
1538 ptrdiff_t nbytes =
1539 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1540
1541 if (!PURE_POINTER_P (s)
1542 && s->data
1543 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1544 emacs_abort ();
1545 return nbytes;
1546 }
1547
1548 /* Check validity of Lisp strings' string_bytes member in B. */
1549
1550 static void
1551 check_sblock (struct sblock *b)
1552 {
1553 sdata *from, *end, *from_end;
1554
1555 end = b->next_free;
1556
1557 for (from = b->data; from < end; from = from_end)
1558 {
1559 /* Compute the next FROM here because copying below may
1560 overwrite data we need to compute it. */
1561 ptrdiff_t nbytes;
1562
1563 /* Check that the string size recorded in the string is the
1564 same as the one recorded in the sdata structure. */
1565 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1566 : SDATA_NBYTES (from));
1567 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1568 }
1569 }
1570
1571
1572 /* Check validity of Lisp strings' string_bytes member. ALL_P
1573 means check all strings, otherwise check only most
1574 recently allocated strings. Used for hunting a bug. */
1575
1576 static void
1577 check_string_bytes (bool all_p)
1578 {
1579 if (all_p)
1580 {
1581 struct sblock *b;
1582
1583 for (b = large_sblocks; b; b = b->next)
1584 {
1585 struct Lisp_String *s = b->data[0].string;
1586 if (s)
1587 string_bytes (s);
1588 }
1589
1590 for (b = oldest_sblock; b; b = b->next)
1591 check_sblock (b);
1592 }
1593 else if (current_sblock)
1594 check_sblock (current_sblock);
1595 }
1596
1597 #else /* not GC_CHECK_STRING_BYTES */
1598
1599 #define check_string_bytes(all) ((void) 0)
1600
1601 #endif /* GC_CHECK_STRING_BYTES */
1602
1603 #ifdef GC_CHECK_STRING_FREE_LIST
1604
1605 /* Walk through the string free list looking for bogus next pointers.
1606 This may catch buffer overrun from a previous string. */
1607
1608 static void
1609 check_string_free_list (void)
1610 {
1611 struct Lisp_String *s;
1612
1613 /* Pop a Lisp_String off the free-list. */
1614 s = string_free_list;
1615 while (s != NULL)
1616 {
1617 if ((uintptr_t) s < 1024)
1618 emacs_abort ();
1619 s = NEXT_FREE_LISP_STRING (s);
1620 }
1621 }
1622 #else
1623 #define check_string_free_list()
1624 #endif
1625
1626 /* Return a new Lisp_String. */
1627
1628 static struct Lisp_String *
1629 allocate_string (void)
1630 {
1631 struct Lisp_String *s;
1632
1633 MALLOC_BLOCK_INPUT;
1634
1635 /* If the free-list is empty, allocate a new string_block, and
1636 add all the Lisp_Strings in it to the free-list. */
1637 if (string_free_list == NULL)
1638 {
1639 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1640 int i;
1641
1642 b->next = string_blocks;
1643 string_blocks = b;
1644
1645 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1646 {
1647 s = b->strings + i;
1648 /* Every string on a free list should have NULL data pointer. */
1649 s->data = NULL;
1650 NEXT_FREE_LISP_STRING (s) = string_free_list;
1651 string_free_list = s;
1652 }
1653
1654 total_free_strings += STRING_BLOCK_SIZE;
1655 }
1656
1657 check_string_free_list ();
1658
1659 /* Pop a Lisp_String off the free-list. */
1660 s = string_free_list;
1661 string_free_list = NEXT_FREE_LISP_STRING (s);
1662
1663 MALLOC_UNBLOCK_INPUT;
1664
1665 --total_free_strings;
1666 ++total_strings;
1667 ++strings_consed;
1668 consing_since_gc += sizeof *s;
1669
1670 #ifdef GC_CHECK_STRING_BYTES
1671 if (!noninteractive)
1672 {
1673 if (++check_string_bytes_count == 200)
1674 {
1675 check_string_bytes_count = 0;
1676 check_string_bytes (1);
1677 }
1678 else
1679 check_string_bytes (0);
1680 }
1681 #endif /* GC_CHECK_STRING_BYTES */
1682
1683 return s;
1684 }
1685
1686
1687 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1688 plus a NUL byte at the end. Allocate an sdata structure for S, and
1689 set S->data to its `u.data' member. Store a NUL byte at the end of
1690 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1691 S->data if it was initially non-null. */
1692
1693 void
1694 allocate_string_data (struct Lisp_String *s,
1695 EMACS_INT nchars, EMACS_INT nbytes)
1696 {
1697 sdata *data, *old_data;
1698 struct sblock *b;
1699 ptrdiff_t needed, old_nbytes;
1700
1701 if (STRING_BYTES_MAX < nbytes)
1702 string_overflow ();
1703
1704 /* Determine the number of bytes needed to store NBYTES bytes
1705 of string data. */
1706 needed = SDATA_SIZE (nbytes);
1707 if (s->data)
1708 {
1709 old_data = SDATA_OF_STRING (s);
1710 old_nbytes = STRING_BYTES (s);
1711 }
1712 else
1713 old_data = NULL;
1714
1715 MALLOC_BLOCK_INPUT;
1716
1717 if (nbytes > LARGE_STRING_BYTES)
1718 {
1719 size_t size = offsetof (struct sblock, data) + needed;
1720
1721 #ifdef DOUG_LEA_MALLOC
1722 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1723 because mapped region contents are not preserved in
1724 a dumped Emacs.
1725
1726 In case you think of allowing it in a dumped Emacs at the
1727 cost of not being able to re-dump, there's another reason:
1728 mmap'ed data typically have an address towards the top of the
1729 address space, which won't fit into an EMACS_INT (at least on
1730 32-bit systems with the current tagging scheme). --fx */
1731 mallopt (M_MMAP_MAX, 0);
1732 #endif
1733
1734 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1735
1736 #ifdef DOUG_LEA_MALLOC
1737 /* Back to a reasonable maximum of mmap'ed areas. */
1738 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1739 #endif
1740
1741 b->next_free = b->data;
1742 b->data[0].string = NULL;
1743 b->next = large_sblocks;
1744 large_sblocks = b;
1745 }
1746 else if (current_sblock == NULL
1747 || (((char *) current_sblock + SBLOCK_SIZE
1748 - (char *) current_sblock->next_free)
1749 < (needed + GC_STRING_EXTRA)))
1750 {
1751 /* Not enough room in the current sblock. */
1752 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1753 b->next_free = b->data;
1754 b->data[0].string = NULL;
1755 b->next = NULL;
1756
1757 if (current_sblock)
1758 current_sblock->next = b;
1759 else
1760 oldest_sblock = b;
1761 current_sblock = b;
1762 }
1763 else
1764 b = current_sblock;
1765
1766 data = b->next_free;
1767 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1768
1769 MALLOC_UNBLOCK_INPUT;
1770
1771 data->string = s;
1772 s->data = SDATA_DATA (data);
1773 #ifdef GC_CHECK_STRING_BYTES
1774 SDATA_NBYTES (data) = nbytes;
1775 #endif
1776 s->size = nchars;
1777 s->size_byte = nbytes;
1778 s->data[nbytes] = '\0';
1779 #ifdef GC_CHECK_STRING_OVERRUN
1780 memcpy ((char *) data + needed, string_overrun_cookie,
1781 GC_STRING_OVERRUN_COOKIE_SIZE);
1782 #endif
1783
1784 /* Note that Faset may call to this function when S has already data
1785 assigned. In this case, mark data as free by setting it's string
1786 back-pointer to null, and record the size of the data in it. */
1787 if (old_data)
1788 {
1789 SDATA_NBYTES (old_data) = old_nbytes;
1790 old_data->string = NULL;
1791 }
1792
1793 consing_since_gc += needed;
1794 }
1795
1796
1797 /* Sweep and compact strings. */
1798
1799 static void
1800 sweep_strings (void)
1801 {
1802 struct string_block *b, *next;
1803 struct string_block *live_blocks = NULL;
1804
1805 string_free_list = NULL;
1806 total_strings = total_free_strings = 0;
1807 total_string_bytes = 0;
1808
1809 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1810 for (b = string_blocks; b; b = next)
1811 {
1812 int i, nfree = 0;
1813 struct Lisp_String *free_list_before = string_free_list;
1814
1815 next = b->next;
1816
1817 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1818 {
1819 struct Lisp_String *s = b->strings + i;
1820
1821 if (s->data)
1822 {
1823 /* String was not on free-list before. */
1824 if (STRING_MARKED_P (s))
1825 {
1826 /* String is live; unmark it and its intervals. */
1827 UNMARK_STRING (s);
1828
1829 /* Do not use string_(set|get)_intervals here. */
1830 s->intervals = balance_intervals (s->intervals);
1831
1832 ++total_strings;
1833 total_string_bytes += STRING_BYTES (s);
1834 }
1835 else
1836 {
1837 /* String is dead. Put it on the free-list. */
1838 sdata *data = SDATA_OF_STRING (s);
1839
1840 /* Save the size of S in its sdata so that we know
1841 how large that is. Reset the sdata's string
1842 back-pointer so that we know it's free. */
1843 #ifdef GC_CHECK_STRING_BYTES
1844 if (string_bytes (s) != SDATA_NBYTES (data))
1845 emacs_abort ();
1846 #else
1847 data->n.nbytes = STRING_BYTES (s);
1848 #endif
1849 data->string = NULL;
1850
1851 /* Reset the strings's `data' member so that we
1852 know it's free. */
1853 s->data = NULL;
1854
1855 /* Put the string on the free-list. */
1856 NEXT_FREE_LISP_STRING (s) = string_free_list;
1857 string_free_list = s;
1858 ++nfree;
1859 }
1860 }
1861 else
1862 {
1863 /* S was on the free-list before. Put it there again. */
1864 NEXT_FREE_LISP_STRING (s) = string_free_list;
1865 string_free_list = s;
1866 ++nfree;
1867 }
1868 }
1869
1870 /* Free blocks that contain free Lisp_Strings only, except
1871 the first two of them. */
1872 if (nfree == STRING_BLOCK_SIZE
1873 && total_free_strings > STRING_BLOCK_SIZE)
1874 {
1875 lisp_free (b);
1876 string_free_list = free_list_before;
1877 }
1878 else
1879 {
1880 total_free_strings += nfree;
1881 b->next = live_blocks;
1882 live_blocks = b;
1883 }
1884 }
1885
1886 check_string_free_list ();
1887
1888 string_blocks = live_blocks;
1889 free_large_strings ();
1890 compact_small_strings ();
1891
1892 check_string_free_list ();
1893 }
1894
1895
1896 /* Free dead large strings. */
1897
1898 static void
1899 free_large_strings (void)
1900 {
1901 struct sblock *b, *next;
1902 struct sblock *live_blocks = NULL;
1903
1904 for (b = large_sblocks; b; b = next)
1905 {
1906 next = b->next;
1907
1908 if (b->data[0].string == NULL)
1909 lisp_free (b);
1910 else
1911 {
1912 b->next = live_blocks;
1913 live_blocks = b;
1914 }
1915 }
1916
1917 large_sblocks = live_blocks;
1918 }
1919
1920
1921 /* Compact data of small strings. Free sblocks that don't contain
1922 data of live strings after compaction. */
1923
1924 static void
1925 compact_small_strings (void)
1926 {
1927 struct sblock *b, *tb, *next;
1928 sdata *from, *to, *end, *tb_end;
1929 sdata *to_end, *from_end;
1930
1931 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1932 to, and TB_END is the end of TB. */
1933 tb = oldest_sblock;
1934 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1935 to = tb->data;
1936
1937 /* Step through the blocks from the oldest to the youngest. We
1938 expect that old blocks will stabilize over time, so that less
1939 copying will happen this way. */
1940 for (b = oldest_sblock; b; b = b->next)
1941 {
1942 end = b->next_free;
1943 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1944
1945 for (from = b->data; from < end; from = from_end)
1946 {
1947 /* Compute the next FROM here because copying below may
1948 overwrite data we need to compute it. */
1949 ptrdiff_t nbytes;
1950 struct Lisp_String *s = from->string;
1951
1952 #ifdef GC_CHECK_STRING_BYTES
1953 /* Check that the string size recorded in the string is the
1954 same as the one recorded in the sdata structure. */
1955 if (s && string_bytes (s) != SDATA_NBYTES (from))
1956 emacs_abort ();
1957 #endif /* GC_CHECK_STRING_BYTES */
1958
1959 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1960 eassert (nbytes <= LARGE_STRING_BYTES);
1961
1962 nbytes = SDATA_SIZE (nbytes);
1963 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1964
1965 #ifdef GC_CHECK_STRING_OVERRUN
1966 if (memcmp (string_overrun_cookie,
1967 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1968 GC_STRING_OVERRUN_COOKIE_SIZE))
1969 emacs_abort ();
1970 #endif
1971
1972 /* Non-NULL S means it's alive. Copy its data. */
1973 if (s)
1974 {
1975 /* If TB is full, proceed with the next sblock. */
1976 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1977 if (to_end > tb_end)
1978 {
1979 tb->next_free = to;
1980 tb = tb->next;
1981 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1982 to = tb->data;
1983 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1984 }
1985
1986 /* Copy, and update the string's `data' pointer. */
1987 if (from != to)
1988 {
1989 eassert (tb != b || to < from);
1990 memmove (to, from, nbytes + GC_STRING_EXTRA);
1991 to->string->data = SDATA_DATA (to);
1992 }
1993
1994 /* Advance past the sdata we copied to. */
1995 to = to_end;
1996 }
1997 }
1998 }
1999
2000 /* The rest of the sblocks following TB don't contain live data, so
2001 we can free them. */
2002 for (b = tb->next; b; b = next)
2003 {
2004 next = b->next;
2005 lisp_free (b);
2006 }
2007
2008 tb->next_free = to;
2009 tb->next = NULL;
2010 current_sblock = tb;
2011 }
2012
2013 void
2014 string_overflow (void)
2015 {
2016 error ("Maximum string size exceeded");
2017 }
2018
2019 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2020 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2021 LENGTH must be an integer.
2022 INIT must be an integer that represents a character. */)
2023 (Lisp_Object length, Lisp_Object init)
2024 {
2025 register Lisp_Object val;
2026 int c;
2027 EMACS_INT nbytes;
2028
2029 CHECK_NATNUM (length);
2030 CHECK_CHARACTER (init);
2031
2032 c = XFASTINT (init);
2033 if (ASCII_CHAR_P (c))
2034 {
2035 nbytes = XINT (length);
2036 val = make_uninit_string (nbytes);
2037 memset (SDATA (val), c, nbytes);
2038 SDATA (val)[nbytes] = 0;
2039 }
2040 else
2041 {
2042 unsigned char str[MAX_MULTIBYTE_LENGTH];
2043 ptrdiff_t len = CHAR_STRING (c, str);
2044 EMACS_INT string_len = XINT (length);
2045 unsigned char *p, *beg, *end;
2046
2047 if (string_len > STRING_BYTES_MAX / len)
2048 string_overflow ();
2049 nbytes = len * string_len;
2050 val = make_uninit_multibyte_string (string_len, nbytes);
2051 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2052 {
2053 /* First time we just copy `str' to the data of `val'. */
2054 if (p == beg)
2055 memcpy (p, str, len);
2056 else
2057 {
2058 /* Next time we copy largest possible chunk from
2059 initialized to uninitialized part of `val'. */
2060 len = min (p - beg, end - p);
2061 memcpy (p, beg, len);
2062 }
2063 }
2064 *p = 0;
2065 }
2066
2067 return val;
2068 }
2069
2070 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2071 Return A. */
2072
2073 Lisp_Object
2074 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2075 {
2076 EMACS_INT nbits = bool_vector_size (a);
2077 if (0 < nbits)
2078 {
2079 unsigned char *data = bool_vector_uchar_data (a);
2080 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2081 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2082 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2083 memset (data, pattern, nbytes - 1);
2084 data[nbytes - 1] = pattern & last_mask;
2085 }
2086 return a;
2087 }
2088
2089 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2090
2091 Lisp_Object
2092 make_uninit_bool_vector (EMACS_INT nbits)
2093 {
2094 Lisp_Object val;
2095 EMACS_INT words = bool_vector_words (nbits);
2096 EMACS_INT word_bytes = words * sizeof (bits_word);
2097 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2098 + word_size - 1)
2099 / word_size);
2100 struct Lisp_Bool_Vector *p
2101 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2102 XSETVECTOR (val, p);
2103 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2104 p->size = nbits;
2105
2106 /* Clear padding at the end. */
2107 if (words)
2108 p->data[words - 1] = 0;
2109
2110 return val;
2111 }
2112
2113 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2114 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2115 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2116 (Lisp_Object length, Lisp_Object init)
2117 {
2118 Lisp_Object val;
2119
2120 CHECK_NATNUM (length);
2121 val = make_uninit_bool_vector (XFASTINT (length));
2122 return bool_vector_fill (val, init);
2123 }
2124
2125
2126 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2127 of characters from the contents. This string may be unibyte or
2128 multibyte, depending on the contents. */
2129
2130 Lisp_Object
2131 make_string (const char *contents, ptrdiff_t nbytes)
2132 {
2133 register Lisp_Object val;
2134 ptrdiff_t nchars, multibyte_nbytes;
2135
2136 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2137 &nchars, &multibyte_nbytes);
2138 if (nbytes == nchars || nbytes != multibyte_nbytes)
2139 /* CONTENTS contains no multibyte sequences or contains an invalid
2140 multibyte sequence. We must make unibyte string. */
2141 val = make_unibyte_string (contents, nbytes);
2142 else
2143 val = make_multibyte_string (contents, nchars, nbytes);
2144 return val;
2145 }
2146
2147
2148 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2149
2150 Lisp_Object
2151 make_unibyte_string (const char *contents, ptrdiff_t length)
2152 {
2153 register Lisp_Object val;
2154 val = make_uninit_string (length);
2155 memcpy (SDATA (val), contents, length);
2156 return val;
2157 }
2158
2159
2160 /* Make a multibyte string from NCHARS characters occupying NBYTES
2161 bytes at CONTENTS. */
2162
2163 Lisp_Object
2164 make_multibyte_string (const char *contents,
2165 ptrdiff_t nchars, ptrdiff_t nbytes)
2166 {
2167 register Lisp_Object val;
2168 val = make_uninit_multibyte_string (nchars, nbytes);
2169 memcpy (SDATA (val), contents, nbytes);
2170 return val;
2171 }
2172
2173
2174 /* Make a string from NCHARS characters occupying NBYTES bytes at
2175 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2176
2177 Lisp_Object
2178 make_string_from_bytes (const char *contents,
2179 ptrdiff_t nchars, ptrdiff_t nbytes)
2180 {
2181 register Lisp_Object val;
2182 val = make_uninit_multibyte_string (nchars, nbytes);
2183 memcpy (SDATA (val), contents, nbytes);
2184 if (SBYTES (val) == SCHARS (val))
2185 STRING_SET_UNIBYTE (val);
2186 return val;
2187 }
2188
2189
2190 /* Make a string from NCHARS characters occupying NBYTES bytes at
2191 CONTENTS. The argument MULTIBYTE controls whether to label the
2192 string as multibyte. If NCHARS is negative, it counts the number of
2193 characters by itself. */
2194
2195 Lisp_Object
2196 make_specified_string (const char *contents,
2197 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2198 {
2199 Lisp_Object val;
2200
2201 if (nchars < 0)
2202 {
2203 if (multibyte)
2204 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2205 nbytes);
2206 else
2207 nchars = nbytes;
2208 }
2209 val = make_uninit_multibyte_string (nchars, nbytes);
2210 memcpy (SDATA (val), contents, nbytes);
2211 if (!multibyte)
2212 STRING_SET_UNIBYTE (val);
2213 return val;
2214 }
2215
2216
2217 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2218 occupying LENGTH bytes. */
2219
2220 Lisp_Object
2221 make_uninit_string (EMACS_INT length)
2222 {
2223 Lisp_Object val;
2224
2225 if (!length)
2226 return empty_unibyte_string;
2227 val = make_uninit_multibyte_string (length, length);
2228 STRING_SET_UNIBYTE (val);
2229 return val;
2230 }
2231
2232
2233 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2234 which occupy NBYTES bytes. */
2235
2236 Lisp_Object
2237 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2238 {
2239 Lisp_Object string;
2240 struct Lisp_String *s;
2241
2242 if (nchars < 0)
2243 emacs_abort ();
2244 if (!nbytes)
2245 return empty_multibyte_string;
2246
2247 s = allocate_string ();
2248 s->intervals = NULL;
2249 allocate_string_data (s, nchars, nbytes);
2250 XSETSTRING (string, s);
2251 string_chars_consed += nbytes;
2252 return string;
2253 }
2254
2255 /* Print arguments to BUF according to a FORMAT, then return
2256 a Lisp_String initialized with the data from BUF. */
2257
2258 Lisp_Object
2259 make_formatted_string (char *buf, const char *format, ...)
2260 {
2261 va_list ap;
2262 int length;
2263
2264 va_start (ap, format);
2265 length = vsprintf (buf, format, ap);
2266 va_end (ap);
2267 return make_string (buf, length);
2268 }
2269
2270 \f
2271 /***********************************************************************
2272 Float Allocation
2273 ***********************************************************************/
2274
2275 /* We store float cells inside of float_blocks, allocating a new
2276 float_block with malloc whenever necessary. Float cells reclaimed
2277 by GC are put on a free list to be reallocated before allocating
2278 any new float cells from the latest float_block. */
2279
2280 #define FLOAT_BLOCK_SIZE \
2281 (((BLOCK_BYTES - sizeof (struct float_block *) \
2282 /* The compiler might add padding at the end. */ \
2283 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2284 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2285
2286 #define GETMARKBIT(block,n) \
2287 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2288 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2289 & 1)
2290
2291 #define SETMARKBIT(block,n) \
2292 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2293 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2294
2295 #define UNSETMARKBIT(block,n) \
2296 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2297 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2298
2299 #define FLOAT_BLOCK(fptr) \
2300 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2301
2302 #define FLOAT_INDEX(fptr) \
2303 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2304
2305 struct float_block
2306 {
2307 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2308 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2309 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2310 struct float_block *next;
2311 };
2312
2313 #define FLOAT_MARKED_P(fptr) \
2314 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2315
2316 #define FLOAT_MARK(fptr) \
2317 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2318
2319 #define FLOAT_UNMARK(fptr) \
2320 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2321
2322 /* Current float_block. */
2323
2324 static struct float_block *float_block;
2325
2326 /* Index of first unused Lisp_Float in the current float_block. */
2327
2328 static int float_block_index = FLOAT_BLOCK_SIZE;
2329
2330 /* Free-list of Lisp_Floats. */
2331
2332 static struct Lisp_Float *float_free_list;
2333
2334 /* Return a new float object with value FLOAT_VALUE. */
2335
2336 Lisp_Object
2337 make_float (double float_value)
2338 {
2339 register Lisp_Object val;
2340
2341 MALLOC_BLOCK_INPUT;
2342
2343 if (float_free_list)
2344 {
2345 /* We use the data field for chaining the free list
2346 so that we won't use the same field that has the mark bit. */
2347 XSETFLOAT (val, float_free_list);
2348 float_free_list = float_free_list->u.chain;
2349 }
2350 else
2351 {
2352 if (float_block_index == FLOAT_BLOCK_SIZE)
2353 {
2354 struct float_block *new
2355 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2356 new->next = float_block;
2357 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2358 float_block = new;
2359 float_block_index = 0;
2360 total_free_floats += FLOAT_BLOCK_SIZE;
2361 }
2362 XSETFLOAT (val, &float_block->floats[float_block_index]);
2363 float_block_index++;
2364 }
2365
2366 MALLOC_UNBLOCK_INPUT;
2367
2368 XFLOAT_INIT (val, float_value);
2369 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2370 consing_since_gc += sizeof (struct Lisp_Float);
2371 floats_consed++;
2372 total_free_floats--;
2373 return val;
2374 }
2375
2376
2377 \f
2378 /***********************************************************************
2379 Cons Allocation
2380 ***********************************************************************/
2381
2382 /* We store cons cells inside of cons_blocks, allocating a new
2383 cons_block with malloc whenever necessary. Cons cells reclaimed by
2384 GC are put on a free list to be reallocated before allocating
2385 any new cons cells from the latest cons_block. */
2386
2387 #define CONS_BLOCK_SIZE \
2388 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2389 /* The compiler might add padding at the end. */ \
2390 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2391 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2392
2393 #define CONS_BLOCK(fptr) \
2394 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2395
2396 #define CONS_INDEX(fptr) \
2397 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2398
2399 struct cons_block
2400 {
2401 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2402 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2403 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2404 struct cons_block *next;
2405 };
2406
2407 #define CONS_MARKED_P(fptr) \
2408 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2409
2410 #define CONS_MARK(fptr) \
2411 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2412
2413 #define CONS_UNMARK(fptr) \
2414 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2415
2416 /* Current cons_block. */
2417
2418 static struct cons_block *cons_block;
2419
2420 /* Index of first unused Lisp_Cons in the current block. */
2421
2422 static int cons_block_index = CONS_BLOCK_SIZE;
2423
2424 /* Free-list of Lisp_Cons structures. */
2425
2426 static struct Lisp_Cons *cons_free_list;
2427
2428 /* Explicitly free a cons cell by putting it on the free-list. */
2429
2430 void
2431 free_cons (struct Lisp_Cons *ptr)
2432 {
2433 ptr->u.chain = cons_free_list;
2434 #if GC_MARK_STACK
2435 ptr->car = Vdead;
2436 #endif
2437 cons_free_list = ptr;
2438 consing_since_gc -= sizeof *ptr;
2439 total_free_conses++;
2440 }
2441
2442 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2443 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2444 (Lisp_Object car, Lisp_Object cdr)
2445 {
2446 register Lisp_Object val;
2447
2448 MALLOC_BLOCK_INPUT;
2449
2450 if (cons_free_list)
2451 {
2452 /* We use the cdr for chaining the free list
2453 so that we won't use the same field that has the mark bit. */
2454 XSETCONS (val, cons_free_list);
2455 cons_free_list = cons_free_list->u.chain;
2456 }
2457 else
2458 {
2459 if (cons_block_index == CONS_BLOCK_SIZE)
2460 {
2461 struct cons_block *new
2462 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2463 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2464 new->next = cons_block;
2465 cons_block = new;
2466 cons_block_index = 0;
2467 total_free_conses += CONS_BLOCK_SIZE;
2468 }
2469 XSETCONS (val, &cons_block->conses[cons_block_index]);
2470 cons_block_index++;
2471 }
2472
2473 MALLOC_UNBLOCK_INPUT;
2474
2475 XSETCAR (val, car);
2476 XSETCDR (val, cdr);
2477 eassert (!CONS_MARKED_P (XCONS (val)));
2478 consing_since_gc += sizeof (struct Lisp_Cons);
2479 total_free_conses--;
2480 cons_cells_consed++;
2481 return val;
2482 }
2483
2484 #ifdef GC_CHECK_CONS_LIST
2485 /* Get an error now if there's any junk in the cons free list. */
2486 void
2487 check_cons_list (void)
2488 {
2489 struct Lisp_Cons *tail = cons_free_list;
2490
2491 while (tail)
2492 tail = tail->u.chain;
2493 }
2494 #endif
2495
2496 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2497
2498 Lisp_Object
2499 list1 (Lisp_Object arg1)
2500 {
2501 return Fcons (arg1, Qnil);
2502 }
2503
2504 Lisp_Object
2505 list2 (Lisp_Object arg1, Lisp_Object arg2)
2506 {
2507 return Fcons (arg1, Fcons (arg2, Qnil));
2508 }
2509
2510
2511 Lisp_Object
2512 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2513 {
2514 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2515 }
2516
2517
2518 Lisp_Object
2519 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2520 {
2521 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2522 }
2523
2524
2525 Lisp_Object
2526 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2527 {
2528 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2529 Fcons (arg5, Qnil)))));
2530 }
2531
2532 /* Make a list of COUNT Lisp_Objects, where ARG is the
2533 first one. Allocate conses from pure space if TYPE
2534 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2535
2536 Lisp_Object
2537 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2538 {
2539 va_list ap;
2540 ptrdiff_t i;
2541 Lisp_Object val, *objp;
2542
2543 /* Change to SAFE_ALLOCA if you hit this eassert. */
2544 eassert (count <= MAX_ALLOCA / word_size);
2545
2546 objp = alloca (count * word_size);
2547 objp[0] = arg;
2548 va_start (ap, arg);
2549 for (i = 1; i < count; i++)
2550 objp[i] = va_arg (ap, Lisp_Object);
2551 va_end (ap);
2552
2553 for (val = Qnil, i = count - 1; i >= 0; i--)
2554 {
2555 if (type == CONSTYPE_PURE)
2556 val = pure_cons (objp[i], val);
2557 else if (type == CONSTYPE_HEAP)
2558 val = Fcons (objp[i], val);
2559 else
2560 emacs_abort ();
2561 }
2562 return val;
2563 }
2564
2565 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2566 doc: /* Return a newly created list with specified arguments as elements.
2567 Any number of arguments, even zero arguments, are allowed.
2568 usage: (list &rest OBJECTS) */)
2569 (ptrdiff_t nargs, Lisp_Object *args)
2570 {
2571 register Lisp_Object val;
2572 val = Qnil;
2573
2574 while (nargs > 0)
2575 {
2576 nargs--;
2577 val = Fcons (args[nargs], val);
2578 }
2579 return val;
2580 }
2581
2582
2583 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2584 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2585 (register Lisp_Object length, Lisp_Object init)
2586 {
2587 register Lisp_Object val;
2588 register EMACS_INT size;
2589
2590 CHECK_NATNUM (length);
2591 size = XFASTINT (length);
2592
2593 val = Qnil;
2594 while (size > 0)
2595 {
2596 val = Fcons (init, val);
2597 --size;
2598
2599 if (size > 0)
2600 {
2601 val = Fcons (init, val);
2602 --size;
2603
2604 if (size > 0)
2605 {
2606 val = Fcons (init, val);
2607 --size;
2608
2609 if (size > 0)
2610 {
2611 val = Fcons (init, val);
2612 --size;
2613
2614 if (size > 0)
2615 {
2616 val = Fcons (init, val);
2617 --size;
2618 }
2619 }
2620 }
2621 }
2622
2623 QUIT;
2624 }
2625
2626 return val;
2627 }
2628
2629
2630 \f
2631 /***********************************************************************
2632 Vector Allocation
2633 ***********************************************************************/
2634
2635 /* Sometimes a vector's contents are merely a pointer internally used
2636 in vector allocation code. Usually you don't want to touch this. */
2637
2638 static struct Lisp_Vector *
2639 next_vector (struct Lisp_Vector *v)
2640 {
2641 return XUNTAG (v->contents[0], 0);
2642 }
2643
2644 static void
2645 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2646 {
2647 v->contents[0] = make_lisp_ptr (p, 0);
2648 }
2649
2650 /* This value is balanced well enough to avoid too much internal overhead
2651 for the most common cases; it's not required to be a power of two, but
2652 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2653
2654 #define VECTOR_BLOCK_SIZE 4096
2655
2656 enum
2657 {
2658 /* Alignment of struct Lisp_Vector objects. */
2659 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2660 USE_LSB_TAG ? GCALIGNMENT : 1),
2661
2662 /* Vector size requests are a multiple of this. */
2663 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2664 };
2665
2666 /* Verify assumptions described above. */
2667 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2668 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2669
2670 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2671 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2672 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2673 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2674
2675 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2676
2677 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2678
2679 /* Size of the minimal vector allocated from block. */
2680
2681 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2682
2683 /* Size of the largest vector allocated from block. */
2684
2685 #define VBLOCK_BYTES_MAX \
2686 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2687
2688 /* We maintain one free list for each possible block-allocated
2689 vector size, and this is the number of free lists we have. */
2690
2691 #define VECTOR_MAX_FREE_LIST_INDEX \
2692 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2693
2694 /* Common shortcut to advance vector pointer over a block data. */
2695
2696 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2697
2698 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2699
2700 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2701
2702 /* Common shortcut to setup vector on a free list. */
2703
2704 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2705 do { \
2706 (tmp) = ((nbytes - header_size) / word_size); \
2707 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2708 eassert ((nbytes) % roundup_size == 0); \
2709 (tmp) = VINDEX (nbytes); \
2710 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2711 set_next_vector (v, vector_free_lists[tmp]); \
2712 vector_free_lists[tmp] = (v); \
2713 total_free_vector_slots += (nbytes) / word_size; \
2714 } while (0)
2715
2716 /* This internal type is used to maintain the list of large vectors
2717 which are allocated at their own, e.g. outside of vector blocks.
2718
2719 struct large_vector itself cannot contain a struct Lisp_Vector, as
2720 the latter contains a flexible array member and C99 does not allow
2721 such structs to be nested. Instead, each struct large_vector
2722 object LV is followed by a struct Lisp_Vector, which is at offset
2723 large_vector_offset from LV, and whose address is therefore
2724 large_vector_vec (&LV). */
2725
2726 struct large_vector
2727 {
2728 struct large_vector *next;
2729 };
2730
2731 enum
2732 {
2733 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2734 };
2735
2736 static struct Lisp_Vector *
2737 large_vector_vec (struct large_vector *p)
2738 {
2739 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2740 }
2741
2742 /* This internal type is used to maintain an underlying storage
2743 for small vectors. */
2744
2745 struct vector_block
2746 {
2747 char data[VECTOR_BLOCK_BYTES];
2748 struct vector_block *next;
2749 };
2750
2751 /* Chain of vector blocks. */
2752
2753 static struct vector_block *vector_blocks;
2754
2755 /* Vector free lists, where NTH item points to a chain of free
2756 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2757
2758 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2759
2760 /* Singly-linked list of large vectors. */
2761
2762 static struct large_vector *large_vectors;
2763
2764 /* The only vector with 0 slots, allocated from pure space. */
2765
2766 Lisp_Object zero_vector;
2767
2768 /* Number of live vectors. */
2769
2770 static EMACS_INT total_vectors;
2771
2772 /* Total size of live and free vectors, in Lisp_Object units. */
2773
2774 static EMACS_INT total_vector_slots, total_free_vector_slots;
2775
2776 /* Get a new vector block. */
2777
2778 static struct vector_block *
2779 allocate_vector_block (void)
2780 {
2781 struct vector_block *block = xmalloc (sizeof *block);
2782
2783 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2784 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2785 MEM_TYPE_VECTOR_BLOCK);
2786 #endif
2787
2788 block->next = vector_blocks;
2789 vector_blocks = block;
2790 return block;
2791 }
2792
2793 /* Called once to initialize vector allocation. */
2794
2795 static void
2796 init_vectors (void)
2797 {
2798 zero_vector = make_pure_vector (0);
2799 }
2800
2801 /* Allocate vector from a vector block. */
2802
2803 static struct Lisp_Vector *
2804 allocate_vector_from_block (size_t nbytes)
2805 {
2806 struct Lisp_Vector *vector;
2807 struct vector_block *block;
2808 size_t index, restbytes;
2809
2810 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2811 eassert (nbytes % roundup_size == 0);
2812
2813 /* First, try to allocate from a free list
2814 containing vectors of the requested size. */
2815 index = VINDEX (nbytes);
2816 if (vector_free_lists[index])
2817 {
2818 vector = vector_free_lists[index];
2819 vector_free_lists[index] = next_vector (vector);
2820 total_free_vector_slots -= nbytes / word_size;
2821 return vector;
2822 }
2823
2824 /* Next, check free lists containing larger vectors. Since
2825 we will split the result, we should have remaining space
2826 large enough to use for one-slot vector at least. */
2827 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2828 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2829 if (vector_free_lists[index])
2830 {
2831 /* This vector is larger than requested. */
2832 vector = vector_free_lists[index];
2833 vector_free_lists[index] = next_vector (vector);
2834 total_free_vector_slots -= nbytes / word_size;
2835
2836 /* Excess bytes are used for the smaller vector,
2837 which should be set on an appropriate free list. */
2838 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2839 eassert (restbytes % roundup_size == 0);
2840 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2841 return vector;
2842 }
2843
2844 /* Finally, need a new vector block. */
2845 block = allocate_vector_block ();
2846
2847 /* New vector will be at the beginning of this block. */
2848 vector = (struct Lisp_Vector *) block->data;
2849
2850 /* If the rest of space from this block is large enough
2851 for one-slot vector at least, set up it on a free list. */
2852 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2853 if (restbytes >= VBLOCK_BYTES_MIN)
2854 {
2855 eassert (restbytes % roundup_size == 0);
2856 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2857 }
2858 return vector;
2859 }
2860
2861 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2862
2863 #define VECTOR_IN_BLOCK(vector, block) \
2864 ((char *) (vector) <= (block)->data \
2865 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2866
2867 /* Return the memory footprint of V in bytes. */
2868
2869 static ptrdiff_t
2870 vector_nbytes (struct Lisp_Vector *v)
2871 {
2872 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2873 ptrdiff_t nwords;
2874
2875 if (size & PSEUDOVECTOR_FLAG)
2876 {
2877 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2878 {
2879 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2880 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2881 * sizeof (bits_word));
2882 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2883 verify (header_size <= bool_header_size);
2884 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2885 }
2886 else
2887 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2888 + ((size & PSEUDOVECTOR_REST_MASK)
2889 >> PSEUDOVECTOR_SIZE_BITS));
2890 }
2891 else
2892 nwords = size;
2893 return vroundup (header_size + word_size * nwords);
2894 }
2895
2896 /* Release extra resources still in use by VECTOR, which may be any
2897 vector-like object. For now, this is used just to free data in
2898 font objects. */
2899
2900 static void
2901 cleanup_vector (struct Lisp_Vector *vector)
2902 {
2903 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2904 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2905 == FONT_OBJECT_MAX))
2906 {
2907 /* Attempt to catch subtle bugs like Bug#16140. */
2908 eassert (valid_font_driver (((struct font *) vector)->driver));
2909 ((struct font *) vector)->driver->close ((struct font *) vector);
2910 }
2911 }
2912
2913 /* Reclaim space used by unmarked vectors. */
2914
2915 static void
2916 sweep_vectors (void)
2917 {
2918 struct vector_block *block, **bprev = &vector_blocks;
2919 struct large_vector *lv, **lvprev = &large_vectors;
2920 struct Lisp_Vector *vector, *next;
2921
2922 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2923 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2924
2925 /* Looking through vector blocks. */
2926
2927 for (block = vector_blocks; block; block = *bprev)
2928 {
2929 bool free_this_block = 0;
2930 ptrdiff_t nbytes;
2931
2932 for (vector = (struct Lisp_Vector *) block->data;
2933 VECTOR_IN_BLOCK (vector, block); vector = next)
2934 {
2935 if (VECTOR_MARKED_P (vector))
2936 {
2937 VECTOR_UNMARK (vector);
2938 total_vectors++;
2939 nbytes = vector_nbytes (vector);
2940 total_vector_slots += nbytes / word_size;
2941 next = ADVANCE (vector, nbytes);
2942 }
2943 else
2944 {
2945 ptrdiff_t total_bytes;
2946
2947 cleanup_vector (vector);
2948 nbytes = vector_nbytes (vector);
2949 total_bytes = nbytes;
2950 next = ADVANCE (vector, nbytes);
2951
2952 /* While NEXT is not marked, try to coalesce with VECTOR,
2953 thus making VECTOR of the largest possible size. */
2954
2955 while (VECTOR_IN_BLOCK (next, block))
2956 {
2957 if (VECTOR_MARKED_P (next))
2958 break;
2959 cleanup_vector (next);
2960 nbytes = vector_nbytes (next);
2961 total_bytes += nbytes;
2962 next = ADVANCE (next, nbytes);
2963 }
2964
2965 eassert (total_bytes % roundup_size == 0);
2966
2967 if (vector == (struct Lisp_Vector *) block->data
2968 && !VECTOR_IN_BLOCK (next, block))
2969 /* This block should be freed because all of it's
2970 space was coalesced into the only free vector. */
2971 free_this_block = 1;
2972 else
2973 {
2974 size_t tmp;
2975 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2976 }
2977 }
2978 }
2979
2980 if (free_this_block)
2981 {
2982 *bprev = block->next;
2983 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2984 mem_delete (mem_find (block->data));
2985 #endif
2986 xfree (block);
2987 }
2988 else
2989 bprev = &block->next;
2990 }
2991
2992 /* Sweep large vectors. */
2993
2994 for (lv = large_vectors; lv; lv = *lvprev)
2995 {
2996 vector = large_vector_vec (lv);
2997 if (VECTOR_MARKED_P (vector))
2998 {
2999 VECTOR_UNMARK (vector);
3000 total_vectors++;
3001 if (vector->header.size & PSEUDOVECTOR_FLAG)
3002 {
3003 /* All non-bool pseudovectors are small enough to be allocated
3004 from vector blocks. This code should be redesigned if some
3005 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3006 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3007 total_vector_slots += vector_nbytes (vector) / word_size;
3008 }
3009 else
3010 total_vector_slots
3011 += header_size / word_size + vector->header.size;
3012 lvprev = &lv->next;
3013 }
3014 else
3015 {
3016 *lvprev = lv->next;
3017 lisp_free (lv);
3018 }
3019 }
3020 }
3021
3022 /* Value is a pointer to a newly allocated Lisp_Vector structure
3023 with room for LEN Lisp_Objects. */
3024
3025 static struct Lisp_Vector *
3026 allocate_vectorlike (ptrdiff_t len)
3027 {
3028 struct Lisp_Vector *p;
3029
3030 MALLOC_BLOCK_INPUT;
3031
3032 if (len == 0)
3033 p = XVECTOR (zero_vector);
3034 else
3035 {
3036 size_t nbytes = header_size + len * word_size;
3037
3038 #ifdef DOUG_LEA_MALLOC
3039 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3040 because mapped region contents are not preserved in
3041 a dumped Emacs. */
3042 mallopt (M_MMAP_MAX, 0);
3043 #endif
3044
3045 if (nbytes <= VBLOCK_BYTES_MAX)
3046 p = allocate_vector_from_block (vroundup (nbytes));
3047 else
3048 {
3049 struct large_vector *lv
3050 = lisp_malloc ((large_vector_offset + header_size
3051 + len * word_size),
3052 MEM_TYPE_VECTORLIKE);
3053 lv->next = large_vectors;
3054 large_vectors = lv;
3055 p = large_vector_vec (lv);
3056 }
3057
3058 #ifdef DOUG_LEA_MALLOC
3059 /* Back to a reasonable maximum of mmap'ed areas. */
3060 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3061 #endif
3062
3063 consing_since_gc += nbytes;
3064 vector_cells_consed += len;
3065 }
3066
3067 MALLOC_UNBLOCK_INPUT;
3068
3069 return p;
3070 }
3071
3072
3073 /* Allocate a vector with LEN slots. */
3074
3075 struct Lisp_Vector *
3076 allocate_vector (EMACS_INT len)
3077 {
3078 struct Lisp_Vector *v;
3079 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3080
3081 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3082 memory_full (SIZE_MAX);
3083 v = allocate_vectorlike (len);
3084 v->header.size = len;
3085 return v;
3086 }
3087
3088
3089 /* Allocate other vector-like structures. */
3090
3091 struct Lisp_Vector *
3092 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3093 {
3094 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3095 int i;
3096
3097 /* Catch bogus values. */
3098 eassert (tag <= PVEC_FONT);
3099 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3100 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3101
3102 /* Only the first lisplen slots will be traced normally by the GC. */
3103 for (i = 0; i < lisplen; ++i)
3104 v->contents[i] = Qnil;
3105
3106 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3107 return v;
3108 }
3109
3110 struct buffer *
3111 allocate_buffer (void)
3112 {
3113 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3114
3115 BUFFER_PVEC_INIT (b);
3116 /* Put B on the chain of all buffers including killed ones. */
3117 b->next = all_buffers;
3118 all_buffers = b;
3119 /* Note that the rest fields of B are not initialized. */
3120 return b;
3121 }
3122
3123 struct Lisp_Hash_Table *
3124 allocate_hash_table (void)
3125 {
3126 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3127 }
3128
3129 struct window *
3130 allocate_window (void)
3131 {
3132 struct window *w;
3133
3134 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3135 /* Users assumes that non-Lisp data is zeroed. */
3136 memset (&w->current_matrix, 0,
3137 sizeof (*w) - offsetof (struct window, current_matrix));
3138 return w;
3139 }
3140
3141 struct terminal *
3142 allocate_terminal (void)
3143 {
3144 struct terminal *t;
3145
3146 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3147 /* Users assumes that non-Lisp data is zeroed. */
3148 memset (&t->next_terminal, 0,
3149 sizeof (*t) - offsetof (struct terminal, next_terminal));
3150 return t;
3151 }
3152
3153 struct frame *
3154 allocate_frame (void)
3155 {
3156 struct frame *f;
3157
3158 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3159 /* Users assumes that non-Lisp data is zeroed. */
3160 memset (&f->face_cache, 0,
3161 sizeof (*f) - offsetof (struct frame, face_cache));
3162 return f;
3163 }
3164
3165 struct Lisp_Process *
3166 allocate_process (void)
3167 {
3168 struct Lisp_Process *p;
3169
3170 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3171 /* Users assumes that non-Lisp data is zeroed. */
3172 memset (&p->pid, 0,
3173 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3174 return p;
3175 }
3176
3177 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3178 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3179 See also the function `vector'. */)
3180 (register Lisp_Object length, Lisp_Object init)
3181 {
3182 Lisp_Object vector;
3183 register ptrdiff_t sizei;
3184 register ptrdiff_t i;
3185 register struct Lisp_Vector *p;
3186
3187 CHECK_NATNUM (length);
3188
3189 p = allocate_vector (XFASTINT (length));
3190 sizei = XFASTINT (length);
3191 for (i = 0; i < sizei; i++)
3192 p->contents[i] = init;
3193
3194 XSETVECTOR (vector, p);
3195 return vector;
3196 }
3197
3198
3199 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3200 doc: /* Return a newly created vector with specified arguments as elements.
3201 Any number of arguments, even zero arguments, are allowed.
3202 usage: (vector &rest OBJECTS) */)
3203 (ptrdiff_t nargs, Lisp_Object *args)
3204 {
3205 ptrdiff_t i;
3206 register Lisp_Object val = make_uninit_vector (nargs);
3207 register struct Lisp_Vector *p = XVECTOR (val);
3208
3209 for (i = 0; i < nargs; i++)
3210 p->contents[i] = args[i];
3211 return val;
3212 }
3213
3214 void
3215 make_byte_code (struct Lisp_Vector *v)
3216 {
3217 /* Don't allow the global zero_vector to become a byte code object. */
3218 eassert (0 < v->header.size);
3219
3220 if (v->header.size > 1 && STRINGP (v->contents[1])
3221 && STRING_MULTIBYTE (v->contents[1]))
3222 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3223 earlier because they produced a raw 8-bit string for byte-code
3224 and now such a byte-code string is loaded as multibyte while
3225 raw 8-bit characters converted to multibyte form. Thus, now we
3226 must convert them back to the original unibyte form. */
3227 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3228 XSETPVECTYPE (v, PVEC_COMPILED);
3229 }
3230
3231 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3232 doc: /* Create a byte-code object with specified arguments as elements.
3233 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3234 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3235 and (optional) INTERACTIVE-SPEC.
3236 The first four arguments are required; at most six have any
3237 significance.
3238 The ARGLIST can be either like the one of `lambda', in which case the arguments
3239 will be dynamically bound before executing the byte code, or it can be an
3240 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3241 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3242 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3243 argument to catch the left-over arguments. If such an integer is used, the
3244 arguments will not be dynamically bound but will be instead pushed on the
3245 stack before executing the byte-code.
3246 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3247 (ptrdiff_t nargs, Lisp_Object *args)
3248 {
3249 ptrdiff_t i;
3250 register Lisp_Object val = make_uninit_vector (nargs);
3251 register struct Lisp_Vector *p = XVECTOR (val);
3252
3253 /* We used to purecopy everything here, if purify-flag was set. This worked
3254 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3255 dangerous, since make-byte-code is used during execution to build
3256 closures, so any closure built during the preload phase would end up
3257 copied into pure space, including its free variables, which is sometimes
3258 just wasteful and other times plainly wrong (e.g. those free vars may want
3259 to be setcar'd). */
3260
3261 for (i = 0; i < nargs; i++)
3262 p->contents[i] = args[i];
3263 make_byte_code (p);
3264 XSETCOMPILED (val, p);
3265 return val;
3266 }
3267
3268
3269 \f
3270 /***********************************************************************
3271 Symbol Allocation
3272 ***********************************************************************/
3273
3274 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3275 of the required alignment if LSB tags are used. */
3276
3277 union aligned_Lisp_Symbol
3278 {
3279 struct Lisp_Symbol s;
3280 #if USE_LSB_TAG
3281 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3282 & -GCALIGNMENT];
3283 #endif
3284 };
3285
3286 /* Each symbol_block is just under 1020 bytes long, since malloc
3287 really allocates in units of powers of two and uses 4 bytes for its
3288 own overhead. */
3289
3290 #define SYMBOL_BLOCK_SIZE \
3291 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3292
3293 struct symbol_block
3294 {
3295 /* Place `symbols' first, to preserve alignment. */
3296 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3297 struct symbol_block *next;
3298 };
3299
3300 /* Current symbol block and index of first unused Lisp_Symbol
3301 structure in it. */
3302
3303 static struct symbol_block *symbol_block;
3304 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3305
3306 /* List of free symbols. */
3307
3308 static struct Lisp_Symbol *symbol_free_list;
3309
3310 static void
3311 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3312 {
3313 XSYMBOL (sym)->name = name;
3314 }
3315
3316 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3317 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3318 Its value is void, and its function definition and property list are nil. */)
3319 (Lisp_Object name)
3320 {
3321 register Lisp_Object val;
3322 register struct Lisp_Symbol *p;
3323
3324 CHECK_STRING (name);
3325
3326 MALLOC_BLOCK_INPUT;
3327
3328 if (symbol_free_list)
3329 {
3330 XSETSYMBOL (val, symbol_free_list);
3331 symbol_free_list = symbol_free_list->next;
3332 }
3333 else
3334 {
3335 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3336 {
3337 struct symbol_block *new
3338 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3339 new->next = symbol_block;
3340 symbol_block = new;
3341 symbol_block_index = 0;
3342 total_free_symbols += SYMBOL_BLOCK_SIZE;
3343 }
3344 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3345 symbol_block_index++;
3346 }
3347
3348 MALLOC_UNBLOCK_INPUT;
3349
3350 p = XSYMBOL (val);
3351 set_symbol_name (val, name);
3352 set_symbol_plist (val, Qnil);
3353 p->redirect = SYMBOL_PLAINVAL;
3354 SET_SYMBOL_VAL (p, Qunbound);
3355 set_symbol_function (val, Qnil);
3356 set_symbol_next (val, NULL);
3357 p->gcmarkbit = 0;
3358 p->interned = SYMBOL_UNINTERNED;
3359 p->constant = 0;
3360 p->declared_special = 0;
3361 consing_since_gc += sizeof (struct Lisp_Symbol);
3362 symbols_consed++;
3363 total_free_symbols--;
3364 return val;
3365 }
3366
3367
3368 \f
3369 /***********************************************************************
3370 Marker (Misc) Allocation
3371 ***********************************************************************/
3372
3373 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3374 the required alignment when LSB tags are used. */
3375
3376 union aligned_Lisp_Misc
3377 {
3378 union Lisp_Misc m;
3379 #if USE_LSB_TAG
3380 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3381 & -GCALIGNMENT];
3382 #endif
3383 };
3384
3385 /* Allocation of markers and other objects that share that structure.
3386 Works like allocation of conses. */
3387
3388 #define MARKER_BLOCK_SIZE \
3389 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3390
3391 struct marker_block
3392 {
3393 /* Place `markers' first, to preserve alignment. */
3394 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3395 struct marker_block *next;
3396 };
3397
3398 static struct marker_block *marker_block;
3399 static int marker_block_index = MARKER_BLOCK_SIZE;
3400
3401 static union Lisp_Misc *marker_free_list;
3402
3403 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3404
3405 static Lisp_Object
3406 allocate_misc (enum Lisp_Misc_Type type)
3407 {
3408 Lisp_Object val;
3409
3410 MALLOC_BLOCK_INPUT;
3411
3412 if (marker_free_list)
3413 {
3414 XSETMISC (val, marker_free_list);
3415 marker_free_list = marker_free_list->u_free.chain;
3416 }
3417 else
3418 {
3419 if (marker_block_index == MARKER_BLOCK_SIZE)
3420 {
3421 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3422 new->next = marker_block;
3423 marker_block = new;
3424 marker_block_index = 0;
3425 total_free_markers += MARKER_BLOCK_SIZE;
3426 }
3427 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3428 marker_block_index++;
3429 }
3430
3431 MALLOC_UNBLOCK_INPUT;
3432
3433 --total_free_markers;
3434 consing_since_gc += sizeof (union Lisp_Misc);
3435 misc_objects_consed++;
3436 XMISCANY (val)->type = type;
3437 XMISCANY (val)->gcmarkbit = 0;
3438 return val;
3439 }
3440
3441 /* Free a Lisp_Misc object. */
3442
3443 void
3444 free_misc (Lisp_Object misc)
3445 {
3446 XMISCANY (misc)->type = Lisp_Misc_Free;
3447 XMISC (misc)->u_free.chain = marker_free_list;
3448 marker_free_list = XMISC (misc);
3449 consing_since_gc -= sizeof (union Lisp_Misc);
3450 total_free_markers++;
3451 }
3452
3453 /* Verify properties of Lisp_Save_Value's representation
3454 that are assumed here and elsewhere. */
3455
3456 verify (SAVE_UNUSED == 0);
3457 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3458 >> SAVE_SLOT_BITS)
3459 == 0);
3460
3461 /* Return Lisp_Save_Value objects for the various combinations
3462 that callers need. */
3463
3464 Lisp_Object
3465 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3466 {
3467 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3468 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3469 p->save_type = SAVE_TYPE_INT_INT_INT;
3470 p->data[0].integer = a;
3471 p->data[1].integer = b;
3472 p->data[2].integer = c;
3473 return val;
3474 }
3475
3476 Lisp_Object
3477 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3478 Lisp_Object d)
3479 {
3480 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3481 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3482 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3483 p->data[0].object = a;
3484 p->data[1].object = b;
3485 p->data[2].object = c;
3486 p->data[3].object = d;
3487 return val;
3488 }
3489
3490 Lisp_Object
3491 make_save_ptr (void *a)
3492 {
3493 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3494 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3495 p->save_type = SAVE_POINTER;
3496 p->data[0].pointer = a;
3497 return val;
3498 }
3499
3500 Lisp_Object
3501 make_save_ptr_int (void *a, ptrdiff_t b)
3502 {
3503 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3504 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3505 p->save_type = SAVE_TYPE_PTR_INT;
3506 p->data[0].pointer = a;
3507 p->data[1].integer = b;
3508 return val;
3509 }
3510
3511 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3512 Lisp_Object
3513 make_save_ptr_ptr (void *a, void *b)
3514 {
3515 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3516 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3517 p->save_type = SAVE_TYPE_PTR_PTR;
3518 p->data[0].pointer = a;
3519 p->data[1].pointer = b;
3520 return val;
3521 }
3522 #endif
3523
3524 Lisp_Object
3525 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3526 {
3527 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3528 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3529 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3530 p->data[0].funcpointer = a;
3531 p->data[1].pointer = b;
3532 p->data[2].object = c;
3533 return val;
3534 }
3535
3536 /* Return a Lisp_Save_Value object that represents an array A
3537 of N Lisp objects. */
3538
3539 Lisp_Object
3540 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3541 {
3542 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3543 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3544 p->save_type = SAVE_TYPE_MEMORY;
3545 p->data[0].pointer = a;
3546 p->data[1].integer = n;
3547 return val;
3548 }
3549
3550 /* Free a Lisp_Save_Value object. Do not use this function
3551 if SAVE contains pointer other than returned by xmalloc. */
3552
3553 void
3554 free_save_value (Lisp_Object save)
3555 {
3556 xfree (XSAVE_POINTER (save, 0));
3557 free_misc (save);
3558 }
3559
3560 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3561
3562 Lisp_Object
3563 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3564 {
3565 register Lisp_Object overlay;
3566
3567 overlay = allocate_misc (Lisp_Misc_Overlay);
3568 OVERLAY_START (overlay) = start;
3569 OVERLAY_END (overlay) = end;
3570 set_overlay_plist (overlay, plist);
3571 XOVERLAY (overlay)->next = NULL;
3572 return overlay;
3573 }
3574
3575 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3576 doc: /* Return a newly allocated marker which does not point at any place. */)
3577 (void)
3578 {
3579 register Lisp_Object val;
3580 register struct Lisp_Marker *p;
3581
3582 val = allocate_misc (Lisp_Misc_Marker);
3583 p = XMARKER (val);
3584 p->buffer = 0;
3585 p->bytepos = 0;
3586 p->charpos = 0;
3587 p->next = NULL;
3588 p->insertion_type = 0;
3589 p->need_adjustment = 0;
3590 return val;
3591 }
3592
3593 /* Return a newly allocated marker which points into BUF
3594 at character position CHARPOS and byte position BYTEPOS. */
3595
3596 Lisp_Object
3597 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3598 {
3599 Lisp_Object obj;
3600 struct Lisp_Marker *m;
3601
3602 /* No dead buffers here. */
3603 eassert (BUFFER_LIVE_P (buf));
3604
3605 /* Every character is at least one byte. */
3606 eassert (charpos <= bytepos);
3607
3608 obj = allocate_misc (Lisp_Misc_Marker);
3609 m = XMARKER (obj);
3610 m->buffer = buf;
3611 m->charpos = charpos;
3612 m->bytepos = bytepos;
3613 m->insertion_type = 0;
3614 m->need_adjustment = 0;
3615 m->next = BUF_MARKERS (buf);
3616 BUF_MARKERS (buf) = m;
3617 return obj;
3618 }
3619
3620 /* Put MARKER back on the free list after using it temporarily. */
3621
3622 void
3623 free_marker (Lisp_Object marker)
3624 {
3625 unchain_marker (XMARKER (marker));
3626 free_misc (marker);
3627 }
3628
3629 \f
3630 /* Return a newly created vector or string with specified arguments as
3631 elements. If all the arguments are characters that can fit
3632 in a string of events, make a string; otherwise, make a vector.
3633
3634 Any number of arguments, even zero arguments, are allowed. */
3635
3636 Lisp_Object
3637 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3638 {
3639 ptrdiff_t i;
3640
3641 for (i = 0; i < nargs; i++)
3642 /* The things that fit in a string
3643 are characters that are in 0...127,
3644 after discarding the meta bit and all the bits above it. */
3645 if (!INTEGERP (args[i])
3646 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3647 return Fvector (nargs, args);
3648
3649 /* Since the loop exited, we know that all the things in it are
3650 characters, so we can make a string. */
3651 {
3652 Lisp_Object result;
3653
3654 result = Fmake_string (make_number (nargs), make_number (0));
3655 for (i = 0; i < nargs; i++)
3656 {
3657 SSET (result, i, XINT (args[i]));
3658 /* Move the meta bit to the right place for a string char. */
3659 if (XINT (args[i]) & CHAR_META)
3660 SSET (result, i, SREF (result, i) | 0x80);
3661 }
3662
3663 return result;
3664 }
3665 }
3666
3667
3668 \f
3669 /************************************************************************
3670 Memory Full Handling
3671 ************************************************************************/
3672
3673
3674 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3675 there may have been size_t overflow so that malloc was never
3676 called, or perhaps malloc was invoked successfully but the
3677 resulting pointer had problems fitting into a tagged EMACS_INT. In
3678 either case this counts as memory being full even though malloc did
3679 not fail. */
3680
3681 void
3682 memory_full (size_t nbytes)
3683 {
3684 /* Do not go into hysterics merely because a large request failed. */
3685 bool enough_free_memory = 0;
3686 if (SPARE_MEMORY < nbytes)
3687 {
3688 void *p;
3689
3690 MALLOC_BLOCK_INPUT;
3691 p = malloc (SPARE_MEMORY);
3692 if (p)
3693 {
3694 free (p);
3695 enough_free_memory = 1;
3696 }
3697 MALLOC_UNBLOCK_INPUT;
3698 }
3699
3700 if (! enough_free_memory)
3701 {
3702 int i;
3703
3704 Vmemory_full = Qt;
3705
3706 memory_full_cons_threshold = sizeof (struct cons_block);
3707
3708 /* The first time we get here, free the spare memory. */
3709 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3710 if (spare_memory[i])
3711 {
3712 if (i == 0)
3713 free (spare_memory[i]);
3714 else if (i >= 1 && i <= 4)
3715 lisp_align_free (spare_memory[i]);
3716 else
3717 lisp_free (spare_memory[i]);
3718 spare_memory[i] = 0;
3719 }
3720 }
3721
3722 /* This used to call error, but if we've run out of memory, we could
3723 get infinite recursion trying to build the string. */
3724 xsignal (Qnil, Vmemory_signal_data);
3725 }
3726
3727 /* If we released our reserve (due to running out of memory),
3728 and we have a fair amount free once again,
3729 try to set aside another reserve in case we run out once more.
3730
3731 This is called when a relocatable block is freed in ralloc.c,
3732 and also directly from this file, in case we're not using ralloc.c. */
3733
3734 void
3735 refill_memory_reserve (void)
3736 {
3737 #ifndef SYSTEM_MALLOC
3738 if (spare_memory[0] == 0)
3739 spare_memory[0] = malloc (SPARE_MEMORY);
3740 if (spare_memory[1] == 0)
3741 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3742 MEM_TYPE_SPARE);
3743 if (spare_memory[2] == 0)
3744 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3745 MEM_TYPE_SPARE);
3746 if (spare_memory[3] == 0)
3747 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3748 MEM_TYPE_SPARE);
3749 if (spare_memory[4] == 0)
3750 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3751 MEM_TYPE_SPARE);
3752 if (spare_memory[5] == 0)
3753 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3754 MEM_TYPE_SPARE);
3755 if (spare_memory[6] == 0)
3756 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3757 MEM_TYPE_SPARE);
3758 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3759 Vmemory_full = Qnil;
3760 #endif
3761 }
3762 \f
3763 /************************************************************************
3764 C Stack Marking
3765 ************************************************************************/
3766
3767 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3768
3769 /* Conservative C stack marking requires a method to identify possibly
3770 live Lisp objects given a pointer value. We do this by keeping
3771 track of blocks of Lisp data that are allocated in a red-black tree
3772 (see also the comment of mem_node which is the type of nodes in
3773 that tree). Function lisp_malloc adds information for an allocated
3774 block to the red-black tree with calls to mem_insert, and function
3775 lisp_free removes it with mem_delete. Functions live_string_p etc
3776 call mem_find to lookup information about a given pointer in the
3777 tree, and use that to determine if the pointer points to a Lisp
3778 object or not. */
3779
3780 /* Initialize this part of alloc.c. */
3781
3782 static void
3783 mem_init (void)
3784 {
3785 mem_z.left = mem_z.right = MEM_NIL;
3786 mem_z.parent = NULL;
3787 mem_z.color = MEM_BLACK;
3788 mem_z.start = mem_z.end = NULL;
3789 mem_root = MEM_NIL;
3790 }
3791
3792
3793 /* Value is a pointer to the mem_node containing START. Value is
3794 MEM_NIL if there is no node in the tree containing START. */
3795
3796 static struct mem_node *
3797 mem_find (void *start)
3798 {
3799 struct mem_node *p;
3800
3801 if (start < min_heap_address || start > max_heap_address)
3802 return MEM_NIL;
3803
3804 /* Make the search always successful to speed up the loop below. */
3805 mem_z.start = start;
3806 mem_z.end = (char *) start + 1;
3807
3808 p = mem_root;
3809 while (start < p->start || start >= p->end)
3810 p = start < p->start ? p->left : p->right;
3811 return p;
3812 }
3813
3814
3815 /* Insert a new node into the tree for a block of memory with start
3816 address START, end address END, and type TYPE. Value is a
3817 pointer to the node that was inserted. */
3818
3819 static struct mem_node *
3820 mem_insert (void *start, void *end, enum mem_type type)
3821 {
3822 struct mem_node *c, *parent, *x;
3823
3824 if (min_heap_address == NULL || start < min_heap_address)
3825 min_heap_address = start;
3826 if (max_heap_address == NULL || end > max_heap_address)
3827 max_heap_address = end;
3828
3829 /* See where in the tree a node for START belongs. In this
3830 particular application, it shouldn't happen that a node is already
3831 present. For debugging purposes, let's check that. */
3832 c = mem_root;
3833 parent = NULL;
3834
3835 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3836
3837 while (c != MEM_NIL)
3838 {
3839 if (start >= c->start && start < c->end)
3840 emacs_abort ();
3841 parent = c;
3842 c = start < c->start ? c->left : c->right;
3843 }
3844
3845 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3846
3847 while (c != MEM_NIL)
3848 {
3849 parent = c;
3850 c = start < c->start ? c->left : c->right;
3851 }
3852
3853 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3854
3855 /* Create a new node. */
3856 #ifdef GC_MALLOC_CHECK
3857 x = malloc (sizeof *x);
3858 if (x == NULL)
3859 emacs_abort ();
3860 #else
3861 x = xmalloc (sizeof *x);
3862 #endif
3863 x->start = start;
3864 x->end = end;
3865 x->type = type;
3866 x->parent = parent;
3867 x->left = x->right = MEM_NIL;
3868 x->color = MEM_RED;
3869
3870 /* Insert it as child of PARENT or install it as root. */
3871 if (parent)
3872 {
3873 if (start < parent->start)
3874 parent->left = x;
3875 else
3876 parent->right = x;
3877 }
3878 else
3879 mem_root = x;
3880
3881 /* Re-establish red-black tree properties. */
3882 mem_insert_fixup (x);
3883
3884 return x;
3885 }
3886
3887
3888 /* Re-establish the red-black properties of the tree, and thereby
3889 balance the tree, after node X has been inserted; X is always red. */
3890
3891 static void
3892 mem_insert_fixup (struct mem_node *x)
3893 {
3894 while (x != mem_root && x->parent->color == MEM_RED)
3895 {
3896 /* X is red and its parent is red. This is a violation of
3897 red-black tree property #3. */
3898
3899 if (x->parent == x->parent->parent->left)
3900 {
3901 /* We're on the left side of our grandparent, and Y is our
3902 "uncle". */
3903 struct mem_node *y = x->parent->parent->right;
3904
3905 if (y->color == MEM_RED)
3906 {
3907 /* Uncle and parent are red but should be black because
3908 X is red. Change the colors accordingly and proceed
3909 with the grandparent. */
3910 x->parent->color = MEM_BLACK;
3911 y->color = MEM_BLACK;
3912 x->parent->parent->color = MEM_RED;
3913 x = x->parent->parent;
3914 }
3915 else
3916 {
3917 /* Parent and uncle have different colors; parent is
3918 red, uncle is black. */
3919 if (x == x->parent->right)
3920 {
3921 x = x->parent;
3922 mem_rotate_left (x);
3923 }
3924
3925 x->parent->color = MEM_BLACK;
3926 x->parent->parent->color = MEM_RED;
3927 mem_rotate_right (x->parent->parent);
3928 }
3929 }
3930 else
3931 {
3932 /* This is the symmetrical case of above. */
3933 struct mem_node *y = x->parent->parent->left;
3934
3935 if (y->color == MEM_RED)
3936 {
3937 x->parent->color = MEM_BLACK;
3938 y->color = MEM_BLACK;
3939 x->parent->parent->color = MEM_RED;
3940 x = x->parent->parent;
3941 }
3942 else
3943 {
3944 if (x == x->parent->left)
3945 {
3946 x = x->parent;
3947 mem_rotate_right (x);
3948 }
3949
3950 x->parent->color = MEM_BLACK;
3951 x->parent->parent->color = MEM_RED;
3952 mem_rotate_left (x->parent->parent);
3953 }
3954 }
3955 }
3956
3957 /* The root may have been changed to red due to the algorithm. Set
3958 it to black so that property #5 is satisfied. */
3959 mem_root->color = MEM_BLACK;
3960 }
3961
3962
3963 /* (x) (y)
3964 / \ / \
3965 a (y) ===> (x) c
3966 / \ / \
3967 b c a b */
3968
3969 static void
3970 mem_rotate_left (struct mem_node *x)
3971 {
3972 struct mem_node *y;
3973
3974 /* Turn y's left sub-tree into x's right sub-tree. */
3975 y = x->right;
3976 x->right = y->left;
3977 if (y->left != MEM_NIL)
3978 y->left->parent = x;
3979
3980 /* Y's parent was x's parent. */
3981 if (y != MEM_NIL)
3982 y->parent = x->parent;
3983
3984 /* Get the parent to point to y instead of x. */
3985 if (x->parent)
3986 {
3987 if (x == x->parent->left)
3988 x->parent->left = y;
3989 else
3990 x->parent->right = y;
3991 }
3992 else
3993 mem_root = y;
3994
3995 /* Put x on y's left. */
3996 y->left = x;
3997 if (x != MEM_NIL)
3998 x->parent = y;
3999 }
4000
4001
4002 /* (x) (Y)
4003 / \ / \
4004 (y) c ===> a (x)
4005 / \ / \
4006 a b b c */
4007
4008 static void
4009 mem_rotate_right (struct mem_node *x)
4010 {
4011 struct mem_node *y = x->left;
4012
4013 x->left = y->right;
4014 if (y->right != MEM_NIL)
4015 y->right->parent = x;
4016
4017 if (y != MEM_NIL)
4018 y->parent = x->parent;
4019 if (x->parent)
4020 {
4021 if (x == x->parent->right)
4022 x->parent->right = y;
4023 else
4024 x->parent->left = y;
4025 }
4026 else
4027 mem_root = y;
4028
4029 y->right = x;
4030 if (x != MEM_NIL)
4031 x->parent = y;
4032 }
4033
4034
4035 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4036
4037 static void
4038 mem_delete (struct mem_node *z)
4039 {
4040 struct mem_node *x, *y;
4041
4042 if (!z || z == MEM_NIL)
4043 return;
4044
4045 if (z->left == MEM_NIL || z->right == MEM_NIL)
4046 y = z;
4047 else
4048 {
4049 y = z->right;
4050 while (y->left != MEM_NIL)
4051 y = y->left;
4052 }
4053
4054 if (y->left != MEM_NIL)
4055 x = y->left;
4056 else
4057 x = y->right;
4058
4059 x->parent = y->parent;
4060 if (y->parent)
4061 {
4062 if (y == y->parent->left)
4063 y->parent->left = x;
4064 else
4065 y->parent->right = x;
4066 }
4067 else
4068 mem_root = x;
4069
4070 if (y != z)
4071 {
4072 z->start = y->start;
4073 z->end = y->end;
4074 z->type = y->type;
4075 }
4076
4077 if (y->color == MEM_BLACK)
4078 mem_delete_fixup (x);
4079
4080 #ifdef GC_MALLOC_CHECK
4081 free (y);
4082 #else
4083 xfree (y);
4084 #endif
4085 }
4086
4087
4088 /* Re-establish the red-black properties of the tree, after a
4089 deletion. */
4090
4091 static void
4092 mem_delete_fixup (struct mem_node *x)
4093 {
4094 while (x != mem_root && x->color == MEM_BLACK)
4095 {
4096 if (x == x->parent->left)
4097 {
4098 struct mem_node *w = x->parent->right;
4099
4100 if (w->color == MEM_RED)
4101 {
4102 w->color = MEM_BLACK;
4103 x->parent->color = MEM_RED;
4104 mem_rotate_left (x->parent);
4105 w = x->parent->right;
4106 }
4107
4108 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4109 {
4110 w->color = MEM_RED;
4111 x = x->parent;
4112 }
4113 else
4114 {
4115 if (w->right->color == MEM_BLACK)
4116 {
4117 w->left->color = MEM_BLACK;
4118 w->color = MEM_RED;
4119 mem_rotate_right (w);
4120 w = x->parent->right;
4121 }
4122 w->color = x->parent->color;
4123 x->parent->color = MEM_BLACK;
4124 w->right->color = MEM_BLACK;
4125 mem_rotate_left (x->parent);
4126 x = mem_root;
4127 }
4128 }
4129 else
4130 {
4131 struct mem_node *w = x->parent->left;
4132
4133 if (w->color == MEM_RED)
4134 {
4135 w->color = MEM_BLACK;
4136 x->parent->color = MEM_RED;
4137 mem_rotate_right (x->parent);
4138 w = x->parent->left;
4139 }
4140
4141 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4142 {
4143 w->color = MEM_RED;
4144 x = x->parent;
4145 }
4146 else
4147 {
4148 if (w->left->color == MEM_BLACK)
4149 {
4150 w->right->color = MEM_BLACK;
4151 w->color = MEM_RED;
4152 mem_rotate_left (w);
4153 w = x->parent->left;
4154 }
4155
4156 w->color = x->parent->color;
4157 x->parent->color = MEM_BLACK;
4158 w->left->color = MEM_BLACK;
4159 mem_rotate_right (x->parent);
4160 x = mem_root;
4161 }
4162 }
4163 }
4164
4165 x->color = MEM_BLACK;
4166 }
4167
4168
4169 /* Value is non-zero if P is a pointer to a live Lisp string on
4170 the heap. M is a pointer to the mem_block for P. */
4171
4172 static bool
4173 live_string_p (struct mem_node *m, void *p)
4174 {
4175 if (m->type == MEM_TYPE_STRING)
4176 {
4177 struct string_block *b = m->start;
4178 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4179
4180 /* P must point to the start of a Lisp_String structure, and it
4181 must not be on the free-list. */
4182 return (offset >= 0
4183 && offset % sizeof b->strings[0] == 0
4184 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4185 && ((struct Lisp_String *) p)->data != NULL);
4186 }
4187 else
4188 return 0;
4189 }
4190
4191
4192 /* Value is non-zero if P is a pointer to a live Lisp cons on
4193 the heap. M is a pointer to the mem_block for P. */
4194
4195 static bool
4196 live_cons_p (struct mem_node *m, void *p)
4197 {
4198 if (m->type == MEM_TYPE_CONS)
4199 {
4200 struct cons_block *b = m->start;
4201 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4202
4203 /* P must point to the start of a Lisp_Cons, not be
4204 one of the unused cells in the current cons block,
4205 and not be on the free-list. */
4206 return (offset >= 0
4207 && offset % sizeof b->conses[0] == 0
4208 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4209 && (b != cons_block
4210 || offset / sizeof b->conses[0] < cons_block_index)
4211 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4212 }
4213 else
4214 return 0;
4215 }
4216
4217
4218 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4219 the heap. M is a pointer to the mem_block for P. */
4220
4221 static bool
4222 live_symbol_p (struct mem_node *m, void *p)
4223 {
4224 if (m->type == MEM_TYPE_SYMBOL)
4225 {
4226 struct symbol_block *b = m->start;
4227 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4228
4229 /* P must point to the start of a Lisp_Symbol, not be
4230 one of the unused cells in the current symbol block,
4231 and not be on the free-list. */
4232 return (offset >= 0
4233 && offset % sizeof b->symbols[0] == 0
4234 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4235 && (b != symbol_block
4236 || offset / sizeof b->symbols[0] < symbol_block_index)
4237 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4238 }
4239 else
4240 return 0;
4241 }
4242
4243
4244 /* Value is non-zero if P is a pointer to a live Lisp float on
4245 the heap. M is a pointer to the mem_block for P. */
4246
4247 static bool
4248 live_float_p (struct mem_node *m, void *p)
4249 {
4250 if (m->type == MEM_TYPE_FLOAT)
4251 {
4252 struct float_block *b = m->start;
4253 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4254
4255 /* P must point to the start of a Lisp_Float and not be
4256 one of the unused cells in the current float block. */
4257 return (offset >= 0
4258 && offset % sizeof b->floats[0] == 0
4259 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4260 && (b != float_block
4261 || offset / sizeof b->floats[0] < float_block_index));
4262 }
4263 else
4264 return 0;
4265 }
4266
4267
4268 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4269 the heap. M is a pointer to the mem_block for P. */
4270
4271 static bool
4272 live_misc_p (struct mem_node *m, void *p)
4273 {
4274 if (m->type == MEM_TYPE_MISC)
4275 {
4276 struct marker_block *b = m->start;
4277 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4278
4279 /* P must point to the start of a Lisp_Misc, not be
4280 one of the unused cells in the current misc block,
4281 and not be on the free-list. */
4282 return (offset >= 0
4283 && offset % sizeof b->markers[0] == 0
4284 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4285 && (b != marker_block
4286 || offset / sizeof b->markers[0] < marker_block_index)
4287 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4288 }
4289 else
4290 return 0;
4291 }
4292
4293
4294 /* Value is non-zero if P is a pointer to a live vector-like object.
4295 M is a pointer to the mem_block for P. */
4296
4297 static bool
4298 live_vector_p (struct mem_node *m, void *p)
4299 {
4300 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4301 {
4302 /* This memory node corresponds to a vector block. */
4303 struct vector_block *block = m->start;
4304 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4305
4306 /* P is in the block's allocation range. Scan the block
4307 up to P and see whether P points to the start of some
4308 vector which is not on a free list. FIXME: check whether
4309 some allocation patterns (probably a lot of short vectors)
4310 may cause a substantial overhead of this loop. */
4311 while (VECTOR_IN_BLOCK (vector, block)
4312 && vector <= (struct Lisp_Vector *) p)
4313 {
4314 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4315 return 1;
4316 else
4317 vector = ADVANCE (vector, vector_nbytes (vector));
4318 }
4319 }
4320 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4321 /* This memory node corresponds to a large vector. */
4322 return 1;
4323 return 0;
4324 }
4325
4326
4327 /* Value is non-zero if P is a pointer to a live buffer. M is a
4328 pointer to the mem_block for P. */
4329
4330 static bool
4331 live_buffer_p (struct mem_node *m, void *p)
4332 {
4333 /* P must point to the start of the block, and the buffer
4334 must not have been killed. */
4335 return (m->type == MEM_TYPE_BUFFER
4336 && p == m->start
4337 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4338 }
4339
4340 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4341
4342 #if GC_MARK_STACK
4343
4344 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4345
4346 /* Currently not used, but may be called from gdb. */
4347
4348 void dump_zombies (void) EXTERNALLY_VISIBLE;
4349
4350 /* Array of objects that are kept alive because the C stack contains
4351 a pattern that looks like a reference to them. */
4352
4353 #define MAX_ZOMBIES 10
4354 static Lisp_Object zombies[MAX_ZOMBIES];
4355
4356 /* Number of zombie objects. */
4357
4358 static EMACS_INT nzombies;
4359
4360 /* Number of garbage collections. */
4361
4362 static EMACS_INT ngcs;
4363
4364 /* Average percentage of zombies per collection. */
4365
4366 static double avg_zombies;
4367
4368 /* Max. number of live and zombie objects. */
4369
4370 static EMACS_INT max_live, max_zombies;
4371
4372 /* Average number of live objects per GC. */
4373
4374 static double avg_live;
4375
4376 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4377 doc: /* Show information about live and zombie objects. */)
4378 (void)
4379 {
4380 Lisp_Object args[8], zombie_list = Qnil;
4381 EMACS_INT i;
4382 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4383 zombie_list = Fcons (zombies[i], zombie_list);
4384 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4385 args[1] = make_number (ngcs);
4386 args[2] = make_float (avg_live);
4387 args[3] = make_float (avg_zombies);
4388 args[4] = make_float (avg_zombies / avg_live / 100);
4389 args[5] = make_number (max_live);
4390 args[6] = make_number (max_zombies);
4391 args[7] = zombie_list;
4392 return Fmessage (8, args);
4393 }
4394
4395 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4396
4397
4398 /* Mark OBJ if we can prove it's a Lisp_Object. */
4399
4400 static void
4401 mark_maybe_object (Lisp_Object obj)
4402 {
4403 void *po;
4404 struct mem_node *m;
4405
4406 #if USE_VALGRIND
4407 if (valgrind_p)
4408 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4409 #endif
4410
4411 if (INTEGERP (obj))
4412 return;
4413
4414 po = (void *) XPNTR (obj);
4415 m = mem_find (po);
4416
4417 if (m != MEM_NIL)
4418 {
4419 bool mark_p = 0;
4420
4421 switch (XTYPE (obj))
4422 {
4423 case Lisp_String:
4424 mark_p = (live_string_p (m, po)
4425 && !STRING_MARKED_P ((struct Lisp_String *) po));
4426 break;
4427
4428 case Lisp_Cons:
4429 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4430 break;
4431
4432 case Lisp_Symbol:
4433 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4434 break;
4435
4436 case Lisp_Float:
4437 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4438 break;
4439
4440 case Lisp_Vectorlike:
4441 /* Note: can't check BUFFERP before we know it's a
4442 buffer because checking that dereferences the pointer
4443 PO which might point anywhere. */
4444 if (live_vector_p (m, po))
4445 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4446 else if (live_buffer_p (m, po))
4447 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4448 break;
4449
4450 case Lisp_Misc:
4451 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4452 break;
4453
4454 default:
4455 break;
4456 }
4457
4458 if (mark_p)
4459 {
4460 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4461 if (nzombies < MAX_ZOMBIES)
4462 zombies[nzombies] = obj;
4463 ++nzombies;
4464 #endif
4465 mark_object (obj);
4466 }
4467 }
4468 }
4469
4470
4471 /* If P points to Lisp data, mark that as live if it isn't already
4472 marked. */
4473
4474 static void
4475 mark_maybe_pointer (void *p)
4476 {
4477 struct mem_node *m;
4478
4479 #if USE_VALGRIND
4480 if (valgrind_p)
4481 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4482 #endif
4483
4484 /* Quickly rule out some values which can't point to Lisp data.
4485 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4486 Otherwise, assume that Lisp data is aligned on even addresses. */
4487 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4488 return;
4489
4490 m = mem_find (p);
4491 if (m != MEM_NIL)
4492 {
4493 Lisp_Object obj = Qnil;
4494
4495 switch (m->type)
4496 {
4497 case MEM_TYPE_NON_LISP:
4498 case MEM_TYPE_SPARE:
4499 /* Nothing to do; not a pointer to Lisp memory. */
4500 break;
4501
4502 case MEM_TYPE_BUFFER:
4503 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4504 XSETVECTOR (obj, p);
4505 break;
4506
4507 case MEM_TYPE_CONS:
4508 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4509 XSETCONS (obj, p);
4510 break;
4511
4512 case MEM_TYPE_STRING:
4513 if (live_string_p (m, p)
4514 && !STRING_MARKED_P ((struct Lisp_String *) p))
4515 XSETSTRING (obj, p);
4516 break;
4517
4518 case MEM_TYPE_MISC:
4519 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4520 XSETMISC (obj, p);
4521 break;
4522
4523 case MEM_TYPE_SYMBOL:
4524 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4525 XSETSYMBOL (obj, p);
4526 break;
4527
4528 case MEM_TYPE_FLOAT:
4529 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4530 XSETFLOAT (obj, p);
4531 break;
4532
4533 case MEM_TYPE_VECTORLIKE:
4534 case MEM_TYPE_VECTOR_BLOCK:
4535 if (live_vector_p (m, p))
4536 {
4537 Lisp_Object tem;
4538 XSETVECTOR (tem, p);
4539 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4540 obj = tem;
4541 }
4542 break;
4543
4544 default:
4545 emacs_abort ();
4546 }
4547
4548 if (!NILP (obj))
4549 mark_object (obj);
4550 }
4551 }
4552
4553
4554 /* Alignment of pointer values. Use alignof, as it sometimes returns
4555 a smaller alignment than GCC's __alignof__ and mark_memory might
4556 miss objects if __alignof__ were used. */
4557 #define GC_POINTER_ALIGNMENT alignof (void *)
4558
4559 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4560 not suffice, which is the typical case. A host where a Lisp_Object is
4561 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4562 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4563 suffice to widen it to to a Lisp_Object and check it that way. */
4564 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4565 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4566 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4567 nor mark_maybe_object can follow the pointers. This should not occur on
4568 any practical porting target. */
4569 # error "MSB type bits straddle pointer-word boundaries"
4570 # endif
4571 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4572 pointer words that hold pointers ORed with type bits. */
4573 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4574 #else
4575 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4576 words that hold unmodified pointers. */
4577 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4578 #endif
4579
4580 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4581 or END+OFFSET..START. */
4582
4583 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4584 mark_memory (void *start, void *end)
4585 {
4586 void **pp;
4587 int i;
4588
4589 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4590 nzombies = 0;
4591 #endif
4592
4593 /* Make START the pointer to the start of the memory region,
4594 if it isn't already. */
4595 if (end < start)
4596 {
4597 void *tem = start;
4598 start = end;
4599 end = tem;
4600 }
4601
4602 /* Mark Lisp data pointed to. This is necessary because, in some
4603 situations, the C compiler optimizes Lisp objects away, so that
4604 only a pointer to them remains. Example:
4605
4606 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4607 ()
4608 {
4609 Lisp_Object obj = build_string ("test");
4610 struct Lisp_String *s = XSTRING (obj);
4611 Fgarbage_collect ();
4612 fprintf (stderr, "test `%s'\n", s->data);
4613 return Qnil;
4614 }
4615
4616 Here, `obj' isn't really used, and the compiler optimizes it
4617 away. The only reference to the life string is through the
4618 pointer `s'. */
4619
4620 for (pp = start; (void *) pp < end; pp++)
4621 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4622 {
4623 void *p = *(void **) ((char *) pp + i);
4624 mark_maybe_pointer (p);
4625 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4626 mark_maybe_object (XIL ((intptr_t) p));
4627 }
4628 }
4629
4630 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4631
4632 static bool setjmp_tested_p;
4633 static int longjmps_done;
4634
4635 #define SETJMP_WILL_LIKELY_WORK "\
4636 \n\
4637 Emacs garbage collector has been changed to use conservative stack\n\
4638 marking. Emacs has determined that the method it uses to do the\n\
4639 marking will likely work on your system, but this isn't sure.\n\
4640 \n\
4641 If you are a system-programmer, or can get the help of a local wizard\n\
4642 who is, please take a look at the function mark_stack in alloc.c, and\n\
4643 verify that the methods used are appropriate for your system.\n\
4644 \n\
4645 Please mail the result to <emacs-devel@gnu.org>.\n\
4646 "
4647
4648 #define SETJMP_WILL_NOT_WORK "\
4649 \n\
4650 Emacs garbage collector has been changed to use conservative stack\n\
4651 marking. Emacs has determined that the default method it uses to do the\n\
4652 marking will not work on your system. We will need a system-dependent\n\
4653 solution for your system.\n\
4654 \n\
4655 Please take a look at the function mark_stack in alloc.c, and\n\
4656 try to find a way to make it work on your system.\n\
4657 \n\
4658 Note that you may get false negatives, depending on the compiler.\n\
4659 In particular, you need to use -O with GCC for this test.\n\
4660 \n\
4661 Please mail the result to <emacs-devel@gnu.org>.\n\
4662 "
4663
4664
4665 /* Perform a quick check if it looks like setjmp saves registers in a
4666 jmp_buf. Print a message to stderr saying so. When this test
4667 succeeds, this is _not_ a proof that setjmp is sufficient for
4668 conservative stack marking. Only the sources or a disassembly
4669 can prove that. */
4670
4671 static void
4672 test_setjmp (void)
4673 {
4674 char buf[10];
4675 register int x;
4676 sys_jmp_buf jbuf;
4677
4678 /* Arrange for X to be put in a register. */
4679 sprintf (buf, "1");
4680 x = strlen (buf);
4681 x = 2 * x - 1;
4682
4683 sys_setjmp (jbuf);
4684 if (longjmps_done == 1)
4685 {
4686 /* Came here after the longjmp at the end of the function.
4687
4688 If x == 1, the longjmp has restored the register to its
4689 value before the setjmp, and we can hope that setjmp
4690 saves all such registers in the jmp_buf, although that
4691 isn't sure.
4692
4693 For other values of X, either something really strange is
4694 taking place, or the setjmp just didn't save the register. */
4695
4696 if (x == 1)
4697 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4698 else
4699 {
4700 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4701 exit (1);
4702 }
4703 }
4704
4705 ++longjmps_done;
4706 x = 2;
4707 if (longjmps_done == 1)
4708 sys_longjmp (jbuf, 1);
4709 }
4710
4711 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4712
4713
4714 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4715
4716 /* Abort if anything GCPRO'd doesn't survive the GC. */
4717
4718 static void
4719 check_gcpros (void)
4720 {
4721 struct gcpro *p;
4722 ptrdiff_t i;
4723
4724 for (p = gcprolist; p; p = p->next)
4725 for (i = 0; i < p->nvars; ++i)
4726 if (!survives_gc_p (p->var[i]))
4727 /* FIXME: It's not necessarily a bug. It might just be that the
4728 GCPRO is unnecessary or should release the object sooner. */
4729 emacs_abort ();
4730 }
4731
4732 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4733
4734 void
4735 dump_zombies (void)
4736 {
4737 int i;
4738
4739 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4740 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4741 {
4742 fprintf (stderr, " %d = ", i);
4743 debug_print (zombies[i]);
4744 }
4745 }
4746
4747 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4748
4749
4750 /* Mark live Lisp objects on the C stack.
4751
4752 There are several system-dependent problems to consider when
4753 porting this to new architectures:
4754
4755 Processor Registers
4756
4757 We have to mark Lisp objects in CPU registers that can hold local
4758 variables or are used to pass parameters.
4759
4760 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4761 something that either saves relevant registers on the stack, or
4762 calls mark_maybe_object passing it each register's contents.
4763
4764 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4765 implementation assumes that calling setjmp saves registers we need
4766 to see in a jmp_buf which itself lies on the stack. This doesn't
4767 have to be true! It must be verified for each system, possibly
4768 by taking a look at the source code of setjmp.
4769
4770 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4771 can use it as a machine independent method to store all registers
4772 to the stack. In this case the macros described in the previous
4773 two paragraphs are not used.
4774
4775 Stack Layout
4776
4777 Architectures differ in the way their processor stack is organized.
4778 For example, the stack might look like this
4779
4780 +----------------+
4781 | Lisp_Object | size = 4
4782 +----------------+
4783 | something else | size = 2
4784 +----------------+
4785 | Lisp_Object | size = 4
4786 +----------------+
4787 | ... |
4788
4789 In such a case, not every Lisp_Object will be aligned equally. To
4790 find all Lisp_Object on the stack it won't be sufficient to walk
4791 the stack in steps of 4 bytes. Instead, two passes will be
4792 necessary, one starting at the start of the stack, and a second
4793 pass starting at the start of the stack + 2. Likewise, if the
4794 minimal alignment of Lisp_Objects on the stack is 1, four passes
4795 would be necessary, each one starting with one byte more offset
4796 from the stack start. */
4797
4798 static void
4799 mark_stack (void)
4800 {
4801 void *end;
4802
4803 #ifdef HAVE___BUILTIN_UNWIND_INIT
4804 /* Force callee-saved registers and register windows onto the stack.
4805 This is the preferred method if available, obviating the need for
4806 machine dependent methods. */
4807 __builtin_unwind_init ();
4808 end = &end;
4809 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4810 #ifndef GC_SAVE_REGISTERS_ON_STACK
4811 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4812 union aligned_jmpbuf {
4813 Lisp_Object o;
4814 sys_jmp_buf j;
4815 } j;
4816 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4817 #endif
4818 /* This trick flushes the register windows so that all the state of
4819 the process is contained in the stack. */
4820 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4821 needed on ia64 too. See mach_dep.c, where it also says inline
4822 assembler doesn't work with relevant proprietary compilers. */
4823 #ifdef __sparc__
4824 #if defined (__sparc64__) && defined (__FreeBSD__)
4825 /* FreeBSD does not have a ta 3 handler. */
4826 asm ("flushw");
4827 #else
4828 asm ("ta 3");
4829 #endif
4830 #endif
4831
4832 /* Save registers that we need to see on the stack. We need to see
4833 registers used to hold register variables and registers used to
4834 pass parameters. */
4835 #ifdef GC_SAVE_REGISTERS_ON_STACK
4836 GC_SAVE_REGISTERS_ON_STACK (end);
4837 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4838
4839 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4840 setjmp will definitely work, test it
4841 and print a message with the result
4842 of the test. */
4843 if (!setjmp_tested_p)
4844 {
4845 setjmp_tested_p = 1;
4846 test_setjmp ();
4847 }
4848 #endif /* GC_SETJMP_WORKS */
4849
4850 sys_setjmp (j.j);
4851 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4852 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4853 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4854
4855 /* This assumes that the stack is a contiguous region in memory. If
4856 that's not the case, something has to be done here to iterate
4857 over the stack segments. */
4858 mark_memory (stack_base, end);
4859
4860 /* Allow for marking a secondary stack, like the register stack on the
4861 ia64. */
4862 #ifdef GC_MARK_SECONDARY_STACK
4863 GC_MARK_SECONDARY_STACK ();
4864 #endif
4865
4866 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4867 check_gcpros ();
4868 #endif
4869 }
4870
4871 #else /* GC_MARK_STACK == 0 */
4872
4873 #define mark_maybe_object(obj) emacs_abort ()
4874
4875 #endif /* GC_MARK_STACK != 0 */
4876
4877
4878 /* Determine whether it is safe to access memory at address P. */
4879 static int
4880 valid_pointer_p (void *p)
4881 {
4882 #ifdef WINDOWSNT
4883 return w32_valid_pointer_p (p, 16);
4884 #else
4885 int fd[2];
4886
4887 /* Obviously, we cannot just access it (we would SEGV trying), so we
4888 trick the o/s to tell us whether p is a valid pointer.
4889 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4890 not validate p in that case. */
4891
4892 if (emacs_pipe (fd) == 0)
4893 {
4894 bool valid = emacs_write (fd[1], p, 16) == 16;
4895 emacs_close (fd[1]);
4896 emacs_close (fd[0]);
4897 return valid;
4898 }
4899
4900 return -1;
4901 #endif
4902 }
4903
4904 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4905 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4906 cannot validate OBJ. This function can be quite slow, so its primary
4907 use is the manual debugging. The only exception is print_object, where
4908 we use it to check whether the memory referenced by the pointer of
4909 Lisp_Save_Value object contains valid objects. */
4910
4911 int
4912 valid_lisp_object_p (Lisp_Object obj)
4913 {
4914 void *p;
4915 #if GC_MARK_STACK
4916 struct mem_node *m;
4917 #endif
4918
4919 if (INTEGERP (obj))
4920 return 1;
4921
4922 p = (void *) XPNTR (obj);
4923 if (PURE_POINTER_P (p))
4924 return 1;
4925
4926 if (p == &buffer_defaults || p == &buffer_local_symbols)
4927 return 2;
4928
4929 #if !GC_MARK_STACK
4930 return valid_pointer_p (p);
4931 #else
4932
4933 m = mem_find (p);
4934
4935 if (m == MEM_NIL)
4936 {
4937 int valid = valid_pointer_p (p);
4938 if (valid <= 0)
4939 return valid;
4940
4941 if (SUBRP (obj))
4942 return 1;
4943
4944 return 0;
4945 }
4946
4947 switch (m->type)
4948 {
4949 case MEM_TYPE_NON_LISP:
4950 case MEM_TYPE_SPARE:
4951 return 0;
4952
4953 case MEM_TYPE_BUFFER:
4954 return live_buffer_p (m, p) ? 1 : 2;
4955
4956 case MEM_TYPE_CONS:
4957 return live_cons_p (m, p);
4958
4959 case MEM_TYPE_STRING:
4960 return live_string_p (m, p);
4961
4962 case MEM_TYPE_MISC:
4963 return live_misc_p (m, p);
4964
4965 case MEM_TYPE_SYMBOL:
4966 return live_symbol_p (m, p);
4967
4968 case MEM_TYPE_FLOAT:
4969 return live_float_p (m, p);
4970
4971 case MEM_TYPE_VECTORLIKE:
4972 case MEM_TYPE_VECTOR_BLOCK:
4973 return live_vector_p (m, p);
4974
4975 default:
4976 break;
4977 }
4978
4979 return 0;
4980 #endif
4981 }
4982
4983
4984
4985 \f
4986 /***********************************************************************
4987 Pure Storage Management
4988 ***********************************************************************/
4989
4990 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4991 pointer to it. TYPE is the Lisp type for which the memory is
4992 allocated. TYPE < 0 means it's not used for a Lisp object. */
4993
4994 static void *
4995 pure_alloc (size_t size, int type)
4996 {
4997 void *result;
4998 #if USE_LSB_TAG
4999 size_t alignment = GCALIGNMENT;
5000 #else
5001 size_t alignment = alignof (EMACS_INT);
5002
5003 /* Give Lisp_Floats an extra alignment. */
5004 if (type == Lisp_Float)
5005 alignment = alignof (struct Lisp_Float);
5006 #endif
5007
5008 again:
5009 if (type >= 0)
5010 {
5011 /* Allocate space for a Lisp object from the beginning of the free
5012 space with taking account of alignment. */
5013 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5014 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5015 }
5016 else
5017 {
5018 /* Allocate space for a non-Lisp object from the end of the free
5019 space. */
5020 pure_bytes_used_non_lisp += size;
5021 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5022 }
5023 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5024
5025 if (pure_bytes_used <= pure_size)
5026 return result;
5027
5028 /* Don't allocate a large amount here,
5029 because it might get mmap'd and then its address
5030 might not be usable. */
5031 purebeg = xmalloc (10000);
5032 pure_size = 10000;
5033 pure_bytes_used_before_overflow += pure_bytes_used - size;
5034 pure_bytes_used = 0;
5035 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5036 goto again;
5037 }
5038
5039
5040 /* Print a warning if PURESIZE is too small. */
5041
5042 void
5043 check_pure_size (void)
5044 {
5045 if (pure_bytes_used_before_overflow)
5046 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5047 " bytes needed)"),
5048 pure_bytes_used + pure_bytes_used_before_overflow);
5049 }
5050
5051
5052 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5053 the non-Lisp data pool of the pure storage, and return its start
5054 address. Return NULL if not found. */
5055
5056 static char *
5057 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5058 {
5059 int i;
5060 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5061 const unsigned char *p;
5062 char *non_lisp_beg;
5063
5064 if (pure_bytes_used_non_lisp <= nbytes)
5065 return NULL;
5066
5067 /* Set up the Boyer-Moore table. */
5068 skip = nbytes + 1;
5069 for (i = 0; i < 256; i++)
5070 bm_skip[i] = skip;
5071
5072 p = (const unsigned char *) data;
5073 while (--skip > 0)
5074 bm_skip[*p++] = skip;
5075
5076 last_char_skip = bm_skip['\0'];
5077
5078 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5079 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5080
5081 /* See the comments in the function `boyer_moore' (search.c) for the
5082 use of `infinity'. */
5083 infinity = pure_bytes_used_non_lisp + 1;
5084 bm_skip['\0'] = infinity;
5085
5086 p = (const unsigned char *) non_lisp_beg + nbytes;
5087 start = 0;
5088 do
5089 {
5090 /* Check the last character (== '\0'). */
5091 do
5092 {
5093 start += bm_skip[*(p + start)];
5094 }
5095 while (start <= start_max);
5096
5097 if (start < infinity)
5098 /* Couldn't find the last character. */
5099 return NULL;
5100
5101 /* No less than `infinity' means we could find the last
5102 character at `p[start - infinity]'. */
5103 start -= infinity;
5104
5105 /* Check the remaining characters. */
5106 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5107 /* Found. */
5108 return non_lisp_beg + start;
5109
5110 start += last_char_skip;
5111 }
5112 while (start <= start_max);
5113
5114 return NULL;
5115 }
5116
5117
5118 /* Return a string allocated in pure space. DATA is a buffer holding
5119 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5120 means make the result string multibyte.
5121
5122 Must get an error if pure storage is full, since if it cannot hold
5123 a large string it may be able to hold conses that point to that
5124 string; then the string is not protected from gc. */
5125
5126 Lisp_Object
5127 make_pure_string (const char *data,
5128 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5129 {
5130 Lisp_Object string;
5131 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5132 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5133 if (s->data == NULL)
5134 {
5135 s->data = pure_alloc (nbytes + 1, -1);
5136 memcpy (s->data, data, nbytes);
5137 s->data[nbytes] = '\0';
5138 }
5139 s->size = nchars;
5140 s->size_byte = multibyte ? nbytes : -1;
5141 s->intervals = NULL;
5142 XSETSTRING (string, s);
5143 return string;
5144 }
5145
5146 /* Return a string allocated in pure space. Do not
5147 allocate the string data, just point to DATA. */
5148
5149 Lisp_Object
5150 make_pure_c_string (const char *data, ptrdiff_t nchars)
5151 {
5152 Lisp_Object string;
5153 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5154 s->size = nchars;
5155 s->size_byte = -1;
5156 s->data = (unsigned char *) data;
5157 s->intervals = NULL;
5158 XSETSTRING (string, s);
5159 return string;
5160 }
5161
5162 /* Return a cons allocated from pure space. Give it pure copies
5163 of CAR as car and CDR as cdr. */
5164
5165 Lisp_Object
5166 pure_cons (Lisp_Object car, Lisp_Object cdr)
5167 {
5168 Lisp_Object new;
5169 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5170 XSETCONS (new, p);
5171 XSETCAR (new, Fpurecopy (car));
5172 XSETCDR (new, Fpurecopy (cdr));
5173 return new;
5174 }
5175
5176
5177 /* Value is a float object with value NUM allocated from pure space. */
5178
5179 static Lisp_Object
5180 make_pure_float (double num)
5181 {
5182 Lisp_Object new;
5183 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5184 XSETFLOAT (new, p);
5185 XFLOAT_INIT (new, num);
5186 return new;
5187 }
5188
5189
5190 /* Return a vector with room for LEN Lisp_Objects allocated from
5191 pure space. */
5192
5193 static Lisp_Object
5194 make_pure_vector (ptrdiff_t len)
5195 {
5196 Lisp_Object new;
5197 size_t size = header_size + len * word_size;
5198 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5199 XSETVECTOR (new, p);
5200 XVECTOR (new)->header.size = len;
5201 return new;
5202 }
5203
5204
5205 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5206 doc: /* Make a copy of object OBJ in pure storage.
5207 Recursively copies contents of vectors and cons cells.
5208 Does not copy symbols. Copies strings without text properties. */)
5209 (register Lisp_Object obj)
5210 {
5211 if (NILP (Vpurify_flag))
5212 return obj;
5213
5214 if (PURE_POINTER_P (XPNTR (obj)))
5215 return obj;
5216
5217 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5218 {
5219 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5220 if (!NILP (tmp))
5221 return tmp;
5222 }
5223
5224 if (CONSP (obj))
5225 obj = pure_cons (XCAR (obj), XCDR (obj));
5226 else if (FLOATP (obj))
5227 obj = make_pure_float (XFLOAT_DATA (obj));
5228 else if (STRINGP (obj))
5229 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5230 SBYTES (obj),
5231 STRING_MULTIBYTE (obj));
5232 else if (COMPILEDP (obj) || VECTORP (obj))
5233 {
5234 register struct Lisp_Vector *vec;
5235 register ptrdiff_t i;
5236 ptrdiff_t size;
5237
5238 size = ASIZE (obj);
5239 if (size & PSEUDOVECTOR_FLAG)
5240 size &= PSEUDOVECTOR_SIZE_MASK;
5241 vec = XVECTOR (make_pure_vector (size));
5242 for (i = 0; i < size; i++)
5243 vec->contents[i] = Fpurecopy (AREF (obj, i));
5244 if (COMPILEDP (obj))
5245 {
5246 XSETPVECTYPE (vec, PVEC_COMPILED);
5247 XSETCOMPILED (obj, vec);
5248 }
5249 else
5250 XSETVECTOR (obj, vec);
5251 }
5252 else if (MARKERP (obj))
5253 error ("Attempt to copy a marker to pure storage");
5254 else
5255 /* Not purified, don't hash-cons. */
5256 return obj;
5257
5258 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5259 Fputhash (obj, obj, Vpurify_flag);
5260
5261 return obj;
5262 }
5263
5264
5265 \f
5266 /***********************************************************************
5267 Protection from GC
5268 ***********************************************************************/
5269
5270 /* Put an entry in staticvec, pointing at the variable with address
5271 VARADDRESS. */
5272
5273 void
5274 staticpro (Lisp_Object *varaddress)
5275 {
5276 if (staticidx >= NSTATICS)
5277 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5278 staticvec[staticidx++] = varaddress;
5279 }
5280
5281 \f
5282 /***********************************************************************
5283 Protection from GC
5284 ***********************************************************************/
5285
5286 /* Temporarily prevent garbage collection. */
5287
5288 ptrdiff_t
5289 inhibit_garbage_collection (void)
5290 {
5291 ptrdiff_t count = SPECPDL_INDEX ();
5292
5293 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5294 return count;
5295 }
5296
5297 /* Used to avoid possible overflows when
5298 converting from C to Lisp integers. */
5299
5300 static Lisp_Object
5301 bounded_number (EMACS_INT number)
5302 {
5303 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5304 }
5305
5306 /* Calculate total bytes of live objects. */
5307
5308 static size_t
5309 total_bytes_of_live_objects (void)
5310 {
5311 size_t tot = 0;
5312 tot += total_conses * sizeof (struct Lisp_Cons);
5313 tot += total_symbols * sizeof (struct Lisp_Symbol);
5314 tot += total_markers * sizeof (union Lisp_Misc);
5315 tot += total_string_bytes;
5316 tot += total_vector_slots * word_size;
5317 tot += total_floats * sizeof (struct Lisp_Float);
5318 tot += total_intervals * sizeof (struct interval);
5319 tot += total_strings * sizeof (struct Lisp_String);
5320 return tot;
5321 }
5322
5323 #ifdef HAVE_WINDOW_SYSTEM
5324
5325 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5326
5327 #if !defined (HAVE_NTGUI)
5328
5329 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5330 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5331
5332 static Lisp_Object
5333 compact_font_cache_entry (Lisp_Object entry)
5334 {
5335 Lisp_Object tail, *prev = &entry;
5336
5337 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5338 {
5339 bool drop = 0;
5340 Lisp_Object obj = XCAR (tail);
5341
5342 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5343 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5344 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5345 && VECTORP (XCDR (obj)))
5346 {
5347 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5348
5349 /* If font-spec is not marked, most likely all font-entities
5350 are not marked too. But we must be sure that nothing is
5351 marked within OBJ before we really drop it. */
5352 for (i = 0; i < size; i++)
5353 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5354 break;
5355
5356 if (i == size)
5357 drop = 1;
5358 }
5359 if (drop)
5360 *prev = XCDR (tail);
5361 else
5362 prev = xcdr_addr (tail);
5363 }
5364 return entry;
5365 }
5366
5367 #endif /* not HAVE_NTGUI */
5368
5369 /* Compact font caches on all terminals and mark
5370 everything which is still here after compaction. */
5371
5372 static void
5373 compact_font_caches (void)
5374 {
5375 struct terminal *t;
5376
5377 for (t = terminal_list; t; t = t->next_terminal)
5378 {
5379 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5380 #if !defined (HAVE_NTGUI)
5381 if (CONSP (cache))
5382 {
5383 Lisp_Object entry;
5384
5385 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5386 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5387 }
5388 #endif /* not HAVE_NTGUI */
5389 mark_object (cache);
5390 }
5391 }
5392
5393 #else /* not HAVE_WINDOW_SYSTEM */
5394
5395 #define compact_font_caches() (void)(0)
5396
5397 #endif /* HAVE_WINDOW_SYSTEM */
5398
5399 /* Remove (MARKER . DATA) entries with unmarked MARKER
5400 from buffer undo LIST and return changed list. */
5401
5402 static Lisp_Object
5403 compact_undo_list (Lisp_Object list)
5404 {
5405 Lisp_Object tail, *prev = &list;
5406
5407 for (tail = list; CONSP (tail); tail = XCDR (tail))
5408 {
5409 if (CONSP (XCAR (tail))
5410 && MARKERP (XCAR (XCAR (tail)))
5411 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5412 *prev = XCDR (tail);
5413 else
5414 prev = xcdr_addr (tail);
5415 }
5416 return list;
5417 }
5418
5419 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5420 doc: /* Reclaim storage for Lisp objects no longer needed.
5421 Garbage collection happens automatically if you cons more than
5422 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5423 `garbage-collect' normally returns a list with info on amount of space in use,
5424 where each entry has the form (NAME SIZE USED FREE), where:
5425 - NAME is a symbol describing the kind of objects this entry represents,
5426 - SIZE is the number of bytes used by each one,
5427 - USED is the number of those objects that were found live in the heap,
5428 - FREE is the number of those objects that are not live but that Emacs
5429 keeps around for future allocations (maybe because it does not know how
5430 to return them to the OS).
5431 However, if there was overflow in pure space, `garbage-collect'
5432 returns nil, because real GC can't be done.
5433 See Info node `(elisp)Garbage Collection'. */)
5434 (void)
5435 {
5436 struct buffer *nextb;
5437 char stack_top_variable;
5438 ptrdiff_t i;
5439 bool message_p;
5440 ptrdiff_t count = SPECPDL_INDEX ();
5441 struct timespec start;
5442 Lisp_Object retval = Qnil;
5443 size_t tot_before = 0;
5444
5445 if (abort_on_gc)
5446 emacs_abort ();
5447
5448 /* Can't GC if pure storage overflowed because we can't determine
5449 if something is a pure object or not. */
5450 if (pure_bytes_used_before_overflow)
5451 return Qnil;
5452
5453 /* Record this function, so it appears on the profiler's backtraces. */
5454 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5455
5456 check_cons_list ();
5457
5458 /* Don't keep undo information around forever.
5459 Do this early on, so it is no problem if the user quits. */
5460 FOR_EACH_BUFFER (nextb)
5461 compact_buffer (nextb);
5462
5463 if (profiler_memory_running)
5464 tot_before = total_bytes_of_live_objects ();
5465
5466 start = current_timespec ();
5467
5468 /* In case user calls debug_print during GC,
5469 don't let that cause a recursive GC. */
5470 consing_since_gc = 0;
5471
5472 /* Save what's currently displayed in the echo area. */
5473 message_p = push_message ();
5474 record_unwind_protect_void (pop_message_unwind);
5475
5476 /* Save a copy of the contents of the stack, for debugging. */
5477 #if MAX_SAVE_STACK > 0
5478 if (NILP (Vpurify_flag))
5479 {
5480 char *stack;
5481 ptrdiff_t stack_size;
5482 if (&stack_top_variable < stack_bottom)
5483 {
5484 stack = &stack_top_variable;
5485 stack_size = stack_bottom - &stack_top_variable;
5486 }
5487 else
5488 {
5489 stack = stack_bottom;
5490 stack_size = &stack_top_variable - stack_bottom;
5491 }
5492 if (stack_size <= MAX_SAVE_STACK)
5493 {
5494 if (stack_copy_size < stack_size)
5495 {
5496 stack_copy = xrealloc (stack_copy, stack_size);
5497 stack_copy_size = stack_size;
5498 }
5499 no_sanitize_memcpy (stack_copy, stack, stack_size);
5500 }
5501 }
5502 #endif /* MAX_SAVE_STACK > 0 */
5503
5504 if (garbage_collection_messages)
5505 message1_nolog ("Garbage collecting...");
5506
5507 block_input ();
5508
5509 shrink_regexp_cache ();
5510
5511 gc_in_progress = 1;
5512
5513 /* Mark all the special slots that serve as the roots of accessibility. */
5514
5515 mark_buffer (&buffer_defaults);
5516 mark_buffer (&buffer_local_symbols);
5517
5518 for (i = 0; i < staticidx; i++)
5519 mark_object (*staticvec[i]);
5520
5521 mark_specpdl ();
5522 mark_terminals ();
5523 mark_kboards ();
5524
5525 #ifdef USE_GTK
5526 xg_mark_data ();
5527 #endif
5528
5529 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5530 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5531 mark_stack ();
5532 #else
5533 {
5534 register struct gcpro *tail;
5535 for (tail = gcprolist; tail; tail = tail->next)
5536 for (i = 0; i < tail->nvars; i++)
5537 mark_object (tail->var[i]);
5538 }
5539 mark_byte_stack ();
5540 #endif
5541 {
5542 struct handler *handler;
5543 for (handler = handlerlist; handler; handler = handler->next)
5544 {
5545 mark_object (handler->tag_or_ch);
5546 mark_object (handler->val);
5547 }
5548 }
5549 #ifdef HAVE_WINDOW_SYSTEM
5550 mark_fringe_data ();
5551 #endif
5552
5553 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5554 mark_stack ();
5555 #endif
5556
5557 /* Everything is now marked, except for the data in font caches
5558 and undo lists. They're compacted by removing an items which
5559 aren't reachable otherwise. */
5560
5561 compact_font_caches ();
5562
5563 FOR_EACH_BUFFER (nextb)
5564 {
5565 if (!EQ (BVAR (nextb, undo_list), Qt))
5566 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5567 /* Now that we have stripped the elements that need not be
5568 in the undo_list any more, we can finally mark the list. */
5569 mark_object (BVAR (nextb, undo_list));
5570 }
5571
5572 gc_sweep ();
5573
5574 /* Clear the mark bits that we set in certain root slots. */
5575
5576 unmark_byte_stack ();
5577 VECTOR_UNMARK (&buffer_defaults);
5578 VECTOR_UNMARK (&buffer_local_symbols);
5579
5580 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5581 dump_zombies ();
5582 #endif
5583
5584 check_cons_list ();
5585
5586 gc_in_progress = 0;
5587
5588 unblock_input ();
5589
5590 consing_since_gc = 0;
5591 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5592 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5593
5594 gc_relative_threshold = 0;
5595 if (FLOATP (Vgc_cons_percentage))
5596 { /* Set gc_cons_combined_threshold. */
5597 double tot = total_bytes_of_live_objects ();
5598
5599 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5600 if (0 < tot)
5601 {
5602 if (tot < TYPE_MAXIMUM (EMACS_INT))
5603 gc_relative_threshold = tot;
5604 else
5605 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5606 }
5607 }
5608
5609 if (garbage_collection_messages)
5610 {
5611 if (message_p || minibuf_level > 0)
5612 restore_message ();
5613 else
5614 message1_nolog ("Garbage collecting...done");
5615 }
5616
5617 unbind_to (count, Qnil);
5618 {
5619 Lisp_Object total[11];
5620 int total_size = 10;
5621
5622 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5623 bounded_number (total_conses),
5624 bounded_number (total_free_conses));
5625
5626 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5627 bounded_number (total_symbols),
5628 bounded_number (total_free_symbols));
5629
5630 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5631 bounded_number (total_markers),
5632 bounded_number (total_free_markers));
5633
5634 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5635 bounded_number (total_strings),
5636 bounded_number (total_free_strings));
5637
5638 total[4] = list3 (Qstring_bytes, make_number (1),
5639 bounded_number (total_string_bytes));
5640
5641 total[5] = list3 (Qvectors,
5642 make_number (header_size + sizeof (Lisp_Object)),
5643 bounded_number (total_vectors));
5644
5645 total[6] = list4 (Qvector_slots, make_number (word_size),
5646 bounded_number (total_vector_slots),
5647 bounded_number (total_free_vector_slots));
5648
5649 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5650 bounded_number (total_floats),
5651 bounded_number (total_free_floats));
5652
5653 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5654 bounded_number (total_intervals),
5655 bounded_number (total_free_intervals));
5656
5657 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5658 bounded_number (total_buffers));
5659
5660 #ifdef DOUG_LEA_MALLOC
5661 total_size++;
5662 total[10] = list4 (Qheap, make_number (1024),
5663 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5664 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5665 #endif
5666 retval = Flist (total_size, total);
5667 }
5668
5669 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5670 {
5671 /* Compute average percentage of zombies. */
5672 double nlive
5673 = (total_conses + total_symbols + total_markers + total_strings
5674 + total_vectors + total_floats + total_intervals + total_buffers);
5675
5676 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5677 max_live = max (nlive, max_live);
5678 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5679 max_zombies = max (nzombies, max_zombies);
5680 ++ngcs;
5681 }
5682 #endif
5683
5684 if (!NILP (Vpost_gc_hook))
5685 {
5686 ptrdiff_t gc_count = inhibit_garbage_collection ();
5687 safe_run_hooks (Qpost_gc_hook);
5688 unbind_to (gc_count, Qnil);
5689 }
5690
5691 /* Accumulate statistics. */
5692 if (FLOATP (Vgc_elapsed))
5693 {
5694 struct timespec since_start = timespec_sub (current_timespec (), start);
5695 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5696 + timespectod (since_start));
5697 }
5698
5699 gcs_done++;
5700
5701 /* Collect profiling data. */
5702 if (profiler_memory_running)
5703 {
5704 size_t swept = 0;
5705 size_t tot_after = total_bytes_of_live_objects ();
5706 if (tot_before > tot_after)
5707 swept = tot_before - tot_after;
5708 malloc_probe (swept);
5709 }
5710
5711 return retval;
5712 }
5713
5714
5715 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5716 only interesting objects referenced from glyphs are strings. */
5717
5718 static void
5719 mark_glyph_matrix (struct glyph_matrix *matrix)
5720 {
5721 struct glyph_row *row = matrix->rows;
5722 struct glyph_row *end = row + matrix->nrows;
5723
5724 for (; row < end; ++row)
5725 if (row->enabled_p)
5726 {
5727 int area;
5728 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5729 {
5730 struct glyph *glyph = row->glyphs[area];
5731 struct glyph *end_glyph = glyph + row->used[area];
5732
5733 for (; glyph < end_glyph; ++glyph)
5734 if (STRINGP (glyph->object)
5735 && !STRING_MARKED_P (XSTRING (glyph->object)))
5736 mark_object (glyph->object);
5737 }
5738 }
5739 }
5740
5741 /* Mark reference to a Lisp_Object.
5742 If the object referred to has not been seen yet, recursively mark
5743 all the references contained in it. */
5744
5745 #define LAST_MARKED_SIZE 500
5746 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5747 static int last_marked_index;
5748
5749 /* For debugging--call abort when we cdr down this many
5750 links of a list, in mark_object. In debugging,
5751 the call to abort will hit a breakpoint.
5752 Normally this is zero and the check never goes off. */
5753 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5754
5755 static void
5756 mark_vectorlike (struct Lisp_Vector *ptr)
5757 {
5758 ptrdiff_t size = ptr->header.size;
5759 ptrdiff_t i;
5760
5761 eassert (!VECTOR_MARKED_P (ptr));
5762 VECTOR_MARK (ptr); /* Else mark it. */
5763 if (size & PSEUDOVECTOR_FLAG)
5764 size &= PSEUDOVECTOR_SIZE_MASK;
5765
5766 /* Note that this size is not the memory-footprint size, but only
5767 the number of Lisp_Object fields that we should trace.
5768 The distinction is used e.g. by Lisp_Process which places extra
5769 non-Lisp_Object fields at the end of the structure... */
5770 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5771 mark_object (ptr->contents[i]);
5772 }
5773
5774 /* Like mark_vectorlike but optimized for char-tables (and
5775 sub-char-tables) assuming that the contents are mostly integers or
5776 symbols. */
5777
5778 static void
5779 mark_char_table (struct Lisp_Vector *ptr)
5780 {
5781 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5782 int i;
5783
5784 eassert (!VECTOR_MARKED_P (ptr));
5785 VECTOR_MARK (ptr);
5786 for (i = 0; i < size; i++)
5787 {
5788 Lisp_Object val = ptr->contents[i];
5789
5790 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5791 continue;
5792 if (SUB_CHAR_TABLE_P (val))
5793 {
5794 if (! VECTOR_MARKED_P (XVECTOR (val)))
5795 mark_char_table (XVECTOR (val));
5796 }
5797 else
5798 mark_object (val);
5799 }
5800 }
5801
5802 /* Mark the chain of overlays starting at PTR. */
5803
5804 static void
5805 mark_overlay (struct Lisp_Overlay *ptr)
5806 {
5807 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5808 {
5809 ptr->gcmarkbit = 1;
5810 mark_object (ptr->start);
5811 mark_object (ptr->end);
5812 mark_object (ptr->plist);
5813 }
5814 }
5815
5816 /* Mark Lisp_Objects and special pointers in BUFFER. */
5817
5818 static void
5819 mark_buffer (struct buffer *buffer)
5820 {
5821 /* This is handled much like other pseudovectors... */
5822 mark_vectorlike ((struct Lisp_Vector *) buffer);
5823
5824 /* ...but there are some buffer-specific things. */
5825
5826 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5827
5828 /* For now, we just don't mark the undo_list. It's done later in
5829 a special way just before the sweep phase, and after stripping
5830 some of its elements that are not needed any more. */
5831
5832 mark_overlay (buffer->overlays_before);
5833 mark_overlay (buffer->overlays_after);
5834
5835 /* If this is an indirect buffer, mark its base buffer. */
5836 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5837 mark_buffer (buffer->base_buffer);
5838 }
5839
5840 /* Mark Lisp faces in the face cache C. */
5841
5842 static void
5843 mark_face_cache (struct face_cache *c)
5844 {
5845 if (c)
5846 {
5847 int i, j;
5848 for (i = 0; i < c->used; ++i)
5849 {
5850 struct face *face = FACE_FROM_ID (c->f, i);
5851
5852 if (face)
5853 {
5854 if (face->font && !VECTOR_MARKED_P (face->font))
5855 mark_vectorlike ((struct Lisp_Vector *) face->font);
5856
5857 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5858 mark_object (face->lface[j]);
5859 }
5860 }
5861 }
5862 }
5863
5864 /* Remove killed buffers or items whose car is a killed buffer from
5865 LIST, and mark other items. Return changed LIST, which is marked. */
5866
5867 static Lisp_Object
5868 mark_discard_killed_buffers (Lisp_Object list)
5869 {
5870 Lisp_Object tail, *prev = &list;
5871
5872 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5873 tail = XCDR (tail))
5874 {
5875 Lisp_Object tem = XCAR (tail);
5876 if (CONSP (tem))
5877 tem = XCAR (tem);
5878 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5879 *prev = XCDR (tail);
5880 else
5881 {
5882 CONS_MARK (XCONS (tail));
5883 mark_object (XCAR (tail));
5884 prev = xcdr_addr (tail);
5885 }
5886 }
5887 mark_object (tail);
5888 return list;
5889 }
5890
5891 /* Determine type of generic Lisp_Object and mark it accordingly. */
5892
5893 void
5894 mark_object (Lisp_Object arg)
5895 {
5896 register Lisp_Object obj = arg;
5897 #ifdef GC_CHECK_MARKED_OBJECTS
5898 void *po;
5899 struct mem_node *m;
5900 #endif
5901 ptrdiff_t cdr_count = 0;
5902
5903 loop:
5904
5905 if (PURE_POINTER_P (XPNTR (obj)))
5906 return;
5907
5908 last_marked[last_marked_index++] = obj;
5909 if (last_marked_index == LAST_MARKED_SIZE)
5910 last_marked_index = 0;
5911
5912 /* Perform some sanity checks on the objects marked here. Abort if
5913 we encounter an object we know is bogus. This increases GC time
5914 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5915 #ifdef GC_CHECK_MARKED_OBJECTS
5916
5917 po = (void *) XPNTR (obj);
5918
5919 /* Check that the object pointed to by PO is known to be a Lisp
5920 structure allocated from the heap. */
5921 #define CHECK_ALLOCATED() \
5922 do { \
5923 m = mem_find (po); \
5924 if (m == MEM_NIL) \
5925 emacs_abort (); \
5926 } while (0)
5927
5928 /* Check that the object pointed to by PO is live, using predicate
5929 function LIVEP. */
5930 #define CHECK_LIVE(LIVEP) \
5931 do { \
5932 if (!LIVEP (m, po)) \
5933 emacs_abort (); \
5934 } while (0)
5935
5936 /* Check both of the above conditions. */
5937 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5938 do { \
5939 CHECK_ALLOCATED (); \
5940 CHECK_LIVE (LIVEP); \
5941 } while (0) \
5942
5943 #else /* not GC_CHECK_MARKED_OBJECTS */
5944
5945 #define CHECK_LIVE(LIVEP) (void) 0
5946 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5947
5948 #endif /* not GC_CHECK_MARKED_OBJECTS */
5949
5950 switch (XTYPE (obj))
5951 {
5952 case Lisp_String:
5953 {
5954 register struct Lisp_String *ptr = XSTRING (obj);
5955 if (STRING_MARKED_P (ptr))
5956 break;
5957 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5958 MARK_STRING (ptr);
5959 MARK_INTERVAL_TREE (ptr->intervals);
5960 #ifdef GC_CHECK_STRING_BYTES
5961 /* Check that the string size recorded in the string is the
5962 same as the one recorded in the sdata structure. */
5963 string_bytes (ptr);
5964 #endif /* GC_CHECK_STRING_BYTES */
5965 }
5966 break;
5967
5968 case Lisp_Vectorlike:
5969 {
5970 register struct Lisp_Vector *ptr = XVECTOR (obj);
5971 register ptrdiff_t pvectype;
5972
5973 if (VECTOR_MARKED_P (ptr))
5974 break;
5975
5976 #ifdef GC_CHECK_MARKED_OBJECTS
5977 m = mem_find (po);
5978 if (m == MEM_NIL && !SUBRP (obj))
5979 emacs_abort ();
5980 #endif /* GC_CHECK_MARKED_OBJECTS */
5981
5982 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5983 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5984 >> PSEUDOVECTOR_AREA_BITS);
5985 else
5986 pvectype = PVEC_NORMAL_VECTOR;
5987
5988 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5989 CHECK_LIVE (live_vector_p);
5990
5991 switch (pvectype)
5992 {
5993 case PVEC_BUFFER:
5994 #ifdef GC_CHECK_MARKED_OBJECTS
5995 {
5996 struct buffer *b;
5997 FOR_EACH_BUFFER (b)
5998 if (b == po)
5999 break;
6000 if (b == NULL)
6001 emacs_abort ();
6002 }
6003 #endif /* GC_CHECK_MARKED_OBJECTS */
6004 mark_buffer ((struct buffer *) ptr);
6005 break;
6006
6007 case PVEC_COMPILED:
6008 { /* We could treat this just like a vector, but it is better
6009 to save the COMPILED_CONSTANTS element for last and avoid
6010 recursion there. */
6011 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6012 int i;
6013
6014 VECTOR_MARK (ptr);
6015 for (i = 0; i < size; i++)
6016 if (i != COMPILED_CONSTANTS)
6017 mark_object (ptr->contents[i]);
6018 if (size > COMPILED_CONSTANTS)
6019 {
6020 obj = ptr->contents[COMPILED_CONSTANTS];
6021 goto loop;
6022 }
6023 }
6024 break;
6025
6026 case PVEC_FRAME:
6027 {
6028 struct frame *f = (struct frame *) ptr;
6029
6030 mark_vectorlike (ptr);
6031 mark_face_cache (f->face_cache);
6032 #ifdef HAVE_WINDOW_SYSTEM
6033 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6034 {
6035 struct font *font = FRAME_FONT (f);
6036
6037 if (font && !VECTOR_MARKED_P (font))
6038 mark_vectorlike ((struct Lisp_Vector *) font);
6039 }
6040 #endif
6041 }
6042 break;
6043
6044 case PVEC_WINDOW:
6045 {
6046 struct window *w = (struct window *) ptr;
6047
6048 mark_vectorlike (ptr);
6049
6050 /* Mark glyph matrices, if any. Marking window
6051 matrices is sufficient because frame matrices
6052 use the same glyph memory. */
6053 if (w->current_matrix)
6054 {
6055 mark_glyph_matrix (w->current_matrix);
6056 mark_glyph_matrix (w->desired_matrix);
6057 }
6058
6059 /* Filter out killed buffers from both buffer lists
6060 in attempt to help GC to reclaim killed buffers faster.
6061 We can do it elsewhere for live windows, but this is the
6062 best place to do it for dead windows. */
6063 wset_prev_buffers
6064 (w, mark_discard_killed_buffers (w->prev_buffers));
6065 wset_next_buffers
6066 (w, mark_discard_killed_buffers (w->next_buffers));
6067 }
6068 break;
6069
6070 case PVEC_HASH_TABLE:
6071 {
6072 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6073
6074 mark_vectorlike (ptr);
6075 mark_object (h->test.name);
6076 mark_object (h->test.user_hash_function);
6077 mark_object (h->test.user_cmp_function);
6078 /* If hash table is not weak, mark all keys and values.
6079 For weak tables, mark only the vector. */
6080 if (NILP (h->weak))
6081 mark_object (h->key_and_value);
6082 else
6083 VECTOR_MARK (XVECTOR (h->key_and_value));
6084 }
6085 break;
6086
6087 case PVEC_CHAR_TABLE:
6088 mark_char_table (ptr);
6089 break;
6090
6091 case PVEC_BOOL_VECTOR:
6092 /* No Lisp_Objects to mark in a bool vector. */
6093 VECTOR_MARK (ptr);
6094 break;
6095
6096 case PVEC_SUBR:
6097 break;
6098
6099 case PVEC_FREE:
6100 emacs_abort ();
6101
6102 default:
6103 mark_vectorlike (ptr);
6104 }
6105 }
6106 break;
6107
6108 case Lisp_Symbol:
6109 {
6110 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6111 struct Lisp_Symbol *ptrx;
6112
6113 if (ptr->gcmarkbit)
6114 break;
6115 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6116 ptr->gcmarkbit = 1;
6117 mark_object (ptr->function);
6118 mark_object (ptr->plist);
6119 switch (ptr->redirect)
6120 {
6121 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6122 case SYMBOL_VARALIAS:
6123 {
6124 Lisp_Object tem;
6125 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6126 mark_object (tem);
6127 break;
6128 }
6129 case SYMBOL_LOCALIZED:
6130 {
6131 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6132 Lisp_Object where = blv->where;
6133 /* If the value is set up for a killed buffer or deleted
6134 frame, restore it's global binding. If the value is
6135 forwarded to a C variable, either it's not a Lisp_Object
6136 var, or it's staticpro'd already. */
6137 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6138 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6139 swap_in_global_binding (ptr);
6140 mark_object (blv->where);
6141 mark_object (blv->valcell);
6142 mark_object (blv->defcell);
6143 break;
6144 }
6145 case SYMBOL_FORWARDED:
6146 /* If the value is forwarded to a buffer or keyboard field,
6147 these are marked when we see the corresponding object.
6148 And if it's forwarded to a C variable, either it's not
6149 a Lisp_Object var, or it's staticpro'd already. */
6150 break;
6151 default: emacs_abort ();
6152 }
6153 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6154 MARK_STRING (XSTRING (ptr->name));
6155 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6156
6157 ptr = ptr->next;
6158 if (ptr)
6159 {
6160 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6161 XSETSYMBOL (obj, ptrx);
6162 goto loop;
6163 }
6164 }
6165 break;
6166
6167 case Lisp_Misc:
6168 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6169
6170 if (XMISCANY (obj)->gcmarkbit)
6171 break;
6172
6173 switch (XMISCTYPE (obj))
6174 {
6175 case Lisp_Misc_Marker:
6176 /* DO NOT mark thru the marker's chain.
6177 The buffer's markers chain does not preserve markers from gc;
6178 instead, markers are removed from the chain when freed by gc. */
6179 XMISCANY (obj)->gcmarkbit = 1;
6180 break;
6181
6182 case Lisp_Misc_Save_Value:
6183 XMISCANY (obj)->gcmarkbit = 1;
6184 {
6185 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6186 /* If `save_type' is zero, `data[0].pointer' is the address
6187 of a memory area containing `data[1].integer' potential
6188 Lisp_Objects. */
6189 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6190 {
6191 Lisp_Object *p = ptr->data[0].pointer;
6192 ptrdiff_t nelt;
6193 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6194 mark_maybe_object (*p);
6195 }
6196 else
6197 {
6198 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6199 int i;
6200 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6201 if (save_type (ptr, i) == SAVE_OBJECT)
6202 mark_object (ptr->data[i].object);
6203 }
6204 }
6205 break;
6206
6207 case Lisp_Misc_Overlay:
6208 mark_overlay (XOVERLAY (obj));
6209 break;
6210
6211 default:
6212 emacs_abort ();
6213 }
6214 break;
6215
6216 case Lisp_Cons:
6217 {
6218 register struct Lisp_Cons *ptr = XCONS (obj);
6219 if (CONS_MARKED_P (ptr))
6220 break;
6221 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6222 CONS_MARK (ptr);
6223 /* If the cdr is nil, avoid recursion for the car. */
6224 if (EQ (ptr->u.cdr, Qnil))
6225 {
6226 obj = ptr->car;
6227 cdr_count = 0;
6228 goto loop;
6229 }
6230 mark_object (ptr->car);
6231 obj = ptr->u.cdr;
6232 cdr_count++;
6233 if (cdr_count == mark_object_loop_halt)
6234 emacs_abort ();
6235 goto loop;
6236 }
6237
6238 case Lisp_Float:
6239 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6240 FLOAT_MARK (XFLOAT (obj));
6241 break;
6242
6243 case_Lisp_Int:
6244 break;
6245
6246 default:
6247 emacs_abort ();
6248 }
6249
6250 #undef CHECK_LIVE
6251 #undef CHECK_ALLOCATED
6252 #undef CHECK_ALLOCATED_AND_LIVE
6253 }
6254 /* Mark the Lisp pointers in the terminal objects.
6255 Called by Fgarbage_collect. */
6256
6257 static void
6258 mark_terminals (void)
6259 {
6260 struct terminal *t;
6261 for (t = terminal_list; t; t = t->next_terminal)
6262 {
6263 eassert (t->name != NULL);
6264 #ifdef HAVE_WINDOW_SYSTEM
6265 /* If a terminal object is reachable from a stacpro'ed object,
6266 it might have been marked already. Make sure the image cache
6267 gets marked. */
6268 mark_image_cache (t->image_cache);
6269 #endif /* HAVE_WINDOW_SYSTEM */
6270 if (!VECTOR_MARKED_P (t))
6271 mark_vectorlike ((struct Lisp_Vector *)t);
6272 }
6273 }
6274
6275
6276
6277 /* Value is non-zero if OBJ will survive the current GC because it's
6278 either marked or does not need to be marked to survive. */
6279
6280 bool
6281 survives_gc_p (Lisp_Object obj)
6282 {
6283 bool survives_p;
6284
6285 switch (XTYPE (obj))
6286 {
6287 case_Lisp_Int:
6288 survives_p = 1;
6289 break;
6290
6291 case Lisp_Symbol:
6292 survives_p = XSYMBOL (obj)->gcmarkbit;
6293 break;
6294
6295 case Lisp_Misc:
6296 survives_p = XMISCANY (obj)->gcmarkbit;
6297 break;
6298
6299 case Lisp_String:
6300 survives_p = STRING_MARKED_P (XSTRING (obj));
6301 break;
6302
6303 case Lisp_Vectorlike:
6304 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6305 break;
6306
6307 case Lisp_Cons:
6308 survives_p = CONS_MARKED_P (XCONS (obj));
6309 break;
6310
6311 case Lisp_Float:
6312 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6313 break;
6314
6315 default:
6316 emacs_abort ();
6317 }
6318
6319 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6320 }
6321
6322
6323 \f
6324 /* Sweep: find all structures not marked, and free them. */
6325
6326 static void
6327 gc_sweep (void)
6328 {
6329 /* Remove or mark entries in weak hash tables.
6330 This must be done before any object is unmarked. */
6331 sweep_weak_hash_tables ();
6332
6333 sweep_strings ();
6334 check_string_bytes (!noninteractive);
6335
6336 /* Put all unmarked conses on free list. */
6337 {
6338 register struct cons_block *cblk;
6339 struct cons_block **cprev = &cons_block;
6340 register int lim = cons_block_index;
6341 EMACS_INT num_free = 0, num_used = 0;
6342
6343 cons_free_list = 0;
6344
6345 for (cblk = cons_block; cblk; cblk = *cprev)
6346 {
6347 register int i = 0;
6348 int this_free = 0;
6349 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6350
6351 /* Scan the mark bits an int at a time. */
6352 for (i = 0; i < ilim; i++)
6353 {
6354 if (cblk->gcmarkbits[i] == -1)
6355 {
6356 /* Fast path - all cons cells for this int are marked. */
6357 cblk->gcmarkbits[i] = 0;
6358 num_used += BITS_PER_INT;
6359 }
6360 else
6361 {
6362 /* Some cons cells for this int are not marked.
6363 Find which ones, and free them. */
6364 int start, pos, stop;
6365
6366 start = i * BITS_PER_INT;
6367 stop = lim - start;
6368 if (stop > BITS_PER_INT)
6369 stop = BITS_PER_INT;
6370 stop += start;
6371
6372 for (pos = start; pos < stop; pos++)
6373 {
6374 if (!CONS_MARKED_P (&cblk->conses[pos]))
6375 {
6376 this_free++;
6377 cblk->conses[pos].u.chain = cons_free_list;
6378 cons_free_list = &cblk->conses[pos];
6379 #if GC_MARK_STACK
6380 cons_free_list->car = Vdead;
6381 #endif
6382 }
6383 else
6384 {
6385 num_used++;
6386 CONS_UNMARK (&cblk->conses[pos]);
6387 }
6388 }
6389 }
6390 }
6391
6392 lim = CONS_BLOCK_SIZE;
6393 /* If this block contains only free conses and we have already
6394 seen more than two blocks worth of free conses then deallocate
6395 this block. */
6396 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6397 {
6398 *cprev = cblk->next;
6399 /* Unhook from the free list. */
6400 cons_free_list = cblk->conses[0].u.chain;
6401 lisp_align_free (cblk);
6402 }
6403 else
6404 {
6405 num_free += this_free;
6406 cprev = &cblk->next;
6407 }
6408 }
6409 total_conses = num_used;
6410 total_free_conses = num_free;
6411 }
6412
6413 /* Put all unmarked floats on free list. */
6414 {
6415 register struct float_block *fblk;
6416 struct float_block **fprev = &float_block;
6417 register int lim = float_block_index;
6418 EMACS_INT num_free = 0, num_used = 0;
6419
6420 float_free_list = 0;
6421
6422 for (fblk = float_block; fblk; fblk = *fprev)
6423 {
6424 register int i;
6425 int this_free = 0;
6426 for (i = 0; i < lim; i++)
6427 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6428 {
6429 this_free++;
6430 fblk->floats[i].u.chain = float_free_list;
6431 float_free_list = &fblk->floats[i];
6432 }
6433 else
6434 {
6435 num_used++;
6436 FLOAT_UNMARK (&fblk->floats[i]);
6437 }
6438 lim = FLOAT_BLOCK_SIZE;
6439 /* If this block contains only free floats and we have already
6440 seen more than two blocks worth of free floats then deallocate
6441 this block. */
6442 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6443 {
6444 *fprev = fblk->next;
6445 /* Unhook from the free list. */
6446 float_free_list = fblk->floats[0].u.chain;
6447 lisp_align_free (fblk);
6448 }
6449 else
6450 {
6451 num_free += this_free;
6452 fprev = &fblk->next;
6453 }
6454 }
6455 total_floats = num_used;
6456 total_free_floats = num_free;
6457 }
6458
6459 /* Put all unmarked intervals on free list. */
6460 {
6461 register struct interval_block *iblk;
6462 struct interval_block **iprev = &interval_block;
6463 register int lim = interval_block_index;
6464 EMACS_INT num_free = 0, num_used = 0;
6465
6466 interval_free_list = 0;
6467
6468 for (iblk = interval_block; iblk; iblk = *iprev)
6469 {
6470 register int i;
6471 int this_free = 0;
6472
6473 for (i = 0; i < lim; i++)
6474 {
6475 if (!iblk->intervals[i].gcmarkbit)
6476 {
6477 set_interval_parent (&iblk->intervals[i], interval_free_list);
6478 interval_free_list = &iblk->intervals[i];
6479 this_free++;
6480 }
6481 else
6482 {
6483 num_used++;
6484 iblk->intervals[i].gcmarkbit = 0;
6485 }
6486 }
6487 lim = INTERVAL_BLOCK_SIZE;
6488 /* If this block contains only free intervals and we have already
6489 seen more than two blocks worth of free intervals then
6490 deallocate this block. */
6491 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6492 {
6493 *iprev = iblk->next;
6494 /* Unhook from the free list. */
6495 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6496 lisp_free (iblk);
6497 }
6498 else
6499 {
6500 num_free += this_free;
6501 iprev = &iblk->next;
6502 }
6503 }
6504 total_intervals = num_used;
6505 total_free_intervals = num_free;
6506 }
6507
6508 /* Put all unmarked symbols on free list. */
6509 {
6510 register struct symbol_block *sblk;
6511 struct symbol_block **sprev = &symbol_block;
6512 register int lim = symbol_block_index;
6513 EMACS_INT num_free = 0, num_used = 0;
6514
6515 symbol_free_list = NULL;
6516
6517 for (sblk = symbol_block; sblk; sblk = *sprev)
6518 {
6519 int this_free = 0;
6520 union aligned_Lisp_Symbol *sym = sblk->symbols;
6521 union aligned_Lisp_Symbol *end = sym + lim;
6522
6523 for (; sym < end; ++sym)
6524 {
6525 /* Check if the symbol was created during loadup. In such a case
6526 it might be pointed to by pure bytecode which we don't trace,
6527 so we conservatively assume that it is live. */
6528 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6529
6530 if (!sym->s.gcmarkbit && !pure_p)
6531 {
6532 if (sym->s.redirect == SYMBOL_LOCALIZED)
6533 xfree (SYMBOL_BLV (&sym->s));
6534 sym->s.next = symbol_free_list;
6535 symbol_free_list = &sym->s;
6536 #if GC_MARK_STACK
6537 symbol_free_list->function = Vdead;
6538 #endif
6539 ++this_free;
6540 }
6541 else
6542 {
6543 ++num_used;
6544 if (!pure_p)
6545 eassert (!STRING_MARKED_P (XSTRING (sym->s.name)));
6546 sym->s.gcmarkbit = 0;
6547 }
6548 }
6549
6550 lim = SYMBOL_BLOCK_SIZE;
6551 /* If this block contains only free symbols and we have already
6552 seen more than two blocks worth of free symbols then deallocate
6553 this block. */
6554 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6555 {
6556 *sprev = sblk->next;
6557 /* Unhook from the free list. */
6558 symbol_free_list = sblk->symbols[0].s.next;
6559 lisp_free (sblk);
6560 }
6561 else
6562 {
6563 num_free += this_free;
6564 sprev = &sblk->next;
6565 }
6566 }
6567 total_symbols = num_used;
6568 total_free_symbols = num_free;
6569 }
6570
6571 /* Put all unmarked misc's on free list.
6572 For a marker, first unchain it from the buffer it points into. */
6573 {
6574 register struct marker_block *mblk;
6575 struct marker_block **mprev = &marker_block;
6576 register int lim = marker_block_index;
6577 EMACS_INT num_free = 0, num_used = 0;
6578
6579 marker_free_list = 0;
6580
6581 for (mblk = marker_block; mblk; mblk = *mprev)
6582 {
6583 register int i;
6584 int this_free = 0;
6585
6586 for (i = 0; i < lim; i++)
6587 {
6588 if (!mblk->markers[i].m.u_any.gcmarkbit)
6589 {
6590 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6591 unchain_marker (&mblk->markers[i].m.u_marker);
6592 /* Set the type of the freed object to Lisp_Misc_Free.
6593 We could leave the type alone, since nobody checks it,
6594 but this might catch bugs faster. */
6595 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6596 mblk->markers[i].m.u_free.chain = marker_free_list;
6597 marker_free_list = &mblk->markers[i].m;
6598 this_free++;
6599 }
6600 else
6601 {
6602 num_used++;
6603 mblk->markers[i].m.u_any.gcmarkbit = 0;
6604 }
6605 }
6606 lim = MARKER_BLOCK_SIZE;
6607 /* If this block contains only free markers and we have already
6608 seen more than two blocks worth of free markers then deallocate
6609 this block. */
6610 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6611 {
6612 *mprev = mblk->next;
6613 /* Unhook from the free list. */
6614 marker_free_list = mblk->markers[0].m.u_free.chain;
6615 lisp_free (mblk);
6616 }
6617 else
6618 {
6619 num_free += this_free;
6620 mprev = &mblk->next;
6621 }
6622 }
6623
6624 total_markers = num_used;
6625 total_free_markers = num_free;
6626 }
6627
6628 /* Free all unmarked buffers */
6629 {
6630 register struct buffer *buffer, **bprev = &all_buffers;
6631
6632 total_buffers = 0;
6633 for (buffer = all_buffers; buffer; buffer = *bprev)
6634 if (!VECTOR_MARKED_P (buffer))
6635 {
6636 *bprev = buffer->next;
6637 lisp_free (buffer);
6638 }
6639 else
6640 {
6641 VECTOR_UNMARK (buffer);
6642 /* Do not use buffer_(set|get)_intervals here. */
6643 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6644 total_buffers++;
6645 bprev = &buffer->next;
6646 }
6647 }
6648
6649 sweep_vectors ();
6650 check_string_bytes (!noninteractive);
6651 }
6652
6653
6654
6655 \f
6656 /* Debugging aids. */
6657
6658 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6659 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6660 This may be helpful in debugging Emacs's memory usage.
6661 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6662 (void)
6663 {
6664 Lisp_Object end;
6665
6666 #ifdef HAVE_NS
6667 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6668 XSETINT (end, 0);
6669 #else
6670 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6671 #endif
6672
6673 return end;
6674 }
6675
6676 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6677 doc: /* Return a list of counters that measure how much consing there has been.
6678 Each of these counters increments for a certain kind of object.
6679 The counters wrap around from the largest positive integer to zero.
6680 Garbage collection does not decrease them.
6681 The elements of the value are as follows:
6682 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6683 All are in units of 1 = one object consed
6684 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6685 objects consed.
6686 MISCS include overlays, markers, and some internal types.
6687 Frames, windows, buffers, and subprocesses count as vectors
6688 (but the contents of a buffer's text do not count here). */)
6689 (void)
6690 {
6691 return listn (CONSTYPE_HEAP, 8,
6692 bounded_number (cons_cells_consed),
6693 bounded_number (floats_consed),
6694 bounded_number (vector_cells_consed),
6695 bounded_number (symbols_consed),
6696 bounded_number (string_chars_consed),
6697 bounded_number (misc_objects_consed),
6698 bounded_number (intervals_consed),
6699 bounded_number (strings_consed));
6700 }
6701
6702 /* Find at most FIND_MAX symbols which have OBJ as their value or
6703 function. This is used in gdbinit's `xwhichsymbols' command. */
6704
6705 Lisp_Object
6706 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6707 {
6708 struct symbol_block *sblk;
6709 ptrdiff_t gc_count = inhibit_garbage_collection ();
6710 Lisp_Object found = Qnil;
6711
6712 if (! DEADP (obj))
6713 {
6714 for (sblk = symbol_block; sblk; sblk = sblk->next)
6715 {
6716 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6717 int bn;
6718
6719 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6720 {
6721 struct Lisp_Symbol *sym = &aligned_sym->s;
6722 Lisp_Object val;
6723 Lisp_Object tem;
6724
6725 if (sblk == symbol_block && bn >= symbol_block_index)
6726 break;
6727
6728 XSETSYMBOL (tem, sym);
6729 val = find_symbol_value (tem);
6730 if (EQ (val, obj)
6731 || EQ (sym->function, obj)
6732 || (!NILP (sym->function)
6733 && COMPILEDP (sym->function)
6734 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6735 || (!NILP (val)
6736 && COMPILEDP (val)
6737 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6738 {
6739 found = Fcons (tem, found);
6740 if (--find_max == 0)
6741 goto out;
6742 }
6743 }
6744 }
6745 }
6746
6747 out:
6748 unbind_to (gc_count, Qnil);
6749 return found;
6750 }
6751
6752 #ifdef ENABLE_CHECKING
6753
6754 bool suppress_checking;
6755
6756 void
6757 die (const char *msg, const char *file, int line)
6758 {
6759 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6760 file, line, msg);
6761 terminate_due_to_signal (SIGABRT, INT_MAX);
6762 }
6763 #endif
6764 \f
6765 /* Initialization. */
6766
6767 void
6768 init_alloc_once (void)
6769 {
6770 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6771 purebeg = PUREBEG;
6772 pure_size = PURESIZE;
6773
6774 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6775 mem_init ();
6776 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6777 #endif
6778
6779 #ifdef DOUG_LEA_MALLOC
6780 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6781 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6782 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6783 #endif
6784 init_strings ();
6785 init_vectors ();
6786
6787 refill_memory_reserve ();
6788 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6789 }
6790
6791 void
6792 init_alloc (void)
6793 {
6794 gcprolist = 0;
6795 byte_stack_list = 0;
6796 #if GC_MARK_STACK
6797 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6798 setjmp_tested_p = longjmps_done = 0;
6799 #endif
6800 #endif
6801 Vgc_elapsed = make_float (0.0);
6802 gcs_done = 0;
6803
6804 #if USE_VALGRIND
6805 valgrind_p = RUNNING_ON_VALGRIND != 0;
6806 #endif
6807 }
6808
6809 void
6810 syms_of_alloc (void)
6811 {
6812 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6813 doc: /* Number of bytes of consing between garbage collections.
6814 Garbage collection can happen automatically once this many bytes have been
6815 allocated since the last garbage collection. All data types count.
6816
6817 Garbage collection happens automatically only when `eval' is called.
6818
6819 By binding this temporarily to a large number, you can effectively
6820 prevent garbage collection during a part of the program.
6821 See also `gc-cons-percentage'. */);
6822
6823 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6824 doc: /* Portion of the heap used for allocation.
6825 Garbage collection can happen automatically once this portion of the heap
6826 has been allocated since the last garbage collection.
6827 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6828 Vgc_cons_percentage = make_float (0.1);
6829
6830 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6831 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6832
6833 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6834 doc: /* Number of cons cells that have been consed so far. */);
6835
6836 DEFVAR_INT ("floats-consed", floats_consed,
6837 doc: /* Number of floats that have been consed so far. */);
6838
6839 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6840 doc: /* Number of vector cells that have been consed so far. */);
6841
6842 DEFVAR_INT ("symbols-consed", symbols_consed,
6843 doc: /* Number of symbols that have been consed so far. */);
6844
6845 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6846 doc: /* Number of string characters that have been consed so far. */);
6847
6848 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6849 doc: /* Number of miscellaneous objects that have been consed so far.
6850 These include markers and overlays, plus certain objects not visible
6851 to users. */);
6852
6853 DEFVAR_INT ("intervals-consed", intervals_consed,
6854 doc: /* Number of intervals that have been consed so far. */);
6855
6856 DEFVAR_INT ("strings-consed", strings_consed,
6857 doc: /* Number of strings that have been consed so far. */);
6858
6859 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6860 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6861 This means that certain objects should be allocated in shared (pure) space.
6862 It can also be set to a hash-table, in which case this table is used to
6863 do hash-consing of the objects allocated to pure space. */);
6864
6865 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6866 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6867 garbage_collection_messages = 0;
6868
6869 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6870 doc: /* Hook run after garbage collection has finished. */);
6871 Vpost_gc_hook = Qnil;
6872 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6873
6874 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6875 doc: /* Precomputed `signal' argument for memory-full error. */);
6876 /* We build this in advance because if we wait until we need it, we might
6877 not be able to allocate the memory to hold it. */
6878 Vmemory_signal_data
6879 = listn (CONSTYPE_PURE, 2, Qerror,
6880 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6881
6882 DEFVAR_LISP ("memory-full", Vmemory_full,
6883 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6884 Vmemory_full = Qnil;
6885
6886 DEFSYM (Qconses, "conses");
6887 DEFSYM (Qsymbols, "symbols");
6888 DEFSYM (Qmiscs, "miscs");
6889 DEFSYM (Qstrings, "strings");
6890 DEFSYM (Qvectors, "vectors");
6891 DEFSYM (Qfloats, "floats");
6892 DEFSYM (Qintervals, "intervals");
6893 DEFSYM (Qbuffers, "buffers");
6894 DEFSYM (Qstring_bytes, "string-bytes");
6895 DEFSYM (Qvector_slots, "vector-slots");
6896 DEFSYM (Qheap, "heap");
6897 DEFSYM (Qautomatic_gc, "Automatic GC");
6898
6899 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6900 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6901
6902 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6903 doc: /* Accumulated time elapsed in garbage collections.
6904 The time is in seconds as a floating point value. */);
6905 DEFVAR_INT ("gcs-done", gcs_done,
6906 doc: /* Accumulated number of garbage collections done. */);
6907
6908 defsubr (&Scons);
6909 defsubr (&Slist);
6910 defsubr (&Svector);
6911 defsubr (&Smake_byte_code);
6912 defsubr (&Smake_list);
6913 defsubr (&Smake_vector);
6914 defsubr (&Smake_string);
6915 defsubr (&Smake_bool_vector);
6916 defsubr (&Smake_symbol);
6917 defsubr (&Smake_marker);
6918 defsubr (&Spurecopy);
6919 defsubr (&Sgarbage_collect);
6920 defsubr (&Smemory_limit);
6921 defsubr (&Smemory_use_counts);
6922
6923 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6924 defsubr (&Sgc_status);
6925 #endif
6926 }
6927
6928 /* When compiled with GCC, GDB might say "No enum type named
6929 pvec_type" if we don't have at least one symbol with that type, and
6930 then xbacktrace could fail. Similarly for the other enums and
6931 their values. Some non-GCC compilers don't like these constructs. */
6932 #ifdef __GNUC__
6933 union
6934 {
6935 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6936 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6937 enum char_bits char_bits;
6938 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6939 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6940 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6941 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6942 enum Lisp_Bits Lisp_Bits;
6943 enum Lisp_Compiled Lisp_Compiled;
6944 enum maxargs maxargs;
6945 enum MAX_ALLOCA MAX_ALLOCA;
6946 enum More_Lisp_Bits More_Lisp_Bits;
6947 enum pvec_type pvec_type;
6948 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6949 #endif /* __GNUC__ */