libgc configuration
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #if (defined ENABLE_CHECKING \
53 && defined HAVE_VALGRIND_VALGRIND_H \
54 && !defined USE_VALGRIND)
55 # define USE_VALGRIND 1
56 #endif
57
58 #if USE_VALGRIND
59 #include <valgrind/valgrind.h>
60 #include <valgrind/memcheck.h>
61 static bool valgrind_p;
62 #endif
63
64 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
65 Doable only if GC_MARK_STACK. */
66 #if ! GC_MARK_STACK
67 # undef GC_CHECK_MARKED_OBJECTS
68 #endif
69
70 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
71 memory. Can do this only if using gmalloc.c and if not checking
72 marked objects. */
73
74 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
75 || defined GC_CHECK_MARKED_OBJECTS)
76 #undef GC_MALLOC_CHECK
77 #endif
78
79 #include <unistd.h>
80 #include <fcntl.h>
81
82 #ifdef USE_GTK
83 # include "gtkutil.h"
84 #endif
85 #ifdef WINDOWSNT
86 #include "w32.h"
87 #include "w32heap.h" /* for sbrk */
88 #endif
89
90 #ifdef DOUG_LEA_MALLOC
91
92 #include <malloc.h>
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #endif /* not DOUG_LEA_MALLOC */
100
101 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
102 to a struct Lisp_String. */
103
104 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
105 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
106 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107
108 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
109 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
110 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111
112 /* Default value of gc_cons_threshold (see below). */
113
114 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115
116 /* Global variables. */
117 struct emacs_globals globals;
118
119 /* Number of bytes of consing done since the last gc. */
120
121 EMACS_INT consing_since_gc;
122
123 /* Similar minimum, computed from Vgc_cons_percentage. */
124
125 EMACS_INT gc_relative_threshold;
126
127 /* Minimum number of bytes of consing since GC before next GC,
128 when memory is full. */
129
130 EMACS_INT memory_full_cons_threshold;
131
132 /* True during GC. */
133
134 bool gc_in_progress;
135
136 /* True means abort if try to GC.
137 This is for code which is written on the assumption that
138 no GC will happen, so as to verify that assumption. */
139
140 bool abort_on_gc;
141
142 /* Number of live and free conses etc. */
143
144 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
145 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
146 static EMACS_INT total_free_floats, total_floats;
147
148 /* Points to memory space allocated as "spare", to be freed if we run
149 out of memory. We keep one large block, four cons-blocks, and
150 two string blocks. */
151
152 static char *spare_memory[7];
153
154 /* Amount of spare memory to keep in large reserve block, or to see
155 whether this much is available when malloc fails on a larger request. */
156
157 #define SPARE_MEMORY (1 << 14)
158
159 /* Initialize it to a nonzero value to force it into data space
160 (rather than bss space). That way unexec will remap it into text
161 space (pure), on some systems. We have not implemented the
162 remapping on more recent systems because this is less important
163 nowadays than in the days of small memories and timesharing. */
164
165 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
166 #define PUREBEG (char *) pure
167
168 /* Pointer to the pure area, and its size. */
169
170 static char *purebeg;
171 static ptrdiff_t pure_size;
172
173 /* Number of bytes of pure storage used before pure storage overflowed.
174 If this is non-zero, this implies that an overflow occurred. */
175
176 static ptrdiff_t pure_bytes_used_before_overflow;
177
178 /* True if P points into pure space. */
179
180 #define PURE_POINTER_P(P) \
181 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182
183 /* Index in pure at which next pure Lisp object will be allocated.. */
184
185 static ptrdiff_t pure_bytes_used_lisp;
186
187 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188
189 static ptrdiff_t pure_bytes_used_non_lisp;
190
191 /* If nonzero, this is a warning delivered by malloc and not yet
192 displayed. */
193
194 const char *pending_malloc_warning;
195
196 #if 0 /* Normally, pointer sanity only on request... */
197 #ifdef ENABLE_CHECKING
198 #define SUSPICIOUS_OBJECT_CHECKING 1
199 #endif
200 #endif
201
202 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
203 bug is unresolved. */
204 #define SUSPICIOUS_OBJECT_CHECKING 1
205
206 #ifdef SUSPICIOUS_OBJECT_CHECKING
207 struct suspicious_free_record
208 {
209 void *suspicious_object;
210 void *backtrace[128];
211 };
212 static void *suspicious_objects[32];
213 static int suspicious_object_index;
214 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
215 static int suspicious_free_history_index;
216 /* Find the first currently-monitored suspicious pointer in range
217 [begin,end) or NULL if no such pointer exists. */
218 static void *find_suspicious_object_in_range (void *begin, void *end);
219 static void detect_suspicious_free (void *ptr);
220 #else
221 # define find_suspicious_object_in_range(begin, end) NULL
222 # define detect_suspicious_free(ptr) (void)
223 #endif
224
225 /* Maximum amount of C stack to save when a GC happens. */
226
227 #ifndef MAX_SAVE_STACK
228 #define MAX_SAVE_STACK 16000
229 #endif
230
231 /* Buffer in which we save a copy of the C stack at each GC. */
232
233 #if MAX_SAVE_STACK > 0
234 static char *stack_copy;
235 static ptrdiff_t stack_copy_size;
236
237 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
238 avoiding any address sanitization. */
239
240 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
241 no_sanitize_memcpy (void *dest, void const *src, size_t size)
242 {
243 if (! ADDRESS_SANITIZER)
244 return memcpy (dest, src, size);
245 else
246 {
247 size_t i;
248 char *d = dest;
249 char const *s = src;
250 for (i = 0; i < size; i++)
251 d[i] = s[i];
252 return dest;
253 }
254 }
255
256 #endif /* MAX_SAVE_STACK > 0 */
257
258 static Lisp_Object Qconses;
259 static Lisp_Object Qsymbols;
260 static Lisp_Object Qmiscs;
261 static Lisp_Object Qstrings;
262 static Lisp_Object Qvectors;
263 static Lisp_Object Qfloats;
264 static Lisp_Object Qintervals;
265 static Lisp_Object Qbuffers;
266 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
267 static Lisp_Object Qgc_cons_threshold;
268 Lisp_Object Qautomatic_gc;
269 Lisp_Object Qchar_table_extra_slots;
270
271 /* Hook run after GC has finished. */
272
273 static Lisp_Object Qpost_gc_hook;
274
275 static void mark_terminals (void);
276 static void gc_sweep (void);
277 static Lisp_Object make_pure_vector (ptrdiff_t);
278 static void mark_buffer (struct buffer *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
286
287 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
288 what memory allocated via lisp_malloc and lisp_align_malloc is intended
289 for what purpose. This enumeration specifies the type of memory. */
290
291 enum mem_type
292 {
293 MEM_TYPE_NON_LISP,
294 MEM_TYPE_BUFFER,
295 MEM_TYPE_CONS,
296 MEM_TYPE_STRING,
297 MEM_TYPE_MISC,
298 MEM_TYPE_SYMBOL,
299 MEM_TYPE_FLOAT,
300 /* Since all non-bool pseudovectors are small enough to be
301 allocated from vector blocks, this memory type denotes
302 large regular vectors and large bool pseudovectors. */
303 MEM_TYPE_VECTORLIKE,
304 /* Special type to denote vector blocks. */
305 MEM_TYPE_VECTOR_BLOCK,
306 /* Special type to denote reserved memory. */
307 MEM_TYPE_SPARE
308 };
309
310 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311
312 /* A unique object in pure space used to make some Lisp objects
313 on free lists recognizable in O(1). */
314
315 static Lisp_Object Vdead;
316 #define DEADP(x) EQ (x, Vdead)
317
318 #ifdef GC_MALLOC_CHECK
319
320 enum mem_type allocated_mem_type;
321
322 #endif /* GC_MALLOC_CHECK */
323
324 /* A node in the red-black tree describing allocated memory containing
325 Lisp data. Each such block is recorded with its start and end
326 address when it is allocated, and removed from the tree when it
327 is freed.
328
329 A red-black tree is a balanced binary tree with the following
330 properties:
331
332 1. Every node is either red or black.
333 2. Every leaf is black.
334 3. If a node is red, then both of its children are black.
335 4. Every simple path from a node to a descendant leaf contains
336 the same number of black nodes.
337 5. The root is always black.
338
339 When nodes are inserted into the tree, or deleted from the tree,
340 the tree is "fixed" so that these properties are always true.
341
342 A red-black tree with N internal nodes has height at most 2
343 log(N+1). Searches, insertions and deletions are done in O(log N).
344 Please see a text book about data structures for a detailed
345 description of red-black trees. Any book worth its salt should
346 describe them. */
347
348 struct mem_node
349 {
350 /* Children of this node. These pointers are never NULL. When there
351 is no child, the value is MEM_NIL, which points to a dummy node. */
352 struct mem_node *left, *right;
353
354 /* The parent of this node. In the root node, this is NULL. */
355 struct mem_node *parent;
356
357 /* Start and end of allocated region. */
358 void *start, *end;
359
360 /* Node color. */
361 enum {MEM_BLACK, MEM_RED} color;
362
363 /* Memory type. */
364 enum mem_type type;
365 };
366
367 /* Base address of stack. Set in main. */
368
369 Lisp_Object *stack_base;
370
371 /* Root of the tree describing allocated Lisp memory. */
372
373 static struct mem_node *mem_root;
374
375 /* Lowest and highest known address in the heap. */
376
377 static void *min_heap_address, *max_heap_address;
378
379 /* Sentinel node of the tree. */
380
381 static struct mem_node mem_z;
382 #define MEM_NIL &mem_z
383
384 static struct mem_node *mem_insert (void *, void *, enum mem_type);
385 static void mem_insert_fixup (struct mem_node *);
386 static void mem_rotate_left (struct mem_node *);
387 static void mem_rotate_right (struct mem_node *);
388 static void mem_delete (struct mem_node *);
389 static void mem_delete_fixup (struct mem_node *);
390 static struct mem_node *mem_find (void *);
391
392 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
393
394 #ifndef DEADP
395 # define DEADP(x) 0
396 #endif
397
398 /* Recording what needs to be marked for gc. */
399
400 struct gcpro *gcprolist;
401
402 /* Addresses of staticpro'd variables. Initialize it to a nonzero
403 value; otherwise some compilers put it into BSS. */
404
405 enum { NSTATICS = 2048 };
406 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
407
408 /* Index of next unused slot in staticvec. */
409
410 static int staticidx;
411
412 static void *pure_alloc (size_t, int);
413
414 /* Return X rounded to the next multiple of Y. Arguments should not
415 have side effects, as they are evaluated more than once. Assume X
416 + Y - 1 does not overflow. Tune for Y being a power of 2. */
417
418 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
419 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
420 : ((x) + (y) - 1) & ~ ((y) - 1))
421
422 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
423
424 static void *
425 ALIGN (void *ptr, int alignment)
426 {
427 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
428 }
429
430 static void
431 XFLOAT_INIT (Lisp_Object f, double n)
432 {
433 XFLOAT (f)->u.data = n;
434 }
435
436 static bool
437 pointers_fit_in_lispobj_p (void)
438 {
439 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
440 }
441
442 static bool
443 mmap_lisp_allowed_p (void)
444 {
445 /* If we can't store all memory addresses in our lisp objects, it's
446 risky to let the heap use mmap and give us addresses from all
447 over our address space. We also can't use mmap for lisp objects
448 if we might dump: unexec doesn't preserve the contents of mmaped
449 regions. */
450 return pointers_fit_in_lispobj_p () && !might_dump;
451 }
452
453 \f
454 /************************************************************************
455 Malloc
456 ************************************************************************/
457
458 /* Function malloc calls this if it finds we are near exhausting storage. */
459
460 void
461 malloc_warning (const char *str)
462 {
463 pending_malloc_warning = str;
464 }
465
466
467 /* Display an already-pending malloc warning. */
468
469 void
470 display_malloc_warning (void)
471 {
472 call3 (intern ("display-warning"),
473 intern ("alloc"),
474 build_string (pending_malloc_warning),
475 intern ("emergency"));
476 pending_malloc_warning = 0;
477 }
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (ptrdiff_t nbytes)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full (nbytes);
493 #else
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 #endif
498 }
499
500 /* A common multiple of the positive integers A and B. Ideally this
501 would be the least common multiple, but there's no way to do that
502 as a constant expression in C, so do the best that we can easily do. */
503 #define COMMON_MULTIPLE(a, b) \
504 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
505
506 #ifndef XMALLOC_OVERRUN_CHECK
507 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
508 #else
509
510 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
511 around each block.
512
513 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
514 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
515 block size in little-endian order. The trailer consists of
516 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
517
518 The header is used to detect whether this block has been allocated
519 through these functions, as some low-level libc functions may
520 bypass the malloc hooks. */
521
522 #define XMALLOC_OVERRUN_CHECK_SIZE 16
523 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
524 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
525
526 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
527 hold a size_t value and (2) the header size is a multiple of the
528 alignment that Emacs needs for C types and for USE_LSB_TAG. */
529 #define XMALLOC_BASE_ALIGNMENT \
530 alignof (union { long double d; intmax_t i; void *p; })
531
532 #if USE_LSB_TAG
533 # define XMALLOC_HEADER_ALIGNMENT \
534 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
535 #else
536 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
537 #endif
538 #define XMALLOC_OVERRUN_SIZE_SIZE \
539 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
540 + XMALLOC_HEADER_ALIGNMENT - 1) \
541 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
542 - XMALLOC_OVERRUN_CHECK_SIZE)
543
544 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
545 { '\x9a', '\x9b', '\xae', '\xaf',
546 '\xbf', '\xbe', '\xce', '\xcf',
547 '\xea', '\xeb', '\xec', '\xed',
548 '\xdf', '\xde', '\x9c', '\x9d' };
549
550 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
551 { '\xaa', '\xab', '\xac', '\xad',
552 '\xba', '\xbb', '\xbc', '\xbd',
553 '\xca', '\xcb', '\xcc', '\xcd',
554 '\xda', '\xdb', '\xdc', '\xdd' };
555
556 /* Insert and extract the block size in the header. */
557
558 static void
559 xmalloc_put_size (unsigned char *ptr, size_t size)
560 {
561 int i;
562 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
563 {
564 *--ptr = size & ((1 << CHAR_BIT) - 1);
565 size >>= CHAR_BIT;
566 }
567 }
568
569 static size_t
570 xmalloc_get_size (unsigned char *ptr)
571 {
572 size_t size = 0;
573 int i;
574 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
575 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
576 {
577 size <<= CHAR_BIT;
578 size += *ptr++;
579 }
580 return size;
581 }
582
583
584 /* Like malloc, but wraps allocated block with header and trailer. */
585
586 static void *
587 overrun_check_malloc (size_t size)
588 {
589 register unsigned char *val;
590 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
591 emacs_abort ();
592
593 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
594 if (val)
595 {
596 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
597 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 xmalloc_put_size (val, size);
599 memcpy (val + size, xmalloc_overrun_check_trailer,
600 XMALLOC_OVERRUN_CHECK_SIZE);
601 }
602 return val;
603 }
604
605
606 /* Like realloc, but checks old block for overrun, and wraps new block
607 with header and trailer. */
608
609 static void *
610 overrun_check_realloc (void *block, size_t size)
611 {
612 register unsigned char *val = (unsigned char *) block;
613 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
614 emacs_abort ();
615
616 if (val
617 && memcmp (xmalloc_overrun_check_header,
618 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
619 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
620 {
621 size_t osize = xmalloc_get_size (val);
622 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
623 XMALLOC_OVERRUN_CHECK_SIZE))
624 emacs_abort ();
625 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
626 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
627 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
628 }
629
630 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
631
632 if (val)
633 {
634 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
635 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
636 xmalloc_put_size (val, size);
637 memcpy (val + size, xmalloc_overrun_check_trailer,
638 XMALLOC_OVERRUN_CHECK_SIZE);
639 }
640 return val;
641 }
642
643 /* Like free, but checks block for overrun. */
644
645 static void
646 overrun_check_free (void *block)
647 {
648 unsigned char *val = (unsigned char *) block;
649
650 if (val
651 && memcmp (xmalloc_overrun_check_header,
652 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
653 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
654 {
655 size_t osize = xmalloc_get_size (val);
656 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
657 XMALLOC_OVERRUN_CHECK_SIZE))
658 emacs_abort ();
659 #ifdef XMALLOC_CLEAR_FREE_MEMORY
660 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
661 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
662 #else
663 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
664 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
666 #endif
667 }
668
669 free (val);
670 }
671
672 #undef malloc
673 #undef realloc
674 #undef free
675 #define malloc overrun_check_malloc
676 #define realloc overrun_check_realloc
677 #define free overrun_check_free
678 #endif
679
680 /* Like malloc but check for no memory and block interrupt input.. */
681
682 void *
683 xmalloc (size_t size)
684 {
685 void *val;
686
687 val = malloc (size);
688
689 if (!val && size)
690 memory_full (size);
691 return val;
692 }
693
694 /* Like the above, but zeroes out the memory just allocated. */
695
696 void *
697 xzalloc (size_t size)
698 {
699 void *val;
700
701 val = malloc (size);
702
703 if (!val && size)
704 memory_full (size);
705 memset (val, 0, size);
706 return val;
707 }
708
709 /* Like realloc but check for no memory and block interrupt input.. */
710
711 void *
712 xrealloc (void *block, size_t size)
713 {
714 void *val;
715
716 /* We must call malloc explicitly when BLOCK is 0, since some
717 reallocs don't do this. */
718 if (! block)
719 val = malloc (size);
720 else
721 val = realloc (block, size);
722
723 if (!val && size)
724 memory_full (size);
725 return val;
726 }
727
728
729 /* Like free but block interrupt input. */
730
731 void
732 xfree (void *block)
733 {
734 if (!block)
735 return;
736
737 free (block);
738
739 /* We don't call refill_memory_reserve here
740 because in practice the call in r_alloc_free seems to suffice. */
741 }
742
743
744 /* Other parts of Emacs pass large int values to allocator functions
745 expecting ptrdiff_t. This is portable in practice, but check it to
746 be safe. */
747 verify (INT_MAX <= PTRDIFF_MAX);
748
749
750 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
751 Signal an error on memory exhaustion, and block interrupt input. */
752
753 void *
754 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
755 {
756 eassert (0 <= nitems && 0 < item_size);
757 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
758 memory_full (SIZE_MAX);
759 return xmalloc (nitems * item_size);
760 }
761
762
763 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
764 Signal an error on memory exhaustion, and block interrupt input. */
765
766 void *
767 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
768 {
769 eassert (0 <= nitems && 0 < item_size);
770 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
771 memory_full (SIZE_MAX);
772 return xrealloc (pa, nitems * item_size);
773 }
774
775
776 /* Grow PA, which points to an array of *NITEMS items, and return the
777 location of the reallocated array, updating *NITEMS to reflect its
778 new size. The new array will contain at least NITEMS_INCR_MIN more
779 items, but will not contain more than NITEMS_MAX items total.
780 ITEM_SIZE is the size of each item, in bytes.
781
782 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
783 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
784 infinity.
785
786 If PA is null, then allocate a new array instead of reallocating
787 the old one.
788
789 Block interrupt input as needed. If memory exhaustion occurs, set
790 *NITEMS to zero if PA is null, and signal an error (i.e., do not
791 return).
792
793 Thus, to grow an array A without saving its old contents, do
794 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
795 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
796 and signals an error, and later this code is reexecuted and
797 attempts to free A. */
798
799 void *
800 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
801 ptrdiff_t nitems_max, ptrdiff_t item_size)
802 {
803 /* The approximate size to use for initial small allocation
804 requests. This is the largest "small" request for the GNU C
805 library malloc. */
806 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
807
808 /* If the array is tiny, grow it to about (but no greater than)
809 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
810 ptrdiff_t n = *nitems;
811 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
812 ptrdiff_t half_again = n >> 1;
813 ptrdiff_t incr_estimate = max (tiny_max, half_again);
814
815 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
816 NITEMS_MAX, and what the C language can represent safely. */
817 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
818 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
819 ? nitems_max : C_language_max);
820 ptrdiff_t nitems_incr_max = n_max - n;
821 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
822
823 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
824 if (! pa)
825 *nitems = 0;
826 if (nitems_incr_max < incr)
827 memory_full (SIZE_MAX);
828 n += incr;
829 pa = xrealloc (pa, n * item_size);
830 *nitems = n;
831 return pa;
832 }
833
834
835 /* Like strdup, but uses xmalloc. */
836
837 char *
838 xstrdup (const char *s)
839 {
840 ptrdiff_t size;
841 eassert (s);
842 size = strlen (s) + 1;
843 return memcpy (xmalloc (size), s, size);
844 }
845
846 /* Like above, but duplicates Lisp string to C string. */
847
848 char *
849 xlispstrdup (Lisp_Object string)
850 {
851 ptrdiff_t size = SBYTES (string) + 1;
852 return memcpy (xmalloc (size), SSDATA (string), size);
853 }
854
855 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
856 pointed to. If STRING is null, assign it without copying anything.
857 Allocate before freeing, to avoid a dangling pointer if allocation
858 fails. */
859
860 void
861 dupstring (char **ptr, char const *string)
862 {
863 char *old = *ptr;
864 *ptr = string ? xstrdup (string) : 0;
865 xfree (old);
866 }
867
868
869 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
870 argument is a const pointer. */
871
872 void
873 xputenv (char const *string)
874 {
875 if (putenv ((char *) string) != 0)
876 memory_full (0);
877 }
878
879 /* Return a newly allocated memory block of SIZE bytes, remembering
880 to free it when unwinding. */
881 void *
882 record_xmalloc (size_t size)
883 {
884 void *p = xmalloc (size);
885 record_unwind_protect_ptr (xfree, p);
886 return p;
887 }
888
889
890 /* Like malloc but used for allocating Lisp data. NBYTES is the
891 number of bytes to allocate, TYPE describes the intended use of the
892 allocated memory block (for strings, for conses, ...). */
893
894 #if ! USE_LSB_TAG
895 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
896 #endif
897
898 static void *
899 lisp_malloc (size_t nbytes, enum mem_type type)
900 {
901 register void *val;
902
903 #ifdef GC_MALLOC_CHECK
904 allocated_mem_type = type;
905 #endif
906
907 val = malloc (nbytes);
908
909 #if ! USE_LSB_TAG
910 /* If the memory just allocated cannot be addressed thru a Lisp
911 object's pointer, and it needs to be,
912 that's equivalent to running out of memory. */
913 if (val && type != MEM_TYPE_NON_LISP)
914 {
915 Lisp_Object tem;
916 XSETCONS (tem, (char *) val + nbytes - 1);
917 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
918 {
919 lisp_malloc_loser = val;
920 free (val);
921 val = 0;
922 }
923 }
924 #endif
925
926 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
927 if (val && type != MEM_TYPE_NON_LISP)
928 mem_insert (val, (char *) val + nbytes, type);
929 #endif
930
931 if (!val && nbytes)
932 memory_full (nbytes);
933 return val;
934 }
935
936 /* Free BLOCK. This must be called to free memory allocated with a
937 call to lisp_malloc. */
938
939 static void
940 lisp_free (void *block)
941 {
942 free (block);
943 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
944 mem_delete (mem_find (block));
945 #endif
946 }
947
948 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
949
950 /* The entry point is lisp_align_malloc which returns blocks of at most
951 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
952
953 /* Use aligned_alloc if it or a simple substitute is available.
954 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
955 clang 3.3 anyway. */
956
957 #if ! ADDRESS_SANITIZER
958 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
959 # define USE_ALIGNED_ALLOC 1
960 /* Defined in gmalloc.c. */
961 void *aligned_alloc (size_t, size_t);
962 # elif defined HAVE_ALIGNED_ALLOC
963 # define USE_ALIGNED_ALLOC 1
964 # elif defined HAVE_POSIX_MEMALIGN
965 # define USE_ALIGNED_ALLOC 1
966 static void *
967 aligned_alloc (size_t alignment, size_t size)
968 {
969 void *p;
970 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
971 }
972 # endif
973 #endif
974
975 /* BLOCK_ALIGN has to be a power of 2. */
976 #define BLOCK_ALIGN (1 << 10)
977
978 /* Padding to leave at the end of a malloc'd block. This is to give
979 malloc a chance to minimize the amount of memory wasted to alignment.
980 It should be tuned to the particular malloc library used.
981 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
982 aligned_alloc on the other hand would ideally prefer a value of 4
983 because otherwise, there's 1020 bytes wasted between each ablocks.
984 In Emacs, testing shows that those 1020 can most of the time be
985 efficiently used by malloc to place other objects, so a value of 0 can
986 still preferable unless you have a lot of aligned blocks and virtually
987 nothing else. */
988 #define BLOCK_PADDING 0
989 #define BLOCK_BYTES \
990 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
991
992 /* Internal data structures and constants. */
993
994 #define ABLOCKS_SIZE 16
995
996 /* An aligned block of memory. */
997 struct ablock
998 {
999 union
1000 {
1001 char payload[BLOCK_BYTES];
1002 struct ablock *next_free;
1003 } x;
1004 /* `abase' is the aligned base of the ablocks. */
1005 /* It is overloaded to hold the virtual `busy' field that counts
1006 the number of used ablock in the parent ablocks.
1007 The first ablock has the `busy' field, the others have the `abase'
1008 field. To tell the difference, we assume that pointers will have
1009 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1010 is used to tell whether the real base of the parent ablocks is `abase'
1011 (if not, the word before the first ablock holds a pointer to the
1012 real base). */
1013 struct ablocks *abase;
1014 /* The padding of all but the last ablock is unused. The padding of
1015 the last ablock in an ablocks is not allocated. */
1016 #if BLOCK_PADDING
1017 char padding[BLOCK_PADDING];
1018 #endif
1019 };
1020
1021 /* A bunch of consecutive aligned blocks. */
1022 struct ablocks
1023 {
1024 struct ablock blocks[ABLOCKS_SIZE];
1025 };
1026
1027 /* Size of the block requested from malloc or aligned_alloc. */
1028 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1029
1030 #define ABLOCK_ABASE(block) \
1031 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1032 ? (struct ablocks *)(block) \
1033 : (block)->abase)
1034
1035 /* Virtual `busy' field. */
1036 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1037
1038 /* Pointer to the (not necessarily aligned) malloc block. */
1039 #ifdef USE_ALIGNED_ALLOC
1040 #define ABLOCKS_BASE(abase) (abase)
1041 #else
1042 #define ABLOCKS_BASE(abase) \
1043 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1044 #endif
1045
1046 /* The list of free ablock. */
1047 static struct ablock *free_ablock;
1048
1049 /* Allocate an aligned block of nbytes.
1050 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1051 smaller or equal to BLOCK_BYTES. */
1052 static void *
1053 lisp_align_malloc (size_t nbytes, enum mem_type type)
1054 {
1055 void *base, *val;
1056 struct ablocks *abase;
1057
1058 eassert (nbytes <= BLOCK_BYTES);
1059
1060 #ifdef GC_MALLOC_CHECK
1061 allocated_mem_type = type;
1062 #endif
1063
1064 if (!free_ablock)
1065 {
1066 int i;
1067 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1068
1069 #ifdef DOUG_LEA_MALLOC
1070 if (!mmap_lisp_allowed_p ())
1071 mallopt (M_MMAP_MAX, 0);
1072 #endif
1073
1074 #ifdef USE_ALIGNED_ALLOC
1075 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1076 #else
1077 base = malloc (ABLOCKS_BYTES);
1078 abase = ALIGN (base, BLOCK_ALIGN);
1079 #endif
1080
1081 if (base == 0)
1082 memory_full (ABLOCKS_BYTES);
1083
1084 aligned = (base == abase);
1085 if (!aligned)
1086 ((void **) abase)[-1] = base;
1087
1088 #ifdef DOUG_LEA_MALLOC
1089 if (!mmap_lisp_allowed_p ())
1090 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1091 #endif
1092
1093 #if ! USE_LSB_TAG
1094 /* If the memory just allocated cannot be addressed thru a Lisp
1095 object's pointer, and it needs to be, that's equivalent to
1096 running out of memory. */
1097 if (type != MEM_TYPE_NON_LISP)
1098 {
1099 Lisp_Object tem;
1100 char *end = (char *) base + ABLOCKS_BYTES - 1;
1101 XSETCONS (tem, end);
1102 if ((char *) XCONS (tem) != end)
1103 {
1104 lisp_malloc_loser = base;
1105 free (base);
1106 memory_full (SIZE_MAX);
1107 }
1108 }
1109 #endif
1110
1111 /* Initialize the blocks and put them on the free list.
1112 If `base' was not properly aligned, we can't use the last block. */
1113 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1114 {
1115 abase->blocks[i].abase = abase;
1116 abase->blocks[i].x.next_free = free_ablock;
1117 free_ablock = &abase->blocks[i];
1118 }
1119 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1120
1121 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1122 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1123 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1124 eassert (ABLOCKS_BASE (abase) == base);
1125 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1126 }
1127
1128 abase = ABLOCK_ABASE (free_ablock);
1129 ABLOCKS_BUSY (abase)
1130 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1131 val = free_ablock;
1132 free_ablock = free_ablock->x.next_free;
1133
1134 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1135 if (type != MEM_TYPE_NON_LISP)
1136 mem_insert (val, (char *) val + nbytes, type);
1137 #endif
1138
1139 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1140 return val;
1141 }
1142
1143 static void
1144 lisp_align_free (void *block)
1145 {
1146 struct ablock *ablock = block;
1147 struct ablocks *abase = ABLOCK_ABASE (ablock);
1148
1149 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1150 mem_delete (mem_find (block));
1151 #endif
1152
1153 /* Put on free list. */
1154 ablock->x.next_free = free_ablock;
1155 free_ablock = ablock;
1156 /* Update busy count. */
1157 ABLOCKS_BUSY (abase)
1158 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1159
1160 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1161 { /* All the blocks are free. */
1162 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1163 struct ablock **tem = &free_ablock;
1164 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1165
1166 while (*tem)
1167 {
1168 if (*tem >= (struct ablock *) abase && *tem < atop)
1169 {
1170 i++;
1171 *tem = (*tem)->x.next_free;
1172 }
1173 else
1174 tem = &(*tem)->x.next_free;
1175 }
1176 eassert ((aligned & 1) == aligned);
1177 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1178 #ifdef USE_POSIX_MEMALIGN
1179 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1180 #endif
1181 free (ABLOCKS_BASE (abase));
1182 }
1183 }
1184 \f
1185 /***********************************************************************
1186 Interval Allocation
1187 ***********************************************************************/
1188
1189 /* Number of intervals allocated in an interval_block structure.
1190 The 1020 is 1024 minus malloc overhead. */
1191
1192 #define INTERVAL_BLOCK_SIZE \
1193 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1194
1195 /* Intervals are allocated in chunks in the form of an interval_block
1196 structure. */
1197
1198 struct interval_block
1199 {
1200 /* Place `intervals' first, to preserve alignment. */
1201 struct interval intervals[INTERVAL_BLOCK_SIZE];
1202 struct interval_block *next;
1203 };
1204
1205 /* Current interval block. Its `next' pointer points to older
1206 blocks. */
1207
1208 static struct interval_block *interval_block;
1209
1210 /* Index in interval_block above of the next unused interval
1211 structure. */
1212
1213 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1214
1215 /* Number of free and live intervals. */
1216
1217 static EMACS_INT total_free_intervals, total_intervals;
1218
1219 /* List of free intervals. */
1220
1221 static INTERVAL interval_free_list;
1222
1223 /* Return a new interval. */
1224
1225 INTERVAL
1226 make_interval (void)
1227 {
1228 INTERVAL val;
1229
1230 if (interval_free_list)
1231 {
1232 val = interval_free_list;
1233 interval_free_list = INTERVAL_PARENT (interval_free_list);
1234 }
1235 else
1236 {
1237 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1238 {
1239 struct interval_block *newi
1240 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1241
1242 newi->next = interval_block;
1243 interval_block = newi;
1244 interval_block_index = 0;
1245 total_free_intervals += INTERVAL_BLOCK_SIZE;
1246 }
1247 val = &interval_block->intervals[interval_block_index++];
1248 }
1249
1250 consing_since_gc += sizeof (struct interval);
1251 intervals_consed++;
1252 total_free_intervals--;
1253 RESET_INTERVAL (val);
1254 val->gcmarkbit = 0;
1255 return val;
1256 }
1257
1258
1259 /* Mark Lisp objects in interval I. */
1260
1261 static void
1262 mark_interval (register INTERVAL i, Lisp_Object dummy)
1263 {
1264 /* Intervals should never be shared. So, if extra internal checking is
1265 enabled, GC aborts if it seems to have visited an interval twice. */
1266 eassert (!i->gcmarkbit);
1267 i->gcmarkbit = 1;
1268 mark_object (i->plist);
1269 }
1270
1271 /* Mark the interval tree rooted in I. */
1272
1273 #define MARK_INTERVAL_TREE(i) \
1274 do { \
1275 if (i && !i->gcmarkbit) \
1276 traverse_intervals_noorder (i, mark_interval, Qnil); \
1277 } while (0)
1278
1279 /***********************************************************************
1280 String Allocation
1281 ***********************************************************************/
1282
1283 /* Lisp_Strings are allocated in string_block structures. When a new
1284 string_block is allocated, all the Lisp_Strings it contains are
1285 added to a free-list string_free_list. When a new Lisp_String is
1286 needed, it is taken from that list. During the sweep phase of GC,
1287 string_blocks that are entirely free are freed, except two which
1288 we keep.
1289
1290 String data is allocated from sblock structures. Strings larger
1291 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1292 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1293
1294 Sblocks consist internally of sdata structures, one for each
1295 Lisp_String. The sdata structure points to the Lisp_String it
1296 belongs to. The Lisp_String points back to the `u.data' member of
1297 its sdata structure.
1298
1299 When a Lisp_String is freed during GC, it is put back on
1300 string_free_list, and its `data' member and its sdata's `string'
1301 pointer is set to null. The size of the string is recorded in the
1302 `n.nbytes' member of the sdata. So, sdata structures that are no
1303 longer used, can be easily recognized, and it's easy to compact the
1304 sblocks of small strings which we do in compact_small_strings. */
1305
1306 /* Size in bytes of an sblock structure used for small strings. This
1307 is 8192 minus malloc overhead. */
1308
1309 #define SBLOCK_SIZE 8188
1310
1311 /* Strings larger than this are considered large strings. String data
1312 for large strings is allocated from individual sblocks. */
1313
1314 #define LARGE_STRING_BYTES 1024
1315
1316 /* The SDATA typedef is a struct or union describing string memory
1317 sub-allocated from an sblock. This is where the contents of Lisp
1318 strings are stored. */
1319
1320 struct sdata
1321 {
1322 /* Back-pointer to the string this sdata belongs to. If null, this
1323 structure is free, and NBYTES (in this structure or in the union below)
1324 contains the string's byte size (the same value that STRING_BYTES
1325 would return if STRING were non-null). If non-null, STRING_BYTES
1326 (STRING) is the size of the data, and DATA contains the string's
1327 contents. */
1328 struct Lisp_String *string;
1329
1330 #ifdef GC_CHECK_STRING_BYTES
1331 ptrdiff_t nbytes;
1332 #endif
1333
1334 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1335 };
1336
1337 #ifdef GC_CHECK_STRING_BYTES
1338
1339 typedef struct sdata sdata;
1340 #define SDATA_NBYTES(S) (S)->nbytes
1341 #define SDATA_DATA(S) (S)->data
1342
1343 #else
1344
1345 typedef union
1346 {
1347 struct Lisp_String *string;
1348
1349 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1350 which has a flexible array member. However, if implemented by
1351 giving this union a member of type 'struct sdata', the union
1352 could not be the last (flexible) member of 'struct sblock',
1353 because C99 prohibits a flexible array member from having a type
1354 that is itself a flexible array. So, comment this member out here,
1355 but remember that the option's there when using this union. */
1356 #if 0
1357 struct sdata u;
1358 #endif
1359
1360 /* When STRING is null. */
1361 struct
1362 {
1363 struct Lisp_String *string;
1364 ptrdiff_t nbytes;
1365 } n;
1366 } sdata;
1367
1368 #define SDATA_NBYTES(S) (S)->n.nbytes
1369 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1370
1371 #endif /* not GC_CHECK_STRING_BYTES */
1372
1373 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1374
1375 /* Structure describing a block of memory which is sub-allocated to
1376 obtain string data memory for strings. Blocks for small strings
1377 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1378 as large as needed. */
1379
1380 struct sblock
1381 {
1382 /* Next in list. */
1383 struct sblock *next;
1384
1385 /* Pointer to the next free sdata block. This points past the end
1386 of the sblock if there isn't any space left in this block. */
1387 sdata *next_free;
1388
1389 /* String data. */
1390 sdata data[FLEXIBLE_ARRAY_MEMBER];
1391 };
1392
1393 /* Number of Lisp strings in a string_block structure. The 1020 is
1394 1024 minus malloc overhead. */
1395
1396 #define STRING_BLOCK_SIZE \
1397 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1398
1399 /* Structure describing a block from which Lisp_String structures
1400 are allocated. */
1401
1402 struct string_block
1403 {
1404 /* Place `strings' first, to preserve alignment. */
1405 struct Lisp_String strings[STRING_BLOCK_SIZE];
1406 struct string_block *next;
1407 };
1408
1409 /* Head and tail of the list of sblock structures holding Lisp string
1410 data. We always allocate from current_sblock. The NEXT pointers
1411 in the sblock structures go from oldest_sblock to current_sblock. */
1412
1413 static struct sblock *oldest_sblock, *current_sblock;
1414
1415 /* List of sblocks for large strings. */
1416
1417 static struct sblock *large_sblocks;
1418
1419 /* List of string_block structures. */
1420
1421 static struct string_block *string_blocks;
1422
1423 /* Free-list of Lisp_Strings. */
1424
1425 static struct Lisp_String *string_free_list;
1426
1427 /* Number of live and free Lisp_Strings. */
1428
1429 static EMACS_INT total_strings, total_free_strings;
1430
1431 /* Number of bytes used by live strings. */
1432
1433 static EMACS_INT total_string_bytes;
1434
1435 /* Given a pointer to a Lisp_String S which is on the free-list
1436 string_free_list, return a pointer to its successor in the
1437 free-list. */
1438
1439 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1440
1441 /* Return a pointer to the sdata structure belonging to Lisp string S.
1442 S must be live, i.e. S->data must not be null. S->data is actually
1443 a pointer to the `u.data' member of its sdata structure; the
1444 structure starts at a constant offset in front of that. */
1445
1446 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1447
1448
1449 #ifdef GC_CHECK_STRING_OVERRUN
1450
1451 /* We check for overrun in string data blocks by appending a small
1452 "cookie" after each allocated string data block, and check for the
1453 presence of this cookie during GC. */
1454
1455 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1456 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1457 { '\xde', '\xad', '\xbe', '\xef' };
1458
1459 #else
1460 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1461 #endif
1462
1463 /* Value is the size of an sdata structure large enough to hold NBYTES
1464 bytes of string data. The value returned includes a terminating
1465 NUL byte, the size of the sdata structure, and padding. */
1466
1467 #ifdef GC_CHECK_STRING_BYTES
1468
1469 #define SDATA_SIZE(NBYTES) \
1470 ((SDATA_DATA_OFFSET \
1471 + (NBYTES) + 1 \
1472 + sizeof (ptrdiff_t) - 1) \
1473 & ~(sizeof (ptrdiff_t) - 1))
1474
1475 #else /* not GC_CHECK_STRING_BYTES */
1476
1477 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1478 less than the size of that member. The 'max' is not needed when
1479 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1480 alignment code reserves enough space. */
1481
1482 #define SDATA_SIZE(NBYTES) \
1483 ((SDATA_DATA_OFFSET \
1484 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1485 ? NBYTES \
1486 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1487 + 1 \
1488 + sizeof (ptrdiff_t) - 1) \
1489 & ~(sizeof (ptrdiff_t) - 1))
1490
1491 #endif /* not GC_CHECK_STRING_BYTES */
1492
1493 /* Extra bytes to allocate for each string. */
1494
1495 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1496
1497 /* Exact bound on the number of bytes in a string, not counting the
1498 terminating null. A string cannot contain more bytes than
1499 STRING_BYTES_BOUND, nor can it be so long that the size_t
1500 arithmetic in allocate_string_data would overflow while it is
1501 calculating a value to be passed to malloc. */
1502 static ptrdiff_t const STRING_BYTES_MAX =
1503 min (STRING_BYTES_BOUND,
1504 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1505 - GC_STRING_EXTRA
1506 - offsetof (struct sblock, data)
1507 - SDATA_DATA_OFFSET)
1508 & ~(sizeof (EMACS_INT) - 1)));
1509
1510 /* Initialize string allocation. Called from init_alloc_once. */
1511
1512 static void
1513 init_strings (void)
1514 {
1515 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1516 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1517 }
1518
1519
1520 #ifdef GC_CHECK_STRING_BYTES
1521
1522 static int check_string_bytes_count;
1523
1524 /* Like STRING_BYTES, but with debugging check. Can be
1525 called during GC, so pay attention to the mark bit. */
1526
1527 ptrdiff_t
1528 string_bytes (struct Lisp_String *s)
1529 {
1530 ptrdiff_t nbytes =
1531 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1532
1533 if (!PURE_POINTER_P (s)
1534 && s->data
1535 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1536 emacs_abort ();
1537 return nbytes;
1538 }
1539
1540 /* Check validity of Lisp strings' string_bytes member in B. */
1541
1542 static void
1543 check_sblock (struct sblock *b)
1544 {
1545 sdata *from, *end, *from_end;
1546
1547 end = b->next_free;
1548
1549 for (from = b->data; from < end; from = from_end)
1550 {
1551 /* Compute the next FROM here because copying below may
1552 overwrite data we need to compute it. */
1553 ptrdiff_t nbytes;
1554
1555 /* Check that the string size recorded in the string is the
1556 same as the one recorded in the sdata structure. */
1557 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1558 : SDATA_NBYTES (from));
1559 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1560 }
1561 }
1562
1563
1564 /* Check validity of Lisp strings' string_bytes member. ALL_P
1565 means check all strings, otherwise check only most
1566 recently allocated strings. Used for hunting a bug. */
1567
1568 static void
1569 check_string_bytes (bool all_p)
1570 {
1571 if (all_p)
1572 {
1573 struct sblock *b;
1574
1575 for (b = large_sblocks; b; b = b->next)
1576 {
1577 struct Lisp_String *s = b->data[0].string;
1578 if (s)
1579 string_bytes (s);
1580 }
1581
1582 for (b = oldest_sblock; b; b = b->next)
1583 check_sblock (b);
1584 }
1585 else if (current_sblock)
1586 check_sblock (current_sblock);
1587 }
1588
1589 #else /* not GC_CHECK_STRING_BYTES */
1590
1591 #define check_string_bytes(all) ((void) 0)
1592
1593 #endif /* GC_CHECK_STRING_BYTES */
1594
1595 #ifdef GC_CHECK_STRING_FREE_LIST
1596
1597 /* Walk through the string free list looking for bogus next pointers.
1598 This may catch buffer overrun from a previous string. */
1599
1600 static void
1601 check_string_free_list (void)
1602 {
1603 struct Lisp_String *s;
1604
1605 /* Pop a Lisp_String off the free-list. */
1606 s = string_free_list;
1607 while (s != NULL)
1608 {
1609 if ((uintptr_t) s < 1024)
1610 emacs_abort ();
1611 s = NEXT_FREE_LISP_STRING (s);
1612 }
1613 }
1614 #else
1615 #define check_string_free_list()
1616 #endif
1617
1618 /* Return a new Lisp_String. */
1619
1620 static struct Lisp_String *
1621 allocate_string (void)
1622 {
1623 struct Lisp_String *s;
1624
1625 /* If the free-list is empty, allocate a new string_block, and
1626 add all the Lisp_Strings in it to the free-list. */
1627 if (string_free_list == NULL)
1628 {
1629 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1630 int i;
1631
1632 b->next = string_blocks;
1633 string_blocks = b;
1634
1635 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1636 {
1637 s = b->strings + i;
1638 /* Every string on a free list should have NULL data pointer. */
1639 s->data = NULL;
1640 NEXT_FREE_LISP_STRING (s) = string_free_list;
1641 string_free_list = s;
1642 }
1643
1644 total_free_strings += STRING_BLOCK_SIZE;
1645 }
1646
1647 check_string_free_list ();
1648
1649 /* Pop a Lisp_String off the free-list. */
1650 s = string_free_list;
1651 string_free_list = NEXT_FREE_LISP_STRING (s);
1652
1653 --total_free_strings;
1654 ++total_strings;
1655 ++strings_consed;
1656 consing_since_gc += sizeof *s;
1657
1658 #ifdef GC_CHECK_STRING_BYTES
1659 if (!noninteractive)
1660 {
1661 if (++check_string_bytes_count == 200)
1662 {
1663 check_string_bytes_count = 0;
1664 check_string_bytes (1);
1665 }
1666 else
1667 check_string_bytes (0);
1668 }
1669 #endif /* GC_CHECK_STRING_BYTES */
1670
1671 return s;
1672 }
1673
1674
1675 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1676 plus a NUL byte at the end. Allocate an sdata structure for S, and
1677 set S->data to its `u.data' member. Store a NUL byte at the end of
1678 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1679 S->data if it was initially non-null. */
1680
1681 void
1682 allocate_string_data (struct Lisp_String *s,
1683 EMACS_INT nchars, EMACS_INT nbytes)
1684 {
1685 sdata *data, *old_data;
1686 struct sblock *b;
1687 ptrdiff_t needed, old_nbytes;
1688
1689 if (STRING_BYTES_MAX < nbytes)
1690 string_overflow ();
1691
1692 /* Determine the number of bytes needed to store NBYTES bytes
1693 of string data. */
1694 needed = SDATA_SIZE (nbytes);
1695 if (s->data)
1696 {
1697 old_data = SDATA_OF_STRING (s);
1698 old_nbytes = STRING_BYTES (s);
1699 }
1700 else
1701 old_data = NULL;
1702
1703 if (nbytes > LARGE_STRING_BYTES)
1704 {
1705 size_t size = offsetof (struct sblock, data) + needed;
1706
1707 #ifdef DOUG_LEA_MALLOC
1708 if (!mmap_lisp_allowed_p ())
1709 mallopt (M_MMAP_MAX, 0);
1710 #endif
1711
1712 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1713
1714 #ifdef DOUG_LEA_MALLOC
1715 if (!mmap_lisp_allowed_p ())
1716 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1717 #endif
1718
1719 b->next_free = b->data;
1720 b->data[0].string = NULL;
1721 b->next = large_sblocks;
1722 large_sblocks = b;
1723 }
1724 else if (current_sblock == NULL
1725 || (((char *) current_sblock + SBLOCK_SIZE
1726 - (char *) current_sblock->next_free)
1727 < (needed + GC_STRING_EXTRA)))
1728 {
1729 /* Not enough room in the current sblock. */
1730 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1731 b->next_free = b->data;
1732 b->data[0].string = NULL;
1733 b->next = NULL;
1734
1735 if (current_sblock)
1736 current_sblock->next = b;
1737 else
1738 oldest_sblock = b;
1739 current_sblock = b;
1740 }
1741 else
1742 b = current_sblock;
1743
1744 data = b->next_free;
1745 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1746
1747 data->string = s;
1748 s->data = SDATA_DATA (data);
1749 #ifdef GC_CHECK_STRING_BYTES
1750 SDATA_NBYTES (data) = nbytes;
1751 #endif
1752 s->size = nchars;
1753 s->size_byte = nbytes;
1754 s->data[nbytes] = '\0';
1755 #ifdef GC_CHECK_STRING_OVERRUN
1756 memcpy ((char *) data + needed, string_overrun_cookie,
1757 GC_STRING_OVERRUN_COOKIE_SIZE);
1758 #endif
1759
1760 /* Note that Faset may call to this function when S has already data
1761 assigned. In this case, mark data as free by setting it's string
1762 back-pointer to null, and record the size of the data in it. */
1763 if (old_data)
1764 {
1765 SDATA_NBYTES (old_data) = old_nbytes;
1766 old_data->string = NULL;
1767 }
1768
1769 consing_since_gc += needed;
1770 }
1771
1772
1773 /* Sweep and compact strings. */
1774
1775 NO_INLINE /* For better stack traces */
1776 static void
1777 sweep_strings (void)
1778 {
1779 struct string_block *b, *next;
1780 struct string_block *live_blocks = NULL;
1781
1782 string_free_list = NULL;
1783 total_strings = total_free_strings = 0;
1784 total_string_bytes = 0;
1785
1786 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1787 for (b = string_blocks; b; b = next)
1788 {
1789 int i, nfree = 0;
1790 struct Lisp_String *free_list_before = string_free_list;
1791
1792 next = b->next;
1793
1794 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1795 {
1796 struct Lisp_String *s = b->strings + i;
1797
1798 if (s->data)
1799 {
1800 /* String was not on free-list before. */
1801 if (STRING_MARKED_P (s))
1802 {
1803 /* String is live; unmark it and its intervals. */
1804 UNMARK_STRING (s);
1805
1806 /* Do not use string_(set|get)_intervals here. */
1807 s->intervals = balance_intervals (s->intervals);
1808
1809 ++total_strings;
1810 total_string_bytes += STRING_BYTES (s);
1811 }
1812 else
1813 {
1814 /* String is dead. Put it on the free-list. */
1815 sdata *data = SDATA_OF_STRING (s);
1816
1817 /* Save the size of S in its sdata so that we know
1818 how large that is. Reset the sdata's string
1819 back-pointer so that we know it's free. */
1820 #ifdef GC_CHECK_STRING_BYTES
1821 if (string_bytes (s) != SDATA_NBYTES (data))
1822 emacs_abort ();
1823 #else
1824 data->n.nbytes = STRING_BYTES (s);
1825 #endif
1826 data->string = NULL;
1827
1828 /* Reset the strings's `data' member so that we
1829 know it's free. */
1830 s->data = NULL;
1831
1832 /* Put the string on the free-list. */
1833 NEXT_FREE_LISP_STRING (s) = string_free_list;
1834 string_free_list = s;
1835 ++nfree;
1836 }
1837 }
1838 else
1839 {
1840 /* S was on the free-list before. Put it there again. */
1841 NEXT_FREE_LISP_STRING (s) = string_free_list;
1842 string_free_list = s;
1843 ++nfree;
1844 }
1845 }
1846
1847 /* Free blocks that contain free Lisp_Strings only, except
1848 the first two of them. */
1849 if (nfree == STRING_BLOCK_SIZE
1850 && total_free_strings > STRING_BLOCK_SIZE)
1851 {
1852 lisp_free (b);
1853 string_free_list = free_list_before;
1854 }
1855 else
1856 {
1857 total_free_strings += nfree;
1858 b->next = live_blocks;
1859 live_blocks = b;
1860 }
1861 }
1862
1863 check_string_free_list ();
1864
1865 string_blocks = live_blocks;
1866 free_large_strings ();
1867 compact_small_strings ();
1868
1869 check_string_free_list ();
1870 }
1871
1872
1873 /* Free dead large strings. */
1874
1875 static void
1876 free_large_strings (void)
1877 {
1878 struct sblock *b, *next;
1879 struct sblock *live_blocks = NULL;
1880
1881 for (b = large_sblocks; b; b = next)
1882 {
1883 next = b->next;
1884
1885 if (b->data[0].string == NULL)
1886 lisp_free (b);
1887 else
1888 {
1889 b->next = live_blocks;
1890 live_blocks = b;
1891 }
1892 }
1893
1894 large_sblocks = live_blocks;
1895 }
1896
1897
1898 /* Compact data of small strings. Free sblocks that don't contain
1899 data of live strings after compaction. */
1900
1901 static void
1902 compact_small_strings (void)
1903 {
1904 struct sblock *b, *tb, *next;
1905 sdata *from, *to, *end, *tb_end;
1906 sdata *to_end, *from_end;
1907
1908 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1909 to, and TB_END is the end of TB. */
1910 tb = oldest_sblock;
1911 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1912 to = tb->data;
1913
1914 /* Step through the blocks from the oldest to the youngest. We
1915 expect that old blocks will stabilize over time, so that less
1916 copying will happen this way. */
1917 for (b = oldest_sblock; b; b = b->next)
1918 {
1919 end = b->next_free;
1920 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1921
1922 for (from = b->data; from < end; from = from_end)
1923 {
1924 /* Compute the next FROM here because copying below may
1925 overwrite data we need to compute it. */
1926 ptrdiff_t nbytes;
1927 struct Lisp_String *s = from->string;
1928
1929 #ifdef GC_CHECK_STRING_BYTES
1930 /* Check that the string size recorded in the string is the
1931 same as the one recorded in the sdata structure. */
1932 if (s && string_bytes (s) != SDATA_NBYTES (from))
1933 emacs_abort ();
1934 #endif /* GC_CHECK_STRING_BYTES */
1935
1936 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1937 eassert (nbytes <= LARGE_STRING_BYTES);
1938
1939 nbytes = SDATA_SIZE (nbytes);
1940 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1941
1942 #ifdef GC_CHECK_STRING_OVERRUN
1943 if (memcmp (string_overrun_cookie,
1944 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1945 GC_STRING_OVERRUN_COOKIE_SIZE))
1946 emacs_abort ();
1947 #endif
1948
1949 /* Non-NULL S means it's alive. Copy its data. */
1950 if (s)
1951 {
1952 /* If TB is full, proceed with the next sblock. */
1953 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1954 if (to_end > tb_end)
1955 {
1956 tb->next_free = to;
1957 tb = tb->next;
1958 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1959 to = tb->data;
1960 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1961 }
1962
1963 /* Copy, and update the string's `data' pointer. */
1964 if (from != to)
1965 {
1966 eassert (tb != b || to < from);
1967 memmove (to, from, nbytes + GC_STRING_EXTRA);
1968 to->string->data = SDATA_DATA (to);
1969 }
1970
1971 /* Advance past the sdata we copied to. */
1972 to = to_end;
1973 }
1974 }
1975 }
1976
1977 /* The rest of the sblocks following TB don't contain live data, so
1978 we can free them. */
1979 for (b = tb->next; b; b = next)
1980 {
1981 next = b->next;
1982 lisp_free (b);
1983 }
1984
1985 tb->next_free = to;
1986 tb->next = NULL;
1987 current_sblock = tb;
1988 }
1989
1990 void
1991 string_overflow (void)
1992 {
1993 error ("Maximum string size exceeded");
1994 }
1995
1996 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1997 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1998 LENGTH must be an integer.
1999 INIT must be an integer that represents a character. */)
2000 (Lisp_Object length, Lisp_Object init)
2001 {
2002 register Lisp_Object val;
2003 int c;
2004 EMACS_INT nbytes;
2005
2006 CHECK_NATNUM (length);
2007 CHECK_CHARACTER (init);
2008
2009 c = XFASTINT (init);
2010 if (ASCII_CHAR_P (c))
2011 {
2012 nbytes = XINT (length);
2013 val = make_uninit_string (nbytes);
2014 memset (SDATA (val), c, nbytes);
2015 SDATA (val)[nbytes] = 0;
2016 }
2017 else
2018 {
2019 unsigned char str[MAX_MULTIBYTE_LENGTH];
2020 ptrdiff_t len = CHAR_STRING (c, str);
2021 EMACS_INT string_len = XINT (length);
2022 unsigned char *p, *beg, *end;
2023
2024 if (string_len > STRING_BYTES_MAX / len)
2025 string_overflow ();
2026 nbytes = len * string_len;
2027 val = make_uninit_multibyte_string (string_len, nbytes);
2028 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2029 {
2030 /* First time we just copy `str' to the data of `val'. */
2031 if (p == beg)
2032 memcpy (p, str, len);
2033 else
2034 {
2035 /* Next time we copy largest possible chunk from
2036 initialized to uninitialized part of `val'. */
2037 len = min (p - beg, end - p);
2038 memcpy (p, beg, len);
2039 }
2040 }
2041 *p = 0;
2042 }
2043
2044 return val;
2045 }
2046
2047 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2048 Return A. */
2049
2050 Lisp_Object
2051 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2052 {
2053 EMACS_INT nbits = bool_vector_size (a);
2054 if (0 < nbits)
2055 {
2056 unsigned char *data = bool_vector_uchar_data (a);
2057 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2058 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2059 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2060 memset (data, pattern, nbytes - 1);
2061 data[nbytes - 1] = pattern & last_mask;
2062 }
2063 return a;
2064 }
2065
2066 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2067
2068 Lisp_Object
2069 make_uninit_bool_vector (EMACS_INT nbits)
2070 {
2071 Lisp_Object val;
2072 EMACS_INT words = bool_vector_words (nbits);
2073 EMACS_INT word_bytes = words * sizeof (bits_word);
2074 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2075 + word_size - 1)
2076 / word_size);
2077 struct Lisp_Bool_Vector *p
2078 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2079 XSETVECTOR (val, p);
2080 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2081 p->size = nbits;
2082
2083 /* Clear padding at the end. */
2084 if (words)
2085 p->data[words - 1] = 0;
2086
2087 return val;
2088 }
2089
2090 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2091 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2092 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2093 (Lisp_Object length, Lisp_Object init)
2094 {
2095 Lisp_Object val;
2096
2097 CHECK_NATNUM (length);
2098 val = make_uninit_bool_vector (XFASTINT (length));
2099 return bool_vector_fill (val, init);
2100 }
2101
2102 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2103 doc: /* Return a new bool-vector with specified arguments as elements.
2104 Any number of arguments, even zero arguments, are allowed.
2105 usage: (bool-vector &rest OBJECTS) */)
2106 (ptrdiff_t nargs, Lisp_Object *args)
2107 {
2108 ptrdiff_t i;
2109 Lisp_Object vector;
2110
2111 vector = make_uninit_bool_vector (nargs);
2112 for (i = 0; i < nargs; i++)
2113 bool_vector_set (vector, i, !NILP (args[i]));
2114
2115 return vector;
2116 }
2117
2118 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2119 of characters from the contents. This string may be unibyte or
2120 multibyte, depending on the contents. */
2121
2122 Lisp_Object
2123 make_string (const char *contents, ptrdiff_t nbytes)
2124 {
2125 register Lisp_Object val;
2126 ptrdiff_t nchars, multibyte_nbytes;
2127
2128 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2129 &nchars, &multibyte_nbytes);
2130 if (nbytes == nchars || nbytes != multibyte_nbytes)
2131 /* CONTENTS contains no multibyte sequences or contains an invalid
2132 multibyte sequence. We must make unibyte string. */
2133 val = make_unibyte_string (contents, nbytes);
2134 else
2135 val = make_multibyte_string (contents, nchars, nbytes);
2136 return val;
2137 }
2138
2139
2140 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2141
2142 Lisp_Object
2143 make_unibyte_string (const char *contents, ptrdiff_t length)
2144 {
2145 register Lisp_Object val;
2146 val = make_uninit_string (length);
2147 memcpy (SDATA (val), contents, length);
2148 return val;
2149 }
2150
2151
2152 /* Make a multibyte string from NCHARS characters occupying NBYTES
2153 bytes at CONTENTS. */
2154
2155 Lisp_Object
2156 make_multibyte_string (const char *contents,
2157 ptrdiff_t nchars, ptrdiff_t nbytes)
2158 {
2159 register Lisp_Object val;
2160 val = make_uninit_multibyte_string (nchars, nbytes);
2161 memcpy (SDATA (val), contents, nbytes);
2162 return val;
2163 }
2164
2165
2166 /* Make a string from NCHARS characters occupying NBYTES bytes at
2167 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2168
2169 Lisp_Object
2170 make_string_from_bytes (const char *contents,
2171 ptrdiff_t nchars, ptrdiff_t nbytes)
2172 {
2173 register Lisp_Object val;
2174 val = make_uninit_multibyte_string (nchars, nbytes);
2175 memcpy (SDATA (val), contents, nbytes);
2176 if (SBYTES (val) == SCHARS (val))
2177 STRING_SET_UNIBYTE (val);
2178 return val;
2179 }
2180
2181
2182 /* Make a string from NCHARS characters occupying NBYTES bytes at
2183 CONTENTS. The argument MULTIBYTE controls whether to label the
2184 string as multibyte. If NCHARS is negative, it counts the number of
2185 characters by itself. */
2186
2187 Lisp_Object
2188 make_specified_string (const char *contents,
2189 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2190 {
2191 Lisp_Object val;
2192
2193 if (nchars < 0)
2194 {
2195 if (multibyte)
2196 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2197 nbytes);
2198 else
2199 nchars = nbytes;
2200 }
2201 val = make_uninit_multibyte_string (nchars, nbytes);
2202 memcpy (SDATA (val), contents, nbytes);
2203 if (!multibyte)
2204 STRING_SET_UNIBYTE (val);
2205 return val;
2206 }
2207
2208
2209 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2210 occupying LENGTH bytes. */
2211
2212 Lisp_Object
2213 make_uninit_string (EMACS_INT length)
2214 {
2215 Lisp_Object val;
2216
2217 if (!length)
2218 return empty_unibyte_string;
2219 val = make_uninit_multibyte_string (length, length);
2220 STRING_SET_UNIBYTE (val);
2221 return val;
2222 }
2223
2224
2225 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2226 which occupy NBYTES bytes. */
2227
2228 Lisp_Object
2229 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2230 {
2231 Lisp_Object string;
2232 struct Lisp_String *s;
2233
2234 if (nchars < 0)
2235 emacs_abort ();
2236 if (!nbytes)
2237 return empty_multibyte_string;
2238
2239 s = allocate_string ();
2240 s->intervals = NULL;
2241 allocate_string_data (s, nchars, nbytes);
2242 XSETSTRING (string, s);
2243 string_chars_consed += nbytes;
2244 return string;
2245 }
2246
2247 /* Print arguments to BUF according to a FORMAT, then return
2248 a Lisp_String initialized with the data from BUF. */
2249
2250 Lisp_Object
2251 make_formatted_string (char *buf, const char *format, ...)
2252 {
2253 va_list ap;
2254 int length;
2255
2256 va_start (ap, format);
2257 length = vsprintf (buf, format, ap);
2258 va_end (ap);
2259 return make_string (buf, length);
2260 }
2261
2262 \f
2263 /***********************************************************************
2264 Float Allocation
2265 ***********************************************************************/
2266
2267 /* We store float cells inside of float_blocks, allocating a new
2268 float_block with malloc whenever necessary. Float cells reclaimed
2269 by GC are put on a free list to be reallocated before allocating
2270 any new float cells from the latest float_block. */
2271
2272 #define FLOAT_BLOCK_SIZE \
2273 (((BLOCK_BYTES - sizeof (struct float_block *) \
2274 /* The compiler might add padding at the end. */ \
2275 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2276 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2277
2278 #define GETMARKBIT(block,n) \
2279 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2280 >> ((n) % BITS_PER_BITS_WORD)) \
2281 & 1)
2282
2283 #define SETMARKBIT(block,n) \
2284 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2285 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2286
2287 #define UNSETMARKBIT(block,n) \
2288 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2289 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2290
2291 #define FLOAT_BLOCK(fptr) \
2292 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2293
2294 #define FLOAT_INDEX(fptr) \
2295 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2296
2297 struct float_block
2298 {
2299 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2300 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2301 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2302 struct float_block *next;
2303 };
2304
2305 #define FLOAT_MARKED_P(fptr) \
2306 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2307
2308 #define FLOAT_MARK(fptr) \
2309 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2310
2311 #define FLOAT_UNMARK(fptr) \
2312 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2313
2314 /* Current float_block. */
2315
2316 static struct float_block *float_block;
2317
2318 /* Index of first unused Lisp_Float in the current float_block. */
2319
2320 static int float_block_index = FLOAT_BLOCK_SIZE;
2321
2322 /* Free-list of Lisp_Floats. */
2323
2324 static struct Lisp_Float *float_free_list;
2325
2326 /* Return a new float object with value FLOAT_VALUE. */
2327
2328 Lisp_Object
2329 make_float (double float_value)
2330 {
2331 register Lisp_Object val;
2332
2333 if (float_free_list)
2334 {
2335 /* We use the data field for chaining the free list
2336 so that we won't use the same field that has the mark bit. */
2337 XSETFLOAT (val, float_free_list);
2338 float_free_list = float_free_list->u.chain;
2339 }
2340 else
2341 {
2342 if (float_block_index == FLOAT_BLOCK_SIZE)
2343 {
2344 struct float_block *new
2345 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2346 new->next = float_block;
2347 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2348 float_block = new;
2349 float_block_index = 0;
2350 total_free_floats += FLOAT_BLOCK_SIZE;
2351 }
2352 XSETFLOAT (val, &float_block->floats[float_block_index]);
2353 float_block_index++;
2354 }
2355
2356 XFLOAT_INIT (val, float_value);
2357 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2358 consing_since_gc += sizeof (struct Lisp_Float);
2359 floats_consed++;
2360 total_free_floats--;
2361 return val;
2362 }
2363
2364
2365 \f
2366 /***********************************************************************
2367 Cons Allocation
2368 ***********************************************************************/
2369
2370 /* We store cons cells inside of cons_blocks, allocating a new
2371 cons_block with malloc whenever necessary. Cons cells reclaimed by
2372 GC are put on a free list to be reallocated before allocating
2373 any new cons cells from the latest cons_block. */
2374
2375 #define CONS_BLOCK_SIZE \
2376 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2377 /* The compiler might add padding at the end. */ \
2378 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2379 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2380
2381 #define CONS_BLOCK(fptr) \
2382 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2383
2384 #define CONS_INDEX(fptr) \
2385 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2386
2387 struct cons_block
2388 {
2389 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2390 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2391 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2392 struct cons_block *next;
2393 };
2394
2395 #define CONS_MARKED_P(fptr) \
2396 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2397
2398 #define CONS_MARK(fptr) \
2399 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2400
2401 #define CONS_UNMARK(fptr) \
2402 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2403
2404 /* Current cons_block. */
2405
2406 static struct cons_block *cons_block;
2407
2408 /* Index of first unused Lisp_Cons in the current block. */
2409
2410 static int cons_block_index = CONS_BLOCK_SIZE;
2411
2412 /* Free-list of Lisp_Cons structures. */
2413
2414 static struct Lisp_Cons *cons_free_list;
2415
2416 /* Explicitly free a cons cell by putting it on the free-list. */
2417
2418 void
2419 free_cons (struct Lisp_Cons *ptr)
2420 {
2421 ptr->u.chain = cons_free_list;
2422 #if GC_MARK_STACK
2423 ptr->car = Vdead;
2424 #endif
2425 cons_free_list = ptr;
2426 consing_since_gc -= sizeof *ptr;
2427 total_free_conses++;
2428 }
2429
2430 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2431 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2432 (Lisp_Object car, Lisp_Object cdr)
2433 {
2434 register Lisp_Object val;
2435
2436 if (cons_free_list)
2437 {
2438 /* We use the cdr for chaining the free list
2439 so that we won't use the same field that has the mark bit. */
2440 XSETCONS (val, cons_free_list);
2441 cons_free_list = cons_free_list->u.chain;
2442 }
2443 else
2444 {
2445 if (cons_block_index == CONS_BLOCK_SIZE)
2446 {
2447 struct cons_block *new
2448 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2449 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2450 new->next = cons_block;
2451 cons_block = new;
2452 cons_block_index = 0;
2453 total_free_conses += CONS_BLOCK_SIZE;
2454 }
2455 XSETCONS (val, &cons_block->conses[cons_block_index]);
2456 cons_block_index++;
2457 }
2458
2459 XSETCAR (val, car);
2460 XSETCDR (val, cdr);
2461 eassert (!CONS_MARKED_P (XCONS (val)));
2462 consing_since_gc += sizeof (struct Lisp_Cons);
2463 total_free_conses--;
2464 cons_cells_consed++;
2465 return val;
2466 }
2467
2468 #ifdef GC_CHECK_CONS_LIST
2469 /* Get an error now if there's any junk in the cons free list. */
2470 void
2471 check_cons_list (void)
2472 {
2473 struct Lisp_Cons *tail = cons_free_list;
2474
2475 while (tail)
2476 tail = tail->u.chain;
2477 }
2478 #endif
2479
2480 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2481
2482 Lisp_Object
2483 list1 (Lisp_Object arg1)
2484 {
2485 return Fcons (arg1, Qnil);
2486 }
2487
2488 Lisp_Object
2489 list2 (Lisp_Object arg1, Lisp_Object arg2)
2490 {
2491 return Fcons (arg1, Fcons (arg2, Qnil));
2492 }
2493
2494
2495 Lisp_Object
2496 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2497 {
2498 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2499 }
2500
2501
2502 Lisp_Object
2503 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2504 {
2505 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2506 }
2507
2508
2509 Lisp_Object
2510 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2511 {
2512 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2513 Fcons (arg5, Qnil)))));
2514 }
2515
2516 /* Make a list of COUNT Lisp_Objects, where ARG is the
2517 first one. Allocate conses from pure space if TYPE
2518 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2519
2520 Lisp_Object
2521 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2522 {
2523 va_list ap;
2524 ptrdiff_t i;
2525 Lisp_Object val, *objp;
2526
2527 /* Change to SAFE_ALLOCA if you hit this eassert. */
2528 eassert (count <= MAX_ALLOCA / word_size);
2529
2530 objp = alloca (count * word_size);
2531 objp[0] = arg;
2532 va_start (ap, arg);
2533 for (i = 1; i < count; i++)
2534 objp[i] = va_arg (ap, Lisp_Object);
2535 va_end (ap);
2536
2537 for (val = Qnil, i = count - 1; i >= 0; i--)
2538 {
2539 if (type == CONSTYPE_PURE)
2540 val = pure_cons (objp[i], val);
2541 else if (type == CONSTYPE_HEAP)
2542 val = Fcons (objp[i], val);
2543 else
2544 emacs_abort ();
2545 }
2546 return val;
2547 }
2548
2549 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2550 doc: /* Return a newly created list with specified arguments as elements.
2551 Any number of arguments, even zero arguments, are allowed.
2552 usage: (list &rest OBJECTS) */)
2553 (ptrdiff_t nargs, Lisp_Object *args)
2554 {
2555 register Lisp_Object val;
2556 val = Qnil;
2557
2558 while (nargs > 0)
2559 {
2560 nargs--;
2561 val = Fcons (args[nargs], val);
2562 }
2563 return val;
2564 }
2565
2566
2567 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2568 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2569 (register Lisp_Object length, Lisp_Object init)
2570 {
2571 register Lisp_Object val;
2572 register EMACS_INT size;
2573
2574 CHECK_NATNUM (length);
2575 size = XFASTINT (length);
2576
2577 val = Qnil;
2578 while (size > 0)
2579 {
2580 val = Fcons (init, val);
2581 --size;
2582
2583 if (size > 0)
2584 {
2585 val = Fcons (init, val);
2586 --size;
2587
2588 if (size > 0)
2589 {
2590 val = Fcons (init, val);
2591 --size;
2592
2593 if (size > 0)
2594 {
2595 val = Fcons (init, val);
2596 --size;
2597
2598 if (size > 0)
2599 {
2600 val = Fcons (init, val);
2601 --size;
2602 }
2603 }
2604 }
2605 }
2606
2607 QUIT;
2608 }
2609
2610 return val;
2611 }
2612
2613
2614 \f
2615 /***********************************************************************
2616 Vector Allocation
2617 ***********************************************************************/
2618
2619 /* Sometimes a vector's contents are merely a pointer internally used
2620 in vector allocation code. On the rare platforms where a null
2621 pointer cannot be tagged, represent it with a Lisp 0.
2622 Usually you don't want to touch this. */
2623
2624 static struct Lisp_Vector *
2625 next_vector (struct Lisp_Vector *v)
2626 {
2627 return XUNTAG (v->contents[0], 0);
2628 }
2629
2630 static void
2631 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2632 {
2633 v->contents[0] = make_lisp_ptr (p, 0);
2634 }
2635
2636 /* This value is balanced well enough to avoid too much internal overhead
2637 for the most common cases; it's not required to be a power of two, but
2638 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2639
2640 #define VECTOR_BLOCK_SIZE 4096
2641
2642 enum
2643 {
2644 /* Alignment of struct Lisp_Vector objects. */
2645 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2646 USE_LSB_TAG ? GCALIGNMENT : 1),
2647
2648 /* Vector size requests are a multiple of this. */
2649 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2650 };
2651
2652 /* Verify assumptions described above. */
2653 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2654 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2655
2656 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2657 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2658 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2659 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2660
2661 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2662
2663 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2664
2665 /* Size of the minimal vector allocated from block. */
2666
2667 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2668
2669 /* Size of the largest vector allocated from block. */
2670
2671 #define VBLOCK_BYTES_MAX \
2672 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2673
2674 /* We maintain one free list for each possible block-allocated
2675 vector size, and this is the number of free lists we have. */
2676
2677 #define VECTOR_MAX_FREE_LIST_INDEX \
2678 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2679
2680 /* Common shortcut to advance vector pointer over a block data. */
2681
2682 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2683
2684 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2685
2686 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2687
2688 /* Common shortcut to setup vector on a free list. */
2689
2690 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2691 do { \
2692 (tmp) = ((nbytes - header_size) / word_size); \
2693 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2694 eassert ((nbytes) % roundup_size == 0); \
2695 (tmp) = VINDEX (nbytes); \
2696 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2697 set_next_vector (v, vector_free_lists[tmp]); \
2698 vector_free_lists[tmp] = (v); \
2699 total_free_vector_slots += (nbytes) / word_size; \
2700 } while (0)
2701
2702 /* This internal type is used to maintain the list of large vectors
2703 which are allocated at their own, e.g. outside of vector blocks.
2704
2705 struct large_vector itself cannot contain a struct Lisp_Vector, as
2706 the latter contains a flexible array member and C99 does not allow
2707 such structs to be nested. Instead, each struct large_vector
2708 object LV is followed by a struct Lisp_Vector, which is at offset
2709 large_vector_offset from LV, and whose address is therefore
2710 large_vector_vec (&LV). */
2711
2712 struct large_vector
2713 {
2714 struct large_vector *next;
2715 };
2716
2717 enum
2718 {
2719 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2720 };
2721
2722 static struct Lisp_Vector *
2723 large_vector_vec (struct large_vector *p)
2724 {
2725 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2726 }
2727
2728 /* This internal type is used to maintain an underlying storage
2729 for small vectors. */
2730
2731 struct vector_block
2732 {
2733 char data[VECTOR_BLOCK_BYTES];
2734 struct vector_block *next;
2735 };
2736
2737 /* Chain of vector blocks. */
2738
2739 static struct vector_block *vector_blocks;
2740
2741 /* Vector free lists, where NTH item points to a chain of free
2742 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2743
2744 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2745
2746 /* Singly-linked list of large vectors. */
2747
2748 static struct large_vector *large_vectors;
2749
2750 /* The only vector with 0 slots, allocated from pure space. */
2751
2752 Lisp_Object zero_vector;
2753
2754 /* Number of live vectors. */
2755
2756 static EMACS_INT total_vectors;
2757
2758 /* Total size of live and free vectors, in Lisp_Object units. */
2759
2760 static EMACS_INT total_vector_slots, total_free_vector_slots;
2761
2762 /* Get a new vector block. */
2763
2764 static struct vector_block *
2765 allocate_vector_block (void)
2766 {
2767 struct vector_block *block = xmalloc (sizeof *block);
2768
2769 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2770 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2771 MEM_TYPE_VECTOR_BLOCK);
2772 #endif
2773
2774 block->next = vector_blocks;
2775 vector_blocks = block;
2776 return block;
2777 }
2778
2779 /* Called once to initialize vector allocation. */
2780
2781 static void
2782 init_vectors (void)
2783 {
2784 zero_vector = make_pure_vector (0);
2785 }
2786
2787 /* Allocate vector from a vector block. */
2788
2789 static struct Lisp_Vector *
2790 allocate_vector_from_block (size_t nbytes)
2791 {
2792 struct Lisp_Vector *vector;
2793 struct vector_block *block;
2794 size_t index, restbytes;
2795
2796 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2797 eassert (nbytes % roundup_size == 0);
2798
2799 /* First, try to allocate from a free list
2800 containing vectors of the requested size. */
2801 index = VINDEX (nbytes);
2802 if (vector_free_lists[index])
2803 {
2804 vector = vector_free_lists[index];
2805 vector_free_lists[index] = next_vector (vector);
2806 total_free_vector_slots -= nbytes / word_size;
2807 return vector;
2808 }
2809
2810 /* Next, check free lists containing larger vectors. Since
2811 we will split the result, we should have remaining space
2812 large enough to use for one-slot vector at least. */
2813 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2814 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2815 if (vector_free_lists[index])
2816 {
2817 /* This vector is larger than requested. */
2818 vector = vector_free_lists[index];
2819 vector_free_lists[index] = next_vector (vector);
2820 total_free_vector_slots -= nbytes / word_size;
2821
2822 /* Excess bytes are used for the smaller vector,
2823 which should be set on an appropriate free list. */
2824 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2825 eassert (restbytes % roundup_size == 0);
2826 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2827 return vector;
2828 }
2829
2830 /* Finally, need a new vector block. */
2831 block = allocate_vector_block ();
2832
2833 /* New vector will be at the beginning of this block. */
2834 vector = (struct Lisp_Vector *) block->data;
2835
2836 /* If the rest of space from this block is large enough
2837 for one-slot vector at least, set up it on a free list. */
2838 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2839 if (restbytes >= VBLOCK_BYTES_MIN)
2840 {
2841 eassert (restbytes % roundup_size == 0);
2842 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2843 }
2844 return vector;
2845 }
2846
2847 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2848
2849 #define VECTOR_IN_BLOCK(vector, block) \
2850 ((char *) (vector) <= (block)->data \
2851 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2852
2853 /* Return the memory footprint of V in bytes. */
2854
2855 static ptrdiff_t
2856 vector_nbytes (struct Lisp_Vector *v)
2857 {
2858 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2859 ptrdiff_t nwords;
2860
2861 if (size & PSEUDOVECTOR_FLAG)
2862 {
2863 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2864 {
2865 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2866 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2867 * sizeof (bits_word));
2868 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2869 verify (header_size <= bool_header_size);
2870 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2871 }
2872 else
2873 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2874 + ((size & PSEUDOVECTOR_REST_MASK)
2875 >> PSEUDOVECTOR_SIZE_BITS));
2876 }
2877 else
2878 nwords = size;
2879 return vroundup (header_size + word_size * nwords);
2880 }
2881
2882 /* Release extra resources still in use by VECTOR, which may be any
2883 vector-like object. For now, this is used just to free data in
2884 font objects. */
2885
2886 static void
2887 cleanup_vector (struct Lisp_Vector *vector)
2888 {
2889 detect_suspicious_free (vector);
2890 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2891 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2892 == FONT_OBJECT_MAX))
2893 {
2894 struct font_driver *drv = ((struct font *) vector)->driver;
2895
2896 /* The font driver might sometimes be NULL, e.g. if Emacs was
2897 interrupted before it had time to set it up. */
2898 if (drv)
2899 {
2900 /* Attempt to catch subtle bugs like Bug#16140. */
2901 eassert (valid_font_driver (drv));
2902 drv->close ((struct font *) vector);
2903 }
2904 }
2905 }
2906
2907 /* Reclaim space used by unmarked vectors. */
2908
2909 NO_INLINE /* For better stack traces */
2910 static void
2911 sweep_vectors (void)
2912 {
2913 struct vector_block *block, **bprev = &vector_blocks;
2914 struct large_vector *lv, **lvprev = &large_vectors;
2915 struct Lisp_Vector *vector, *next;
2916
2917 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2918 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2919
2920 /* Looking through vector blocks. */
2921
2922 for (block = vector_blocks; block; block = *bprev)
2923 {
2924 bool free_this_block = 0;
2925 ptrdiff_t nbytes;
2926
2927 for (vector = (struct Lisp_Vector *) block->data;
2928 VECTOR_IN_BLOCK (vector, block); vector = next)
2929 {
2930 if (VECTOR_MARKED_P (vector))
2931 {
2932 VECTOR_UNMARK (vector);
2933 total_vectors++;
2934 nbytes = vector_nbytes (vector);
2935 total_vector_slots += nbytes / word_size;
2936 next = ADVANCE (vector, nbytes);
2937 }
2938 else
2939 {
2940 ptrdiff_t total_bytes;
2941
2942 cleanup_vector (vector);
2943 nbytes = vector_nbytes (vector);
2944 total_bytes = nbytes;
2945 next = ADVANCE (vector, nbytes);
2946
2947 /* While NEXT is not marked, try to coalesce with VECTOR,
2948 thus making VECTOR of the largest possible size. */
2949
2950 while (VECTOR_IN_BLOCK (next, block))
2951 {
2952 if (VECTOR_MARKED_P (next))
2953 break;
2954 cleanup_vector (next);
2955 nbytes = vector_nbytes (next);
2956 total_bytes += nbytes;
2957 next = ADVANCE (next, nbytes);
2958 }
2959
2960 eassert (total_bytes % roundup_size == 0);
2961
2962 if (vector == (struct Lisp_Vector *) block->data
2963 && !VECTOR_IN_BLOCK (next, block))
2964 /* This block should be freed because all of its
2965 space was coalesced into the only free vector. */
2966 free_this_block = 1;
2967 else
2968 {
2969 size_t tmp;
2970 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2971 }
2972 }
2973 }
2974
2975 if (free_this_block)
2976 {
2977 *bprev = block->next;
2978 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2979 mem_delete (mem_find (block->data));
2980 #endif
2981 xfree (block);
2982 }
2983 else
2984 bprev = &block->next;
2985 }
2986
2987 /* Sweep large vectors. */
2988
2989 for (lv = large_vectors; lv; lv = *lvprev)
2990 {
2991 vector = large_vector_vec (lv);
2992 if (VECTOR_MARKED_P (vector))
2993 {
2994 VECTOR_UNMARK (vector);
2995 total_vectors++;
2996 if (vector->header.size & PSEUDOVECTOR_FLAG)
2997 {
2998 /* All non-bool pseudovectors are small enough to be allocated
2999 from vector blocks. This code should be redesigned if some
3000 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3001 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3002 total_vector_slots += vector_nbytes (vector) / word_size;
3003 }
3004 else
3005 total_vector_slots
3006 += header_size / word_size + vector->header.size;
3007 lvprev = &lv->next;
3008 }
3009 else
3010 {
3011 *lvprev = lv->next;
3012 lisp_free (lv);
3013 }
3014 }
3015 }
3016
3017 /* Value is a pointer to a newly allocated Lisp_Vector structure
3018 with room for LEN Lisp_Objects. */
3019
3020 static struct Lisp_Vector *
3021 allocate_vectorlike (ptrdiff_t len)
3022 {
3023 struct Lisp_Vector *p;
3024
3025 #ifdef DOUG_LEA_MALLOC
3026 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3027 because mapped region contents are not preserved in
3028 a dumped Emacs. */
3029 mallopt (M_MMAP_MAX, 0);
3030 #endif
3031
3032 if (len == 0)
3033 p = XVECTOR (zero_vector);
3034 else
3035 {
3036 size_t nbytes = header_size + len * word_size;
3037
3038 #ifdef DOUG_LEA_MALLOC
3039 if (!mmap_lisp_allowed_p ())
3040 mallopt (M_MMAP_MAX, 0);
3041 #endif
3042
3043 if (nbytes <= VBLOCK_BYTES_MAX)
3044 p = allocate_vector_from_block (vroundup (nbytes));
3045 else
3046 {
3047 struct large_vector *lv
3048 = lisp_malloc ((large_vector_offset + header_size
3049 + len * word_size),
3050 MEM_TYPE_VECTORLIKE);
3051 lv->next = large_vectors;
3052 large_vectors = lv;
3053 p = large_vector_vec (lv);
3054 }
3055
3056 #ifdef DOUG_LEA_MALLOC
3057 if (!mmap_lisp_allowed_p ())
3058 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3059 #endif
3060
3061 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3062 emacs_abort ();
3063
3064 consing_since_gc += nbytes;
3065 vector_cells_consed += len;
3066 }
3067
3068 return p;
3069 }
3070
3071
3072 /* Allocate a vector with LEN slots. */
3073
3074 struct Lisp_Vector *
3075 allocate_vector (EMACS_INT len)
3076 {
3077 struct Lisp_Vector *v;
3078 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3079
3080 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3081 memory_full (SIZE_MAX);
3082 v = allocate_vectorlike (len);
3083 v->header.size = len;
3084 return v;
3085 }
3086
3087
3088 /* Allocate other vector-like structures. */
3089
3090 struct Lisp_Vector *
3091 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3092 {
3093 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3094 int i;
3095
3096 /* Catch bogus values. */
3097 eassert (tag <= PVEC_FONT);
3098 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3099 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3100
3101 /* Only the first lisplen slots will be traced normally by the GC. */
3102 for (i = 0; i < lisplen; ++i)
3103 v->contents[i] = Qnil;
3104
3105 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3106 return v;
3107 }
3108
3109 struct buffer *
3110 allocate_buffer (void)
3111 {
3112 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3113
3114 BUFFER_PVEC_INIT (b);
3115 /* Put B on the chain of all buffers including killed ones. */
3116 b->next = all_buffers;
3117 all_buffers = b;
3118 /* Note that the rest fields of B are not initialized. */
3119 return b;
3120 }
3121
3122 struct Lisp_Hash_Table *
3123 allocate_hash_table (void)
3124 {
3125 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3126 }
3127
3128 struct window *
3129 allocate_window (void)
3130 {
3131 struct window *w;
3132
3133 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3134 /* Users assumes that non-Lisp data is zeroed. */
3135 memset (&w->current_matrix, 0,
3136 sizeof (*w) - offsetof (struct window, current_matrix));
3137 return w;
3138 }
3139
3140 struct terminal *
3141 allocate_terminal (void)
3142 {
3143 struct terminal *t;
3144
3145 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3146 /* Users assumes that non-Lisp data is zeroed. */
3147 memset (&t->next_terminal, 0,
3148 sizeof (*t) - offsetof (struct terminal, next_terminal));
3149 return t;
3150 }
3151
3152 struct frame *
3153 allocate_frame (void)
3154 {
3155 struct frame *f;
3156
3157 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3158 /* Users assumes that non-Lisp data is zeroed. */
3159 memset (&f->face_cache, 0,
3160 sizeof (*f) - offsetof (struct frame, face_cache));
3161 return f;
3162 }
3163
3164 struct Lisp_Process *
3165 allocate_process (void)
3166 {
3167 struct Lisp_Process *p;
3168
3169 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3170 /* Users assumes that non-Lisp data is zeroed. */
3171 memset (&p->pid, 0,
3172 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3173 return p;
3174 }
3175
3176 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3177 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3178 See also the function `vector'. */)
3179 (register Lisp_Object length, Lisp_Object init)
3180 {
3181 Lisp_Object vector;
3182 register ptrdiff_t sizei;
3183 register ptrdiff_t i;
3184 register struct Lisp_Vector *p;
3185
3186 CHECK_NATNUM (length);
3187
3188 p = allocate_vector (XFASTINT (length));
3189 sizei = XFASTINT (length);
3190 for (i = 0; i < sizei; i++)
3191 p->contents[i] = init;
3192
3193 XSETVECTOR (vector, p);
3194 return vector;
3195 }
3196
3197
3198 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3199 doc: /* Return a newly created vector with specified arguments as elements.
3200 Any number of arguments, even zero arguments, are allowed.
3201 usage: (vector &rest OBJECTS) */)
3202 (ptrdiff_t nargs, Lisp_Object *args)
3203 {
3204 ptrdiff_t i;
3205 register Lisp_Object val = make_uninit_vector (nargs);
3206 register struct Lisp_Vector *p = XVECTOR (val);
3207
3208 for (i = 0; i < nargs; i++)
3209 p->contents[i] = args[i];
3210 return val;
3211 }
3212
3213 void
3214 make_byte_code (struct Lisp_Vector *v)
3215 {
3216 /* Don't allow the global zero_vector to become a byte code object. */
3217 eassert (0 < v->header.size);
3218
3219 if (v->header.size > 1 && STRINGP (v->contents[1])
3220 && STRING_MULTIBYTE (v->contents[1]))
3221 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3222 earlier because they produced a raw 8-bit string for byte-code
3223 and now such a byte-code string is loaded as multibyte while
3224 raw 8-bit characters converted to multibyte form. Thus, now we
3225 must convert them back to the original unibyte form. */
3226 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3227 XSETPVECTYPE (v, PVEC_COMPILED);
3228 }
3229
3230 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3231 doc: /* Create a byte-code object with specified arguments as elements.
3232 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3233 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3234 and (optional) INTERACTIVE-SPEC.
3235 The first four arguments are required; at most six have any
3236 significance.
3237 The ARGLIST can be either like the one of `lambda', in which case the arguments
3238 will be dynamically bound before executing the byte code, or it can be an
3239 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3240 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3241 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3242 argument to catch the left-over arguments. If such an integer is used, the
3243 arguments will not be dynamically bound but will be instead pushed on the
3244 stack before executing the byte-code.
3245 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3246 (ptrdiff_t nargs, Lisp_Object *args)
3247 {
3248 ptrdiff_t i;
3249 register Lisp_Object val = make_uninit_vector (nargs);
3250 register struct Lisp_Vector *p = XVECTOR (val);
3251
3252 /* We used to purecopy everything here, if purify-flag was set. This worked
3253 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3254 dangerous, since make-byte-code is used during execution to build
3255 closures, so any closure built during the preload phase would end up
3256 copied into pure space, including its free variables, which is sometimes
3257 just wasteful and other times plainly wrong (e.g. those free vars may want
3258 to be setcar'd). */
3259
3260 for (i = 0; i < nargs; i++)
3261 p->contents[i] = args[i];
3262 make_byte_code (p);
3263 XSETCOMPILED (val, p);
3264 return val;
3265 }
3266
3267
3268 \f
3269 /***********************************************************************
3270 Symbol Allocation
3271 ***********************************************************************/
3272
3273 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3274 of the required alignment if LSB tags are used. */
3275
3276 union aligned_Lisp_Symbol
3277 {
3278 struct Lisp_Symbol s;
3279 #if USE_LSB_TAG
3280 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3281 & -GCALIGNMENT];
3282 #endif
3283 };
3284
3285 /* Each symbol_block is just under 1020 bytes long, since malloc
3286 really allocates in units of powers of two and uses 4 bytes for its
3287 own overhead. */
3288
3289 #define SYMBOL_BLOCK_SIZE \
3290 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3291
3292 struct symbol_block
3293 {
3294 /* Place `symbols' first, to preserve alignment. */
3295 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3296 struct symbol_block *next;
3297 };
3298
3299 /* Current symbol block and index of first unused Lisp_Symbol
3300 structure in it. */
3301
3302 static struct symbol_block *symbol_block;
3303 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3304 /* Pointer to the first symbol_block that contains pinned symbols.
3305 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3306 10K of which are pinned (and all but 250 of them are interned in obarray),
3307 whereas a "typical session" has in the order of 30K symbols.
3308 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3309 than 30K to find the 10K symbols we need to mark. */
3310 static struct symbol_block *symbol_block_pinned;
3311
3312 /* List of free symbols. */
3313
3314 static struct Lisp_Symbol *symbol_free_list;
3315
3316 static void
3317 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3318 {
3319 XSYMBOL (sym)->name = name;
3320 }
3321
3322 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3323 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3324 Its value is void, and its function definition and property list are nil. */)
3325 (Lisp_Object name)
3326 {
3327 register Lisp_Object val;
3328 register struct Lisp_Symbol *p;
3329
3330 CHECK_STRING (name);
3331
3332 if (symbol_free_list)
3333 {
3334 XSETSYMBOL (val, symbol_free_list);
3335 symbol_free_list = symbol_free_list->next;
3336 }
3337 else
3338 {
3339 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3340 {
3341 struct symbol_block *new
3342 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3343 new->next = symbol_block;
3344 symbol_block = new;
3345 symbol_block_index = 0;
3346 total_free_symbols += SYMBOL_BLOCK_SIZE;
3347 }
3348 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3349 symbol_block_index++;
3350 }
3351
3352 p = XSYMBOL (val);
3353 set_symbol_name (val, name);
3354 set_symbol_plist (val, Qnil);
3355 p->redirect = SYMBOL_PLAINVAL;
3356 SET_SYMBOL_VAL (p, Qunbound);
3357 set_symbol_function (val, Qnil);
3358 set_symbol_next (val, NULL);
3359 p->gcmarkbit = false;
3360 p->interned = SYMBOL_UNINTERNED;
3361 p->constant = 0;
3362 p->declared_special = false;
3363 p->pinned = false;
3364 consing_since_gc += sizeof (struct Lisp_Symbol);
3365 symbols_consed++;
3366 total_free_symbols--;
3367 return val;
3368 }
3369
3370
3371 \f
3372 /***********************************************************************
3373 Marker (Misc) Allocation
3374 ***********************************************************************/
3375
3376 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3377 the required alignment when LSB tags are used. */
3378
3379 union aligned_Lisp_Misc
3380 {
3381 union Lisp_Misc m;
3382 #if USE_LSB_TAG
3383 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3384 & -GCALIGNMENT];
3385 #endif
3386 };
3387
3388 /* Allocation of markers and other objects that share that structure.
3389 Works like allocation of conses. */
3390
3391 #define MARKER_BLOCK_SIZE \
3392 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3393
3394 struct marker_block
3395 {
3396 /* Place `markers' first, to preserve alignment. */
3397 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3398 struct marker_block *next;
3399 };
3400
3401 static struct marker_block *marker_block;
3402 static int marker_block_index = MARKER_BLOCK_SIZE;
3403
3404 static union Lisp_Misc *marker_free_list;
3405
3406 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3407
3408 static Lisp_Object
3409 allocate_misc (enum Lisp_Misc_Type type)
3410 {
3411 Lisp_Object val;
3412
3413 if (marker_free_list)
3414 {
3415 XSETMISC (val, marker_free_list);
3416 marker_free_list = marker_free_list->u_free.chain;
3417 }
3418 else
3419 {
3420 if (marker_block_index == MARKER_BLOCK_SIZE)
3421 {
3422 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3423 new->next = marker_block;
3424 marker_block = new;
3425 marker_block_index = 0;
3426 total_free_markers += MARKER_BLOCK_SIZE;
3427 }
3428 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3429 marker_block_index++;
3430 }
3431
3432 --total_free_markers;
3433 consing_since_gc += sizeof (union Lisp_Misc);
3434 misc_objects_consed++;
3435 XMISCANY (val)->type = type;
3436 XMISCANY (val)->gcmarkbit = 0;
3437 return val;
3438 }
3439
3440 /* Free a Lisp_Misc object. */
3441
3442 void
3443 free_misc (Lisp_Object misc)
3444 {
3445 XMISCANY (misc)->type = Lisp_Misc_Free;
3446 XMISC (misc)->u_free.chain = marker_free_list;
3447 marker_free_list = XMISC (misc);
3448 consing_since_gc -= sizeof (union Lisp_Misc);
3449 total_free_markers++;
3450 }
3451
3452 /* Verify properties of Lisp_Save_Value's representation
3453 that are assumed here and elsewhere. */
3454
3455 verify (SAVE_UNUSED == 0);
3456 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3457 >> SAVE_SLOT_BITS)
3458 == 0);
3459
3460 /* Return Lisp_Save_Value objects for the various combinations
3461 that callers need. */
3462
3463 Lisp_Object
3464 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3465 {
3466 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3467 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3468 p->save_type = SAVE_TYPE_INT_INT_INT;
3469 p->data[0].integer = a;
3470 p->data[1].integer = b;
3471 p->data[2].integer = c;
3472 return val;
3473 }
3474
3475 Lisp_Object
3476 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3477 Lisp_Object d)
3478 {
3479 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3480 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3481 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3482 p->data[0].object = a;
3483 p->data[1].object = b;
3484 p->data[2].object = c;
3485 p->data[3].object = d;
3486 return val;
3487 }
3488
3489 Lisp_Object
3490 make_save_ptr (void *a)
3491 {
3492 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3493 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3494 p->save_type = SAVE_POINTER;
3495 p->data[0].pointer = a;
3496 return val;
3497 }
3498
3499 Lisp_Object
3500 make_save_ptr_int (void *a, ptrdiff_t b)
3501 {
3502 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3503 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3504 p->save_type = SAVE_TYPE_PTR_INT;
3505 p->data[0].pointer = a;
3506 p->data[1].integer = b;
3507 return val;
3508 }
3509
3510 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3511 Lisp_Object
3512 make_save_ptr_ptr (void *a, void *b)
3513 {
3514 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3515 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3516 p->save_type = SAVE_TYPE_PTR_PTR;
3517 p->data[0].pointer = a;
3518 p->data[1].pointer = b;
3519 return val;
3520 }
3521 #endif
3522
3523 Lisp_Object
3524 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3525 {
3526 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3527 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3528 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3529 p->data[0].funcpointer = a;
3530 p->data[1].pointer = b;
3531 p->data[2].object = c;
3532 return val;
3533 }
3534
3535 /* Return a Lisp_Save_Value object that represents an array A
3536 of N Lisp objects. */
3537
3538 Lisp_Object
3539 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3540 {
3541 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3542 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3543 p->save_type = SAVE_TYPE_MEMORY;
3544 p->data[0].pointer = a;
3545 p->data[1].integer = n;
3546 return val;
3547 }
3548
3549 /* Free a Lisp_Save_Value object. Do not use this function
3550 if SAVE contains pointer other than returned by xmalloc. */
3551
3552 void
3553 free_save_value (Lisp_Object save)
3554 {
3555 xfree (XSAVE_POINTER (save, 0));
3556 free_misc (save);
3557 }
3558
3559 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3560
3561 Lisp_Object
3562 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3563 {
3564 register Lisp_Object overlay;
3565
3566 overlay = allocate_misc (Lisp_Misc_Overlay);
3567 OVERLAY_START (overlay) = start;
3568 OVERLAY_END (overlay) = end;
3569 set_overlay_plist (overlay, plist);
3570 XOVERLAY (overlay)->next = NULL;
3571 return overlay;
3572 }
3573
3574 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3575 doc: /* Return a newly allocated marker which does not point at any place. */)
3576 (void)
3577 {
3578 register Lisp_Object val;
3579 register struct Lisp_Marker *p;
3580
3581 val = allocate_misc (Lisp_Misc_Marker);
3582 p = XMARKER (val);
3583 p->buffer = 0;
3584 p->bytepos = 0;
3585 p->charpos = 0;
3586 p->next = NULL;
3587 p->insertion_type = 0;
3588 p->need_adjustment = 0;
3589 return val;
3590 }
3591
3592 /* Return a newly allocated marker which points into BUF
3593 at character position CHARPOS and byte position BYTEPOS. */
3594
3595 Lisp_Object
3596 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3597 {
3598 Lisp_Object obj;
3599 struct Lisp_Marker *m;
3600
3601 /* No dead buffers here. */
3602 eassert (BUFFER_LIVE_P (buf));
3603
3604 /* Every character is at least one byte. */
3605 eassert (charpos <= bytepos);
3606
3607 obj = allocate_misc (Lisp_Misc_Marker);
3608 m = XMARKER (obj);
3609 m->buffer = buf;
3610 m->charpos = charpos;
3611 m->bytepos = bytepos;
3612 m->insertion_type = 0;
3613 m->need_adjustment = 0;
3614 m->next = BUF_MARKERS (buf);
3615 BUF_MARKERS (buf) = m;
3616 return obj;
3617 }
3618
3619 /* Put MARKER back on the free list after using it temporarily. */
3620
3621 void
3622 free_marker (Lisp_Object marker)
3623 {
3624 unchain_marker (XMARKER (marker));
3625 free_misc (marker);
3626 }
3627
3628 \f
3629 /* Return a newly created vector or string with specified arguments as
3630 elements. If all the arguments are characters that can fit
3631 in a string of events, make a string; otherwise, make a vector.
3632
3633 Any number of arguments, even zero arguments, are allowed. */
3634
3635 Lisp_Object
3636 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3637 {
3638 ptrdiff_t i;
3639
3640 for (i = 0; i < nargs; i++)
3641 /* The things that fit in a string
3642 are characters that are in 0...127,
3643 after discarding the meta bit and all the bits above it. */
3644 if (!INTEGERP (args[i])
3645 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3646 return Fvector (nargs, args);
3647
3648 /* Since the loop exited, we know that all the things in it are
3649 characters, so we can make a string. */
3650 {
3651 Lisp_Object result;
3652
3653 result = Fmake_string (make_number (nargs), make_number (0));
3654 for (i = 0; i < nargs; i++)
3655 {
3656 SSET (result, i, XINT (args[i]));
3657 /* Move the meta bit to the right place for a string char. */
3658 if (XINT (args[i]) & CHAR_META)
3659 SSET (result, i, SREF (result, i) | 0x80);
3660 }
3661
3662 return result;
3663 }
3664 }
3665
3666
3667 \f
3668 /************************************************************************
3669 Memory Full Handling
3670 ************************************************************************/
3671
3672
3673 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3674 there may have been size_t overflow so that malloc was never
3675 called, or perhaps malloc was invoked successfully but the
3676 resulting pointer had problems fitting into a tagged EMACS_INT. In
3677 either case this counts as memory being full even though malloc did
3678 not fail. */
3679
3680 void
3681 memory_full (size_t nbytes)
3682 {
3683 /* Do not go into hysterics merely because a large request failed. */
3684 bool enough_free_memory = 0;
3685 if (SPARE_MEMORY < nbytes)
3686 {
3687 void *p;
3688
3689 p = malloc (SPARE_MEMORY);
3690 if (p)
3691 {
3692 free (p);
3693 enough_free_memory = 1;
3694 }
3695 }
3696
3697 if (! enough_free_memory)
3698 {
3699 int i;
3700
3701 Vmemory_full = Qt;
3702
3703 memory_full_cons_threshold = sizeof (struct cons_block);
3704
3705 /* The first time we get here, free the spare memory. */
3706 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3707 if (spare_memory[i])
3708 {
3709 if (i == 0)
3710 free (spare_memory[i]);
3711 else if (i >= 1 && i <= 4)
3712 lisp_align_free (spare_memory[i]);
3713 else
3714 lisp_free (spare_memory[i]);
3715 spare_memory[i] = 0;
3716 }
3717 }
3718
3719 /* This used to call error, but if we've run out of memory, we could
3720 get infinite recursion trying to build the string. */
3721 xsignal (Qnil, Vmemory_signal_data);
3722 }
3723
3724 /* If we released our reserve (due to running out of memory),
3725 and we have a fair amount free once again,
3726 try to set aside another reserve in case we run out once more.
3727
3728 This is called when a relocatable block is freed in ralloc.c,
3729 and also directly from this file, in case we're not using ralloc.c. */
3730
3731 void
3732 refill_memory_reserve (void)
3733 {
3734 #ifndef SYSTEM_MALLOC
3735 if (spare_memory[0] == 0)
3736 spare_memory[0] = malloc (SPARE_MEMORY);
3737 if (spare_memory[1] == 0)
3738 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3739 MEM_TYPE_SPARE);
3740 if (spare_memory[2] == 0)
3741 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3742 MEM_TYPE_SPARE);
3743 if (spare_memory[3] == 0)
3744 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3745 MEM_TYPE_SPARE);
3746 if (spare_memory[4] == 0)
3747 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3748 MEM_TYPE_SPARE);
3749 if (spare_memory[5] == 0)
3750 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3751 MEM_TYPE_SPARE);
3752 if (spare_memory[6] == 0)
3753 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3754 MEM_TYPE_SPARE);
3755 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3756 Vmemory_full = Qnil;
3757 #endif
3758 }
3759 \f
3760 /************************************************************************
3761 C Stack Marking
3762 ************************************************************************/
3763
3764 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3765
3766 /* Conservative C stack marking requires a method to identify possibly
3767 live Lisp objects given a pointer value. We do this by keeping
3768 track of blocks of Lisp data that are allocated in a red-black tree
3769 (see also the comment of mem_node which is the type of nodes in
3770 that tree). Function lisp_malloc adds information for an allocated
3771 block to the red-black tree with calls to mem_insert, and function
3772 lisp_free removes it with mem_delete. Functions live_string_p etc
3773 call mem_find to lookup information about a given pointer in the
3774 tree, and use that to determine if the pointer points to a Lisp
3775 object or not. */
3776
3777 /* Initialize this part of alloc.c. */
3778
3779 static void
3780 mem_init (void)
3781 {
3782 mem_z.left = mem_z.right = MEM_NIL;
3783 mem_z.parent = NULL;
3784 mem_z.color = MEM_BLACK;
3785 mem_z.start = mem_z.end = NULL;
3786 mem_root = MEM_NIL;
3787 }
3788
3789
3790 /* Value is a pointer to the mem_node containing START. Value is
3791 MEM_NIL if there is no node in the tree containing START. */
3792
3793 static struct mem_node *
3794 mem_find (void *start)
3795 {
3796 struct mem_node *p;
3797
3798 if (start < min_heap_address || start > max_heap_address)
3799 return MEM_NIL;
3800
3801 /* Make the search always successful to speed up the loop below. */
3802 mem_z.start = start;
3803 mem_z.end = (char *) start + 1;
3804
3805 p = mem_root;
3806 while (start < p->start || start >= p->end)
3807 p = start < p->start ? p->left : p->right;
3808 return p;
3809 }
3810
3811
3812 /* Insert a new node into the tree for a block of memory with start
3813 address START, end address END, and type TYPE. Value is a
3814 pointer to the node that was inserted. */
3815
3816 static struct mem_node *
3817 mem_insert (void *start, void *end, enum mem_type type)
3818 {
3819 struct mem_node *c, *parent, *x;
3820
3821 if (min_heap_address == NULL || start < min_heap_address)
3822 min_heap_address = start;
3823 if (max_heap_address == NULL || end > max_heap_address)
3824 max_heap_address = end;
3825
3826 /* See where in the tree a node for START belongs. In this
3827 particular application, it shouldn't happen that a node is already
3828 present. For debugging purposes, let's check that. */
3829 c = mem_root;
3830 parent = NULL;
3831
3832 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3833
3834 while (c != MEM_NIL)
3835 {
3836 if (start >= c->start && start < c->end)
3837 emacs_abort ();
3838 parent = c;
3839 c = start < c->start ? c->left : c->right;
3840 }
3841
3842 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3843
3844 while (c != MEM_NIL)
3845 {
3846 parent = c;
3847 c = start < c->start ? c->left : c->right;
3848 }
3849
3850 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3851
3852 /* Create a new node. */
3853 #ifdef GC_MALLOC_CHECK
3854 x = malloc (sizeof *x);
3855 if (x == NULL)
3856 emacs_abort ();
3857 #else
3858 x = xmalloc (sizeof *x);
3859 #endif
3860 x->start = start;
3861 x->end = end;
3862 x->type = type;
3863 x->parent = parent;
3864 x->left = x->right = MEM_NIL;
3865 x->color = MEM_RED;
3866
3867 /* Insert it as child of PARENT or install it as root. */
3868 if (parent)
3869 {
3870 if (start < parent->start)
3871 parent->left = x;
3872 else
3873 parent->right = x;
3874 }
3875 else
3876 mem_root = x;
3877
3878 /* Re-establish red-black tree properties. */
3879 mem_insert_fixup (x);
3880
3881 return x;
3882 }
3883
3884
3885 /* Re-establish the red-black properties of the tree, and thereby
3886 balance the tree, after node X has been inserted; X is always red. */
3887
3888 static void
3889 mem_insert_fixup (struct mem_node *x)
3890 {
3891 while (x != mem_root && x->parent->color == MEM_RED)
3892 {
3893 /* X is red and its parent is red. This is a violation of
3894 red-black tree property #3. */
3895
3896 if (x->parent == x->parent->parent->left)
3897 {
3898 /* We're on the left side of our grandparent, and Y is our
3899 "uncle". */
3900 struct mem_node *y = x->parent->parent->right;
3901
3902 if (y->color == MEM_RED)
3903 {
3904 /* Uncle and parent are red but should be black because
3905 X is red. Change the colors accordingly and proceed
3906 with the grandparent. */
3907 x->parent->color = MEM_BLACK;
3908 y->color = MEM_BLACK;
3909 x->parent->parent->color = MEM_RED;
3910 x = x->parent->parent;
3911 }
3912 else
3913 {
3914 /* Parent and uncle have different colors; parent is
3915 red, uncle is black. */
3916 if (x == x->parent->right)
3917 {
3918 x = x->parent;
3919 mem_rotate_left (x);
3920 }
3921
3922 x->parent->color = MEM_BLACK;
3923 x->parent->parent->color = MEM_RED;
3924 mem_rotate_right (x->parent->parent);
3925 }
3926 }
3927 else
3928 {
3929 /* This is the symmetrical case of above. */
3930 struct mem_node *y = x->parent->parent->left;
3931
3932 if (y->color == MEM_RED)
3933 {
3934 x->parent->color = MEM_BLACK;
3935 y->color = MEM_BLACK;
3936 x->parent->parent->color = MEM_RED;
3937 x = x->parent->parent;
3938 }
3939 else
3940 {
3941 if (x == x->parent->left)
3942 {
3943 x = x->parent;
3944 mem_rotate_right (x);
3945 }
3946
3947 x->parent->color = MEM_BLACK;
3948 x->parent->parent->color = MEM_RED;
3949 mem_rotate_left (x->parent->parent);
3950 }
3951 }
3952 }
3953
3954 /* The root may have been changed to red due to the algorithm. Set
3955 it to black so that property #5 is satisfied. */
3956 mem_root->color = MEM_BLACK;
3957 }
3958
3959
3960 /* (x) (y)
3961 / \ / \
3962 a (y) ===> (x) c
3963 / \ / \
3964 b c a b */
3965
3966 static void
3967 mem_rotate_left (struct mem_node *x)
3968 {
3969 struct mem_node *y;
3970
3971 /* Turn y's left sub-tree into x's right sub-tree. */
3972 y = x->right;
3973 x->right = y->left;
3974 if (y->left != MEM_NIL)
3975 y->left->parent = x;
3976
3977 /* Y's parent was x's parent. */
3978 if (y != MEM_NIL)
3979 y->parent = x->parent;
3980
3981 /* Get the parent to point to y instead of x. */
3982 if (x->parent)
3983 {
3984 if (x == x->parent->left)
3985 x->parent->left = y;
3986 else
3987 x->parent->right = y;
3988 }
3989 else
3990 mem_root = y;
3991
3992 /* Put x on y's left. */
3993 y->left = x;
3994 if (x != MEM_NIL)
3995 x->parent = y;
3996 }
3997
3998
3999 /* (x) (Y)
4000 / \ / \
4001 (y) c ===> a (x)
4002 / \ / \
4003 a b b c */
4004
4005 static void
4006 mem_rotate_right (struct mem_node *x)
4007 {
4008 struct mem_node *y = x->left;
4009
4010 x->left = y->right;
4011 if (y->right != MEM_NIL)
4012 y->right->parent = x;
4013
4014 if (y != MEM_NIL)
4015 y->parent = x->parent;
4016 if (x->parent)
4017 {
4018 if (x == x->parent->right)
4019 x->parent->right = y;
4020 else
4021 x->parent->left = y;
4022 }
4023 else
4024 mem_root = y;
4025
4026 y->right = x;
4027 if (x != MEM_NIL)
4028 x->parent = y;
4029 }
4030
4031
4032 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4033
4034 static void
4035 mem_delete (struct mem_node *z)
4036 {
4037 struct mem_node *x, *y;
4038
4039 if (!z || z == MEM_NIL)
4040 return;
4041
4042 if (z->left == MEM_NIL || z->right == MEM_NIL)
4043 y = z;
4044 else
4045 {
4046 y = z->right;
4047 while (y->left != MEM_NIL)
4048 y = y->left;
4049 }
4050
4051 if (y->left != MEM_NIL)
4052 x = y->left;
4053 else
4054 x = y->right;
4055
4056 x->parent = y->parent;
4057 if (y->parent)
4058 {
4059 if (y == y->parent->left)
4060 y->parent->left = x;
4061 else
4062 y->parent->right = x;
4063 }
4064 else
4065 mem_root = x;
4066
4067 if (y != z)
4068 {
4069 z->start = y->start;
4070 z->end = y->end;
4071 z->type = y->type;
4072 }
4073
4074 if (y->color == MEM_BLACK)
4075 mem_delete_fixup (x);
4076
4077 #ifdef GC_MALLOC_CHECK
4078 free (y);
4079 #else
4080 xfree (y);
4081 #endif
4082 }
4083
4084
4085 /* Re-establish the red-black properties of the tree, after a
4086 deletion. */
4087
4088 static void
4089 mem_delete_fixup (struct mem_node *x)
4090 {
4091 while (x != mem_root && x->color == MEM_BLACK)
4092 {
4093 if (x == x->parent->left)
4094 {
4095 struct mem_node *w = x->parent->right;
4096
4097 if (w->color == MEM_RED)
4098 {
4099 w->color = MEM_BLACK;
4100 x->parent->color = MEM_RED;
4101 mem_rotate_left (x->parent);
4102 w = x->parent->right;
4103 }
4104
4105 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4106 {
4107 w->color = MEM_RED;
4108 x = x->parent;
4109 }
4110 else
4111 {
4112 if (w->right->color == MEM_BLACK)
4113 {
4114 w->left->color = MEM_BLACK;
4115 w->color = MEM_RED;
4116 mem_rotate_right (w);
4117 w = x->parent->right;
4118 }
4119 w->color = x->parent->color;
4120 x->parent->color = MEM_BLACK;
4121 w->right->color = MEM_BLACK;
4122 mem_rotate_left (x->parent);
4123 x = mem_root;
4124 }
4125 }
4126 else
4127 {
4128 struct mem_node *w = x->parent->left;
4129
4130 if (w->color == MEM_RED)
4131 {
4132 w->color = MEM_BLACK;
4133 x->parent->color = MEM_RED;
4134 mem_rotate_right (x->parent);
4135 w = x->parent->left;
4136 }
4137
4138 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4139 {
4140 w->color = MEM_RED;
4141 x = x->parent;
4142 }
4143 else
4144 {
4145 if (w->left->color == MEM_BLACK)
4146 {
4147 w->right->color = MEM_BLACK;
4148 w->color = MEM_RED;
4149 mem_rotate_left (w);
4150 w = x->parent->left;
4151 }
4152
4153 w->color = x->parent->color;
4154 x->parent->color = MEM_BLACK;
4155 w->left->color = MEM_BLACK;
4156 mem_rotate_right (x->parent);
4157 x = mem_root;
4158 }
4159 }
4160 }
4161
4162 x->color = MEM_BLACK;
4163 }
4164
4165
4166 /* Value is non-zero if P is a pointer to a live Lisp string on
4167 the heap. M is a pointer to the mem_block for P. */
4168
4169 static bool
4170 live_string_p (struct mem_node *m, void *p)
4171 {
4172 if (m->type == MEM_TYPE_STRING)
4173 {
4174 struct string_block *b = m->start;
4175 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4176
4177 /* P must point to the start of a Lisp_String structure, and it
4178 must not be on the free-list. */
4179 return (offset >= 0
4180 && offset % sizeof b->strings[0] == 0
4181 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4182 && ((struct Lisp_String *) p)->data != NULL);
4183 }
4184 else
4185 return 0;
4186 }
4187
4188
4189 /* Value is non-zero if P is a pointer to a live Lisp cons on
4190 the heap. M is a pointer to the mem_block for P. */
4191
4192 static bool
4193 live_cons_p (struct mem_node *m, void *p)
4194 {
4195 if (m->type == MEM_TYPE_CONS)
4196 {
4197 struct cons_block *b = m->start;
4198 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4199
4200 /* P must point to the start of a Lisp_Cons, not be
4201 one of the unused cells in the current cons block,
4202 and not be on the free-list. */
4203 return (offset >= 0
4204 && offset % sizeof b->conses[0] == 0
4205 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4206 && (b != cons_block
4207 || offset / sizeof b->conses[0] < cons_block_index)
4208 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4209 }
4210 else
4211 return 0;
4212 }
4213
4214
4215 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4216 the heap. M is a pointer to the mem_block for P. */
4217
4218 static bool
4219 live_symbol_p (struct mem_node *m, void *p)
4220 {
4221 if (m->type == MEM_TYPE_SYMBOL)
4222 {
4223 struct symbol_block *b = m->start;
4224 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4225
4226 /* P must point to the start of a Lisp_Symbol, not be
4227 one of the unused cells in the current symbol block,
4228 and not be on the free-list. */
4229 return (offset >= 0
4230 && offset % sizeof b->symbols[0] == 0
4231 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4232 && (b != symbol_block
4233 || offset / sizeof b->symbols[0] < symbol_block_index)
4234 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4235 }
4236 else
4237 return 0;
4238 }
4239
4240
4241 /* Value is non-zero if P is a pointer to a live Lisp float on
4242 the heap. M is a pointer to the mem_block for P. */
4243
4244 static bool
4245 live_float_p (struct mem_node *m, void *p)
4246 {
4247 if (m->type == MEM_TYPE_FLOAT)
4248 {
4249 struct float_block *b = m->start;
4250 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4251
4252 /* P must point to the start of a Lisp_Float and not be
4253 one of the unused cells in the current float block. */
4254 return (offset >= 0
4255 && offset % sizeof b->floats[0] == 0
4256 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4257 && (b != float_block
4258 || offset / sizeof b->floats[0] < float_block_index));
4259 }
4260 else
4261 return 0;
4262 }
4263
4264
4265 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4266 the heap. M is a pointer to the mem_block for P. */
4267
4268 static bool
4269 live_misc_p (struct mem_node *m, void *p)
4270 {
4271 if (m->type == MEM_TYPE_MISC)
4272 {
4273 struct marker_block *b = m->start;
4274 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4275
4276 /* P must point to the start of a Lisp_Misc, not be
4277 one of the unused cells in the current misc block,
4278 and not be on the free-list. */
4279 return (offset >= 0
4280 && offset % sizeof b->markers[0] == 0
4281 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4282 && (b != marker_block
4283 || offset / sizeof b->markers[0] < marker_block_index)
4284 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4285 }
4286 else
4287 return 0;
4288 }
4289
4290
4291 /* Value is non-zero if P is a pointer to a live vector-like object.
4292 M is a pointer to the mem_block for P. */
4293
4294 static bool
4295 live_vector_p (struct mem_node *m, void *p)
4296 {
4297 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4298 {
4299 /* This memory node corresponds to a vector block. */
4300 struct vector_block *block = m->start;
4301 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4302
4303 /* P is in the block's allocation range. Scan the block
4304 up to P and see whether P points to the start of some
4305 vector which is not on a free list. FIXME: check whether
4306 some allocation patterns (probably a lot of short vectors)
4307 may cause a substantial overhead of this loop. */
4308 while (VECTOR_IN_BLOCK (vector, block)
4309 && vector <= (struct Lisp_Vector *) p)
4310 {
4311 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4312 return 1;
4313 else
4314 vector = ADVANCE (vector, vector_nbytes (vector));
4315 }
4316 }
4317 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4318 /* This memory node corresponds to a large vector. */
4319 return 1;
4320 return 0;
4321 }
4322
4323
4324 /* Value is non-zero if P is a pointer to a live buffer. M is a
4325 pointer to the mem_block for P. */
4326
4327 static bool
4328 live_buffer_p (struct mem_node *m, void *p)
4329 {
4330 /* P must point to the start of the block, and the buffer
4331 must not have been killed. */
4332 return (m->type == MEM_TYPE_BUFFER
4333 && p == m->start
4334 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4335 }
4336
4337 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4338
4339 #if GC_MARK_STACK
4340
4341 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4342
4343 /* Currently not used, but may be called from gdb. */
4344
4345 void dump_zombies (void) EXTERNALLY_VISIBLE;
4346
4347 /* Array of objects that are kept alive because the C stack contains
4348 a pattern that looks like a reference to them. */
4349
4350 #define MAX_ZOMBIES 10
4351 static Lisp_Object zombies[MAX_ZOMBIES];
4352
4353 /* Number of zombie objects. */
4354
4355 static EMACS_INT nzombies;
4356
4357 /* Number of garbage collections. */
4358
4359 static EMACS_INT ngcs;
4360
4361 /* Average percentage of zombies per collection. */
4362
4363 static double avg_zombies;
4364
4365 /* Max. number of live and zombie objects. */
4366
4367 static EMACS_INT max_live, max_zombies;
4368
4369 /* Average number of live objects per GC. */
4370
4371 static double avg_live;
4372
4373 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4374 doc: /* Show information about live and zombie objects. */)
4375 (void)
4376 {
4377 Lisp_Object args[8], zombie_list = Qnil;
4378 EMACS_INT i;
4379 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4380 zombie_list = Fcons (zombies[i], zombie_list);
4381 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4382 args[1] = make_number (ngcs);
4383 args[2] = make_float (avg_live);
4384 args[3] = make_float (avg_zombies);
4385 args[4] = make_float (avg_zombies / avg_live / 100);
4386 args[5] = make_number (max_live);
4387 args[6] = make_number (max_zombies);
4388 args[7] = zombie_list;
4389 return Fmessage (8, args);
4390 }
4391
4392 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4393
4394
4395 /* Mark OBJ if we can prove it's a Lisp_Object. */
4396
4397 static void
4398 mark_maybe_object (Lisp_Object obj)
4399 {
4400 void *po;
4401 struct mem_node *m;
4402
4403 #if USE_VALGRIND
4404 if (valgrind_p)
4405 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4406 #endif
4407
4408 if (INTEGERP (obj))
4409 return;
4410
4411 po = (void *) XPNTR (obj);
4412 m = mem_find (po);
4413
4414 if (m != MEM_NIL)
4415 {
4416 bool mark_p = 0;
4417
4418 switch (XTYPE (obj))
4419 {
4420 case Lisp_String:
4421 mark_p = (live_string_p (m, po)
4422 && !STRING_MARKED_P ((struct Lisp_String *) po));
4423 break;
4424
4425 case Lisp_Cons:
4426 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4427 break;
4428
4429 case Lisp_Symbol:
4430 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4431 break;
4432
4433 case Lisp_Float:
4434 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4435 break;
4436
4437 case Lisp_Vectorlike:
4438 /* Note: can't check BUFFERP before we know it's a
4439 buffer because checking that dereferences the pointer
4440 PO which might point anywhere. */
4441 if (live_vector_p (m, po))
4442 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4443 else if (live_buffer_p (m, po))
4444 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4445 break;
4446
4447 case Lisp_Misc:
4448 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4449 break;
4450
4451 default:
4452 break;
4453 }
4454
4455 if (mark_p)
4456 {
4457 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4458 if (nzombies < MAX_ZOMBIES)
4459 zombies[nzombies] = obj;
4460 ++nzombies;
4461 #endif
4462 mark_object (obj);
4463 }
4464 }
4465 }
4466
4467 /* Return true if P can point to Lisp data, and false otherwise.
4468 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4469 Otherwise, assume that Lisp data is aligned on even addresses. */
4470
4471 static bool
4472 maybe_lisp_pointer (void *p)
4473 {
4474 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4475 }
4476
4477 /* If P points to Lisp data, mark that as live if it isn't already
4478 marked. */
4479
4480 static void
4481 mark_maybe_pointer (void *p)
4482 {
4483 struct mem_node *m;
4484
4485 #if USE_VALGRIND
4486 if (valgrind_p)
4487 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4488 #endif
4489
4490 if (!maybe_lisp_pointer (p))
4491 return;
4492
4493 m = mem_find (p);
4494 if (m != MEM_NIL)
4495 {
4496 Lisp_Object obj = Qnil;
4497
4498 switch (m->type)
4499 {
4500 case MEM_TYPE_NON_LISP:
4501 case MEM_TYPE_SPARE:
4502 /* Nothing to do; not a pointer to Lisp memory. */
4503 break;
4504
4505 case MEM_TYPE_BUFFER:
4506 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4507 XSETVECTOR (obj, p);
4508 break;
4509
4510 case MEM_TYPE_CONS:
4511 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4512 XSETCONS (obj, p);
4513 break;
4514
4515 case MEM_TYPE_STRING:
4516 if (live_string_p (m, p)
4517 && !STRING_MARKED_P ((struct Lisp_String *) p))
4518 XSETSTRING (obj, p);
4519 break;
4520
4521 case MEM_TYPE_MISC:
4522 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4523 XSETMISC (obj, p);
4524 break;
4525
4526 case MEM_TYPE_SYMBOL:
4527 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4528 XSETSYMBOL (obj, p);
4529 break;
4530
4531 case MEM_TYPE_FLOAT:
4532 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4533 XSETFLOAT (obj, p);
4534 break;
4535
4536 case MEM_TYPE_VECTORLIKE:
4537 case MEM_TYPE_VECTOR_BLOCK:
4538 if (live_vector_p (m, p))
4539 {
4540 Lisp_Object tem;
4541 XSETVECTOR (tem, p);
4542 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4543 obj = tem;
4544 }
4545 break;
4546
4547 default:
4548 emacs_abort ();
4549 }
4550
4551 if (!NILP (obj))
4552 mark_object (obj);
4553 }
4554 }
4555
4556
4557 /* Alignment of pointer values. Use alignof, as it sometimes returns
4558 a smaller alignment than GCC's __alignof__ and mark_memory might
4559 miss objects if __alignof__ were used. */
4560 #define GC_POINTER_ALIGNMENT alignof (void *)
4561
4562 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4563 not suffice, which is the typical case. A host where a Lisp_Object is
4564 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4565 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4566 suffice to widen it to to a Lisp_Object and check it that way. */
4567 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4568 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4569 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4570 nor mark_maybe_object can follow the pointers. This should not occur on
4571 any practical porting target. */
4572 # error "MSB type bits straddle pointer-word boundaries"
4573 # endif
4574 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4575 pointer words that hold pointers ORed with type bits. */
4576 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4577 #else
4578 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4579 words that hold unmodified pointers. */
4580 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4581 #endif
4582
4583 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4584 or END+OFFSET..START. */
4585
4586 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4587 mark_memory (void *start, void *end)
4588 {
4589 void **pp;
4590 int i;
4591
4592 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4593 nzombies = 0;
4594 #endif
4595
4596 /* Make START the pointer to the start of the memory region,
4597 if it isn't already. */
4598 if (end < start)
4599 {
4600 void *tem = start;
4601 start = end;
4602 end = tem;
4603 }
4604
4605 /* Mark Lisp data pointed to. This is necessary because, in some
4606 situations, the C compiler optimizes Lisp objects away, so that
4607 only a pointer to them remains. Example:
4608
4609 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4610 ()
4611 {
4612 Lisp_Object obj = build_string ("test");
4613 struct Lisp_String *s = XSTRING (obj);
4614 Fgarbage_collect ();
4615 fprintf (stderr, "test `%s'\n", s->data);
4616 return Qnil;
4617 }
4618
4619 Here, `obj' isn't really used, and the compiler optimizes it
4620 away. The only reference to the life string is through the
4621 pointer `s'. */
4622
4623 for (pp = start; (void *) pp < end; pp++)
4624 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4625 {
4626 void *p = *(void **) ((char *) pp + i);
4627 mark_maybe_pointer (p);
4628 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4629 mark_maybe_object (XIL ((intptr_t) p));
4630 }
4631 }
4632
4633 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4634
4635 static bool setjmp_tested_p;
4636 static int longjmps_done;
4637
4638 #define SETJMP_WILL_LIKELY_WORK "\
4639 \n\
4640 Emacs garbage collector has been changed to use conservative stack\n\
4641 marking. Emacs has determined that the method it uses to do the\n\
4642 marking will likely work on your system, but this isn't sure.\n\
4643 \n\
4644 If you are a system-programmer, or can get the help of a local wizard\n\
4645 who is, please take a look at the function mark_stack in alloc.c, and\n\
4646 verify that the methods used are appropriate for your system.\n\
4647 \n\
4648 Please mail the result to <emacs-devel@gnu.org>.\n\
4649 "
4650
4651 #define SETJMP_WILL_NOT_WORK "\
4652 \n\
4653 Emacs garbage collector has been changed to use conservative stack\n\
4654 marking. Emacs has determined that the default method it uses to do the\n\
4655 marking will not work on your system. We will need a system-dependent\n\
4656 solution for your system.\n\
4657 \n\
4658 Please take a look at the function mark_stack in alloc.c, and\n\
4659 try to find a way to make it work on your system.\n\
4660 \n\
4661 Note that you may get false negatives, depending on the compiler.\n\
4662 In particular, you need to use -O with GCC for this test.\n\
4663 \n\
4664 Please mail the result to <emacs-devel@gnu.org>.\n\
4665 "
4666
4667
4668 /* Perform a quick check if it looks like setjmp saves registers in a
4669 jmp_buf. Print a message to stderr saying so. When this test
4670 succeeds, this is _not_ a proof that setjmp is sufficient for
4671 conservative stack marking. Only the sources or a disassembly
4672 can prove that. */
4673
4674 static void
4675 test_setjmp (void)
4676 {
4677 char buf[10];
4678 register int x;
4679 sys_jmp_buf jbuf;
4680
4681 /* Arrange for X to be put in a register. */
4682 sprintf (buf, "1");
4683 x = strlen (buf);
4684 x = 2 * x - 1;
4685
4686 sys_setjmp (jbuf);
4687 if (longjmps_done == 1)
4688 {
4689 /* Came here after the longjmp at the end of the function.
4690
4691 If x == 1, the longjmp has restored the register to its
4692 value before the setjmp, and we can hope that setjmp
4693 saves all such registers in the jmp_buf, although that
4694 isn't sure.
4695
4696 For other values of X, either something really strange is
4697 taking place, or the setjmp just didn't save the register. */
4698
4699 if (x == 1)
4700 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4701 else
4702 {
4703 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4704 exit (1);
4705 }
4706 }
4707
4708 ++longjmps_done;
4709 x = 2;
4710 if (longjmps_done == 1)
4711 sys_longjmp (jbuf, 1);
4712 }
4713
4714 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4715
4716
4717 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4718
4719 /* Abort if anything GCPRO'd doesn't survive the GC. */
4720
4721 static void
4722 check_gcpros (void)
4723 {
4724 struct gcpro *p;
4725 ptrdiff_t i;
4726
4727 for (p = gcprolist; p; p = p->next)
4728 for (i = 0; i < p->nvars; ++i)
4729 if (!survives_gc_p (p->var[i]))
4730 /* FIXME: It's not necessarily a bug. It might just be that the
4731 GCPRO is unnecessary or should release the object sooner. */
4732 emacs_abort ();
4733 }
4734
4735 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4736
4737 void
4738 dump_zombies (void)
4739 {
4740 int i;
4741
4742 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4743 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4744 {
4745 fprintf (stderr, " %d = ", i);
4746 debug_print (zombies[i]);
4747 }
4748 }
4749
4750 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4751
4752
4753 /* Mark live Lisp objects on the C stack.
4754
4755 There are several system-dependent problems to consider when
4756 porting this to new architectures:
4757
4758 Processor Registers
4759
4760 We have to mark Lisp objects in CPU registers that can hold local
4761 variables or are used to pass parameters.
4762
4763 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4764 something that either saves relevant registers on the stack, or
4765 calls mark_maybe_object passing it each register's contents.
4766
4767 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4768 implementation assumes that calling setjmp saves registers we need
4769 to see in a jmp_buf which itself lies on the stack. This doesn't
4770 have to be true! It must be verified for each system, possibly
4771 by taking a look at the source code of setjmp.
4772
4773 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4774 can use it as a machine independent method to store all registers
4775 to the stack. In this case the macros described in the previous
4776 two paragraphs are not used.
4777
4778 Stack Layout
4779
4780 Architectures differ in the way their processor stack is organized.
4781 For example, the stack might look like this
4782
4783 +----------------+
4784 | Lisp_Object | size = 4
4785 +----------------+
4786 | something else | size = 2
4787 +----------------+
4788 | Lisp_Object | size = 4
4789 +----------------+
4790 | ... |
4791
4792 In such a case, not every Lisp_Object will be aligned equally. To
4793 find all Lisp_Object on the stack it won't be sufficient to walk
4794 the stack in steps of 4 bytes. Instead, two passes will be
4795 necessary, one starting at the start of the stack, and a second
4796 pass starting at the start of the stack + 2. Likewise, if the
4797 minimal alignment of Lisp_Objects on the stack is 1, four passes
4798 would be necessary, each one starting with one byte more offset
4799 from the stack start. */
4800
4801 static void
4802 mark_stack (void *end)
4803 {
4804
4805 /* This assumes that the stack is a contiguous region in memory. If
4806 that's not the case, something has to be done here to iterate
4807 over the stack segments. */
4808 mark_memory (stack_base, end);
4809
4810 /* Allow for marking a secondary stack, like the register stack on the
4811 ia64. */
4812 #ifdef GC_MARK_SECONDARY_STACK
4813 GC_MARK_SECONDARY_STACK ();
4814 #endif
4815
4816 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4817 check_gcpros ();
4818 #endif
4819 }
4820
4821 #else /* GC_MARK_STACK == 0 */
4822
4823 #define mark_maybe_object(obj) emacs_abort ()
4824
4825 #endif /* GC_MARK_STACK != 0 */
4826
4827
4828 /* Determine whether it is safe to access memory at address P. */
4829 static int
4830 valid_pointer_p (void *p)
4831 {
4832 #ifdef WINDOWSNT
4833 return w32_valid_pointer_p (p, 16);
4834 #else
4835 int fd[2];
4836
4837 /* Obviously, we cannot just access it (we would SEGV trying), so we
4838 trick the o/s to tell us whether p is a valid pointer.
4839 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4840 not validate p in that case. */
4841
4842 if (emacs_pipe (fd) == 0)
4843 {
4844 bool valid = emacs_write (fd[1], p, 16) == 16;
4845 emacs_close (fd[1]);
4846 emacs_close (fd[0]);
4847 return valid;
4848 }
4849
4850 return -1;
4851 #endif
4852 }
4853
4854 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4855 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4856 cannot validate OBJ. This function can be quite slow, so its primary
4857 use is the manual debugging. The only exception is print_object, where
4858 we use it to check whether the memory referenced by the pointer of
4859 Lisp_Save_Value object contains valid objects. */
4860
4861 int
4862 valid_lisp_object_p (Lisp_Object obj)
4863 {
4864 void *p;
4865 #if GC_MARK_STACK
4866 struct mem_node *m;
4867 #endif
4868
4869 if (INTEGERP (obj))
4870 return 1;
4871
4872 p = (void *) XPNTR (obj);
4873 if (PURE_POINTER_P (p))
4874 return 1;
4875
4876 if (p == &buffer_defaults || p == &buffer_local_symbols)
4877 return 2;
4878
4879 #if !GC_MARK_STACK
4880 return valid_pointer_p (p);
4881 #else
4882
4883 m = mem_find (p);
4884
4885 if (m == MEM_NIL)
4886 {
4887 int valid = valid_pointer_p (p);
4888 if (valid <= 0)
4889 return valid;
4890
4891 if (SUBRP (obj))
4892 return 1;
4893
4894 return 0;
4895 }
4896
4897 switch (m->type)
4898 {
4899 case MEM_TYPE_NON_LISP:
4900 case MEM_TYPE_SPARE:
4901 return 0;
4902
4903 case MEM_TYPE_BUFFER:
4904 return live_buffer_p (m, p) ? 1 : 2;
4905
4906 case MEM_TYPE_CONS:
4907 return live_cons_p (m, p);
4908
4909 case MEM_TYPE_STRING:
4910 return live_string_p (m, p);
4911
4912 case MEM_TYPE_MISC:
4913 return live_misc_p (m, p);
4914
4915 case MEM_TYPE_SYMBOL:
4916 return live_symbol_p (m, p);
4917
4918 case MEM_TYPE_FLOAT:
4919 return live_float_p (m, p);
4920
4921 case MEM_TYPE_VECTORLIKE:
4922 case MEM_TYPE_VECTOR_BLOCK:
4923 return live_vector_p (m, p);
4924
4925 default:
4926 break;
4927 }
4928
4929 return 0;
4930 #endif
4931 }
4932
4933 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
4934 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
4935 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
4936 This function is slow and should be used for debugging purposes. */
4937
4938 int
4939 relocatable_string_data_p (const char *str)
4940 {
4941 if (PURE_POINTER_P (str))
4942 return 0;
4943 #if GC_MARK_STACK
4944 if (str)
4945 {
4946 struct sdata *sdata
4947 = (struct sdata *) (str - offsetof (struct sdata, data));
4948
4949 if (valid_pointer_p (sdata)
4950 && valid_pointer_p (sdata->string)
4951 && maybe_lisp_pointer (sdata->string))
4952 return (valid_lisp_object_p
4953 (make_lisp_ptr (sdata->string, Lisp_String))
4954 && (const char *) sdata->string->data == str);
4955 }
4956 return 0;
4957 #endif /* GC_MARK_STACK */
4958 return -1;
4959 }
4960
4961 /***********************************************************************
4962 Pure Storage Management
4963 ***********************************************************************/
4964
4965 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4966 pointer to it. TYPE is the Lisp type for which the memory is
4967 allocated. TYPE < 0 means it's not used for a Lisp object. */
4968
4969 static void *
4970 pure_alloc (size_t size, int type)
4971 {
4972 void *result;
4973 #if USE_LSB_TAG
4974 size_t alignment = GCALIGNMENT;
4975 #else
4976 size_t alignment = alignof (EMACS_INT);
4977
4978 /* Give Lisp_Floats an extra alignment. */
4979 if (type == Lisp_Float)
4980 alignment = alignof (struct Lisp_Float);
4981 #endif
4982
4983 again:
4984 if (type >= 0)
4985 {
4986 /* Allocate space for a Lisp object from the beginning of the free
4987 space with taking account of alignment. */
4988 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4989 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4990 }
4991 else
4992 {
4993 /* Allocate space for a non-Lisp object from the end of the free
4994 space. */
4995 pure_bytes_used_non_lisp += size;
4996 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4997 }
4998 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4999
5000 if (pure_bytes_used <= pure_size)
5001 return result;
5002
5003 /* Don't allocate a large amount here,
5004 because it might get mmap'd and then its address
5005 might not be usable. */
5006 purebeg = xmalloc (10000);
5007 pure_size = 10000;
5008 pure_bytes_used_before_overflow += pure_bytes_used - size;
5009 pure_bytes_used = 0;
5010 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5011 goto again;
5012 }
5013
5014
5015 /* Print a warning if PURESIZE is too small. */
5016
5017 void
5018 check_pure_size (void)
5019 {
5020 if (pure_bytes_used_before_overflow)
5021 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5022 " bytes needed)"),
5023 pure_bytes_used + pure_bytes_used_before_overflow);
5024 }
5025
5026
5027 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5028 the non-Lisp data pool of the pure storage, and return its start
5029 address. Return NULL if not found. */
5030
5031 static char *
5032 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5033 {
5034 int i;
5035 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5036 const unsigned char *p;
5037 char *non_lisp_beg;
5038
5039 if (pure_bytes_used_non_lisp <= nbytes)
5040 return NULL;
5041
5042 /* Set up the Boyer-Moore table. */
5043 skip = nbytes + 1;
5044 for (i = 0; i < 256; i++)
5045 bm_skip[i] = skip;
5046
5047 p = (const unsigned char *) data;
5048 while (--skip > 0)
5049 bm_skip[*p++] = skip;
5050
5051 last_char_skip = bm_skip['\0'];
5052
5053 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5054 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5055
5056 /* See the comments in the function `boyer_moore' (search.c) for the
5057 use of `infinity'. */
5058 infinity = pure_bytes_used_non_lisp + 1;
5059 bm_skip['\0'] = infinity;
5060
5061 p = (const unsigned char *) non_lisp_beg + nbytes;
5062 start = 0;
5063 do
5064 {
5065 /* Check the last character (== '\0'). */
5066 do
5067 {
5068 start += bm_skip[*(p + start)];
5069 }
5070 while (start <= start_max);
5071
5072 if (start < infinity)
5073 /* Couldn't find the last character. */
5074 return NULL;
5075
5076 /* No less than `infinity' means we could find the last
5077 character at `p[start - infinity]'. */
5078 start -= infinity;
5079
5080 /* Check the remaining characters. */
5081 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5082 /* Found. */
5083 return non_lisp_beg + start;
5084
5085 start += last_char_skip;
5086 }
5087 while (start <= start_max);
5088
5089 return NULL;
5090 }
5091
5092
5093 /* Return a string allocated in pure space. DATA is a buffer holding
5094 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5095 means make the result string multibyte.
5096
5097 Must get an error if pure storage is full, since if it cannot hold
5098 a large string it may be able to hold conses that point to that
5099 string; then the string is not protected from gc. */
5100
5101 Lisp_Object
5102 make_pure_string (const char *data,
5103 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5104 {
5105 Lisp_Object string;
5106 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5107 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5108 if (s->data == NULL)
5109 {
5110 s->data = pure_alloc (nbytes + 1, -1);
5111 memcpy (s->data, data, nbytes);
5112 s->data[nbytes] = '\0';
5113 }
5114 s->size = nchars;
5115 s->size_byte = multibyte ? nbytes : -1;
5116 s->intervals = NULL;
5117 XSETSTRING (string, s);
5118 return string;
5119 }
5120
5121 /* Return a string allocated in pure space. Do not
5122 allocate the string data, just point to DATA. */
5123
5124 Lisp_Object
5125 make_pure_c_string (const char *data, ptrdiff_t nchars)
5126 {
5127 Lisp_Object string;
5128 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5129 s->size = nchars;
5130 s->size_byte = -1;
5131 s->data = (unsigned char *) data;
5132 s->intervals = NULL;
5133 XSETSTRING (string, s);
5134 return string;
5135 }
5136
5137 static Lisp_Object purecopy (Lisp_Object obj);
5138
5139 /* Return a cons allocated from pure space. Give it pure copies
5140 of CAR as car and CDR as cdr. */
5141
5142 Lisp_Object
5143 pure_cons (Lisp_Object car, Lisp_Object cdr)
5144 {
5145 Lisp_Object new;
5146 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5147 XSETCONS (new, p);
5148 XSETCAR (new, purecopy (car));
5149 XSETCDR (new, purecopy (cdr));
5150 return new;
5151 }
5152
5153
5154 /* Value is a float object with value NUM allocated from pure space. */
5155
5156 static Lisp_Object
5157 make_pure_float (double num)
5158 {
5159 Lisp_Object new;
5160 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5161 XSETFLOAT (new, p);
5162 XFLOAT_INIT (new, num);
5163 return new;
5164 }
5165
5166
5167 /* Return a vector with room for LEN Lisp_Objects allocated from
5168 pure space. */
5169
5170 static Lisp_Object
5171 make_pure_vector (ptrdiff_t len)
5172 {
5173 Lisp_Object new;
5174 size_t size = header_size + len * word_size;
5175 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5176 XSETVECTOR (new, p);
5177 XVECTOR (new)->header.size = len;
5178 return new;
5179 }
5180
5181
5182 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5183 doc: /* Make a copy of object OBJ in pure storage.
5184 Recursively copies contents of vectors and cons cells.
5185 Does not copy symbols. Copies strings without text properties. */)
5186 (register Lisp_Object obj)
5187 {
5188 if (NILP (Vpurify_flag))
5189 return obj;
5190 else if (MARKERP (obj) || OVERLAYP (obj)
5191 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5192 /* Can't purify those. */
5193 return obj;
5194 else
5195 return purecopy (obj);
5196 }
5197
5198 static Lisp_Object
5199 purecopy (Lisp_Object obj)
5200 {
5201 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5202 return obj; /* Already pure. */
5203
5204 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5205 {
5206 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5207 if (!NILP (tmp))
5208 return tmp;
5209 }
5210
5211 if (CONSP (obj))
5212 obj = pure_cons (XCAR (obj), XCDR (obj));
5213 else if (FLOATP (obj))
5214 obj = make_pure_float (XFLOAT_DATA (obj));
5215 else if (STRINGP (obj))
5216 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5217 SBYTES (obj),
5218 STRING_MULTIBYTE (obj));
5219 else if (COMPILEDP (obj) || VECTORP (obj))
5220 {
5221 register struct Lisp_Vector *vec;
5222 register ptrdiff_t i;
5223 ptrdiff_t size;
5224
5225 size = ASIZE (obj);
5226 if (size & PSEUDOVECTOR_FLAG)
5227 size &= PSEUDOVECTOR_SIZE_MASK;
5228 vec = XVECTOR (make_pure_vector (size));
5229 for (i = 0; i < size; i++)
5230 vec->contents[i] = purecopy (AREF (obj, i));
5231 if (COMPILEDP (obj))
5232 {
5233 XSETPVECTYPE (vec, PVEC_COMPILED);
5234 XSETCOMPILED (obj, vec);
5235 }
5236 else
5237 XSETVECTOR (obj, vec);
5238 }
5239 else if (SYMBOLP (obj))
5240 {
5241 if (!XSYMBOL (obj)->pinned)
5242 { /* We can't purify them, but they appear in many pure objects.
5243 Mark them as `pinned' so we know to mark them at every GC cycle. */
5244 XSYMBOL (obj)->pinned = true;
5245 symbol_block_pinned = symbol_block;
5246 }
5247 return obj;
5248 }
5249 else
5250 {
5251 Lisp_Object args[2];
5252 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5253 args[1] = obj;
5254 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5255 }
5256
5257 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5258 Fputhash (obj, obj, Vpurify_flag);
5259
5260 return obj;
5261 }
5262
5263
5264 \f
5265 /***********************************************************************
5266 Protection from GC
5267 ***********************************************************************/
5268
5269 /* Put an entry in staticvec, pointing at the variable with address
5270 VARADDRESS. */
5271
5272 void
5273 staticpro (Lisp_Object *varaddress)
5274 {
5275 if (staticidx >= NSTATICS)
5276 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5277 staticvec[staticidx++] = varaddress;
5278 }
5279
5280 \f
5281 /***********************************************************************
5282 Protection from GC
5283 ***********************************************************************/
5284
5285 /* Temporarily prevent garbage collection. */
5286
5287 ptrdiff_t
5288 inhibit_garbage_collection (void)
5289 {
5290 ptrdiff_t count = SPECPDL_INDEX ();
5291
5292 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5293 return count;
5294 }
5295
5296 /* Used to avoid possible overflows when
5297 converting from C to Lisp integers. */
5298
5299 static Lisp_Object
5300 bounded_number (EMACS_INT number)
5301 {
5302 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5303 }
5304
5305 /* Calculate total bytes of live objects. */
5306
5307 static size_t
5308 total_bytes_of_live_objects (void)
5309 {
5310 size_t tot = 0;
5311 tot += total_conses * sizeof (struct Lisp_Cons);
5312 tot += total_symbols * sizeof (struct Lisp_Symbol);
5313 tot += total_markers * sizeof (union Lisp_Misc);
5314 tot += total_string_bytes;
5315 tot += total_vector_slots * word_size;
5316 tot += total_floats * sizeof (struct Lisp_Float);
5317 tot += total_intervals * sizeof (struct interval);
5318 tot += total_strings * sizeof (struct Lisp_String);
5319 return tot;
5320 }
5321
5322 #ifdef HAVE_WINDOW_SYSTEM
5323
5324 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5325
5326 #if !defined (HAVE_NTGUI)
5327
5328 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5329 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5330
5331 static Lisp_Object
5332 compact_font_cache_entry (Lisp_Object entry)
5333 {
5334 Lisp_Object tail, *prev = &entry;
5335
5336 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5337 {
5338 bool drop = 0;
5339 Lisp_Object obj = XCAR (tail);
5340
5341 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5342 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5343 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5344 && VECTORP (XCDR (obj)))
5345 {
5346 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5347
5348 /* If font-spec is not marked, most likely all font-entities
5349 are not marked too. But we must be sure that nothing is
5350 marked within OBJ before we really drop it. */
5351 for (i = 0; i < size; i++)
5352 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5353 break;
5354
5355 if (i == size)
5356 drop = 1;
5357 }
5358 if (drop)
5359 *prev = XCDR (tail);
5360 else
5361 prev = xcdr_addr (tail);
5362 }
5363 return entry;
5364 }
5365
5366 #endif /* not HAVE_NTGUI */
5367
5368 /* Compact font caches on all terminals and mark
5369 everything which is still here after compaction. */
5370
5371 static void
5372 compact_font_caches (void)
5373 {
5374 struct terminal *t;
5375
5376 for (t = terminal_list; t; t = t->next_terminal)
5377 {
5378 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5379 #if !defined (HAVE_NTGUI)
5380 if (CONSP (cache))
5381 {
5382 Lisp_Object entry;
5383
5384 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5385 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5386 }
5387 #endif /* not HAVE_NTGUI */
5388 mark_object (cache);
5389 }
5390 }
5391
5392 #else /* not HAVE_WINDOW_SYSTEM */
5393
5394 #define compact_font_caches() (void)(0)
5395
5396 #endif /* HAVE_WINDOW_SYSTEM */
5397
5398 /* Remove (MARKER . DATA) entries with unmarked MARKER
5399 from buffer undo LIST and return changed list. */
5400
5401 static Lisp_Object
5402 compact_undo_list (Lisp_Object list)
5403 {
5404 Lisp_Object tail, *prev = &list;
5405
5406 for (tail = list; CONSP (tail); tail = XCDR (tail))
5407 {
5408 if (CONSP (XCAR (tail))
5409 && MARKERP (XCAR (XCAR (tail)))
5410 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5411 *prev = XCDR (tail);
5412 else
5413 prev = xcdr_addr (tail);
5414 }
5415 return list;
5416 }
5417
5418 static void
5419 mark_pinned_symbols (void)
5420 {
5421 struct symbol_block *sblk;
5422 int lim = (symbol_block_pinned == symbol_block
5423 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5424
5425 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5426 {
5427 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5428 for (; sym < end; ++sym)
5429 if (sym->s.pinned)
5430 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5431
5432 lim = SYMBOL_BLOCK_SIZE;
5433 }
5434 }
5435
5436 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5437 separate function so that we could limit mark_stack in searching
5438 the stack frames below this function, thus avoiding the rare cases
5439 where mark_stack finds values that look like live Lisp objects on
5440 portions of stack that couldn't possibly contain such live objects.
5441 For more details of this, see the discussion at
5442 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5443 static Lisp_Object
5444 garbage_collect_1 (void *end)
5445 {
5446 struct buffer *nextb;
5447 char stack_top_variable;
5448 ptrdiff_t i;
5449 bool message_p;
5450 ptrdiff_t count = SPECPDL_INDEX ();
5451 struct timespec start;
5452 Lisp_Object retval = Qnil;
5453 size_t tot_before = 0;
5454
5455 if (abort_on_gc)
5456 emacs_abort ();
5457
5458 /* Can't GC if pure storage overflowed because we can't determine
5459 if something is a pure object or not. */
5460 if (pure_bytes_used_before_overflow)
5461 return Qnil;
5462
5463 /* Record this function, so it appears on the profiler's backtraces. */
5464 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5465
5466 check_cons_list ();
5467
5468 /* Don't keep undo information around forever.
5469 Do this early on, so it is no problem if the user quits. */
5470 FOR_EACH_BUFFER (nextb)
5471 compact_buffer (nextb);
5472
5473 if (profiler_memory_running)
5474 tot_before = total_bytes_of_live_objects ();
5475
5476 start = current_timespec ();
5477
5478 /* In case user calls debug_print during GC,
5479 don't let that cause a recursive GC. */
5480 consing_since_gc = 0;
5481
5482 /* Save what's currently displayed in the echo area. */
5483 message_p = push_message ();
5484 record_unwind_protect_void (pop_message_unwind);
5485
5486 /* Save a copy of the contents of the stack, for debugging. */
5487 #if MAX_SAVE_STACK > 0
5488 if (NILP (Vpurify_flag))
5489 {
5490 char *stack;
5491 ptrdiff_t stack_size;
5492 if (&stack_top_variable < stack_bottom)
5493 {
5494 stack = &stack_top_variable;
5495 stack_size = stack_bottom - &stack_top_variable;
5496 }
5497 else
5498 {
5499 stack = stack_bottom;
5500 stack_size = &stack_top_variable - stack_bottom;
5501 }
5502 if (stack_size <= MAX_SAVE_STACK)
5503 {
5504 if (stack_copy_size < stack_size)
5505 {
5506 stack_copy = xrealloc (stack_copy, stack_size);
5507 stack_copy_size = stack_size;
5508 }
5509 no_sanitize_memcpy (stack_copy, stack, stack_size);
5510 }
5511 }
5512 #endif /* MAX_SAVE_STACK > 0 */
5513
5514 if (garbage_collection_messages)
5515 message1_nolog ("Garbage collecting...");
5516
5517 block_input ();
5518
5519 shrink_regexp_cache ();
5520
5521 gc_in_progress = 1;
5522
5523 /* Mark all the special slots that serve as the roots of accessibility. */
5524
5525 mark_buffer (&buffer_defaults);
5526 mark_buffer (&buffer_local_symbols);
5527
5528 for (i = 0; i < staticidx; i++)
5529 mark_object (*staticvec[i]);
5530
5531 mark_pinned_symbols ();
5532 mark_specpdl ();
5533 mark_terminals ();
5534 mark_kboards ();
5535
5536 #ifdef USE_GTK
5537 xg_mark_data ();
5538 #endif
5539
5540 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5541 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5542 mark_stack (end);
5543 #else
5544 {
5545 register struct gcpro *tail;
5546 for (tail = gcprolist; tail; tail = tail->next)
5547 for (i = 0; i < tail->nvars; i++)
5548 mark_object (tail->var[i]);
5549 }
5550 mark_byte_stack ();
5551 #endif
5552 {
5553 struct handler *handler;
5554 for (handler = handlerlist; handler; handler = handler->next)
5555 {
5556 mark_object (handler->tag_or_ch);
5557 mark_object (handler->val);
5558 }
5559 }
5560 #ifdef HAVE_WINDOW_SYSTEM
5561 mark_fringe_data ();
5562 #endif
5563
5564 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5565 mark_stack (end);
5566 #endif
5567
5568 /* Everything is now marked, except for the data in font caches
5569 and undo lists. They're compacted by removing an items which
5570 aren't reachable otherwise. */
5571
5572 compact_font_caches ();
5573
5574 FOR_EACH_BUFFER (nextb)
5575 {
5576 if (!EQ (BVAR (nextb, undo_list), Qt))
5577 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5578 /* Now that we have stripped the elements that need not be
5579 in the undo_list any more, we can finally mark the list. */
5580 mark_object (BVAR (nextb, undo_list));
5581 }
5582
5583 gc_sweep ();
5584
5585 /* Clear the mark bits that we set in certain root slots. */
5586
5587 unmark_byte_stack ();
5588 VECTOR_UNMARK (&buffer_defaults);
5589 VECTOR_UNMARK (&buffer_local_symbols);
5590
5591 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5592 dump_zombies ();
5593 #endif
5594
5595 check_cons_list ();
5596
5597 gc_in_progress = 0;
5598
5599 unblock_input ();
5600
5601 consing_since_gc = 0;
5602 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5603 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5604
5605 gc_relative_threshold = 0;
5606 if (FLOATP (Vgc_cons_percentage))
5607 { /* Set gc_cons_combined_threshold. */
5608 double tot = total_bytes_of_live_objects ();
5609
5610 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5611 if (0 < tot)
5612 {
5613 if (tot < TYPE_MAXIMUM (EMACS_INT))
5614 gc_relative_threshold = tot;
5615 else
5616 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5617 }
5618 }
5619
5620 if (garbage_collection_messages)
5621 {
5622 if (message_p || minibuf_level > 0)
5623 restore_message ();
5624 else
5625 message1_nolog ("Garbage collecting...done");
5626 }
5627
5628 unbind_to (count, Qnil);
5629 {
5630 Lisp_Object total[11];
5631 int total_size = 10;
5632
5633 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5634 bounded_number (total_conses),
5635 bounded_number (total_free_conses));
5636
5637 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5638 bounded_number (total_symbols),
5639 bounded_number (total_free_symbols));
5640
5641 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5642 bounded_number (total_markers),
5643 bounded_number (total_free_markers));
5644
5645 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5646 bounded_number (total_strings),
5647 bounded_number (total_free_strings));
5648
5649 total[4] = list3 (Qstring_bytes, make_number (1),
5650 bounded_number (total_string_bytes));
5651
5652 total[5] = list3 (Qvectors,
5653 make_number (header_size + sizeof (Lisp_Object)),
5654 bounded_number (total_vectors));
5655
5656 total[6] = list4 (Qvector_slots, make_number (word_size),
5657 bounded_number (total_vector_slots),
5658 bounded_number (total_free_vector_slots));
5659
5660 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5661 bounded_number (total_floats),
5662 bounded_number (total_free_floats));
5663
5664 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5665 bounded_number (total_intervals),
5666 bounded_number (total_free_intervals));
5667
5668 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5669 bounded_number (total_buffers));
5670
5671 #ifdef DOUG_LEA_MALLOC
5672 total_size++;
5673 total[10] = list4 (Qheap, make_number (1024),
5674 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5675 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5676 #endif
5677 retval = Flist (total_size, total);
5678 }
5679
5680 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5681 {
5682 /* Compute average percentage of zombies. */
5683 double nlive
5684 = (total_conses + total_symbols + total_markers + total_strings
5685 + total_vectors + total_floats + total_intervals + total_buffers);
5686
5687 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5688 max_live = max (nlive, max_live);
5689 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5690 max_zombies = max (nzombies, max_zombies);
5691 ++ngcs;
5692 }
5693 #endif
5694
5695 if (!NILP (Vpost_gc_hook))
5696 {
5697 ptrdiff_t gc_count = inhibit_garbage_collection ();
5698 safe_run_hooks (Qpost_gc_hook);
5699 unbind_to (gc_count, Qnil);
5700 }
5701
5702 /* Accumulate statistics. */
5703 if (FLOATP (Vgc_elapsed))
5704 {
5705 struct timespec since_start = timespec_sub (current_timespec (), start);
5706 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5707 + timespectod (since_start));
5708 }
5709
5710 gcs_done++;
5711
5712 /* Collect profiling data. */
5713 if (profiler_memory_running)
5714 {
5715 size_t swept = 0;
5716 size_t tot_after = total_bytes_of_live_objects ();
5717 if (tot_before > tot_after)
5718 swept = tot_before - tot_after;
5719 malloc_probe (swept);
5720 }
5721
5722 return retval;
5723 }
5724
5725 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5726 doc: /* Reclaim storage for Lisp objects no longer needed.
5727 Garbage collection happens automatically if you cons more than
5728 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5729 `garbage-collect' normally returns a list with info on amount of space in use,
5730 where each entry has the form (NAME SIZE USED FREE), where:
5731 - NAME is a symbol describing the kind of objects this entry represents,
5732 - SIZE is the number of bytes used by each one,
5733 - USED is the number of those objects that were found live in the heap,
5734 - FREE is the number of those objects that are not live but that Emacs
5735 keeps around for future allocations (maybe because it does not know how
5736 to return them to the OS).
5737 However, if there was overflow in pure space, `garbage-collect'
5738 returns nil, because real GC can't be done.
5739 See Info node `(elisp)Garbage Collection'. */)
5740 (void)
5741 {
5742 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5743 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5744 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5745 void *end;
5746
5747 #ifdef HAVE___BUILTIN_UNWIND_INIT
5748 /* Force callee-saved registers and register windows onto the stack.
5749 This is the preferred method if available, obviating the need for
5750 machine dependent methods. */
5751 __builtin_unwind_init ();
5752 end = &end;
5753 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5754 #ifndef GC_SAVE_REGISTERS_ON_STACK
5755 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5756 union aligned_jmpbuf {
5757 Lisp_Object o;
5758 sys_jmp_buf j;
5759 } j;
5760 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5761 #endif
5762 /* This trick flushes the register windows so that all the state of
5763 the process is contained in the stack. */
5764 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5765 needed on ia64 too. See mach_dep.c, where it also says inline
5766 assembler doesn't work with relevant proprietary compilers. */
5767 #ifdef __sparc__
5768 #if defined (__sparc64__) && defined (__FreeBSD__)
5769 /* FreeBSD does not have a ta 3 handler. */
5770 asm ("flushw");
5771 #else
5772 asm ("ta 3");
5773 #endif
5774 #endif
5775
5776 /* Save registers that we need to see on the stack. We need to see
5777 registers used to hold register variables and registers used to
5778 pass parameters. */
5779 #ifdef GC_SAVE_REGISTERS_ON_STACK
5780 GC_SAVE_REGISTERS_ON_STACK (end);
5781 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5782
5783 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5784 setjmp will definitely work, test it
5785 and print a message with the result
5786 of the test. */
5787 if (!setjmp_tested_p)
5788 {
5789 setjmp_tested_p = 1;
5790 test_setjmp ();
5791 }
5792 #endif /* GC_SETJMP_WORKS */
5793
5794 sys_setjmp (j.j);
5795 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5796 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5797 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5798 return garbage_collect_1 (end);
5799 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5800 /* Old GCPROs-based method without stack marking. */
5801 return garbage_collect_1 (NULL);
5802 #else
5803 emacs_abort ();
5804 #endif /* GC_MARK_STACK */
5805 }
5806
5807 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5808 only interesting objects referenced from glyphs are strings. */
5809
5810 static void
5811 mark_glyph_matrix (struct glyph_matrix *matrix)
5812 {
5813 struct glyph_row *row = matrix->rows;
5814 struct glyph_row *end = row + matrix->nrows;
5815
5816 for (; row < end; ++row)
5817 if (row->enabled_p)
5818 {
5819 int area;
5820 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5821 {
5822 struct glyph *glyph = row->glyphs[area];
5823 struct glyph *end_glyph = glyph + row->used[area];
5824
5825 for (; glyph < end_glyph; ++glyph)
5826 if (STRINGP (glyph->object)
5827 && !STRING_MARKED_P (XSTRING (glyph->object)))
5828 mark_object (glyph->object);
5829 }
5830 }
5831 }
5832
5833 /* Mark reference to a Lisp_Object.
5834 If the object referred to has not been seen yet, recursively mark
5835 all the references contained in it. */
5836
5837 #define LAST_MARKED_SIZE 500
5838 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5839 static int last_marked_index;
5840
5841 /* For debugging--call abort when we cdr down this many
5842 links of a list, in mark_object. In debugging,
5843 the call to abort will hit a breakpoint.
5844 Normally this is zero and the check never goes off. */
5845 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5846
5847 static void
5848 mark_vectorlike (struct Lisp_Vector *ptr)
5849 {
5850 ptrdiff_t size = ptr->header.size;
5851 ptrdiff_t i;
5852
5853 eassert (!VECTOR_MARKED_P (ptr));
5854 VECTOR_MARK (ptr); /* Else mark it. */
5855 if (size & PSEUDOVECTOR_FLAG)
5856 size &= PSEUDOVECTOR_SIZE_MASK;
5857
5858 /* Note that this size is not the memory-footprint size, but only
5859 the number of Lisp_Object fields that we should trace.
5860 The distinction is used e.g. by Lisp_Process which places extra
5861 non-Lisp_Object fields at the end of the structure... */
5862 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5863 mark_object (ptr->contents[i]);
5864 }
5865
5866 /* Like mark_vectorlike but optimized for char-tables (and
5867 sub-char-tables) assuming that the contents are mostly integers or
5868 symbols. */
5869
5870 static void
5871 mark_char_table (struct Lisp_Vector *ptr)
5872 {
5873 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5874 int i;
5875
5876 eassert (!VECTOR_MARKED_P (ptr));
5877 VECTOR_MARK (ptr);
5878 for (i = 0; i < size; i++)
5879 {
5880 Lisp_Object val = ptr->contents[i];
5881
5882 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5883 continue;
5884 if (SUB_CHAR_TABLE_P (val))
5885 {
5886 if (! VECTOR_MARKED_P (XVECTOR (val)))
5887 mark_char_table (XVECTOR (val));
5888 }
5889 else
5890 mark_object (val);
5891 }
5892 }
5893
5894 NO_INLINE /* To reduce stack depth in mark_object. */
5895 static Lisp_Object
5896 mark_compiled (struct Lisp_Vector *ptr)
5897 {
5898 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5899
5900 VECTOR_MARK (ptr);
5901 for (i = 0; i < size; i++)
5902 if (i != COMPILED_CONSTANTS)
5903 mark_object (ptr->contents[i]);
5904 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5905 }
5906
5907 /* Mark the chain of overlays starting at PTR. */
5908
5909 static void
5910 mark_overlay (struct Lisp_Overlay *ptr)
5911 {
5912 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5913 {
5914 ptr->gcmarkbit = 1;
5915 mark_object (ptr->start);
5916 mark_object (ptr->end);
5917 mark_object (ptr->plist);
5918 }
5919 }
5920
5921 /* Mark Lisp_Objects and special pointers in BUFFER. */
5922
5923 static void
5924 mark_buffer (struct buffer *buffer)
5925 {
5926 /* This is handled much like other pseudovectors... */
5927 mark_vectorlike ((struct Lisp_Vector *) buffer);
5928
5929 /* ...but there are some buffer-specific things. */
5930
5931 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5932
5933 /* For now, we just don't mark the undo_list. It's done later in
5934 a special way just before the sweep phase, and after stripping
5935 some of its elements that are not needed any more. */
5936
5937 mark_overlay (buffer->overlays_before);
5938 mark_overlay (buffer->overlays_after);
5939
5940 /* If this is an indirect buffer, mark its base buffer. */
5941 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5942 mark_buffer (buffer->base_buffer);
5943 }
5944
5945 /* Mark Lisp faces in the face cache C. */
5946
5947 NO_INLINE /* To reduce stack depth in mark_object. */
5948 static void
5949 mark_face_cache (struct face_cache *c)
5950 {
5951 if (c)
5952 {
5953 int i, j;
5954 for (i = 0; i < c->used; ++i)
5955 {
5956 struct face *face = FACE_FROM_ID (c->f, i);
5957
5958 if (face)
5959 {
5960 if (face->font && !VECTOR_MARKED_P (face->font))
5961 mark_vectorlike ((struct Lisp_Vector *) face->font);
5962
5963 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5964 mark_object (face->lface[j]);
5965 }
5966 }
5967 }
5968 }
5969
5970 NO_INLINE /* To reduce stack depth in mark_object. */
5971 static void
5972 mark_localized_symbol (struct Lisp_Symbol *ptr)
5973 {
5974 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5975 Lisp_Object where = blv->where;
5976 /* If the value is set up for a killed buffer or deleted
5977 frame, restore its global binding. If the value is
5978 forwarded to a C variable, either it's not a Lisp_Object
5979 var, or it's staticpro'd already. */
5980 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5981 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5982 swap_in_global_binding (ptr);
5983 mark_object (blv->where);
5984 mark_object (blv->valcell);
5985 mark_object (blv->defcell);
5986 }
5987
5988 NO_INLINE /* To reduce stack depth in mark_object. */
5989 static void
5990 mark_save_value (struct Lisp_Save_Value *ptr)
5991 {
5992 /* If `save_type' is zero, `data[0].pointer' is the address
5993 of a memory area containing `data[1].integer' potential
5994 Lisp_Objects. */
5995 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
5996 {
5997 Lisp_Object *p = ptr->data[0].pointer;
5998 ptrdiff_t nelt;
5999 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6000 mark_maybe_object (*p);
6001 }
6002 else
6003 {
6004 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6005 int i;
6006 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6007 if (save_type (ptr, i) == SAVE_OBJECT)
6008 mark_object (ptr->data[i].object);
6009 }
6010 }
6011
6012 /* Remove killed buffers or items whose car is a killed buffer from
6013 LIST, and mark other items. Return changed LIST, which is marked. */
6014
6015 static Lisp_Object
6016 mark_discard_killed_buffers (Lisp_Object list)
6017 {
6018 Lisp_Object tail, *prev = &list;
6019
6020 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6021 tail = XCDR (tail))
6022 {
6023 Lisp_Object tem = XCAR (tail);
6024 if (CONSP (tem))
6025 tem = XCAR (tem);
6026 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6027 *prev = XCDR (tail);
6028 else
6029 {
6030 CONS_MARK (XCONS (tail));
6031 mark_object (XCAR (tail));
6032 prev = xcdr_addr (tail);
6033 }
6034 }
6035 mark_object (tail);
6036 return list;
6037 }
6038
6039 /* Determine type of generic Lisp_Object and mark it accordingly.
6040
6041 This function implements a straightforward depth-first marking
6042 algorithm and so the recursion depth may be very high (a few
6043 tens of thousands is not uncommon). To minimize stack usage,
6044 a few cold paths are moved out to NO_INLINE functions above.
6045 In general, inlining them doesn't help you to gain more speed. */
6046
6047 void
6048 mark_object (Lisp_Object arg)
6049 {
6050 register Lisp_Object obj = arg;
6051 #ifdef GC_CHECK_MARKED_OBJECTS
6052 void *po;
6053 struct mem_node *m;
6054 #endif
6055 ptrdiff_t cdr_count = 0;
6056
6057 loop:
6058
6059 if (PURE_POINTER_P (XPNTR (obj)))
6060 return;
6061
6062 last_marked[last_marked_index++] = obj;
6063 if (last_marked_index == LAST_MARKED_SIZE)
6064 last_marked_index = 0;
6065
6066 /* Perform some sanity checks on the objects marked here. Abort if
6067 we encounter an object we know is bogus. This increases GC time
6068 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6069 #ifdef GC_CHECK_MARKED_OBJECTS
6070
6071 po = (void *) XPNTR (obj);
6072
6073 /* Check that the object pointed to by PO is known to be a Lisp
6074 structure allocated from the heap. */
6075 #define CHECK_ALLOCATED() \
6076 do { \
6077 m = mem_find (po); \
6078 if (m == MEM_NIL) \
6079 emacs_abort (); \
6080 } while (0)
6081
6082 /* Check that the object pointed to by PO is live, using predicate
6083 function LIVEP. */
6084 #define CHECK_LIVE(LIVEP) \
6085 do { \
6086 if (!LIVEP (m, po)) \
6087 emacs_abort (); \
6088 } while (0)
6089
6090 /* Check both of the above conditions. */
6091 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6092 do { \
6093 CHECK_ALLOCATED (); \
6094 CHECK_LIVE (LIVEP); \
6095 } while (0) \
6096
6097 #else /* not GC_CHECK_MARKED_OBJECTS */
6098
6099 #define CHECK_LIVE(LIVEP) (void) 0
6100 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6101
6102 #endif /* not GC_CHECK_MARKED_OBJECTS */
6103
6104 switch (XTYPE (obj))
6105 {
6106 case Lisp_String:
6107 {
6108 register struct Lisp_String *ptr = XSTRING (obj);
6109 if (STRING_MARKED_P (ptr))
6110 break;
6111 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6112 MARK_STRING (ptr);
6113 MARK_INTERVAL_TREE (ptr->intervals);
6114 #ifdef GC_CHECK_STRING_BYTES
6115 /* Check that the string size recorded in the string is the
6116 same as the one recorded in the sdata structure. */
6117 string_bytes (ptr);
6118 #endif /* GC_CHECK_STRING_BYTES */
6119 }
6120 break;
6121
6122 case Lisp_Vectorlike:
6123 {
6124 register struct Lisp_Vector *ptr = XVECTOR (obj);
6125 register ptrdiff_t pvectype;
6126
6127 if (VECTOR_MARKED_P (ptr))
6128 break;
6129
6130 #ifdef GC_CHECK_MARKED_OBJECTS
6131 m = mem_find (po);
6132 if (m == MEM_NIL && !SUBRP (obj))
6133 emacs_abort ();
6134 #endif /* GC_CHECK_MARKED_OBJECTS */
6135
6136 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6137 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6138 >> PSEUDOVECTOR_AREA_BITS);
6139 else
6140 pvectype = PVEC_NORMAL_VECTOR;
6141
6142 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6143 CHECK_LIVE (live_vector_p);
6144
6145 switch (pvectype)
6146 {
6147 case PVEC_BUFFER:
6148 #ifdef GC_CHECK_MARKED_OBJECTS
6149 {
6150 struct buffer *b;
6151 FOR_EACH_BUFFER (b)
6152 if (b == po)
6153 break;
6154 if (b == NULL)
6155 emacs_abort ();
6156 }
6157 #endif /* GC_CHECK_MARKED_OBJECTS */
6158 mark_buffer ((struct buffer *) ptr);
6159 break;
6160
6161 case PVEC_COMPILED:
6162 /* Although we could treat this just like a vector, mark_compiled
6163 returns the COMPILED_CONSTANTS element, which is marked at the
6164 next iteration of goto-loop here. This is done to avoid a few
6165 recursive calls to mark_object. */
6166 obj = mark_compiled (ptr);
6167 if (!NILP (obj))
6168 goto loop;
6169 break;
6170
6171 case PVEC_FRAME:
6172 {
6173 struct frame *f = (struct frame *) ptr;
6174
6175 mark_vectorlike (ptr);
6176 mark_face_cache (f->face_cache);
6177 #ifdef HAVE_WINDOW_SYSTEM
6178 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6179 {
6180 struct font *font = FRAME_FONT (f);
6181
6182 if (font && !VECTOR_MARKED_P (font))
6183 mark_vectorlike ((struct Lisp_Vector *) font);
6184 }
6185 #endif
6186 }
6187 break;
6188
6189 case PVEC_WINDOW:
6190 {
6191 struct window *w = (struct window *) ptr;
6192
6193 mark_vectorlike (ptr);
6194
6195 /* Mark glyph matrices, if any. Marking window
6196 matrices is sufficient because frame matrices
6197 use the same glyph memory. */
6198 if (w->current_matrix)
6199 {
6200 mark_glyph_matrix (w->current_matrix);
6201 mark_glyph_matrix (w->desired_matrix);
6202 }
6203
6204 /* Filter out killed buffers from both buffer lists
6205 in attempt to help GC to reclaim killed buffers faster.
6206 We can do it elsewhere for live windows, but this is the
6207 best place to do it for dead windows. */
6208 wset_prev_buffers
6209 (w, mark_discard_killed_buffers (w->prev_buffers));
6210 wset_next_buffers
6211 (w, mark_discard_killed_buffers (w->next_buffers));
6212 }
6213 break;
6214
6215 case PVEC_HASH_TABLE:
6216 {
6217 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6218
6219 mark_vectorlike (ptr);
6220 mark_object (h->test.name);
6221 mark_object (h->test.user_hash_function);
6222 mark_object (h->test.user_cmp_function);
6223 /* If hash table is not weak, mark all keys and values.
6224 For weak tables, mark only the vector. */
6225 if (NILP (h->weak))
6226 mark_object (h->key_and_value);
6227 else
6228 VECTOR_MARK (XVECTOR (h->key_and_value));
6229 }
6230 break;
6231
6232 case PVEC_CHAR_TABLE:
6233 mark_char_table (ptr);
6234 break;
6235
6236 case PVEC_BOOL_VECTOR:
6237 /* No Lisp_Objects to mark in a bool vector. */
6238 VECTOR_MARK (ptr);
6239 break;
6240
6241 case PVEC_SUBR:
6242 break;
6243
6244 case PVEC_FREE:
6245 emacs_abort ();
6246
6247 default:
6248 mark_vectorlike (ptr);
6249 }
6250 }
6251 break;
6252
6253 case Lisp_Symbol:
6254 {
6255 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6256 nextsym:
6257 if (ptr->gcmarkbit)
6258 break;
6259 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6260 ptr->gcmarkbit = 1;
6261 /* Attempt to catch bogus objects. */
6262 eassert (valid_lisp_object_p (ptr->function) >= 1);
6263 mark_object (ptr->function);
6264 mark_object (ptr->plist);
6265 switch (ptr->redirect)
6266 {
6267 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6268 case SYMBOL_VARALIAS:
6269 {
6270 Lisp_Object tem;
6271 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6272 mark_object (tem);
6273 break;
6274 }
6275 case SYMBOL_LOCALIZED:
6276 mark_localized_symbol (ptr);
6277 break;
6278 case SYMBOL_FORWARDED:
6279 /* If the value is forwarded to a buffer or keyboard field,
6280 these are marked when we see the corresponding object.
6281 And if it's forwarded to a C variable, either it's not
6282 a Lisp_Object var, or it's staticpro'd already. */
6283 break;
6284 default: emacs_abort ();
6285 }
6286 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6287 MARK_STRING (XSTRING (ptr->name));
6288 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6289 /* Inner loop to mark next symbol in this bucket, if any. */
6290 ptr = ptr->next;
6291 if (ptr)
6292 goto nextsym;
6293 }
6294 break;
6295
6296 case Lisp_Misc:
6297 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6298
6299 if (XMISCANY (obj)->gcmarkbit)
6300 break;
6301
6302 switch (XMISCTYPE (obj))
6303 {
6304 case Lisp_Misc_Marker:
6305 /* DO NOT mark thru the marker's chain.
6306 The buffer's markers chain does not preserve markers from gc;
6307 instead, markers are removed from the chain when freed by gc. */
6308 XMISCANY (obj)->gcmarkbit = 1;
6309 break;
6310
6311 case Lisp_Misc_Save_Value:
6312 XMISCANY (obj)->gcmarkbit = 1;
6313 mark_save_value (XSAVE_VALUE (obj));
6314 break;
6315
6316 case Lisp_Misc_Overlay:
6317 mark_overlay (XOVERLAY (obj));
6318 break;
6319
6320 default:
6321 emacs_abort ();
6322 }
6323 break;
6324
6325 case Lisp_Cons:
6326 {
6327 register struct Lisp_Cons *ptr = XCONS (obj);
6328 if (CONS_MARKED_P (ptr))
6329 break;
6330 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6331 CONS_MARK (ptr);
6332 /* If the cdr is nil, avoid recursion for the car. */
6333 if (EQ (ptr->u.cdr, Qnil))
6334 {
6335 obj = ptr->car;
6336 cdr_count = 0;
6337 goto loop;
6338 }
6339 mark_object (ptr->car);
6340 obj = ptr->u.cdr;
6341 cdr_count++;
6342 if (cdr_count == mark_object_loop_halt)
6343 emacs_abort ();
6344 goto loop;
6345 }
6346
6347 case Lisp_Float:
6348 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6349 FLOAT_MARK (XFLOAT (obj));
6350 break;
6351
6352 case_Lisp_Int:
6353 break;
6354
6355 default:
6356 emacs_abort ();
6357 }
6358
6359 #undef CHECK_LIVE
6360 #undef CHECK_ALLOCATED
6361 #undef CHECK_ALLOCATED_AND_LIVE
6362 }
6363 /* Mark the Lisp pointers in the terminal objects.
6364 Called by Fgarbage_collect. */
6365
6366 static void
6367 mark_terminals (void)
6368 {
6369 struct terminal *t;
6370 for (t = terminal_list; t; t = t->next_terminal)
6371 {
6372 eassert (t->name != NULL);
6373 #ifdef HAVE_WINDOW_SYSTEM
6374 /* If a terminal object is reachable from a stacpro'ed object,
6375 it might have been marked already. Make sure the image cache
6376 gets marked. */
6377 mark_image_cache (t->image_cache);
6378 #endif /* HAVE_WINDOW_SYSTEM */
6379 if (!VECTOR_MARKED_P (t))
6380 mark_vectorlike ((struct Lisp_Vector *)t);
6381 }
6382 }
6383
6384
6385
6386 /* Value is non-zero if OBJ will survive the current GC because it's
6387 either marked or does not need to be marked to survive. */
6388
6389 bool
6390 survives_gc_p (Lisp_Object obj)
6391 {
6392 bool survives_p;
6393
6394 switch (XTYPE (obj))
6395 {
6396 case_Lisp_Int:
6397 survives_p = 1;
6398 break;
6399
6400 case Lisp_Symbol:
6401 survives_p = XSYMBOL (obj)->gcmarkbit;
6402 break;
6403
6404 case Lisp_Misc:
6405 survives_p = XMISCANY (obj)->gcmarkbit;
6406 break;
6407
6408 case Lisp_String:
6409 survives_p = STRING_MARKED_P (XSTRING (obj));
6410 break;
6411
6412 case Lisp_Vectorlike:
6413 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6414 break;
6415
6416 case Lisp_Cons:
6417 survives_p = CONS_MARKED_P (XCONS (obj));
6418 break;
6419
6420 case Lisp_Float:
6421 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6422 break;
6423
6424 default:
6425 emacs_abort ();
6426 }
6427
6428 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6429 }
6430
6431
6432 \f
6433
6434 NO_INLINE /* For better stack traces */
6435 static void
6436 sweep_conses (void)
6437 {
6438 struct cons_block *cblk;
6439 struct cons_block **cprev = &cons_block;
6440 int lim = cons_block_index;
6441 EMACS_INT num_free = 0, num_used = 0;
6442
6443 cons_free_list = 0;
6444
6445 for (cblk = cons_block; cblk; cblk = *cprev)
6446 {
6447 int i = 0;
6448 int this_free = 0;
6449 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6450
6451 /* Scan the mark bits an int at a time. */
6452 for (i = 0; i < ilim; i++)
6453 {
6454 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6455 {
6456 /* Fast path - all cons cells for this int are marked. */
6457 cblk->gcmarkbits[i] = 0;
6458 num_used += BITS_PER_BITS_WORD;
6459 }
6460 else
6461 {
6462 /* Some cons cells for this int are not marked.
6463 Find which ones, and free them. */
6464 int start, pos, stop;
6465
6466 start = i * BITS_PER_BITS_WORD;
6467 stop = lim - start;
6468 if (stop > BITS_PER_BITS_WORD)
6469 stop = BITS_PER_BITS_WORD;
6470 stop += start;
6471
6472 for (pos = start; pos < stop; pos++)
6473 {
6474 if (!CONS_MARKED_P (&cblk->conses[pos]))
6475 {
6476 this_free++;
6477 cblk->conses[pos].u.chain = cons_free_list;
6478 cons_free_list = &cblk->conses[pos];
6479 #if GC_MARK_STACK
6480 cons_free_list->car = Vdead;
6481 #endif
6482 }
6483 else
6484 {
6485 num_used++;
6486 CONS_UNMARK (&cblk->conses[pos]);
6487 }
6488 }
6489 }
6490 }
6491
6492 lim = CONS_BLOCK_SIZE;
6493 /* If this block contains only free conses and we have already
6494 seen more than two blocks worth of free conses then deallocate
6495 this block. */
6496 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6497 {
6498 *cprev = cblk->next;
6499 /* Unhook from the free list. */
6500 cons_free_list = cblk->conses[0].u.chain;
6501 lisp_align_free (cblk);
6502 }
6503 else
6504 {
6505 num_free += this_free;
6506 cprev = &cblk->next;
6507 }
6508 }
6509 total_conses = num_used;
6510 total_free_conses = num_free;
6511 }
6512
6513 NO_INLINE /* For better stack traces */
6514 static void
6515 sweep_floats (void)
6516 {
6517 register struct float_block *fblk;
6518 struct float_block **fprev = &float_block;
6519 register int lim = float_block_index;
6520 EMACS_INT num_free = 0, num_used = 0;
6521
6522 float_free_list = 0;
6523
6524 for (fblk = float_block; fblk; fblk = *fprev)
6525 {
6526 register int i;
6527 int this_free = 0;
6528 for (i = 0; i < lim; i++)
6529 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6530 {
6531 this_free++;
6532 fblk->floats[i].u.chain = float_free_list;
6533 float_free_list = &fblk->floats[i];
6534 }
6535 else
6536 {
6537 num_used++;
6538 FLOAT_UNMARK (&fblk->floats[i]);
6539 }
6540 lim = FLOAT_BLOCK_SIZE;
6541 /* If this block contains only free floats and we have already
6542 seen more than two blocks worth of free floats then deallocate
6543 this block. */
6544 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6545 {
6546 *fprev = fblk->next;
6547 /* Unhook from the free list. */
6548 float_free_list = fblk->floats[0].u.chain;
6549 lisp_align_free (fblk);
6550 }
6551 else
6552 {
6553 num_free += this_free;
6554 fprev = &fblk->next;
6555 }
6556 }
6557 total_floats = num_used;
6558 total_free_floats = num_free;
6559 }
6560
6561 NO_INLINE /* For better stack traces */
6562 static void
6563 sweep_intervals (void)
6564 {
6565 register struct interval_block *iblk;
6566 struct interval_block **iprev = &interval_block;
6567 register int lim = interval_block_index;
6568 EMACS_INT num_free = 0, num_used = 0;
6569
6570 interval_free_list = 0;
6571
6572 for (iblk = interval_block; iblk; iblk = *iprev)
6573 {
6574 register int i;
6575 int this_free = 0;
6576
6577 for (i = 0; i < lim; i++)
6578 {
6579 if (!iblk->intervals[i].gcmarkbit)
6580 {
6581 set_interval_parent (&iblk->intervals[i], interval_free_list);
6582 interval_free_list = &iblk->intervals[i];
6583 this_free++;
6584 }
6585 else
6586 {
6587 num_used++;
6588 iblk->intervals[i].gcmarkbit = 0;
6589 }
6590 }
6591 lim = INTERVAL_BLOCK_SIZE;
6592 /* If this block contains only free intervals and we have already
6593 seen more than two blocks worth of free intervals then
6594 deallocate this block. */
6595 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6596 {
6597 *iprev = iblk->next;
6598 /* Unhook from the free list. */
6599 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6600 lisp_free (iblk);
6601 }
6602 else
6603 {
6604 num_free += this_free;
6605 iprev = &iblk->next;
6606 }
6607 }
6608 total_intervals = num_used;
6609 total_free_intervals = num_free;
6610 }
6611
6612 NO_INLINE /* For better stack traces */
6613 static void
6614 sweep_symbols (void)
6615 {
6616 register struct symbol_block *sblk;
6617 struct symbol_block **sprev = &symbol_block;
6618 register int lim = symbol_block_index;
6619 EMACS_INT num_free = 0, num_used = 0;
6620
6621 symbol_free_list = NULL;
6622
6623 for (sblk = symbol_block; sblk; sblk = *sprev)
6624 {
6625 int this_free = 0;
6626 union aligned_Lisp_Symbol *sym = sblk->symbols;
6627 union aligned_Lisp_Symbol *end = sym + lim;
6628
6629 for (; sym < end; ++sym)
6630 {
6631 if (!sym->s.gcmarkbit)
6632 {
6633 if (sym->s.redirect == SYMBOL_LOCALIZED)
6634 xfree (SYMBOL_BLV (&sym->s));
6635 sym->s.next = symbol_free_list;
6636 symbol_free_list = &sym->s;
6637 #if GC_MARK_STACK
6638 symbol_free_list->function = Vdead;
6639 #endif
6640 ++this_free;
6641 }
6642 else
6643 {
6644 ++num_used;
6645 sym->s.gcmarkbit = 0;
6646 /* Attempt to catch bogus objects. */
6647 eassert (valid_lisp_object_p (sym->s.function) >= 1);
6648 }
6649 }
6650
6651 lim = SYMBOL_BLOCK_SIZE;
6652 /* If this block contains only free symbols and we have already
6653 seen more than two blocks worth of free symbols then deallocate
6654 this block. */
6655 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6656 {
6657 *sprev = sblk->next;
6658 /* Unhook from the free list. */
6659 symbol_free_list = sblk->symbols[0].s.next;
6660 lisp_free (sblk);
6661 }
6662 else
6663 {
6664 num_free += this_free;
6665 sprev = &sblk->next;
6666 }
6667 }
6668 total_symbols = num_used;
6669 total_free_symbols = num_free;
6670 }
6671
6672 NO_INLINE /* For better stack traces */
6673 static void
6674 sweep_misc (void)
6675 {
6676 register struct marker_block *mblk;
6677 struct marker_block **mprev = &marker_block;
6678 register int lim = marker_block_index;
6679 EMACS_INT num_free = 0, num_used = 0;
6680
6681 /* Put all unmarked misc's on free list. For a marker, first
6682 unchain it from the buffer it points into. */
6683
6684 marker_free_list = 0;
6685
6686 for (mblk = marker_block; mblk; mblk = *mprev)
6687 {
6688 register int i;
6689 int this_free = 0;
6690
6691 for (i = 0; i < lim; i++)
6692 {
6693 if (!mblk->markers[i].m.u_any.gcmarkbit)
6694 {
6695 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6696 unchain_marker (&mblk->markers[i].m.u_marker);
6697 /* Set the type of the freed object to Lisp_Misc_Free.
6698 We could leave the type alone, since nobody checks it,
6699 but this might catch bugs faster. */
6700 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6701 mblk->markers[i].m.u_free.chain = marker_free_list;
6702 marker_free_list = &mblk->markers[i].m;
6703 this_free++;
6704 }
6705 else
6706 {
6707 num_used++;
6708 mblk->markers[i].m.u_any.gcmarkbit = 0;
6709 }
6710 }
6711 lim = MARKER_BLOCK_SIZE;
6712 /* If this block contains only free markers and we have already
6713 seen more than two blocks worth of free markers then deallocate
6714 this block. */
6715 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6716 {
6717 *mprev = mblk->next;
6718 /* Unhook from the free list. */
6719 marker_free_list = mblk->markers[0].m.u_free.chain;
6720 lisp_free (mblk);
6721 }
6722 else
6723 {
6724 num_free += this_free;
6725 mprev = &mblk->next;
6726 }
6727 }
6728
6729 total_markers = num_used;
6730 total_free_markers = num_free;
6731 }
6732
6733 NO_INLINE /* For better stack traces */
6734 static void
6735 sweep_buffers (void)
6736 {
6737 register struct buffer *buffer, **bprev = &all_buffers;
6738
6739 total_buffers = 0;
6740 for (buffer = all_buffers; buffer; buffer = *bprev)
6741 if (!VECTOR_MARKED_P (buffer))
6742 {
6743 *bprev = buffer->next;
6744 lisp_free (buffer);
6745 }
6746 else
6747 {
6748 VECTOR_UNMARK (buffer);
6749 /* Do not use buffer_(set|get)_intervals here. */
6750 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6751 total_buffers++;
6752 bprev = &buffer->next;
6753 }
6754 }
6755
6756 /* Sweep: find all structures not marked, and free them. */
6757 static void
6758 gc_sweep (void)
6759 {
6760 /* Remove or mark entries in weak hash tables.
6761 This must be done before any object is unmarked. */
6762 sweep_weak_hash_tables ();
6763
6764 sweep_strings ();
6765 check_string_bytes (!noninteractive);
6766 sweep_conses ();
6767 sweep_floats ();
6768 sweep_intervals ();
6769 sweep_symbols ();
6770 sweep_misc ();
6771 sweep_buffers ();
6772 sweep_vectors ();
6773 check_string_bytes (!noninteractive);
6774 }
6775
6776 \f
6777 /* Debugging aids. */
6778
6779 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6780 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6781 This may be helpful in debugging Emacs's memory usage.
6782 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6783 (void)
6784 {
6785 Lisp_Object end;
6786
6787 #ifdef HAVE_NS
6788 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6789 XSETINT (end, 0);
6790 #else
6791 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6792 #endif
6793
6794 return end;
6795 }
6796
6797 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6798 doc: /* Return a list of counters that measure how much consing there has been.
6799 Each of these counters increments for a certain kind of object.
6800 The counters wrap around from the largest positive integer to zero.
6801 Garbage collection does not decrease them.
6802 The elements of the value are as follows:
6803 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6804 All are in units of 1 = one object consed
6805 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6806 objects consed.
6807 MISCS include overlays, markers, and some internal types.
6808 Frames, windows, buffers, and subprocesses count as vectors
6809 (but the contents of a buffer's text do not count here). */)
6810 (void)
6811 {
6812 return listn (CONSTYPE_HEAP, 8,
6813 bounded_number (cons_cells_consed),
6814 bounded_number (floats_consed),
6815 bounded_number (vector_cells_consed),
6816 bounded_number (symbols_consed),
6817 bounded_number (string_chars_consed),
6818 bounded_number (misc_objects_consed),
6819 bounded_number (intervals_consed),
6820 bounded_number (strings_consed));
6821 }
6822
6823 /* Find at most FIND_MAX symbols which have OBJ as their value or
6824 function. This is used in gdbinit's `xwhichsymbols' command. */
6825
6826 Lisp_Object
6827 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6828 {
6829 struct symbol_block *sblk;
6830 ptrdiff_t gc_count = inhibit_garbage_collection ();
6831 Lisp_Object found = Qnil;
6832
6833 if (! DEADP (obj))
6834 {
6835 for (sblk = symbol_block; sblk; sblk = sblk->next)
6836 {
6837 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6838 int bn;
6839
6840 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6841 {
6842 struct Lisp_Symbol *sym = &aligned_sym->s;
6843 Lisp_Object val;
6844 Lisp_Object tem;
6845
6846 if (sblk == symbol_block && bn >= symbol_block_index)
6847 break;
6848
6849 XSETSYMBOL (tem, sym);
6850 val = find_symbol_value (tem);
6851 if (EQ (val, obj)
6852 || EQ (sym->function, obj)
6853 || (!NILP (sym->function)
6854 && COMPILEDP (sym->function)
6855 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6856 || (!NILP (val)
6857 && COMPILEDP (val)
6858 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6859 {
6860 found = Fcons (tem, found);
6861 if (--find_max == 0)
6862 goto out;
6863 }
6864 }
6865 }
6866 }
6867
6868 out:
6869 unbind_to (gc_count, Qnil);
6870 return found;
6871 }
6872
6873 #ifdef SUSPICIOUS_OBJECT_CHECKING
6874
6875 static void *
6876 find_suspicious_object_in_range (void *begin, void *end)
6877 {
6878 char *begin_a = begin;
6879 char *end_a = end;
6880 int i;
6881
6882 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6883 {
6884 char *suspicious_object = suspicious_objects[i];
6885 if (begin_a <= suspicious_object && suspicious_object < end_a)
6886 return suspicious_object;
6887 }
6888
6889 return NULL;
6890 }
6891
6892 static void
6893 note_suspicious_free (void* ptr)
6894 {
6895 struct suspicious_free_record* rec;
6896
6897 rec = &suspicious_free_history[suspicious_free_history_index++];
6898 if (suspicious_free_history_index ==
6899 ARRAYELTS (suspicious_free_history))
6900 {
6901 suspicious_free_history_index = 0;
6902 }
6903
6904 memset (rec, 0, sizeof (*rec));
6905 rec->suspicious_object = ptr;
6906 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
6907 }
6908
6909 static void
6910 detect_suspicious_free (void* ptr)
6911 {
6912 int i;
6913
6914 eassert (ptr != NULL);
6915
6916 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6917 if (suspicious_objects[i] == ptr)
6918 {
6919 note_suspicious_free (ptr);
6920 suspicious_objects[i] = NULL;
6921 }
6922 }
6923
6924 #endif /* SUSPICIOUS_OBJECT_CHECKING */
6925
6926 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
6927 doc: /* Return OBJ, maybe marking it for extra scrutiny.
6928 If Emacs is compiled with suspicous object checking, capture
6929 a stack trace when OBJ is freed in order to help track down
6930 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
6931 (Lisp_Object obj)
6932 {
6933 #ifdef SUSPICIOUS_OBJECT_CHECKING
6934 /* Right now, we care only about vectors. */
6935 if (VECTORLIKEP (obj))
6936 {
6937 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
6938 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
6939 suspicious_object_index = 0;
6940 }
6941 #endif
6942 return obj;
6943 }
6944
6945 #ifdef ENABLE_CHECKING
6946
6947 bool suppress_checking;
6948
6949 void
6950 die (const char *msg, const char *file, int line)
6951 {
6952 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6953 file, line, msg);
6954 terminate_due_to_signal (SIGABRT, INT_MAX);
6955 }
6956 #endif
6957 \f
6958 /* Initialization. */
6959
6960 void
6961 init_alloc_once (void)
6962 {
6963 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6964 purebeg = PUREBEG;
6965 pure_size = PURESIZE;
6966
6967 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6968 mem_init ();
6969 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6970 #endif
6971
6972 #ifdef DOUG_LEA_MALLOC
6973 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6974 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6975 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6976 #endif
6977 init_strings ();
6978 init_vectors ();
6979
6980 refill_memory_reserve ();
6981 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6982 }
6983
6984 void
6985 init_alloc (void)
6986 {
6987 gcprolist = 0;
6988 byte_stack_list = 0;
6989 #if GC_MARK_STACK
6990 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6991 setjmp_tested_p = longjmps_done = 0;
6992 #endif
6993 #endif
6994 Vgc_elapsed = make_float (0.0);
6995 gcs_done = 0;
6996
6997 #if USE_VALGRIND
6998 valgrind_p = RUNNING_ON_VALGRIND != 0;
6999 #endif
7000 }
7001
7002 void
7003 syms_of_alloc (void)
7004 {
7005 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7006 doc: /* Number of bytes of consing between garbage collections.
7007 Garbage collection can happen automatically once this many bytes have been
7008 allocated since the last garbage collection. All data types count.
7009
7010 Garbage collection happens automatically only when `eval' is called.
7011
7012 By binding this temporarily to a large number, you can effectively
7013 prevent garbage collection during a part of the program.
7014 See also `gc-cons-percentage'. */);
7015
7016 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7017 doc: /* Portion of the heap used for allocation.
7018 Garbage collection can happen automatically once this portion of the heap
7019 has been allocated since the last garbage collection.
7020 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7021 Vgc_cons_percentage = make_float (0.1);
7022
7023 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7024 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7025
7026 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7027 doc: /* Number of cons cells that have been consed so far. */);
7028
7029 DEFVAR_INT ("floats-consed", floats_consed,
7030 doc: /* Number of floats that have been consed so far. */);
7031
7032 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7033 doc: /* Number of vector cells that have been consed so far. */);
7034
7035 DEFVAR_INT ("symbols-consed", symbols_consed,
7036 doc: /* Number of symbols that have been consed so far. */);
7037
7038 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7039 doc: /* Number of string characters that have been consed so far. */);
7040
7041 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7042 doc: /* Number of miscellaneous objects that have been consed so far.
7043 These include markers and overlays, plus certain objects not visible
7044 to users. */);
7045
7046 DEFVAR_INT ("intervals-consed", intervals_consed,
7047 doc: /* Number of intervals that have been consed so far. */);
7048
7049 DEFVAR_INT ("strings-consed", strings_consed,
7050 doc: /* Number of strings that have been consed so far. */);
7051
7052 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7053 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7054 This means that certain objects should be allocated in shared (pure) space.
7055 It can also be set to a hash-table, in which case this table is used to
7056 do hash-consing of the objects allocated to pure space. */);
7057
7058 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7059 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7060 garbage_collection_messages = 0;
7061
7062 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7063 doc: /* Hook run after garbage collection has finished. */);
7064 Vpost_gc_hook = Qnil;
7065 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7066
7067 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7068 doc: /* Precomputed `signal' argument for memory-full error. */);
7069 /* We build this in advance because if we wait until we need it, we might
7070 not be able to allocate the memory to hold it. */
7071 Vmemory_signal_data
7072 = listn (CONSTYPE_PURE, 2, Qerror,
7073 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7074
7075 DEFVAR_LISP ("memory-full", Vmemory_full,
7076 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7077 Vmemory_full = Qnil;
7078
7079 DEFSYM (Qconses, "conses");
7080 DEFSYM (Qsymbols, "symbols");
7081 DEFSYM (Qmiscs, "miscs");
7082 DEFSYM (Qstrings, "strings");
7083 DEFSYM (Qvectors, "vectors");
7084 DEFSYM (Qfloats, "floats");
7085 DEFSYM (Qintervals, "intervals");
7086 DEFSYM (Qbuffers, "buffers");
7087 DEFSYM (Qstring_bytes, "string-bytes");
7088 DEFSYM (Qvector_slots, "vector-slots");
7089 DEFSYM (Qheap, "heap");
7090 DEFSYM (Qautomatic_gc, "Automatic GC");
7091
7092 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7093 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7094
7095 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7096 doc: /* Accumulated time elapsed in garbage collections.
7097 The time is in seconds as a floating point value. */);
7098 DEFVAR_INT ("gcs-done", gcs_done,
7099 doc: /* Accumulated number of garbage collections done. */);
7100
7101 defsubr (&Scons);
7102 defsubr (&Slist);
7103 defsubr (&Svector);
7104 defsubr (&Sbool_vector);
7105 defsubr (&Smake_byte_code);
7106 defsubr (&Smake_list);
7107 defsubr (&Smake_vector);
7108 defsubr (&Smake_string);
7109 defsubr (&Smake_bool_vector);
7110 defsubr (&Smake_symbol);
7111 defsubr (&Smake_marker);
7112 defsubr (&Spurecopy);
7113 defsubr (&Sgarbage_collect);
7114 defsubr (&Smemory_limit);
7115 defsubr (&Smemory_use_counts);
7116 defsubr (&Ssuspicious_object);
7117
7118 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7119 defsubr (&Sgc_status);
7120 #endif
7121 }
7122
7123 /* When compiled with GCC, GDB might say "No enum type named
7124 pvec_type" if we don't have at least one symbol with that type, and
7125 then xbacktrace could fail. Similarly for the other enums and
7126 their values. Some non-GCC compilers don't like these constructs. */
7127 #ifdef __GNUC__
7128 union
7129 {
7130 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7131 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
7132 enum char_bits char_bits;
7133 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7134 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7135 enum Lisp_Bits Lisp_Bits;
7136 enum Lisp_Compiled Lisp_Compiled;
7137 enum maxargs maxargs;
7138 enum MAX_ALLOCA MAX_ALLOCA;
7139 enum More_Lisp_Bits More_Lisp_Bits;
7140 enum pvec_type pvec_type;
7141 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7142 #endif /* __GNUC__ */