search.c (search_buffer): Improve a comment.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "character.h"
28 #include "buffer.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 char posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104
105 static _Noreturn void
106 matcher_overflow (void)
107 {
108 error ("Stack overflow in regexp matcher");
109 }
110
111 /* Compile a regexp and signal a Lisp error if anything goes wrong.
112 PATTERN is the pattern to compile.
113 CP is the place to put the result.
114 TRANSLATE is a translation table for ignoring case, or nil for none.
115 POSIX is nonzero if we want full backtracking (POSIX style)
116 for this pattern. 0 means backtrack only enough to get a valid match.
117
118 The behavior also depends on Vsearch_spaces_regexp. */
119
120 static void
121 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
122 {
123 char *val;
124 reg_syntax_t old;
125
126 cp->regexp = Qnil;
127 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
128 cp->posix = posix;
129 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
130 cp->buf.charset_unibyte = charset_unibyte;
131 if (STRINGP (Vsearch_spaces_regexp))
132 cp->whitespace_regexp = Vsearch_spaces_regexp;
133 else
134 cp->whitespace_regexp = Qnil;
135
136 /* rms: I think BLOCK_INPUT is not needed here any more,
137 because regex.c defines malloc to call xmalloc.
138 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
139 So let's turn it off. */
140 /* BLOCK_INPUT; */
141 old = re_set_syntax (RE_SYNTAX_EMACS
142 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
143
144 if (STRINGP (Vsearch_spaces_regexp))
145 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
146 else
147 re_set_whitespace_regexp (NULL);
148
149 val = (char *) re_compile_pattern (SSDATA (pattern),
150 SBYTES (pattern), &cp->buf);
151
152 /* If the compiled pattern hard codes some of the contents of the
153 syntax-table, it can only be reused with *this* syntax table. */
154 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
155
156 re_set_whitespace_regexp (NULL);
157
158 re_set_syntax (old);
159 /* unblock_input (); */
160 if (val)
161 xsignal1 (Qinvalid_regexp, build_string (val));
162
163 cp->regexp = Fcopy_sequence (pattern);
164 }
165
166 /* Shrink each compiled regexp buffer in the cache
167 to the size actually used right now.
168 This is called from garbage collection. */
169
170 void
171 shrink_regexp_cache (void)
172 {
173 struct regexp_cache *cp;
174
175 for (cp = searchbuf_head; cp != 0; cp = cp->next)
176 {
177 cp->buf.allocated = cp->buf.used;
178 cp->buf.buffer = xrealloc (cp->buf.buffer, cp->buf.used);
179 }
180 }
181
182 /* Clear the regexp cache w.r.t. a particular syntax table,
183 because it was changed.
184 There is no danger of memory leak here because re_compile_pattern
185 automagically manages the memory in each re_pattern_buffer struct,
186 based on its `allocated' and `buffer' values. */
187 void
188 clear_regexp_cache (void)
189 {
190 int i;
191
192 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
193 /* It's tempting to compare with the syntax-table we've actually changed,
194 but it's not sufficient because char-table inheritance means that
195 modifying one syntax-table can change others at the same time. */
196 if (!EQ (searchbufs[i].syntax_table, Qt))
197 searchbufs[i].regexp = Qnil;
198 }
199
200 /* Compile a regexp if necessary, but first check to see if there's one in
201 the cache.
202 PATTERN is the pattern to compile.
203 TRANSLATE is a translation table for ignoring case, or nil for none.
204 REGP is the structure that says where to store the "register"
205 values that will result from matching this pattern.
206 If it is 0, we should compile the pattern not to record any
207 subexpression bounds.
208 POSIX is nonzero if we want full backtracking (POSIX style)
209 for this pattern. 0 means backtrack only enough to get a valid match. */
210
211 struct re_pattern_buffer *
212 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
213 {
214 struct regexp_cache *cp, **cpp;
215
216 for (cpp = &searchbuf_head; ; cpp = &cp->next)
217 {
218 cp = *cpp;
219 /* Entries are initialized to nil, and may be set to nil by
220 compile_pattern_1 if the pattern isn't valid. Don't apply
221 string accessors in those cases. However, compile_pattern_1
222 is only applied to the cache entry we pick here to reuse. So
223 nil should never appear before a non-nil entry. */
224 if (NILP (cp->regexp))
225 goto compile_it;
226 if (SCHARS (cp->regexp) == SCHARS (pattern)
227 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
228 && !NILP (Fstring_equal (cp->regexp, pattern))
229 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
230 && cp->posix == posix
231 && (EQ (cp->syntax_table, Qt)
232 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
233 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
234 && cp->buf.charset_unibyte == charset_unibyte)
235 break;
236
237 /* If we're at the end of the cache, compile into the nil cell
238 we found, or the last (least recently used) cell with a
239 string value. */
240 if (cp->next == 0)
241 {
242 compile_it:
243 compile_pattern_1 (cp, pattern, translate, posix);
244 break;
245 }
246 }
247
248 /* When we get here, cp (aka *cpp) contains the compiled pattern,
249 either because we found it in the cache or because we just compiled it.
250 Move it to the front of the queue to mark it as most recently used. */
251 *cpp = cp->next;
252 cp->next = searchbuf_head;
253 searchbuf_head = cp;
254
255 /* Advise the searching functions about the space we have allocated
256 for register data. */
257 if (regp)
258 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
259
260 /* The compiled pattern can be used both for multibyte and unibyte
261 target. But, we have to tell which the pattern is used for. */
262 cp->buf.target_multibyte = multibyte;
263
264 return &cp->buf;
265 }
266
267 \f
268 static Lisp_Object
269 looking_at_1 (Lisp_Object string, int posix)
270 {
271 Lisp_Object val;
272 unsigned char *p1, *p2;
273 ptrdiff_t s1, s2;
274 register ptrdiff_t i;
275 struct re_pattern_buffer *bufp;
276
277 if (running_asynch_code)
278 save_search_regs ();
279
280 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
281 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
282 BVAR (current_buffer, case_eqv_table));
283
284 CHECK_STRING (string);
285 bufp = compile_pattern (string,
286 (NILP (Vinhibit_changing_match_data)
287 ? &search_regs : NULL),
288 (!NILP (BVAR (current_buffer, case_fold_search))
289 ? BVAR (current_buffer, case_canon_table) : Qnil),
290 posix,
291 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
292
293 immediate_quit = 1;
294 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
295
296 /* Get pointers and sizes of the two strings
297 that make up the visible portion of the buffer. */
298
299 p1 = BEGV_ADDR;
300 s1 = GPT_BYTE - BEGV_BYTE;
301 p2 = GAP_END_ADDR;
302 s2 = ZV_BYTE - GPT_BYTE;
303 if (s1 < 0)
304 {
305 p2 = p1;
306 s2 = ZV_BYTE - BEGV_BYTE;
307 s1 = 0;
308 }
309 if (s2 < 0)
310 {
311 s1 = ZV_BYTE - BEGV_BYTE;
312 s2 = 0;
313 }
314
315 re_match_object = Qnil;
316
317 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
318 PT_BYTE - BEGV_BYTE,
319 (NILP (Vinhibit_changing_match_data)
320 ? &search_regs : NULL),
321 ZV_BYTE - BEGV_BYTE);
322 immediate_quit = 0;
323
324 if (i == -2)
325 matcher_overflow ();
326
327 val = (0 <= i ? Qt : Qnil);
328 if (NILP (Vinhibit_changing_match_data) && i >= 0)
329 for (i = 0; i < search_regs.num_regs; i++)
330 if (search_regs.start[i] >= 0)
331 {
332 search_regs.start[i]
333 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
334 search_regs.end[i]
335 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
336 }
337
338 /* Set last_thing_searched only when match data is changed. */
339 if (NILP (Vinhibit_changing_match_data))
340 XSETBUFFER (last_thing_searched, current_buffer);
341
342 return val;
343 }
344
345 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
346 doc: /* Return t if text after point matches regular expression REGEXP.
347 This function modifies the match data that `match-beginning',
348 `match-end' and `match-data' access; save and restore the match
349 data if you want to preserve them. */)
350 (Lisp_Object regexp)
351 {
352 return looking_at_1 (regexp, 0);
353 }
354
355 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
356 doc: /* Return t if text after point matches regular expression REGEXP.
357 Find the longest match, in accord with Posix regular expression rules.
358 This function modifies the match data that `match-beginning',
359 `match-end' and `match-data' access; save and restore the match
360 data if you want to preserve them. */)
361 (Lisp_Object regexp)
362 {
363 return looking_at_1 (regexp, 1);
364 }
365 \f
366 static Lisp_Object
367 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
368 {
369 ptrdiff_t val;
370 struct re_pattern_buffer *bufp;
371 EMACS_INT pos;
372 ptrdiff_t pos_byte, i;
373
374 if (running_asynch_code)
375 save_search_regs ();
376
377 CHECK_STRING (regexp);
378 CHECK_STRING (string);
379
380 if (NILP (start))
381 pos = 0, pos_byte = 0;
382 else
383 {
384 ptrdiff_t len = SCHARS (string);
385
386 CHECK_NUMBER (start);
387 pos = XINT (start);
388 if (pos < 0 && -pos <= len)
389 pos = len + pos;
390 else if (0 > pos || pos > len)
391 args_out_of_range (string, start);
392 pos_byte = string_char_to_byte (string, pos);
393 }
394
395 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
396 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
397 BVAR (current_buffer, case_eqv_table));
398
399 bufp = compile_pattern (regexp,
400 (NILP (Vinhibit_changing_match_data)
401 ? &search_regs : NULL),
402 (!NILP (BVAR (current_buffer, case_fold_search))
403 ? BVAR (current_buffer, case_canon_table) : Qnil),
404 posix,
405 STRING_MULTIBYTE (string));
406 immediate_quit = 1;
407 re_match_object = string;
408
409 val = re_search (bufp, SSDATA (string),
410 SBYTES (string), pos_byte,
411 SBYTES (string) - pos_byte,
412 (NILP (Vinhibit_changing_match_data)
413 ? &search_regs : NULL));
414 immediate_quit = 0;
415
416 /* Set last_thing_searched only when match data is changed. */
417 if (NILP (Vinhibit_changing_match_data))
418 last_thing_searched = Qt;
419
420 if (val == -2)
421 matcher_overflow ();
422 if (val < 0) return Qnil;
423
424 if (NILP (Vinhibit_changing_match_data))
425 for (i = 0; i < search_regs.num_regs; i++)
426 if (search_regs.start[i] >= 0)
427 {
428 search_regs.start[i]
429 = string_byte_to_char (string, search_regs.start[i]);
430 search_regs.end[i]
431 = string_byte_to_char (string, search_regs.end[i]);
432 }
433
434 return make_number (string_byte_to_char (string, val));
435 }
436
437 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
438 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
439 Matching ignores case if `case-fold-search' is non-nil.
440 If third arg START is non-nil, start search at that index in STRING.
441 For index of first char beyond the match, do (match-end 0).
442 `match-end' and `match-beginning' also give indices of substrings
443 matched by parenthesis constructs in the pattern.
444
445 You can use the function `match-string' to extract the substrings
446 matched by the parenthesis constructions in REGEXP. */)
447 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
448 {
449 return string_match_1 (regexp, string, start, 0);
450 }
451
452 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
453 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
454 Find the longest match, in accord with Posix regular expression rules.
455 Case is ignored if `case-fold-search' is non-nil in the current buffer.
456 If third arg START is non-nil, start search at that index in STRING.
457 For index of first char beyond the match, do (match-end 0).
458 `match-end' and `match-beginning' also give indices of substrings
459 matched by parenthesis constructs in the pattern. */)
460 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
461 {
462 return string_match_1 (regexp, string, start, 1);
463 }
464
465 /* Match REGEXP against STRING, searching all of STRING,
466 and return the index of the match, or negative on failure.
467 This does not clobber the match data. */
468
469 ptrdiff_t
470 fast_string_match (Lisp_Object regexp, Lisp_Object string)
471 {
472 ptrdiff_t val;
473 struct re_pattern_buffer *bufp;
474
475 bufp = compile_pattern (regexp, 0, Qnil,
476 0, STRING_MULTIBYTE (string));
477 immediate_quit = 1;
478 re_match_object = string;
479
480 val = re_search (bufp, SSDATA (string),
481 SBYTES (string), 0,
482 SBYTES (string), 0);
483 immediate_quit = 0;
484 return val;
485 }
486
487 /* Match REGEXP against STRING, searching all of STRING ignoring case,
488 and return the index of the match, or negative on failure.
489 This does not clobber the match data.
490 We assume that STRING contains single-byte characters. */
491
492 ptrdiff_t
493 fast_c_string_match_ignore_case (Lisp_Object regexp,
494 const char *string, ptrdiff_t len)
495 {
496 ptrdiff_t val;
497 struct re_pattern_buffer *bufp;
498
499 regexp = string_make_unibyte (regexp);
500 re_match_object = Qt;
501 bufp = compile_pattern (regexp, 0,
502 Vascii_canon_table, 0,
503 0);
504 immediate_quit = 1;
505 val = re_search (bufp, string, len, 0, len, 0);
506 immediate_quit = 0;
507 return val;
508 }
509
510 /* Like fast_string_match but ignore case. */
511
512 ptrdiff_t
513 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
514 {
515 ptrdiff_t val;
516 struct re_pattern_buffer *bufp;
517
518 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
519 0, STRING_MULTIBYTE (string));
520 immediate_quit = 1;
521 re_match_object = string;
522
523 val = re_search (bufp, SSDATA (string),
524 SBYTES (string), 0,
525 SBYTES (string), 0);
526 immediate_quit = 0;
527 return val;
528 }
529 \f
530 /* Match REGEXP against the characters after POS to LIMIT, and return
531 the number of matched characters. If STRING is non-nil, match
532 against the characters in it. In that case, POS and LIMIT are
533 indices into the string. This function doesn't modify the match
534 data. */
535
536 ptrdiff_t
537 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
538 {
539 int multibyte;
540 struct re_pattern_buffer *buf;
541 unsigned char *p1, *p2;
542 ptrdiff_t s1, s2;
543 ptrdiff_t len;
544
545 if (STRINGP (string))
546 {
547 if (pos_byte < 0)
548 pos_byte = string_char_to_byte (string, pos);
549 if (limit_byte < 0)
550 limit_byte = string_char_to_byte (string, limit);
551 p1 = NULL;
552 s1 = 0;
553 p2 = SDATA (string);
554 s2 = SBYTES (string);
555 re_match_object = string;
556 multibyte = STRING_MULTIBYTE (string);
557 }
558 else
559 {
560 if (pos_byte < 0)
561 pos_byte = CHAR_TO_BYTE (pos);
562 if (limit_byte < 0)
563 limit_byte = CHAR_TO_BYTE (limit);
564 pos_byte -= BEGV_BYTE;
565 limit_byte -= BEGV_BYTE;
566 p1 = BEGV_ADDR;
567 s1 = GPT_BYTE - BEGV_BYTE;
568 p2 = GAP_END_ADDR;
569 s2 = ZV_BYTE - GPT_BYTE;
570 if (s1 < 0)
571 {
572 p2 = p1;
573 s2 = ZV_BYTE - BEGV_BYTE;
574 s1 = 0;
575 }
576 if (s2 < 0)
577 {
578 s1 = ZV_BYTE - BEGV_BYTE;
579 s2 = 0;
580 }
581 re_match_object = Qnil;
582 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
583 }
584
585 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
586 immediate_quit = 1;
587 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
588 pos_byte, NULL, limit_byte);
589 immediate_quit = 0;
590
591 return len;
592 }
593
594 \f
595 /* The newline cache: remembering which sections of text have no newlines. */
596
597 /* If the user has requested newline caching, make sure it's on.
598 Otherwise, make sure it's off.
599 This is our cheezy way of associating an action with the change of
600 state of a buffer-local variable. */
601 static void
602 newline_cache_on_off (struct buffer *buf)
603 {
604 if (NILP (BVAR (buf, cache_long_line_scans)))
605 {
606 /* It should be off. */
607 if (buf->newline_cache)
608 {
609 free_region_cache (buf->newline_cache);
610 buf->newline_cache = 0;
611 }
612 }
613 else
614 {
615 /* It should be on. */
616 if (buf->newline_cache == 0)
617 buf->newline_cache = new_region_cache ();
618 }
619 }
620
621 \f
622 /* Search for COUNT instances of the character TARGET between START and END.
623
624 If COUNT is positive, search forwards; END must be >= START.
625 If COUNT is negative, search backwards for the -COUNTth instance;
626 END must be <= START.
627 If COUNT is zero, do anything you please; run rogue, for all I care.
628
629 If END is zero, use BEGV or ZV instead, as appropriate for the
630 direction indicated by COUNT.
631
632 If we find COUNT instances, set *SHORTAGE to zero, and return the
633 position past the COUNTth match. Note that for reverse motion
634 this is not the same as the usual convention for Emacs motion commands.
635
636 If we don't find COUNT instances before reaching END, set *SHORTAGE
637 to the number of TARGETs left unfound, and return END.
638
639 If ALLOW_QUIT, set immediate_quit. That's good to do
640 except when inside redisplay. */
641
642 ptrdiff_t
643 scan_buffer (int target, ptrdiff_t start, ptrdiff_t end,
644 ptrdiff_t count, ptrdiff_t *shortage, bool allow_quit)
645 {
646 struct region_cache *newline_cache;
647 int direction;
648
649 if (count > 0)
650 {
651 direction = 1;
652 if (! end) end = ZV;
653 }
654 else
655 {
656 direction = -1;
657 if (! end) end = BEGV;
658 }
659
660 newline_cache_on_off (current_buffer);
661 newline_cache = current_buffer->newline_cache;
662
663 if (shortage != 0)
664 *shortage = 0;
665
666 immediate_quit = allow_quit;
667
668 if (count > 0)
669 while (start != end)
670 {
671 /* Our innermost scanning loop is very simple; it doesn't know
672 about gaps, buffer ends, or the newline cache. ceiling is
673 the position of the last character before the next such
674 obstacle --- the last character the dumb search loop should
675 examine. */
676 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end) - 1;
677 ptrdiff_t start_byte;
678 ptrdiff_t tem;
679
680 /* If we're looking for a newline, consult the newline cache
681 to see where we can avoid some scanning. */
682 if (target == '\n' && newline_cache)
683 {
684 ptrdiff_t next_change;
685 immediate_quit = 0;
686 while (region_cache_forward
687 (current_buffer, newline_cache, start, &next_change))
688 start = next_change;
689 immediate_quit = allow_quit;
690
691 start_byte = CHAR_TO_BYTE (start);
692
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
696
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (CHAR_TO_BYTE (next_change) - 1, ceiling_byte);
700 }
701 else
702 start_byte = CHAR_TO_BYTE (start);
703
704 /* The dumb loop can only scan text stored in contiguous
705 bytes. BUFFER_CEILING_OF returns the last character
706 position that is contiguous, so the ceiling is the
707 position after that. */
708 tem = BUFFER_CEILING_OF (start_byte);
709 ceiling_byte = min (tem, ceiling_byte);
710
711 {
712 /* The termination address of the dumb loop. */
713 register unsigned char *ceiling_addr
714 = BYTE_POS_ADDR (ceiling_byte) + 1;
715 register unsigned char *cursor
716 = BYTE_POS_ADDR (start_byte);
717 unsigned char *base = cursor;
718
719 while (cursor < ceiling_addr)
720 {
721 unsigned char *scan_start = cursor;
722
723 /* The dumb loop. */
724 while (*cursor != target && ++cursor < ceiling_addr)
725 ;
726
727 /* If we're looking for newlines, cache the fact that
728 the region from start to cursor is free of them. */
729 if (target == '\n' && newline_cache)
730 know_region_cache (current_buffer, newline_cache,
731 BYTE_TO_CHAR (start_byte + scan_start - base),
732 BYTE_TO_CHAR (start_byte + cursor - base));
733
734 /* Did we find the target character? */
735 if (cursor < ceiling_addr)
736 {
737 if (--count == 0)
738 {
739 immediate_quit = 0;
740 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
741 }
742 cursor++;
743 }
744 }
745
746 start = BYTE_TO_CHAR (start_byte + cursor - base);
747 }
748 }
749 else
750 while (start > end)
751 {
752 /* The last character to check before the next obstacle. */
753 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end);
754 ptrdiff_t start_byte;
755 ptrdiff_t tem;
756
757 /* Consult the newline cache, if appropriate. */
758 if (target == '\n' && newline_cache)
759 {
760 ptrdiff_t next_change;
761 immediate_quit = 0;
762 while (region_cache_backward
763 (current_buffer, newline_cache, start, &next_change))
764 start = next_change;
765 immediate_quit = allow_quit;
766
767 start_byte = CHAR_TO_BYTE (start);
768
769 /* Start should never be at or before end. */
770 if (start_byte <= ceiling_byte)
771 start_byte = ceiling_byte + 1;
772
773 /* Now the text before start is an unknown region, and
774 next_change is the position of the next known region. */
775 ceiling_byte = max (CHAR_TO_BYTE (next_change), ceiling_byte);
776 }
777 else
778 start_byte = CHAR_TO_BYTE (start);
779
780 /* Stop scanning before the gap. */
781 tem = BUFFER_FLOOR_OF (start_byte - 1);
782 ceiling_byte = max (tem, ceiling_byte);
783
784 {
785 /* The termination address of the dumb loop. */
786 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
787 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
788 unsigned char *base = cursor;
789
790 while (cursor >= ceiling_addr)
791 {
792 unsigned char *scan_start = cursor;
793
794 while (*cursor != target && --cursor >= ceiling_addr)
795 ;
796
797 /* If we're looking for newlines, cache the fact that
798 the region from after the cursor to start is free of them. */
799 if (target == '\n' && newline_cache)
800 know_region_cache (current_buffer, newline_cache,
801 BYTE_TO_CHAR (start_byte + cursor - base),
802 BYTE_TO_CHAR (start_byte + scan_start - base));
803
804 /* Did we find the target character? */
805 if (cursor >= ceiling_addr)
806 {
807 if (++count >= 0)
808 {
809 immediate_quit = 0;
810 return BYTE_TO_CHAR (start_byte + cursor - base);
811 }
812 cursor--;
813 }
814 }
815
816 start = BYTE_TO_CHAR (start_byte + cursor - base);
817 }
818 }
819
820 immediate_quit = 0;
821 if (shortage != 0)
822 *shortage = count * direction;
823 return start;
824 }
825 \f
826 /* Search for COUNT instances of a line boundary, which means either a
827 newline or (if selective display enabled) a carriage return.
828 Start at START. If COUNT is negative, search backwards.
829
830 We report the resulting position by calling TEMP_SET_PT_BOTH.
831
832 If we find COUNT instances. we position after (always after,
833 even if scanning backwards) the COUNTth match, and return 0.
834
835 If we don't find COUNT instances before reaching the end of the
836 buffer (or the beginning, if scanning backwards), we return
837 the number of line boundaries left unfound, and position at
838 the limit we bumped up against.
839
840 If ALLOW_QUIT, set immediate_quit. That's good to do
841 except in special cases. */
842
843 EMACS_INT
844 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
845 ptrdiff_t limit, ptrdiff_t limit_byte,
846 EMACS_INT count, bool allow_quit)
847 {
848 int direction = ((count > 0) ? 1 : -1);
849
850 unsigned char *cursor;
851 unsigned char *base;
852
853 ptrdiff_t ceiling;
854 unsigned char *ceiling_addr;
855
856 bool old_immediate_quit = immediate_quit;
857
858 /* The code that follows is like scan_buffer
859 but checks for either newline or carriage return. */
860
861 if (allow_quit)
862 immediate_quit++;
863
864 start_byte = CHAR_TO_BYTE (start);
865
866 if (count > 0)
867 {
868 while (start_byte < limit_byte)
869 {
870 ceiling = BUFFER_CEILING_OF (start_byte);
871 ceiling = min (limit_byte - 1, ceiling);
872 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
873 base = (cursor = BYTE_POS_ADDR (start_byte));
874 while (1)
875 {
876 while (*cursor != '\n' && ++cursor != ceiling_addr)
877 ;
878
879 if (cursor != ceiling_addr)
880 {
881 if (--count == 0)
882 {
883 immediate_quit = old_immediate_quit;
884 start_byte = start_byte + cursor - base + 1;
885 start = BYTE_TO_CHAR (start_byte);
886 TEMP_SET_PT_BOTH (start, start_byte);
887 return 0;
888 }
889 else
890 if (++cursor == ceiling_addr)
891 break;
892 }
893 else
894 break;
895 }
896 start_byte += cursor - base;
897 }
898 }
899 else
900 {
901 while (start_byte > limit_byte)
902 {
903 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
904 ceiling = max (limit_byte, ceiling);
905 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
906 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
907 while (1)
908 {
909 while (--cursor != ceiling_addr && *cursor != '\n')
910 ;
911
912 if (cursor != ceiling_addr)
913 {
914 if (++count == 0)
915 {
916 immediate_quit = old_immediate_quit;
917 /* Return the position AFTER the match we found. */
918 start_byte = start_byte + cursor - base + 1;
919 start = BYTE_TO_CHAR (start_byte);
920 TEMP_SET_PT_BOTH (start, start_byte);
921 return 0;
922 }
923 }
924 else
925 break;
926 }
927 /* Here we add 1 to compensate for the last decrement
928 of CURSOR, which took it past the valid range. */
929 start_byte += cursor - base + 1;
930 }
931 }
932
933 TEMP_SET_PT_BOTH (limit, limit_byte);
934 immediate_quit = old_immediate_quit;
935
936 return count * direction;
937 }
938
939 ptrdiff_t
940 find_next_newline_no_quit (ptrdiff_t from, ptrdiff_t cnt)
941 {
942 return scan_buffer ('\n', from, 0, cnt, (ptrdiff_t *) 0, 0);
943 }
944
945 /* Like find_next_newline, but returns position before the newline,
946 not after, and only search up to TO. This isn't just
947 find_next_newline (...)-1, because you might hit TO. */
948
949 ptrdiff_t
950 find_before_next_newline (ptrdiff_t from, ptrdiff_t to, ptrdiff_t cnt)
951 {
952 ptrdiff_t shortage;
953 ptrdiff_t pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
954
955 if (shortage == 0)
956 pos--;
957
958 return pos;
959 }
960 \f
961 /* Subroutines of Lisp buffer search functions. */
962
963 static Lisp_Object
964 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
965 Lisp_Object count, int direction, int RE, int posix)
966 {
967 register EMACS_INT np;
968 EMACS_INT lim;
969 ptrdiff_t lim_byte;
970 EMACS_INT n = direction;
971
972 if (!NILP (count))
973 {
974 CHECK_NUMBER (count);
975 n *= XINT (count);
976 }
977
978 CHECK_STRING (string);
979 if (NILP (bound))
980 {
981 if (n > 0)
982 lim = ZV, lim_byte = ZV_BYTE;
983 else
984 lim = BEGV, lim_byte = BEGV_BYTE;
985 }
986 else
987 {
988 CHECK_NUMBER_COERCE_MARKER (bound);
989 lim = XINT (bound);
990 if (n > 0 ? lim < PT : lim > PT)
991 error ("Invalid search bound (wrong side of point)");
992 if (lim > ZV)
993 lim = ZV, lim_byte = ZV_BYTE;
994 else if (lim < BEGV)
995 lim = BEGV, lim_byte = BEGV_BYTE;
996 else
997 lim_byte = CHAR_TO_BYTE (lim);
998 }
999
1000 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
1001 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
1002 BVAR (current_buffer, case_eqv_table));
1003
1004 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
1005 (!NILP (BVAR (current_buffer, case_fold_search))
1006 ? BVAR (current_buffer, case_canon_table)
1007 : Qnil),
1008 (!NILP (BVAR (current_buffer, case_fold_search))
1009 ? BVAR (current_buffer, case_eqv_table)
1010 : Qnil),
1011 posix);
1012 if (np <= 0)
1013 {
1014 if (NILP (noerror))
1015 xsignal1 (Qsearch_failed, string);
1016
1017 if (!EQ (noerror, Qt))
1018 {
1019 if (lim < BEGV || lim > ZV)
1020 emacs_abort ();
1021 SET_PT_BOTH (lim, lim_byte);
1022 return Qnil;
1023 #if 0 /* This would be clean, but maybe programs depend on
1024 a value of nil here. */
1025 np = lim;
1026 #endif
1027 }
1028 else
1029 return Qnil;
1030 }
1031
1032 if (np < BEGV || np > ZV)
1033 emacs_abort ();
1034
1035 SET_PT (np);
1036
1037 return make_number (np);
1038 }
1039 \f
1040 /* Return 1 if REGEXP it matches just one constant string. */
1041
1042 static int
1043 trivial_regexp_p (Lisp_Object regexp)
1044 {
1045 ptrdiff_t len = SBYTES (regexp);
1046 unsigned char *s = SDATA (regexp);
1047 while (--len >= 0)
1048 {
1049 switch (*s++)
1050 {
1051 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1052 return 0;
1053 case '\\':
1054 if (--len < 0)
1055 return 0;
1056 switch (*s++)
1057 {
1058 case '|': case '(': case ')': case '`': case '\'': case 'b':
1059 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1060 case 'S': case '=': case '{': case '}': case '_':
1061 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1062 case '1': case '2': case '3': case '4': case '5':
1063 case '6': case '7': case '8': case '9':
1064 return 0;
1065 }
1066 }
1067 }
1068 return 1;
1069 }
1070
1071 /* Search for the n'th occurrence of STRING in the current buffer,
1072 starting at position POS and stopping at position LIM,
1073 treating STRING as a literal string if RE is false or as
1074 a regular expression if RE is true.
1075
1076 If N is positive, searching is forward and LIM must be greater than POS.
1077 If N is negative, searching is backward and LIM must be less than POS.
1078
1079 Returns -x if x occurrences remain to be found (x > 0),
1080 or else the position at the beginning of the Nth occurrence
1081 (if searching backward) or the end (if searching forward).
1082
1083 POSIX is nonzero if we want full backtracking (POSIX style)
1084 for this pattern. 0 means backtrack only enough to get a valid match. */
1085
1086 #define TRANSLATE(out, trt, d) \
1087 do \
1088 { \
1089 if (! NILP (trt)) \
1090 { \
1091 Lisp_Object temp; \
1092 temp = Faref (trt, make_number (d)); \
1093 if (INTEGERP (temp)) \
1094 out = XINT (temp); \
1095 else \
1096 out = d; \
1097 } \
1098 else \
1099 out = d; \
1100 } \
1101 while (0)
1102
1103 /* Only used in search_buffer, to record the end position of the match
1104 when searching regexps and SEARCH_REGS should not be changed
1105 (i.e. Vinhibit_changing_match_data is non-nil). */
1106 static struct re_registers search_regs_1;
1107
1108 static EMACS_INT
1109 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1110 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1111 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1112 {
1113 ptrdiff_t len = SCHARS (string);
1114 ptrdiff_t len_byte = SBYTES (string);
1115 register ptrdiff_t i;
1116
1117 if (running_asynch_code)
1118 save_search_regs ();
1119
1120 /* Searching 0 times means don't move. */
1121 /* Null string is found at starting position. */
1122 if (len == 0 || n == 0)
1123 {
1124 set_search_regs (pos_byte, 0);
1125 return pos;
1126 }
1127
1128 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1129 {
1130 unsigned char *p1, *p2;
1131 ptrdiff_t s1, s2;
1132 struct re_pattern_buffer *bufp;
1133
1134 bufp = compile_pattern (string,
1135 (NILP (Vinhibit_changing_match_data)
1136 ? &search_regs : &search_regs_1),
1137 trt, posix,
1138 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1139
1140 immediate_quit = 1; /* Quit immediately if user types ^G,
1141 because letting this function finish
1142 can take too long. */
1143 QUIT; /* Do a pending quit right away,
1144 to avoid paradoxical behavior */
1145 /* Get pointers and sizes of the two strings
1146 that make up the visible portion of the buffer. */
1147
1148 p1 = BEGV_ADDR;
1149 s1 = GPT_BYTE - BEGV_BYTE;
1150 p2 = GAP_END_ADDR;
1151 s2 = ZV_BYTE - GPT_BYTE;
1152 if (s1 < 0)
1153 {
1154 p2 = p1;
1155 s2 = ZV_BYTE - BEGV_BYTE;
1156 s1 = 0;
1157 }
1158 if (s2 < 0)
1159 {
1160 s1 = ZV_BYTE - BEGV_BYTE;
1161 s2 = 0;
1162 }
1163 re_match_object = Qnil;
1164
1165 while (n < 0)
1166 {
1167 ptrdiff_t val;
1168
1169 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1170 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1171 (NILP (Vinhibit_changing_match_data)
1172 ? &search_regs : &search_regs_1),
1173 /* Don't allow match past current point */
1174 pos_byte - BEGV_BYTE);
1175 if (val == -2)
1176 {
1177 matcher_overflow ();
1178 }
1179 if (val >= 0)
1180 {
1181 if (NILP (Vinhibit_changing_match_data))
1182 {
1183 pos_byte = search_regs.start[0] + BEGV_BYTE;
1184 for (i = 0; i < search_regs.num_regs; i++)
1185 if (search_regs.start[i] >= 0)
1186 {
1187 search_regs.start[i]
1188 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1189 search_regs.end[i]
1190 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1191 }
1192 XSETBUFFER (last_thing_searched, current_buffer);
1193 /* Set pos to the new position. */
1194 pos = search_regs.start[0];
1195 }
1196 else
1197 {
1198 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1199 /* Set pos to the new position. */
1200 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1201 }
1202 }
1203 else
1204 {
1205 immediate_quit = 0;
1206 return (n);
1207 }
1208 n++;
1209 }
1210 while (n > 0)
1211 {
1212 ptrdiff_t val;
1213
1214 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1215 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1216 (NILP (Vinhibit_changing_match_data)
1217 ? &search_regs : &search_regs_1),
1218 lim_byte - BEGV_BYTE);
1219 if (val == -2)
1220 {
1221 matcher_overflow ();
1222 }
1223 if (val >= 0)
1224 {
1225 if (NILP (Vinhibit_changing_match_data))
1226 {
1227 pos_byte = search_regs.end[0] + BEGV_BYTE;
1228 for (i = 0; i < search_regs.num_regs; i++)
1229 if (search_regs.start[i] >= 0)
1230 {
1231 search_regs.start[i]
1232 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1233 search_regs.end[i]
1234 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1235 }
1236 XSETBUFFER (last_thing_searched, current_buffer);
1237 pos = search_regs.end[0];
1238 }
1239 else
1240 {
1241 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1242 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1243 }
1244 }
1245 else
1246 {
1247 immediate_quit = 0;
1248 return (0 - n);
1249 }
1250 n--;
1251 }
1252 immediate_quit = 0;
1253 return (pos);
1254 }
1255 else /* non-RE case */
1256 {
1257 unsigned char *raw_pattern, *pat;
1258 ptrdiff_t raw_pattern_size;
1259 ptrdiff_t raw_pattern_size_byte;
1260 unsigned char *patbuf;
1261 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1262 unsigned char *base_pat;
1263 /* Set to positive if we find a non-ASCII char that need
1264 translation. Otherwise set to zero later. */
1265 int char_base = -1;
1266 int boyer_moore_ok = 1;
1267
1268 /* MULTIBYTE says whether the text to be searched is multibyte.
1269 We must convert PATTERN to match that, or we will not really
1270 find things right. */
1271
1272 if (multibyte == STRING_MULTIBYTE (string))
1273 {
1274 raw_pattern = SDATA (string);
1275 raw_pattern_size = SCHARS (string);
1276 raw_pattern_size_byte = SBYTES (string);
1277 }
1278 else if (multibyte)
1279 {
1280 raw_pattern_size = SCHARS (string);
1281 raw_pattern_size_byte
1282 = count_size_as_multibyte (SDATA (string),
1283 raw_pattern_size);
1284 raw_pattern = alloca (raw_pattern_size_byte + 1);
1285 copy_text (SDATA (string), raw_pattern,
1286 SCHARS (string), 0, 1);
1287 }
1288 else
1289 {
1290 /* Converting multibyte to single-byte.
1291
1292 ??? Perhaps this conversion should be done in a special way
1293 by subtracting nonascii-insert-offset from each non-ASCII char,
1294 so that only the multibyte chars which really correspond to
1295 the chosen single-byte character set can possibly match. */
1296 raw_pattern_size = SCHARS (string);
1297 raw_pattern_size_byte = SCHARS (string);
1298 raw_pattern = alloca (raw_pattern_size + 1);
1299 copy_text (SDATA (string), raw_pattern,
1300 SBYTES (string), 1, 0);
1301 }
1302
1303 /* Copy and optionally translate the pattern. */
1304 len = raw_pattern_size;
1305 len_byte = raw_pattern_size_byte;
1306 patbuf = alloca (len * MAX_MULTIBYTE_LENGTH);
1307 pat = patbuf;
1308 base_pat = raw_pattern;
1309 if (multibyte)
1310 {
1311 /* Fill patbuf by translated characters in STRING while
1312 checking if we can use boyer-moore search. If TRT is
1313 non-nil, we can use boyer-moore search only if TRT can be
1314 represented by the byte array of 256 elements. For that,
1315 all non-ASCII case-equivalents of all case-sensitive
1316 characters in STRING must belong to the same character
1317 group (every 64 characters form a group; U+0000..U+003F,
1318 U+0040..U+007F, U+0080..U+00BF, ...). */
1319
1320 while (--len >= 0)
1321 {
1322 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1323 int c, translated, inverse;
1324 int in_charlen, charlen;
1325
1326 /* If we got here and the RE flag is set, it's because we're
1327 dealing with a regexp known to be trivial, so the backslash
1328 just quotes the next character. */
1329 if (RE && *base_pat == '\\')
1330 {
1331 len--;
1332 raw_pattern_size--;
1333 len_byte--;
1334 base_pat++;
1335 }
1336
1337 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1338
1339 if (NILP (trt))
1340 {
1341 str = base_pat;
1342 charlen = in_charlen;
1343 }
1344 else
1345 {
1346 /* Translate the character. */
1347 TRANSLATE (translated, trt, c);
1348 charlen = CHAR_STRING (translated, str_base);
1349 str = str_base;
1350
1351 /* Check if C has any other case-equivalents. */
1352 TRANSLATE (inverse, inverse_trt, c);
1353 /* If so, check if we can use boyer-moore. */
1354 if (c != inverse && boyer_moore_ok)
1355 {
1356 /* Check if all equivalents belong to the same
1357 group of characters. Note that the check of C
1358 itself is done by the last iteration. */
1359 int this_char_base = -1;
1360
1361 while (boyer_moore_ok)
1362 {
1363 if (ASCII_BYTE_P (inverse))
1364 {
1365 if (this_char_base > 0)
1366 boyer_moore_ok = 0;
1367 else
1368 this_char_base = 0;
1369 }
1370 else if (CHAR_BYTE8_P (inverse))
1371 /* Boyer-moore search can't handle a
1372 translation of an eight-bit
1373 character. */
1374 boyer_moore_ok = 0;
1375 else if (this_char_base < 0)
1376 {
1377 this_char_base = inverse & ~0x3F;
1378 if (char_base < 0)
1379 char_base = this_char_base;
1380 else if (this_char_base != char_base)
1381 boyer_moore_ok = 0;
1382 }
1383 else if ((inverse & ~0x3F) != this_char_base)
1384 boyer_moore_ok = 0;
1385 if (c == inverse)
1386 break;
1387 TRANSLATE (inverse, inverse_trt, inverse);
1388 }
1389 }
1390 }
1391
1392 /* Store this character into the translated pattern. */
1393 memcpy (pat, str, charlen);
1394 pat += charlen;
1395 base_pat += in_charlen;
1396 len_byte -= in_charlen;
1397 }
1398
1399 /* If char_base is still negative we didn't find any translated
1400 non-ASCII characters. */
1401 if (char_base < 0)
1402 char_base = 0;
1403 }
1404 else
1405 {
1406 /* Unibyte buffer. */
1407 char_base = 0;
1408 while (--len >= 0)
1409 {
1410 int c, translated, inverse;
1411
1412 /* If we got here and the RE flag is set, it's because we're
1413 dealing with a regexp known to be trivial, so the backslash
1414 just quotes the next character. */
1415 if (RE && *base_pat == '\\')
1416 {
1417 len--;
1418 raw_pattern_size--;
1419 base_pat++;
1420 }
1421 c = *base_pat++;
1422 TRANSLATE (translated, trt, c);
1423 *pat++ = translated;
1424 /* Check that none of C's equivalents violates the
1425 assumptions of boyer_moore. */
1426 TRANSLATE (inverse, inverse_trt, c);
1427 while (1)
1428 {
1429 if (inverse >= 0200)
1430 {
1431 boyer_moore_ok = 0;
1432 break;
1433 }
1434 if (c == inverse)
1435 break;
1436 TRANSLATE (inverse, inverse_trt, inverse);
1437 }
1438 }
1439 }
1440
1441 len_byte = pat - patbuf;
1442 pat = base_pat = patbuf;
1443
1444 if (boyer_moore_ok)
1445 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1446 pos_byte, lim_byte,
1447 char_base);
1448 else
1449 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1450 pos, pos_byte, lim, lim_byte);
1451 }
1452 }
1453 \f
1454 /* Do a simple string search N times for the string PAT,
1455 whose length is LEN/LEN_BYTE,
1456 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1457 TRT is the translation table.
1458
1459 Return the character position where the match is found.
1460 Otherwise, if M matches remained to be found, return -M.
1461
1462 This kind of search works regardless of what is in PAT and
1463 regardless of what is in TRT. It is used in cases where
1464 boyer_moore cannot work. */
1465
1466 static EMACS_INT
1467 simple_search (EMACS_INT n, unsigned char *pat,
1468 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1469 ptrdiff_t pos, ptrdiff_t pos_byte,
1470 ptrdiff_t lim, ptrdiff_t lim_byte)
1471 {
1472 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1473 int forward = n > 0;
1474 /* Number of buffer bytes matched. Note that this may be different
1475 from len_byte in a multibyte buffer. */
1476 ptrdiff_t match_byte = PTRDIFF_MIN;
1477
1478 if (lim > pos && multibyte)
1479 while (n > 0)
1480 {
1481 while (1)
1482 {
1483 /* Try matching at position POS. */
1484 ptrdiff_t this_pos = pos;
1485 ptrdiff_t this_pos_byte = pos_byte;
1486 ptrdiff_t this_len = len;
1487 unsigned char *p = pat;
1488 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1489 goto stop;
1490
1491 while (this_len > 0)
1492 {
1493 int charlen, buf_charlen;
1494 int pat_ch, buf_ch;
1495
1496 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1497 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1498 buf_charlen);
1499 TRANSLATE (buf_ch, trt, buf_ch);
1500
1501 if (buf_ch != pat_ch)
1502 break;
1503
1504 this_len--;
1505 p += charlen;
1506
1507 this_pos_byte += buf_charlen;
1508 this_pos++;
1509 }
1510
1511 if (this_len == 0)
1512 {
1513 match_byte = this_pos_byte - pos_byte;
1514 pos += len;
1515 pos_byte += match_byte;
1516 break;
1517 }
1518
1519 INC_BOTH (pos, pos_byte);
1520 }
1521
1522 n--;
1523 }
1524 else if (lim > pos)
1525 while (n > 0)
1526 {
1527 while (1)
1528 {
1529 /* Try matching at position POS. */
1530 ptrdiff_t this_pos = pos;
1531 ptrdiff_t this_len = len;
1532 unsigned char *p = pat;
1533
1534 if (pos + len > lim)
1535 goto stop;
1536
1537 while (this_len > 0)
1538 {
1539 int pat_ch = *p++;
1540 int buf_ch = FETCH_BYTE (this_pos);
1541 TRANSLATE (buf_ch, trt, buf_ch);
1542
1543 if (buf_ch != pat_ch)
1544 break;
1545
1546 this_len--;
1547 this_pos++;
1548 }
1549
1550 if (this_len == 0)
1551 {
1552 match_byte = len;
1553 pos += len;
1554 break;
1555 }
1556
1557 pos++;
1558 }
1559
1560 n--;
1561 }
1562 /* Backwards search. */
1563 else if (lim < pos && multibyte)
1564 while (n < 0)
1565 {
1566 while (1)
1567 {
1568 /* Try matching at position POS. */
1569 ptrdiff_t this_pos = pos;
1570 ptrdiff_t this_pos_byte = pos_byte;
1571 ptrdiff_t this_len = len;
1572 const unsigned char *p = pat + len_byte;
1573
1574 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1575 goto stop;
1576
1577 while (this_len > 0)
1578 {
1579 int pat_ch, buf_ch;
1580
1581 DEC_BOTH (this_pos, this_pos_byte);
1582 PREV_CHAR_BOUNDARY (p, pat);
1583 pat_ch = STRING_CHAR (p);
1584 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1585 TRANSLATE (buf_ch, trt, buf_ch);
1586
1587 if (buf_ch != pat_ch)
1588 break;
1589
1590 this_len--;
1591 }
1592
1593 if (this_len == 0)
1594 {
1595 match_byte = pos_byte - this_pos_byte;
1596 pos = this_pos;
1597 pos_byte = this_pos_byte;
1598 break;
1599 }
1600
1601 DEC_BOTH (pos, pos_byte);
1602 }
1603
1604 n++;
1605 }
1606 else if (lim < pos)
1607 while (n < 0)
1608 {
1609 while (1)
1610 {
1611 /* Try matching at position POS. */
1612 ptrdiff_t this_pos = pos - len;
1613 ptrdiff_t this_len = len;
1614 unsigned char *p = pat;
1615
1616 if (this_pos < lim)
1617 goto stop;
1618
1619 while (this_len > 0)
1620 {
1621 int pat_ch = *p++;
1622 int buf_ch = FETCH_BYTE (this_pos);
1623 TRANSLATE (buf_ch, trt, buf_ch);
1624
1625 if (buf_ch != pat_ch)
1626 break;
1627 this_len--;
1628 this_pos++;
1629 }
1630
1631 if (this_len == 0)
1632 {
1633 match_byte = len;
1634 pos -= len;
1635 break;
1636 }
1637
1638 pos--;
1639 }
1640
1641 n++;
1642 }
1643
1644 stop:
1645 if (n == 0)
1646 {
1647 eassert (match_byte != PTRDIFF_MIN);
1648 if (forward)
1649 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1650 else
1651 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1652
1653 return pos;
1654 }
1655 else if (n > 0)
1656 return -n;
1657 else
1658 return n;
1659 }
1660 \f
1661 /* Do Boyer-Moore search N times for the string BASE_PAT,
1662 whose length is LEN_BYTE,
1663 from buffer position POS_BYTE until LIM_BYTE.
1664 DIRECTION says which direction we search in.
1665 TRT and INVERSE_TRT are translation tables.
1666 Characters in PAT are already translated by TRT.
1667
1668 This kind of search works if all the characters in BASE_PAT that
1669 have nontrivial translation are the same aside from the last byte.
1670 This makes it possible to translate just the last byte of a
1671 character, and do so after just a simple test of the context.
1672 CHAR_BASE is nonzero if there is such a non-ASCII character.
1673
1674 If that criterion is not satisfied, do not call this function. */
1675
1676 static EMACS_INT
1677 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1678 ptrdiff_t len_byte,
1679 Lisp_Object trt, Lisp_Object inverse_trt,
1680 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1681 int char_base)
1682 {
1683 int direction = ((n > 0) ? 1 : -1);
1684 register ptrdiff_t dirlen;
1685 ptrdiff_t limit;
1686 int stride_for_teases = 0;
1687 int BM_tab[0400];
1688 register unsigned char *cursor, *p_limit;
1689 register ptrdiff_t i;
1690 register int j;
1691 unsigned char *pat, *pat_end;
1692 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1693
1694 unsigned char simple_translate[0400];
1695 /* These are set to the preceding bytes of a byte to be translated
1696 if char_base is nonzero. As the maximum byte length of a
1697 multibyte character is 5, we have to check at most four previous
1698 bytes. */
1699 int translate_prev_byte1 = 0;
1700 int translate_prev_byte2 = 0;
1701 int translate_prev_byte3 = 0;
1702
1703 /* The general approach is that we are going to maintain that we know
1704 the first (closest to the present position, in whatever direction
1705 we're searching) character that could possibly be the last
1706 (furthest from present position) character of a valid match. We
1707 advance the state of our knowledge by looking at that character
1708 and seeing whether it indeed matches the last character of the
1709 pattern. If it does, we take a closer look. If it does not, we
1710 move our pointer (to putative last characters) as far as is
1711 logically possible. This amount of movement, which I call a
1712 stride, will be the length of the pattern if the actual character
1713 appears nowhere in the pattern, otherwise it will be the distance
1714 from the last occurrence of that character to the end of the
1715 pattern. If the amount is zero we have a possible match. */
1716
1717 /* Here we make a "mickey mouse" BM table. The stride of the search
1718 is determined only by the last character of the putative match.
1719 If that character does not match, we will stride the proper
1720 distance to propose a match that superimposes it on the last
1721 instance of a character that matches it (per trt), or misses
1722 it entirely if there is none. */
1723
1724 dirlen = len_byte * direction;
1725
1726 /* Record position after the end of the pattern. */
1727 pat_end = base_pat + len_byte;
1728 /* BASE_PAT points to a character that we start scanning from.
1729 It is the first character in a forward search,
1730 the last character in a backward search. */
1731 if (direction < 0)
1732 base_pat = pat_end - 1;
1733
1734 /* A character that does not appear in the pattern induces a
1735 stride equal to the pattern length. */
1736 for (i = 0; i < 0400; i++)
1737 BM_tab[i] = dirlen;
1738
1739 /* We use this for translation, instead of TRT itself.
1740 We fill this in to handle the characters that actually
1741 occur in the pattern. Others don't matter anyway! */
1742 for (i = 0; i < 0400; i++)
1743 simple_translate[i] = i;
1744
1745 if (char_base)
1746 {
1747 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1748 byte following them are the target of translation. */
1749 unsigned char str[MAX_MULTIBYTE_LENGTH];
1750 int cblen = CHAR_STRING (char_base, str);
1751
1752 translate_prev_byte1 = str[cblen - 2];
1753 if (cblen > 2)
1754 {
1755 translate_prev_byte2 = str[cblen - 3];
1756 if (cblen > 3)
1757 translate_prev_byte3 = str[cblen - 4];
1758 }
1759 }
1760
1761 i = 0;
1762 while (i != dirlen)
1763 {
1764 unsigned char *ptr = base_pat + i;
1765 i += direction;
1766 if (! NILP (trt))
1767 {
1768 /* If the byte currently looking at is the last of a
1769 character to check case-equivalents, set CH to that
1770 character. An ASCII character and a non-ASCII character
1771 matching with CHAR_BASE are to be checked. */
1772 int ch = -1;
1773
1774 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1775 ch = *ptr;
1776 else if (char_base
1777 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1778 {
1779 unsigned char *charstart = ptr - 1;
1780
1781 while (! (CHAR_HEAD_P (*charstart)))
1782 charstart--;
1783 ch = STRING_CHAR (charstart);
1784 if (char_base != (ch & ~0x3F))
1785 ch = -1;
1786 }
1787
1788 if (ch >= 0200 && multibyte)
1789 j = (ch & 0x3F) | 0200;
1790 else
1791 j = *ptr;
1792
1793 if (i == dirlen)
1794 stride_for_teases = BM_tab[j];
1795
1796 BM_tab[j] = dirlen - i;
1797 /* A translation table is accompanied by its inverse -- see
1798 comment following downcase_table for details. */
1799 if (ch >= 0)
1800 {
1801 int starting_ch = ch;
1802 int starting_j = j;
1803
1804 while (1)
1805 {
1806 TRANSLATE (ch, inverse_trt, ch);
1807 if (ch >= 0200 && multibyte)
1808 j = (ch & 0x3F) | 0200;
1809 else
1810 j = ch;
1811
1812 /* For all the characters that map into CH,
1813 set up simple_translate to map the last byte
1814 into STARTING_J. */
1815 simple_translate[j] = starting_j;
1816 if (ch == starting_ch)
1817 break;
1818 BM_tab[j] = dirlen - i;
1819 }
1820 }
1821 }
1822 else
1823 {
1824 j = *ptr;
1825
1826 if (i == dirlen)
1827 stride_for_teases = BM_tab[j];
1828 BM_tab[j] = dirlen - i;
1829 }
1830 /* stride_for_teases tells how much to stride if we get a
1831 match on the far character but are subsequently
1832 disappointed, by recording what the stride would have been
1833 for that character if the last character had been
1834 different. */
1835 }
1836 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1837 /* loop invariant - POS_BYTE points at where last char (first
1838 char if reverse) of pattern would align in a possible match. */
1839 while (n != 0)
1840 {
1841 ptrdiff_t tail_end;
1842 unsigned char *tail_end_ptr;
1843
1844 /* It's been reported that some (broken) compiler thinks that
1845 Boolean expressions in an arithmetic context are unsigned.
1846 Using an explicit ?1:0 prevents this. */
1847 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1848 < 0)
1849 return (n * (0 - direction));
1850 /* First we do the part we can by pointers (maybe nothing) */
1851 QUIT;
1852 pat = base_pat;
1853 limit = pos_byte - dirlen + direction;
1854 if (direction > 0)
1855 {
1856 limit = BUFFER_CEILING_OF (limit);
1857 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1858 can take on without hitting edge of buffer or the gap. */
1859 limit = min (limit, pos_byte + 20000);
1860 limit = min (limit, lim_byte - 1);
1861 }
1862 else
1863 {
1864 limit = BUFFER_FLOOR_OF (limit);
1865 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1866 can take on without hitting edge of buffer or the gap. */
1867 limit = max (limit, pos_byte - 20000);
1868 limit = max (limit, lim_byte);
1869 }
1870 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1871 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1872
1873 if ((limit - pos_byte) * direction > 20)
1874 {
1875 unsigned char *p2;
1876
1877 p_limit = BYTE_POS_ADDR (limit);
1878 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1879 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1880 while (1) /* use one cursor setting as long as i can */
1881 {
1882 if (direction > 0) /* worth duplicating */
1883 {
1884 while (cursor <= p_limit)
1885 {
1886 if (BM_tab[*cursor] == 0)
1887 goto hit;
1888 cursor += BM_tab[*cursor];
1889 }
1890 }
1891 else
1892 {
1893 while (cursor >= p_limit)
1894 {
1895 if (BM_tab[*cursor] == 0)
1896 goto hit;
1897 cursor += BM_tab[*cursor];
1898 }
1899 }
1900 /* If you are here, cursor is beyond the end of the
1901 searched region. You fail to match within the
1902 permitted region and would otherwise try a character
1903 beyond that region. */
1904 break;
1905
1906 hit:
1907 i = dirlen - direction;
1908 if (! NILP (trt))
1909 {
1910 while ((i -= direction) + direction != 0)
1911 {
1912 int ch;
1913 cursor -= direction;
1914 /* Translate only the last byte of a character. */
1915 if (! multibyte
1916 || ((cursor == tail_end_ptr
1917 || CHAR_HEAD_P (cursor[1]))
1918 && (CHAR_HEAD_P (cursor[0])
1919 /* Check if this is the last byte of
1920 a translatable character. */
1921 || (translate_prev_byte1 == cursor[-1]
1922 && (CHAR_HEAD_P (translate_prev_byte1)
1923 || (translate_prev_byte2 == cursor[-2]
1924 && (CHAR_HEAD_P (translate_prev_byte2)
1925 || (translate_prev_byte3 == cursor[-3]))))))))
1926 ch = simple_translate[*cursor];
1927 else
1928 ch = *cursor;
1929 if (pat[i] != ch)
1930 break;
1931 }
1932 }
1933 else
1934 {
1935 while ((i -= direction) + direction != 0)
1936 {
1937 cursor -= direction;
1938 if (pat[i] != *cursor)
1939 break;
1940 }
1941 }
1942 cursor += dirlen - i - direction; /* fix cursor */
1943 if (i + direction == 0)
1944 {
1945 ptrdiff_t position, start, end;
1946
1947 cursor -= direction;
1948
1949 position = pos_byte + cursor - p2 + ((direction > 0)
1950 ? 1 - len_byte : 0);
1951 set_search_regs (position, len_byte);
1952
1953 if (NILP (Vinhibit_changing_match_data))
1954 {
1955 start = search_regs.start[0];
1956 end = search_regs.end[0];
1957 }
1958 else
1959 /* If Vinhibit_changing_match_data is non-nil,
1960 search_regs will not be changed. So let's
1961 compute start and end here. */
1962 {
1963 start = BYTE_TO_CHAR (position);
1964 end = BYTE_TO_CHAR (position + len_byte);
1965 }
1966
1967 if ((n -= direction) != 0)
1968 cursor += dirlen; /* to resume search */
1969 else
1970 return direction > 0 ? end : start;
1971 }
1972 else
1973 cursor += stride_for_teases; /* <sigh> we lose - */
1974 }
1975 pos_byte += cursor - p2;
1976 }
1977 else
1978 /* Now we'll pick up a clump that has to be done the hard
1979 way because it covers a discontinuity. */
1980 {
1981 limit = ((direction > 0)
1982 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1983 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1984 limit = ((direction > 0)
1985 ? min (limit + len_byte, lim_byte - 1)
1986 : max (limit - len_byte, lim_byte));
1987 /* LIMIT is now the last value POS_BYTE can have
1988 and still be valid for a possible match. */
1989 while (1)
1990 {
1991 /* This loop can be coded for space rather than
1992 speed because it will usually run only once.
1993 (the reach is at most len + 21, and typically
1994 does not exceed len). */
1995 while ((limit - pos_byte) * direction >= 0)
1996 {
1997 int ch = FETCH_BYTE (pos_byte);
1998 if (BM_tab[ch] == 0)
1999 goto hit2;
2000 pos_byte += BM_tab[ch];
2001 }
2002 break; /* ran off the end */
2003
2004 hit2:
2005 /* Found what might be a match. */
2006 i = dirlen - direction;
2007 while ((i -= direction) + direction != 0)
2008 {
2009 int ch;
2010 unsigned char *ptr;
2011 pos_byte -= direction;
2012 ptr = BYTE_POS_ADDR (pos_byte);
2013 /* Translate only the last byte of a character. */
2014 if (! multibyte
2015 || ((ptr == tail_end_ptr
2016 || CHAR_HEAD_P (ptr[1]))
2017 && (CHAR_HEAD_P (ptr[0])
2018 /* Check if this is the last byte of a
2019 translatable character. */
2020 || (translate_prev_byte1 == ptr[-1]
2021 && (CHAR_HEAD_P (translate_prev_byte1)
2022 || (translate_prev_byte2 == ptr[-2]
2023 && (CHAR_HEAD_P (translate_prev_byte2)
2024 || translate_prev_byte3 == ptr[-3])))))))
2025 ch = simple_translate[*ptr];
2026 else
2027 ch = *ptr;
2028 if (pat[i] != ch)
2029 break;
2030 }
2031 /* Above loop has moved POS_BYTE part or all the way
2032 back to the first pos (last pos if reverse).
2033 Set it once again at the last (first if reverse) char. */
2034 pos_byte += dirlen - i - direction;
2035 if (i + direction == 0)
2036 {
2037 ptrdiff_t position, start, end;
2038 pos_byte -= direction;
2039
2040 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2041 set_search_regs (position, len_byte);
2042
2043 if (NILP (Vinhibit_changing_match_data))
2044 {
2045 start = search_regs.start[0];
2046 end = search_regs.end[0];
2047 }
2048 else
2049 /* If Vinhibit_changing_match_data is non-nil,
2050 search_regs will not be changed. So let's
2051 compute start and end here. */
2052 {
2053 start = BYTE_TO_CHAR (position);
2054 end = BYTE_TO_CHAR (position + len_byte);
2055 }
2056
2057 if ((n -= direction) != 0)
2058 pos_byte += dirlen; /* to resume search */
2059 else
2060 return direction > 0 ? end : start;
2061 }
2062 else
2063 pos_byte += stride_for_teases;
2064 }
2065 }
2066 /* We have done one clump. Can we continue? */
2067 if ((lim_byte - pos_byte) * direction < 0)
2068 return ((0 - n) * direction);
2069 }
2070 return BYTE_TO_CHAR (pos_byte);
2071 }
2072
2073 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2074 for the overall match just found in the current buffer.
2075 Also clear out the match data for registers 1 and up. */
2076
2077 static void
2078 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2079 {
2080 ptrdiff_t i;
2081
2082 if (!NILP (Vinhibit_changing_match_data))
2083 return;
2084
2085 /* Make sure we have registers in which to store
2086 the match position. */
2087 if (search_regs.num_regs == 0)
2088 {
2089 search_regs.start = xmalloc (2 * sizeof (regoff_t));
2090 search_regs.end = xmalloc (2 * sizeof (regoff_t));
2091 search_regs.num_regs = 2;
2092 }
2093
2094 /* Clear out the other registers. */
2095 for (i = 1; i < search_regs.num_regs; i++)
2096 {
2097 search_regs.start[i] = -1;
2098 search_regs.end[i] = -1;
2099 }
2100
2101 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2102 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2103 XSETBUFFER (last_thing_searched, current_buffer);
2104 }
2105 \f
2106 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2107 "MSearch backward: ",
2108 doc: /* Search backward from point for STRING.
2109 Set point to the beginning of the occurrence found, and return point.
2110 An optional second argument bounds the search; it is a buffer position.
2111 The match found must not extend before that position.
2112 Optional third argument, if t, means if fail just return nil (no error).
2113 If not nil and not t, position at limit of search and return nil.
2114 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2115 successive occurrences. If COUNT is negative, search forward,
2116 instead of backward, for -COUNT occurrences.
2117
2118 Search case-sensitivity is determined by the value of the variable
2119 `case-fold-search', which see.
2120
2121 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2122 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2123 {
2124 return search_command (string, bound, noerror, count, -1, 0, 0);
2125 }
2126
2127 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2128 doc: /* Search forward from point for STRING.
2129 Set point to the end of the occurrence found, and return point.
2130 An optional second argument bounds the search; it is a buffer position.
2131 The match found must not extend after that position. A value of nil is
2132 equivalent to (point-max).
2133 Optional third argument, if t, means if fail just return nil (no error).
2134 If not nil and not t, move to limit of search and return nil.
2135 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2136 successive occurrences. If COUNT is negative, search backward,
2137 instead of forward, for -COUNT occurrences.
2138
2139 Search case-sensitivity is determined by the value of the variable
2140 `case-fold-search', which see.
2141
2142 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2143 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2144 {
2145 return search_command (string, bound, noerror, count, 1, 0, 0);
2146 }
2147
2148 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2149 "sRE search backward: ",
2150 doc: /* Search backward from point for match for regular expression REGEXP.
2151 Set point to the beginning of the match, and return point.
2152 The match found is the one starting last in the buffer
2153 and yet ending before the origin of the search.
2154 An optional second argument bounds the search; it is a buffer position.
2155 The match found must start at or after that position.
2156 Optional third argument, if t, means if fail just return nil (no error).
2157 If not nil and not t, move to limit of search and return nil.
2158 Optional fourth argument is repeat count--search for successive occurrences.
2159
2160 Search case-sensitivity is determined by the value of the variable
2161 `case-fold-search', which see.
2162
2163 See also the functions `match-beginning', `match-end', `match-string',
2164 and `replace-match'. */)
2165 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2166 {
2167 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2168 }
2169
2170 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2171 "sRE search: ",
2172 doc: /* Search forward from point for regular expression REGEXP.
2173 Set point to the end of the occurrence found, and return point.
2174 An optional second argument bounds the search; it is a buffer position.
2175 The match found must not extend after that position.
2176 Optional third argument, if t, means if fail just return nil (no error).
2177 If not nil and not t, move to limit of search and return nil.
2178 Optional fourth argument is repeat count--search for successive occurrences.
2179
2180 Search case-sensitivity is determined by the value of the variable
2181 `case-fold-search', which see.
2182
2183 See also the functions `match-beginning', `match-end', `match-string',
2184 and `replace-match'. */)
2185 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2186 {
2187 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2188 }
2189
2190 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2191 "sPosix search backward: ",
2192 doc: /* Search backward from point for match for regular expression REGEXP.
2193 Find the longest match in accord with Posix regular expression rules.
2194 Set point to the beginning of the match, and return point.
2195 The match found is the one starting last in the buffer
2196 and yet ending before the origin of the search.
2197 An optional second argument bounds the search; it is a buffer position.
2198 The match found must start at or after that position.
2199 Optional third argument, if t, means if fail just return nil (no error).
2200 If not nil and not t, move to limit of search and return nil.
2201 Optional fourth argument is repeat count--search for successive occurrences.
2202
2203 Search case-sensitivity is determined by the value of the variable
2204 `case-fold-search', which see.
2205
2206 See also the functions `match-beginning', `match-end', `match-string',
2207 and `replace-match'. */)
2208 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2209 {
2210 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2211 }
2212
2213 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2214 "sPosix search: ",
2215 doc: /* Search forward from point for regular expression REGEXP.
2216 Find the longest match in accord with Posix regular expression rules.
2217 Set point to the end of the occurrence found, and return point.
2218 An optional second argument bounds the search; it is a buffer position.
2219 The match found must not extend after that position.
2220 Optional third argument, if t, means if fail just return nil (no error).
2221 If not nil and not t, move to limit of search and return nil.
2222 Optional fourth argument is repeat count--search for successive occurrences.
2223
2224 Search case-sensitivity is determined by the value of the variable
2225 `case-fold-search', which see.
2226
2227 See also the functions `match-beginning', `match-end', `match-string',
2228 and `replace-match'. */)
2229 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2230 {
2231 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2232 }
2233 \f
2234 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2235 doc: /* Replace text matched by last search with NEWTEXT.
2236 Leave point at the end of the replacement text.
2237
2238 If optional second arg FIXEDCASE is non-nil, do not alter the case of
2239 the replacement text. Otherwise, maybe capitalize the whole text, or
2240 maybe just word initials, based on the replaced text. If the replaced
2241 text has only capital letters and has at least one multiletter word,
2242 convert NEWTEXT to all caps. Otherwise if all words are capitalized
2243 in the replaced text, capitalize each word in NEWTEXT.
2244
2245 If optional third arg LITERAL is non-nil, insert NEWTEXT literally.
2246 Otherwise treat `\\' as special:
2247 `\\&' in NEWTEXT means substitute original matched text.
2248 `\\N' means substitute what matched the Nth `\\(...\\)'.
2249 If Nth parens didn't match, substitute nothing.
2250 `\\\\' means insert one `\\'.
2251 `\\?' is treated literally
2252 (for compatibility with `query-replace-regexp').
2253 Any other character following `\\' signals an error.
2254 Case conversion does not apply to these substitutions.
2255
2256 If optional fourth argument STRING is non-nil, it should be a string
2257 to act on; this should be the string on which the previous match was
2258 done via `string-match'. In this case, `replace-match' creates and
2259 returns a new string, made by copying STRING and replacing the part of
2260 STRING that was matched (the original STRING itself is not altered).
2261
2262 The optional fifth argument SUBEXP specifies a subexpression;
2263 it says to replace just that subexpression with NEWTEXT,
2264 rather than replacing the entire matched text.
2265 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2266 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2267 NEWTEXT in place of subexp N.
2268 This is useful only after a regular expression search or match,
2269 since only regular expressions have distinguished subexpressions. */)
2270 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2271 {
2272 enum { nochange, all_caps, cap_initial } case_action;
2273 register ptrdiff_t pos, pos_byte;
2274 int some_multiletter_word;
2275 int some_lowercase;
2276 int some_uppercase;
2277 int some_nonuppercase_initial;
2278 register int c, prevc;
2279 ptrdiff_t sub;
2280 ptrdiff_t opoint, newpoint;
2281
2282 CHECK_STRING (newtext);
2283
2284 if (! NILP (string))
2285 CHECK_STRING (string);
2286
2287 case_action = nochange; /* We tried an initialization */
2288 /* but some C compilers blew it */
2289
2290 if (search_regs.num_regs <= 0)
2291 error ("`replace-match' called before any match found");
2292
2293 if (NILP (subexp))
2294 sub = 0;
2295 else
2296 {
2297 CHECK_NUMBER (subexp);
2298 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2299 args_out_of_range (subexp, make_number (search_regs.num_regs));
2300 sub = XINT (subexp);
2301 }
2302
2303 if (NILP (string))
2304 {
2305 if (search_regs.start[sub] < BEGV
2306 || search_regs.start[sub] > search_regs.end[sub]
2307 || search_regs.end[sub] > ZV)
2308 args_out_of_range (make_number (search_regs.start[sub]),
2309 make_number (search_regs.end[sub]));
2310 }
2311 else
2312 {
2313 if (search_regs.start[sub] < 0
2314 || search_regs.start[sub] > search_regs.end[sub]
2315 || search_regs.end[sub] > SCHARS (string))
2316 args_out_of_range (make_number (search_regs.start[sub]),
2317 make_number (search_regs.end[sub]));
2318 }
2319
2320 if (NILP (fixedcase))
2321 {
2322 /* Decide how to casify by examining the matched text. */
2323 ptrdiff_t last;
2324
2325 pos = search_regs.start[sub];
2326 last = search_regs.end[sub];
2327
2328 if (NILP (string))
2329 pos_byte = CHAR_TO_BYTE (pos);
2330 else
2331 pos_byte = string_char_to_byte (string, pos);
2332
2333 prevc = '\n';
2334 case_action = all_caps;
2335
2336 /* some_multiletter_word is set nonzero if any original word
2337 is more than one letter long. */
2338 some_multiletter_word = 0;
2339 some_lowercase = 0;
2340 some_nonuppercase_initial = 0;
2341 some_uppercase = 0;
2342
2343 while (pos < last)
2344 {
2345 if (NILP (string))
2346 {
2347 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2348 INC_BOTH (pos, pos_byte);
2349 }
2350 else
2351 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2352
2353 if (lowercasep (c))
2354 {
2355 /* Cannot be all caps if any original char is lower case */
2356
2357 some_lowercase = 1;
2358 if (SYNTAX (prevc) != Sword)
2359 some_nonuppercase_initial = 1;
2360 else
2361 some_multiletter_word = 1;
2362 }
2363 else if (uppercasep (c))
2364 {
2365 some_uppercase = 1;
2366 if (SYNTAX (prevc) != Sword)
2367 ;
2368 else
2369 some_multiletter_word = 1;
2370 }
2371 else
2372 {
2373 /* If the initial is a caseless word constituent,
2374 treat that like a lowercase initial. */
2375 if (SYNTAX (prevc) != Sword)
2376 some_nonuppercase_initial = 1;
2377 }
2378
2379 prevc = c;
2380 }
2381
2382 /* Convert to all caps if the old text is all caps
2383 and has at least one multiletter word. */
2384 if (! some_lowercase && some_multiletter_word)
2385 case_action = all_caps;
2386 /* Capitalize each word, if the old text has all capitalized words. */
2387 else if (!some_nonuppercase_initial && some_multiletter_word)
2388 case_action = cap_initial;
2389 else if (!some_nonuppercase_initial && some_uppercase)
2390 /* Should x -> yz, operating on X, give Yz or YZ?
2391 We'll assume the latter. */
2392 case_action = all_caps;
2393 else
2394 case_action = nochange;
2395 }
2396
2397 /* Do replacement in a string. */
2398 if (!NILP (string))
2399 {
2400 Lisp_Object before, after;
2401
2402 before = Fsubstring (string, make_number (0),
2403 make_number (search_regs.start[sub]));
2404 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2405
2406 /* Substitute parts of the match into NEWTEXT
2407 if desired. */
2408 if (NILP (literal))
2409 {
2410 ptrdiff_t lastpos = 0;
2411 ptrdiff_t lastpos_byte = 0;
2412 /* We build up the substituted string in ACCUM. */
2413 Lisp_Object accum;
2414 Lisp_Object middle;
2415 ptrdiff_t length = SBYTES (newtext);
2416
2417 accum = Qnil;
2418
2419 for (pos_byte = 0, pos = 0; pos_byte < length;)
2420 {
2421 ptrdiff_t substart = -1;
2422 ptrdiff_t subend = 0;
2423 int delbackslash = 0;
2424
2425 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2426
2427 if (c == '\\')
2428 {
2429 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2430
2431 if (c == '&')
2432 {
2433 substart = search_regs.start[sub];
2434 subend = search_regs.end[sub];
2435 }
2436 else if (c >= '1' && c <= '9')
2437 {
2438 if (c - '0' < search_regs.num_regs
2439 && 0 <= search_regs.start[c - '0'])
2440 {
2441 substart = search_regs.start[c - '0'];
2442 subend = search_regs.end[c - '0'];
2443 }
2444 else
2445 {
2446 /* If that subexp did not match,
2447 replace \\N with nothing. */
2448 substart = 0;
2449 subend = 0;
2450 }
2451 }
2452 else if (c == '\\')
2453 delbackslash = 1;
2454 else if (c != '?')
2455 error ("Invalid use of `\\' in replacement text");
2456 }
2457 if (substart >= 0)
2458 {
2459 if (pos - 2 != lastpos)
2460 middle = substring_both (newtext, lastpos,
2461 lastpos_byte,
2462 pos - 2, pos_byte - 2);
2463 else
2464 middle = Qnil;
2465 accum = concat3 (accum, middle,
2466 Fsubstring (string,
2467 make_number (substart),
2468 make_number (subend)));
2469 lastpos = pos;
2470 lastpos_byte = pos_byte;
2471 }
2472 else if (delbackslash)
2473 {
2474 middle = substring_both (newtext, lastpos,
2475 lastpos_byte,
2476 pos - 1, pos_byte - 1);
2477
2478 accum = concat2 (accum, middle);
2479 lastpos = pos;
2480 lastpos_byte = pos_byte;
2481 }
2482 }
2483
2484 if (pos != lastpos)
2485 middle = substring_both (newtext, lastpos,
2486 lastpos_byte,
2487 pos, pos_byte);
2488 else
2489 middle = Qnil;
2490
2491 newtext = concat2 (accum, middle);
2492 }
2493
2494 /* Do case substitution in NEWTEXT if desired. */
2495 if (case_action == all_caps)
2496 newtext = Fupcase (newtext);
2497 else if (case_action == cap_initial)
2498 newtext = Fupcase_initials (newtext);
2499
2500 return concat3 (before, newtext, after);
2501 }
2502
2503 /* Record point, then move (quietly) to the start of the match. */
2504 if (PT >= search_regs.end[sub])
2505 opoint = PT - ZV;
2506 else if (PT > search_regs.start[sub])
2507 opoint = search_regs.end[sub] - ZV;
2508 else
2509 opoint = PT;
2510
2511 /* If we want non-literal replacement,
2512 perform substitution on the replacement string. */
2513 if (NILP (literal))
2514 {
2515 ptrdiff_t length = SBYTES (newtext);
2516 unsigned char *substed;
2517 ptrdiff_t substed_alloc_size, substed_len;
2518 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2519 int str_multibyte = STRING_MULTIBYTE (newtext);
2520 int really_changed = 0;
2521
2522 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2523 ? STRING_BYTES_BOUND
2524 : length * 2 + 100);
2525 substed = xmalloc (substed_alloc_size);
2526 substed_len = 0;
2527
2528 /* Go thru NEWTEXT, producing the actual text to insert in
2529 SUBSTED while adjusting multibyteness to that of the current
2530 buffer. */
2531
2532 for (pos_byte = 0, pos = 0; pos_byte < length;)
2533 {
2534 unsigned char str[MAX_MULTIBYTE_LENGTH];
2535 const unsigned char *add_stuff = NULL;
2536 ptrdiff_t add_len = 0;
2537 ptrdiff_t idx = -1;
2538
2539 if (str_multibyte)
2540 {
2541 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2542 if (!buf_multibyte)
2543 c = multibyte_char_to_unibyte (c);
2544 }
2545 else
2546 {
2547 /* Note that we don't have to increment POS. */
2548 c = SREF (newtext, pos_byte++);
2549 if (buf_multibyte)
2550 MAKE_CHAR_MULTIBYTE (c);
2551 }
2552
2553 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2554 or set IDX to a match index, which means put that part
2555 of the buffer text into SUBSTED. */
2556
2557 if (c == '\\')
2558 {
2559 really_changed = 1;
2560
2561 if (str_multibyte)
2562 {
2563 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2564 pos, pos_byte);
2565 if (!buf_multibyte && !ASCII_CHAR_P (c))
2566 c = multibyte_char_to_unibyte (c);
2567 }
2568 else
2569 {
2570 c = SREF (newtext, pos_byte++);
2571 if (buf_multibyte)
2572 MAKE_CHAR_MULTIBYTE (c);
2573 }
2574
2575 if (c == '&')
2576 idx = sub;
2577 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2578 {
2579 if (search_regs.start[c - '0'] >= 1)
2580 idx = c - '0';
2581 }
2582 else if (c == '\\')
2583 add_len = 1, add_stuff = (unsigned char *) "\\";
2584 else
2585 {
2586 xfree (substed);
2587 error ("Invalid use of `\\' in replacement text");
2588 }
2589 }
2590 else
2591 {
2592 add_len = CHAR_STRING (c, str);
2593 add_stuff = str;
2594 }
2595
2596 /* If we want to copy part of a previous match,
2597 set up ADD_STUFF and ADD_LEN to point to it. */
2598 if (idx >= 0)
2599 {
2600 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2601 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2602 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2603 move_gap (search_regs.start[idx]);
2604 add_stuff = BYTE_POS_ADDR (begbyte);
2605 }
2606
2607 /* Now the stuff we want to add to SUBSTED
2608 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2609
2610 /* Make sure SUBSTED is big enough. */
2611 if (substed_alloc_size - substed_len < add_len)
2612 substed =
2613 xpalloc (substed, &substed_alloc_size,
2614 add_len - (substed_alloc_size - substed_len),
2615 STRING_BYTES_BOUND, 1);
2616
2617 /* Now add to the end of SUBSTED. */
2618 if (add_stuff)
2619 {
2620 memcpy (substed + substed_len, add_stuff, add_len);
2621 substed_len += add_len;
2622 }
2623 }
2624
2625 if (really_changed)
2626 {
2627 if (buf_multibyte)
2628 {
2629 ptrdiff_t nchars =
2630 multibyte_chars_in_text (substed, substed_len);
2631
2632 newtext = make_multibyte_string ((char *) substed, nchars,
2633 substed_len);
2634 }
2635 else
2636 newtext = make_unibyte_string ((char *) substed, substed_len);
2637 }
2638 xfree (substed);
2639 }
2640
2641 /* Replace the old text with the new in the cleanest possible way. */
2642 replace_range (search_regs.start[sub], search_regs.end[sub],
2643 newtext, 1, 0, 1);
2644 newpoint = search_regs.start[sub] + SCHARS (newtext);
2645
2646 if (case_action == all_caps)
2647 Fupcase_region (make_number (search_regs.start[sub]),
2648 make_number (newpoint));
2649 else if (case_action == cap_initial)
2650 Fupcase_initials_region (make_number (search_regs.start[sub]),
2651 make_number (newpoint));
2652
2653 /* Adjust search data for this change. */
2654 {
2655 ptrdiff_t oldend = search_regs.end[sub];
2656 ptrdiff_t oldstart = search_regs.start[sub];
2657 ptrdiff_t change = newpoint - search_regs.end[sub];
2658 ptrdiff_t i;
2659
2660 for (i = 0; i < search_regs.num_regs; i++)
2661 {
2662 if (search_regs.start[i] >= oldend)
2663 search_regs.start[i] += change;
2664 else if (search_regs.start[i] > oldstart)
2665 search_regs.start[i] = oldstart;
2666 if (search_regs.end[i] >= oldend)
2667 search_regs.end[i] += change;
2668 else if (search_regs.end[i] > oldstart)
2669 search_regs.end[i] = oldstart;
2670 }
2671 }
2672
2673 /* Put point back where it was in the text. */
2674 if (opoint <= 0)
2675 TEMP_SET_PT (opoint + ZV);
2676 else
2677 TEMP_SET_PT (opoint);
2678
2679 /* Now move point "officially" to the start of the inserted replacement. */
2680 move_if_not_intangible (newpoint);
2681
2682 return Qnil;
2683 }
2684 \f
2685 static Lisp_Object
2686 match_limit (Lisp_Object num, int beginningp)
2687 {
2688 EMACS_INT n;
2689
2690 CHECK_NUMBER (num);
2691 n = XINT (num);
2692 if (n < 0)
2693 args_out_of_range (num, make_number (0));
2694 if (search_regs.num_regs <= 0)
2695 error ("No match data, because no search succeeded");
2696 if (n >= search_regs.num_regs
2697 || search_regs.start[n] < 0)
2698 return Qnil;
2699 return (make_number ((beginningp) ? search_regs.start[n]
2700 : search_regs.end[n]));
2701 }
2702
2703 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2704 doc: /* Return position of start of text matched by last search.
2705 SUBEXP, a number, specifies which parenthesized expression in the last
2706 regexp.
2707 Value is nil if SUBEXPth pair didn't match, or there were less than
2708 SUBEXP pairs.
2709 Zero means the entire text matched by the whole regexp or whole string. */)
2710 (Lisp_Object subexp)
2711 {
2712 return match_limit (subexp, 1);
2713 }
2714
2715 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2716 doc: /* Return position of end of text matched by last search.
2717 SUBEXP, a number, specifies which parenthesized expression in the last
2718 regexp.
2719 Value is nil if SUBEXPth pair didn't match, or there were less than
2720 SUBEXP pairs.
2721 Zero means the entire text matched by the whole regexp or whole string. */)
2722 (Lisp_Object subexp)
2723 {
2724 return match_limit (subexp, 0);
2725 }
2726
2727 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2728 doc: /* Return a list containing all info on what the last search matched.
2729 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2730 All the elements are markers or nil (nil if the Nth pair didn't match)
2731 if the last match was on a buffer; integers or nil if a string was matched.
2732 Use `set-match-data' to reinstate the data in this list.
2733
2734 If INTEGERS (the optional first argument) is non-nil, always use
2735 integers \(rather than markers) to represent buffer positions. In
2736 this case, and if the last match was in a buffer, the buffer will get
2737 stored as one additional element at the end of the list.
2738
2739 If REUSE is a list, reuse it as part of the value. If REUSE is long
2740 enough to hold all the values, and if INTEGERS is non-nil, no consing
2741 is done.
2742
2743 If optional third arg RESEAT is non-nil, any previous markers on the
2744 REUSE list will be modified to point to nowhere.
2745
2746 Return value is undefined if the last search failed. */)
2747 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2748 {
2749 Lisp_Object tail, prev;
2750 Lisp_Object *data;
2751 ptrdiff_t i, len;
2752
2753 if (!NILP (reseat))
2754 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2755 if (MARKERP (XCAR (tail)))
2756 {
2757 unchain_marker (XMARKER (XCAR (tail)));
2758 XSETCAR (tail, Qnil);
2759 }
2760
2761 if (NILP (last_thing_searched))
2762 return Qnil;
2763
2764 prev = Qnil;
2765
2766 data = alloca ((2 * search_regs.num_regs + 1) * sizeof *data);
2767
2768 len = 0;
2769 for (i = 0; i < search_regs.num_regs; i++)
2770 {
2771 ptrdiff_t start = search_regs.start[i];
2772 if (start >= 0)
2773 {
2774 if (EQ (last_thing_searched, Qt)
2775 || ! NILP (integers))
2776 {
2777 XSETFASTINT (data[2 * i], start);
2778 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2779 }
2780 else if (BUFFERP (last_thing_searched))
2781 {
2782 data[2 * i] = Fmake_marker ();
2783 Fset_marker (data[2 * i],
2784 make_number (start),
2785 last_thing_searched);
2786 data[2 * i + 1] = Fmake_marker ();
2787 Fset_marker (data[2 * i + 1],
2788 make_number (search_regs.end[i]),
2789 last_thing_searched);
2790 }
2791 else
2792 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2793 emacs_abort ();
2794
2795 len = 2 * i + 2;
2796 }
2797 else
2798 data[2 * i] = data[2 * i + 1] = Qnil;
2799 }
2800
2801 if (BUFFERP (last_thing_searched) && !NILP (integers))
2802 {
2803 data[len] = last_thing_searched;
2804 len++;
2805 }
2806
2807 /* If REUSE is not usable, cons up the values and return them. */
2808 if (! CONSP (reuse))
2809 return Flist (len, data);
2810
2811 /* If REUSE is a list, store as many value elements as will fit
2812 into the elements of REUSE. */
2813 for (i = 0, tail = reuse; CONSP (tail);
2814 i++, tail = XCDR (tail))
2815 {
2816 if (i < len)
2817 XSETCAR (tail, data[i]);
2818 else
2819 XSETCAR (tail, Qnil);
2820 prev = tail;
2821 }
2822
2823 /* If we couldn't fit all value elements into REUSE,
2824 cons up the rest of them and add them to the end of REUSE. */
2825 if (i < len)
2826 XSETCDR (prev, Flist (len - i, data + i));
2827
2828 return reuse;
2829 }
2830
2831 /* We used to have an internal use variant of `reseat' described as:
2832
2833 If RESEAT is `evaporate', put the markers back on the free list
2834 immediately. No other references to the markers must exist in this
2835 case, so it is used only internally on the unwind stack and
2836 save-match-data from Lisp.
2837
2838 But it was ill-conceived: those supposedly-internal markers get exposed via
2839 the undo-list, so freeing them here is unsafe. */
2840
2841 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2842 doc: /* Set internal data on last search match from elements of LIST.
2843 LIST should have been created by calling `match-data' previously.
2844
2845 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2846 (register Lisp_Object list, Lisp_Object reseat)
2847 {
2848 ptrdiff_t i;
2849 register Lisp_Object marker;
2850
2851 if (running_asynch_code)
2852 save_search_regs ();
2853
2854 CHECK_LIST (list);
2855
2856 /* Unless we find a marker with a buffer or an explicit buffer
2857 in LIST, assume that this match data came from a string. */
2858 last_thing_searched = Qt;
2859
2860 /* Allocate registers if they don't already exist. */
2861 {
2862 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2863
2864 if (length > search_regs.num_regs)
2865 {
2866 ptrdiff_t num_regs = search_regs.num_regs;
2867 if (PTRDIFF_MAX < length)
2868 memory_full (SIZE_MAX);
2869 search_regs.start =
2870 xpalloc (search_regs.start, &num_regs, length - num_regs,
2871 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2872 search_regs.end =
2873 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2874
2875 for (i = search_regs.num_regs; i < num_regs; i++)
2876 search_regs.start[i] = -1;
2877
2878 search_regs.num_regs = num_regs;
2879 }
2880
2881 for (i = 0; CONSP (list); i++)
2882 {
2883 marker = XCAR (list);
2884 if (BUFFERP (marker))
2885 {
2886 last_thing_searched = marker;
2887 break;
2888 }
2889 if (i >= length)
2890 break;
2891 if (NILP (marker))
2892 {
2893 search_regs.start[i] = -1;
2894 list = XCDR (list);
2895 }
2896 else
2897 {
2898 Lisp_Object from;
2899 Lisp_Object m;
2900
2901 m = marker;
2902 if (MARKERP (marker))
2903 {
2904 if (XMARKER (marker)->buffer == 0)
2905 XSETFASTINT (marker, 0);
2906 else
2907 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2908 }
2909
2910 CHECK_NUMBER_COERCE_MARKER (marker);
2911 from = marker;
2912
2913 if (!NILP (reseat) && MARKERP (m))
2914 {
2915 unchain_marker (XMARKER (m));
2916 XSETCAR (list, Qnil);
2917 }
2918
2919 if ((list = XCDR (list), !CONSP (list)))
2920 break;
2921
2922 m = marker = XCAR (list);
2923
2924 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2925 XSETFASTINT (marker, 0);
2926
2927 CHECK_NUMBER_COERCE_MARKER (marker);
2928 if ((XINT (from) < 0
2929 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2930 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2931 && (XINT (marker) < 0
2932 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2933 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2934 {
2935 search_regs.start[i] = XINT (from);
2936 search_regs.end[i] = XINT (marker);
2937 }
2938 else
2939 {
2940 search_regs.start[i] = -1;
2941 }
2942
2943 if (!NILP (reseat) && MARKERP (m))
2944 {
2945 unchain_marker (XMARKER (m));
2946 XSETCAR (list, Qnil);
2947 }
2948 }
2949 list = XCDR (list);
2950 }
2951
2952 for (; i < search_regs.num_regs; i++)
2953 search_regs.start[i] = -1;
2954 }
2955
2956 return Qnil;
2957 }
2958
2959 /* If non-zero the match data have been saved in saved_search_regs
2960 during the execution of a sentinel or filter. */
2961 static int search_regs_saved;
2962 static struct re_registers saved_search_regs;
2963 static Lisp_Object saved_last_thing_searched;
2964
2965 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2966 if asynchronous code (filter or sentinel) is running. */
2967 static void
2968 save_search_regs (void)
2969 {
2970 if (!search_regs_saved)
2971 {
2972 saved_search_regs.num_regs = search_regs.num_regs;
2973 saved_search_regs.start = search_regs.start;
2974 saved_search_regs.end = search_regs.end;
2975 saved_last_thing_searched = last_thing_searched;
2976 last_thing_searched = Qnil;
2977 search_regs.num_regs = 0;
2978 search_regs.start = 0;
2979 search_regs.end = 0;
2980
2981 search_regs_saved = 1;
2982 }
2983 }
2984
2985 /* Called upon exit from filters and sentinels. */
2986 void
2987 restore_search_regs (void)
2988 {
2989 if (search_regs_saved)
2990 {
2991 if (search_regs.num_regs > 0)
2992 {
2993 xfree (search_regs.start);
2994 xfree (search_regs.end);
2995 }
2996 search_regs.num_regs = saved_search_regs.num_regs;
2997 search_regs.start = saved_search_regs.start;
2998 search_regs.end = saved_search_regs.end;
2999 last_thing_searched = saved_last_thing_searched;
3000 saved_last_thing_searched = Qnil;
3001 search_regs_saved = 0;
3002 }
3003 }
3004
3005 static Lisp_Object
3006 unwind_set_match_data (Lisp_Object list)
3007 {
3008 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3009 return Fset_match_data (list, Qt);
3010 }
3011
3012 /* Called to unwind protect the match data. */
3013 void
3014 record_unwind_save_match_data (void)
3015 {
3016 record_unwind_protect (unwind_set_match_data,
3017 Fmatch_data (Qnil, Qnil, Qnil));
3018 }
3019
3020 /* Quote a string to deactivate reg-expr chars */
3021
3022 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3023 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3024 (Lisp_Object string)
3025 {
3026 register char *in, *out, *end;
3027 register char *temp;
3028 int backslashes_added = 0;
3029
3030 CHECK_STRING (string);
3031
3032 temp = alloca (SBYTES (string) * 2);
3033
3034 /* Now copy the data into the new string, inserting escapes. */
3035
3036 in = SSDATA (string);
3037 end = in + SBYTES (string);
3038 out = temp;
3039
3040 for (; in != end; in++)
3041 {
3042 if (*in == '['
3043 || *in == '*' || *in == '.' || *in == '\\'
3044 || *in == '?' || *in == '+'
3045 || *in == '^' || *in == '$')
3046 *out++ = '\\', backslashes_added++;
3047 *out++ = *in;
3048 }
3049
3050 return make_specified_string (temp,
3051 SCHARS (string) + backslashes_added,
3052 out - temp,
3053 STRING_MULTIBYTE (string));
3054 }
3055 \f
3056 void
3057 syms_of_search (void)
3058 {
3059 register int i;
3060
3061 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3062 {
3063 searchbufs[i].buf.allocated = 100;
3064 searchbufs[i].buf.buffer = xmalloc (100);
3065 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3066 searchbufs[i].regexp = Qnil;
3067 searchbufs[i].whitespace_regexp = Qnil;
3068 searchbufs[i].syntax_table = Qnil;
3069 staticpro (&searchbufs[i].regexp);
3070 staticpro (&searchbufs[i].whitespace_regexp);
3071 staticpro (&searchbufs[i].syntax_table);
3072 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3073 }
3074 searchbuf_head = &searchbufs[0];
3075
3076 DEFSYM (Qsearch_failed, "search-failed");
3077 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3078
3079 Fput (Qsearch_failed, Qerror_conditions,
3080 listn (CONSTYPE_PURE, 2, Qsearch_failed, Qerror));
3081 Fput (Qsearch_failed, Qerror_message,
3082 build_pure_c_string ("Search failed"));
3083
3084 Fput (Qinvalid_regexp, Qerror_conditions,
3085 listn (CONSTYPE_PURE, 2, Qinvalid_regexp, Qerror));
3086 Fput (Qinvalid_regexp, Qerror_message,
3087 build_pure_c_string ("Invalid regexp"));
3088
3089 last_thing_searched = Qnil;
3090 staticpro (&last_thing_searched);
3091
3092 saved_last_thing_searched = Qnil;
3093 staticpro (&saved_last_thing_searched);
3094
3095 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3096 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3097 Some commands use this for user-specified regexps.
3098 Spaces that occur inside character classes or repetition operators
3099 or other such regexp constructs are not replaced with this.
3100 A value of nil (which is the normal value) means treat spaces literally. */);
3101 Vsearch_spaces_regexp = Qnil;
3102
3103 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3104 doc: /* Internal use only.
3105 If non-nil, the primitive searching and matching functions
3106 such as `looking-at', `string-match', `re-search-forward', etc.,
3107 do not set the match data. The proper way to use this variable
3108 is to bind it with `let' around a small expression. */);
3109 Vinhibit_changing_match_data = Qnil;
3110
3111 defsubr (&Slooking_at);
3112 defsubr (&Sposix_looking_at);
3113 defsubr (&Sstring_match);
3114 defsubr (&Sposix_string_match);
3115 defsubr (&Ssearch_forward);
3116 defsubr (&Ssearch_backward);
3117 defsubr (&Sre_search_forward);
3118 defsubr (&Sre_search_backward);
3119 defsubr (&Sposix_search_forward);
3120 defsubr (&Sposix_search_backward);
3121 defsubr (&Sreplace_match);
3122 defsubr (&Smatch_beginning);
3123 defsubr (&Smatch_end);
3124 defsubr (&Smatch_data);
3125 defsubr (&Sset_match_data);
3126 defsubr (&Sregexp_quote);
3127 }