* window.h (struct window): Replace hchild, vchild and buffer slots
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #include <fcntl.h>
67
68 #ifdef USE_GTK
69 # include "gtkutil.h"
70 #endif
71 #ifdef WINDOWSNT
72 #include "w32.h"
73 #include "w32heap.h" /* for sbrk */
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
89
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
93
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
97
98 /* Default value of gc_cons_threshold (see below). */
99
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
101
102 /* Global variables. */
103 struct emacs_globals globals;
104
105 /* Number of bytes of consing done since the last gc. */
106
107 EMACS_INT consing_since_gc;
108
109 /* Similar minimum, computed from Vgc_cons_percentage. */
110
111 EMACS_INT gc_relative_threshold;
112
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
115
116 EMACS_INT memory_full_cons_threshold;
117
118 /* True during GC. */
119
120 bool gc_in_progress;
121
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
125
126 bool abort_on_gc;
127
128 /* Number of live and free conses etc. */
129
130 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
131 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
132 static EMACS_INT total_free_floats, total_floats;
133
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
137
138 static char *spare_memory[7];
139
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
142
143 #define SPARE_MEMORY (1 << 14)
144
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
150
151 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
152 #define PUREBEG (char *) pure
153
154 /* Pointer to the pure area, and its size. */
155
156 static char *purebeg;
157 static ptrdiff_t pure_size;
158
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
161
162 static ptrdiff_t pure_bytes_used_before_overflow;
163
164 /* True if P points into pure space. */
165
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
168
169 /* Index in pure at which next pure Lisp object will be allocated.. */
170
171 static ptrdiff_t pure_bytes_used_lisp;
172
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
174
175 static ptrdiff_t pure_bytes_used_non_lisp;
176
177 /* If nonzero, this is a warning delivered by malloc and not yet
178 displayed. */
179
180 const char *pending_malloc_warning;
181
182 /* Maximum amount of C stack to save when a GC happens. */
183
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
186 #endif
187
188 /* Buffer in which we save a copy of the C stack at each GC. */
189
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy;
192 static ptrdiff_t stack_copy_size;
193 #endif
194
195 static Lisp_Object Qconses;
196 static Lisp_Object Qsymbols;
197 static Lisp_Object Qmiscs;
198 static Lisp_Object Qstrings;
199 static Lisp_Object Qvectors;
200 static Lisp_Object Qfloats;
201 static Lisp_Object Qintervals;
202 static Lisp_Object Qbuffers;
203 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
204 static Lisp_Object Qgc_cons_threshold;
205 Lisp_Object Qautomatic_gc;
206 Lisp_Object Qchar_table_extra_slots;
207
208 /* Hook run after GC has finished. */
209
210 static Lisp_Object Qpost_gc_hook;
211
212 static void free_save_value (Lisp_Object);
213 static void mark_terminals (void);
214 static void gc_sweep (void);
215 static Lisp_Object make_pure_vector (ptrdiff_t);
216 static void mark_buffer (struct buffer *);
217
218 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
219 static void refill_memory_reserve (void);
220 #endif
221 static void compact_small_strings (void);
222 static void free_large_strings (void);
223 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
224
225 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
226 what memory allocated via lisp_malloc and lisp_align_malloc is intended
227 for what purpose. This enumeration specifies the type of memory. */
228
229 enum mem_type
230 {
231 MEM_TYPE_NON_LISP,
232 MEM_TYPE_BUFFER,
233 MEM_TYPE_CONS,
234 MEM_TYPE_STRING,
235 MEM_TYPE_MISC,
236 MEM_TYPE_SYMBOL,
237 MEM_TYPE_FLOAT,
238 /* Since all non-bool pseudovectors are small enough to be
239 allocated from vector blocks, this memory type denotes
240 large regular vectors and large bool pseudovectors. */
241 MEM_TYPE_VECTORLIKE,
242 /* Special type to denote vector blocks. */
243 MEM_TYPE_VECTOR_BLOCK,
244 /* Special type to denote reserved memory. */
245 MEM_TYPE_SPARE
246 };
247
248 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
249
250 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
251 #include <stdio.h> /* For fprintf. */
252 #endif
253
254 /* A unique object in pure space used to make some Lisp objects
255 on free lists recognizable in O(1). */
256
257 static Lisp_Object Vdead;
258 #define DEADP(x) EQ (x, Vdead)
259
260 #ifdef GC_MALLOC_CHECK
261
262 enum mem_type allocated_mem_type;
263
264 #endif /* GC_MALLOC_CHECK */
265
266 /* A node in the red-black tree describing allocated memory containing
267 Lisp data. Each such block is recorded with its start and end
268 address when it is allocated, and removed from the tree when it
269 is freed.
270
271 A red-black tree is a balanced binary tree with the following
272 properties:
273
274 1. Every node is either red or black.
275 2. Every leaf is black.
276 3. If a node is red, then both of its children are black.
277 4. Every simple path from a node to a descendant leaf contains
278 the same number of black nodes.
279 5. The root is always black.
280
281 When nodes are inserted into the tree, or deleted from the tree,
282 the tree is "fixed" so that these properties are always true.
283
284 A red-black tree with N internal nodes has height at most 2
285 log(N+1). Searches, insertions and deletions are done in O(log N).
286 Please see a text book about data structures for a detailed
287 description of red-black trees. Any book worth its salt should
288 describe them. */
289
290 struct mem_node
291 {
292 /* Children of this node. These pointers are never NULL. When there
293 is no child, the value is MEM_NIL, which points to a dummy node. */
294 struct mem_node *left, *right;
295
296 /* The parent of this node. In the root node, this is NULL. */
297 struct mem_node *parent;
298
299 /* Start and end of allocated region. */
300 void *start, *end;
301
302 /* Node color. */
303 enum {MEM_BLACK, MEM_RED} color;
304
305 /* Memory type. */
306 enum mem_type type;
307 };
308
309 /* Base address of stack. Set in main. */
310
311 Lisp_Object *stack_base;
312
313 /* Root of the tree describing allocated Lisp memory. */
314
315 static struct mem_node *mem_root;
316
317 /* Lowest and highest known address in the heap. */
318
319 static void *min_heap_address, *max_heap_address;
320
321 /* Sentinel node of the tree. */
322
323 static struct mem_node mem_z;
324 #define MEM_NIL &mem_z
325
326 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
327 static struct mem_node *mem_insert (void *, void *, enum mem_type);
328 static void mem_insert_fixup (struct mem_node *);
329 static void mem_rotate_left (struct mem_node *);
330 static void mem_rotate_right (struct mem_node *);
331 static void mem_delete (struct mem_node *);
332 static void mem_delete_fixup (struct mem_node *);
333 static struct mem_node *mem_find (void *);
334 #endif
335
336 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
337
338 #ifndef DEADP
339 # define DEADP(x) 0
340 #endif
341
342 /* Recording what needs to be marked for gc. */
343
344 struct gcpro *gcprolist;
345
346 /* Addresses of staticpro'd variables. Initialize it to a nonzero
347 value; otherwise some compilers put it into BSS. */
348
349 #define NSTATICS 0x800
350 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
351
352 /* Index of next unused slot in staticvec. */
353
354 static int staticidx;
355
356 static void *pure_alloc (size_t, int);
357
358
359 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
360 ALIGNMENT must be a power of 2. */
361
362 #define ALIGN(ptr, ALIGNMENT) \
363 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
364 & ~ ((ALIGNMENT) - 1)))
365
366
367 \f
368 /************************************************************************
369 Malloc
370 ************************************************************************/
371
372 /* Function malloc calls this if it finds we are near exhausting storage. */
373
374 void
375 malloc_warning (const char *str)
376 {
377 pending_malloc_warning = str;
378 }
379
380
381 /* Display an already-pending malloc warning. */
382
383 void
384 display_malloc_warning (void)
385 {
386 call3 (intern ("display-warning"),
387 intern ("alloc"),
388 build_string (pending_malloc_warning),
389 intern ("emergency"));
390 pending_malloc_warning = 0;
391 }
392 \f
393 /* Called if we can't allocate relocatable space for a buffer. */
394
395 void
396 buffer_memory_full (ptrdiff_t nbytes)
397 {
398 /* If buffers use the relocating allocator, no need to free
399 spare_memory, because we may have plenty of malloc space left
400 that we could get, and if we don't, the malloc that fails will
401 itself cause spare_memory to be freed. If buffers don't use the
402 relocating allocator, treat this like any other failing
403 malloc. */
404
405 #ifndef REL_ALLOC
406 memory_full (nbytes);
407 #else
408 /* This used to call error, but if we've run out of memory, we could
409 get infinite recursion trying to build the string. */
410 xsignal (Qnil, Vmemory_signal_data);
411 #endif
412 }
413
414 /* A common multiple of the positive integers A and B. Ideally this
415 would be the least common multiple, but there's no way to do that
416 as a constant expression in C, so do the best that we can easily do. */
417 #define COMMON_MULTIPLE(a, b) \
418 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
419
420 #ifndef XMALLOC_OVERRUN_CHECK
421 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
422 #else
423
424 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
425 around each block.
426
427 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
428 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
429 block size in little-endian order. The trailer consists of
430 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
431
432 The header is used to detect whether this block has been allocated
433 through these functions, as some low-level libc functions may
434 bypass the malloc hooks. */
435
436 #define XMALLOC_OVERRUN_CHECK_SIZE 16
437 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
438 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
439
440 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
441 hold a size_t value and (2) the header size is a multiple of the
442 alignment that Emacs needs for C types and for USE_LSB_TAG. */
443 #define XMALLOC_BASE_ALIGNMENT \
444 alignof (union { long double d; intmax_t i; void *p; })
445
446 #if USE_LSB_TAG
447 # define XMALLOC_HEADER_ALIGNMENT \
448 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
449 #else
450 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
451 #endif
452 #define XMALLOC_OVERRUN_SIZE_SIZE \
453 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
454 + XMALLOC_HEADER_ALIGNMENT - 1) \
455 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
456 - XMALLOC_OVERRUN_CHECK_SIZE)
457
458 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
459 { '\x9a', '\x9b', '\xae', '\xaf',
460 '\xbf', '\xbe', '\xce', '\xcf',
461 '\xea', '\xeb', '\xec', '\xed',
462 '\xdf', '\xde', '\x9c', '\x9d' };
463
464 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
465 { '\xaa', '\xab', '\xac', '\xad',
466 '\xba', '\xbb', '\xbc', '\xbd',
467 '\xca', '\xcb', '\xcc', '\xcd',
468 '\xda', '\xdb', '\xdc', '\xdd' };
469
470 /* Insert and extract the block size in the header. */
471
472 static void
473 xmalloc_put_size (unsigned char *ptr, size_t size)
474 {
475 int i;
476 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
477 {
478 *--ptr = size & ((1 << CHAR_BIT) - 1);
479 size >>= CHAR_BIT;
480 }
481 }
482
483 static size_t
484 xmalloc_get_size (unsigned char *ptr)
485 {
486 size_t size = 0;
487 int i;
488 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
489 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
490 {
491 size <<= CHAR_BIT;
492 size += *ptr++;
493 }
494 return size;
495 }
496
497
498 /* Like malloc, but wraps allocated block with header and trailer. */
499
500 static void *
501 overrun_check_malloc (size_t size)
502 {
503 register unsigned char *val;
504 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
505 emacs_abort ();
506
507 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
508 if (val)
509 {
510 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
511 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
512 xmalloc_put_size (val, size);
513 memcpy (val + size, xmalloc_overrun_check_trailer,
514 XMALLOC_OVERRUN_CHECK_SIZE);
515 }
516 return val;
517 }
518
519
520 /* Like realloc, but checks old block for overrun, and wraps new block
521 with header and trailer. */
522
523 static void *
524 overrun_check_realloc (void *block, size_t size)
525 {
526 register unsigned char *val = (unsigned char *) block;
527 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
528 emacs_abort ();
529
530 if (val
531 && memcmp (xmalloc_overrun_check_header,
532 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
533 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
534 {
535 size_t osize = xmalloc_get_size (val);
536 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
537 XMALLOC_OVERRUN_CHECK_SIZE))
538 emacs_abort ();
539 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
540 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
541 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
542 }
543
544 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
545
546 if (val)
547 {
548 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
549 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
550 xmalloc_put_size (val, size);
551 memcpy (val + size, xmalloc_overrun_check_trailer,
552 XMALLOC_OVERRUN_CHECK_SIZE);
553 }
554 return val;
555 }
556
557 /* Like free, but checks block for overrun. */
558
559 static void
560 overrun_check_free (void *block)
561 {
562 unsigned char *val = (unsigned char *) block;
563
564 if (val
565 && memcmp (xmalloc_overrun_check_header,
566 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
567 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
568 {
569 size_t osize = xmalloc_get_size (val);
570 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
571 XMALLOC_OVERRUN_CHECK_SIZE))
572 emacs_abort ();
573 #ifdef XMALLOC_CLEAR_FREE_MEMORY
574 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
575 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
576 #else
577 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
578 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
579 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
580 #endif
581 }
582
583 free (val);
584 }
585
586 #undef malloc
587 #undef realloc
588 #undef free
589 #define malloc overrun_check_malloc
590 #define realloc overrun_check_realloc
591 #define free overrun_check_free
592 #endif
593
594 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
595 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
596 If that variable is set, block input while in one of Emacs's memory
597 allocation functions. There should be no need for this debugging
598 option, since signal handlers do not allocate memory, but Emacs
599 formerly allocated memory in signal handlers and this compile-time
600 option remains as a way to help debug the issue should it rear its
601 ugly head again. */
602 #ifdef XMALLOC_BLOCK_INPUT_CHECK
603 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
604 static void
605 malloc_block_input (void)
606 {
607 if (block_input_in_memory_allocators)
608 block_input ();
609 }
610 static void
611 malloc_unblock_input (void)
612 {
613 if (block_input_in_memory_allocators)
614 unblock_input ();
615 }
616 # define MALLOC_BLOCK_INPUT malloc_block_input ()
617 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
618 #else
619 # define MALLOC_BLOCK_INPUT ((void) 0)
620 # define MALLOC_UNBLOCK_INPUT ((void) 0)
621 #endif
622
623 #define MALLOC_PROBE(size) \
624 do { \
625 if (profiler_memory_running) \
626 malloc_probe (size); \
627 } while (0)
628
629
630 /* Like malloc but check for no memory and block interrupt input.. */
631
632 void *
633 xmalloc (size_t size)
634 {
635 void *val;
636
637 MALLOC_BLOCK_INPUT;
638 val = malloc (size);
639 MALLOC_UNBLOCK_INPUT;
640
641 if (!val && size)
642 memory_full (size);
643 MALLOC_PROBE (size);
644 return val;
645 }
646
647 /* Like the above, but zeroes out the memory just allocated. */
648
649 void *
650 xzalloc (size_t size)
651 {
652 void *val;
653
654 MALLOC_BLOCK_INPUT;
655 val = malloc (size);
656 MALLOC_UNBLOCK_INPUT;
657
658 if (!val && size)
659 memory_full (size);
660 memset (val, 0, size);
661 MALLOC_PROBE (size);
662 return val;
663 }
664
665 /* Like realloc but check for no memory and block interrupt input.. */
666
667 void *
668 xrealloc (void *block, size_t size)
669 {
670 void *val;
671
672 MALLOC_BLOCK_INPUT;
673 /* We must call malloc explicitly when BLOCK is 0, since some
674 reallocs don't do this. */
675 if (! block)
676 val = malloc (size);
677 else
678 val = realloc (block, size);
679 MALLOC_UNBLOCK_INPUT;
680
681 if (!val && size)
682 memory_full (size);
683 MALLOC_PROBE (size);
684 return val;
685 }
686
687
688 /* Like free but block interrupt input. */
689
690 void
691 xfree (void *block)
692 {
693 if (!block)
694 return;
695 MALLOC_BLOCK_INPUT;
696 free (block);
697 MALLOC_UNBLOCK_INPUT;
698 /* We don't call refill_memory_reserve here
699 because in practice the call in r_alloc_free seems to suffice. */
700 }
701
702
703 /* Other parts of Emacs pass large int values to allocator functions
704 expecting ptrdiff_t. This is portable in practice, but check it to
705 be safe. */
706 verify (INT_MAX <= PTRDIFF_MAX);
707
708
709 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
710 Signal an error on memory exhaustion, and block interrupt input. */
711
712 void *
713 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
714 {
715 eassert (0 <= nitems && 0 < item_size);
716 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
717 memory_full (SIZE_MAX);
718 return xmalloc (nitems * item_size);
719 }
720
721
722 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
723 Signal an error on memory exhaustion, and block interrupt input. */
724
725 void *
726 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
727 {
728 eassert (0 <= nitems && 0 < item_size);
729 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
730 memory_full (SIZE_MAX);
731 return xrealloc (pa, nitems * item_size);
732 }
733
734
735 /* Grow PA, which points to an array of *NITEMS items, and return the
736 location of the reallocated array, updating *NITEMS to reflect its
737 new size. The new array will contain at least NITEMS_INCR_MIN more
738 items, but will not contain more than NITEMS_MAX items total.
739 ITEM_SIZE is the size of each item, in bytes.
740
741 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
742 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
743 infinity.
744
745 If PA is null, then allocate a new array instead of reallocating
746 the old one.
747
748 Block interrupt input as needed. If memory exhaustion occurs, set
749 *NITEMS to zero if PA is null, and signal an error (i.e., do not
750 return).
751
752 Thus, to grow an array A without saving its old contents, do
753 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
754 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
755 and signals an error, and later this code is reexecuted and
756 attempts to free A. */
757
758 void *
759 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
760 ptrdiff_t nitems_max, ptrdiff_t item_size)
761 {
762 /* The approximate size to use for initial small allocation
763 requests. This is the largest "small" request for the GNU C
764 library malloc. */
765 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
766
767 /* If the array is tiny, grow it to about (but no greater than)
768 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
769 ptrdiff_t n = *nitems;
770 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
771 ptrdiff_t half_again = n >> 1;
772 ptrdiff_t incr_estimate = max (tiny_max, half_again);
773
774 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
775 NITEMS_MAX, and what the C language can represent safely. */
776 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
777 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
778 ? nitems_max : C_language_max);
779 ptrdiff_t nitems_incr_max = n_max - n;
780 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
781
782 eassert (item_size > 0 && nitems_incr_min > 0 && n >= 0 && nitems_max >= -1);
783 if (! pa)
784 *nitems = 0;
785 if (nitems_incr_max < incr)
786 memory_full (SIZE_MAX);
787 n += incr;
788 pa = xrealloc (pa, n * item_size);
789 *nitems = n;
790 return pa;
791 }
792
793
794 /* Like strdup, but uses xmalloc. */
795
796 char *
797 xstrdup (const char *s)
798 {
799 size_t len = strlen (s) + 1;
800 char *p = xmalloc (len);
801 memcpy (p, s, len);
802 return p;
803 }
804
805 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
806 argument is a const pointer. */
807
808 void
809 xputenv (char const *string)
810 {
811 if (putenv ((char *) string) != 0)
812 memory_full (0);
813 }
814
815 /* Unwind for SAFE_ALLOCA */
816
817 Lisp_Object
818 safe_alloca_unwind (Lisp_Object arg)
819 {
820 free_save_value (arg);
821 return Qnil;
822 }
823
824 /* Return a newly allocated memory block of SIZE bytes, remembering
825 to free it when unwinding. */
826 void *
827 record_xmalloc (size_t size)
828 {
829 void *p = xmalloc (size);
830 record_unwind_protect (safe_alloca_unwind, make_save_pointer (p));
831 return p;
832 }
833
834
835 /* Like malloc but used for allocating Lisp data. NBYTES is the
836 number of bytes to allocate, TYPE describes the intended use of the
837 allocated memory block (for strings, for conses, ...). */
838
839 #if ! USE_LSB_TAG
840 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
841 #endif
842
843 static void *
844 lisp_malloc (size_t nbytes, enum mem_type type)
845 {
846 register void *val;
847
848 MALLOC_BLOCK_INPUT;
849
850 #ifdef GC_MALLOC_CHECK
851 allocated_mem_type = type;
852 #endif
853
854 val = malloc (nbytes);
855
856 #if ! USE_LSB_TAG
857 /* If the memory just allocated cannot be addressed thru a Lisp
858 object's pointer, and it needs to be,
859 that's equivalent to running out of memory. */
860 if (val && type != MEM_TYPE_NON_LISP)
861 {
862 Lisp_Object tem;
863 XSETCONS (tem, (char *) val + nbytes - 1);
864 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
865 {
866 lisp_malloc_loser = val;
867 free (val);
868 val = 0;
869 }
870 }
871 #endif
872
873 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
874 if (val && type != MEM_TYPE_NON_LISP)
875 mem_insert (val, (char *) val + nbytes, type);
876 #endif
877
878 MALLOC_UNBLOCK_INPUT;
879 if (!val && nbytes)
880 memory_full (nbytes);
881 MALLOC_PROBE (nbytes);
882 return val;
883 }
884
885 /* Free BLOCK. This must be called to free memory allocated with a
886 call to lisp_malloc. */
887
888 static void
889 lisp_free (void *block)
890 {
891 MALLOC_BLOCK_INPUT;
892 free (block);
893 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
894 mem_delete (mem_find (block));
895 #endif
896 MALLOC_UNBLOCK_INPUT;
897 }
898
899 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
900
901 /* The entry point is lisp_align_malloc which returns blocks of at most
902 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
903
904 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
905 #define USE_POSIX_MEMALIGN 1
906 #endif
907
908 /* BLOCK_ALIGN has to be a power of 2. */
909 #define BLOCK_ALIGN (1 << 10)
910
911 /* Padding to leave at the end of a malloc'd block. This is to give
912 malloc a chance to minimize the amount of memory wasted to alignment.
913 It should be tuned to the particular malloc library used.
914 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
915 posix_memalign on the other hand would ideally prefer a value of 4
916 because otherwise, there's 1020 bytes wasted between each ablocks.
917 In Emacs, testing shows that those 1020 can most of the time be
918 efficiently used by malloc to place other objects, so a value of 0 can
919 still preferable unless you have a lot of aligned blocks and virtually
920 nothing else. */
921 #define BLOCK_PADDING 0
922 #define BLOCK_BYTES \
923 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
924
925 /* Internal data structures and constants. */
926
927 #define ABLOCKS_SIZE 16
928
929 /* An aligned block of memory. */
930 struct ablock
931 {
932 union
933 {
934 char payload[BLOCK_BYTES];
935 struct ablock *next_free;
936 } x;
937 /* `abase' is the aligned base of the ablocks. */
938 /* It is overloaded to hold the virtual `busy' field that counts
939 the number of used ablock in the parent ablocks.
940 The first ablock has the `busy' field, the others have the `abase'
941 field. To tell the difference, we assume that pointers will have
942 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
943 is used to tell whether the real base of the parent ablocks is `abase'
944 (if not, the word before the first ablock holds a pointer to the
945 real base). */
946 struct ablocks *abase;
947 /* The padding of all but the last ablock is unused. The padding of
948 the last ablock in an ablocks is not allocated. */
949 #if BLOCK_PADDING
950 char padding[BLOCK_PADDING];
951 #endif
952 };
953
954 /* A bunch of consecutive aligned blocks. */
955 struct ablocks
956 {
957 struct ablock blocks[ABLOCKS_SIZE];
958 };
959
960 /* Size of the block requested from malloc or posix_memalign. */
961 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
962
963 #define ABLOCK_ABASE(block) \
964 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
965 ? (struct ablocks *)(block) \
966 : (block)->abase)
967
968 /* Virtual `busy' field. */
969 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
970
971 /* Pointer to the (not necessarily aligned) malloc block. */
972 #ifdef USE_POSIX_MEMALIGN
973 #define ABLOCKS_BASE(abase) (abase)
974 #else
975 #define ABLOCKS_BASE(abase) \
976 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
977 #endif
978
979 /* The list of free ablock. */
980 static struct ablock *free_ablock;
981
982 /* Allocate an aligned block of nbytes.
983 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
984 smaller or equal to BLOCK_BYTES. */
985 static void *
986 lisp_align_malloc (size_t nbytes, enum mem_type type)
987 {
988 void *base, *val;
989 struct ablocks *abase;
990
991 eassert (nbytes <= BLOCK_BYTES);
992
993 MALLOC_BLOCK_INPUT;
994
995 #ifdef GC_MALLOC_CHECK
996 allocated_mem_type = type;
997 #endif
998
999 if (!free_ablock)
1000 {
1001 int i;
1002 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1003
1004 #ifdef DOUG_LEA_MALLOC
1005 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1006 because mapped region contents are not preserved in
1007 a dumped Emacs. */
1008 mallopt (M_MMAP_MAX, 0);
1009 #endif
1010
1011 #ifdef USE_POSIX_MEMALIGN
1012 {
1013 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1014 if (err)
1015 base = NULL;
1016 abase = base;
1017 }
1018 #else
1019 base = malloc (ABLOCKS_BYTES);
1020 abase = ALIGN (base, BLOCK_ALIGN);
1021 #endif
1022
1023 if (base == 0)
1024 {
1025 MALLOC_UNBLOCK_INPUT;
1026 memory_full (ABLOCKS_BYTES);
1027 }
1028
1029 aligned = (base == abase);
1030 if (!aligned)
1031 ((void**)abase)[-1] = base;
1032
1033 #ifdef DOUG_LEA_MALLOC
1034 /* Back to a reasonable maximum of mmap'ed areas. */
1035 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1036 #endif
1037
1038 #if ! USE_LSB_TAG
1039 /* If the memory just allocated cannot be addressed thru a Lisp
1040 object's pointer, and it needs to be, that's equivalent to
1041 running out of memory. */
1042 if (type != MEM_TYPE_NON_LISP)
1043 {
1044 Lisp_Object tem;
1045 char *end = (char *) base + ABLOCKS_BYTES - 1;
1046 XSETCONS (tem, end);
1047 if ((char *) XCONS (tem) != end)
1048 {
1049 lisp_malloc_loser = base;
1050 free (base);
1051 MALLOC_UNBLOCK_INPUT;
1052 memory_full (SIZE_MAX);
1053 }
1054 }
1055 #endif
1056
1057 /* Initialize the blocks and put them on the free list.
1058 If `base' was not properly aligned, we can't use the last block. */
1059 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1060 {
1061 abase->blocks[i].abase = abase;
1062 abase->blocks[i].x.next_free = free_ablock;
1063 free_ablock = &abase->blocks[i];
1064 }
1065 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1066
1067 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1068 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1069 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1070 eassert (ABLOCKS_BASE (abase) == base);
1071 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1072 }
1073
1074 abase = ABLOCK_ABASE (free_ablock);
1075 ABLOCKS_BUSY (abase) =
1076 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1077 val = free_ablock;
1078 free_ablock = free_ablock->x.next_free;
1079
1080 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1081 if (type != MEM_TYPE_NON_LISP)
1082 mem_insert (val, (char *) val + nbytes, type);
1083 #endif
1084
1085 MALLOC_UNBLOCK_INPUT;
1086
1087 MALLOC_PROBE (nbytes);
1088
1089 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1090 return val;
1091 }
1092
1093 static void
1094 lisp_align_free (void *block)
1095 {
1096 struct ablock *ablock = block;
1097 struct ablocks *abase = ABLOCK_ABASE (ablock);
1098
1099 MALLOC_BLOCK_INPUT;
1100 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1101 mem_delete (mem_find (block));
1102 #endif
1103 /* Put on free list. */
1104 ablock->x.next_free = free_ablock;
1105 free_ablock = ablock;
1106 /* Update busy count. */
1107 ABLOCKS_BUSY (abase)
1108 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1109
1110 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1111 { /* All the blocks are free. */
1112 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1113 struct ablock **tem = &free_ablock;
1114 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1115
1116 while (*tem)
1117 {
1118 if (*tem >= (struct ablock *) abase && *tem < atop)
1119 {
1120 i++;
1121 *tem = (*tem)->x.next_free;
1122 }
1123 else
1124 tem = &(*tem)->x.next_free;
1125 }
1126 eassert ((aligned & 1) == aligned);
1127 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1128 #ifdef USE_POSIX_MEMALIGN
1129 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1130 #endif
1131 free (ABLOCKS_BASE (abase));
1132 }
1133 MALLOC_UNBLOCK_INPUT;
1134 }
1135
1136 \f
1137 /***********************************************************************
1138 Interval Allocation
1139 ***********************************************************************/
1140
1141 /* Number of intervals allocated in an interval_block structure.
1142 The 1020 is 1024 minus malloc overhead. */
1143
1144 #define INTERVAL_BLOCK_SIZE \
1145 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1146
1147 /* Intervals are allocated in chunks in the form of an interval_block
1148 structure. */
1149
1150 struct interval_block
1151 {
1152 /* Place `intervals' first, to preserve alignment. */
1153 struct interval intervals[INTERVAL_BLOCK_SIZE];
1154 struct interval_block *next;
1155 };
1156
1157 /* Current interval block. Its `next' pointer points to older
1158 blocks. */
1159
1160 static struct interval_block *interval_block;
1161
1162 /* Index in interval_block above of the next unused interval
1163 structure. */
1164
1165 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1166
1167 /* Number of free and live intervals. */
1168
1169 static EMACS_INT total_free_intervals, total_intervals;
1170
1171 /* List of free intervals. */
1172
1173 static INTERVAL interval_free_list;
1174
1175 /* Return a new interval. */
1176
1177 INTERVAL
1178 make_interval (void)
1179 {
1180 INTERVAL val;
1181
1182 MALLOC_BLOCK_INPUT;
1183
1184 if (interval_free_list)
1185 {
1186 val = interval_free_list;
1187 interval_free_list = INTERVAL_PARENT (interval_free_list);
1188 }
1189 else
1190 {
1191 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1192 {
1193 struct interval_block *newi
1194 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1195
1196 newi->next = interval_block;
1197 interval_block = newi;
1198 interval_block_index = 0;
1199 total_free_intervals += INTERVAL_BLOCK_SIZE;
1200 }
1201 val = &interval_block->intervals[interval_block_index++];
1202 }
1203
1204 MALLOC_UNBLOCK_INPUT;
1205
1206 consing_since_gc += sizeof (struct interval);
1207 intervals_consed++;
1208 total_free_intervals--;
1209 RESET_INTERVAL (val);
1210 val->gcmarkbit = 0;
1211 return val;
1212 }
1213
1214
1215 /* Mark Lisp objects in interval I. */
1216
1217 static void
1218 mark_interval (register INTERVAL i, Lisp_Object dummy)
1219 {
1220 /* Intervals should never be shared. So, if extra internal checking is
1221 enabled, GC aborts if it seems to have visited an interval twice. */
1222 eassert (!i->gcmarkbit);
1223 i->gcmarkbit = 1;
1224 mark_object (i->plist);
1225 }
1226
1227 /* Mark the interval tree rooted in I. */
1228
1229 #define MARK_INTERVAL_TREE(i) \
1230 do { \
1231 if (i && !i->gcmarkbit) \
1232 traverse_intervals_noorder (i, mark_interval, Qnil); \
1233 } while (0)
1234
1235 /***********************************************************************
1236 String Allocation
1237 ***********************************************************************/
1238
1239 /* Lisp_Strings are allocated in string_block structures. When a new
1240 string_block is allocated, all the Lisp_Strings it contains are
1241 added to a free-list string_free_list. When a new Lisp_String is
1242 needed, it is taken from that list. During the sweep phase of GC,
1243 string_blocks that are entirely free are freed, except two which
1244 we keep.
1245
1246 String data is allocated from sblock structures. Strings larger
1247 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1248 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1249
1250 Sblocks consist internally of sdata structures, one for each
1251 Lisp_String. The sdata structure points to the Lisp_String it
1252 belongs to. The Lisp_String points back to the `u.data' member of
1253 its sdata structure.
1254
1255 When a Lisp_String is freed during GC, it is put back on
1256 string_free_list, and its `data' member and its sdata's `string'
1257 pointer is set to null. The size of the string is recorded in the
1258 `u.nbytes' member of the sdata. So, sdata structures that are no
1259 longer used, can be easily recognized, and it's easy to compact the
1260 sblocks of small strings which we do in compact_small_strings. */
1261
1262 /* Size in bytes of an sblock structure used for small strings. This
1263 is 8192 minus malloc overhead. */
1264
1265 #define SBLOCK_SIZE 8188
1266
1267 /* Strings larger than this are considered large strings. String data
1268 for large strings is allocated from individual sblocks. */
1269
1270 #define LARGE_STRING_BYTES 1024
1271
1272 /* Structure describing string memory sub-allocated from an sblock.
1273 This is where the contents of Lisp strings are stored. */
1274
1275 struct sdata
1276 {
1277 /* Back-pointer to the string this sdata belongs to. If null, this
1278 structure is free, and the NBYTES member of the union below
1279 contains the string's byte size (the same value that STRING_BYTES
1280 would return if STRING were non-null). If non-null, STRING_BYTES
1281 (STRING) is the size of the data, and DATA contains the string's
1282 contents. */
1283 struct Lisp_String *string;
1284
1285 #ifdef GC_CHECK_STRING_BYTES
1286
1287 ptrdiff_t nbytes;
1288 unsigned char data[1];
1289
1290 #define SDATA_NBYTES(S) (S)->nbytes
1291 #define SDATA_DATA(S) (S)->data
1292 #define SDATA_SELECTOR(member) member
1293
1294 #else /* not GC_CHECK_STRING_BYTES */
1295
1296 union
1297 {
1298 /* When STRING is non-null. */
1299 unsigned char data[1];
1300
1301 /* When STRING is null. */
1302 ptrdiff_t nbytes;
1303 } u;
1304
1305 #define SDATA_NBYTES(S) (S)->u.nbytes
1306 #define SDATA_DATA(S) (S)->u.data
1307 #define SDATA_SELECTOR(member) u.member
1308
1309 #endif /* not GC_CHECK_STRING_BYTES */
1310
1311 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1312 };
1313
1314
1315 /* Structure describing a block of memory which is sub-allocated to
1316 obtain string data memory for strings. Blocks for small strings
1317 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1318 as large as needed. */
1319
1320 struct sblock
1321 {
1322 /* Next in list. */
1323 struct sblock *next;
1324
1325 /* Pointer to the next free sdata block. This points past the end
1326 of the sblock if there isn't any space left in this block. */
1327 struct sdata *next_free;
1328
1329 /* Start of data. */
1330 struct sdata first_data;
1331 };
1332
1333 /* Number of Lisp strings in a string_block structure. The 1020 is
1334 1024 minus malloc overhead. */
1335
1336 #define STRING_BLOCK_SIZE \
1337 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1338
1339 /* Structure describing a block from which Lisp_String structures
1340 are allocated. */
1341
1342 struct string_block
1343 {
1344 /* Place `strings' first, to preserve alignment. */
1345 struct Lisp_String strings[STRING_BLOCK_SIZE];
1346 struct string_block *next;
1347 };
1348
1349 /* Head and tail of the list of sblock structures holding Lisp string
1350 data. We always allocate from current_sblock. The NEXT pointers
1351 in the sblock structures go from oldest_sblock to current_sblock. */
1352
1353 static struct sblock *oldest_sblock, *current_sblock;
1354
1355 /* List of sblocks for large strings. */
1356
1357 static struct sblock *large_sblocks;
1358
1359 /* List of string_block structures. */
1360
1361 static struct string_block *string_blocks;
1362
1363 /* Free-list of Lisp_Strings. */
1364
1365 static struct Lisp_String *string_free_list;
1366
1367 /* Number of live and free Lisp_Strings. */
1368
1369 static EMACS_INT total_strings, total_free_strings;
1370
1371 /* Number of bytes used by live strings. */
1372
1373 static EMACS_INT total_string_bytes;
1374
1375 /* Given a pointer to a Lisp_String S which is on the free-list
1376 string_free_list, return a pointer to its successor in the
1377 free-list. */
1378
1379 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1380
1381 /* Return a pointer to the sdata structure belonging to Lisp string S.
1382 S must be live, i.e. S->data must not be null. S->data is actually
1383 a pointer to the `u.data' member of its sdata structure; the
1384 structure starts at a constant offset in front of that. */
1385
1386 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1387
1388
1389 #ifdef GC_CHECK_STRING_OVERRUN
1390
1391 /* We check for overrun in string data blocks by appending a small
1392 "cookie" after each allocated string data block, and check for the
1393 presence of this cookie during GC. */
1394
1395 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1396 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1397 { '\xde', '\xad', '\xbe', '\xef' };
1398
1399 #else
1400 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1401 #endif
1402
1403 /* Value is the size of an sdata structure large enough to hold NBYTES
1404 bytes of string data. The value returned includes a terminating
1405 NUL byte, the size of the sdata structure, and padding. */
1406
1407 #ifdef GC_CHECK_STRING_BYTES
1408
1409 #define SDATA_SIZE(NBYTES) \
1410 ((SDATA_DATA_OFFSET \
1411 + (NBYTES) + 1 \
1412 + sizeof (ptrdiff_t) - 1) \
1413 & ~(sizeof (ptrdiff_t) - 1))
1414
1415 #else /* not GC_CHECK_STRING_BYTES */
1416
1417 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1418 less than the size of that member. The 'max' is not needed when
1419 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1420 alignment code reserves enough space. */
1421
1422 #define SDATA_SIZE(NBYTES) \
1423 ((SDATA_DATA_OFFSET \
1424 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1425 ? NBYTES \
1426 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1427 + 1 \
1428 + sizeof (ptrdiff_t) - 1) \
1429 & ~(sizeof (ptrdiff_t) - 1))
1430
1431 #endif /* not GC_CHECK_STRING_BYTES */
1432
1433 /* Extra bytes to allocate for each string. */
1434
1435 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1436
1437 /* Exact bound on the number of bytes in a string, not counting the
1438 terminating null. A string cannot contain more bytes than
1439 STRING_BYTES_BOUND, nor can it be so long that the size_t
1440 arithmetic in allocate_string_data would overflow while it is
1441 calculating a value to be passed to malloc. */
1442 static ptrdiff_t const STRING_BYTES_MAX =
1443 min (STRING_BYTES_BOUND,
1444 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1445 - GC_STRING_EXTRA
1446 - offsetof (struct sblock, first_data)
1447 - SDATA_DATA_OFFSET)
1448 & ~(sizeof (EMACS_INT) - 1)));
1449
1450 /* Initialize string allocation. Called from init_alloc_once. */
1451
1452 static void
1453 init_strings (void)
1454 {
1455 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1456 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1457 }
1458
1459
1460 #ifdef GC_CHECK_STRING_BYTES
1461
1462 static int check_string_bytes_count;
1463
1464 /* Like STRING_BYTES, but with debugging check. Can be
1465 called during GC, so pay attention to the mark bit. */
1466
1467 ptrdiff_t
1468 string_bytes (struct Lisp_String *s)
1469 {
1470 ptrdiff_t nbytes =
1471 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1472
1473 if (!PURE_POINTER_P (s)
1474 && s->data
1475 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1476 emacs_abort ();
1477 return nbytes;
1478 }
1479
1480 /* Check validity of Lisp strings' string_bytes member in B. */
1481
1482 static void
1483 check_sblock (struct sblock *b)
1484 {
1485 struct sdata *from, *end, *from_end;
1486
1487 end = b->next_free;
1488
1489 for (from = &b->first_data; from < end; from = from_end)
1490 {
1491 /* Compute the next FROM here because copying below may
1492 overwrite data we need to compute it. */
1493 ptrdiff_t nbytes;
1494
1495 /* Check that the string size recorded in the string is the
1496 same as the one recorded in the sdata structure. */
1497 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1498 : SDATA_NBYTES (from));
1499 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1500 }
1501 }
1502
1503
1504 /* Check validity of Lisp strings' string_bytes member. ALL_P
1505 means check all strings, otherwise check only most
1506 recently allocated strings. Used for hunting a bug. */
1507
1508 static void
1509 check_string_bytes (bool all_p)
1510 {
1511 if (all_p)
1512 {
1513 struct sblock *b;
1514
1515 for (b = large_sblocks; b; b = b->next)
1516 {
1517 struct Lisp_String *s = b->first_data.string;
1518 if (s)
1519 string_bytes (s);
1520 }
1521
1522 for (b = oldest_sblock; b; b = b->next)
1523 check_sblock (b);
1524 }
1525 else if (current_sblock)
1526 check_sblock (current_sblock);
1527 }
1528
1529 #else /* not GC_CHECK_STRING_BYTES */
1530
1531 #define check_string_bytes(all) ((void) 0)
1532
1533 #endif /* GC_CHECK_STRING_BYTES */
1534
1535 #ifdef GC_CHECK_STRING_FREE_LIST
1536
1537 /* Walk through the string free list looking for bogus next pointers.
1538 This may catch buffer overrun from a previous string. */
1539
1540 static void
1541 check_string_free_list (void)
1542 {
1543 struct Lisp_String *s;
1544
1545 /* Pop a Lisp_String off the free-list. */
1546 s = string_free_list;
1547 while (s != NULL)
1548 {
1549 if ((uintptr_t) s < 1024)
1550 emacs_abort ();
1551 s = NEXT_FREE_LISP_STRING (s);
1552 }
1553 }
1554 #else
1555 #define check_string_free_list()
1556 #endif
1557
1558 /* Return a new Lisp_String. */
1559
1560 static struct Lisp_String *
1561 allocate_string (void)
1562 {
1563 struct Lisp_String *s;
1564
1565 MALLOC_BLOCK_INPUT;
1566
1567 /* If the free-list is empty, allocate a new string_block, and
1568 add all the Lisp_Strings in it to the free-list. */
1569 if (string_free_list == NULL)
1570 {
1571 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1572 int i;
1573
1574 b->next = string_blocks;
1575 string_blocks = b;
1576
1577 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1578 {
1579 s = b->strings + i;
1580 /* Every string on a free list should have NULL data pointer. */
1581 s->data = NULL;
1582 NEXT_FREE_LISP_STRING (s) = string_free_list;
1583 string_free_list = s;
1584 }
1585
1586 total_free_strings += STRING_BLOCK_SIZE;
1587 }
1588
1589 check_string_free_list ();
1590
1591 /* Pop a Lisp_String off the free-list. */
1592 s = string_free_list;
1593 string_free_list = NEXT_FREE_LISP_STRING (s);
1594
1595 MALLOC_UNBLOCK_INPUT;
1596
1597 --total_free_strings;
1598 ++total_strings;
1599 ++strings_consed;
1600 consing_since_gc += sizeof *s;
1601
1602 #ifdef GC_CHECK_STRING_BYTES
1603 if (!noninteractive)
1604 {
1605 if (++check_string_bytes_count == 200)
1606 {
1607 check_string_bytes_count = 0;
1608 check_string_bytes (1);
1609 }
1610 else
1611 check_string_bytes (0);
1612 }
1613 #endif /* GC_CHECK_STRING_BYTES */
1614
1615 return s;
1616 }
1617
1618
1619 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1620 plus a NUL byte at the end. Allocate an sdata structure for S, and
1621 set S->data to its `u.data' member. Store a NUL byte at the end of
1622 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1623 S->data if it was initially non-null. */
1624
1625 void
1626 allocate_string_data (struct Lisp_String *s,
1627 EMACS_INT nchars, EMACS_INT nbytes)
1628 {
1629 struct sdata *data, *old_data;
1630 struct sblock *b;
1631 ptrdiff_t needed, old_nbytes;
1632
1633 if (STRING_BYTES_MAX < nbytes)
1634 string_overflow ();
1635
1636 /* Determine the number of bytes needed to store NBYTES bytes
1637 of string data. */
1638 needed = SDATA_SIZE (nbytes);
1639 if (s->data)
1640 {
1641 old_data = SDATA_OF_STRING (s);
1642 old_nbytes = STRING_BYTES (s);
1643 }
1644 else
1645 old_data = NULL;
1646
1647 MALLOC_BLOCK_INPUT;
1648
1649 if (nbytes > LARGE_STRING_BYTES)
1650 {
1651 size_t size = offsetof (struct sblock, first_data) + needed;
1652
1653 #ifdef DOUG_LEA_MALLOC
1654 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1655 because mapped region contents are not preserved in
1656 a dumped Emacs.
1657
1658 In case you think of allowing it in a dumped Emacs at the
1659 cost of not being able to re-dump, there's another reason:
1660 mmap'ed data typically have an address towards the top of the
1661 address space, which won't fit into an EMACS_INT (at least on
1662 32-bit systems with the current tagging scheme). --fx */
1663 mallopt (M_MMAP_MAX, 0);
1664 #endif
1665
1666 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1667
1668 #ifdef DOUG_LEA_MALLOC
1669 /* Back to a reasonable maximum of mmap'ed areas. */
1670 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1671 #endif
1672
1673 b->next_free = &b->first_data;
1674 b->first_data.string = NULL;
1675 b->next = large_sblocks;
1676 large_sblocks = b;
1677 }
1678 else if (current_sblock == NULL
1679 || (((char *) current_sblock + SBLOCK_SIZE
1680 - (char *) current_sblock->next_free)
1681 < (needed + GC_STRING_EXTRA)))
1682 {
1683 /* Not enough room in the current sblock. */
1684 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1685 b->next_free = &b->first_data;
1686 b->first_data.string = NULL;
1687 b->next = NULL;
1688
1689 if (current_sblock)
1690 current_sblock->next = b;
1691 else
1692 oldest_sblock = b;
1693 current_sblock = b;
1694 }
1695 else
1696 b = current_sblock;
1697
1698 data = b->next_free;
1699 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1700
1701 MALLOC_UNBLOCK_INPUT;
1702
1703 data->string = s;
1704 s->data = SDATA_DATA (data);
1705 #ifdef GC_CHECK_STRING_BYTES
1706 SDATA_NBYTES (data) = nbytes;
1707 #endif
1708 s->size = nchars;
1709 s->size_byte = nbytes;
1710 s->data[nbytes] = '\0';
1711 #ifdef GC_CHECK_STRING_OVERRUN
1712 memcpy ((char *) data + needed, string_overrun_cookie,
1713 GC_STRING_OVERRUN_COOKIE_SIZE);
1714 #endif
1715
1716 /* Note that Faset may call to this function when S has already data
1717 assigned. In this case, mark data as free by setting it's string
1718 back-pointer to null, and record the size of the data in it. */
1719 if (old_data)
1720 {
1721 SDATA_NBYTES (old_data) = old_nbytes;
1722 old_data->string = NULL;
1723 }
1724
1725 consing_since_gc += needed;
1726 }
1727
1728
1729 /* Sweep and compact strings. */
1730
1731 static void
1732 sweep_strings (void)
1733 {
1734 struct string_block *b, *next;
1735 struct string_block *live_blocks = NULL;
1736
1737 string_free_list = NULL;
1738 total_strings = total_free_strings = 0;
1739 total_string_bytes = 0;
1740
1741 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1742 for (b = string_blocks; b; b = next)
1743 {
1744 int i, nfree = 0;
1745 struct Lisp_String *free_list_before = string_free_list;
1746
1747 next = b->next;
1748
1749 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1750 {
1751 struct Lisp_String *s = b->strings + i;
1752
1753 if (s->data)
1754 {
1755 /* String was not on free-list before. */
1756 if (STRING_MARKED_P (s))
1757 {
1758 /* String is live; unmark it and its intervals. */
1759 UNMARK_STRING (s);
1760
1761 /* Do not use string_(set|get)_intervals here. */
1762 s->intervals = balance_intervals (s->intervals);
1763
1764 ++total_strings;
1765 total_string_bytes += STRING_BYTES (s);
1766 }
1767 else
1768 {
1769 /* String is dead. Put it on the free-list. */
1770 struct sdata *data = SDATA_OF_STRING (s);
1771
1772 /* Save the size of S in its sdata so that we know
1773 how large that is. Reset the sdata's string
1774 back-pointer so that we know it's free. */
1775 #ifdef GC_CHECK_STRING_BYTES
1776 if (string_bytes (s) != SDATA_NBYTES (data))
1777 emacs_abort ();
1778 #else
1779 data->u.nbytes = STRING_BYTES (s);
1780 #endif
1781 data->string = NULL;
1782
1783 /* Reset the strings's `data' member so that we
1784 know it's free. */
1785 s->data = NULL;
1786
1787 /* Put the string on the free-list. */
1788 NEXT_FREE_LISP_STRING (s) = string_free_list;
1789 string_free_list = s;
1790 ++nfree;
1791 }
1792 }
1793 else
1794 {
1795 /* S was on the free-list before. Put it there again. */
1796 NEXT_FREE_LISP_STRING (s) = string_free_list;
1797 string_free_list = s;
1798 ++nfree;
1799 }
1800 }
1801
1802 /* Free blocks that contain free Lisp_Strings only, except
1803 the first two of them. */
1804 if (nfree == STRING_BLOCK_SIZE
1805 && total_free_strings > STRING_BLOCK_SIZE)
1806 {
1807 lisp_free (b);
1808 string_free_list = free_list_before;
1809 }
1810 else
1811 {
1812 total_free_strings += nfree;
1813 b->next = live_blocks;
1814 live_blocks = b;
1815 }
1816 }
1817
1818 check_string_free_list ();
1819
1820 string_blocks = live_blocks;
1821 free_large_strings ();
1822 compact_small_strings ();
1823
1824 check_string_free_list ();
1825 }
1826
1827
1828 /* Free dead large strings. */
1829
1830 static void
1831 free_large_strings (void)
1832 {
1833 struct sblock *b, *next;
1834 struct sblock *live_blocks = NULL;
1835
1836 for (b = large_sblocks; b; b = next)
1837 {
1838 next = b->next;
1839
1840 if (b->first_data.string == NULL)
1841 lisp_free (b);
1842 else
1843 {
1844 b->next = live_blocks;
1845 live_blocks = b;
1846 }
1847 }
1848
1849 large_sblocks = live_blocks;
1850 }
1851
1852
1853 /* Compact data of small strings. Free sblocks that don't contain
1854 data of live strings after compaction. */
1855
1856 static void
1857 compact_small_strings (void)
1858 {
1859 struct sblock *b, *tb, *next;
1860 struct sdata *from, *to, *end, *tb_end;
1861 struct sdata *to_end, *from_end;
1862
1863 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1864 to, and TB_END is the end of TB. */
1865 tb = oldest_sblock;
1866 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1867 to = &tb->first_data;
1868
1869 /* Step through the blocks from the oldest to the youngest. We
1870 expect that old blocks will stabilize over time, so that less
1871 copying will happen this way. */
1872 for (b = oldest_sblock; b; b = b->next)
1873 {
1874 end = b->next_free;
1875 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1876
1877 for (from = &b->first_data; from < end; from = from_end)
1878 {
1879 /* Compute the next FROM here because copying below may
1880 overwrite data we need to compute it. */
1881 ptrdiff_t nbytes;
1882 struct Lisp_String *s = from->string;
1883
1884 #ifdef GC_CHECK_STRING_BYTES
1885 /* Check that the string size recorded in the string is the
1886 same as the one recorded in the sdata structure. */
1887 if (s && string_bytes (s) != SDATA_NBYTES (from))
1888 emacs_abort ();
1889 #endif /* GC_CHECK_STRING_BYTES */
1890
1891 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1892 eassert (nbytes <= LARGE_STRING_BYTES);
1893
1894 nbytes = SDATA_SIZE (nbytes);
1895 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1896
1897 #ifdef GC_CHECK_STRING_OVERRUN
1898 if (memcmp (string_overrun_cookie,
1899 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1900 GC_STRING_OVERRUN_COOKIE_SIZE))
1901 emacs_abort ();
1902 #endif
1903
1904 /* Non-NULL S means it's alive. Copy its data. */
1905 if (s)
1906 {
1907 /* If TB is full, proceed with the next sblock. */
1908 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1909 if (to_end > tb_end)
1910 {
1911 tb->next_free = to;
1912 tb = tb->next;
1913 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1914 to = &tb->first_data;
1915 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1916 }
1917
1918 /* Copy, and update the string's `data' pointer. */
1919 if (from != to)
1920 {
1921 eassert (tb != b || to < from);
1922 memmove (to, from, nbytes + GC_STRING_EXTRA);
1923 to->string->data = SDATA_DATA (to);
1924 }
1925
1926 /* Advance past the sdata we copied to. */
1927 to = to_end;
1928 }
1929 }
1930 }
1931
1932 /* The rest of the sblocks following TB don't contain live data, so
1933 we can free them. */
1934 for (b = tb->next; b; b = next)
1935 {
1936 next = b->next;
1937 lisp_free (b);
1938 }
1939
1940 tb->next_free = to;
1941 tb->next = NULL;
1942 current_sblock = tb;
1943 }
1944
1945 void
1946 string_overflow (void)
1947 {
1948 error ("Maximum string size exceeded");
1949 }
1950
1951 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1952 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1953 LENGTH must be an integer.
1954 INIT must be an integer that represents a character. */)
1955 (Lisp_Object length, Lisp_Object init)
1956 {
1957 register Lisp_Object val;
1958 register unsigned char *p, *end;
1959 int c;
1960 EMACS_INT nbytes;
1961
1962 CHECK_NATNUM (length);
1963 CHECK_CHARACTER (init);
1964
1965 c = XFASTINT (init);
1966 if (ASCII_CHAR_P (c))
1967 {
1968 nbytes = XINT (length);
1969 val = make_uninit_string (nbytes);
1970 p = SDATA (val);
1971 end = p + SCHARS (val);
1972 while (p != end)
1973 *p++ = c;
1974 }
1975 else
1976 {
1977 unsigned char str[MAX_MULTIBYTE_LENGTH];
1978 int len = CHAR_STRING (c, str);
1979 EMACS_INT string_len = XINT (length);
1980
1981 if (string_len > STRING_BYTES_MAX / len)
1982 string_overflow ();
1983 nbytes = len * string_len;
1984 val = make_uninit_multibyte_string (string_len, nbytes);
1985 p = SDATA (val);
1986 end = p + nbytes;
1987 while (p != end)
1988 {
1989 memcpy (p, str, len);
1990 p += len;
1991 }
1992 }
1993
1994 *p = 0;
1995 return val;
1996 }
1997
1998
1999 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2000 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2001 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2002 (Lisp_Object length, Lisp_Object init)
2003 {
2004 register Lisp_Object val;
2005 struct Lisp_Bool_Vector *p;
2006 ptrdiff_t length_in_chars;
2007 EMACS_INT length_in_elts;
2008 int bits_per_value;
2009 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2010 / word_size);
2011
2012 CHECK_NATNUM (length);
2013
2014 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2015
2016 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2017
2018 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2019
2020 /* No Lisp_Object to trace in there. */
2021 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2022
2023 p = XBOOL_VECTOR (val);
2024 p->size = XFASTINT (length);
2025
2026 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2027 / BOOL_VECTOR_BITS_PER_CHAR);
2028 if (length_in_chars)
2029 {
2030 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2031
2032 /* Clear any extraneous bits in the last byte. */
2033 p->data[length_in_chars - 1]
2034 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2035 }
2036
2037 return val;
2038 }
2039
2040
2041 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2042 of characters from the contents. This string may be unibyte or
2043 multibyte, depending on the contents. */
2044
2045 Lisp_Object
2046 make_string (const char *contents, ptrdiff_t nbytes)
2047 {
2048 register Lisp_Object val;
2049 ptrdiff_t nchars, multibyte_nbytes;
2050
2051 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2052 &nchars, &multibyte_nbytes);
2053 if (nbytes == nchars || nbytes != multibyte_nbytes)
2054 /* CONTENTS contains no multibyte sequences or contains an invalid
2055 multibyte sequence. We must make unibyte string. */
2056 val = make_unibyte_string (contents, nbytes);
2057 else
2058 val = make_multibyte_string (contents, nchars, nbytes);
2059 return val;
2060 }
2061
2062
2063 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2064
2065 Lisp_Object
2066 make_unibyte_string (const char *contents, ptrdiff_t length)
2067 {
2068 register Lisp_Object val;
2069 val = make_uninit_string (length);
2070 memcpy (SDATA (val), contents, length);
2071 return val;
2072 }
2073
2074
2075 /* Make a multibyte string from NCHARS characters occupying NBYTES
2076 bytes at CONTENTS. */
2077
2078 Lisp_Object
2079 make_multibyte_string (const char *contents,
2080 ptrdiff_t nchars, ptrdiff_t nbytes)
2081 {
2082 register Lisp_Object val;
2083 val = make_uninit_multibyte_string (nchars, nbytes);
2084 memcpy (SDATA (val), contents, nbytes);
2085 return val;
2086 }
2087
2088
2089 /* Make a string from NCHARS characters occupying NBYTES bytes at
2090 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2091
2092 Lisp_Object
2093 make_string_from_bytes (const char *contents,
2094 ptrdiff_t nchars, ptrdiff_t nbytes)
2095 {
2096 register Lisp_Object val;
2097 val = make_uninit_multibyte_string (nchars, nbytes);
2098 memcpy (SDATA (val), contents, nbytes);
2099 if (SBYTES (val) == SCHARS (val))
2100 STRING_SET_UNIBYTE (val);
2101 return val;
2102 }
2103
2104
2105 /* Make a string from NCHARS characters occupying NBYTES bytes at
2106 CONTENTS. The argument MULTIBYTE controls whether to label the
2107 string as multibyte. If NCHARS is negative, it counts the number of
2108 characters by itself. */
2109
2110 Lisp_Object
2111 make_specified_string (const char *contents,
2112 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2113 {
2114 Lisp_Object val;
2115
2116 if (nchars < 0)
2117 {
2118 if (multibyte)
2119 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2120 nbytes);
2121 else
2122 nchars = nbytes;
2123 }
2124 val = make_uninit_multibyte_string (nchars, nbytes);
2125 memcpy (SDATA (val), contents, nbytes);
2126 if (!multibyte)
2127 STRING_SET_UNIBYTE (val);
2128 return val;
2129 }
2130
2131
2132 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2133 occupying LENGTH bytes. */
2134
2135 Lisp_Object
2136 make_uninit_string (EMACS_INT length)
2137 {
2138 Lisp_Object val;
2139
2140 if (!length)
2141 return empty_unibyte_string;
2142 val = make_uninit_multibyte_string (length, length);
2143 STRING_SET_UNIBYTE (val);
2144 return val;
2145 }
2146
2147
2148 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2149 which occupy NBYTES bytes. */
2150
2151 Lisp_Object
2152 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2153 {
2154 Lisp_Object string;
2155 struct Lisp_String *s;
2156
2157 if (nchars < 0)
2158 emacs_abort ();
2159 if (!nbytes)
2160 return empty_multibyte_string;
2161
2162 s = allocate_string ();
2163 s->intervals = NULL;
2164 allocate_string_data (s, nchars, nbytes);
2165 XSETSTRING (string, s);
2166 string_chars_consed += nbytes;
2167 return string;
2168 }
2169
2170 /* Print arguments to BUF according to a FORMAT, then return
2171 a Lisp_String initialized with the data from BUF. */
2172
2173 Lisp_Object
2174 make_formatted_string (char *buf, const char *format, ...)
2175 {
2176 va_list ap;
2177 int length;
2178
2179 va_start (ap, format);
2180 length = vsprintf (buf, format, ap);
2181 va_end (ap);
2182 return make_string (buf, length);
2183 }
2184
2185 \f
2186 /***********************************************************************
2187 Float Allocation
2188 ***********************************************************************/
2189
2190 /* We store float cells inside of float_blocks, allocating a new
2191 float_block with malloc whenever necessary. Float cells reclaimed
2192 by GC are put on a free list to be reallocated before allocating
2193 any new float cells from the latest float_block. */
2194
2195 #define FLOAT_BLOCK_SIZE \
2196 (((BLOCK_BYTES - sizeof (struct float_block *) \
2197 /* The compiler might add padding at the end. */ \
2198 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2199 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2200
2201 #define GETMARKBIT(block,n) \
2202 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2203 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2204 & 1)
2205
2206 #define SETMARKBIT(block,n) \
2207 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2208 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2209
2210 #define UNSETMARKBIT(block,n) \
2211 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2212 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2213
2214 #define FLOAT_BLOCK(fptr) \
2215 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2216
2217 #define FLOAT_INDEX(fptr) \
2218 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2219
2220 struct float_block
2221 {
2222 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2223 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2224 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2225 struct float_block *next;
2226 };
2227
2228 #define FLOAT_MARKED_P(fptr) \
2229 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2230
2231 #define FLOAT_MARK(fptr) \
2232 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2233
2234 #define FLOAT_UNMARK(fptr) \
2235 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2236
2237 /* Current float_block. */
2238
2239 static struct float_block *float_block;
2240
2241 /* Index of first unused Lisp_Float in the current float_block. */
2242
2243 static int float_block_index = FLOAT_BLOCK_SIZE;
2244
2245 /* Free-list of Lisp_Floats. */
2246
2247 static struct Lisp_Float *float_free_list;
2248
2249 /* Return a new float object with value FLOAT_VALUE. */
2250
2251 Lisp_Object
2252 make_float (double float_value)
2253 {
2254 register Lisp_Object val;
2255
2256 MALLOC_BLOCK_INPUT;
2257
2258 if (float_free_list)
2259 {
2260 /* We use the data field for chaining the free list
2261 so that we won't use the same field that has the mark bit. */
2262 XSETFLOAT (val, float_free_list);
2263 float_free_list = float_free_list->u.chain;
2264 }
2265 else
2266 {
2267 if (float_block_index == FLOAT_BLOCK_SIZE)
2268 {
2269 struct float_block *new
2270 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2271 new->next = float_block;
2272 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2273 float_block = new;
2274 float_block_index = 0;
2275 total_free_floats += FLOAT_BLOCK_SIZE;
2276 }
2277 XSETFLOAT (val, &float_block->floats[float_block_index]);
2278 float_block_index++;
2279 }
2280
2281 MALLOC_UNBLOCK_INPUT;
2282
2283 XFLOAT_INIT (val, float_value);
2284 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2285 consing_since_gc += sizeof (struct Lisp_Float);
2286 floats_consed++;
2287 total_free_floats--;
2288 return val;
2289 }
2290
2291
2292 \f
2293 /***********************************************************************
2294 Cons Allocation
2295 ***********************************************************************/
2296
2297 /* We store cons cells inside of cons_blocks, allocating a new
2298 cons_block with malloc whenever necessary. Cons cells reclaimed by
2299 GC are put on a free list to be reallocated before allocating
2300 any new cons cells from the latest cons_block. */
2301
2302 #define CONS_BLOCK_SIZE \
2303 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2304 /* The compiler might add padding at the end. */ \
2305 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2306 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2307
2308 #define CONS_BLOCK(fptr) \
2309 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2310
2311 #define CONS_INDEX(fptr) \
2312 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2313
2314 struct cons_block
2315 {
2316 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2317 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2318 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2319 struct cons_block *next;
2320 };
2321
2322 #define CONS_MARKED_P(fptr) \
2323 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2324
2325 #define CONS_MARK(fptr) \
2326 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2327
2328 #define CONS_UNMARK(fptr) \
2329 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2330
2331 /* Current cons_block. */
2332
2333 static struct cons_block *cons_block;
2334
2335 /* Index of first unused Lisp_Cons in the current block. */
2336
2337 static int cons_block_index = CONS_BLOCK_SIZE;
2338
2339 /* Free-list of Lisp_Cons structures. */
2340
2341 static struct Lisp_Cons *cons_free_list;
2342
2343 /* Explicitly free a cons cell by putting it on the free-list. */
2344
2345 void
2346 free_cons (struct Lisp_Cons *ptr)
2347 {
2348 ptr->u.chain = cons_free_list;
2349 #if GC_MARK_STACK
2350 ptr->car = Vdead;
2351 #endif
2352 cons_free_list = ptr;
2353 consing_since_gc -= sizeof *ptr;
2354 total_free_conses++;
2355 }
2356
2357 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2358 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2359 (Lisp_Object car, Lisp_Object cdr)
2360 {
2361 register Lisp_Object val;
2362
2363 MALLOC_BLOCK_INPUT;
2364
2365 if (cons_free_list)
2366 {
2367 /* We use the cdr for chaining the free list
2368 so that we won't use the same field that has the mark bit. */
2369 XSETCONS (val, cons_free_list);
2370 cons_free_list = cons_free_list->u.chain;
2371 }
2372 else
2373 {
2374 if (cons_block_index == CONS_BLOCK_SIZE)
2375 {
2376 struct cons_block *new
2377 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2378 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2379 new->next = cons_block;
2380 cons_block = new;
2381 cons_block_index = 0;
2382 total_free_conses += CONS_BLOCK_SIZE;
2383 }
2384 XSETCONS (val, &cons_block->conses[cons_block_index]);
2385 cons_block_index++;
2386 }
2387
2388 MALLOC_UNBLOCK_INPUT;
2389
2390 XSETCAR (val, car);
2391 XSETCDR (val, cdr);
2392 eassert (!CONS_MARKED_P (XCONS (val)));
2393 consing_since_gc += sizeof (struct Lisp_Cons);
2394 total_free_conses--;
2395 cons_cells_consed++;
2396 return val;
2397 }
2398
2399 #ifdef GC_CHECK_CONS_LIST
2400 /* Get an error now if there's any junk in the cons free list. */
2401 void
2402 check_cons_list (void)
2403 {
2404 struct Lisp_Cons *tail = cons_free_list;
2405
2406 while (tail)
2407 tail = tail->u.chain;
2408 }
2409 #endif
2410
2411 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2412
2413 Lisp_Object
2414 list1 (Lisp_Object arg1)
2415 {
2416 return Fcons (arg1, Qnil);
2417 }
2418
2419 Lisp_Object
2420 list2 (Lisp_Object arg1, Lisp_Object arg2)
2421 {
2422 return Fcons (arg1, Fcons (arg2, Qnil));
2423 }
2424
2425
2426 Lisp_Object
2427 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2428 {
2429 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2430 }
2431
2432
2433 Lisp_Object
2434 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2435 {
2436 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2437 }
2438
2439
2440 Lisp_Object
2441 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2442 {
2443 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2444 Fcons (arg5, Qnil)))));
2445 }
2446
2447 /* Make a list of COUNT Lisp_Objects, where ARG is the
2448 first one. Allocate conses from pure space if TYPE
2449 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2450
2451 Lisp_Object
2452 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2453 {
2454 va_list ap;
2455 ptrdiff_t i;
2456 Lisp_Object val, *objp;
2457
2458 /* Change to SAFE_ALLOCA if you hit this eassert. */
2459 eassert (count <= MAX_ALLOCA / word_size);
2460
2461 objp = alloca (count * word_size);
2462 objp[0] = arg;
2463 va_start (ap, arg);
2464 for (i = 1; i < count; i++)
2465 objp[i] = va_arg (ap, Lisp_Object);
2466 va_end (ap);
2467
2468 for (val = Qnil, i = count - 1; i >= 0; i--)
2469 {
2470 if (type == CONSTYPE_PURE)
2471 val = pure_cons (objp[i], val);
2472 else if (type == CONSTYPE_HEAP)
2473 val = Fcons (objp[i], val);
2474 else
2475 emacs_abort ();
2476 }
2477 return val;
2478 }
2479
2480 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2481 doc: /* Return a newly created list with specified arguments as elements.
2482 Any number of arguments, even zero arguments, are allowed.
2483 usage: (list &rest OBJECTS) */)
2484 (ptrdiff_t nargs, Lisp_Object *args)
2485 {
2486 register Lisp_Object val;
2487 val = Qnil;
2488
2489 while (nargs > 0)
2490 {
2491 nargs--;
2492 val = Fcons (args[nargs], val);
2493 }
2494 return val;
2495 }
2496
2497
2498 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2499 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2500 (register Lisp_Object length, Lisp_Object init)
2501 {
2502 register Lisp_Object val;
2503 register EMACS_INT size;
2504
2505 CHECK_NATNUM (length);
2506 size = XFASTINT (length);
2507
2508 val = Qnil;
2509 while (size > 0)
2510 {
2511 val = Fcons (init, val);
2512 --size;
2513
2514 if (size > 0)
2515 {
2516 val = Fcons (init, val);
2517 --size;
2518
2519 if (size > 0)
2520 {
2521 val = Fcons (init, val);
2522 --size;
2523
2524 if (size > 0)
2525 {
2526 val = Fcons (init, val);
2527 --size;
2528
2529 if (size > 0)
2530 {
2531 val = Fcons (init, val);
2532 --size;
2533 }
2534 }
2535 }
2536 }
2537
2538 QUIT;
2539 }
2540
2541 return val;
2542 }
2543
2544
2545 \f
2546 /***********************************************************************
2547 Vector Allocation
2548 ***********************************************************************/
2549
2550 /* This value is balanced well enough to avoid too much internal overhead
2551 for the most common cases; it's not required to be a power of two, but
2552 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2553
2554 #define VECTOR_BLOCK_SIZE 4096
2555
2556 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2557 enum
2558 {
2559 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2560 };
2561
2562 /* ROUNDUP_SIZE must be a power of 2. */
2563 verify ((roundup_size & (roundup_size - 1)) == 0);
2564
2565 /* Verify assumptions described above. */
2566 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2567 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2568
2569 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2570
2571 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2572
2573 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2574
2575 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2576
2577 /* Size of the minimal vector allocated from block. */
2578
2579 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2580
2581 /* Size of the largest vector allocated from block. */
2582
2583 #define VBLOCK_BYTES_MAX \
2584 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2585
2586 /* We maintain one free list for each possible block-allocated
2587 vector size, and this is the number of free lists we have. */
2588
2589 #define VECTOR_MAX_FREE_LIST_INDEX \
2590 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2591
2592 /* Common shortcut to advance vector pointer over a block data. */
2593
2594 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2595
2596 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2597
2598 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2599
2600 /* Get and set the next field in block-allocated vectorlike objects on
2601 the free list. Doing it this way respects C's aliasing rules.
2602 We could instead make 'contents' a union, but that would mean
2603 changes everywhere that the code uses 'contents'. */
2604 static struct Lisp_Vector *
2605 next_in_free_list (struct Lisp_Vector *v)
2606 {
2607 intptr_t i = XLI (v->contents[0]);
2608 return (struct Lisp_Vector *) i;
2609 }
2610 static void
2611 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2612 {
2613 v->contents[0] = XIL ((intptr_t) next);
2614 }
2615
2616 /* Common shortcut to setup vector on a free list. */
2617
2618 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2619 do { \
2620 (tmp) = ((nbytes - header_size) / word_size); \
2621 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2622 eassert ((nbytes) % roundup_size == 0); \
2623 (tmp) = VINDEX (nbytes); \
2624 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2625 set_next_in_free_list (v, vector_free_lists[tmp]); \
2626 vector_free_lists[tmp] = (v); \
2627 total_free_vector_slots += (nbytes) / word_size; \
2628 } while (0)
2629
2630 /* This internal type is used to maintain the list of large vectors
2631 which are allocated at their own, e.g. outside of vector blocks. */
2632
2633 struct large_vector
2634 {
2635 union {
2636 struct large_vector *vector;
2637 #if USE_LSB_TAG
2638 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2639 unsigned char c[vroundup (sizeof (struct large_vector *))];
2640 #endif
2641 } next;
2642 struct Lisp_Vector v;
2643 };
2644
2645 /* This internal type is used to maintain an underlying storage
2646 for small vectors. */
2647
2648 struct vector_block
2649 {
2650 char data[VECTOR_BLOCK_BYTES];
2651 struct vector_block *next;
2652 };
2653
2654 /* Chain of vector blocks. */
2655
2656 static struct vector_block *vector_blocks;
2657
2658 /* Vector free lists, where NTH item points to a chain of free
2659 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2660
2661 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2662
2663 /* Singly-linked list of large vectors. */
2664
2665 static struct large_vector *large_vectors;
2666
2667 /* The only vector with 0 slots, allocated from pure space. */
2668
2669 Lisp_Object zero_vector;
2670
2671 /* Number of live vectors. */
2672
2673 static EMACS_INT total_vectors;
2674
2675 /* Total size of live and free vectors, in Lisp_Object units. */
2676
2677 static EMACS_INT total_vector_slots, total_free_vector_slots;
2678
2679 /* Get a new vector block. */
2680
2681 static struct vector_block *
2682 allocate_vector_block (void)
2683 {
2684 struct vector_block *block = xmalloc (sizeof *block);
2685
2686 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2687 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2688 MEM_TYPE_VECTOR_BLOCK);
2689 #endif
2690
2691 block->next = vector_blocks;
2692 vector_blocks = block;
2693 return block;
2694 }
2695
2696 /* Called once to initialize vector allocation. */
2697
2698 static void
2699 init_vectors (void)
2700 {
2701 zero_vector = make_pure_vector (0);
2702 }
2703
2704 /* Allocate vector from a vector block. */
2705
2706 static struct Lisp_Vector *
2707 allocate_vector_from_block (size_t nbytes)
2708 {
2709 struct Lisp_Vector *vector;
2710 struct vector_block *block;
2711 size_t index, restbytes;
2712
2713 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2714 eassert (nbytes % roundup_size == 0);
2715
2716 /* First, try to allocate from a free list
2717 containing vectors of the requested size. */
2718 index = VINDEX (nbytes);
2719 if (vector_free_lists[index])
2720 {
2721 vector = vector_free_lists[index];
2722 vector_free_lists[index] = next_in_free_list (vector);
2723 total_free_vector_slots -= nbytes / word_size;
2724 return vector;
2725 }
2726
2727 /* Next, check free lists containing larger vectors. Since
2728 we will split the result, we should have remaining space
2729 large enough to use for one-slot vector at least. */
2730 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2731 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2732 if (vector_free_lists[index])
2733 {
2734 /* This vector is larger than requested. */
2735 vector = vector_free_lists[index];
2736 vector_free_lists[index] = next_in_free_list (vector);
2737 total_free_vector_slots -= nbytes / word_size;
2738
2739 /* Excess bytes are used for the smaller vector,
2740 which should be set on an appropriate free list. */
2741 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2742 eassert (restbytes % roundup_size == 0);
2743 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2744 return vector;
2745 }
2746
2747 /* Finally, need a new vector block. */
2748 block = allocate_vector_block ();
2749
2750 /* New vector will be at the beginning of this block. */
2751 vector = (struct Lisp_Vector *) block->data;
2752
2753 /* If the rest of space from this block is large enough
2754 for one-slot vector at least, set up it on a free list. */
2755 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2756 if (restbytes >= VBLOCK_BYTES_MIN)
2757 {
2758 eassert (restbytes % roundup_size == 0);
2759 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2760 }
2761 return vector;
2762 }
2763
2764 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2765
2766 #define VECTOR_IN_BLOCK(vector, block) \
2767 ((char *) (vector) <= (block)->data \
2768 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2769
2770 /* Return the memory footprint of V in bytes. */
2771
2772 static ptrdiff_t
2773 vector_nbytes (struct Lisp_Vector *v)
2774 {
2775 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2776
2777 if (size & PSEUDOVECTOR_FLAG)
2778 {
2779 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2780 size = (bool_header_size
2781 + (((struct Lisp_Bool_Vector *) v)->size
2782 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2783 / BOOL_VECTOR_BITS_PER_CHAR);
2784 else
2785 size = (header_size
2786 + ((size & PSEUDOVECTOR_SIZE_MASK)
2787 + ((size & PSEUDOVECTOR_REST_MASK)
2788 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2789 }
2790 else
2791 size = header_size + size * word_size;
2792 return vroundup (size);
2793 }
2794
2795 /* Reclaim space used by unmarked vectors. */
2796
2797 static void
2798 sweep_vectors (void)
2799 {
2800 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2801 struct large_vector *lv, **lvprev = &large_vectors;
2802 struct Lisp_Vector *vector, *next;
2803
2804 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2805 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2806
2807 /* Looking through vector blocks. */
2808
2809 for (block = vector_blocks; block; block = *bprev)
2810 {
2811 bool free_this_block = 0;
2812 ptrdiff_t nbytes;
2813
2814 for (vector = (struct Lisp_Vector *) block->data;
2815 VECTOR_IN_BLOCK (vector, block); vector = next)
2816 {
2817 if (VECTOR_MARKED_P (vector))
2818 {
2819 VECTOR_UNMARK (vector);
2820 total_vectors++;
2821 nbytes = vector_nbytes (vector);
2822 total_vector_slots += nbytes / word_size;
2823 next = ADVANCE (vector, nbytes);
2824 }
2825 else
2826 {
2827 ptrdiff_t total_bytes;
2828
2829 nbytes = vector_nbytes (vector);
2830 total_bytes = nbytes;
2831 next = ADVANCE (vector, nbytes);
2832
2833 /* While NEXT is not marked, try to coalesce with VECTOR,
2834 thus making VECTOR of the largest possible size. */
2835
2836 while (VECTOR_IN_BLOCK (next, block))
2837 {
2838 if (VECTOR_MARKED_P (next))
2839 break;
2840 nbytes = vector_nbytes (next);
2841 total_bytes += nbytes;
2842 next = ADVANCE (next, nbytes);
2843 }
2844
2845 eassert (total_bytes % roundup_size == 0);
2846
2847 if (vector == (struct Lisp_Vector *) block->data
2848 && !VECTOR_IN_BLOCK (next, block))
2849 /* This block should be freed because all of it's
2850 space was coalesced into the only free vector. */
2851 free_this_block = 1;
2852 else
2853 {
2854 int tmp;
2855 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2856 }
2857 }
2858 }
2859
2860 if (free_this_block)
2861 {
2862 *bprev = block->next;
2863 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2864 mem_delete (mem_find (block->data));
2865 #endif
2866 xfree (block);
2867 }
2868 else
2869 bprev = &block->next;
2870 }
2871
2872 /* Sweep large vectors. */
2873
2874 for (lv = large_vectors; lv; lv = *lvprev)
2875 {
2876 vector = &lv->v;
2877 if (VECTOR_MARKED_P (vector))
2878 {
2879 VECTOR_UNMARK (vector);
2880 total_vectors++;
2881 if (vector->header.size & PSEUDOVECTOR_FLAG)
2882 {
2883 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2884
2885 /* All non-bool pseudovectors are small enough to be allocated
2886 from vector blocks. This code should be redesigned if some
2887 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2888 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2889
2890 total_vector_slots
2891 += (bool_header_size
2892 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2893 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2894 }
2895 else
2896 total_vector_slots
2897 += header_size / word_size + vector->header.size;
2898 lvprev = &lv->next.vector;
2899 }
2900 else
2901 {
2902 *lvprev = lv->next.vector;
2903 lisp_free (lv);
2904 }
2905 }
2906 }
2907
2908 /* Value is a pointer to a newly allocated Lisp_Vector structure
2909 with room for LEN Lisp_Objects. */
2910
2911 static struct Lisp_Vector *
2912 allocate_vectorlike (ptrdiff_t len)
2913 {
2914 struct Lisp_Vector *p;
2915
2916 MALLOC_BLOCK_INPUT;
2917
2918 if (len == 0)
2919 p = XVECTOR (zero_vector);
2920 else
2921 {
2922 size_t nbytes = header_size + len * word_size;
2923
2924 #ifdef DOUG_LEA_MALLOC
2925 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2926 because mapped region contents are not preserved in
2927 a dumped Emacs. */
2928 mallopt (M_MMAP_MAX, 0);
2929 #endif
2930
2931 if (nbytes <= VBLOCK_BYTES_MAX)
2932 p = allocate_vector_from_block (vroundup (nbytes));
2933 else
2934 {
2935 struct large_vector *lv
2936 = lisp_malloc (sizeof (*lv) + (len - 1) * word_size,
2937 MEM_TYPE_VECTORLIKE);
2938 lv->next.vector = large_vectors;
2939 large_vectors = lv;
2940 p = &lv->v;
2941 }
2942
2943 #ifdef DOUG_LEA_MALLOC
2944 /* Back to a reasonable maximum of mmap'ed areas. */
2945 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2946 #endif
2947
2948 consing_since_gc += nbytes;
2949 vector_cells_consed += len;
2950 }
2951
2952 MALLOC_UNBLOCK_INPUT;
2953
2954 return p;
2955 }
2956
2957
2958 /* Allocate a vector with LEN slots. */
2959
2960 struct Lisp_Vector *
2961 allocate_vector (EMACS_INT len)
2962 {
2963 struct Lisp_Vector *v;
2964 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2965
2966 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2967 memory_full (SIZE_MAX);
2968 v = allocate_vectorlike (len);
2969 v->header.size = len;
2970 return v;
2971 }
2972
2973
2974 /* Allocate other vector-like structures. */
2975
2976 struct Lisp_Vector *
2977 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2978 {
2979 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2980 int i;
2981
2982 /* Catch bogus values. */
2983 eassert (tag <= PVEC_FONT);
2984 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2985 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2986
2987 /* Only the first lisplen slots will be traced normally by the GC. */
2988 for (i = 0; i < lisplen; ++i)
2989 v->contents[i] = Qnil;
2990
2991 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
2992 return v;
2993 }
2994
2995 struct buffer *
2996 allocate_buffer (void)
2997 {
2998 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
2999
3000 BUFFER_PVEC_INIT (b);
3001 /* Put B on the chain of all buffers including killed ones. */
3002 b->next = all_buffers;
3003 all_buffers = b;
3004 /* Note that the rest fields of B are not initialized. */
3005 return b;
3006 }
3007
3008 struct Lisp_Hash_Table *
3009 allocate_hash_table (void)
3010 {
3011 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3012 }
3013
3014 struct window *
3015 allocate_window (void)
3016 {
3017 struct window *w;
3018
3019 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3020 /* Users assumes that non-Lisp data is zeroed. */
3021 memset (&w->current_matrix, 0,
3022 sizeof (*w) - offsetof (struct window, current_matrix));
3023 return w;
3024 }
3025
3026 struct terminal *
3027 allocate_terminal (void)
3028 {
3029 struct terminal *t;
3030
3031 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3032 /* Users assumes that non-Lisp data is zeroed. */
3033 memset (&t->next_terminal, 0,
3034 sizeof (*t) - offsetof (struct terminal, next_terminal));
3035 return t;
3036 }
3037
3038 struct frame *
3039 allocate_frame (void)
3040 {
3041 struct frame *f;
3042
3043 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3044 /* Users assumes that non-Lisp data is zeroed. */
3045 memset (&f->face_cache, 0,
3046 sizeof (*f) - offsetof (struct frame, face_cache));
3047 return f;
3048 }
3049
3050 struct Lisp_Process *
3051 allocate_process (void)
3052 {
3053 struct Lisp_Process *p;
3054
3055 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3056 /* Users assumes that non-Lisp data is zeroed. */
3057 memset (&p->pid, 0,
3058 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3059 return p;
3060 }
3061
3062 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3063 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3064 See also the function `vector'. */)
3065 (register Lisp_Object length, Lisp_Object init)
3066 {
3067 Lisp_Object vector;
3068 register ptrdiff_t sizei;
3069 register ptrdiff_t i;
3070 register struct Lisp_Vector *p;
3071
3072 CHECK_NATNUM (length);
3073
3074 p = allocate_vector (XFASTINT (length));
3075 sizei = XFASTINT (length);
3076 for (i = 0; i < sizei; i++)
3077 p->contents[i] = init;
3078
3079 XSETVECTOR (vector, p);
3080 return vector;
3081 }
3082
3083
3084 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3085 doc: /* Return a newly created vector with specified arguments as elements.
3086 Any number of arguments, even zero arguments, are allowed.
3087 usage: (vector &rest OBJECTS) */)
3088 (ptrdiff_t nargs, Lisp_Object *args)
3089 {
3090 ptrdiff_t i;
3091 register Lisp_Object val = make_uninit_vector (nargs);
3092 register struct Lisp_Vector *p = XVECTOR (val);
3093
3094 for (i = 0; i < nargs; i++)
3095 p->contents[i] = args[i];
3096 return val;
3097 }
3098
3099 void
3100 make_byte_code (struct Lisp_Vector *v)
3101 {
3102 if (v->header.size > 1 && STRINGP (v->contents[1])
3103 && STRING_MULTIBYTE (v->contents[1]))
3104 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3105 earlier because they produced a raw 8-bit string for byte-code
3106 and now such a byte-code string is loaded as multibyte while
3107 raw 8-bit characters converted to multibyte form. Thus, now we
3108 must convert them back to the original unibyte form. */
3109 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3110 XSETPVECTYPE (v, PVEC_COMPILED);
3111 }
3112
3113 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3114 doc: /* Create a byte-code object with specified arguments as elements.
3115 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3116 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3117 and (optional) INTERACTIVE-SPEC.
3118 The first four arguments are required; at most six have any
3119 significance.
3120 The ARGLIST can be either like the one of `lambda', in which case the arguments
3121 will be dynamically bound before executing the byte code, or it can be an
3122 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3123 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3124 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3125 argument to catch the left-over arguments. If such an integer is used, the
3126 arguments will not be dynamically bound but will be instead pushed on the
3127 stack before executing the byte-code.
3128 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3129 (ptrdiff_t nargs, Lisp_Object *args)
3130 {
3131 ptrdiff_t i;
3132 register Lisp_Object val = make_uninit_vector (nargs);
3133 register struct Lisp_Vector *p = XVECTOR (val);
3134
3135 /* We used to purecopy everything here, if purify-flag was set. This worked
3136 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3137 dangerous, since make-byte-code is used during execution to build
3138 closures, so any closure built during the preload phase would end up
3139 copied into pure space, including its free variables, which is sometimes
3140 just wasteful and other times plainly wrong (e.g. those free vars may want
3141 to be setcar'd). */
3142
3143 for (i = 0; i < nargs; i++)
3144 p->contents[i] = args[i];
3145 make_byte_code (p);
3146 XSETCOMPILED (val, p);
3147 return val;
3148 }
3149
3150
3151 \f
3152 /***********************************************************************
3153 Symbol Allocation
3154 ***********************************************************************/
3155
3156 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3157 of the required alignment if LSB tags are used. */
3158
3159 union aligned_Lisp_Symbol
3160 {
3161 struct Lisp_Symbol s;
3162 #if USE_LSB_TAG
3163 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3164 & -GCALIGNMENT];
3165 #endif
3166 };
3167
3168 /* Each symbol_block is just under 1020 bytes long, since malloc
3169 really allocates in units of powers of two and uses 4 bytes for its
3170 own overhead. */
3171
3172 #define SYMBOL_BLOCK_SIZE \
3173 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3174
3175 struct symbol_block
3176 {
3177 /* Place `symbols' first, to preserve alignment. */
3178 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3179 struct symbol_block *next;
3180 };
3181
3182 /* Current symbol block and index of first unused Lisp_Symbol
3183 structure in it. */
3184
3185 static struct symbol_block *symbol_block;
3186 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3187
3188 /* List of free symbols. */
3189
3190 static struct Lisp_Symbol *symbol_free_list;
3191
3192 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3193 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3194 Its value is void, and its function definition and property list are nil. */)
3195 (Lisp_Object name)
3196 {
3197 register Lisp_Object val;
3198 register struct Lisp_Symbol *p;
3199
3200 CHECK_STRING (name);
3201
3202 MALLOC_BLOCK_INPUT;
3203
3204 if (symbol_free_list)
3205 {
3206 XSETSYMBOL (val, symbol_free_list);
3207 symbol_free_list = symbol_free_list->next;
3208 }
3209 else
3210 {
3211 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3212 {
3213 struct symbol_block *new
3214 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3215 new->next = symbol_block;
3216 symbol_block = new;
3217 symbol_block_index = 0;
3218 total_free_symbols += SYMBOL_BLOCK_SIZE;
3219 }
3220 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3221 symbol_block_index++;
3222 }
3223
3224 MALLOC_UNBLOCK_INPUT;
3225
3226 p = XSYMBOL (val);
3227 set_symbol_name (val, name);
3228 set_symbol_plist (val, Qnil);
3229 p->redirect = SYMBOL_PLAINVAL;
3230 SET_SYMBOL_VAL (p, Qunbound);
3231 set_symbol_function (val, Qnil);
3232 set_symbol_next (val, NULL);
3233 p->gcmarkbit = 0;
3234 p->interned = SYMBOL_UNINTERNED;
3235 p->constant = 0;
3236 p->declared_special = 0;
3237 consing_since_gc += sizeof (struct Lisp_Symbol);
3238 symbols_consed++;
3239 total_free_symbols--;
3240 return val;
3241 }
3242
3243
3244 \f
3245 /***********************************************************************
3246 Marker (Misc) Allocation
3247 ***********************************************************************/
3248
3249 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3250 the required alignment when LSB tags are used. */
3251
3252 union aligned_Lisp_Misc
3253 {
3254 union Lisp_Misc m;
3255 #if USE_LSB_TAG
3256 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3257 & -GCALIGNMENT];
3258 #endif
3259 };
3260
3261 /* Allocation of markers and other objects that share that structure.
3262 Works like allocation of conses. */
3263
3264 #define MARKER_BLOCK_SIZE \
3265 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3266
3267 struct marker_block
3268 {
3269 /* Place `markers' first, to preserve alignment. */
3270 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3271 struct marker_block *next;
3272 };
3273
3274 static struct marker_block *marker_block;
3275 static int marker_block_index = MARKER_BLOCK_SIZE;
3276
3277 static union Lisp_Misc *marker_free_list;
3278
3279 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3280
3281 static Lisp_Object
3282 allocate_misc (enum Lisp_Misc_Type type)
3283 {
3284 Lisp_Object val;
3285
3286 MALLOC_BLOCK_INPUT;
3287
3288 if (marker_free_list)
3289 {
3290 XSETMISC (val, marker_free_list);
3291 marker_free_list = marker_free_list->u_free.chain;
3292 }
3293 else
3294 {
3295 if (marker_block_index == MARKER_BLOCK_SIZE)
3296 {
3297 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3298 new->next = marker_block;
3299 marker_block = new;
3300 marker_block_index = 0;
3301 total_free_markers += MARKER_BLOCK_SIZE;
3302 }
3303 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3304 marker_block_index++;
3305 }
3306
3307 MALLOC_UNBLOCK_INPUT;
3308
3309 --total_free_markers;
3310 consing_since_gc += sizeof (union Lisp_Misc);
3311 misc_objects_consed++;
3312 XMISCTYPE (val) = type;
3313 XMISCANY (val)->gcmarkbit = 0;
3314 return val;
3315 }
3316
3317 /* Free a Lisp_Misc object. */
3318
3319 void
3320 free_misc (Lisp_Object misc)
3321 {
3322 XMISCTYPE (misc) = Lisp_Misc_Free;
3323 XMISC (misc)->u_free.chain = marker_free_list;
3324 marker_free_list = XMISC (misc);
3325 consing_since_gc -= sizeof (union Lisp_Misc);
3326 total_free_markers++;
3327 }
3328
3329 /* Verify properties of Lisp_Save_Value's representation
3330 that are assumed here and elsewhere. */
3331
3332 verify (SAVE_UNUSED == 0);
3333 verify ((SAVE_INTEGER | SAVE_POINTER | SAVE_OBJECT) >> SAVE_SLOT_BITS == 0);
3334
3335 /* Return a Lisp_Save_Value object with the data saved according to
3336 DATA_TYPE. DATA_TYPE should be one of SAVE_TYPE_INT_INT, etc. */
3337
3338 Lisp_Object
3339 make_save_value (enum Lisp_Save_Type save_type, ...)
3340 {
3341 va_list ap;
3342 int i;
3343 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3344 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3345
3346 eassert (0 < save_type
3347 && (save_type < 1 << (SAVE_TYPE_BITS - 1)
3348 || save_type == SAVE_TYPE_MEMORY));
3349 p->save_type = save_type;
3350 va_start (ap, save_type);
3351 save_type &= ~ (1 << (SAVE_TYPE_BITS - 1));
3352
3353 for (i = 0; save_type; i++, save_type >>= SAVE_SLOT_BITS)
3354 switch (save_type & ((1 << SAVE_SLOT_BITS) - 1))
3355 {
3356 case SAVE_POINTER:
3357 p->data[i].pointer = va_arg (ap, void *);
3358 break;
3359
3360 case SAVE_INTEGER:
3361 p->data[i].integer = va_arg (ap, ptrdiff_t);
3362 break;
3363
3364 case SAVE_OBJECT:
3365 p->data[i].object = va_arg (ap, Lisp_Object);
3366 break;
3367
3368 default:
3369 emacs_abort ();
3370 }
3371
3372 va_end (ap);
3373 return val;
3374 }
3375
3376 /* The most common task it to save just one C pointer. */
3377
3378 Lisp_Object
3379 make_save_pointer (void *pointer)
3380 {
3381 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3382 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3383 p->save_type = SAVE_POINTER;
3384 p->data[0].pointer = pointer;
3385 return val;
3386 }
3387
3388 /* Free a Lisp_Save_Value object. Do not use this function
3389 if SAVE contains pointer other than returned by xmalloc. */
3390
3391 static void
3392 free_save_value (Lisp_Object save)
3393 {
3394 xfree (XSAVE_POINTER (save, 0));
3395 free_misc (save);
3396 }
3397
3398 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3399
3400 Lisp_Object
3401 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3402 {
3403 register Lisp_Object overlay;
3404
3405 overlay = allocate_misc (Lisp_Misc_Overlay);
3406 OVERLAY_START (overlay) = start;
3407 OVERLAY_END (overlay) = end;
3408 set_overlay_plist (overlay, plist);
3409 XOVERLAY (overlay)->next = NULL;
3410 return overlay;
3411 }
3412
3413 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3414 doc: /* Return a newly allocated marker which does not point at any place. */)
3415 (void)
3416 {
3417 register Lisp_Object val;
3418 register struct Lisp_Marker *p;
3419
3420 val = allocate_misc (Lisp_Misc_Marker);
3421 p = XMARKER (val);
3422 p->buffer = 0;
3423 p->bytepos = 0;
3424 p->charpos = 0;
3425 p->next = NULL;
3426 p->insertion_type = 0;
3427 return val;
3428 }
3429
3430 /* Return a newly allocated marker which points into BUF
3431 at character position CHARPOS and byte position BYTEPOS. */
3432
3433 Lisp_Object
3434 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3435 {
3436 Lisp_Object obj;
3437 struct Lisp_Marker *m;
3438
3439 /* No dead buffers here. */
3440 eassert (BUFFER_LIVE_P (buf));
3441
3442 /* Every character is at least one byte. */
3443 eassert (charpos <= bytepos);
3444
3445 obj = allocate_misc (Lisp_Misc_Marker);
3446 m = XMARKER (obj);
3447 m->buffer = buf;
3448 m->charpos = charpos;
3449 m->bytepos = bytepos;
3450 m->insertion_type = 0;
3451 m->next = BUF_MARKERS (buf);
3452 BUF_MARKERS (buf) = m;
3453 return obj;
3454 }
3455
3456 /* Put MARKER back on the free list after using it temporarily. */
3457
3458 void
3459 free_marker (Lisp_Object marker)
3460 {
3461 unchain_marker (XMARKER (marker));
3462 free_misc (marker);
3463 }
3464
3465 \f
3466 /* Return a newly created vector or string with specified arguments as
3467 elements. If all the arguments are characters that can fit
3468 in a string of events, make a string; otherwise, make a vector.
3469
3470 Any number of arguments, even zero arguments, are allowed. */
3471
3472 Lisp_Object
3473 make_event_array (register int nargs, Lisp_Object *args)
3474 {
3475 int i;
3476
3477 for (i = 0; i < nargs; i++)
3478 /* The things that fit in a string
3479 are characters that are in 0...127,
3480 after discarding the meta bit and all the bits above it. */
3481 if (!INTEGERP (args[i])
3482 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3483 return Fvector (nargs, args);
3484
3485 /* Since the loop exited, we know that all the things in it are
3486 characters, so we can make a string. */
3487 {
3488 Lisp_Object result;
3489
3490 result = Fmake_string (make_number (nargs), make_number (0));
3491 for (i = 0; i < nargs; i++)
3492 {
3493 SSET (result, i, XINT (args[i]));
3494 /* Move the meta bit to the right place for a string char. */
3495 if (XINT (args[i]) & CHAR_META)
3496 SSET (result, i, SREF (result, i) | 0x80);
3497 }
3498
3499 return result;
3500 }
3501 }
3502
3503
3504 \f
3505 /************************************************************************
3506 Memory Full Handling
3507 ************************************************************************/
3508
3509
3510 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3511 there may have been size_t overflow so that malloc was never
3512 called, or perhaps malloc was invoked successfully but the
3513 resulting pointer had problems fitting into a tagged EMACS_INT. In
3514 either case this counts as memory being full even though malloc did
3515 not fail. */
3516
3517 void
3518 memory_full (size_t nbytes)
3519 {
3520 /* Do not go into hysterics merely because a large request failed. */
3521 bool enough_free_memory = 0;
3522 if (SPARE_MEMORY < nbytes)
3523 {
3524 void *p;
3525
3526 MALLOC_BLOCK_INPUT;
3527 p = malloc (SPARE_MEMORY);
3528 if (p)
3529 {
3530 free (p);
3531 enough_free_memory = 1;
3532 }
3533 MALLOC_UNBLOCK_INPUT;
3534 }
3535
3536 if (! enough_free_memory)
3537 {
3538 int i;
3539
3540 Vmemory_full = Qt;
3541
3542 memory_full_cons_threshold = sizeof (struct cons_block);
3543
3544 /* The first time we get here, free the spare memory. */
3545 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3546 if (spare_memory[i])
3547 {
3548 if (i == 0)
3549 free (spare_memory[i]);
3550 else if (i >= 1 && i <= 4)
3551 lisp_align_free (spare_memory[i]);
3552 else
3553 lisp_free (spare_memory[i]);
3554 spare_memory[i] = 0;
3555 }
3556 }
3557
3558 /* This used to call error, but if we've run out of memory, we could
3559 get infinite recursion trying to build the string. */
3560 xsignal (Qnil, Vmemory_signal_data);
3561 }
3562
3563 /* If we released our reserve (due to running out of memory),
3564 and we have a fair amount free once again,
3565 try to set aside another reserve in case we run out once more.
3566
3567 This is called when a relocatable block is freed in ralloc.c,
3568 and also directly from this file, in case we're not using ralloc.c. */
3569
3570 void
3571 refill_memory_reserve (void)
3572 {
3573 #ifndef SYSTEM_MALLOC
3574 if (spare_memory[0] == 0)
3575 spare_memory[0] = malloc (SPARE_MEMORY);
3576 if (spare_memory[1] == 0)
3577 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3578 MEM_TYPE_SPARE);
3579 if (spare_memory[2] == 0)
3580 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3581 MEM_TYPE_SPARE);
3582 if (spare_memory[3] == 0)
3583 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3584 MEM_TYPE_SPARE);
3585 if (spare_memory[4] == 0)
3586 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3587 MEM_TYPE_SPARE);
3588 if (spare_memory[5] == 0)
3589 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3590 MEM_TYPE_SPARE);
3591 if (spare_memory[6] == 0)
3592 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3593 MEM_TYPE_SPARE);
3594 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3595 Vmemory_full = Qnil;
3596 #endif
3597 }
3598 \f
3599 /************************************************************************
3600 C Stack Marking
3601 ************************************************************************/
3602
3603 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3604
3605 /* Conservative C stack marking requires a method to identify possibly
3606 live Lisp objects given a pointer value. We do this by keeping
3607 track of blocks of Lisp data that are allocated in a red-black tree
3608 (see also the comment of mem_node which is the type of nodes in
3609 that tree). Function lisp_malloc adds information for an allocated
3610 block to the red-black tree with calls to mem_insert, and function
3611 lisp_free removes it with mem_delete. Functions live_string_p etc
3612 call mem_find to lookup information about a given pointer in the
3613 tree, and use that to determine if the pointer points to a Lisp
3614 object or not. */
3615
3616 /* Initialize this part of alloc.c. */
3617
3618 static void
3619 mem_init (void)
3620 {
3621 mem_z.left = mem_z.right = MEM_NIL;
3622 mem_z.parent = NULL;
3623 mem_z.color = MEM_BLACK;
3624 mem_z.start = mem_z.end = NULL;
3625 mem_root = MEM_NIL;
3626 }
3627
3628
3629 /* Value is a pointer to the mem_node containing START. Value is
3630 MEM_NIL if there is no node in the tree containing START. */
3631
3632 static struct mem_node *
3633 mem_find (void *start)
3634 {
3635 struct mem_node *p;
3636
3637 if (start < min_heap_address || start > max_heap_address)
3638 return MEM_NIL;
3639
3640 /* Make the search always successful to speed up the loop below. */
3641 mem_z.start = start;
3642 mem_z.end = (char *) start + 1;
3643
3644 p = mem_root;
3645 while (start < p->start || start >= p->end)
3646 p = start < p->start ? p->left : p->right;
3647 return p;
3648 }
3649
3650
3651 /* Insert a new node into the tree for a block of memory with start
3652 address START, end address END, and type TYPE. Value is a
3653 pointer to the node that was inserted. */
3654
3655 static struct mem_node *
3656 mem_insert (void *start, void *end, enum mem_type type)
3657 {
3658 struct mem_node *c, *parent, *x;
3659
3660 if (min_heap_address == NULL || start < min_heap_address)
3661 min_heap_address = start;
3662 if (max_heap_address == NULL || end > max_heap_address)
3663 max_heap_address = end;
3664
3665 /* See where in the tree a node for START belongs. In this
3666 particular application, it shouldn't happen that a node is already
3667 present. For debugging purposes, let's check that. */
3668 c = mem_root;
3669 parent = NULL;
3670
3671 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3672
3673 while (c != MEM_NIL)
3674 {
3675 if (start >= c->start && start < c->end)
3676 emacs_abort ();
3677 parent = c;
3678 c = start < c->start ? c->left : c->right;
3679 }
3680
3681 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3682
3683 while (c != MEM_NIL)
3684 {
3685 parent = c;
3686 c = start < c->start ? c->left : c->right;
3687 }
3688
3689 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3690
3691 /* Create a new node. */
3692 #ifdef GC_MALLOC_CHECK
3693 x = malloc (sizeof *x);
3694 if (x == NULL)
3695 emacs_abort ();
3696 #else
3697 x = xmalloc (sizeof *x);
3698 #endif
3699 x->start = start;
3700 x->end = end;
3701 x->type = type;
3702 x->parent = parent;
3703 x->left = x->right = MEM_NIL;
3704 x->color = MEM_RED;
3705
3706 /* Insert it as child of PARENT or install it as root. */
3707 if (parent)
3708 {
3709 if (start < parent->start)
3710 parent->left = x;
3711 else
3712 parent->right = x;
3713 }
3714 else
3715 mem_root = x;
3716
3717 /* Re-establish red-black tree properties. */
3718 mem_insert_fixup (x);
3719
3720 return x;
3721 }
3722
3723
3724 /* Re-establish the red-black properties of the tree, and thereby
3725 balance the tree, after node X has been inserted; X is always red. */
3726
3727 static void
3728 mem_insert_fixup (struct mem_node *x)
3729 {
3730 while (x != mem_root && x->parent->color == MEM_RED)
3731 {
3732 /* X is red and its parent is red. This is a violation of
3733 red-black tree property #3. */
3734
3735 if (x->parent == x->parent->parent->left)
3736 {
3737 /* We're on the left side of our grandparent, and Y is our
3738 "uncle". */
3739 struct mem_node *y = x->parent->parent->right;
3740
3741 if (y->color == MEM_RED)
3742 {
3743 /* Uncle and parent are red but should be black because
3744 X is red. Change the colors accordingly and proceed
3745 with the grandparent. */
3746 x->parent->color = MEM_BLACK;
3747 y->color = MEM_BLACK;
3748 x->parent->parent->color = MEM_RED;
3749 x = x->parent->parent;
3750 }
3751 else
3752 {
3753 /* Parent and uncle have different colors; parent is
3754 red, uncle is black. */
3755 if (x == x->parent->right)
3756 {
3757 x = x->parent;
3758 mem_rotate_left (x);
3759 }
3760
3761 x->parent->color = MEM_BLACK;
3762 x->parent->parent->color = MEM_RED;
3763 mem_rotate_right (x->parent->parent);
3764 }
3765 }
3766 else
3767 {
3768 /* This is the symmetrical case of above. */
3769 struct mem_node *y = x->parent->parent->left;
3770
3771 if (y->color == MEM_RED)
3772 {
3773 x->parent->color = MEM_BLACK;
3774 y->color = MEM_BLACK;
3775 x->parent->parent->color = MEM_RED;
3776 x = x->parent->parent;
3777 }
3778 else
3779 {
3780 if (x == x->parent->left)
3781 {
3782 x = x->parent;
3783 mem_rotate_right (x);
3784 }
3785
3786 x->parent->color = MEM_BLACK;
3787 x->parent->parent->color = MEM_RED;
3788 mem_rotate_left (x->parent->parent);
3789 }
3790 }
3791 }
3792
3793 /* The root may have been changed to red due to the algorithm. Set
3794 it to black so that property #5 is satisfied. */
3795 mem_root->color = MEM_BLACK;
3796 }
3797
3798
3799 /* (x) (y)
3800 / \ / \
3801 a (y) ===> (x) c
3802 / \ / \
3803 b c a b */
3804
3805 static void
3806 mem_rotate_left (struct mem_node *x)
3807 {
3808 struct mem_node *y;
3809
3810 /* Turn y's left sub-tree into x's right sub-tree. */
3811 y = x->right;
3812 x->right = y->left;
3813 if (y->left != MEM_NIL)
3814 y->left->parent = x;
3815
3816 /* Y's parent was x's parent. */
3817 if (y != MEM_NIL)
3818 y->parent = x->parent;
3819
3820 /* Get the parent to point to y instead of x. */
3821 if (x->parent)
3822 {
3823 if (x == x->parent->left)
3824 x->parent->left = y;
3825 else
3826 x->parent->right = y;
3827 }
3828 else
3829 mem_root = y;
3830
3831 /* Put x on y's left. */
3832 y->left = x;
3833 if (x != MEM_NIL)
3834 x->parent = y;
3835 }
3836
3837
3838 /* (x) (Y)
3839 / \ / \
3840 (y) c ===> a (x)
3841 / \ / \
3842 a b b c */
3843
3844 static void
3845 mem_rotate_right (struct mem_node *x)
3846 {
3847 struct mem_node *y = x->left;
3848
3849 x->left = y->right;
3850 if (y->right != MEM_NIL)
3851 y->right->parent = x;
3852
3853 if (y != MEM_NIL)
3854 y->parent = x->parent;
3855 if (x->parent)
3856 {
3857 if (x == x->parent->right)
3858 x->parent->right = y;
3859 else
3860 x->parent->left = y;
3861 }
3862 else
3863 mem_root = y;
3864
3865 y->right = x;
3866 if (x != MEM_NIL)
3867 x->parent = y;
3868 }
3869
3870
3871 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3872
3873 static void
3874 mem_delete (struct mem_node *z)
3875 {
3876 struct mem_node *x, *y;
3877
3878 if (!z || z == MEM_NIL)
3879 return;
3880
3881 if (z->left == MEM_NIL || z->right == MEM_NIL)
3882 y = z;
3883 else
3884 {
3885 y = z->right;
3886 while (y->left != MEM_NIL)
3887 y = y->left;
3888 }
3889
3890 if (y->left != MEM_NIL)
3891 x = y->left;
3892 else
3893 x = y->right;
3894
3895 x->parent = y->parent;
3896 if (y->parent)
3897 {
3898 if (y == y->parent->left)
3899 y->parent->left = x;
3900 else
3901 y->parent->right = x;
3902 }
3903 else
3904 mem_root = x;
3905
3906 if (y != z)
3907 {
3908 z->start = y->start;
3909 z->end = y->end;
3910 z->type = y->type;
3911 }
3912
3913 if (y->color == MEM_BLACK)
3914 mem_delete_fixup (x);
3915
3916 #ifdef GC_MALLOC_CHECK
3917 free (y);
3918 #else
3919 xfree (y);
3920 #endif
3921 }
3922
3923
3924 /* Re-establish the red-black properties of the tree, after a
3925 deletion. */
3926
3927 static void
3928 mem_delete_fixup (struct mem_node *x)
3929 {
3930 while (x != mem_root && x->color == MEM_BLACK)
3931 {
3932 if (x == x->parent->left)
3933 {
3934 struct mem_node *w = x->parent->right;
3935
3936 if (w->color == MEM_RED)
3937 {
3938 w->color = MEM_BLACK;
3939 x->parent->color = MEM_RED;
3940 mem_rotate_left (x->parent);
3941 w = x->parent->right;
3942 }
3943
3944 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3945 {
3946 w->color = MEM_RED;
3947 x = x->parent;
3948 }
3949 else
3950 {
3951 if (w->right->color == MEM_BLACK)
3952 {
3953 w->left->color = MEM_BLACK;
3954 w->color = MEM_RED;
3955 mem_rotate_right (w);
3956 w = x->parent->right;
3957 }
3958 w->color = x->parent->color;
3959 x->parent->color = MEM_BLACK;
3960 w->right->color = MEM_BLACK;
3961 mem_rotate_left (x->parent);
3962 x = mem_root;
3963 }
3964 }
3965 else
3966 {
3967 struct mem_node *w = x->parent->left;
3968
3969 if (w->color == MEM_RED)
3970 {
3971 w->color = MEM_BLACK;
3972 x->parent->color = MEM_RED;
3973 mem_rotate_right (x->parent);
3974 w = x->parent->left;
3975 }
3976
3977 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3978 {
3979 w->color = MEM_RED;
3980 x = x->parent;
3981 }
3982 else
3983 {
3984 if (w->left->color == MEM_BLACK)
3985 {
3986 w->right->color = MEM_BLACK;
3987 w->color = MEM_RED;
3988 mem_rotate_left (w);
3989 w = x->parent->left;
3990 }
3991
3992 w->color = x->parent->color;
3993 x->parent->color = MEM_BLACK;
3994 w->left->color = MEM_BLACK;
3995 mem_rotate_right (x->parent);
3996 x = mem_root;
3997 }
3998 }
3999 }
4000
4001 x->color = MEM_BLACK;
4002 }
4003
4004
4005 /* Value is non-zero if P is a pointer to a live Lisp string on
4006 the heap. M is a pointer to the mem_block for P. */
4007
4008 static bool
4009 live_string_p (struct mem_node *m, void *p)
4010 {
4011 if (m->type == MEM_TYPE_STRING)
4012 {
4013 struct string_block *b = (struct string_block *) m->start;
4014 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4015
4016 /* P must point to the start of a Lisp_String structure, and it
4017 must not be on the free-list. */
4018 return (offset >= 0
4019 && offset % sizeof b->strings[0] == 0
4020 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4021 && ((struct Lisp_String *) p)->data != NULL);
4022 }
4023 else
4024 return 0;
4025 }
4026
4027
4028 /* Value is non-zero if P is a pointer to a live Lisp cons on
4029 the heap. M is a pointer to the mem_block for P. */
4030
4031 static bool
4032 live_cons_p (struct mem_node *m, void *p)
4033 {
4034 if (m->type == MEM_TYPE_CONS)
4035 {
4036 struct cons_block *b = (struct cons_block *) m->start;
4037 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4038
4039 /* P must point to the start of a Lisp_Cons, not be
4040 one of the unused cells in the current cons block,
4041 and not be on the free-list. */
4042 return (offset >= 0
4043 && offset % sizeof b->conses[0] == 0
4044 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4045 && (b != cons_block
4046 || offset / sizeof b->conses[0] < cons_block_index)
4047 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4048 }
4049 else
4050 return 0;
4051 }
4052
4053
4054 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4055 the heap. M is a pointer to the mem_block for P. */
4056
4057 static bool
4058 live_symbol_p (struct mem_node *m, void *p)
4059 {
4060 if (m->type == MEM_TYPE_SYMBOL)
4061 {
4062 struct symbol_block *b = (struct symbol_block *) m->start;
4063 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4064
4065 /* P must point to the start of a Lisp_Symbol, not be
4066 one of the unused cells in the current symbol block,
4067 and not be on the free-list. */
4068 return (offset >= 0
4069 && offset % sizeof b->symbols[0] == 0
4070 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4071 && (b != symbol_block
4072 || offset / sizeof b->symbols[0] < symbol_block_index)
4073 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4074 }
4075 else
4076 return 0;
4077 }
4078
4079
4080 /* Value is non-zero if P is a pointer to a live Lisp float on
4081 the heap. M is a pointer to the mem_block for P. */
4082
4083 static bool
4084 live_float_p (struct mem_node *m, void *p)
4085 {
4086 if (m->type == MEM_TYPE_FLOAT)
4087 {
4088 struct float_block *b = (struct float_block *) m->start;
4089 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4090
4091 /* P must point to the start of a Lisp_Float and not be
4092 one of the unused cells in the current float block. */
4093 return (offset >= 0
4094 && offset % sizeof b->floats[0] == 0
4095 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4096 && (b != float_block
4097 || offset / sizeof b->floats[0] < float_block_index));
4098 }
4099 else
4100 return 0;
4101 }
4102
4103
4104 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4105 the heap. M is a pointer to the mem_block for P. */
4106
4107 static bool
4108 live_misc_p (struct mem_node *m, void *p)
4109 {
4110 if (m->type == MEM_TYPE_MISC)
4111 {
4112 struct marker_block *b = (struct marker_block *) m->start;
4113 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4114
4115 /* P must point to the start of a Lisp_Misc, not be
4116 one of the unused cells in the current misc block,
4117 and not be on the free-list. */
4118 return (offset >= 0
4119 && offset % sizeof b->markers[0] == 0
4120 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4121 && (b != marker_block
4122 || offset / sizeof b->markers[0] < marker_block_index)
4123 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4124 }
4125 else
4126 return 0;
4127 }
4128
4129
4130 /* Value is non-zero if P is a pointer to a live vector-like object.
4131 M is a pointer to the mem_block for P. */
4132
4133 static bool
4134 live_vector_p (struct mem_node *m, void *p)
4135 {
4136 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4137 {
4138 /* This memory node corresponds to a vector block. */
4139 struct vector_block *block = (struct vector_block *) m->start;
4140 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4141
4142 /* P is in the block's allocation range. Scan the block
4143 up to P and see whether P points to the start of some
4144 vector which is not on a free list. FIXME: check whether
4145 some allocation patterns (probably a lot of short vectors)
4146 may cause a substantial overhead of this loop. */
4147 while (VECTOR_IN_BLOCK (vector, block)
4148 && vector <= (struct Lisp_Vector *) p)
4149 {
4150 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4151 return 1;
4152 else
4153 vector = ADVANCE (vector, vector_nbytes (vector));
4154 }
4155 }
4156 else if (m->type == MEM_TYPE_VECTORLIKE
4157 && (char *) p == ((char *) m->start
4158 + offsetof (struct large_vector, v)))
4159 /* This memory node corresponds to a large vector. */
4160 return 1;
4161 return 0;
4162 }
4163
4164
4165 /* Value is non-zero if P is a pointer to a live buffer. M is a
4166 pointer to the mem_block for P. */
4167
4168 static bool
4169 live_buffer_p (struct mem_node *m, void *p)
4170 {
4171 /* P must point to the start of the block, and the buffer
4172 must not have been killed. */
4173 return (m->type == MEM_TYPE_BUFFER
4174 && p == m->start
4175 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4176 }
4177
4178 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4179
4180 #if GC_MARK_STACK
4181
4182 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4183
4184 /* Array of objects that are kept alive because the C stack contains
4185 a pattern that looks like a reference to them . */
4186
4187 #define MAX_ZOMBIES 10
4188 static Lisp_Object zombies[MAX_ZOMBIES];
4189
4190 /* Number of zombie objects. */
4191
4192 static EMACS_INT nzombies;
4193
4194 /* Number of garbage collections. */
4195
4196 static EMACS_INT ngcs;
4197
4198 /* Average percentage of zombies per collection. */
4199
4200 static double avg_zombies;
4201
4202 /* Max. number of live and zombie objects. */
4203
4204 static EMACS_INT max_live, max_zombies;
4205
4206 /* Average number of live objects per GC. */
4207
4208 static double avg_live;
4209
4210 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4211 doc: /* Show information about live and zombie objects. */)
4212 (void)
4213 {
4214 Lisp_Object args[8], zombie_list = Qnil;
4215 EMACS_INT i;
4216 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4217 zombie_list = Fcons (zombies[i], zombie_list);
4218 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4219 args[1] = make_number (ngcs);
4220 args[2] = make_float (avg_live);
4221 args[3] = make_float (avg_zombies);
4222 args[4] = make_float (avg_zombies / avg_live / 100);
4223 args[5] = make_number (max_live);
4224 args[6] = make_number (max_zombies);
4225 args[7] = zombie_list;
4226 return Fmessage (8, args);
4227 }
4228
4229 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4230
4231
4232 /* Mark OBJ if we can prove it's a Lisp_Object. */
4233
4234 static void
4235 mark_maybe_object (Lisp_Object obj)
4236 {
4237 void *po;
4238 struct mem_node *m;
4239
4240 if (INTEGERP (obj))
4241 return;
4242
4243 po = (void *) XPNTR (obj);
4244 m = mem_find (po);
4245
4246 if (m != MEM_NIL)
4247 {
4248 bool mark_p = 0;
4249
4250 switch (XTYPE (obj))
4251 {
4252 case Lisp_String:
4253 mark_p = (live_string_p (m, po)
4254 && !STRING_MARKED_P ((struct Lisp_String *) po));
4255 break;
4256
4257 case Lisp_Cons:
4258 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4259 break;
4260
4261 case Lisp_Symbol:
4262 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4263 break;
4264
4265 case Lisp_Float:
4266 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4267 break;
4268
4269 case Lisp_Vectorlike:
4270 /* Note: can't check BUFFERP before we know it's a
4271 buffer because checking that dereferences the pointer
4272 PO which might point anywhere. */
4273 if (live_vector_p (m, po))
4274 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4275 else if (live_buffer_p (m, po))
4276 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4277 break;
4278
4279 case Lisp_Misc:
4280 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4281 break;
4282
4283 default:
4284 break;
4285 }
4286
4287 if (mark_p)
4288 {
4289 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4290 if (nzombies < MAX_ZOMBIES)
4291 zombies[nzombies] = obj;
4292 ++nzombies;
4293 #endif
4294 mark_object (obj);
4295 }
4296 }
4297 }
4298
4299
4300 /* If P points to Lisp data, mark that as live if it isn't already
4301 marked. */
4302
4303 static void
4304 mark_maybe_pointer (void *p)
4305 {
4306 struct mem_node *m;
4307
4308 /* Quickly rule out some values which can't point to Lisp data.
4309 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4310 Otherwise, assume that Lisp data is aligned on even addresses. */
4311 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4312 return;
4313
4314 m = mem_find (p);
4315 if (m != MEM_NIL)
4316 {
4317 Lisp_Object obj = Qnil;
4318
4319 switch (m->type)
4320 {
4321 case MEM_TYPE_NON_LISP:
4322 case MEM_TYPE_SPARE:
4323 /* Nothing to do; not a pointer to Lisp memory. */
4324 break;
4325
4326 case MEM_TYPE_BUFFER:
4327 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4328 XSETVECTOR (obj, p);
4329 break;
4330
4331 case MEM_TYPE_CONS:
4332 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4333 XSETCONS (obj, p);
4334 break;
4335
4336 case MEM_TYPE_STRING:
4337 if (live_string_p (m, p)
4338 && !STRING_MARKED_P ((struct Lisp_String *) p))
4339 XSETSTRING (obj, p);
4340 break;
4341
4342 case MEM_TYPE_MISC:
4343 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4344 XSETMISC (obj, p);
4345 break;
4346
4347 case MEM_TYPE_SYMBOL:
4348 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4349 XSETSYMBOL (obj, p);
4350 break;
4351
4352 case MEM_TYPE_FLOAT:
4353 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4354 XSETFLOAT (obj, p);
4355 break;
4356
4357 case MEM_TYPE_VECTORLIKE:
4358 case MEM_TYPE_VECTOR_BLOCK:
4359 if (live_vector_p (m, p))
4360 {
4361 Lisp_Object tem;
4362 XSETVECTOR (tem, p);
4363 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4364 obj = tem;
4365 }
4366 break;
4367
4368 default:
4369 emacs_abort ();
4370 }
4371
4372 if (!NILP (obj))
4373 mark_object (obj);
4374 }
4375 }
4376
4377
4378 /* Alignment of pointer values. Use alignof, as it sometimes returns
4379 a smaller alignment than GCC's __alignof__ and mark_memory might
4380 miss objects if __alignof__ were used. */
4381 #define GC_POINTER_ALIGNMENT alignof (void *)
4382
4383 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4384 not suffice, which is the typical case. A host where a Lisp_Object is
4385 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4386 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4387 suffice to widen it to to a Lisp_Object and check it that way. */
4388 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4389 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4390 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4391 nor mark_maybe_object can follow the pointers. This should not occur on
4392 any practical porting target. */
4393 # error "MSB type bits straddle pointer-word boundaries"
4394 # endif
4395 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4396 pointer words that hold pointers ORed with type bits. */
4397 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4398 #else
4399 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4400 words that hold unmodified pointers. */
4401 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4402 #endif
4403
4404 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4405 or END+OFFSET..START. */
4406
4407 static void
4408 mark_memory (void *start, void *end)
4409 #if defined (__clang__) && defined (__has_feature)
4410 #if __has_feature(address_sanitizer)
4411 /* Do not allow -faddress-sanitizer to check this function, since it
4412 crosses the function stack boundary, and thus would yield many
4413 false positives. */
4414 __attribute__((no_address_safety_analysis))
4415 #endif
4416 #endif
4417 {
4418 void **pp;
4419 int i;
4420
4421 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4422 nzombies = 0;
4423 #endif
4424
4425 /* Make START the pointer to the start of the memory region,
4426 if it isn't already. */
4427 if (end < start)
4428 {
4429 void *tem = start;
4430 start = end;
4431 end = tem;
4432 }
4433
4434 /* Mark Lisp data pointed to. This is necessary because, in some
4435 situations, the C compiler optimizes Lisp objects away, so that
4436 only a pointer to them remains. Example:
4437
4438 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4439 ()
4440 {
4441 Lisp_Object obj = build_string ("test");
4442 struct Lisp_String *s = XSTRING (obj);
4443 Fgarbage_collect ();
4444 fprintf (stderr, "test `%s'\n", s->data);
4445 return Qnil;
4446 }
4447
4448 Here, `obj' isn't really used, and the compiler optimizes it
4449 away. The only reference to the life string is through the
4450 pointer `s'. */
4451
4452 for (pp = start; (void *) pp < end; pp++)
4453 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4454 {
4455 void *p = *(void **) ((char *) pp + i);
4456 mark_maybe_pointer (p);
4457 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4458 mark_maybe_object (XIL ((intptr_t) p));
4459 }
4460 }
4461
4462 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4463
4464 static bool setjmp_tested_p;
4465 static int longjmps_done;
4466
4467 #define SETJMP_WILL_LIKELY_WORK "\
4468 \n\
4469 Emacs garbage collector has been changed to use conservative stack\n\
4470 marking. Emacs has determined that the method it uses to do the\n\
4471 marking will likely work on your system, but this isn't sure.\n\
4472 \n\
4473 If you are a system-programmer, or can get the help of a local wizard\n\
4474 who is, please take a look at the function mark_stack in alloc.c, and\n\
4475 verify that the methods used are appropriate for your system.\n\
4476 \n\
4477 Please mail the result to <emacs-devel@gnu.org>.\n\
4478 "
4479
4480 #define SETJMP_WILL_NOT_WORK "\
4481 \n\
4482 Emacs garbage collector has been changed to use conservative stack\n\
4483 marking. Emacs has determined that the default method it uses to do the\n\
4484 marking will not work on your system. We will need a system-dependent\n\
4485 solution for your system.\n\
4486 \n\
4487 Please take a look at the function mark_stack in alloc.c, and\n\
4488 try to find a way to make it work on your system.\n\
4489 \n\
4490 Note that you may get false negatives, depending on the compiler.\n\
4491 In particular, you need to use -O with GCC for this test.\n\
4492 \n\
4493 Please mail the result to <emacs-devel@gnu.org>.\n\
4494 "
4495
4496
4497 /* Perform a quick check if it looks like setjmp saves registers in a
4498 jmp_buf. Print a message to stderr saying so. When this test
4499 succeeds, this is _not_ a proof that setjmp is sufficient for
4500 conservative stack marking. Only the sources or a disassembly
4501 can prove that. */
4502
4503 static void
4504 test_setjmp (void)
4505 {
4506 char buf[10];
4507 register int x;
4508 sys_jmp_buf jbuf;
4509
4510 /* Arrange for X to be put in a register. */
4511 sprintf (buf, "1");
4512 x = strlen (buf);
4513 x = 2 * x - 1;
4514
4515 sys_setjmp (jbuf);
4516 if (longjmps_done == 1)
4517 {
4518 /* Came here after the longjmp at the end of the function.
4519
4520 If x == 1, the longjmp has restored the register to its
4521 value before the setjmp, and we can hope that setjmp
4522 saves all such registers in the jmp_buf, although that
4523 isn't sure.
4524
4525 For other values of X, either something really strange is
4526 taking place, or the setjmp just didn't save the register. */
4527
4528 if (x == 1)
4529 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4530 else
4531 {
4532 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4533 exit (1);
4534 }
4535 }
4536
4537 ++longjmps_done;
4538 x = 2;
4539 if (longjmps_done == 1)
4540 sys_longjmp (jbuf, 1);
4541 }
4542
4543 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4544
4545
4546 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4547
4548 /* Abort if anything GCPRO'd doesn't survive the GC. */
4549
4550 static void
4551 check_gcpros (void)
4552 {
4553 struct gcpro *p;
4554 ptrdiff_t i;
4555
4556 for (p = gcprolist; p; p = p->next)
4557 for (i = 0; i < p->nvars; ++i)
4558 if (!survives_gc_p (p->var[i]))
4559 /* FIXME: It's not necessarily a bug. It might just be that the
4560 GCPRO is unnecessary or should release the object sooner. */
4561 emacs_abort ();
4562 }
4563
4564 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4565
4566 static void
4567 dump_zombies (void)
4568 {
4569 int i;
4570
4571 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4572 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4573 {
4574 fprintf (stderr, " %d = ", i);
4575 debug_print (zombies[i]);
4576 }
4577 }
4578
4579 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4580
4581
4582 /* Mark live Lisp objects on the C stack.
4583
4584 There are several system-dependent problems to consider when
4585 porting this to new architectures:
4586
4587 Processor Registers
4588
4589 We have to mark Lisp objects in CPU registers that can hold local
4590 variables or are used to pass parameters.
4591
4592 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4593 something that either saves relevant registers on the stack, or
4594 calls mark_maybe_object passing it each register's contents.
4595
4596 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4597 implementation assumes that calling setjmp saves registers we need
4598 to see in a jmp_buf which itself lies on the stack. This doesn't
4599 have to be true! It must be verified for each system, possibly
4600 by taking a look at the source code of setjmp.
4601
4602 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4603 can use it as a machine independent method to store all registers
4604 to the stack. In this case the macros described in the previous
4605 two paragraphs are not used.
4606
4607 Stack Layout
4608
4609 Architectures differ in the way their processor stack is organized.
4610 For example, the stack might look like this
4611
4612 +----------------+
4613 | Lisp_Object | size = 4
4614 +----------------+
4615 | something else | size = 2
4616 +----------------+
4617 | Lisp_Object | size = 4
4618 +----------------+
4619 | ... |
4620
4621 In such a case, not every Lisp_Object will be aligned equally. To
4622 find all Lisp_Object on the stack it won't be sufficient to walk
4623 the stack in steps of 4 bytes. Instead, two passes will be
4624 necessary, one starting at the start of the stack, and a second
4625 pass starting at the start of the stack + 2. Likewise, if the
4626 minimal alignment of Lisp_Objects on the stack is 1, four passes
4627 would be necessary, each one starting with one byte more offset
4628 from the stack start. */
4629
4630 static void
4631 mark_stack (void)
4632 {
4633 void *end;
4634
4635 #ifdef HAVE___BUILTIN_UNWIND_INIT
4636 /* Force callee-saved registers and register windows onto the stack.
4637 This is the preferred method if available, obviating the need for
4638 machine dependent methods. */
4639 __builtin_unwind_init ();
4640 end = &end;
4641 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4642 #ifndef GC_SAVE_REGISTERS_ON_STACK
4643 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4644 union aligned_jmpbuf {
4645 Lisp_Object o;
4646 sys_jmp_buf j;
4647 } j;
4648 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4649 #endif
4650 /* This trick flushes the register windows so that all the state of
4651 the process is contained in the stack. */
4652 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4653 needed on ia64 too. See mach_dep.c, where it also says inline
4654 assembler doesn't work with relevant proprietary compilers. */
4655 #ifdef __sparc__
4656 #if defined (__sparc64__) && defined (__FreeBSD__)
4657 /* FreeBSD does not have a ta 3 handler. */
4658 asm ("flushw");
4659 #else
4660 asm ("ta 3");
4661 #endif
4662 #endif
4663
4664 /* Save registers that we need to see on the stack. We need to see
4665 registers used to hold register variables and registers used to
4666 pass parameters. */
4667 #ifdef GC_SAVE_REGISTERS_ON_STACK
4668 GC_SAVE_REGISTERS_ON_STACK (end);
4669 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4670
4671 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4672 setjmp will definitely work, test it
4673 and print a message with the result
4674 of the test. */
4675 if (!setjmp_tested_p)
4676 {
4677 setjmp_tested_p = 1;
4678 test_setjmp ();
4679 }
4680 #endif /* GC_SETJMP_WORKS */
4681
4682 sys_setjmp (j.j);
4683 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4684 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4685 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4686
4687 /* This assumes that the stack is a contiguous region in memory. If
4688 that's not the case, something has to be done here to iterate
4689 over the stack segments. */
4690 mark_memory (stack_base, end);
4691
4692 /* Allow for marking a secondary stack, like the register stack on the
4693 ia64. */
4694 #ifdef GC_MARK_SECONDARY_STACK
4695 GC_MARK_SECONDARY_STACK ();
4696 #endif
4697
4698 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4699 check_gcpros ();
4700 #endif
4701 }
4702
4703 #endif /* GC_MARK_STACK != 0 */
4704
4705
4706 /* Determine whether it is safe to access memory at address P. */
4707 static int
4708 valid_pointer_p (void *p)
4709 {
4710 #ifdef WINDOWSNT
4711 return w32_valid_pointer_p (p, 16);
4712 #else
4713 int fd[2];
4714
4715 /* Obviously, we cannot just access it (we would SEGV trying), so we
4716 trick the o/s to tell us whether p is a valid pointer.
4717 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4718 not validate p in that case. */
4719
4720 if (pipe (fd) == 0)
4721 {
4722 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4723 emacs_close (fd[1]);
4724 emacs_close (fd[0]);
4725 return valid;
4726 }
4727
4728 return -1;
4729 #endif
4730 }
4731
4732 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4733 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4734 cannot validate OBJ. This function can be quite slow, so its primary
4735 use is the manual debugging. The only exception is print_object, where
4736 we use it to check whether the memory referenced by the pointer of
4737 Lisp_Save_Value object contains valid objects. */
4738
4739 int
4740 valid_lisp_object_p (Lisp_Object obj)
4741 {
4742 void *p;
4743 #if GC_MARK_STACK
4744 struct mem_node *m;
4745 #endif
4746
4747 if (INTEGERP (obj))
4748 return 1;
4749
4750 p = (void *) XPNTR (obj);
4751 if (PURE_POINTER_P (p))
4752 return 1;
4753
4754 if (p == &buffer_defaults || p == &buffer_local_symbols)
4755 return 2;
4756
4757 #if !GC_MARK_STACK
4758 return valid_pointer_p (p);
4759 #else
4760
4761 m = mem_find (p);
4762
4763 if (m == MEM_NIL)
4764 {
4765 int valid = valid_pointer_p (p);
4766 if (valid <= 0)
4767 return valid;
4768
4769 if (SUBRP (obj))
4770 return 1;
4771
4772 return 0;
4773 }
4774
4775 switch (m->type)
4776 {
4777 case MEM_TYPE_NON_LISP:
4778 case MEM_TYPE_SPARE:
4779 return 0;
4780
4781 case MEM_TYPE_BUFFER:
4782 return live_buffer_p (m, p) ? 1 : 2;
4783
4784 case MEM_TYPE_CONS:
4785 return live_cons_p (m, p);
4786
4787 case MEM_TYPE_STRING:
4788 return live_string_p (m, p);
4789
4790 case MEM_TYPE_MISC:
4791 return live_misc_p (m, p);
4792
4793 case MEM_TYPE_SYMBOL:
4794 return live_symbol_p (m, p);
4795
4796 case MEM_TYPE_FLOAT:
4797 return live_float_p (m, p);
4798
4799 case MEM_TYPE_VECTORLIKE:
4800 case MEM_TYPE_VECTOR_BLOCK:
4801 return live_vector_p (m, p);
4802
4803 default:
4804 break;
4805 }
4806
4807 return 0;
4808 #endif
4809 }
4810
4811
4812
4813 \f
4814 /***********************************************************************
4815 Pure Storage Management
4816 ***********************************************************************/
4817
4818 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4819 pointer to it. TYPE is the Lisp type for which the memory is
4820 allocated. TYPE < 0 means it's not used for a Lisp object. */
4821
4822 static void *
4823 pure_alloc (size_t size, int type)
4824 {
4825 void *result;
4826 #if USE_LSB_TAG
4827 size_t alignment = GCALIGNMENT;
4828 #else
4829 size_t alignment = alignof (EMACS_INT);
4830
4831 /* Give Lisp_Floats an extra alignment. */
4832 if (type == Lisp_Float)
4833 alignment = alignof (struct Lisp_Float);
4834 #endif
4835
4836 again:
4837 if (type >= 0)
4838 {
4839 /* Allocate space for a Lisp object from the beginning of the free
4840 space with taking account of alignment. */
4841 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4842 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4843 }
4844 else
4845 {
4846 /* Allocate space for a non-Lisp object from the end of the free
4847 space. */
4848 pure_bytes_used_non_lisp += size;
4849 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4850 }
4851 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4852
4853 if (pure_bytes_used <= pure_size)
4854 return result;
4855
4856 /* Don't allocate a large amount here,
4857 because it might get mmap'd and then its address
4858 might not be usable. */
4859 purebeg = xmalloc (10000);
4860 pure_size = 10000;
4861 pure_bytes_used_before_overflow += pure_bytes_used - size;
4862 pure_bytes_used = 0;
4863 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4864 goto again;
4865 }
4866
4867
4868 /* Print a warning if PURESIZE is too small. */
4869
4870 void
4871 check_pure_size (void)
4872 {
4873 if (pure_bytes_used_before_overflow)
4874 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4875 " bytes needed)"),
4876 pure_bytes_used + pure_bytes_used_before_overflow);
4877 }
4878
4879
4880 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4881 the non-Lisp data pool of the pure storage, and return its start
4882 address. Return NULL if not found. */
4883
4884 static char *
4885 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4886 {
4887 int i;
4888 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4889 const unsigned char *p;
4890 char *non_lisp_beg;
4891
4892 if (pure_bytes_used_non_lisp <= nbytes)
4893 return NULL;
4894
4895 /* Set up the Boyer-Moore table. */
4896 skip = nbytes + 1;
4897 for (i = 0; i < 256; i++)
4898 bm_skip[i] = skip;
4899
4900 p = (const unsigned char *) data;
4901 while (--skip > 0)
4902 bm_skip[*p++] = skip;
4903
4904 last_char_skip = bm_skip['\0'];
4905
4906 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4907 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4908
4909 /* See the comments in the function `boyer_moore' (search.c) for the
4910 use of `infinity'. */
4911 infinity = pure_bytes_used_non_lisp + 1;
4912 bm_skip['\0'] = infinity;
4913
4914 p = (const unsigned char *) non_lisp_beg + nbytes;
4915 start = 0;
4916 do
4917 {
4918 /* Check the last character (== '\0'). */
4919 do
4920 {
4921 start += bm_skip[*(p + start)];
4922 }
4923 while (start <= start_max);
4924
4925 if (start < infinity)
4926 /* Couldn't find the last character. */
4927 return NULL;
4928
4929 /* No less than `infinity' means we could find the last
4930 character at `p[start - infinity]'. */
4931 start -= infinity;
4932
4933 /* Check the remaining characters. */
4934 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4935 /* Found. */
4936 return non_lisp_beg + start;
4937
4938 start += last_char_skip;
4939 }
4940 while (start <= start_max);
4941
4942 return NULL;
4943 }
4944
4945
4946 /* Return a string allocated in pure space. DATA is a buffer holding
4947 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4948 means make the result string multibyte.
4949
4950 Must get an error if pure storage is full, since if it cannot hold
4951 a large string it may be able to hold conses that point to that
4952 string; then the string is not protected from gc. */
4953
4954 Lisp_Object
4955 make_pure_string (const char *data,
4956 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4957 {
4958 Lisp_Object string;
4959 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4960 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4961 if (s->data == NULL)
4962 {
4963 s->data = pure_alloc (nbytes + 1, -1);
4964 memcpy (s->data, data, nbytes);
4965 s->data[nbytes] = '\0';
4966 }
4967 s->size = nchars;
4968 s->size_byte = multibyte ? nbytes : -1;
4969 s->intervals = NULL;
4970 XSETSTRING (string, s);
4971 return string;
4972 }
4973
4974 /* Return a string allocated in pure space. Do not
4975 allocate the string data, just point to DATA. */
4976
4977 Lisp_Object
4978 make_pure_c_string (const char *data, ptrdiff_t nchars)
4979 {
4980 Lisp_Object string;
4981 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4982 s->size = nchars;
4983 s->size_byte = -1;
4984 s->data = (unsigned char *) data;
4985 s->intervals = NULL;
4986 XSETSTRING (string, s);
4987 return string;
4988 }
4989
4990 /* Return a cons allocated from pure space. Give it pure copies
4991 of CAR as car and CDR as cdr. */
4992
4993 Lisp_Object
4994 pure_cons (Lisp_Object car, Lisp_Object cdr)
4995 {
4996 Lisp_Object new;
4997 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
4998 XSETCONS (new, p);
4999 XSETCAR (new, Fpurecopy (car));
5000 XSETCDR (new, Fpurecopy (cdr));
5001 return new;
5002 }
5003
5004
5005 /* Value is a float object with value NUM allocated from pure space. */
5006
5007 static Lisp_Object
5008 make_pure_float (double num)
5009 {
5010 Lisp_Object new;
5011 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5012 XSETFLOAT (new, p);
5013 XFLOAT_INIT (new, num);
5014 return new;
5015 }
5016
5017
5018 /* Return a vector with room for LEN Lisp_Objects allocated from
5019 pure space. */
5020
5021 static Lisp_Object
5022 make_pure_vector (ptrdiff_t len)
5023 {
5024 Lisp_Object new;
5025 size_t size = header_size + len * word_size;
5026 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5027 XSETVECTOR (new, p);
5028 XVECTOR (new)->header.size = len;
5029 return new;
5030 }
5031
5032
5033 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5034 doc: /* Make a copy of object OBJ in pure storage.
5035 Recursively copies contents of vectors and cons cells.
5036 Does not copy symbols. Copies strings without text properties. */)
5037 (register Lisp_Object obj)
5038 {
5039 if (NILP (Vpurify_flag))
5040 return obj;
5041
5042 if (PURE_POINTER_P (XPNTR (obj)))
5043 return obj;
5044
5045 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5046 {
5047 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5048 if (!NILP (tmp))
5049 return tmp;
5050 }
5051
5052 if (CONSP (obj))
5053 obj = pure_cons (XCAR (obj), XCDR (obj));
5054 else if (FLOATP (obj))
5055 obj = make_pure_float (XFLOAT_DATA (obj));
5056 else if (STRINGP (obj))
5057 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5058 SBYTES (obj),
5059 STRING_MULTIBYTE (obj));
5060 else if (COMPILEDP (obj) || VECTORP (obj))
5061 {
5062 register struct Lisp_Vector *vec;
5063 register ptrdiff_t i;
5064 ptrdiff_t size;
5065
5066 size = ASIZE (obj);
5067 if (size & PSEUDOVECTOR_FLAG)
5068 size &= PSEUDOVECTOR_SIZE_MASK;
5069 vec = XVECTOR (make_pure_vector (size));
5070 for (i = 0; i < size; i++)
5071 vec->contents[i] = Fpurecopy (AREF (obj, i));
5072 if (COMPILEDP (obj))
5073 {
5074 XSETPVECTYPE (vec, PVEC_COMPILED);
5075 XSETCOMPILED (obj, vec);
5076 }
5077 else
5078 XSETVECTOR (obj, vec);
5079 }
5080 else if (MARKERP (obj))
5081 error ("Attempt to copy a marker to pure storage");
5082 else
5083 /* Not purified, don't hash-cons. */
5084 return obj;
5085
5086 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5087 Fputhash (obj, obj, Vpurify_flag);
5088
5089 return obj;
5090 }
5091
5092
5093 \f
5094 /***********************************************************************
5095 Protection from GC
5096 ***********************************************************************/
5097
5098 /* Put an entry in staticvec, pointing at the variable with address
5099 VARADDRESS. */
5100
5101 void
5102 staticpro (Lisp_Object *varaddress)
5103 {
5104 staticvec[staticidx++] = varaddress;
5105 if (staticidx >= NSTATICS)
5106 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5107 }
5108
5109 \f
5110 /***********************************************************************
5111 Protection from GC
5112 ***********************************************************************/
5113
5114 /* Temporarily prevent garbage collection. */
5115
5116 ptrdiff_t
5117 inhibit_garbage_collection (void)
5118 {
5119 ptrdiff_t count = SPECPDL_INDEX ();
5120
5121 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5122 return count;
5123 }
5124
5125 /* Used to avoid possible overflows when
5126 converting from C to Lisp integers. */
5127
5128 static Lisp_Object
5129 bounded_number (EMACS_INT number)
5130 {
5131 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5132 }
5133
5134 /* Calculate total bytes of live objects. */
5135
5136 static size_t
5137 total_bytes_of_live_objects (void)
5138 {
5139 size_t tot = 0;
5140 tot += total_conses * sizeof (struct Lisp_Cons);
5141 tot += total_symbols * sizeof (struct Lisp_Symbol);
5142 tot += total_markers * sizeof (union Lisp_Misc);
5143 tot += total_string_bytes;
5144 tot += total_vector_slots * word_size;
5145 tot += total_floats * sizeof (struct Lisp_Float);
5146 tot += total_intervals * sizeof (struct interval);
5147 tot += total_strings * sizeof (struct Lisp_String);
5148 return tot;
5149 }
5150
5151 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5152 doc: /* Reclaim storage for Lisp objects no longer needed.
5153 Garbage collection happens automatically if you cons more than
5154 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5155 `garbage-collect' normally returns a list with info on amount of space in use,
5156 where each entry has the form (NAME SIZE USED FREE), where:
5157 - NAME is a symbol describing the kind of objects this entry represents,
5158 - SIZE is the number of bytes used by each one,
5159 - USED is the number of those objects that were found live in the heap,
5160 - FREE is the number of those objects that are not live but that Emacs
5161 keeps around for future allocations (maybe because it does not know how
5162 to return them to the OS).
5163 However, if there was overflow in pure space, `garbage-collect'
5164 returns nil, because real GC can't be done.
5165 See Info node `(elisp)Garbage Collection'. */)
5166 (void)
5167 {
5168 struct specbinding *bind;
5169 struct buffer *nextb;
5170 char stack_top_variable;
5171 ptrdiff_t i;
5172 bool message_p;
5173 ptrdiff_t count = SPECPDL_INDEX ();
5174 EMACS_TIME start;
5175 Lisp_Object retval = Qnil;
5176 size_t tot_before = 0;
5177 struct backtrace backtrace;
5178
5179 if (abort_on_gc)
5180 emacs_abort ();
5181
5182 /* Can't GC if pure storage overflowed because we can't determine
5183 if something is a pure object or not. */
5184 if (pure_bytes_used_before_overflow)
5185 return Qnil;
5186
5187 /* Record this function, so it appears on the profiler's backtraces. */
5188 backtrace.next = backtrace_list;
5189 backtrace.function = Qautomatic_gc;
5190 backtrace.args = &Qnil;
5191 backtrace.nargs = 0;
5192 backtrace.debug_on_exit = 0;
5193 backtrace_list = &backtrace;
5194
5195 check_cons_list ();
5196
5197 /* Don't keep undo information around forever.
5198 Do this early on, so it is no problem if the user quits. */
5199 FOR_EACH_BUFFER (nextb)
5200 compact_buffer (nextb);
5201
5202 if (profiler_memory_running)
5203 tot_before = total_bytes_of_live_objects ();
5204
5205 start = current_emacs_time ();
5206
5207 /* In case user calls debug_print during GC,
5208 don't let that cause a recursive GC. */
5209 consing_since_gc = 0;
5210
5211 /* Save what's currently displayed in the echo area. */
5212 message_p = push_message ();
5213 record_unwind_protect (pop_message_unwind, Qnil);
5214
5215 /* Save a copy of the contents of the stack, for debugging. */
5216 #if MAX_SAVE_STACK > 0
5217 if (NILP (Vpurify_flag))
5218 {
5219 char *stack;
5220 ptrdiff_t stack_size;
5221 if (&stack_top_variable < stack_bottom)
5222 {
5223 stack = &stack_top_variable;
5224 stack_size = stack_bottom - &stack_top_variable;
5225 }
5226 else
5227 {
5228 stack = stack_bottom;
5229 stack_size = &stack_top_variable - stack_bottom;
5230 }
5231 if (stack_size <= MAX_SAVE_STACK)
5232 {
5233 if (stack_copy_size < stack_size)
5234 {
5235 stack_copy = xrealloc (stack_copy, stack_size);
5236 stack_copy_size = stack_size;
5237 }
5238 memcpy (stack_copy, stack, stack_size);
5239 }
5240 }
5241 #endif /* MAX_SAVE_STACK > 0 */
5242
5243 if (garbage_collection_messages)
5244 message1_nolog ("Garbage collecting...");
5245
5246 block_input ();
5247
5248 shrink_regexp_cache ();
5249
5250 gc_in_progress = 1;
5251
5252 /* Mark all the special slots that serve as the roots of accessibility. */
5253
5254 mark_buffer (&buffer_defaults);
5255 mark_buffer (&buffer_local_symbols);
5256
5257 for (i = 0; i < staticidx; i++)
5258 mark_object (*staticvec[i]);
5259
5260 for (bind = specpdl; bind != specpdl_ptr; bind++)
5261 {
5262 mark_object (bind->symbol);
5263 mark_object (bind->old_value);
5264 }
5265 mark_terminals ();
5266 mark_kboards ();
5267
5268 #ifdef USE_GTK
5269 xg_mark_data ();
5270 #endif
5271
5272 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5273 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5274 mark_stack ();
5275 #else
5276 {
5277 register struct gcpro *tail;
5278 for (tail = gcprolist; tail; tail = tail->next)
5279 for (i = 0; i < tail->nvars; i++)
5280 mark_object (tail->var[i]);
5281 }
5282 mark_byte_stack ();
5283 {
5284 struct catchtag *catch;
5285 struct handler *handler;
5286
5287 for (catch = catchlist; catch; catch = catch->next)
5288 {
5289 mark_object (catch->tag);
5290 mark_object (catch->val);
5291 }
5292 for (handler = handlerlist; handler; handler = handler->next)
5293 {
5294 mark_object (handler->handler);
5295 mark_object (handler->var);
5296 }
5297 }
5298 mark_backtrace ();
5299 #endif
5300
5301 #ifdef HAVE_WINDOW_SYSTEM
5302 mark_fringe_data ();
5303 #endif
5304
5305 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5306 mark_stack ();
5307 #endif
5308
5309 /* Everything is now marked, except for the things that require special
5310 finalization, i.e. the undo_list.
5311 Look thru every buffer's undo list
5312 for elements that update markers that were not marked,
5313 and delete them. */
5314 FOR_EACH_BUFFER (nextb)
5315 {
5316 /* If a buffer's undo list is Qt, that means that undo is
5317 turned off in that buffer. Calling truncate_undo_list on
5318 Qt tends to return NULL, which effectively turns undo back on.
5319 So don't call truncate_undo_list if undo_list is Qt. */
5320 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5321 {
5322 Lisp_Object tail, prev;
5323 tail = nextb->INTERNAL_FIELD (undo_list);
5324 prev = Qnil;
5325 while (CONSP (tail))
5326 {
5327 if (CONSP (XCAR (tail))
5328 && MARKERP (XCAR (XCAR (tail)))
5329 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5330 {
5331 if (NILP (prev))
5332 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5333 else
5334 {
5335 tail = XCDR (tail);
5336 XSETCDR (prev, tail);
5337 }
5338 }
5339 else
5340 {
5341 prev = tail;
5342 tail = XCDR (tail);
5343 }
5344 }
5345 }
5346 /* Now that we have stripped the elements that need not be in the
5347 undo_list any more, we can finally mark the list. */
5348 mark_object (nextb->INTERNAL_FIELD (undo_list));
5349 }
5350
5351 gc_sweep ();
5352
5353 /* Clear the mark bits that we set in certain root slots. */
5354
5355 unmark_byte_stack ();
5356 VECTOR_UNMARK (&buffer_defaults);
5357 VECTOR_UNMARK (&buffer_local_symbols);
5358
5359 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5360 dump_zombies ();
5361 #endif
5362
5363 check_cons_list ();
5364
5365 gc_in_progress = 0;
5366
5367 unblock_input ();
5368
5369 consing_since_gc = 0;
5370 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5371 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5372
5373 gc_relative_threshold = 0;
5374 if (FLOATP (Vgc_cons_percentage))
5375 { /* Set gc_cons_combined_threshold. */
5376 double tot = total_bytes_of_live_objects ();
5377
5378 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5379 if (tot > 0)
5380 {
5381 if (tot < TYPE_MAXIMUM (EMACS_INT))
5382 gc_relative_threshold = tot;
5383 else
5384 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5385 }
5386 }
5387
5388 if (garbage_collection_messages)
5389 {
5390 if (message_p || minibuf_level > 0)
5391 restore_message ();
5392 else
5393 message1_nolog ("Garbage collecting...done");
5394 }
5395
5396 unbind_to (count, Qnil);
5397 {
5398 Lisp_Object total[11];
5399 int total_size = 10;
5400
5401 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5402 bounded_number (total_conses),
5403 bounded_number (total_free_conses));
5404
5405 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5406 bounded_number (total_symbols),
5407 bounded_number (total_free_symbols));
5408
5409 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5410 bounded_number (total_markers),
5411 bounded_number (total_free_markers));
5412
5413 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5414 bounded_number (total_strings),
5415 bounded_number (total_free_strings));
5416
5417 total[4] = list3 (Qstring_bytes, make_number (1),
5418 bounded_number (total_string_bytes));
5419
5420 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5421 bounded_number (total_vectors));
5422
5423 total[6] = list4 (Qvector_slots, make_number (word_size),
5424 bounded_number (total_vector_slots),
5425 bounded_number (total_free_vector_slots));
5426
5427 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5428 bounded_number (total_floats),
5429 bounded_number (total_free_floats));
5430
5431 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5432 bounded_number (total_intervals),
5433 bounded_number (total_free_intervals));
5434
5435 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5436 bounded_number (total_buffers));
5437
5438 #ifdef DOUG_LEA_MALLOC
5439 total_size++;
5440 total[10] = list4 (Qheap, make_number (1024),
5441 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5442 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5443 #endif
5444 retval = Flist (total_size, total);
5445 }
5446
5447 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5448 {
5449 /* Compute average percentage of zombies. */
5450 double nlive
5451 = (total_conses + total_symbols + total_markers + total_strings
5452 + total_vectors + total_floats + total_intervals + total_buffers);
5453
5454 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5455 max_live = max (nlive, max_live);
5456 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5457 max_zombies = max (nzombies, max_zombies);
5458 ++ngcs;
5459 }
5460 #endif
5461
5462 if (!NILP (Vpost_gc_hook))
5463 {
5464 ptrdiff_t gc_count = inhibit_garbage_collection ();
5465 safe_run_hooks (Qpost_gc_hook);
5466 unbind_to (gc_count, Qnil);
5467 }
5468
5469 /* Accumulate statistics. */
5470 if (FLOATP (Vgc_elapsed))
5471 {
5472 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5473 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5474 + EMACS_TIME_TO_DOUBLE (since_start));
5475 }
5476
5477 gcs_done++;
5478
5479 /* Collect profiling data. */
5480 if (profiler_memory_running)
5481 {
5482 size_t swept = 0;
5483 size_t tot_after = total_bytes_of_live_objects ();
5484 if (tot_before > tot_after)
5485 swept = tot_before - tot_after;
5486 malloc_probe (swept);
5487 }
5488
5489 backtrace_list = backtrace.next;
5490 return retval;
5491 }
5492
5493
5494 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5495 only interesting objects referenced from glyphs are strings. */
5496
5497 static void
5498 mark_glyph_matrix (struct glyph_matrix *matrix)
5499 {
5500 struct glyph_row *row = matrix->rows;
5501 struct glyph_row *end = row + matrix->nrows;
5502
5503 for (; row < end; ++row)
5504 if (row->enabled_p)
5505 {
5506 int area;
5507 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5508 {
5509 struct glyph *glyph = row->glyphs[area];
5510 struct glyph *end_glyph = glyph + row->used[area];
5511
5512 for (; glyph < end_glyph; ++glyph)
5513 if (STRINGP (glyph->object)
5514 && !STRING_MARKED_P (XSTRING (glyph->object)))
5515 mark_object (glyph->object);
5516 }
5517 }
5518 }
5519
5520
5521 /* Mark Lisp faces in the face cache C. */
5522
5523 static void
5524 mark_face_cache (struct face_cache *c)
5525 {
5526 if (c)
5527 {
5528 int i, j;
5529 for (i = 0; i < c->used; ++i)
5530 {
5531 struct face *face = FACE_FROM_ID (c->f, i);
5532
5533 if (face)
5534 {
5535 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5536 mark_object (face->lface[j]);
5537 }
5538 }
5539 }
5540 }
5541
5542
5543 \f
5544 /* Mark reference to a Lisp_Object.
5545 If the object referred to has not been seen yet, recursively mark
5546 all the references contained in it. */
5547
5548 #define LAST_MARKED_SIZE 500
5549 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5550 static int last_marked_index;
5551
5552 /* For debugging--call abort when we cdr down this many
5553 links of a list, in mark_object. In debugging,
5554 the call to abort will hit a breakpoint.
5555 Normally this is zero and the check never goes off. */
5556 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5557
5558 static void
5559 mark_vectorlike (struct Lisp_Vector *ptr)
5560 {
5561 ptrdiff_t size = ptr->header.size;
5562 ptrdiff_t i;
5563
5564 eassert (!VECTOR_MARKED_P (ptr));
5565 VECTOR_MARK (ptr); /* Else mark it. */
5566 if (size & PSEUDOVECTOR_FLAG)
5567 size &= PSEUDOVECTOR_SIZE_MASK;
5568
5569 /* Note that this size is not the memory-footprint size, but only
5570 the number of Lisp_Object fields that we should trace.
5571 The distinction is used e.g. by Lisp_Process which places extra
5572 non-Lisp_Object fields at the end of the structure... */
5573 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5574 mark_object (ptr->contents[i]);
5575 }
5576
5577 /* Like mark_vectorlike but optimized for char-tables (and
5578 sub-char-tables) assuming that the contents are mostly integers or
5579 symbols. */
5580
5581 static void
5582 mark_char_table (struct Lisp_Vector *ptr)
5583 {
5584 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5585 int i;
5586
5587 eassert (!VECTOR_MARKED_P (ptr));
5588 VECTOR_MARK (ptr);
5589 for (i = 0; i < size; i++)
5590 {
5591 Lisp_Object val = ptr->contents[i];
5592
5593 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5594 continue;
5595 if (SUB_CHAR_TABLE_P (val))
5596 {
5597 if (! VECTOR_MARKED_P (XVECTOR (val)))
5598 mark_char_table (XVECTOR (val));
5599 }
5600 else
5601 mark_object (val);
5602 }
5603 }
5604
5605 /* Mark the chain of overlays starting at PTR. */
5606
5607 static void
5608 mark_overlay (struct Lisp_Overlay *ptr)
5609 {
5610 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5611 {
5612 ptr->gcmarkbit = 1;
5613 mark_object (ptr->start);
5614 mark_object (ptr->end);
5615 mark_object (ptr->plist);
5616 }
5617 }
5618
5619 /* Mark Lisp_Objects and special pointers in BUFFER. */
5620
5621 static void
5622 mark_buffer (struct buffer *buffer)
5623 {
5624 /* This is handled much like other pseudovectors... */
5625 mark_vectorlike ((struct Lisp_Vector *) buffer);
5626
5627 /* ...but there are some buffer-specific things. */
5628
5629 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5630
5631 /* For now, we just don't mark the undo_list. It's done later in
5632 a special way just before the sweep phase, and after stripping
5633 some of its elements that are not needed any more. */
5634
5635 mark_overlay (buffer->overlays_before);
5636 mark_overlay (buffer->overlays_after);
5637
5638 /* If this is an indirect buffer, mark its base buffer. */
5639 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5640 mark_buffer (buffer->base_buffer);
5641 }
5642
5643 /* Remove killed buffers or items whose car is a killed buffer from
5644 LIST, and mark other items. Return changed LIST, which is marked. */
5645
5646 static Lisp_Object
5647 mark_discard_killed_buffers (Lisp_Object list)
5648 {
5649 Lisp_Object tail, *prev = &list;
5650
5651 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5652 tail = XCDR (tail))
5653 {
5654 Lisp_Object tem = XCAR (tail);
5655 if (CONSP (tem))
5656 tem = XCAR (tem);
5657 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5658 *prev = XCDR (tail);
5659 else
5660 {
5661 CONS_MARK (XCONS (tail));
5662 mark_object (XCAR (tail));
5663 prev = &XCDR_AS_LVALUE (tail);
5664 }
5665 }
5666 mark_object (tail);
5667 return list;
5668 }
5669
5670 /* Determine type of generic Lisp_Object and mark it accordingly. */
5671
5672 void
5673 mark_object (Lisp_Object arg)
5674 {
5675 register Lisp_Object obj = arg;
5676 #ifdef GC_CHECK_MARKED_OBJECTS
5677 void *po;
5678 struct mem_node *m;
5679 #endif
5680 ptrdiff_t cdr_count = 0;
5681
5682 loop:
5683
5684 if (PURE_POINTER_P (XPNTR (obj)))
5685 return;
5686
5687 last_marked[last_marked_index++] = obj;
5688 if (last_marked_index == LAST_MARKED_SIZE)
5689 last_marked_index = 0;
5690
5691 /* Perform some sanity checks on the objects marked here. Abort if
5692 we encounter an object we know is bogus. This increases GC time
5693 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5694 #ifdef GC_CHECK_MARKED_OBJECTS
5695
5696 po = (void *) XPNTR (obj);
5697
5698 /* Check that the object pointed to by PO is known to be a Lisp
5699 structure allocated from the heap. */
5700 #define CHECK_ALLOCATED() \
5701 do { \
5702 m = mem_find (po); \
5703 if (m == MEM_NIL) \
5704 emacs_abort (); \
5705 } while (0)
5706
5707 /* Check that the object pointed to by PO is live, using predicate
5708 function LIVEP. */
5709 #define CHECK_LIVE(LIVEP) \
5710 do { \
5711 if (!LIVEP (m, po)) \
5712 emacs_abort (); \
5713 } while (0)
5714
5715 /* Check both of the above conditions. */
5716 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5717 do { \
5718 CHECK_ALLOCATED (); \
5719 CHECK_LIVE (LIVEP); \
5720 } while (0) \
5721
5722 #else /* not GC_CHECK_MARKED_OBJECTS */
5723
5724 #define CHECK_LIVE(LIVEP) (void) 0
5725 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5726
5727 #endif /* not GC_CHECK_MARKED_OBJECTS */
5728
5729 switch (XTYPE (obj))
5730 {
5731 case Lisp_String:
5732 {
5733 register struct Lisp_String *ptr = XSTRING (obj);
5734 if (STRING_MARKED_P (ptr))
5735 break;
5736 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5737 MARK_STRING (ptr);
5738 MARK_INTERVAL_TREE (ptr->intervals);
5739 #ifdef GC_CHECK_STRING_BYTES
5740 /* Check that the string size recorded in the string is the
5741 same as the one recorded in the sdata structure. */
5742 string_bytes (ptr);
5743 #endif /* GC_CHECK_STRING_BYTES */
5744 }
5745 break;
5746
5747 case Lisp_Vectorlike:
5748 {
5749 register struct Lisp_Vector *ptr = XVECTOR (obj);
5750 register ptrdiff_t pvectype;
5751
5752 if (VECTOR_MARKED_P (ptr))
5753 break;
5754
5755 #ifdef GC_CHECK_MARKED_OBJECTS
5756 m = mem_find (po);
5757 if (m == MEM_NIL && !SUBRP (obj))
5758 emacs_abort ();
5759 #endif /* GC_CHECK_MARKED_OBJECTS */
5760
5761 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5762 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5763 >> PSEUDOVECTOR_AREA_BITS);
5764 else
5765 pvectype = PVEC_NORMAL_VECTOR;
5766
5767 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5768 CHECK_LIVE (live_vector_p);
5769
5770 switch (pvectype)
5771 {
5772 case PVEC_BUFFER:
5773 #ifdef GC_CHECK_MARKED_OBJECTS
5774 {
5775 struct buffer *b;
5776 FOR_EACH_BUFFER (b)
5777 if (b == po)
5778 break;
5779 if (b == NULL)
5780 emacs_abort ();
5781 }
5782 #endif /* GC_CHECK_MARKED_OBJECTS */
5783 mark_buffer ((struct buffer *) ptr);
5784 break;
5785
5786 case PVEC_COMPILED:
5787 { /* We could treat this just like a vector, but it is better
5788 to save the COMPILED_CONSTANTS element for last and avoid
5789 recursion there. */
5790 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5791 int i;
5792
5793 VECTOR_MARK (ptr);
5794 for (i = 0; i < size; i++)
5795 if (i != COMPILED_CONSTANTS)
5796 mark_object (ptr->contents[i]);
5797 if (size > COMPILED_CONSTANTS)
5798 {
5799 obj = ptr->contents[COMPILED_CONSTANTS];
5800 goto loop;
5801 }
5802 }
5803 break;
5804
5805 case PVEC_FRAME:
5806 mark_vectorlike (ptr);
5807 mark_face_cache (((struct frame *) ptr)->face_cache);
5808 break;
5809
5810 case PVEC_WINDOW:
5811 {
5812 struct window *w = (struct window *) ptr;
5813
5814 mark_vectorlike (ptr);
5815
5816 /* Mark glyph matrices, if any. Marking window
5817 matrices is sufficient because frame matrices
5818 use the same glyph memory. */
5819 if (w->current_matrix)
5820 {
5821 mark_glyph_matrix (w->current_matrix);
5822 mark_glyph_matrix (w->desired_matrix);
5823 }
5824
5825 /* Filter out killed buffers from both buffer lists
5826 in attempt to help GC to reclaim killed buffers faster.
5827 We can do it elsewhere for live windows, but this is the
5828 best place to do it for dead windows. */
5829 wset_prev_buffers
5830 (w, mark_discard_killed_buffers (w->prev_buffers));
5831 wset_next_buffers
5832 (w, mark_discard_killed_buffers (w->next_buffers));
5833 }
5834 break;
5835
5836 case PVEC_HASH_TABLE:
5837 {
5838 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5839
5840 mark_vectorlike (ptr);
5841 mark_object (h->test.name);
5842 mark_object (h->test.user_hash_function);
5843 mark_object (h->test.user_cmp_function);
5844 /* If hash table is not weak, mark all keys and values.
5845 For weak tables, mark only the vector. */
5846 if (NILP (h->weak))
5847 mark_object (h->key_and_value);
5848 else
5849 VECTOR_MARK (XVECTOR (h->key_and_value));
5850 }
5851 break;
5852
5853 case PVEC_CHAR_TABLE:
5854 mark_char_table (ptr);
5855 break;
5856
5857 case PVEC_BOOL_VECTOR:
5858 /* No Lisp_Objects to mark in a bool vector. */
5859 VECTOR_MARK (ptr);
5860 break;
5861
5862 case PVEC_SUBR:
5863 break;
5864
5865 case PVEC_FREE:
5866 emacs_abort ();
5867
5868 default:
5869 mark_vectorlike (ptr);
5870 }
5871 }
5872 break;
5873
5874 case Lisp_Symbol:
5875 {
5876 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5877 struct Lisp_Symbol *ptrx;
5878
5879 if (ptr->gcmarkbit)
5880 break;
5881 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5882 ptr->gcmarkbit = 1;
5883 mark_object (ptr->function);
5884 mark_object (ptr->plist);
5885 switch (ptr->redirect)
5886 {
5887 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5888 case SYMBOL_VARALIAS:
5889 {
5890 Lisp_Object tem;
5891 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5892 mark_object (tem);
5893 break;
5894 }
5895 case SYMBOL_LOCALIZED:
5896 {
5897 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5898 Lisp_Object where = blv->where;
5899 /* If the value is set up for a killed buffer or deleted
5900 frame, restore it's global binding. If the value is
5901 forwarded to a C variable, either it's not a Lisp_Object
5902 var, or it's staticpro'd already. */
5903 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5904 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5905 swap_in_global_binding (ptr);
5906 mark_object (blv->where);
5907 mark_object (blv->valcell);
5908 mark_object (blv->defcell);
5909 break;
5910 }
5911 case SYMBOL_FORWARDED:
5912 /* If the value is forwarded to a buffer or keyboard field,
5913 these are marked when we see the corresponding object.
5914 And if it's forwarded to a C variable, either it's not
5915 a Lisp_Object var, or it's staticpro'd already. */
5916 break;
5917 default: emacs_abort ();
5918 }
5919 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5920 MARK_STRING (XSTRING (ptr->name));
5921 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5922
5923 ptr = ptr->next;
5924 if (ptr)
5925 {
5926 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5927 XSETSYMBOL (obj, ptrx);
5928 goto loop;
5929 }
5930 }
5931 break;
5932
5933 case Lisp_Misc:
5934 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5935
5936 if (XMISCANY (obj)->gcmarkbit)
5937 break;
5938
5939 switch (XMISCTYPE (obj))
5940 {
5941 case Lisp_Misc_Marker:
5942 /* DO NOT mark thru the marker's chain.
5943 The buffer's markers chain does not preserve markers from gc;
5944 instead, markers are removed from the chain when freed by gc. */
5945 XMISCANY (obj)->gcmarkbit = 1;
5946 break;
5947
5948 case Lisp_Misc_Save_Value:
5949 XMISCANY (obj)->gcmarkbit = 1;
5950 {
5951 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5952 /* If `save_type' is zero, `data[0].pointer' is the address
5953 of a memory area containing `data[1].integer' potential
5954 Lisp_Objects. */
5955 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
5956 {
5957 Lisp_Object *p = ptr->data[0].pointer;
5958 ptrdiff_t nelt;
5959 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5960 mark_maybe_object (*p);
5961 }
5962 else
5963 {
5964 /* Find Lisp_Objects in `data[N]' slots and mark them. */
5965 int i;
5966 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
5967 if (save_type (ptr, i) == SAVE_OBJECT)
5968 mark_object (ptr->data[i].object);
5969 }
5970 }
5971 break;
5972
5973 case Lisp_Misc_Overlay:
5974 mark_overlay (XOVERLAY (obj));
5975 break;
5976
5977 default:
5978 emacs_abort ();
5979 }
5980 break;
5981
5982 case Lisp_Cons:
5983 {
5984 register struct Lisp_Cons *ptr = XCONS (obj);
5985 if (CONS_MARKED_P (ptr))
5986 break;
5987 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5988 CONS_MARK (ptr);
5989 /* If the cdr is nil, avoid recursion for the car. */
5990 if (EQ (ptr->u.cdr, Qnil))
5991 {
5992 obj = ptr->car;
5993 cdr_count = 0;
5994 goto loop;
5995 }
5996 mark_object (ptr->car);
5997 obj = ptr->u.cdr;
5998 cdr_count++;
5999 if (cdr_count == mark_object_loop_halt)
6000 emacs_abort ();
6001 goto loop;
6002 }
6003
6004 case Lisp_Float:
6005 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6006 FLOAT_MARK (XFLOAT (obj));
6007 break;
6008
6009 case_Lisp_Int:
6010 break;
6011
6012 default:
6013 emacs_abort ();
6014 }
6015
6016 #undef CHECK_LIVE
6017 #undef CHECK_ALLOCATED
6018 #undef CHECK_ALLOCATED_AND_LIVE
6019 }
6020 /* Mark the Lisp pointers in the terminal objects.
6021 Called by Fgarbage_collect. */
6022
6023 static void
6024 mark_terminals (void)
6025 {
6026 struct terminal *t;
6027 for (t = terminal_list; t; t = t->next_terminal)
6028 {
6029 eassert (t->name != NULL);
6030 #ifdef HAVE_WINDOW_SYSTEM
6031 /* If a terminal object is reachable from a stacpro'ed object,
6032 it might have been marked already. Make sure the image cache
6033 gets marked. */
6034 mark_image_cache (t->image_cache);
6035 #endif /* HAVE_WINDOW_SYSTEM */
6036 if (!VECTOR_MARKED_P (t))
6037 mark_vectorlike ((struct Lisp_Vector *)t);
6038 }
6039 }
6040
6041
6042
6043 /* Value is non-zero if OBJ will survive the current GC because it's
6044 either marked or does not need to be marked to survive. */
6045
6046 bool
6047 survives_gc_p (Lisp_Object obj)
6048 {
6049 bool survives_p;
6050
6051 switch (XTYPE (obj))
6052 {
6053 case_Lisp_Int:
6054 survives_p = 1;
6055 break;
6056
6057 case Lisp_Symbol:
6058 survives_p = XSYMBOL (obj)->gcmarkbit;
6059 break;
6060
6061 case Lisp_Misc:
6062 survives_p = XMISCANY (obj)->gcmarkbit;
6063 break;
6064
6065 case Lisp_String:
6066 survives_p = STRING_MARKED_P (XSTRING (obj));
6067 break;
6068
6069 case Lisp_Vectorlike:
6070 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6071 break;
6072
6073 case Lisp_Cons:
6074 survives_p = CONS_MARKED_P (XCONS (obj));
6075 break;
6076
6077 case Lisp_Float:
6078 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6079 break;
6080
6081 default:
6082 emacs_abort ();
6083 }
6084
6085 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6086 }
6087
6088
6089 \f
6090 /* Sweep: find all structures not marked, and free them. */
6091
6092 static void
6093 gc_sweep (void)
6094 {
6095 /* Remove or mark entries in weak hash tables.
6096 This must be done before any object is unmarked. */
6097 sweep_weak_hash_tables ();
6098
6099 sweep_strings ();
6100 check_string_bytes (!noninteractive);
6101
6102 /* Put all unmarked conses on free list */
6103 {
6104 register struct cons_block *cblk;
6105 struct cons_block **cprev = &cons_block;
6106 register int lim = cons_block_index;
6107 EMACS_INT num_free = 0, num_used = 0;
6108
6109 cons_free_list = 0;
6110
6111 for (cblk = cons_block; cblk; cblk = *cprev)
6112 {
6113 register int i = 0;
6114 int this_free = 0;
6115 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6116
6117 /* Scan the mark bits an int at a time. */
6118 for (i = 0; i < ilim; i++)
6119 {
6120 if (cblk->gcmarkbits[i] == -1)
6121 {
6122 /* Fast path - all cons cells for this int are marked. */
6123 cblk->gcmarkbits[i] = 0;
6124 num_used += BITS_PER_INT;
6125 }
6126 else
6127 {
6128 /* Some cons cells for this int are not marked.
6129 Find which ones, and free them. */
6130 int start, pos, stop;
6131
6132 start = i * BITS_PER_INT;
6133 stop = lim - start;
6134 if (stop > BITS_PER_INT)
6135 stop = BITS_PER_INT;
6136 stop += start;
6137
6138 for (pos = start; pos < stop; pos++)
6139 {
6140 if (!CONS_MARKED_P (&cblk->conses[pos]))
6141 {
6142 this_free++;
6143 cblk->conses[pos].u.chain = cons_free_list;
6144 cons_free_list = &cblk->conses[pos];
6145 #if GC_MARK_STACK
6146 cons_free_list->car = Vdead;
6147 #endif
6148 }
6149 else
6150 {
6151 num_used++;
6152 CONS_UNMARK (&cblk->conses[pos]);
6153 }
6154 }
6155 }
6156 }
6157
6158 lim = CONS_BLOCK_SIZE;
6159 /* If this block contains only free conses and we have already
6160 seen more than two blocks worth of free conses then deallocate
6161 this block. */
6162 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6163 {
6164 *cprev = cblk->next;
6165 /* Unhook from the free list. */
6166 cons_free_list = cblk->conses[0].u.chain;
6167 lisp_align_free (cblk);
6168 }
6169 else
6170 {
6171 num_free += this_free;
6172 cprev = &cblk->next;
6173 }
6174 }
6175 total_conses = num_used;
6176 total_free_conses = num_free;
6177 }
6178
6179 /* Put all unmarked floats on free list */
6180 {
6181 register struct float_block *fblk;
6182 struct float_block **fprev = &float_block;
6183 register int lim = float_block_index;
6184 EMACS_INT num_free = 0, num_used = 0;
6185
6186 float_free_list = 0;
6187
6188 for (fblk = float_block; fblk; fblk = *fprev)
6189 {
6190 register int i;
6191 int this_free = 0;
6192 for (i = 0; i < lim; i++)
6193 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6194 {
6195 this_free++;
6196 fblk->floats[i].u.chain = float_free_list;
6197 float_free_list = &fblk->floats[i];
6198 }
6199 else
6200 {
6201 num_used++;
6202 FLOAT_UNMARK (&fblk->floats[i]);
6203 }
6204 lim = FLOAT_BLOCK_SIZE;
6205 /* If this block contains only free floats and we have already
6206 seen more than two blocks worth of free floats then deallocate
6207 this block. */
6208 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6209 {
6210 *fprev = fblk->next;
6211 /* Unhook from the free list. */
6212 float_free_list = fblk->floats[0].u.chain;
6213 lisp_align_free (fblk);
6214 }
6215 else
6216 {
6217 num_free += this_free;
6218 fprev = &fblk->next;
6219 }
6220 }
6221 total_floats = num_used;
6222 total_free_floats = num_free;
6223 }
6224
6225 /* Put all unmarked intervals on free list */
6226 {
6227 register struct interval_block *iblk;
6228 struct interval_block **iprev = &interval_block;
6229 register int lim = interval_block_index;
6230 EMACS_INT num_free = 0, num_used = 0;
6231
6232 interval_free_list = 0;
6233
6234 for (iblk = interval_block; iblk; iblk = *iprev)
6235 {
6236 register int i;
6237 int this_free = 0;
6238
6239 for (i = 0; i < lim; i++)
6240 {
6241 if (!iblk->intervals[i].gcmarkbit)
6242 {
6243 set_interval_parent (&iblk->intervals[i], interval_free_list);
6244 interval_free_list = &iblk->intervals[i];
6245 this_free++;
6246 }
6247 else
6248 {
6249 num_used++;
6250 iblk->intervals[i].gcmarkbit = 0;
6251 }
6252 }
6253 lim = INTERVAL_BLOCK_SIZE;
6254 /* If this block contains only free intervals and we have already
6255 seen more than two blocks worth of free intervals then
6256 deallocate this block. */
6257 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6258 {
6259 *iprev = iblk->next;
6260 /* Unhook from the free list. */
6261 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6262 lisp_free (iblk);
6263 }
6264 else
6265 {
6266 num_free += this_free;
6267 iprev = &iblk->next;
6268 }
6269 }
6270 total_intervals = num_used;
6271 total_free_intervals = num_free;
6272 }
6273
6274 /* Put all unmarked symbols on free list */
6275 {
6276 register struct symbol_block *sblk;
6277 struct symbol_block **sprev = &symbol_block;
6278 register int lim = symbol_block_index;
6279 EMACS_INT num_free = 0, num_used = 0;
6280
6281 symbol_free_list = NULL;
6282
6283 for (sblk = symbol_block; sblk; sblk = *sprev)
6284 {
6285 int this_free = 0;
6286 union aligned_Lisp_Symbol *sym = sblk->symbols;
6287 union aligned_Lisp_Symbol *end = sym + lim;
6288
6289 for (; sym < end; ++sym)
6290 {
6291 /* Check if the symbol was created during loadup. In such a case
6292 it might be pointed to by pure bytecode which we don't trace,
6293 so we conservatively assume that it is live. */
6294 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6295
6296 if (!sym->s.gcmarkbit && !pure_p)
6297 {
6298 if (sym->s.redirect == SYMBOL_LOCALIZED)
6299 xfree (SYMBOL_BLV (&sym->s));
6300 sym->s.next = symbol_free_list;
6301 symbol_free_list = &sym->s;
6302 #if GC_MARK_STACK
6303 symbol_free_list->function = Vdead;
6304 #endif
6305 ++this_free;
6306 }
6307 else
6308 {
6309 ++num_used;
6310 if (!pure_p)
6311 UNMARK_STRING (XSTRING (sym->s.name));
6312 sym->s.gcmarkbit = 0;
6313 }
6314 }
6315
6316 lim = SYMBOL_BLOCK_SIZE;
6317 /* If this block contains only free symbols and we have already
6318 seen more than two blocks worth of free symbols then deallocate
6319 this block. */
6320 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6321 {
6322 *sprev = sblk->next;
6323 /* Unhook from the free list. */
6324 symbol_free_list = sblk->symbols[0].s.next;
6325 lisp_free (sblk);
6326 }
6327 else
6328 {
6329 num_free += this_free;
6330 sprev = &sblk->next;
6331 }
6332 }
6333 total_symbols = num_used;
6334 total_free_symbols = num_free;
6335 }
6336
6337 /* Put all unmarked misc's on free list.
6338 For a marker, first unchain it from the buffer it points into. */
6339 {
6340 register struct marker_block *mblk;
6341 struct marker_block **mprev = &marker_block;
6342 register int lim = marker_block_index;
6343 EMACS_INT num_free = 0, num_used = 0;
6344
6345 marker_free_list = 0;
6346
6347 for (mblk = marker_block; mblk; mblk = *mprev)
6348 {
6349 register int i;
6350 int this_free = 0;
6351
6352 for (i = 0; i < lim; i++)
6353 {
6354 if (!mblk->markers[i].m.u_any.gcmarkbit)
6355 {
6356 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6357 unchain_marker (&mblk->markers[i].m.u_marker);
6358 /* Set the type of the freed object to Lisp_Misc_Free.
6359 We could leave the type alone, since nobody checks it,
6360 but this might catch bugs faster. */
6361 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6362 mblk->markers[i].m.u_free.chain = marker_free_list;
6363 marker_free_list = &mblk->markers[i].m;
6364 this_free++;
6365 }
6366 else
6367 {
6368 num_used++;
6369 mblk->markers[i].m.u_any.gcmarkbit = 0;
6370 }
6371 }
6372 lim = MARKER_BLOCK_SIZE;
6373 /* If this block contains only free markers and we have already
6374 seen more than two blocks worth of free markers then deallocate
6375 this block. */
6376 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6377 {
6378 *mprev = mblk->next;
6379 /* Unhook from the free list. */
6380 marker_free_list = mblk->markers[0].m.u_free.chain;
6381 lisp_free (mblk);
6382 }
6383 else
6384 {
6385 num_free += this_free;
6386 mprev = &mblk->next;
6387 }
6388 }
6389
6390 total_markers = num_used;
6391 total_free_markers = num_free;
6392 }
6393
6394 /* Free all unmarked buffers */
6395 {
6396 register struct buffer *buffer, **bprev = &all_buffers;
6397
6398 total_buffers = 0;
6399 for (buffer = all_buffers; buffer; buffer = *bprev)
6400 if (!VECTOR_MARKED_P (buffer))
6401 {
6402 *bprev = buffer->next;
6403 lisp_free (buffer);
6404 }
6405 else
6406 {
6407 VECTOR_UNMARK (buffer);
6408 /* Do not use buffer_(set|get)_intervals here. */
6409 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6410 total_buffers++;
6411 bprev = &buffer->next;
6412 }
6413 }
6414
6415 sweep_vectors ();
6416 check_string_bytes (!noninteractive);
6417 }
6418
6419
6420
6421 \f
6422 /* Debugging aids. */
6423
6424 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6425 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6426 This may be helpful in debugging Emacs's memory usage.
6427 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6428 (void)
6429 {
6430 Lisp_Object end;
6431
6432 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6433
6434 return end;
6435 }
6436
6437 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6438 doc: /* Return a list of counters that measure how much consing there has been.
6439 Each of these counters increments for a certain kind of object.
6440 The counters wrap around from the largest positive integer to zero.
6441 Garbage collection does not decrease them.
6442 The elements of the value are as follows:
6443 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6444 All are in units of 1 = one object consed
6445 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6446 objects consed.
6447 MISCS include overlays, markers, and some internal types.
6448 Frames, windows, buffers, and subprocesses count as vectors
6449 (but the contents of a buffer's text do not count here). */)
6450 (void)
6451 {
6452 return listn (CONSTYPE_HEAP, 8,
6453 bounded_number (cons_cells_consed),
6454 bounded_number (floats_consed),
6455 bounded_number (vector_cells_consed),
6456 bounded_number (symbols_consed),
6457 bounded_number (string_chars_consed),
6458 bounded_number (misc_objects_consed),
6459 bounded_number (intervals_consed),
6460 bounded_number (strings_consed));
6461 }
6462
6463 /* Find at most FIND_MAX symbols which have OBJ as their value or
6464 function. This is used in gdbinit's `xwhichsymbols' command. */
6465
6466 Lisp_Object
6467 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6468 {
6469 struct symbol_block *sblk;
6470 ptrdiff_t gc_count = inhibit_garbage_collection ();
6471 Lisp_Object found = Qnil;
6472
6473 if (! DEADP (obj))
6474 {
6475 for (sblk = symbol_block; sblk; sblk = sblk->next)
6476 {
6477 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6478 int bn;
6479
6480 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6481 {
6482 struct Lisp_Symbol *sym = &aligned_sym->s;
6483 Lisp_Object val;
6484 Lisp_Object tem;
6485
6486 if (sblk == symbol_block && bn >= symbol_block_index)
6487 break;
6488
6489 XSETSYMBOL (tem, sym);
6490 val = find_symbol_value (tem);
6491 if (EQ (val, obj)
6492 || EQ (sym->function, obj)
6493 || (!NILP (sym->function)
6494 && COMPILEDP (sym->function)
6495 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6496 || (!NILP (val)
6497 && COMPILEDP (val)
6498 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6499 {
6500 found = Fcons (tem, found);
6501 if (--find_max == 0)
6502 goto out;
6503 }
6504 }
6505 }
6506 }
6507
6508 out:
6509 unbind_to (gc_count, Qnil);
6510 return found;
6511 }
6512
6513 #ifdef ENABLE_CHECKING
6514
6515 bool suppress_checking;
6516
6517 void
6518 die (const char *msg, const char *file, int line)
6519 {
6520 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6521 file, line, msg);
6522 terminate_due_to_signal (SIGABRT, INT_MAX);
6523 }
6524 #endif
6525 \f
6526 /* Initialization. */
6527
6528 void
6529 init_alloc_once (void)
6530 {
6531 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6532 purebeg = PUREBEG;
6533 pure_size = PURESIZE;
6534
6535 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6536 mem_init ();
6537 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6538 #endif
6539
6540 #ifdef DOUG_LEA_MALLOC
6541 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6542 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6543 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6544 #endif
6545 init_strings ();
6546 init_vectors ();
6547
6548 refill_memory_reserve ();
6549 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6550 }
6551
6552 void
6553 init_alloc (void)
6554 {
6555 gcprolist = 0;
6556 byte_stack_list = 0;
6557 #if GC_MARK_STACK
6558 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6559 setjmp_tested_p = longjmps_done = 0;
6560 #endif
6561 #endif
6562 Vgc_elapsed = make_float (0.0);
6563 gcs_done = 0;
6564 }
6565
6566 void
6567 syms_of_alloc (void)
6568 {
6569 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6570 doc: /* Number of bytes of consing between garbage collections.
6571 Garbage collection can happen automatically once this many bytes have been
6572 allocated since the last garbage collection. All data types count.
6573
6574 Garbage collection happens automatically only when `eval' is called.
6575
6576 By binding this temporarily to a large number, you can effectively
6577 prevent garbage collection during a part of the program.
6578 See also `gc-cons-percentage'. */);
6579
6580 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6581 doc: /* Portion of the heap used for allocation.
6582 Garbage collection can happen automatically once this portion of the heap
6583 has been allocated since the last garbage collection.
6584 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6585 Vgc_cons_percentage = make_float (0.1);
6586
6587 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6588 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6589
6590 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6591 doc: /* Number of cons cells that have been consed so far. */);
6592
6593 DEFVAR_INT ("floats-consed", floats_consed,
6594 doc: /* Number of floats that have been consed so far. */);
6595
6596 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6597 doc: /* Number of vector cells that have been consed so far. */);
6598
6599 DEFVAR_INT ("symbols-consed", symbols_consed,
6600 doc: /* Number of symbols that have been consed so far. */);
6601
6602 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6603 doc: /* Number of string characters that have been consed so far. */);
6604
6605 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6606 doc: /* Number of miscellaneous objects that have been consed so far.
6607 These include markers and overlays, plus certain objects not visible
6608 to users. */);
6609
6610 DEFVAR_INT ("intervals-consed", intervals_consed,
6611 doc: /* Number of intervals that have been consed so far. */);
6612
6613 DEFVAR_INT ("strings-consed", strings_consed,
6614 doc: /* Number of strings that have been consed so far. */);
6615
6616 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6617 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6618 This means that certain objects should be allocated in shared (pure) space.
6619 It can also be set to a hash-table, in which case this table is used to
6620 do hash-consing of the objects allocated to pure space. */);
6621
6622 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6623 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6624 garbage_collection_messages = 0;
6625
6626 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6627 doc: /* Hook run after garbage collection has finished. */);
6628 Vpost_gc_hook = Qnil;
6629 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6630
6631 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6632 doc: /* Precomputed `signal' argument for memory-full error. */);
6633 /* We build this in advance because if we wait until we need it, we might
6634 not be able to allocate the memory to hold it. */
6635 Vmemory_signal_data
6636 = listn (CONSTYPE_PURE, 2, Qerror,
6637 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6638
6639 DEFVAR_LISP ("memory-full", Vmemory_full,
6640 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6641 Vmemory_full = Qnil;
6642
6643 DEFSYM (Qconses, "conses");
6644 DEFSYM (Qsymbols, "symbols");
6645 DEFSYM (Qmiscs, "miscs");
6646 DEFSYM (Qstrings, "strings");
6647 DEFSYM (Qvectors, "vectors");
6648 DEFSYM (Qfloats, "floats");
6649 DEFSYM (Qintervals, "intervals");
6650 DEFSYM (Qbuffers, "buffers");
6651 DEFSYM (Qstring_bytes, "string-bytes");
6652 DEFSYM (Qvector_slots, "vector-slots");
6653 DEFSYM (Qheap, "heap");
6654 DEFSYM (Qautomatic_gc, "Automatic GC");
6655
6656 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6657 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6658
6659 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6660 doc: /* Accumulated time elapsed in garbage collections.
6661 The time is in seconds as a floating point value. */);
6662 DEFVAR_INT ("gcs-done", gcs_done,
6663 doc: /* Accumulated number of garbage collections done. */);
6664
6665 defsubr (&Scons);
6666 defsubr (&Slist);
6667 defsubr (&Svector);
6668 defsubr (&Smake_byte_code);
6669 defsubr (&Smake_list);
6670 defsubr (&Smake_vector);
6671 defsubr (&Smake_string);
6672 defsubr (&Smake_bool_vector);
6673 defsubr (&Smake_symbol);
6674 defsubr (&Smake_marker);
6675 defsubr (&Spurecopy);
6676 defsubr (&Sgarbage_collect);
6677 defsubr (&Smemory_limit);
6678 defsubr (&Smemory_use_counts);
6679
6680 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6681 defsubr (&Sgc_status);
6682 #endif
6683 }
6684
6685 /* When compiled with GCC, GDB might say "No enum type named
6686 pvec_type" if we don't have at least one symbol with that type, and
6687 then xbacktrace could fail. Similarly for the other enums and
6688 their values. Some non-GCC compilers don't like these constructs. */
6689 #ifdef __GNUC__
6690 union
6691 {
6692 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6693 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6694 enum char_bits char_bits;
6695 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6696 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6697 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6698 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6699 enum Lisp_Bits Lisp_Bits;
6700 enum Lisp_Compiled Lisp_Compiled;
6701 enum maxargs maxargs;
6702 enum MAX_ALLOCA MAX_ALLOCA;
6703 enum More_Lisp_Bits More_Lisp_Bits;
6704 enum pvec_type pvec_type;
6705 #if USE_LSB_TAG
6706 enum lsb_bits lsb_bits;
6707 #endif
6708 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6709 #endif /* __GNUC__ */