Convenient macro to check whether the buffer is live.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <setjmp.h>
28
29 #ifdef ENABLE_CHECKING
30 #include <signal.h> /* For SIGABRT. */
31 #endif
32
33 #ifdef HAVE_PTHREAD
34 #include <pthread.h>
35 #endif
36
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "termhooks.h" /* For struct terminal. */
48 #include <setjmp.h>
49 #include <verify.h>
50
51 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
52 Doable only if GC_MARK_STACK. */
53 #if ! GC_MARK_STACK
54 # undef GC_CHECK_MARKED_OBJECTS
55 #endif
56
57 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
58 memory. Can do this only if using gmalloc.c and if not checking
59 marked objects. */
60
61 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
62 || defined GC_CHECK_MARKED_OBJECTS)
63 #undef GC_MALLOC_CHECK
64 #endif
65
66 #include <unistd.h>
67 #ifndef HAVE_UNISTD_H
68 extern void *sbrk ();
69 #endif
70
71 #include <fcntl.h>
72
73 #ifdef USE_GTK
74 # include "gtkutil.h"
75 #endif
76 #ifdef WINDOWSNT
77 #include "w32.h"
78 #endif
79
80 #ifdef DOUG_LEA_MALLOC
81
82 #include <malloc.h>
83
84 /* Specify maximum number of areas to mmap. It would be nice to use a
85 value that explicitly means "no limit". */
86
87 #define MMAP_MAX_AREAS 100000000
88
89 #else /* not DOUG_LEA_MALLOC */
90
91 /* The following come from gmalloc.c. */
92
93 extern size_t _bytes_used;
94 extern size_t __malloc_extra_blocks;
95 extern void *_malloc_internal (size_t);
96 extern void _free_internal (void *);
97
98 #endif /* not DOUG_LEA_MALLOC */
99
100 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
101 #ifdef HAVE_PTHREAD
102
103 /* When GTK uses the file chooser dialog, different backends can be loaded
104 dynamically. One such a backend is the Gnome VFS backend that gets loaded
105 if you run Gnome. That backend creates several threads and also allocates
106 memory with malloc.
107
108 Also, gconf and gsettings may create several threads.
109
110 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
111 functions below are called from malloc, there is a chance that one
112 of these threads preempts the Emacs main thread and the hook variables
113 end up in an inconsistent state. So we have a mutex to prevent that (note
114 that the backend handles concurrent access to malloc within its own threads
115 but Emacs code running in the main thread is not included in that control).
116
117 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
118 happens in one of the backend threads we will have two threads that tries
119 to run Emacs code at once, and the code is not prepared for that.
120 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
121
122 static pthread_mutex_t alloc_mutex;
123
124 #define BLOCK_INPUT_ALLOC \
125 do \
126 { \
127 if (pthread_equal (pthread_self (), main_thread)) \
128 BLOCK_INPUT; \
129 pthread_mutex_lock (&alloc_mutex); \
130 } \
131 while (0)
132 #define UNBLOCK_INPUT_ALLOC \
133 do \
134 { \
135 pthread_mutex_unlock (&alloc_mutex); \
136 if (pthread_equal (pthread_self (), main_thread)) \
137 UNBLOCK_INPUT; \
138 } \
139 while (0)
140
141 #else /* ! defined HAVE_PTHREAD */
142
143 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
144 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
145
146 #endif /* ! defined HAVE_PTHREAD */
147 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
148
149 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
150 to a struct Lisp_String. */
151
152 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
153 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
154 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
155
156 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
157 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
158 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
159
160 /* Default value of gc_cons_threshold (see below). */
161
162 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 EMACS_INT consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* True during GC. */
181
182 bool gc_in_progress;
183
184 /* True means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 bool abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
204
205 #define SPARE_MEMORY (1 << 14)
206
207 /* Number of extra blocks malloc should get when it needs more core. */
208
209 static int malloc_hysteresis;
210
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
216
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
219
220 /* Pointer to the pure area, and its size. */
221
222 static char *purebeg;
223 static ptrdiff_t pure_size;
224
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
228 static ptrdiff_t pure_bytes_used_before_overflow;
229
230 /* True if P points into pure space. */
231
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
234
235 /* Index in pure at which next pure Lisp object will be allocated.. */
236
237 static ptrdiff_t pure_bytes_used_lisp;
238
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
240
241 static ptrdiff_t pure_bytes_used_non_lisp;
242
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
246 const char *pending_malloc_warning;
247
248 /* Maximum amount of C stack to save when a GC happens. */
249
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
253
254 /* Buffer in which we save a copy of the C stack at each GC. */
255
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
260
261 static Lisp_Object Qconses;
262 static Lisp_Object Qsymbols;
263 static Lisp_Object Qmiscs;
264 static Lisp_Object Qstrings;
265 static Lisp_Object Qvectors;
266 static Lisp_Object Qfloats;
267 static Lisp_Object Qintervals;
268 static Lisp_Object Qbuffers;
269 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
270 static Lisp_Object Qgc_cons_threshold;
271 Lisp_Object Qchar_table_extra_slots;
272
273 /* Hook run after GC has finished. */
274
275 static Lisp_Object Qpost_gc_hook;
276
277 static void mark_terminals (void);
278 static void gc_sweep (void);
279 static Lisp_Object make_pure_vector (ptrdiff_t);
280 static void mark_glyph_matrix (struct glyph_matrix *);
281 static void mark_face_cache (struct face_cache *);
282 static void mark_buffer (struct buffer *);
283
284 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
285 static void refill_memory_reserve (void);
286 #endif
287 static struct Lisp_String *allocate_string (void);
288 static void compact_small_strings (void);
289 static void free_large_strings (void);
290 static void sweep_strings (void);
291 static void free_misc (Lisp_Object);
292 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
293
294 /* When scanning the C stack for live Lisp objects, Emacs keeps track
295 of what memory allocated via lisp_malloc is intended for what
296 purpose. This enumeration specifies the type of memory. */
297
298 enum mem_type
299 {
300 MEM_TYPE_NON_LISP,
301 MEM_TYPE_BUFFER,
302 MEM_TYPE_CONS,
303 MEM_TYPE_STRING,
304 MEM_TYPE_MISC,
305 MEM_TYPE_SYMBOL,
306 MEM_TYPE_FLOAT,
307 /* We used to keep separate mem_types for subtypes of vectors such as
308 process, hash_table, frame, terminal, and window, but we never made
309 use of the distinction, so it only caused source-code complexity
310 and runtime slowdown. Minor but pointless. */
311 MEM_TYPE_VECTORLIKE,
312 /* Special type to denote vector blocks. */
313 MEM_TYPE_VECTOR_BLOCK,
314 /* Special type to denote reserved memory. */
315 MEM_TYPE_SPARE
316 };
317
318 static void *lisp_malloc (size_t, enum mem_type);
319
320
321 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
322
323 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
324 #include <stdio.h> /* For fprintf. */
325 #endif
326
327 /* A unique object in pure space used to make some Lisp objects
328 on free lists recognizable in O(1). */
329
330 static Lisp_Object Vdead;
331 #define DEADP(x) EQ (x, Vdead)
332
333 #ifdef GC_MALLOC_CHECK
334
335 enum mem_type allocated_mem_type;
336
337 #endif /* GC_MALLOC_CHECK */
338
339 /* A node in the red-black tree describing allocated memory containing
340 Lisp data. Each such block is recorded with its start and end
341 address when it is allocated, and removed from the tree when it
342 is freed.
343
344 A red-black tree is a balanced binary tree with the following
345 properties:
346
347 1. Every node is either red or black.
348 2. Every leaf is black.
349 3. If a node is red, then both of its children are black.
350 4. Every simple path from a node to a descendant leaf contains
351 the same number of black nodes.
352 5. The root is always black.
353
354 When nodes are inserted into the tree, or deleted from the tree,
355 the tree is "fixed" so that these properties are always true.
356
357 A red-black tree with N internal nodes has height at most 2
358 log(N+1). Searches, insertions and deletions are done in O(log N).
359 Please see a text book about data structures for a detailed
360 description of red-black trees. Any book worth its salt should
361 describe them. */
362
363 struct mem_node
364 {
365 /* Children of this node. These pointers are never NULL. When there
366 is no child, the value is MEM_NIL, which points to a dummy node. */
367 struct mem_node *left, *right;
368
369 /* The parent of this node. In the root node, this is NULL. */
370 struct mem_node *parent;
371
372 /* Start and end of allocated region. */
373 void *start, *end;
374
375 /* Node color. */
376 enum {MEM_BLACK, MEM_RED} color;
377
378 /* Memory type. */
379 enum mem_type type;
380 };
381
382 /* Base address of stack. Set in main. */
383
384 Lisp_Object *stack_base;
385
386 /* Root of the tree describing allocated Lisp memory. */
387
388 static struct mem_node *mem_root;
389
390 /* Lowest and highest known address in the heap. */
391
392 static void *min_heap_address, *max_heap_address;
393
394 /* Sentinel node of the tree. */
395
396 static struct mem_node mem_z;
397 #define MEM_NIL &mem_z
398
399 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
400 static void lisp_free (void *);
401 static void mark_stack (void);
402 static bool live_vector_p (struct mem_node *, void *);
403 static bool live_buffer_p (struct mem_node *, void *);
404 static bool live_string_p (struct mem_node *, void *);
405 static bool live_cons_p (struct mem_node *, void *);
406 static bool live_symbol_p (struct mem_node *, void *);
407 static bool live_float_p (struct mem_node *, void *);
408 static bool live_misc_p (struct mem_node *, void *);
409 static void mark_maybe_object (Lisp_Object);
410 static void mark_memory (void *, void *);
411 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
412 static void mem_init (void);
413 static struct mem_node *mem_insert (void *, void *, enum mem_type);
414 static void mem_insert_fixup (struct mem_node *);
415 #endif
416 static void mem_rotate_left (struct mem_node *);
417 static void mem_rotate_right (struct mem_node *);
418 static void mem_delete (struct mem_node *);
419 static void mem_delete_fixup (struct mem_node *);
420 static inline struct mem_node *mem_find (void *);
421
422
423 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
424 static void check_gcpros (void);
425 #endif
426
427 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
428
429 #ifndef DEADP
430 # define DEADP(x) 0
431 #endif
432
433 /* Recording what needs to be marked for gc. */
434
435 struct gcpro *gcprolist;
436
437 /* Addresses of staticpro'd variables. Initialize it to a nonzero
438 value; otherwise some compilers put it into BSS. */
439
440 #define NSTATICS 0x650
441 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
442
443 /* Index of next unused slot in staticvec. */
444
445 static int staticidx;
446
447 static void *pure_alloc (size_t, int);
448
449
450 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
451 ALIGNMENT must be a power of 2. */
452
453 #define ALIGN(ptr, ALIGNMENT) \
454 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
455 & ~ ((ALIGNMENT) - 1)))
456
457
458 \f
459 /************************************************************************
460 Malloc
461 ************************************************************************/
462
463 /* Function malloc calls this if it finds we are near exhausting storage. */
464
465 void
466 malloc_warning (const char *str)
467 {
468 pending_malloc_warning = str;
469 }
470
471
472 /* Display an already-pending malloc warning. */
473
474 void
475 display_malloc_warning (void)
476 {
477 call3 (intern ("display-warning"),
478 intern ("alloc"),
479 build_string (pending_malloc_warning),
480 intern ("emergency"));
481 pending_malloc_warning = 0;
482 }
483 \f
484 /* Called if we can't allocate relocatable space for a buffer. */
485
486 void
487 buffer_memory_full (ptrdiff_t nbytes)
488 {
489 /* If buffers use the relocating allocator, no need to free
490 spare_memory, because we may have plenty of malloc space left
491 that we could get, and if we don't, the malloc that fails will
492 itself cause spare_memory to be freed. If buffers don't use the
493 relocating allocator, treat this like any other failing
494 malloc. */
495
496 #ifndef REL_ALLOC
497 memory_full (nbytes);
498 #endif
499
500 /* This used to call error, but if we've run out of memory, we could
501 get infinite recursion trying to build the string. */
502 xsignal (Qnil, Vmemory_signal_data);
503 }
504
505 /* A common multiple of the positive integers A and B. Ideally this
506 would be the least common multiple, but there's no way to do that
507 as a constant expression in C, so do the best that we can easily do. */
508 #define COMMON_MULTIPLE(a, b) \
509 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
510
511 #ifndef XMALLOC_OVERRUN_CHECK
512 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
513 #else
514
515 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
516 around each block.
517
518 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
519 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
520 block size in little-endian order. The trailer consists of
521 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
522
523 The header is used to detect whether this block has been allocated
524 through these functions, as some low-level libc functions may
525 bypass the malloc hooks. */
526
527 #define XMALLOC_OVERRUN_CHECK_SIZE 16
528 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
529 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
530
531 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
532 hold a size_t value and (2) the header size is a multiple of the
533 alignment that Emacs needs for C types and for USE_LSB_TAG. */
534 #define XMALLOC_BASE_ALIGNMENT \
535 alignof (union { long double d; intmax_t i; void *p; })
536
537 #if USE_LSB_TAG
538 # define XMALLOC_HEADER_ALIGNMENT \
539 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
540 #else
541 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
542 #endif
543 #define XMALLOC_OVERRUN_SIZE_SIZE \
544 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
545 + XMALLOC_HEADER_ALIGNMENT - 1) \
546 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
547 - XMALLOC_OVERRUN_CHECK_SIZE)
548
549 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
550 { '\x9a', '\x9b', '\xae', '\xaf',
551 '\xbf', '\xbe', '\xce', '\xcf',
552 '\xea', '\xeb', '\xec', '\xed',
553 '\xdf', '\xde', '\x9c', '\x9d' };
554
555 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
556 { '\xaa', '\xab', '\xac', '\xad',
557 '\xba', '\xbb', '\xbc', '\xbd',
558 '\xca', '\xcb', '\xcc', '\xcd',
559 '\xda', '\xdb', '\xdc', '\xdd' };
560
561 /* Insert and extract the block size in the header. */
562
563 static void
564 xmalloc_put_size (unsigned char *ptr, size_t size)
565 {
566 int i;
567 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
568 {
569 *--ptr = size & ((1 << CHAR_BIT) - 1);
570 size >>= CHAR_BIT;
571 }
572 }
573
574 static size_t
575 xmalloc_get_size (unsigned char *ptr)
576 {
577 size_t size = 0;
578 int i;
579 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
580 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
581 {
582 size <<= CHAR_BIT;
583 size += *ptr++;
584 }
585 return size;
586 }
587
588
589 /* The call depth in overrun_check functions. For example, this might happen:
590 xmalloc()
591 overrun_check_malloc()
592 -> malloc -> (via hook)_-> emacs_blocked_malloc
593 -> overrun_check_malloc
594 call malloc (hooks are NULL, so real malloc is called).
595 malloc returns 10000.
596 add overhead, return 10016.
597 <- (back in overrun_check_malloc)
598 add overhead again, return 10032
599 xmalloc returns 10032.
600
601 (time passes).
602
603 xfree(10032)
604 overrun_check_free(10032)
605 decrease overhead
606 free(10016) <- crash, because 10000 is the original pointer. */
607
608 static ptrdiff_t check_depth;
609
610 /* Like malloc, but wraps allocated block with header and trailer. */
611
612 static void *
613 overrun_check_malloc (size_t size)
614 {
615 register unsigned char *val;
616 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
617 if (SIZE_MAX - overhead < size)
618 emacs_abort ();
619
620 val = malloc (size + overhead);
621 if (val && check_depth == 1)
622 {
623 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
624 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
625 xmalloc_put_size (val, size);
626 memcpy (val + size, xmalloc_overrun_check_trailer,
627 XMALLOC_OVERRUN_CHECK_SIZE);
628 }
629 --check_depth;
630 return val;
631 }
632
633
634 /* Like realloc, but checks old block for overrun, and wraps new block
635 with header and trailer. */
636
637 static void *
638 overrun_check_realloc (void *block, size_t size)
639 {
640 register unsigned char *val = (unsigned char *) block;
641 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
642 if (SIZE_MAX - overhead < size)
643 emacs_abort ();
644
645 if (val
646 && check_depth == 1
647 && memcmp (xmalloc_overrun_check_header,
648 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
649 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
650 {
651 size_t osize = xmalloc_get_size (val);
652 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
653 XMALLOC_OVERRUN_CHECK_SIZE))
654 emacs_abort ();
655 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
656 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
657 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
658 }
659
660 val = realloc (val, size + overhead);
661
662 if (val && check_depth == 1)
663 {
664 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
665 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
666 xmalloc_put_size (val, size);
667 memcpy (val + size, xmalloc_overrun_check_trailer,
668 XMALLOC_OVERRUN_CHECK_SIZE);
669 }
670 --check_depth;
671 return val;
672 }
673
674 /* Like free, but checks block for overrun. */
675
676 static void
677 overrun_check_free (void *block)
678 {
679 unsigned char *val = (unsigned char *) block;
680
681 ++check_depth;
682 if (val
683 && check_depth == 1
684 && memcmp (xmalloc_overrun_check_header,
685 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
686 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
687 {
688 size_t osize = xmalloc_get_size (val);
689 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
690 XMALLOC_OVERRUN_CHECK_SIZE))
691 emacs_abort ();
692 #ifdef XMALLOC_CLEAR_FREE_MEMORY
693 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
694 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
695 #else
696 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
697 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
698 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
699 #endif
700 }
701
702 free (val);
703 --check_depth;
704 }
705
706 #undef malloc
707 #undef realloc
708 #undef free
709 #define malloc overrun_check_malloc
710 #define realloc overrun_check_realloc
711 #define free overrun_check_free
712 #endif
713
714 #ifdef SYNC_INPUT
715 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
716 there's no need to block input around malloc. */
717 #define MALLOC_BLOCK_INPUT ((void)0)
718 #define MALLOC_UNBLOCK_INPUT ((void)0)
719 #else
720 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
721 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
722 #endif
723
724 /* Like malloc but check for no memory and block interrupt input.. */
725
726 void *
727 xmalloc (size_t size)
728 {
729 void *val;
730
731 MALLOC_BLOCK_INPUT;
732 val = malloc (size);
733 MALLOC_UNBLOCK_INPUT;
734
735 if (!val && size)
736 memory_full (size);
737 return val;
738 }
739
740 /* Like the above, but zeroes out the memory just allocated. */
741
742 void *
743 xzalloc (size_t size)
744 {
745 void *val;
746
747 MALLOC_BLOCK_INPUT;
748 val = malloc (size);
749 MALLOC_UNBLOCK_INPUT;
750
751 if (!val && size)
752 memory_full (size);
753 memset (val, 0, size);
754 return val;
755 }
756
757 /* Like realloc but check for no memory and block interrupt input.. */
758
759 void *
760 xrealloc (void *block, size_t size)
761 {
762 void *val;
763
764 MALLOC_BLOCK_INPUT;
765 /* We must call malloc explicitly when BLOCK is 0, since some
766 reallocs don't do this. */
767 if (! block)
768 val = malloc (size);
769 else
770 val = realloc (block, size);
771 MALLOC_UNBLOCK_INPUT;
772
773 if (!val && size)
774 memory_full (size);
775 return val;
776 }
777
778
779 /* Like free but block interrupt input. */
780
781 void
782 xfree (void *block)
783 {
784 if (!block)
785 return;
786 MALLOC_BLOCK_INPUT;
787 free (block);
788 MALLOC_UNBLOCK_INPUT;
789 /* We don't call refill_memory_reserve here
790 because that duplicates doing so in emacs_blocked_free
791 and the criterion should go there. */
792 }
793
794
795 /* Other parts of Emacs pass large int values to allocator functions
796 expecting ptrdiff_t. This is portable in practice, but check it to
797 be safe. */
798 verify (INT_MAX <= PTRDIFF_MAX);
799
800
801 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
802 Signal an error on memory exhaustion, and block interrupt input. */
803
804 void *
805 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
806 {
807 eassert (0 <= nitems && 0 < item_size);
808 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
809 memory_full (SIZE_MAX);
810 return xmalloc (nitems * item_size);
811 }
812
813
814 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
815 Signal an error on memory exhaustion, and block interrupt input. */
816
817 void *
818 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
819 {
820 eassert (0 <= nitems && 0 < item_size);
821 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
822 memory_full (SIZE_MAX);
823 return xrealloc (pa, nitems * item_size);
824 }
825
826
827 /* Grow PA, which points to an array of *NITEMS items, and return the
828 location of the reallocated array, updating *NITEMS to reflect its
829 new size. The new array will contain at least NITEMS_INCR_MIN more
830 items, but will not contain more than NITEMS_MAX items total.
831 ITEM_SIZE is the size of each item, in bytes.
832
833 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
834 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
835 infinity.
836
837 If PA is null, then allocate a new array instead of reallocating
838 the old one. Thus, to grow an array A without saving its old
839 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
840 &NITEMS, ...).
841
842 Block interrupt input as needed. If memory exhaustion occurs, set
843 *NITEMS to zero if PA is null, and signal an error (i.e., do not
844 return). */
845
846 void *
847 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
848 ptrdiff_t nitems_max, ptrdiff_t item_size)
849 {
850 /* The approximate size to use for initial small allocation
851 requests. This is the largest "small" request for the GNU C
852 library malloc. */
853 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
854
855 /* If the array is tiny, grow it to about (but no greater than)
856 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
857 ptrdiff_t n = *nitems;
858 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
859 ptrdiff_t half_again = n >> 1;
860 ptrdiff_t incr_estimate = max (tiny_max, half_again);
861
862 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
863 NITEMS_MAX, and what the C language can represent safely. */
864 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
865 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
866 ? nitems_max : C_language_max);
867 ptrdiff_t nitems_incr_max = n_max - n;
868 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
869
870 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
871 if (! pa)
872 *nitems = 0;
873 if (nitems_incr_max < incr)
874 memory_full (SIZE_MAX);
875 n += incr;
876 pa = xrealloc (pa, n * item_size);
877 *nitems = n;
878 return pa;
879 }
880
881
882 /* Like strdup, but uses xmalloc. */
883
884 char *
885 xstrdup (const char *s)
886 {
887 size_t len = strlen (s) + 1;
888 char *p = xmalloc (len);
889 memcpy (p, s, len);
890 return p;
891 }
892
893
894 /* Unwind for SAFE_ALLOCA */
895
896 Lisp_Object
897 safe_alloca_unwind (Lisp_Object arg)
898 {
899 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
900
901 p->dogc = 0;
902 xfree (p->pointer);
903 p->pointer = 0;
904 free_misc (arg);
905 return Qnil;
906 }
907
908 /* Return a newly allocated memory block of SIZE bytes, remembering
909 to free it when unwinding. */
910 void *
911 record_xmalloc (size_t size)
912 {
913 void *p = xmalloc (size);
914 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
915 return p;
916 }
917
918
919 /* Like malloc but used for allocating Lisp data. NBYTES is the
920 number of bytes to allocate, TYPE describes the intended use of the
921 allocated memory block (for strings, for conses, ...). */
922
923 #if ! USE_LSB_TAG
924 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
925 #endif
926
927 static void *
928 lisp_malloc (size_t nbytes, enum mem_type type)
929 {
930 register void *val;
931
932 MALLOC_BLOCK_INPUT;
933
934 #ifdef GC_MALLOC_CHECK
935 allocated_mem_type = type;
936 #endif
937
938 val = malloc (nbytes);
939
940 #if ! USE_LSB_TAG
941 /* If the memory just allocated cannot be addressed thru a Lisp
942 object's pointer, and it needs to be,
943 that's equivalent to running out of memory. */
944 if (val && type != MEM_TYPE_NON_LISP)
945 {
946 Lisp_Object tem;
947 XSETCONS (tem, (char *) val + nbytes - 1);
948 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
949 {
950 lisp_malloc_loser = val;
951 free (val);
952 val = 0;
953 }
954 }
955 #endif
956
957 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
958 if (val && type != MEM_TYPE_NON_LISP)
959 mem_insert (val, (char *) val + nbytes, type);
960 #endif
961
962 MALLOC_UNBLOCK_INPUT;
963 if (!val && nbytes)
964 memory_full (nbytes);
965 return val;
966 }
967
968 /* Free BLOCK. This must be called to free memory allocated with a
969 call to lisp_malloc. */
970
971 static void
972 lisp_free (void *block)
973 {
974 MALLOC_BLOCK_INPUT;
975 free (block);
976 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
977 mem_delete (mem_find (block));
978 #endif
979 MALLOC_UNBLOCK_INPUT;
980 }
981
982 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
983
984 /* The entry point is lisp_align_malloc which returns blocks of at most
985 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
986
987 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
988 #define USE_POSIX_MEMALIGN 1
989 #endif
990
991 /* BLOCK_ALIGN has to be a power of 2. */
992 #define BLOCK_ALIGN (1 << 10)
993
994 /* Padding to leave at the end of a malloc'd block. This is to give
995 malloc a chance to minimize the amount of memory wasted to alignment.
996 It should be tuned to the particular malloc library used.
997 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
998 posix_memalign on the other hand would ideally prefer a value of 4
999 because otherwise, there's 1020 bytes wasted between each ablocks.
1000 In Emacs, testing shows that those 1020 can most of the time be
1001 efficiently used by malloc to place other objects, so a value of 0 can
1002 still preferable unless you have a lot of aligned blocks and virtually
1003 nothing else. */
1004 #define BLOCK_PADDING 0
1005 #define BLOCK_BYTES \
1006 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1007
1008 /* Internal data structures and constants. */
1009
1010 #define ABLOCKS_SIZE 16
1011
1012 /* An aligned block of memory. */
1013 struct ablock
1014 {
1015 union
1016 {
1017 char payload[BLOCK_BYTES];
1018 struct ablock *next_free;
1019 } x;
1020 /* `abase' is the aligned base of the ablocks. */
1021 /* It is overloaded to hold the virtual `busy' field that counts
1022 the number of used ablock in the parent ablocks.
1023 The first ablock has the `busy' field, the others have the `abase'
1024 field. To tell the difference, we assume that pointers will have
1025 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1026 is used to tell whether the real base of the parent ablocks is `abase'
1027 (if not, the word before the first ablock holds a pointer to the
1028 real base). */
1029 struct ablocks *abase;
1030 /* The padding of all but the last ablock is unused. The padding of
1031 the last ablock in an ablocks is not allocated. */
1032 #if BLOCK_PADDING
1033 char padding[BLOCK_PADDING];
1034 #endif
1035 };
1036
1037 /* A bunch of consecutive aligned blocks. */
1038 struct ablocks
1039 {
1040 struct ablock blocks[ABLOCKS_SIZE];
1041 };
1042
1043 /* Size of the block requested from malloc or posix_memalign. */
1044 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1045
1046 #define ABLOCK_ABASE(block) \
1047 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1048 ? (struct ablocks *)(block) \
1049 : (block)->abase)
1050
1051 /* Virtual `busy' field. */
1052 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1053
1054 /* Pointer to the (not necessarily aligned) malloc block. */
1055 #ifdef USE_POSIX_MEMALIGN
1056 #define ABLOCKS_BASE(abase) (abase)
1057 #else
1058 #define ABLOCKS_BASE(abase) \
1059 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1060 #endif
1061
1062 /* The list of free ablock. */
1063 static struct ablock *free_ablock;
1064
1065 /* Allocate an aligned block of nbytes.
1066 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1067 smaller or equal to BLOCK_BYTES. */
1068 static void *
1069 lisp_align_malloc (size_t nbytes, enum mem_type type)
1070 {
1071 void *base, *val;
1072 struct ablocks *abase;
1073
1074 eassert (nbytes <= BLOCK_BYTES);
1075
1076 MALLOC_BLOCK_INPUT;
1077
1078 #ifdef GC_MALLOC_CHECK
1079 allocated_mem_type = type;
1080 #endif
1081
1082 if (!free_ablock)
1083 {
1084 int i;
1085 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1086
1087 #ifdef DOUG_LEA_MALLOC
1088 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1089 because mapped region contents are not preserved in
1090 a dumped Emacs. */
1091 mallopt (M_MMAP_MAX, 0);
1092 #endif
1093
1094 #ifdef USE_POSIX_MEMALIGN
1095 {
1096 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1097 if (err)
1098 base = NULL;
1099 abase = base;
1100 }
1101 #else
1102 base = malloc (ABLOCKS_BYTES);
1103 abase = ALIGN (base, BLOCK_ALIGN);
1104 #endif
1105
1106 if (base == 0)
1107 {
1108 MALLOC_UNBLOCK_INPUT;
1109 memory_full (ABLOCKS_BYTES);
1110 }
1111
1112 aligned = (base == abase);
1113 if (!aligned)
1114 ((void**)abase)[-1] = base;
1115
1116 #ifdef DOUG_LEA_MALLOC
1117 /* Back to a reasonable maximum of mmap'ed areas. */
1118 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1119 #endif
1120
1121 #if ! USE_LSB_TAG
1122 /* If the memory just allocated cannot be addressed thru a Lisp
1123 object's pointer, and it needs to be, that's equivalent to
1124 running out of memory. */
1125 if (type != MEM_TYPE_NON_LISP)
1126 {
1127 Lisp_Object tem;
1128 char *end = (char *) base + ABLOCKS_BYTES - 1;
1129 XSETCONS (tem, end);
1130 if ((char *) XCONS (tem) != end)
1131 {
1132 lisp_malloc_loser = base;
1133 free (base);
1134 MALLOC_UNBLOCK_INPUT;
1135 memory_full (SIZE_MAX);
1136 }
1137 }
1138 #endif
1139
1140 /* Initialize the blocks and put them on the free list.
1141 If `base' was not properly aligned, we can't use the last block. */
1142 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1143 {
1144 abase->blocks[i].abase = abase;
1145 abase->blocks[i].x.next_free = free_ablock;
1146 free_ablock = &abase->blocks[i];
1147 }
1148 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1149
1150 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1151 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1152 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1153 eassert (ABLOCKS_BASE (abase) == base);
1154 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1155 }
1156
1157 abase = ABLOCK_ABASE (free_ablock);
1158 ABLOCKS_BUSY (abase) =
1159 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1160 val = free_ablock;
1161 free_ablock = free_ablock->x.next_free;
1162
1163 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1164 if (type != MEM_TYPE_NON_LISP)
1165 mem_insert (val, (char *) val + nbytes, type);
1166 #endif
1167
1168 MALLOC_UNBLOCK_INPUT;
1169
1170 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1171 return val;
1172 }
1173
1174 static void
1175 lisp_align_free (void *block)
1176 {
1177 struct ablock *ablock = block;
1178 struct ablocks *abase = ABLOCK_ABASE (ablock);
1179
1180 MALLOC_BLOCK_INPUT;
1181 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1182 mem_delete (mem_find (block));
1183 #endif
1184 /* Put on free list. */
1185 ablock->x.next_free = free_ablock;
1186 free_ablock = ablock;
1187 /* Update busy count. */
1188 ABLOCKS_BUSY (abase)
1189 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1190
1191 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1192 { /* All the blocks are free. */
1193 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1194 struct ablock **tem = &free_ablock;
1195 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1196
1197 while (*tem)
1198 {
1199 if (*tem >= (struct ablock *) abase && *tem < atop)
1200 {
1201 i++;
1202 *tem = (*tem)->x.next_free;
1203 }
1204 else
1205 tem = &(*tem)->x.next_free;
1206 }
1207 eassert ((aligned & 1) == aligned);
1208 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1209 #ifdef USE_POSIX_MEMALIGN
1210 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1211 #endif
1212 free (ABLOCKS_BASE (abase));
1213 }
1214 MALLOC_UNBLOCK_INPUT;
1215 }
1216
1217 \f
1218 #ifndef SYSTEM_MALLOC
1219
1220 /* Arranging to disable input signals while we're in malloc.
1221
1222 This only works with GNU malloc. To help out systems which can't
1223 use GNU malloc, all the calls to malloc, realloc, and free
1224 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1225 pair; unfortunately, we have no idea what C library functions
1226 might call malloc, so we can't really protect them unless you're
1227 using GNU malloc. Fortunately, most of the major operating systems
1228 can use GNU malloc. */
1229
1230 #ifndef SYNC_INPUT
1231 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1232 there's no need to block input around malloc. */
1233
1234 #ifndef DOUG_LEA_MALLOC
1235 extern void * (*__malloc_hook) (size_t, const void *);
1236 extern void * (*__realloc_hook) (void *, size_t, const void *);
1237 extern void (*__free_hook) (void *, const void *);
1238 /* Else declared in malloc.h, perhaps with an extra arg. */
1239 #endif /* DOUG_LEA_MALLOC */
1240 static void * (*old_malloc_hook) (size_t, const void *);
1241 static void * (*old_realloc_hook) (void *, size_t, const void*);
1242 static void (*old_free_hook) (void*, const void*);
1243
1244 #ifdef DOUG_LEA_MALLOC
1245 # define BYTES_USED (mallinfo ().uordblks)
1246 #else
1247 # define BYTES_USED _bytes_used
1248 #endif
1249
1250 #ifdef GC_MALLOC_CHECK
1251 static bool dont_register_blocks;
1252 #endif
1253
1254 static size_t bytes_used_when_reconsidered;
1255
1256 /* Value of _bytes_used, when spare_memory was freed. */
1257
1258 static size_t bytes_used_when_full;
1259
1260 /* This function is used as the hook for free to call. */
1261
1262 static void
1263 emacs_blocked_free (void *ptr, const void *ptr2)
1264 {
1265 BLOCK_INPUT_ALLOC;
1266
1267 #ifdef GC_MALLOC_CHECK
1268 if (ptr)
1269 {
1270 struct mem_node *m;
1271
1272 m = mem_find (ptr);
1273 if (m == MEM_NIL || m->start != ptr)
1274 {
1275 fprintf (stderr,
1276 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1277 emacs_abort ();
1278 }
1279 else
1280 {
1281 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1282 mem_delete (m);
1283 }
1284 }
1285 #endif /* GC_MALLOC_CHECK */
1286
1287 __free_hook = old_free_hook;
1288 free (ptr);
1289
1290 /* If we released our reserve (due to running out of memory),
1291 and we have a fair amount free once again,
1292 try to set aside another reserve in case we run out once more. */
1293 if (! NILP (Vmemory_full)
1294 /* Verify there is enough space that even with the malloc
1295 hysteresis this call won't run out again.
1296 The code here is correct as long as SPARE_MEMORY
1297 is substantially larger than the block size malloc uses. */
1298 && (bytes_used_when_full
1299 > ((bytes_used_when_reconsidered = BYTES_USED)
1300 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1301 refill_memory_reserve ();
1302
1303 __free_hook = emacs_blocked_free;
1304 UNBLOCK_INPUT_ALLOC;
1305 }
1306
1307
1308 /* This function is the malloc hook that Emacs uses. */
1309
1310 static void *
1311 emacs_blocked_malloc (size_t size, const void *ptr)
1312 {
1313 void *value;
1314
1315 BLOCK_INPUT_ALLOC;
1316 __malloc_hook = old_malloc_hook;
1317 #ifdef DOUG_LEA_MALLOC
1318 /* Segfaults on my system. --lorentey */
1319 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1320 #else
1321 __malloc_extra_blocks = malloc_hysteresis;
1322 #endif
1323
1324 value = malloc (size);
1325
1326 #ifdef GC_MALLOC_CHECK
1327 {
1328 struct mem_node *m = mem_find (value);
1329 if (m != MEM_NIL)
1330 {
1331 fprintf (stderr, "Malloc returned %p which is already in use\n",
1332 value);
1333 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1334 m->start, m->end, (char *) m->end - (char *) m->start,
1335 m->type);
1336 emacs_abort ();
1337 }
1338
1339 if (!dont_register_blocks)
1340 {
1341 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1342 allocated_mem_type = MEM_TYPE_NON_LISP;
1343 }
1344 }
1345 #endif /* GC_MALLOC_CHECK */
1346
1347 __malloc_hook = emacs_blocked_malloc;
1348 UNBLOCK_INPUT_ALLOC;
1349
1350 /* fprintf (stderr, "%p malloc\n", value); */
1351 return value;
1352 }
1353
1354
1355 /* This function is the realloc hook that Emacs uses. */
1356
1357 static void *
1358 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1359 {
1360 void *value;
1361
1362 BLOCK_INPUT_ALLOC;
1363 __realloc_hook = old_realloc_hook;
1364
1365 #ifdef GC_MALLOC_CHECK
1366 if (ptr)
1367 {
1368 struct mem_node *m = mem_find (ptr);
1369 if (m == MEM_NIL || m->start != ptr)
1370 {
1371 fprintf (stderr,
1372 "Realloc of %p which wasn't allocated with malloc\n",
1373 ptr);
1374 emacs_abort ();
1375 }
1376
1377 mem_delete (m);
1378 }
1379
1380 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1381
1382 /* Prevent malloc from registering blocks. */
1383 dont_register_blocks = 1;
1384 #endif /* GC_MALLOC_CHECK */
1385
1386 value = realloc (ptr, size);
1387
1388 #ifdef GC_MALLOC_CHECK
1389 dont_register_blocks = 0;
1390
1391 {
1392 struct mem_node *m = mem_find (value);
1393 if (m != MEM_NIL)
1394 {
1395 fprintf (stderr, "Realloc returns memory that is already in use\n");
1396 emacs_abort ();
1397 }
1398
1399 /* Can't handle zero size regions in the red-black tree. */
1400 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1401 }
1402
1403 /* fprintf (stderr, "%p <- realloc\n", value); */
1404 #endif /* GC_MALLOC_CHECK */
1405
1406 __realloc_hook = emacs_blocked_realloc;
1407 UNBLOCK_INPUT_ALLOC;
1408
1409 return value;
1410 }
1411
1412
1413 #ifdef HAVE_PTHREAD
1414 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1415 normal malloc. Some thread implementations need this as they call
1416 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1417 calls malloc because it is the first call, and we have an endless loop. */
1418
1419 void
1420 reset_malloc_hooks (void)
1421 {
1422 __free_hook = old_free_hook;
1423 __malloc_hook = old_malloc_hook;
1424 __realloc_hook = old_realloc_hook;
1425 }
1426 #endif /* HAVE_PTHREAD */
1427
1428
1429 /* Called from main to set up malloc to use our hooks. */
1430
1431 void
1432 uninterrupt_malloc (void)
1433 {
1434 #ifdef HAVE_PTHREAD
1435 #ifdef DOUG_LEA_MALLOC
1436 pthread_mutexattr_t attr;
1437
1438 /* GLIBC has a faster way to do this, but let's keep it portable.
1439 This is according to the Single UNIX Specification. */
1440 pthread_mutexattr_init (&attr);
1441 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1442 pthread_mutex_init (&alloc_mutex, &attr);
1443 #else /* !DOUG_LEA_MALLOC */
1444 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1445 and the bundled gmalloc.c doesn't require it. */
1446 pthread_mutex_init (&alloc_mutex, NULL);
1447 #endif /* !DOUG_LEA_MALLOC */
1448 #endif /* HAVE_PTHREAD */
1449
1450 if (__free_hook != emacs_blocked_free)
1451 old_free_hook = __free_hook;
1452 __free_hook = emacs_blocked_free;
1453
1454 if (__malloc_hook != emacs_blocked_malloc)
1455 old_malloc_hook = __malloc_hook;
1456 __malloc_hook = emacs_blocked_malloc;
1457
1458 if (__realloc_hook != emacs_blocked_realloc)
1459 old_realloc_hook = __realloc_hook;
1460 __realloc_hook = emacs_blocked_realloc;
1461 }
1462
1463 #endif /* not SYNC_INPUT */
1464 #endif /* not SYSTEM_MALLOC */
1465
1466
1467 \f
1468 /***********************************************************************
1469 Interval Allocation
1470 ***********************************************************************/
1471
1472 /* Number of intervals allocated in an interval_block structure.
1473 The 1020 is 1024 minus malloc overhead. */
1474
1475 #define INTERVAL_BLOCK_SIZE \
1476 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1477
1478 /* Intervals are allocated in chunks in form of an interval_block
1479 structure. */
1480
1481 struct interval_block
1482 {
1483 /* Place `intervals' first, to preserve alignment. */
1484 struct interval intervals[INTERVAL_BLOCK_SIZE];
1485 struct interval_block *next;
1486 };
1487
1488 /* Current interval block. Its `next' pointer points to older
1489 blocks. */
1490
1491 static struct interval_block *interval_block;
1492
1493 /* Index in interval_block above of the next unused interval
1494 structure. */
1495
1496 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1497
1498 /* Number of free and live intervals. */
1499
1500 static EMACS_INT total_free_intervals, total_intervals;
1501
1502 /* List of free intervals. */
1503
1504 static INTERVAL interval_free_list;
1505
1506 /* Return a new interval. */
1507
1508 INTERVAL
1509 make_interval (void)
1510 {
1511 INTERVAL val;
1512
1513 /* eassert (!handling_signal); */
1514
1515 MALLOC_BLOCK_INPUT;
1516
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
1526 struct interval_block *newi
1527 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1528
1529 newi->next = interval_block;
1530 interval_block = newi;
1531 interval_block_index = 0;
1532 total_free_intervals += INTERVAL_BLOCK_SIZE;
1533 }
1534 val = &interval_block->intervals[interval_block_index++];
1535 }
1536
1537 MALLOC_UNBLOCK_INPUT;
1538
1539 consing_since_gc += sizeof (struct interval);
1540 intervals_consed++;
1541 total_free_intervals--;
1542 RESET_INTERVAL (val);
1543 val->gcmarkbit = 0;
1544 return val;
1545 }
1546
1547
1548 /* Mark Lisp objects in interval I. */
1549
1550 static void
1551 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 {
1553 /* Intervals should never be shared. So, if extra internal checking is
1554 enabled, GC aborts if it seems to have visited an interval twice. */
1555 eassert (!i->gcmarkbit);
1556 i->gcmarkbit = 1;
1557 mark_object (i->plist);
1558 }
1559
1560 /* Mark the interval tree rooted in I. */
1561
1562 #define MARK_INTERVAL_TREE(i) \
1563 do { \
1564 if (i && !i->gcmarkbit) \
1565 traverse_intervals_noorder (i, mark_interval, Qnil); \
1566 } while (0)
1567
1568 /***********************************************************************
1569 String Allocation
1570 ***********************************************************************/
1571
1572 /* Lisp_Strings are allocated in string_block structures. When a new
1573 string_block is allocated, all the Lisp_Strings it contains are
1574 added to a free-list string_free_list. When a new Lisp_String is
1575 needed, it is taken from that list. During the sweep phase of GC,
1576 string_blocks that are entirely free are freed, except two which
1577 we keep.
1578
1579 String data is allocated from sblock structures. Strings larger
1580 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1581 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1582
1583 Sblocks consist internally of sdata structures, one for each
1584 Lisp_String. The sdata structure points to the Lisp_String it
1585 belongs to. The Lisp_String points back to the `u.data' member of
1586 its sdata structure.
1587
1588 When a Lisp_String is freed during GC, it is put back on
1589 string_free_list, and its `data' member and its sdata's `string'
1590 pointer is set to null. The size of the string is recorded in the
1591 `u.nbytes' member of the sdata. So, sdata structures that are no
1592 longer used, can be easily recognized, and it's easy to compact the
1593 sblocks of small strings which we do in compact_small_strings. */
1594
1595 /* Size in bytes of an sblock structure used for small strings. This
1596 is 8192 minus malloc overhead. */
1597
1598 #define SBLOCK_SIZE 8188
1599
1600 /* Strings larger than this are considered large strings. String data
1601 for large strings is allocated from individual sblocks. */
1602
1603 #define LARGE_STRING_BYTES 1024
1604
1605 /* Structure describing string memory sub-allocated from an sblock.
1606 This is where the contents of Lisp strings are stored. */
1607
1608 struct sdata
1609 {
1610 /* Back-pointer to the string this sdata belongs to. If null, this
1611 structure is free, and the NBYTES member of the union below
1612 contains the string's byte size (the same value that STRING_BYTES
1613 would return if STRING were non-null). If non-null, STRING_BYTES
1614 (STRING) is the size of the data, and DATA contains the string's
1615 contents. */
1616 struct Lisp_String *string;
1617
1618 #ifdef GC_CHECK_STRING_BYTES
1619
1620 ptrdiff_t nbytes;
1621 unsigned char data[1];
1622
1623 #define SDATA_NBYTES(S) (S)->nbytes
1624 #define SDATA_DATA(S) (S)->data
1625 #define SDATA_SELECTOR(member) member
1626
1627 #else /* not GC_CHECK_STRING_BYTES */
1628
1629 union
1630 {
1631 /* When STRING is non-null. */
1632 unsigned char data[1];
1633
1634 /* When STRING is null. */
1635 ptrdiff_t nbytes;
1636 } u;
1637
1638 #define SDATA_NBYTES(S) (S)->u.nbytes
1639 #define SDATA_DATA(S) (S)->u.data
1640 #define SDATA_SELECTOR(member) u.member
1641
1642 #endif /* not GC_CHECK_STRING_BYTES */
1643
1644 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1645 };
1646
1647
1648 /* Structure describing a block of memory which is sub-allocated to
1649 obtain string data memory for strings. Blocks for small strings
1650 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1651 as large as needed. */
1652
1653 struct sblock
1654 {
1655 /* Next in list. */
1656 struct sblock *next;
1657
1658 /* Pointer to the next free sdata block. This points past the end
1659 of the sblock if there isn't any space left in this block. */
1660 struct sdata *next_free;
1661
1662 /* Start of data. */
1663 struct sdata first_data;
1664 };
1665
1666 /* Number of Lisp strings in a string_block structure. The 1020 is
1667 1024 minus malloc overhead. */
1668
1669 #define STRING_BLOCK_SIZE \
1670 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1671
1672 /* Structure describing a block from which Lisp_String structures
1673 are allocated. */
1674
1675 struct string_block
1676 {
1677 /* Place `strings' first, to preserve alignment. */
1678 struct Lisp_String strings[STRING_BLOCK_SIZE];
1679 struct string_block *next;
1680 };
1681
1682 /* Head and tail of the list of sblock structures holding Lisp string
1683 data. We always allocate from current_sblock. The NEXT pointers
1684 in the sblock structures go from oldest_sblock to current_sblock. */
1685
1686 static struct sblock *oldest_sblock, *current_sblock;
1687
1688 /* List of sblocks for large strings. */
1689
1690 static struct sblock *large_sblocks;
1691
1692 /* List of string_block structures. */
1693
1694 static struct string_block *string_blocks;
1695
1696 /* Free-list of Lisp_Strings. */
1697
1698 static struct Lisp_String *string_free_list;
1699
1700 /* Number of live and free Lisp_Strings. */
1701
1702 static EMACS_INT total_strings, total_free_strings;
1703
1704 /* Number of bytes used by live strings. */
1705
1706 static EMACS_INT total_string_bytes;
1707
1708 /* Given a pointer to a Lisp_String S which is on the free-list
1709 string_free_list, return a pointer to its successor in the
1710 free-list. */
1711
1712 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1713
1714 /* Return a pointer to the sdata structure belonging to Lisp string S.
1715 S must be live, i.e. S->data must not be null. S->data is actually
1716 a pointer to the `u.data' member of its sdata structure; the
1717 structure starts at a constant offset in front of that. */
1718
1719 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1720
1721
1722 #ifdef GC_CHECK_STRING_OVERRUN
1723
1724 /* We check for overrun in string data blocks by appending a small
1725 "cookie" after each allocated string data block, and check for the
1726 presence of this cookie during GC. */
1727
1728 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1729 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1730 { '\xde', '\xad', '\xbe', '\xef' };
1731
1732 #else
1733 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1734 #endif
1735
1736 /* Value is the size of an sdata structure large enough to hold NBYTES
1737 bytes of string data. The value returned includes a terminating
1738 NUL byte, the size of the sdata structure, and padding. */
1739
1740 #ifdef GC_CHECK_STRING_BYTES
1741
1742 #define SDATA_SIZE(NBYTES) \
1743 ((SDATA_DATA_OFFSET \
1744 + (NBYTES) + 1 \
1745 + sizeof (ptrdiff_t) - 1) \
1746 & ~(sizeof (ptrdiff_t) - 1))
1747
1748 #else /* not GC_CHECK_STRING_BYTES */
1749
1750 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1751 less than the size of that member. The 'max' is not needed when
1752 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1753 alignment code reserves enough space. */
1754
1755 #define SDATA_SIZE(NBYTES) \
1756 ((SDATA_DATA_OFFSET \
1757 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1758 ? NBYTES \
1759 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1760 + 1 \
1761 + sizeof (ptrdiff_t) - 1) \
1762 & ~(sizeof (ptrdiff_t) - 1))
1763
1764 #endif /* not GC_CHECK_STRING_BYTES */
1765
1766 /* Extra bytes to allocate for each string. */
1767
1768 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1769
1770 /* Exact bound on the number of bytes in a string, not counting the
1771 terminating null. A string cannot contain more bytes than
1772 STRING_BYTES_BOUND, nor can it be so long that the size_t
1773 arithmetic in allocate_string_data would overflow while it is
1774 calculating a value to be passed to malloc. */
1775 static ptrdiff_t const STRING_BYTES_MAX =
1776 min (STRING_BYTES_BOUND,
1777 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1778 - GC_STRING_EXTRA
1779 - offsetof (struct sblock, first_data)
1780 - SDATA_DATA_OFFSET)
1781 & ~(sizeof (EMACS_INT) - 1)));
1782
1783 /* Initialize string allocation. Called from init_alloc_once. */
1784
1785 static void
1786 init_strings (void)
1787 {
1788 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1789 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1790 }
1791
1792
1793 #ifdef GC_CHECK_STRING_BYTES
1794
1795 static int check_string_bytes_count;
1796
1797 /* Like STRING_BYTES, but with debugging check. Can be
1798 called during GC, so pay attention to the mark bit. */
1799
1800 ptrdiff_t
1801 string_bytes (struct Lisp_String *s)
1802 {
1803 ptrdiff_t nbytes =
1804 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1805
1806 if (!PURE_POINTER_P (s)
1807 && s->data
1808 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1809 emacs_abort ();
1810 return nbytes;
1811 }
1812
1813 /* Check validity of Lisp strings' string_bytes member in B. */
1814
1815 static void
1816 check_sblock (struct sblock *b)
1817 {
1818 struct sdata *from, *end, *from_end;
1819
1820 end = b->next_free;
1821
1822 for (from = &b->first_data; from < end; from = from_end)
1823 {
1824 /* Compute the next FROM here because copying below may
1825 overwrite data we need to compute it. */
1826 ptrdiff_t nbytes;
1827
1828 /* Check that the string size recorded in the string is the
1829 same as the one recorded in the sdata structure. */
1830 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1831 : SDATA_NBYTES (from));
1832 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1833 }
1834 }
1835
1836
1837 /* Check validity of Lisp strings' string_bytes member. ALL_P
1838 means check all strings, otherwise check only most
1839 recently allocated strings. Used for hunting a bug. */
1840
1841 static void
1842 check_string_bytes (bool all_p)
1843 {
1844 if (all_p)
1845 {
1846 struct sblock *b;
1847
1848 for (b = large_sblocks; b; b = b->next)
1849 {
1850 struct Lisp_String *s = b->first_data.string;
1851 if (s)
1852 string_bytes (s);
1853 }
1854
1855 for (b = oldest_sblock; b; b = b->next)
1856 check_sblock (b);
1857 }
1858 else if (current_sblock)
1859 check_sblock (current_sblock);
1860 }
1861
1862 #else /* not GC_CHECK_STRING_BYTES */
1863
1864 #define check_string_bytes(all) ((void) 0)
1865
1866 #endif /* GC_CHECK_STRING_BYTES */
1867
1868 #ifdef GC_CHECK_STRING_FREE_LIST
1869
1870 /* Walk through the string free list looking for bogus next pointers.
1871 This may catch buffer overrun from a previous string. */
1872
1873 static void
1874 check_string_free_list (void)
1875 {
1876 struct Lisp_String *s;
1877
1878 /* Pop a Lisp_String off the free-list. */
1879 s = string_free_list;
1880 while (s != NULL)
1881 {
1882 if ((uintptr_t) s < 1024)
1883 emacs_abort ();
1884 s = NEXT_FREE_LISP_STRING (s);
1885 }
1886 }
1887 #else
1888 #define check_string_free_list()
1889 #endif
1890
1891 /* Return a new Lisp_String. */
1892
1893 static struct Lisp_String *
1894 allocate_string (void)
1895 {
1896 struct Lisp_String *s;
1897
1898 /* eassert (!handling_signal); */
1899
1900 MALLOC_BLOCK_INPUT;
1901
1902 /* If the free-list is empty, allocate a new string_block, and
1903 add all the Lisp_Strings in it to the free-list. */
1904 if (string_free_list == NULL)
1905 {
1906 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1907 int i;
1908
1909 b->next = string_blocks;
1910 string_blocks = b;
1911
1912 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1913 {
1914 s = b->strings + i;
1915 /* Every string on a free list should have NULL data pointer. */
1916 s->data = NULL;
1917 NEXT_FREE_LISP_STRING (s) = string_free_list;
1918 string_free_list = s;
1919 }
1920
1921 total_free_strings += STRING_BLOCK_SIZE;
1922 }
1923
1924 check_string_free_list ();
1925
1926 /* Pop a Lisp_String off the free-list. */
1927 s = string_free_list;
1928 string_free_list = NEXT_FREE_LISP_STRING (s);
1929
1930 MALLOC_UNBLOCK_INPUT;
1931
1932 --total_free_strings;
1933 ++total_strings;
1934 ++strings_consed;
1935 consing_since_gc += sizeof *s;
1936
1937 #ifdef GC_CHECK_STRING_BYTES
1938 if (!noninteractive)
1939 {
1940 if (++check_string_bytes_count == 200)
1941 {
1942 check_string_bytes_count = 0;
1943 check_string_bytes (1);
1944 }
1945 else
1946 check_string_bytes (0);
1947 }
1948 #endif /* GC_CHECK_STRING_BYTES */
1949
1950 return s;
1951 }
1952
1953
1954 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1955 plus a NUL byte at the end. Allocate an sdata structure for S, and
1956 set S->data to its `u.data' member. Store a NUL byte at the end of
1957 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1958 S->data if it was initially non-null. */
1959
1960 void
1961 allocate_string_data (struct Lisp_String *s,
1962 EMACS_INT nchars, EMACS_INT nbytes)
1963 {
1964 struct sdata *data, *old_data;
1965 struct sblock *b;
1966 ptrdiff_t needed, old_nbytes;
1967
1968 if (STRING_BYTES_MAX < nbytes)
1969 string_overflow ();
1970
1971 /* Determine the number of bytes needed to store NBYTES bytes
1972 of string data. */
1973 needed = SDATA_SIZE (nbytes);
1974 if (s->data)
1975 {
1976 old_data = SDATA_OF_STRING (s);
1977 old_nbytes = STRING_BYTES (s);
1978 }
1979 else
1980 old_data = NULL;
1981
1982 MALLOC_BLOCK_INPUT;
1983
1984 if (nbytes > LARGE_STRING_BYTES)
1985 {
1986 size_t size = offsetof (struct sblock, first_data) + needed;
1987
1988 #ifdef DOUG_LEA_MALLOC
1989 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1990 because mapped region contents are not preserved in
1991 a dumped Emacs.
1992
1993 In case you think of allowing it in a dumped Emacs at the
1994 cost of not being able to re-dump, there's another reason:
1995 mmap'ed data typically have an address towards the top of the
1996 address space, which won't fit into an EMACS_INT (at least on
1997 32-bit systems with the current tagging scheme). --fx */
1998 mallopt (M_MMAP_MAX, 0);
1999 #endif
2000
2001 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2002
2003 #ifdef DOUG_LEA_MALLOC
2004 /* Back to a reasonable maximum of mmap'ed areas. */
2005 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2006 #endif
2007
2008 b->next_free = &b->first_data;
2009 b->first_data.string = NULL;
2010 b->next = large_sblocks;
2011 large_sblocks = b;
2012 }
2013 else if (current_sblock == NULL
2014 || (((char *) current_sblock + SBLOCK_SIZE
2015 - (char *) current_sblock->next_free)
2016 < (needed + GC_STRING_EXTRA)))
2017 {
2018 /* Not enough room in the current sblock. */
2019 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2020 b->next_free = &b->first_data;
2021 b->first_data.string = NULL;
2022 b->next = NULL;
2023
2024 if (current_sblock)
2025 current_sblock->next = b;
2026 else
2027 oldest_sblock = b;
2028 current_sblock = b;
2029 }
2030 else
2031 b = current_sblock;
2032
2033 data = b->next_free;
2034 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2035
2036 MALLOC_UNBLOCK_INPUT;
2037
2038 data->string = s;
2039 s->data = SDATA_DATA (data);
2040 #ifdef GC_CHECK_STRING_BYTES
2041 SDATA_NBYTES (data) = nbytes;
2042 #endif
2043 s->size = nchars;
2044 s->size_byte = nbytes;
2045 s->data[nbytes] = '\0';
2046 #ifdef GC_CHECK_STRING_OVERRUN
2047 memcpy ((char *) data + needed, string_overrun_cookie,
2048 GC_STRING_OVERRUN_COOKIE_SIZE);
2049 #endif
2050
2051 /* Note that Faset may call to this function when S has already data
2052 assigned. In this case, mark data as free by setting it's string
2053 back-pointer to null, and record the size of the data in it. */
2054 if (old_data)
2055 {
2056 SDATA_NBYTES (old_data) = old_nbytes;
2057 old_data->string = NULL;
2058 }
2059
2060 consing_since_gc += needed;
2061 }
2062
2063
2064 /* Sweep and compact strings. */
2065
2066 static void
2067 sweep_strings (void)
2068 {
2069 struct string_block *b, *next;
2070 struct string_block *live_blocks = NULL;
2071
2072 string_free_list = NULL;
2073 total_strings = total_free_strings = 0;
2074 total_string_bytes = 0;
2075
2076 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2077 for (b = string_blocks; b; b = next)
2078 {
2079 int i, nfree = 0;
2080 struct Lisp_String *free_list_before = string_free_list;
2081
2082 next = b->next;
2083
2084 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2085 {
2086 struct Lisp_String *s = b->strings + i;
2087
2088 if (s->data)
2089 {
2090 /* String was not on free-list before. */
2091 if (STRING_MARKED_P (s))
2092 {
2093 /* String is live; unmark it and its intervals. */
2094 UNMARK_STRING (s);
2095
2096 /* Do not use string_(set|get)_intervals here. */
2097 s->intervals = balance_intervals (s->intervals);
2098
2099 ++total_strings;
2100 total_string_bytes += STRING_BYTES (s);
2101 }
2102 else
2103 {
2104 /* String is dead. Put it on the free-list. */
2105 struct sdata *data = SDATA_OF_STRING (s);
2106
2107 /* Save the size of S in its sdata so that we know
2108 how large that is. Reset the sdata's string
2109 back-pointer so that we know it's free. */
2110 #ifdef GC_CHECK_STRING_BYTES
2111 if (string_bytes (s) != SDATA_NBYTES (data))
2112 emacs_abort ();
2113 #else
2114 data->u.nbytes = STRING_BYTES (s);
2115 #endif
2116 data->string = NULL;
2117
2118 /* Reset the strings's `data' member so that we
2119 know it's free. */
2120 s->data = NULL;
2121
2122 /* Put the string on the free-list. */
2123 NEXT_FREE_LISP_STRING (s) = string_free_list;
2124 string_free_list = s;
2125 ++nfree;
2126 }
2127 }
2128 else
2129 {
2130 /* S was on the free-list before. Put it there again. */
2131 NEXT_FREE_LISP_STRING (s) = string_free_list;
2132 string_free_list = s;
2133 ++nfree;
2134 }
2135 }
2136
2137 /* Free blocks that contain free Lisp_Strings only, except
2138 the first two of them. */
2139 if (nfree == STRING_BLOCK_SIZE
2140 && total_free_strings > STRING_BLOCK_SIZE)
2141 {
2142 lisp_free (b);
2143 string_free_list = free_list_before;
2144 }
2145 else
2146 {
2147 total_free_strings += nfree;
2148 b->next = live_blocks;
2149 live_blocks = b;
2150 }
2151 }
2152
2153 check_string_free_list ();
2154
2155 string_blocks = live_blocks;
2156 free_large_strings ();
2157 compact_small_strings ();
2158
2159 check_string_free_list ();
2160 }
2161
2162
2163 /* Free dead large strings. */
2164
2165 static void
2166 free_large_strings (void)
2167 {
2168 struct sblock *b, *next;
2169 struct sblock *live_blocks = NULL;
2170
2171 for (b = large_sblocks; b; b = next)
2172 {
2173 next = b->next;
2174
2175 if (b->first_data.string == NULL)
2176 lisp_free (b);
2177 else
2178 {
2179 b->next = live_blocks;
2180 live_blocks = b;
2181 }
2182 }
2183
2184 large_sblocks = live_blocks;
2185 }
2186
2187
2188 /* Compact data of small strings. Free sblocks that don't contain
2189 data of live strings after compaction. */
2190
2191 static void
2192 compact_small_strings (void)
2193 {
2194 struct sblock *b, *tb, *next;
2195 struct sdata *from, *to, *end, *tb_end;
2196 struct sdata *to_end, *from_end;
2197
2198 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2199 to, and TB_END is the end of TB. */
2200 tb = oldest_sblock;
2201 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2202 to = &tb->first_data;
2203
2204 /* Step through the blocks from the oldest to the youngest. We
2205 expect that old blocks will stabilize over time, so that less
2206 copying will happen this way. */
2207 for (b = oldest_sblock; b; b = b->next)
2208 {
2209 end = b->next_free;
2210 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2211
2212 for (from = &b->first_data; from < end; from = from_end)
2213 {
2214 /* Compute the next FROM here because copying below may
2215 overwrite data we need to compute it. */
2216 ptrdiff_t nbytes;
2217 struct Lisp_String *s = from->string;
2218
2219 #ifdef GC_CHECK_STRING_BYTES
2220 /* Check that the string size recorded in the string is the
2221 same as the one recorded in the sdata structure. */
2222 if (s && string_bytes (s) != SDATA_NBYTES (from))
2223 emacs_abort ();
2224 #endif /* GC_CHECK_STRING_BYTES */
2225
2226 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2227 eassert (nbytes <= LARGE_STRING_BYTES);
2228
2229 nbytes = SDATA_SIZE (nbytes);
2230 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2231
2232 #ifdef GC_CHECK_STRING_OVERRUN
2233 if (memcmp (string_overrun_cookie,
2234 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2235 GC_STRING_OVERRUN_COOKIE_SIZE))
2236 emacs_abort ();
2237 #endif
2238
2239 /* Non-NULL S means it's alive. Copy its data. */
2240 if (s)
2241 {
2242 /* If TB is full, proceed with the next sblock. */
2243 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2244 if (to_end > tb_end)
2245 {
2246 tb->next_free = to;
2247 tb = tb->next;
2248 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2249 to = &tb->first_data;
2250 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2251 }
2252
2253 /* Copy, and update the string's `data' pointer. */
2254 if (from != to)
2255 {
2256 eassert (tb != b || to < from);
2257 memmove (to, from, nbytes + GC_STRING_EXTRA);
2258 to->string->data = SDATA_DATA (to);
2259 }
2260
2261 /* Advance past the sdata we copied to. */
2262 to = to_end;
2263 }
2264 }
2265 }
2266
2267 /* The rest of the sblocks following TB don't contain live data, so
2268 we can free them. */
2269 for (b = tb->next; b; b = next)
2270 {
2271 next = b->next;
2272 lisp_free (b);
2273 }
2274
2275 tb->next_free = to;
2276 tb->next = NULL;
2277 current_sblock = tb;
2278 }
2279
2280 void
2281 string_overflow (void)
2282 {
2283 error ("Maximum string size exceeded");
2284 }
2285
2286 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2287 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2288 LENGTH must be an integer.
2289 INIT must be an integer that represents a character. */)
2290 (Lisp_Object length, Lisp_Object init)
2291 {
2292 register Lisp_Object val;
2293 register unsigned char *p, *end;
2294 int c;
2295 EMACS_INT nbytes;
2296
2297 CHECK_NATNUM (length);
2298 CHECK_CHARACTER (init);
2299
2300 c = XFASTINT (init);
2301 if (ASCII_CHAR_P (c))
2302 {
2303 nbytes = XINT (length);
2304 val = make_uninit_string (nbytes);
2305 p = SDATA (val);
2306 end = p + SCHARS (val);
2307 while (p != end)
2308 *p++ = c;
2309 }
2310 else
2311 {
2312 unsigned char str[MAX_MULTIBYTE_LENGTH];
2313 int len = CHAR_STRING (c, str);
2314 EMACS_INT string_len = XINT (length);
2315
2316 if (string_len > STRING_BYTES_MAX / len)
2317 string_overflow ();
2318 nbytes = len * string_len;
2319 val = make_uninit_multibyte_string (string_len, nbytes);
2320 p = SDATA (val);
2321 end = p + nbytes;
2322 while (p != end)
2323 {
2324 memcpy (p, str, len);
2325 p += len;
2326 }
2327 }
2328
2329 *p = 0;
2330 return val;
2331 }
2332
2333
2334 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2335 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2336 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2337 (Lisp_Object length, Lisp_Object init)
2338 {
2339 register Lisp_Object val;
2340 struct Lisp_Bool_Vector *p;
2341 ptrdiff_t length_in_chars;
2342 EMACS_INT length_in_elts;
2343 int bits_per_value;
2344 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2345 / word_size);
2346
2347 CHECK_NATNUM (length);
2348
2349 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2350
2351 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2352
2353 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2354
2355 /* No Lisp_Object to trace in there. */
2356 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2357
2358 p = XBOOL_VECTOR (val);
2359 p->size = XFASTINT (length);
2360
2361 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2362 / BOOL_VECTOR_BITS_PER_CHAR);
2363 if (length_in_chars)
2364 {
2365 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2366
2367 /* Clear any extraneous bits in the last byte. */
2368 p->data[length_in_chars - 1]
2369 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2370 }
2371
2372 return val;
2373 }
2374
2375
2376 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2377 of characters from the contents. This string may be unibyte or
2378 multibyte, depending on the contents. */
2379
2380 Lisp_Object
2381 make_string (const char *contents, ptrdiff_t nbytes)
2382 {
2383 register Lisp_Object val;
2384 ptrdiff_t nchars, multibyte_nbytes;
2385
2386 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2387 &nchars, &multibyte_nbytes);
2388 if (nbytes == nchars || nbytes != multibyte_nbytes)
2389 /* CONTENTS contains no multibyte sequences or contains an invalid
2390 multibyte sequence. We must make unibyte string. */
2391 val = make_unibyte_string (contents, nbytes);
2392 else
2393 val = make_multibyte_string (contents, nchars, nbytes);
2394 return val;
2395 }
2396
2397
2398 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2399
2400 Lisp_Object
2401 make_unibyte_string (const char *contents, ptrdiff_t length)
2402 {
2403 register Lisp_Object val;
2404 val = make_uninit_string (length);
2405 memcpy (SDATA (val), contents, length);
2406 return val;
2407 }
2408
2409
2410 /* Make a multibyte string from NCHARS characters occupying NBYTES
2411 bytes at CONTENTS. */
2412
2413 Lisp_Object
2414 make_multibyte_string (const char *contents,
2415 ptrdiff_t nchars, ptrdiff_t nbytes)
2416 {
2417 register Lisp_Object val;
2418 val = make_uninit_multibyte_string (nchars, nbytes);
2419 memcpy (SDATA (val), contents, nbytes);
2420 return val;
2421 }
2422
2423
2424 /* Make a string from NCHARS characters occupying NBYTES bytes at
2425 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2426
2427 Lisp_Object
2428 make_string_from_bytes (const char *contents,
2429 ptrdiff_t nchars, ptrdiff_t nbytes)
2430 {
2431 register Lisp_Object val;
2432 val = make_uninit_multibyte_string (nchars, nbytes);
2433 memcpy (SDATA (val), contents, nbytes);
2434 if (SBYTES (val) == SCHARS (val))
2435 STRING_SET_UNIBYTE (val);
2436 return val;
2437 }
2438
2439
2440 /* Make a string from NCHARS characters occupying NBYTES bytes at
2441 CONTENTS. The argument MULTIBYTE controls whether to label the
2442 string as multibyte. If NCHARS is negative, it counts the number of
2443 characters by itself. */
2444
2445 Lisp_Object
2446 make_specified_string (const char *contents,
2447 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2448 {
2449 Lisp_Object val;
2450
2451 if (nchars < 0)
2452 {
2453 if (multibyte)
2454 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2455 nbytes);
2456 else
2457 nchars = nbytes;
2458 }
2459 val = make_uninit_multibyte_string (nchars, nbytes);
2460 memcpy (SDATA (val), contents, nbytes);
2461 if (!multibyte)
2462 STRING_SET_UNIBYTE (val);
2463 return val;
2464 }
2465
2466
2467 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2468 occupying LENGTH bytes. */
2469
2470 Lisp_Object
2471 make_uninit_string (EMACS_INT length)
2472 {
2473 Lisp_Object val;
2474
2475 if (!length)
2476 return empty_unibyte_string;
2477 val = make_uninit_multibyte_string (length, length);
2478 STRING_SET_UNIBYTE (val);
2479 return val;
2480 }
2481
2482
2483 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2484 which occupy NBYTES bytes. */
2485
2486 Lisp_Object
2487 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2488 {
2489 Lisp_Object string;
2490 struct Lisp_String *s;
2491
2492 if (nchars < 0)
2493 emacs_abort ();
2494 if (!nbytes)
2495 return empty_multibyte_string;
2496
2497 s = allocate_string ();
2498 s->intervals = NULL;
2499 allocate_string_data (s, nchars, nbytes);
2500 XSETSTRING (string, s);
2501 string_chars_consed += nbytes;
2502 return string;
2503 }
2504
2505 /* Print arguments to BUF according to a FORMAT, then return
2506 a Lisp_String initialized with the data from BUF. */
2507
2508 Lisp_Object
2509 make_formatted_string (char *buf, const char *format, ...)
2510 {
2511 va_list ap;
2512 int length;
2513
2514 va_start (ap, format);
2515 length = vsprintf (buf, format, ap);
2516 va_end (ap);
2517 return make_string (buf, length);
2518 }
2519
2520 \f
2521 /***********************************************************************
2522 Float Allocation
2523 ***********************************************************************/
2524
2525 /* We store float cells inside of float_blocks, allocating a new
2526 float_block with malloc whenever necessary. Float cells reclaimed
2527 by GC are put on a free list to be reallocated before allocating
2528 any new float cells from the latest float_block. */
2529
2530 #define FLOAT_BLOCK_SIZE \
2531 (((BLOCK_BYTES - sizeof (struct float_block *) \
2532 /* The compiler might add padding at the end. */ \
2533 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2534 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2535
2536 #define GETMARKBIT(block,n) \
2537 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2538 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2539 & 1)
2540
2541 #define SETMARKBIT(block,n) \
2542 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2543 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2544
2545 #define UNSETMARKBIT(block,n) \
2546 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2547 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2548
2549 #define FLOAT_BLOCK(fptr) \
2550 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2551
2552 #define FLOAT_INDEX(fptr) \
2553 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2554
2555 struct float_block
2556 {
2557 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2558 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2559 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2560 struct float_block *next;
2561 };
2562
2563 #define FLOAT_MARKED_P(fptr) \
2564 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2565
2566 #define FLOAT_MARK(fptr) \
2567 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2568
2569 #define FLOAT_UNMARK(fptr) \
2570 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2571
2572 /* Current float_block. */
2573
2574 static struct float_block *float_block;
2575
2576 /* Index of first unused Lisp_Float in the current float_block. */
2577
2578 static int float_block_index = FLOAT_BLOCK_SIZE;
2579
2580 /* Free-list of Lisp_Floats. */
2581
2582 static struct Lisp_Float *float_free_list;
2583
2584 /* Return a new float object with value FLOAT_VALUE. */
2585
2586 Lisp_Object
2587 make_float (double float_value)
2588 {
2589 register Lisp_Object val;
2590
2591 /* eassert (!handling_signal); */
2592
2593 MALLOC_BLOCK_INPUT;
2594
2595 if (float_free_list)
2596 {
2597 /* We use the data field for chaining the free list
2598 so that we won't use the same field that has the mark bit. */
2599 XSETFLOAT (val, float_free_list);
2600 float_free_list = float_free_list->u.chain;
2601 }
2602 else
2603 {
2604 if (float_block_index == FLOAT_BLOCK_SIZE)
2605 {
2606 struct float_block *new
2607 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2608 new->next = float_block;
2609 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2610 float_block = new;
2611 float_block_index = 0;
2612 total_free_floats += FLOAT_BLOCK_SIZE;
2613 }
2614 XSETFLOAT (val, &float_block->floats[float_block_index]);
2615 float_block_index++;
2616 }
2617
2618 MALLOC_UNBLOCK_INPUT;
2619
2620 XFLOAT_INIT (val, float_value);
2621 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2622 consing_since_gc += sizeof (struct Lisp_Float);
2623 floats_consed++;
2624 total_free_floats--;
2625 return val;
2626 }
2627
2628
2629 \f
2630 /***********************************************************************
2631 Cons Allocation
2632 ***********************************************************************/
2633
2634 /* We store cons cells inside of cons_blocks, allocating a new
2635 cons_block with malloc whenever necessary. Cons cells reclaimed by
2636 GC are put on a free list to be reallocated before allocating
2637 any new cons cells from the latest cons_block. */
2638
2639 #define CONS_BLOCK_SIZE \
2640 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2641 /* The compiler might add padding at the end. */ \
2642 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2643 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2644
2645 #define CONS_BLOCK(fptr) \
2646 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2647
2648 #define CONS_INDEX(fptr) \
2649 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2650
2651 struct cons_block
2652 {
2653 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2654 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2655 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2656 struct cons_block *next;
2657 };
2658
2659 #define CONS_MARKED_P(fptr) \
2660 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2661
2662 #define CONS_MARK(fptr) \
2663 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2664
2665 #define CONS_UNMARK(fptr) \
2666 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2667
2668 /* Current cons_block. */
2669
2670 static struct cons_block *cons_block;
2671
2672 /* Index of first unused Lisp_Cons in the current block. */
2673
2674 static int cons_block_index = CONS_BLOCK_SIZE;
2675
2676 /* Free-list of Lisp_Cons structures. */
2677
2678 static struct Lisp_Cons *cons_free_list;
2679
2680 /* Explicitly free a cons cell by putting it on the free-list. */
2681
2682 void
2683 free_cons (struct Lisp_Cons *ptr)
2684 {
2685 ptr->u.chain = cons_free_list;
2686 #if GC_MARK_STACK
2687 ptr->car = Vdead;
2688 #endif
2689 cons_free_list = ptr;
2690 consing_since_gc -= sizeof *ptr;
2691 total_free_conses++;
2692 }
2693
2694 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2695 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2696 (Lisp_Object car, Lisp_Object cdr)
2697 {
2698 register Lisp_Object val;
2699
2700 /* eassert (!handling_signal); */
2701
2702 MALLOC_BLOCK_INPUT;
2703
2704 if (cons_free_list)
2705 {
2706 /* We use the cdr for chaining the free list
2707 so that we won't use the same field that has the mark bit. */
2708 XSETCONS (val, cons_free_list);
2709 cons_free_list = cons_free_list->u.chain;
2710 }
2711 else
2712 {
2713 if (cons_block_index == CONS_BLOCK_SIZE)
2714 {
2715 struct cons_block *new
2716 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2717 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2718 new->next = cons_block;
2719 cons_block = new;
2720 cons_block_index = 0;
2721 total_free_conses += CONS_BLOCK_SIZE;
2722 }
2723 XSETCONS (val, &cons_block->conses[cons_block_index]);
2724 cons_block_index++;
2725 }
2726
2727 MALLOC_UNBLOCK_INPUT;
2728
2729 XSETCAR (val, car);
2730 XSETCDR (val, cdr);
2731 eassert (!CONS_MARKED_P (XCONS (val)));
2732 consing_since_gc += sizeof (struct Lisp_Cons);
2733 total_free_conses--;
2734 cons_cells_consed++;
2735 return val;
2736 }
2737
2738 #ifdef GC_CHECK_CONS_LIST
2739 /* Get an error now if there's any junk in the cons free list. */
2740 void
2741 check_cons_list (void)
2742 {
2743 struct Lisp_Cons *tail = cons_free_list;
2744
2745 while (tail)
2746 tail = tail->u.chain;
2747 }
2748 #endif
2749
2750 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2751
2752 Lisp_Object
2753 list1 (Lisp_Object arg1)
2754 {
2755 return Fcons (arg1, Qnil);
2756 }
2757
2758 Lisp_Object
2759 list2 (Lisp_Object arg1, Lisp_Object arg2)
2760 {
2761 return Fcons (arg1, Fcons (arg2, Qnil));
2762 }
2763
2764
2765 Lisp_Object
2766 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2767 {
2768 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2769 }
2770
2771
2772 Lisp_Object
2773 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2774 {
2775 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2776 }
2777
2778
2779 Lisp_Object
2780 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2781 {
2782 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2783 Fcons (arg5, Qnil)))));
2784 }
2785
2786 /* Make a list of COUNT Lisp_Objects, where ARG is the
2787 first one. Allocate conses from pure space if TYPE
2788 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2789
2790 Lisp_Object
2791 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2792 {
2793 va_list ap;
2794 ptrdiff_t i;
2795 Lisp_Object val, *objp;
2796
2797 /* Change to SAFE_ALLOCA if you hit this eassert. */
2798 eassert (count <= MAX_ALLOCA / word_size);
2799
2800 objp = alloca (count * word_size);
2801 objp[0] = arg;
2802 va_start (ap, arg);
2803 for (i = 1; i < count; i++)
2804 objp[i] = va_arg (ap, Lisp_Object);
2805 va_end (ap);
2806
2807 for (val = Qnil, i = count - 1; i >= 0; i--)
2808 {
2809 if (type == CONSTYPE_PURE)
2810 val = pure_cons (objp[i], val);
2811 else if (type == CONSTYPE_HEAP)
2812 val = Fcons (objp[i], val);
2813 else
2814 emacs_abort ();
2815 }
2816 return val;
2817 }
2818
2819 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2820 doc: /* Return a newly created list with specified arguments as elements.
2821 Any number of arguments, even zero arguments, are allowed.
2822 usage: (list &rest OBJECTS) */)
2823 (ptrdiff_t nargs, Lisp_Object *args)
2824 {
2825 register Lisp_Object val;
2826 val = Qnil;
2827
2828 while (nargs > 0)
2829 {
2830 nargs--;
2831 val = Fcons (args[nargs], val);
2832 }
2833 return val;
2834 }
2835
2836
2837 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2838 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2839 (register Lisp_Object length, Lisp_Object init)
2840 {
2841 register Lisp_Object val;
2842 register EMACS_INT size;
2843
2844 CHECK_NATNUM (length);
2845 size = XFASTINT (length);
2846
2847 val = Qnil;
2848 while (size > 0)
2849 {
2850 val = Fcons (init, val);
2851 --size;
2852
2853 if (size > 0)
2854 {
2855 val = Fcons (init, val);
2856 --size;
2857
2858 if (size > 0)
2859 {
2860 val = Fcons (init, val);
2861 --size;
2862
2863 if (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
2872 }
2873 }
2874 }
2875 }
2876
2877 QUIT;
2878 }
2879
2880 return val;
2881 }
2882
2883
2884 \f
2885 /***********************************************************************
2886 Vector Allocation
2887 ***********************************************************************/
2888
2889 /* This value is balanced well enough to avoid too much internal overhead
2890 for the most common cases; it's not required to be a power of two, but
2891 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2892
2893 #define VECTOR_BLOCK_SIZE 4096
2894
2895 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2896 enum
2897 {
2898 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2899 };
2900
2901 /* ROUNDUP_SIZE must be a power of 2. */
2902 verify ((roundup_size & (roundup_size - 1)) == 0);
2903
2904 /* Verify assumptions described above. */
2905 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2906 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2907
2908 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2909
2910 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2911
2912 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2913
2914 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2915
2916 /* Size of the minimal vector allocated from block. */
2917
2918 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2919
2920 /* Size of the largest vector allocated from block. */
2921
2922 #define VBLOCK_BYTES_MAX \
2923 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2924
2925 /* We maintain one free list for each possible block-allocated
2926 vector size, and this is the number of free lists we have. */
2927
2928 #define VECTOR_MAX_FREE_LIST_INDEX \
2929 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2930
2931 /* Common shortcut to advance vector pointer over a block data. */
2932
2933 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2934
2935 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2936
2937 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2938
2939 /* Common shortcut to setup vector on a free list. */
2940
2941 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2942 do { \
2943 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2944 eassert ((nbytes) % roundup_size == 0); \
2945 (index) = VINDEX (nbytes); \
2946 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2947 (v)->header.next.vector = vector_free_lists[index]; \
2948 vector_free_lists[index] = (v); \
2949 total_free_vector_slots += (nbytes) / word_size; \
2950 } while (0)
2951
2952 struct vector_block
2953 {
2954 char data[VECTOR_BLOCK_BYTES];
2955 struct vector_block *next;
2956 };
2957
2958 /* Chain of vector blocks. */
2959
2960 static struct vector_block *vector_blocks;
2961
2962 /* Vector free lists, where NTH item points to a chain of free
2963 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2964
2965 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2966
2967 /* Singly-linked list of large vectors. */
2968
2969 static struct Lisp_Vector *large_vectors;
2970
2971 /* The only vector with 0 slots, allocated from pure space. */
2972
2973 Lisp_Object zero_vector;
2974
2975 /* Number of live vectors. */
2976
2977 static EMACS_INT total_vectors;
2978
2979 /* Total size of live and free vectors, in Lisp_Object units. */
2980
2981 static EMACS_INT total_vector_slots, total_free_vector_slots;
2982
2983 /* Get a new vector block. */
2984
2985 static struct vector_block *
2986 allocate_vector_block (void)
2987 {
2988 struct vector_block *block = xmalloc (sizeof *block);
2989
2990 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2991 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2992 MEM_TYPE_VECTOR_BLOCK);
2993 #endif
2994
2995 block->next = vector_blocks;
2996 vector_blocks = block;
2997 return block;
2998 }
2999
3000 /* Called once to initialize vector allocation. */
3001
3002 static void
3003 init_vectors (void)
3004 {
3005 zero_vector = make_pure_vector (0);
3006 }
3007
3008 /* Allocate vector from a vector block. */
3009
3010 static struct Lisp_Vector *
3011 allocate_vector_from_block (size_t nbytes)
3012 {
3013 struct Lisp_Vector *vector, *rest;
3014 struct vector_block *block;
3015 size_t index, restbytes;
3016
3017 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3018 eassert (nbytes % roundup_size == 0);
3019
3020 /* First, try to allocate from a free list
3021 containing vectors of the requested size. */
3022 index = VINDEX (nbytes);
3023 if (vector_free_lists[index])
3024 {
3025 vector = vector_free_lists[index];
3026 vector_free_lists[index] = vector->header.next.vector;
3027 vector->header.next.nbytes = nbytes;
3028 total_free_vector_slots -= nbytes / word_size;
3029 return vector;
3030 }
3031
3032 /* Next, check free lists containing larger vectors. Since
3033 we will split the result, we should have remaining space
3034 large enough to use for one-slot vector at least. */
3035 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3036 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3037 if (vector_free_lists[index])
3038 {
3039 /* This vector is larger than requested. */
3040 vector = vector_free_lists[index];
3041 vector_free_lists[index] = vector->header.next.vector;
3042 vector->header.next.nbytes = nbytes;
3043 total_free_vector_slots -= nbytes / word_size;
3044
3045 /* Excess bytes are used for the smaller vector,
3046 which should be set on an appropriate free list. */
3047 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3048 eassert (restbytes % roundup_size == 0);
3049 rest = ADVANCE (vector, nbytes);
3050 SETUP_ON_FREE_LIST (rest, restbytes, index);
3051 return vector;
3052 }
3053
3054 /* Finally, need a new vector block. */
3055 block = allocate_vector_block ();
3056
3057 /* New vector will be at the beginning of this block. */
3058 vector = (struct Lisp_Vector *) block->data;
3059 vector->header.next.nbytes = nbytes;
3060
3061 /* If the rest of space from this block is large enough
3062 for one-slot vector at least, set up it on a free list. */
3063 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3064 if (restbytes >= VBLOCK_BYTES_MIN)
3065 {
3066 eassert (restbytes % roundup_size == 0);
3067 rest = ADVANCE (vector, nbytes);
3068 SETUP_ON_FREE_LIST (rest, restbytes, index);
3069 }
3070 return vector;
3071 }
3072
3073 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3074
3075 #define VECTOR_IN_BLOCK(vector, block) \
3076 ((char *) (vector) <= (block)->data \
3077 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3078
3079 /* Number of bytes used by vector-block-allocated object. This is the only
3080 place where we actually use the `nbytes' field of the vector-header.
3081 I.e. we could get rid of the `nbytes' field by computing it based on the
3082 vector-type. */
3083
3084 #define PSEUDOVECTOR_NBYTES(vector) \
3085 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3086 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3087 : vector->header.next.nbytes)
3088
3089 /* Reclaim space used by unmarked vectors. */
3090
3091 static void
3092 sweep_vectors (void)
3093 {
3094 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3095 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3096
3097 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3098 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3099
3100 /* Looking through vector blocks. */
3101
3102 for (block = vector_blocks; block; block = *bprev)
3103 {
3104 bool free_this_block = 0;
3105
3106 for (vector = (struct Lisp_Vector *) block->data;
3107 VECTOR_IN_BLOCK (vector, block); vector = next)
3108 {
3109 if (VECTOR_MARKED_P (vector))
3110 {
3111 VECTOR_UNMARK (vector);
3112 total_vectors++;
3113 total_vector_slots += vector->header.next.nbytes / word_size;
3114 next = ADVANCE (vector, vector->header.next.nbytes);
3115 }
3116 else
3117 {
3118 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3119 ptrdiff_t total_bytes = nbytes;
3120
3121 next = ADVANCE (vector, nbytes);
3122
3123 /* While NEXT is not marked, try to coalesce with VECTOR,
3124 thus making VECTOR of the largest possible size. */
3125
3126 while (VECTOR_IN_BLOCK (next, block))
3127 {
3128 if (VECTOR_MARKED_P (next))
3129 break;
3130 nbytes = PSEUDOVECTOR_NBYTES (next);
3131 total_bytes += nbytes;
3132 next = ADVANCE (next, nbytes);
3133 }
3134
3135 eassert (total_bytes % roundup_size == 0);
3136
3137 if (vector == (struct Lisp_Vector *) block->data
3138 && !VECTOR_IN_BLOCK (next, block))
3139 /* This block should be freed because all of it's
3140 space was coalesced into the only free vector. */
3141 free_this_block = 1;
3142 else
3143 {
3144 int tmp;
3145 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3146 }
3147 }
3148 }
3149
3150 if (free_this_block)
3151 {
3152 *bprev = block->next;
3153 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3154 mem_delete (mem_find (block->data));
3155 #endif
3156 xfree (block);
3157 }
3158 else
3159 bprev = &block->next;
3160 }
3161
3162 /* Sweep large vectors. */
3163
3164 for (vector = large_vectors; vector; vector = *vprev)
3165 {
3166 if (VECTOR_MARKED_P (vector))
3167 {
3168 VECTOR_UNMARK (vector);
3169 total_vectors++;
3170 if (vector->header.size & PSEUDOVECTOR_FLAG)
3171 {
3172 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3173
3174 /* All non-bool pseudovectors are small enough to be allocated
3175 from vector blocks. This code should be redesigned if some
3176 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3177 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3178
3179 total_vector_slots
3180 += (bool_header_size
3181 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3182 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
3183 }
3184 else
3185 total_vector_slots
3186 += header_size / word_size + vector->header.size;
3187 vprev = &vector->header.next.vector;
3188 }
3189 else
3190 {
3191 *vprev = vector->header.next.vector;
3192 lisp_free (vector);
3193 }
3194 }
3195 }
3196
3197 /* Value is a pointer to a newly allocated Lisp_Vector structure
3198 with room for LEN Lisp_Objects. */
3199
3200 static struct Lisp_Vector *
3201 allocate_vectorlike (ptrdiff_t len)
3202 {
3203 struct Lisp_Vector *p;
3204
3205 MALLOC_BLOCK_INPUT;
3206
3207 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3208 /* eassert (!handling_signal); */
3209
3210 if (len == 0)
3211 p = XVECTOR (zero_vector);
3212 else
3213 {
3214 size_t nbytes = header_size + len * word_size;
3215
3216 #ifdef DOUG_LEA_MALLOC
3217 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3218 because mapped region contents are not preserved in
3219 a dumped Emacs. */
3220 mallopt (M_MMAP_MAX, 0);
3221 #endif
3222
3223 if (nbytes <= VBLOCK_BYTES_MAX)
3224 p = allocate_vector_from_block (vroundup (nbytes));
3225 else
3226 {
3227 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3228 p->header.next.vector = large_vectors;
3229 large_vectors = p;
3230 }
3231
3232 #ifdef DOUG_LEA_MALLOC
3233 /* Back to a reasonable maximum of mmap'ed areas. */
3234 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3235 #endif
3236
3237 consing_since_gc += nbytes;
3238 vector_cells_consed += len;
3239 }
3240
3241 MALLOC_UNBLOCK_INPUT;
3242
3243 return p;
3244 }
3245
3246
3247 /* Allocate a vector with LEN slots. */
3248
3249 struct Lisp_Vector *
3250 allocate_vector (EMACS_INT len)
3251 {
3252 struct Lisp_Vector *v;
3253 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3254
3255 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3256 memory_full (SIZE_MAX);
3257 v = allocate_vectorlike (len);
3258 v->header.size = len;
3259 return v;
3260 }
3261
3262
3263 /* Allocate other vector-like structures. */
3264
3265 struct Lisp_Vector *
3266 allocate_pseudovector (int memlen, int lisplen, int tag)
3267 {
3268 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3269 int i;
3270
3271 /* Only the first lisplen slots will be traced normally by the GC. */
3272 for (i = 0; i < lisplen; ++i)
3273 v->contents[i] = Qnil;
3274
3275 XSETPVECTYPESIZE (v, tag, lisplen);
3276 return v;
3277 }
3278
3279 struct buffer *
3280 allocate_buffer (void)
3281 {
3282 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3283
3284 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3285 - header_size) / word_size);
3286 /* Put B on the chain of all buffers including killed ones. */
3287 b->header.next.buffer = all_buffers;
3288 all_buffers = b;
3289 /* Note that the rest fields of B are not initialized. */
3290 return b;
3291 }
3292
3293 struct Lisp_Hash_Table *
3294 allocate_hash_table (void)
3295 {
3296 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3297 }
3298
3299 struct window *
3300 allocate_window (void)
3301 {
3302 struct window *w;
3303
3304 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3305 /* Users assumes that non-Lisp data is zeroed. */
3306 memset (&w->current_matrix, 0,
3307 sizeof (*w) - offsetof (struct window, current_matrix));
3308 return w;
3309 }
3310
3311 struct terminal *
3312 allocate_terminal (void)
3313 {
3314 struct terminal *t;
3315
3316 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3317 /* Users assumes that non-Lisp data is zeroed. */
3318 memset (&t->next_terminal, 0,
3319 sizeof (*t) - offsetof (struct terminal, next_terminal));
3320 return t;
3321 }
3322
3323 struct frame *
3324 allocate_frame (void)
3325 {
3326 struct frame *f;
3327
3328 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3329 /* Users assumes that non-Lisp data is zeroed. */
3330 memset (&f->face_cache, 0,
3331 sizeof (*f) - offsetof (struct frame, face_cache));
3332 return f;
3333 }
3334
3335 struct Lisp_Process *
3336 allocate_process (void)
3337 {
3338 struct Lisp_Process *p;
3339
3340 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3341 /* Users assumes that non-Lisp data is zeroed. */
3342 memset (&p->pid, 0,
3343 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3344 return p;
3345 }
3346
3347 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3348 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3349 See also the function `vector'. */)
3350 (register Lisp_Object length, Lisp_Object init)
3351 {
3352 Lisp_Object vector;
3353 register ptrdiff_t sizei;
3354 register ptrdiff_t i;
3355 register struct Lisp_Vector *p;
3356
3357 CHECK_NATNUM (length);
3358
3359 p = allocate_vector (XFASTINT (length));
3360 sizei = XFASTINT (length);
3361 for (i = 0; i < sizei; i++)
3362 p->contents[i] = init;
3363
3364 XSETVECTOR (vector, p);
3365 return vector;
3366 }
3367
3368
3369 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3370 doc: /* Return a newly created vector with specified arguments as elements.
3371 Any number of arguments, even zero arguments, are allowed.
3372 usage: (vector &rest OBJECTS) */)
3373 (ptrdiff_t nargs, Lisp_Object *args)
3374 {
3375 register Lisp_Object len, val;
3376 ptrdiff_t i;
3377 register struct Lisp_Vector *p;
3378
3379 XSETFASTINT (len, nargs);
3380 val = Fmake_vector (len, Qnil);
3381 p = XVECTOR (val);
3382 for (i = 0; i < nargs; i++)
3383 p->contents[i] = args[i];
3384 return val;
3385 }
3386
3387 void
3388 make_byte_code (struct Lisp_Vector *v)
3389 {
3390 if (v->header.size > 1 && STRINGP (v->contents[1])
3391 && STRING_MULTIBYTE (v->contents[1]))
3392 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3393 earlier because they produced a raw 8-bit string for byte-code
3394 and now such a byte-code string is loaded as multibyte while
3395 raw 8-bit characters converted to multibyte form. Thus, now we
3396 must convert them back to the original unibyte form. */
3397 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3398 XSETPVECTYPE (v, PVEC_COMPILED);
3399 }
3400
3401 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3402 doc: /* Create a byte-code object with specified arguments as elements.
3403 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3404 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3405 and (optional) INTERACTIVE-SPEC.
3406 The first four arguments are required; at most six have any
3407 significance.
3408 The ARGLIST can be either like the one of `lambda', in which case the arguments
3409 will be dynamically bound before executing the byte code, or it can be an
3410 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3411 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3412 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3413 argument to catch the left-over arguments. If such an integer is used, the
3414 arguments will not be dynamically bound but will be instead pushed on the
3415 stack before executing the byte-code.
3416 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3417 (ptrdiff_t nargs, Lisp_Object *args)
3418 {
3419 register Lisp_Object len, val;
3420 ptrdiff_t i;
3421 register struct Lisp_Vector *p;
3422
3423 /* We used to purecopy everything here, if purify-flga was set. This worked
3424 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3425 dangerous, since make-byte-code is used during execution to build
3426 closures, so any closure built during the preload phase would end up
3427 copied into pure space, including its free variables, which is sometimes
3428 just wasteful and other times plainly wrong (e.g. those free vars may want
3429 to be setcar'd). */
3430
3431 XSETFASTINT (len, nargs);
3432 val = Fmake_vector (len, Qnil);
3433
3434 p = XVECTOR (val);
3435 for (i = 0; i < nargs; i++)
3436 p->contents[i] = args[i];
3437 make_byte_code (p);
3438 XSETCOMPILED (val, p);
3439 return val;
3440 }
3441
3442
3443 \f
3444 /***********************************************************************
3445 Symbol Allocation
3446 ***********************************************************************/
3447
3448 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3449 of the required alignment if LSB tags are used. */
3450
3451 union aligned_Lisp_Symbol
3452 {
3453 struct Lisp_Symbol s;
3454 #if USE_LSB_TAG
3455 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3456 & -GCALIGNMENT];
3457 #endif
3458 };
3459
3460 /* Each symbol_block is just under 1020 bytes long, since malloc
3461 really allocates in units of powers of two and uses 4 bytes for its
3462 own overhead. */
3463
3464 #define SYMBOL_BLOCK_SIZE \
3465 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3466
3467 struct symbol_block
3468 {
3469 /* Place `symbols' first, to preserve alignment. */
3470 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3471 struct symbol_block *next;
3472 };
3473
3474 /* Current symbol block and index of first unused Lisp_Symbol
3475 structure in it. */
3476
3477 static struct symbol_block *symbol_block;
3478 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3479
3480 /* List of free symbols. */
3481
3482 static struct Lisp_Symbol *symbol_free_list;
3483
3484 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3485 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3486 Its value and function definition are void, and its property list is nil. */)
3487 (Lisp_Object name)
3488 {
3489 register Lisp_Object val;
3490 register struct Lisp_Symbol *p;
3491
3492 CHECK_STRING (name);
3493
3494 /* eassert (!handling_signal); */
3495
3496 MALLOC_BLOCK_INPUT;
3497
3498 if (symbol_free_list)
3499 {
3500 XSETSYMBOL (val, symbol_free_list);
3501 symbol_free_list = symbol_free_list->next;
3502 }
3503 else
3504 {
3505 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3506 {
3507 struct symbol_block *new
3508 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3509 new->next = symbol_block;
3510 symbol_block = new;
3511 symbol_block_index = 0;
3512 total_free_symbols += SYMBOL_BLOCK_SIZE;
3513 }
3514 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3515 symbol_block_index++;
3516 }
3517
3518 MALLOC_UNBLOCK_INPUT;
3519
3520 p = XSYMBOL (val);
3521 set_symbol_name (val, name);
3522 set_symbol_plist (val, Qnil);
3523 p->redirect = SYMBOL_PLAINVAL;
3524 SET_SYMBOL_VAL (p, Qunbound);
3525 set_symbol_function (val, Qunbound);
3526 set_symbol_next (val, NULL);
3527 p->gcmarkbit = 0;
3528 p->interned = SYMBOL_UNINTERNED;
3529 p->constant = 0;
3530 p->declared_special = 0;
3531 consing_since_gc += sizeof (struct Lisp_Symbol);
3532 symbols_consed++;
3533 total_free_symbols--;
3534 return val;
3535 }
3536
3537
3538 \f
3539 /***********************************************************************
3540 Marker (Misc) Allocation
3541 ***********************************************************************/
3542
3543 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3544 the required alignment when LSB tags are used. */
3545
3546 union aligned_Lisp_Misc
3547 {
3548 union Lisp_Misc m;
3549 #if USE_LSB_TAG
3550 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3551 & -GCALIGNMENT];
3552 #endif
3553 };
3554
3555 /* Allocation of markers and other objects that share that structure.
3556 Works like allocation of conses. */
3557
3558 #define MARKER_BLOCK_SIZE \
3559 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3560
3561 struct marker_block
3562 {
3563 /* Place `markers' first, to preserve alignment. */
3564 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3565 struct marker_block *next;
3566 };
3567
3568 static struct marker_block *marker_block;
3569 static int marker_block_index = MARKER_BLOCK_SIZE;
3570
3571 static union Lisp_Misc *marker_free_list;
3572
3573 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3574
3575 static Lisp_Object
3576 allocate_misc (enum Lisp_Misc_Type type)
3577 {
3578 Lisp_Object val;
3579
3580 /* eassert (!handling_signal); */
3581
3582 MALLOC_BLOCK_INPUT;
3583
3584 if (marker_free_list)
3585 {
3586 XSETMISC (val, marker_free_list);
3587 marker_free_list = marker_free_list->u_free.chain;
3588 }
3589 else
3590 {
3591 if (marker_block_index == MARKER_BLOCK_SIZE)
3592 {
3593 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3594 new->next = marker_block;
3595 marker_block = new;
3596 marker_block_index = 0;
3597 total_free_markers += MARKER_BLOCK_SIZE;
3598 }
3599 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3600 marker_block_index++;
3601 }
3602
3603 MALLOC_UNBLOCK_INPUT;
3604
3605 --total_free_markers;
3606 consing_since_gc += sizeof (union Lisp_Misc);
3607 misc_objects_consed++;
3608 XMISCTYPE (val) = type;
3609 XMISCANY (val)->gcmarkbit = 0;
3610 return val;
3611 }
3612
3613 /* Free a Lisp_Misc object */
3614
3615 static void
3616 free_misc (Lisp_Object misc)
3617 {
3618 XMISCTYPE (misc) = Lisp_Misc_Free;
3619 XMISC (misc)->u_free.chain = marker_free_list;
3620 marker_free_list = XMISC (misc);
3621 consing_since_gc -= sizeof (union Lisp_Misc);
3622 total_free_markers++;
3623 }
3624
3625 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3626 INTEGER. This is used to package C values to call record_unwind_protect.
3627 The unwind function can get the C values back using XSAVE_VALUE. */
3628
3629 Lisp_Object
3630 make_save_value (void *pointer, ptrdiff_t integer)
3631 {
3632 register Lisp_Object val;
3633 register struct Lisp_Save_Value *p;
3634
3635 val = allocate_misc (Lisp_Misc_Save_Value);
3636 p = XSAVE_VALUE (val);
3637 p->pointer = pointer;
3638 p->integer = integer;
3639 p->dogc = 0;
3640 return val;
3641 }
3642
3643 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3644
3645 Lisp_Object
3646 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3647 {
3648 register Lisp_Object overlay;
3649
3650 overlay = allocate_misc (Lisp_Misc_Overlay);
3651 OVERLAY_START (overlay) = start;
3652 OVERLAY_END (overlay) = end;
3653 set_overlay_plist (overlay, plist);
3654 XOVERLAY (overlay)->next = NULL;
3655 return overlay;
3656 }
3657
3658 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3659 doc: /* Return a newly allocated marker which does not point at any place. */)
3660 (void)
3661 {
3662 register Lisp_Object val;
3663 register struct Lisp_Marker *p;
3664
3665 val = allocate_misc (Lisp_Misc_Marker);
3666 p = XMARKER (val);
3667 p->buffer = 0;
3668 p->bytepos = 0;
3669 p->charpos = 0;
3670 p->next = NULL;
3671 p->insertion_type = 0;
3672 return val;
3673 }
3674
3675 /* Return a newly allocated marker which points into BUF
3676 at character position CHARPOS and byte position BYTEPOS. */
3677
3678 Lisp_Object
3679 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3680 {
3681 Lisp_Object obj;
3682 struct Lisp_Marker *m;
3683
3684 /* No dead buffers here. */
3685 eassert (BUFFER_LIVE_P (buf));
3686
3687 /* Every character is at least one byte. */
3688 eassert (charpos <= bytepos);
3689
3690 obj = allocate_misc (Lisp_Misc_Marker);
3691 m = XMARKER (obj);
3692 m->buffer = buf;
3693 m->charpos = charpos;
3694 m->bytepos = bytepos;
3695 m->insertion_type = 0;
3696 m->next = BUF_MARKERS (buf);
3697 BUF_MARKERS (buf) = m;
3698 return obj;
3699 }
3700
3701 /* Put MARKER back on the free list after using it temporarily. */
3702
3703 void
3704 free_marker (Lisp_Object marker)
3705 {
3706 unchain_marker (XMARKER (marker));
3707 free_misc (marker);
3708 }
3709
3710 \f
3711 /* Return a newly created vector or string with specified arguments as
3712 elements. If all the arguments are characters that can fit
3713 in a string of events, make a string; otherwise, make a vector.
3714
3715 Any number of arguments, even zero arguments, are allowed. */
3716
3717 Lisp_Object
3718 make_event_array (register int nargs, Lisp_Object *args)
3719 {
3720 int i;
3721
3722 for (i = 0; i < nargs; i++)
3723 /* The things that fit in a string
3724 are characters that are in 0...127,
3725 after discarding the meta bit and all the bits above it. */
3726 if (!INTEGERP (args[i])
3727 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3728 return Fvector (nargs, args);
3729
3730 /* Since the loop exited, we know that all the things in it are
3731 characters, so we can make a string. */
3732 {
3733 Lisp_Object result;
3734
3735 result = Fmake_string (make_number (nargs), make_number (0));
3736 for (i = 0; i < nargs; i++)
3737 {
3738 SSET (result, i, XINT (args[i]));
3739 /* Move the meta bit to the right place for a string char. */
3740 if (XINT (args[i]) & CHAR_META)
3741 SSET (result, i, SREF (result, i) | 0x80);
3742 }
3743
3744 return result;
3745 }
3746 }
3747
3748
3749 \f
3750 /************************************************************************
3751 Memory Full Handling
3752 ************************************************************************/
3753
3754
3755 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3756 there may have been size_t overflow so that malloc was never
3757 called, or perhaps malloc was invoked successfully but the
3758 resulting pointer had problems fitting into a tagged EMACS_INT. In
3759 either case this counts as memory being full even though malloc did
3760 not fail. */
3761
3762 void
3763 memory_full (size_t nbytes)
3764 {
3765 /* Do not go into hysterics merely because a large request failed. */
3766 bool enough_free_memory = 0;
3767 if (SPARE_MEMORY < nbytes)
3768 {
3769 void *p;
3770
3771 MALLOC_BLOCK_INPUT;
3772 p = malloc (SPARE_MEMORY);
3773 if (p)
3774 {
3775 free (p);
3776 enough_free_memory = 1;
3777 }
3778 MALLOC_UNBLOCK_INPUT;
3779 }
3780
3781 if (! enough_free_memory)
3782 {
3783 int i;
3784
3785 Vmemory_full = Qt;
3786
3787 memory_full_cons_threshold = sizeof (struct cons_block);
3788
3789 /* The first time we get here, free the spare memory. */
3790 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3791 if (spare_memory[i])
3792 {
3793 if (i == 0)
3794 free (spare_memory[i]);
3795 else if (i >= 1 && i <= 4)
3796 lisp_align_free (spare_memory[i]);
3797 else
3798 lisp_free (spare_memory[i]);
3799 spare_memory[i] = 0;
3800 }
3801
3802 /* Record the space now used. When it decreases substantially,
3803 we can refill the memory reserve. */
3804 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3805 bytes_used_when_full = BYTES_USED;
3806 #endif
3807 }
3808
3809 /* This used to call error, but if we've run out of memory, we could
3810 get infinite recursion trying to build the string. */
3811 xsignal (Qnil, Vmemory_signal_data);
3812 }
3813
3814 /* If we released our reserve (due to running out of memory),
3815 and we have a fair amount free once again,
3816 try to set aside another reserve in case we run out once more.
3817
3818 This is called when a relocatable block is freed in ralloc.c,
3819 and also directly from this file, in case we're not using ralloc.c. */
3820
3821 void
3822 refill_memory_reserve (void)
3823 {
3824 #ifndef SYSTEM_MALLOC
3825 if (spare_memory[0] == 0)
3826 spare_memory[0] = malloc (SPARE_MEMORY);
3827 if (spare_memory[1] == 0)
3828 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3829 MEM_TYPE_SPARE);
3830 if (spare_memory[2] == 0)
3831 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3832 MEM_TYPE_SPARE);
3833 if (spare_memory[3] == 0)
3834 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3835 MEM_TYPE_SPARE);
3836 if (spare_memory[4] == 0)
3837 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3838 MEM_TYPE_SPARE);
3839 if (spare_memory[5] == 0)
3840 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3841 MEM_TYPE_SPARE);
3842 if (spare_memory[6] == 0)
3843 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3844 MEM_TYPE_SPARE);
3845 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3846 Vmemory_full = Qnil;
3847 #endif
3848 }
3849 \f
3850 /************************************************************************
3851 C Stack Marking
3852 ************************************************************************/
3853
3854 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3855
3856 /* Conservative C stack marking requires a method to identify possibly
3857 live Lisp objects given a pointer value. We do this by keeping
3858 track of blocks of Lisp data that are allocated in a red-black tree
3859 (see also the comment of mem_node which is the type of nodes in
3860 that tree). Function lisp_malloc adds information for an allocated
3861 block to the red-black tree with calls to mem_insert, and function
3862 lisp_free removes it with mem_delete. Functions live_string_p etc
3863 call mem_find to lookup information about a given pointer in the
3864 tree, and use that to determine if the pointer points to a Lisp
3865 object or not. */
3866
3867 /* Initialize this part of alloc.c. */
3868
3869 static void
3870 mem_init (void)
3871 {
3872 mem_z.left = mem_z.right = MEM_NIL;
3873 mem_z.parent = NULL;
3874 mem_z.color = MEM_BLACK;
3875 mem_z.start = mem_z.end = NULL;
3876 mem_root = MEM_NIL;
3877 }
3878
3879
3880 /* Value is a pointer to the mem_node containing START. Value is
3881 MEM_NIL if there is no node in the tree containing START. */
3882
3883 static inline struct mem_node *
3884 mem_find (void *start)
3885 {
3886 struct mem_node *p;
3887
3888 if (start < min_heap_address || start > max_heap_address)
3889 return MEM_NIL;
3890
3891 /* Make the search always successful to speed up the loop below. */
3892 mem_z.start = start;
3893 mem_z.end = (char *) start + 1;
3894
3895 p = mem_root;
3896 while (start < p->start || start >= p->end)
3897 p = start < p->start ? p->left : p->right;
3898 return p;
3899 }
3900
3901
3902 /* Insert a new node into the tree for a block of memory with start
3903 address START, end address END, and type TYPE. Value is a
3904 pointer to the node that was inserted. */
3905
3906 static struct mem_node *
3907 mem_insert (void *start, void *end, enum mem_type type)
3908 {
3909 struct mem_node *c, *parent, *x;
3910
3911 if (min_heap_address == NULL || start < min_heap_address)
3912 min_heap_address = start;
3913 if (max_heap_address == NULL || end > max_heap_address)
3914 max_heap_address = end;
3915
3916 /* See where in the tree a node for START belongs. In this
3917 particular application, it shouldn't happen that a node is already
3918 present. For debugging purposes, let's check that. */
3919 c = mem_root;
3920 parent = NULL;
3921
3922 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3923
3924 while (c != MEM_NIL)
3925 {
3926 if (start >= c->start && start < c->end)
3927 emacs_abort ();
3928 parent = c;
3929 c = start < c->start ? c->left : c->right;
3930 }
3931
3932 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3933
3934 while (c != MEM_NIL)
3935 {
3936 parent = c;
3937 c = start < c->start ? c->left : c->right;
3938 }
3939
3940 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3941
3942 /* Create a new node. */
3943 #ifdef GC_MALLOC_CHECK
3944 x = _malloc_internal (sizeof *x);
3945 if (x == NULL)
3946 emacs_abort ();
3947 #else
3948 x = xmalloc (sizeof *x);
3949 #endif
3950 x->start = start;
3951 x->end = end;
3952 x->type = type;
3953 x->parent = parent;
3954 x->left = x->right = MEM_NIL;
3955 x->color = MEM_RED;
3956
3957 /* Insert it as child of PARENT or install it as root. */
3958 if (parent)
3959 {
3960 if (start < parent->start)
3961 parent->left = x;
3962 else
3963 parent->right = x;
3964 }
3965 else
3966 mem_root = x;
3967
3968 /* Re-establish red-black tree properties. */
3969 mem_insert_fixup (x);
3970
3971 return x;
3972 }
3973
3974
3975 /* Re-establish the red-black properties of the tree, and thereby
3976 balance the tree, after node X has been inserted; X is always red. */
3977
3978 static void
3979 mem_insert_fixup (struct mem_node *x)
3980 {
3981 while (x != mem_root && x->parent->color == MEM_RED)
3982 {
3983 /* X is red and its parent is red. This is a violation of
3984 red-black tree property #3. */
3985
3986 if (x->parent == x->parent->parent->left)
3987 {
3988 /* We're on the left side of our grandparent, and Y is our
3989 "uncle". */
3990 struct mem_node *y = x->parent->parent->right;
3991
3992 if (y->color == MEM_RED)
3993 {
3994 /* Uncle and parent are red but should be black because
3995 X is red. Change the colors accordingly and proceed
3996 with the grandparent. */
3997 x->parent->color = MEM_BLACK;
3998 y->color = MEM_BLACK;
3999 x->parent->parent->color = MEM_RED;
4000 x = x->parent->parent;
4001 }
4002 else
4003 {
4004 /* Parent and uncle have different colors; parent is
4005 red, uncle is black. */
4006 if (x == x->parent->right)
4007 {
4008 x = x->parent;
4009 mem_rotate_left (x);
4010 }
4011
4012 x->parent->color = MEM_BLACK;
4013 x->parent->parent->color = MEM_RED;
4014 mem_rotate_right (x->parent->parent);
4015 }
4016 }
4017 else
4018 {
4019 /* This is the symmetrical case of above. */
4020 struct mem_node *y = x->parent->parent->left;
4021
4022 if (y->color == MEM_RED)
4023 {
4024 x->parent->color = MEM_BLACK;
4025 y->color = MEM_BLACK;
4026 x->parent->parent->color = MEM_RED;
4027 x = x->parent->parent;
4028 }
4029 else
4030 {
4031 if (x == x->parent->left)
4032 {
4033 x = x->parent;
4034 mem_rotate_right (x);
4035 }
4036
4037 x->parent->color = MEM_BLACK;
4038 x->parent->parent->color = MEM_RED;
4039 mem_rotate_left (x->parent->parent);
4040 }
4041 }
4042 }
4043
4044 /* The root may have been changed to red due to the algorithm. Set
4045 it to black so that property #5 is satisfied. */
4046 mem_root->color = MEM_BLACK;
4047 }
4048
4049
4050 /* (x) (y)
4051 / \ / \
4052 a (y) ===> (x) c
4053 / \ / \
4054 b c a b */
4055
4056 static void
4057 mem_rotate_left (struct mem_node *x)
4058 {
4059 struct mem_node *y;
4060
4061 /* Turn y's left sub-tree into x's right sub-tree. */
4062 y = x->right;
4063 x->right = y->left;
4064 if (y->left != MEM_NIL)
4065 y->left->parent = x;
4066
4067 /* Y's parent was x's parent. */
4068 if (y != MEM_NIL)
4069 y->parent = x->parent;
4070
4071 /* Get the parent to point to y instead of x. */
4072 if (x->parent)
4073 {
4074 if (x == x->parent->left)
4075 x->parent->left = y;
4076 else
4077 x->parent->right = y;
4078 }
4079 else
4080 mem_root = y;
4081
4082 /* Put x on y's left. */
4083 y->left = x;
4084 if (x != MEM_NIL)
4085 x->parent = y;
4086 }
4087
4088
4089 /* (x) (Y)
4090 / \ / \
4091 (y) c ===> a (x)
4092 / \ / \
4093 a b b c */
4094
4095 static void
4096 mem_rotate_right (struct mem_node *x)
4097 {
4098 struct mem_node *y = x->left;
4099
4100 x->left = y->right;
4101 if (y->right != MEM_NIL)
4102 y->right->parent = x;
4103
4104 if (y != MEM_NIL)
4105 y->parent = x->parent;
4106 if (x->parent)
4107 {
4108 if (x == x->parent->right)
4109 x->parent->right = y;
4110 else
4111 x->parent->left = y;
4112 }
4113 else
4114 mem_root = y;
4115
4116 y->right = x;
4117 if (x != MEM_NIL)
4118 x->parent = y;
4119 }
4120
4121
4122 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4123
4124 static void
4125 mem_delete (struct mem_node *z)
4126 {
4127 struct mem_node *x, *y;
4128
4129 if (!z || z == MEM_NIL)
4130 return;
4131
4132 if (z->left == MEM_NIL || z->right == MEM_NIL)
4133 y = z;
4134 else
4135 {
4136 y = z->right;
4137 while (y->left != MEM_NIL)
4138 y = y->left;
4139 }
4140
4141 if (y->left != MEM_NIL)
4142 x = y->left;
4143 else
4144 x = y->right;
4145
4146 x->parent = y->parent;
4147 if (y->parent)
4148 {
4149 if (y == y->parent->left)
4150 y->parent->left = x;
4151 else
4152 y->parent->right = x;
4153 }
4154 else
4155 mem_root = x;
4156
4157 if (y != z)
4158 {
4159 z->start = y->start;
4160 z->end = y->end;
4161 z->type = y->type;
4162 }
4163
4164 if (y->color == MEM_BLACK)
4165 mem_delete_fixup (x);
4166
4167 #ifdef GC_MALLOC_CHECK
4168 _free_internal (y);
4169 #else
4170 xfree (y);
4171 #endif
4172 }
4173
4174
4175 /* Re-establish the red-black properties of the tree, after a
4176 deletion. */
4177
4178 static void
4179 mem_delete_fixup (struct mem_node *x)
4180 {
4181 while (x != mem_root && x->color == MEM_BLACK)
4182 {
4183 if (x == x->parent->left)
4184 {
4185 struct mem_node *w = x->parent->right;
4186
4187 if (w->color == MEM_RED)
4188 {
4189 w->color = MEM_BLACK;
4190 x->parent->color = MEM_RED;
4191 mem_rotate_left (x->parent);
4192 w = x->parent->right;
4193 }
4194
4195 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4196 {
4197 w->color = MEM_RED;
4198 x = x->parent;
4199 }
4200 else
4201 {
4202 if (w->right->color == MEM_BLACK)
4203 {
4204 w->left->color = MEM_BLACK;
4205 w->color = MEM_RED;
4206 mem_rotate_right (w);
4207 w = x->parent->right;
4208 }
4209 w->color = x->parent->color;
4210 x->parent->color = MEM_BLACK;
4211 w->right->color = MEM_BLACK;
4212 mem_rotate_left (x->parent);
4213 x = mem_root;
4214 }
4215 }
4216 else
4217 {
4218 struct mem_node *w = x->parent->left;
4219
4220 if (w->color == MEM_RED)
4221 {
4222 w->color = MEM_BLACK;
4223 x->parent->color = MEM_RED;
4224 mem_rotate_right (x->parent);
4225 w = x->parent->left;
4226 }
4227
4228 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4229 {
4230 w->color = MEM_RED;
4231 x = x->parent;
4232 }
4233 else
4234 {
4235 if (w->left->color == MEM_BLACK)
4236 {
4237 w->right->color = MEM_BLACK;
4238 w->color = MEM_RED;
4239 mem_rotate_left (w);
4240 w = x->parent->left;
4241 }
4242
4243 w->color = x->parent->color;
4244 x->parent->color = MEM_BLACK;
4245 w->left->color = MEM_BLACK;
4246 mem_rotate_right (x->parent);
4247 x = mem_root;
4248 }
4249 }
4250 }
4251
4252 x->color = MEM_BLACK;
4253 }
4254
4255
4256 /* Value is non-zero if P is a pointer to a live Lisp string on
4257 the heap. M is a pointer to the mem_block for P. */
4258
4259 static inline bool
4260 live_string_p (struct mem_node *m, void *p)
4261 {
4262 if (m->type == MEM_TYPE_STRING)
4263 {
4264 struct string_block *b = (struct string_block *) m->start;
4265 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4266
4267 /* P must point to the start of a Lisp_String structure, and it
4268 must not be on the free-list. */
4269 return (offset >= 0
4270 && offset % sizeof b->strings[0] == 0
4271 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4272 && ((struct Lisp_String *) p)->data != NULL);
4273 }
4274 else
4275 return 0;
4276 }
4277
4278
4279 /* Value is non-zero if P is a pointer to a live Lisp cons on
4280 the heap. M is a pointer to the mem_block for P. */
4281
4282 static inline bool
4283 live_cons_p (struct mem_node *m, void *p)
4284 {
4285 if (m->type == MEM_TYPE_CONS)
4286 {
4287 struct cons_block *b = (struct cons_block *) m->start;
4288 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4289
4290 /* P must point to the start of a Lisp_Cons, not be
4291 one of the unused cells in the current cons block,
4292 and not be on the free-list. */
4293 return (offset >= 0
4294 && offset % sizeof b->conses[0] == 0
4295 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4296 && (b != cons_block
4297 || offset / sizeof b->conses[0] < cons_block_index)
4298 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4299 }
4300 else
4301 return 0;
4302 }
4303
4304
4305 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4306 the heap. M is a pointer to the mem_block for P. */
4307
4308 static inline bool
4309 live_symbol_p (struct mem_node *m, void *p)
4310 {
4311 if (m->type == MEM_TYPE_SYMBOL)
4312 {
4313 struct symbol_block *b = (struct symbol_block *) m->start;
4314 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4315
4316 /* P must point to the start of a Lisp_Symbol, not be
4317 one of the unused cells in the current symbol block,
4318 and not be on the free-list. */
4319 return (offset >= 0
4320 && offset % sizeof b->symbols[0] == 0
4321 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4322 && (b != symbol_block
4323 || offset / sizeof b->symbols[0] < symbol_block_index)
4324 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4325 }
4326 else
4327 return 0;
4328 }
4329
4330
4331 /* Value is non-zero if P is a pointer to a live Lisp float on
4332 the heap. M is a pointer to the mem_block for P. */
4333
4334 static inline bool
4335 live_float_p (struct mem_node *m, void *p)
4336 {
4337 if (m->type == MEM_TYPE_FLOAT)
4338 {
4339 struct float_block *b = (struct float_block *) m->start;
4340 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4341
4342 /* P must point to the start of a Lisp_Float and not be
4343 one of the unused cells in the current float block. */
4344 return (offset >= 0
4345 && offset % sizeof b->floats[0] == 0
4346 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4347 && (b != float_block
4348 || offset / sizeof b->floats[0] < float_block_index));
4349 }
4350 else
4351 return 0;
4352 }
4353
4354
4355 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4356 the heap. M is a pointer to the mem_block for P. */
4357
4358 static inline bool
4359 live_misc_p (struct mem_node *m, void *p)
4360 {
4361 if (m->type == MEM_TYPE_MISC)
4362 {
4363 struct marker_block *b = (struct marker_block *) m->start;
4364 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4365
4366 /* P must point to the start of a Lisp_Misc, not be
4367 one of the unused cells in the current misc block,
4368 and not be on the free-list. */
4369 return (offset >= 0
4370 && offset % sizeof b->markers[0] == 0
4371 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4372 && (b != marker_block
4373 || offset / sizeof b->markers[0] < marker_block_index)
4374 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4375 }
4376 else
4377 return 0;
4378 }
4379
4380
4381 /* Value is non-zero if P is a pointer to a live vector-like object.
4382 M is a pointer to the mem_block for P. */
4383
4384 static inline bool
4385 live_vector_p (struct mem_node *m, void *p)
4386 {
4387 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4388 {
4389 /* This memory node corresponds to a vector block. */
4390 struct vector_block *block = (struct vector_block *) m->start;
4391 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4392
4393 /* P is in the block's allocation range. Scan the block
4394 up to P and see whether P points to the start of some
4395 vector which is not on a free list. FIXME: check whether
4396 some allocation patterns (probably a lot of short vectors)
4397 may cause a substantial overhead of this loop. */
4398 while (VECTOR_IN_BLOCK (vector, block)
4399 && vector <= (struct Lisp_Vector *) p)
4400 {
4401 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4402 vector = ADVANCE (vector, (vector->header.size
4403 & PSEUDOVECTOR_SIZE_MASK));
4404 else if (vector == p)
4405 return 1;
4406 else
4407 vector = ADVANCE (vector, vector->header.next.nbytes);
4408 }
4409 }
4410 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4411 /* This memory node corresponds to a large vector. */
4412 return 1;
4413 return 0;
4414 }
4415
4416
4417 /* Value is non-zero if P is a pointer to a live buffer. M is a
4418 pointer to the mem_block for P. */
4419
4420 static inline bool
4421 live_buffer_p (struct mem_node *m, void *p)
4422 {
4423 /* P must point to the start of the block, and the buffer
4424 must not have been killed. */
4425 return (m->type == MEM_TYPE_BUFFER
4426 && p == m->start
4427 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4428 }
4429
4430 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4431
4432 #if GC_MARK_STACK
4433
4434 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4435
4436 /* Array of objects that are kept alive because the C stack contains
4437 a pattern that looks like a reference to them . */
4438
4439 #define MAX_ZOMBIES 10
4440 static Lisp_Object zombies[MAX_ZOMBIES];
4441
4442 /* Number of zombie objects. */
4443
4444 static EMACS_INT nzombies;
4445
4446 /* Number of garbage collections. */
4447
4448 static EMACS_INT ngcs;
4449
4450 /* Average percentage of zombies per collection. */
4451
4452 static double avg_zombies;
4453
4454 /* Max. number of live and zombie objects. */
4455
4456 static EMACS_INT max_live, max_zombies;
4457
4458 /* Average number of live objects per GC. */
4459
4460 static double avg_live;
4461
4462 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4463 doc: /* Show information about live and zombie objects. */)
4464 (void)
4465 {
4466 Lisp_Object args[8], zombie_list = Qnil;
4467 EMACS_INT i;
4468 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4469 zombie_list = Fcons (zombies[i], zombie_list);
4470 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4471 args[1] = make_number (ngcs);
4472 args[2] = make_float (avg_live);
4473 args[3] = make_float (avg_zombies);
4474 args[4] = make_float (avg_zombies / avg_live / 100);
4475 args[5] = make_number (max_live);
4476 args[6] = make_number (max_zombies);
4477 args[7] = zombie_list;
4478 return Fmessage (8, args);
4479 }
4480
4481 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4482
4483
4484 /* Mark OBJ if we can prove it's a Lisp_Object. */
4485
4486 static inline void
4487 mark_maybe_object (Lisp_Object obj)
4488 {
4489 void *po;
4490 struct mem_node *m;
4491
4492 if (INTEGERP (obj))
4493 return;
4494
4495 po = (void *) XPNTR (obj);
4496 m = mem_find (po);
4497
4498 if (m != MEM_NIL)
4499 {
4500 bool mark_p = 0;
4501
4502 switch (XTYPE (obj))
4503 {
4504 case Lisp_String:
4505 mark_p = (live_string_p (m, po)
4506 && !STRING_MARKED_P ((struct Lisp_String *) po));
4507 break;
4508
4509 case Lisp_Cons:
4510 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4511 break;
4512
4513 case Lisp_Symbol:
4514 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4515 break;
4516
4517 case Lisp_Float:
4518 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4519 break;
4520
4521 case Lisp_Vectorlike:
4522 /* Note: can't check BUFFERP before we know it's a
4523 buffer because checking that dereferences the pointer
4524 PO which might point anywhere. */
4525 if (live_vector_p (m, po))
4526 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4527 else if (live_buffer_p (m, po))
4528 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4529 break;
4530
4531 case Lisp_Misc:
4532 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4533 break;
4534
4535 default:
4536 break;
4537 }
4538
4539 if (mark_p)
4540 {
4541 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4542 if (nzombies < MAX_ZOMBIES)
4543 zombies[nzombies] = obj;
4544 ++nzombies;
4545 #endif
4546 mark_object (obj);
4547 }
4548 }
4549 }
4550
4551
4552 /* If P points to Lisp data, mark that as live if it isn't already
4553 marked. */
4554
4555 static inline void
4556 mark_maybe_pointer (void *p)
4557 {
4558 struct mem_node *m;
4559
4560 /* Quickly rule out some values which can't point to Lisp data.
4561 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4562 Otherwise, assume that Lisp data is aligned on even addresses. */
4563 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4564 return;
4565
4566 m = mem_find (p);
4567 if (m != MEM_NIL)
4568 {
4569 Lisp_Object obj = Qnil;
4570
4571 switch (m->type)
4572 {
4573 case MEM_TYPE_NON_LISP:
4574 case MEM_TYPE_SPARE:
4575 /* Nothing to do; not a pointer to Lisp memory. */
4576 break;
4577
4578 case MEM_TYPE_BUFFER:
4579 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4580 XSETVECTOR (obj, p);
4581 break;
4582
4583 case MEM_TYPE_CONS:
4584 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4585 XSETCONS (obj, p);
4586 break;
4587
4588 case MEM_TYPE_STRING:
4589 if (live_string_p (m, p)
4590 && !STRING_MARKED_P ((struct Lisp_String *) p))
4591 XSETSTRING (obj, p);
4592 break;
4593
4594 case MEM_TYPE_MISC:
4595 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4596 XSETMISC (obj, p);
4597 break;
4598
4599 case MEM_TYPE_SYMBOL:
4600 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4601 XSETSYMBOL (obj, p);
4602 break;
4603
4604 case MEM_TYPE_FLOAT:
4605 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4606 XSETFLOAT (obj, p);
4607 break;
4608
4609 case MEM_TYPE_VECTORLIKE:
4610 case MEM_TYPE_VECTOR_BLOCK:
4611 if (live_vector_p (m, p))
4612 {
4613 Lisp_Object tem;
4614 XSETVECTOR (tem, p);
4615 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4616 obj = tem;
4617 }
4618 break;
4619
4620 default:
4621 emacs_abort ();
4622 }
4623
4624 if (!NILP (obj))
4625 mark_object (obj);
4626 }
4627 }
4628
4629
4630 /* Alignment of pointer values. Use alignof, as it sometimes returns
4631 a smaller alignment than GCC's __alignof__ and mark_memory might
4632 miss objects if __alignof__ were used. */
4633 #define GC_POINTER_ALIGNMENT alignof (void *)
4634
4635 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4636 not suffice, which is the typical case. A host where a Lisp_Object is
4637 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4638 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4639 suffice to widen it to to a Lisp_Object and check it that way. */
4640 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4641 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4642 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4643 nor mark_maybe_object can follow the pointers. This should not occur on
4644 any practical porting target. */
4645 # error "MSB type bits straddle pointer-word boundaries"
4646 # endif
4647 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4648 pointer words that hold pointers ORed with type bits. */
4649 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4650 #else
4651 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4652 words that hold unmodified pointers. */
4653 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4654 #endif
4655
4656 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4657 or END+OFFSET..START. */
4658
4659 static void
4660 mark_memory (void *start, void *end)
4661 #if defined (__clang__) && defined (__has_feature)
4662 #if __has_feature(address_sanitizer)
4663 /* Do not allow -faddress-sanitizer to check this function, since it
4664 crosses the function stack boundary, and thus would yield many
4665 false positives. */
4666 __attribute__((no_address_safety_analysis))
4667 #endif
4668 #endif
4669 {
4670 void **pp;
4671 int i;
4672
4673 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4674 nzombies = 0;
4675 #endif
4676
4677 /* Make START the pointer to the start of the memory region,
4678 if it isn't already. */
4679 if (end < start)
4680 {
4681 void *tem = start;
4682 start = end;
4683 end = tem;
4684 }
4685
4686 /* Mark Lisp data pointed to. This is necessary because, in some
4687 situations, the C compiler optimizes Lisp objects away, so that
4688 only a pointer to them remains. Example:
4689
4690 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4691 ()
4692 {
4693 Lisp_Object obj = build_string ("test");
4694 struct Lisp_String *s = XSTRING (obj);
4695 Fgarbage_collect ();
4696 fprintf (stderr, "test `%s'\n", s->data);
4697 return Qnil;
4698 }
4699
4700 Here, `obj' isn't really used, and the compiler optimizes it
4701 away. The only reference to the life string is through the
4702 pointer `s'. */
4703
4704 for (pp = start; (void *) pp < end; pp++)
4705 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4706 {
4707 void *p = *(void **) ((char *) pp + i);
4708 mark_maybe_pointer (p);
4709 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4710 mark_maybe_object (XIL ((intptr_t) p));
4711 }
4712 }
4713
4714 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4715 the GCC system configuration. In gcc 3.2, the only systems for
4716 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4717 by others?) and ns32k-pc532-min. */
4718
4719 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4720
4721 static bool setjmp_tested_p;
4722 static int longjmps_done;
4723
4724 #define SETJMP_WILL_LIKELY_WORK "\
4725 \n\
4726 Emacs garbage collector has been changed to use conservative stack\n\
4727 marking. Emacs has determined that the method it uses to do the\n\
4728 marking will likely work on your system, but this isn't sure.\n\
4729 \n\
4730 If you are a system-programmer, or can get the help of a local wizard\n\
4731 who is, please take a look at the function mark_stack in alloc.c, and\n\
4732 verify that the methods used are appropriate for your system.\n\
4733 \n\
4734 Please mail the result to <emacs-devel@gnu.org>.\n\
4735 "
4736
4737 #define SETJMP_WILL_NOT_WORK "\
4738 \n\
4739 Emacs garbage collector has been changed to use conservative stack\n\
4740 marking. Emacs has determined that the default method it uses to do the\n\
4741 marking will not work on your system. We will need a system-dependent\n\
4742 solution for your system.\n\
4743 \n\
4744 Please take a look at the function mark_stack in alloc.c, and\n\
4745 try to find a way to make it work on your system.\n\
4746 \n\
4747 Note that you may get false negatives, depending on the compiler.\n\
4748 In particular, you need to use -O with GCC for this test.\n\
4749 \n\
4750 Please mail the result to <emacs-devel@gnu.org>.\n\
4751 "
4752
4753
4754 /* Perform a quick check if it looks like setjmp saves registers in a
4755 jmp_buf. Print a message to stderr saying so. When this test
4756 succeeds, this is _not_ a proof that setjmp is sufficient for
4757 conservative stack marking. Only the sources or a disassembly
4758 can prove that. */
4759
4760 static void
4761 test_setjmp (void)
4762 {
4763 char buf[10];
4764 register int x;
4765 jmp_buf jbuf;
4766
4767 /* Arrange for X to be put in a register. */
4768 sprintf (buf, "1");
4769 x = strlen (buf);
4770 x = 2 * x - 1;
4771
4772 _setjmp (jbuf);
4773 if (longjmps_done == 1)
4774 {
4775 /* Came here after the longjmp at the end of the function.
4776
4777 If x == 1, the longjmp has restored the register to its
4778 value before the setjmp, and we can hope that setjmp
4779 saves all such registers in the jmp_buf, although that
4780 isn't sure.
4781
4782 For other values of X, either something really strange is
4783 taking place, or the setjmp just didn't save the register. */
4784
4785 if (x == 1)
4786 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4787 else
4788 {
4789 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4790 exit (1);
4791 }
4792 }
4793
4794 ++longjmps_done;
4795 x = 2;
4796 if (longjmps_done == 1)
4797 _longjmp (jbuf, 1);
4798 }
4799
4800 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4801
4802
4803 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4804
4805 /* Abort if anything GCPRO'd doesn't survive the GC. */
4806
4807 static void
4808 check_gcpros (void)
4809 {
4810 struct gcpro *p;
4811 ptrdiff_t i;
4812
4813 for (p = gcprolist; p; p = p->next)
4814 for (i = 0; i < p->nvars; ++i)
4815 if (!survives_gc_p (p->var[i]))
4816 /* FIXME: It's not necessarily a bug. It might just be that the
4817 GCPRO is unnecessary or should release the object sooner. */
4818 emacs_abort ();
4819 }
4820
4821 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4822
4823 static void
4824 dump_zombies (void)
4825 {
4826 int i;
4827
4828 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4829 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4830 {
4831 fprintf (stderr, " %d = ", i);
4832 debug_print (zombies[i]);
4833 }
4834 }
4835
4836 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4837
4838
4839 /* Mark live Lisp objects on the C stack.
4840
4841 There are several system-dependent problems to consider when
4842 porting this to new architectures:
4843
4844 Processor Registers
4845
4846 We have to mark Lisp objects in CPU registers that can hold local
4847 variables or are used to pass parameters.
4848
4849 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4850 something that either saves relevant registers on the stack, or
4851 calls mark_maybe_object passing it each register's contents.
4852
4853 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4854 implementation assumes that calling setjmp saves registers we need
4855 to see in a jmp_buf which itself lies on the stack. This doesn't
4856 have to be true! It must be verified for each system, possibly
4857 by taking a look at the source code of setjmp.
4858
4859 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4860 can use it as a machine independent method to store all registers
4861 to the stack. In this case the macros described in the previous
4862 two paragraphs are not used.
4863
4864 Stack Layout
4865
4866 Architectures differ in the way their processor stack is organized.
4867 For example, the stack might look like this
4868
4869 +----------------+
4870 | Lisp_Object | size = 4
4871 +----------------+
4872 | something else | size = 2
4873 +----------------+
4874 | Lisp_Object | size = 4
4875 +----------------+
4876 | ... |
4877
4878 In such a case, not every Lisp_Object will be aligned equally. To
4879 find all Lisp_Object on the stack it won't be sufficient to walk
4880 the stack in steps of 4 bytes. Instead, two passes will be
4881 necessary, one starting at the start of the stack, and a second
4882 pass starting at the start of the stack + 2. Likewise, if the
4883 minimal alignment of Lisp_Objects on the stack is 1, four passes
4884 would be necessary, each one starting with one byte more offset
4885 from the stack start. */
4886
4887 static void
4888 mark_stack (void)
4889 {
4890 void *end;
4891
4892 #ifdef HAVE___BUILTIN_UNWIND_INIT
4893 /* Force callee-saved registers and register windows onto the stack.
4894 This is the preferred method if available, obviating the need for
4895 machine dependent methods. */
4896 __builtin_unwind_init ();
4897 end = &end;
4898 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4899 #ifndef GC_SAVE_REGISTERS_ON_STACK
4900 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4901 union aligned_jmpbuf {
4902 Lisp_Object o;
4903 jmp_buf j;
4904 } j;
4905 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4906 #endif
4907 /* This trick flushes the register windows so that all the state of
4908 the process is contained in the stack. */
4909 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4910 needed on ia64 too. See mach_dep.c, where it also says inline
4911 assembler doesn't work with relevant proprietary compilers. */
4912 #ifdef __sparc__
4913 #if defined (__sparc64__) && defined (__FreeBSD__)
4914 /* FreeBSD does not have a ta 3 handler. */
4915 asm ("flushw");
4916 #else
4917 asm ("ta 3");
4918 #endif
4919 #endif
4920
4921 /* Save registers that we need to see on the stack. We need to see
4922 registers used to hold register variables and registers used to
4923 pass parameters. */
4924 #ifdef GC_SAVE_REGISTERS_ON_STACK
4925 GC_SAVE_REGISTERS_ON_STACK (end);
4926 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4927
4928 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4929 setjmp will definitely work, test it
4930 and print a message with the result
4931 of the test. */
4932 if (!setjmp_tested_p)
4933 {
4934 setjmp_tested_p = 1;
4935 test_setjmp ();
4936 }
4937 #endif /* GC_SETJMP_WORKS */
4938
4939 _setjmp (j.j);
4940 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4941 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4942 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4943
4944 /* This assumes that the stack is a contiguous region in memory. If
4945 that's not the case, something has to be done here to iterate
4946 over the stack segments. */
4947 mark_memory (stack_base, end);
4948
4949 /* Allow for marking a secondary stack, like the register stack on the
4950 ia64. */
4951 #ifdef GC_MARK_SECONDARY_STACK
4952 GC_MARK_SECONDARY_STACK ();
4953 #endif
4954
4955 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4956 check_gcpros ();
4957 #endif
4958 }
4959
4960 #endif /* GC_MARK_STACK != 0 */
4961
4962
4963 /* Determine whether it is safe to access memory at address P. */
4964 static int
4965 valid_pointer_p (void *p)
4966 {
4967 #ifdef WINDOWSNT
4968 return w32_valid_pointer_p (p, 16);
4969 #else
4970 int fd[2];
4971
4972 /* Obviously, we cannot just access it (we would SEGV trying), so we
4973 trick the o/s to tell us whether p is a valid pointer.
4974 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4975 not validate p in that case. */
4976
4977 if (pipe (fd) == 0)
4978 {
4979 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4980 emacs_close (fd[1]);
4981 emacs_close (fd[0]);
4982 return valid;
4983 }
4984
4985 return -1;
4986 #endif
4987 }
4988
4989 /* Return 2 if OBJ is a killed or special buffer object.
4990 Return 1 if OBJ is a valid lisp object.
4991 Return 0 if OBJ is NOT a valid lisp object.
4992 Return -1 if we cannot validate OBJ.
4993 This function can be quite slow,
4994 so it should only be used in code for manual debugging. */
4995
4996 int
4997 valid_lisp_object_p (Lisp_Object obj)
4998 {
4999 void *p;
5000 #if GC_MARK_STACK
5001 struct mem_node *m;
5002 #endif
5003
5004 if (INTEGERP (obj))
5005 return 1;
5006
5007 p = (void *) XPNTR (obj);
5008 if (PURE_POINTER_P (p))
5009 return 1;
5010
5011 if (p == &buffer_defaults || p == &buffer_local_symbols)
5012 return 2;
5013
5014 #if !GC_MARK_STACK
5015 return valid_pointer_p (p);
5016 #else
5017
5018 m = mem_find (p);
5019
5020 if (m == MEM_NIL)
5021 {
5022 int valid = valid_pointer_p (p);
5023 if (valid <= 0)
5024 return valid;
5025
5026 if (SUBRP (obj))
5027 return 1;
5028
5029 return 0;
5030 }
5031
5032 switch (m->type)
5033 {
5034 case MEM_TYPE_NON_LISP:
5035 case MEM_TYPE_SPARE:
5036 return 0;
5037
5038 case MEM_TYPE_BUFFER:
5039 return live_buffer_p (m, p) ? 1 : 2;
5040
5041 case MEM_TYPE_CONS:
5042 return live_cons_p (m, p);
5043
5044 case MEM_TYPE_STRING:
5045 return live_string_p (m, p);
5046
5047 case MEM_TYPE_MISC:
5048 return live_misc_p (m, p);
5049
5050 case MEM_TYPE_SYMBOL:
5051 return live_symbol_p (m, p);
5052
5053 case MEM_TYPE_FLOAT:
5054 return live_float_p (m, p);
5055
5056 case MEM_TYPE_VECTORLIKE:
5057 case MEM_TYPE_VECTOR_BLOCK:
5058 return live_vector_p (m, p);
5059
5060 default:
5061 break;
5062 }
5063
5064 return 0;
5065 #endif
5066 }
5067
5068
5069
5070 \f
5071 /***********************************************************************
5072 Pure Storage Management
5073 ***********************************************************************/
5074
5075 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5076 pointer to it. TYPE is the Lisp type for which the memory is
5077 allocated. TYPE < 0 means it's not used for a Lisp object. */
5078
5079 static void *
5080 pure_alloc (size_t size, int type)
5081 {
5082 void *result;
5083 #if USE_LSB_TAG
5084 size_t alignment = GCALIGNMENT;
5085 #else
5086 size_t alignment = alignof (EMACS_INT);
5087
5088 /* Give Lisp_Floats an extra alignment. */
5089 if (type == Lisp_Float)
5090 alignment = alignof (struct Lisp_Float);
5091 #endif
5092
5093 again:
5094 if (type >= 0)
5095 {
5096 /* Allocate space for a Lisp object from the beginning of the free
5097 space with taking account of alignment. */
5098 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5099 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5100 }
5101 else
5102 {
5103 /* Allocate space for a non-Lisp object from the end of the free
5104 space. */
5105 pure_bytes_used_non_lisp += size;
5106 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5107 }
5108 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5109
5110 if (pure_bytes_used <= pure_size)
5111 return result;
5112
5113 /* Don't allocate a large amount here,
5114 because it might get mmap'd and then its address
5115 might not be usable. */
5116 purebeg = xmalloc (10000);
5117 pure_size = 10000;
5118 pure_bytes_used_before_overflow += pure_bytes_used - size;
5119 pure_bytes_used = 0;
5120 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5121 goto again;
5122 }
5123
5124
5125 /* Print a warning if PURESIZE is too small. */
5126
5127 void
5128 check_pure_size (void)
5129 {
5130 if (pure_bytes_used_before_overflow)
5131 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5132 " bytes needed)"),
5133 pure_bytes_used + pure_bytes_used_before_overflow);
5134 }
5135
5136
5137 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5138 the non-Lisp data pool of the pure storage, and return its start
5139 address. Return NULL if not found. */
5140
5141 static char *
5142 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5143 {
5144 int i;
5145 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5146 const unsigned char *p;
5147 char *non_lisp_beg;
5148
5149 if (pure_bytes_used_non_lisp <= nbytes)
5150 return NULL;
5151
5152 /* Set up the Boyer-Moore table. */
5153 skip = nbytes + 1;
5154 for (i = 0; i < 256; i++)
5155 bm_skip[i] = skip;
5156
5157 p = (const unsigned char *) data;
5158 while (--skip > 0)
5159 bm_skip[*p++] = skip;
5160
5161 last_char_skip = bm_skip['\0'];
5162
5163 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5164 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5165
5166 /* See the comments in the function `boyer_moore' (search.c) for the
5167 use of `infinity'. */
5168 infinity = pure_bytes_used_non_lisp + 1;
5169 bm_skip['\0'] = infinity;
5170
5171 p = (const unsigned char *) non_lisp_beg + nbytes;
5172 start = 0;
5173 do
5174 {
5175 /* Check the last character (== '\0'). */
5176 do
5177 {
5178 start += bm_skip[*(p + start)];
5179 }
5180 while (start <= start_max);
5181
5182 if (start < infinity)
5183 /* Couldn't find the last character. */
5184 return NULL;
5185
5186 /* No less than `infinity' means we could find the last
5187 character at `p[start - infinity]'. */
5188 start -= infinity;
5189
5190 /* Check the remaining characters. */
5191 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5192 /* Found. */
5193 return non_lisp_beg + start;
5194
5195 start += last_char_skip;
5196 }
5197 while (start <= start_max);
5198
5199 return NULL;
5200 }
5201
5202
5203 /* Return a string allocated in pure space. DATA is a buffer holding
5204 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5205 means make the result string multibyte.
5206
5207 Must get an error if pure storage is full, since if it cannot hold
5208 a large string it may be able to hold conses that point to that
5209 string; then the string is not protected from gc. */
5210
5211 Lisp_Object
5212 make_pure_string (const char *data,
5213 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5214 {
5215 Lisp_Object string;
5216 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5217 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5218 if (s->data == NULL)
5219 {
5220 s->data = pure_alloc (nbytes + 1, -1);
5221 memcpy (s->data, data, nbytes);
5222 s->data[nbytes] = '\0';
5223 }
5224 s->size = nchars;
5225 s->size_byte = multibyte ? nbytes : -1;
5226 s->intervals = NULL;
5227 XSETSTRING (string, s);
5228 return string;
5229 }
5230
5231 /* Return a string allocated in pure space. Do not
5232 allocate the string data, just point to DATA. */
5233
5234 Lisp_Object
5235 make_pure_c_string (const char *data, ptrdiff_t nchars)
5236 {
5237 Lisp_Object string;
5238 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5239 s->size = nchars;
5240 s->size_byte = -1;
5241 s->data = (unsigned char *) data;
5242 s->intervals = NULL;
5243 XSETSTRING (string, s);
5244 return string;
5245 }
5246
5247 /* Return a cons allocated from pure space. Give it pure copies
5248 of CAR as car and CDR as cdr. */
5249
5250 Lisp_Object
5251 pure_cons (Lisp_Object car, Lisp_Object cdr)
5252 {
5253 Lisp_Object new;
5254 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5255 XSETCONS (new, p);
5256 XSETCAR (new, Fpurecopy (car));
5257 XSETCDR (new, Fpurecopy (cdr));
5258 return new;
5259 }
5260
5261
5262 /* Value is a float object with value NUM allocated from pure space. */
5263
5264 static Lisp_Object
5265 make_pure_float (double num)
5266 {
5267 Lisp_Object new;
5268 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5269 XSETFLOAT (new, p);
5270 XFLOAT_INIT (new, num);
5271 return new;
5272 }
5273
5274
5275 /* Return a vector with room for LEN Lisp_Objects allocated from
5276 pure space. */
5277
5278 static Lisp_Object
5279 make_pure_vector (ptrdiff_t len)
5280 {
5281 Lisp_Object new;
5282 size_t size = header_size + len * word_size;
5283 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5284 XSETVECTOR (new, p);
5285 XVECTOR (new)->header.size = len;
5286 return new;
5287 }
5288
5289
5290 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5291 doc: /* Make a copy of object OBJ in pure storage.
5292 Recursively copies contents of vectors and cons cells.
5293 Does not copy symbols. Copies strings without text properties. */)
5294 (register Lisp_Object obj)
5295 {
5296 if (NILP (Vpurify_flag))
5297 return obj;
5298
5299 if (PURE_POINTER_P (XPNTR (obj)))
5300 return obj;
5301
5302 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5303 {
5304 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5305 if (!NILP (tmp))
5306 return tmp;
5307 }
5308
5309 if (CONSP (obj))
5310 obj = pure_cons (XCAR (obj), XCDR (obj));
5311 else if (FLOATP (obj))
5312 obj = make_pure_float (XFLOAT_DATA (obj));
5313 else if (STRINGP (obj))
5314 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5315 SBYTES (obj),
5316 STRING_MULTIBYTE (obj));
5317 else if (COMPILEDP (obj) || VECTORP (obj))
5318 {
5319 register struct Lisp_Vector *vec;
5320 register ptrdiff_t i;
5321 ptrdiff_t size;
5322
5323 size = ASIZE (obj);
5324 if (size & PSEUDOVECTOR_FLAG)
5325 size &= PSEUDOVECTOR_SIZE_MASK;
5326 vec = XVECTOR (make_pure_vector (size));
5327 for (i = 0; i < size; i++)
5328 vec->contents[i] = Fpurecopy (AREF (obj, i));
5329 if (COMPILEDP (obj))
5330 {
5331 XSETPVECTYPE (vec, PVEC_COMPILED);
5332 XSETCOMPILED (obj, vec);
5333 }
5334 else
5335 XSETVECTOR (obj, vec);
5336 }
5337 else if (MARKERP (obj))
5338 error ("Attempt to copy a marker to pure storage");
5339 else
5340 /* Not purified, don't hash-cons. */
5341 return obj;
5342
5343 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5344 Fputhash (obj, obj, Vpurify_flag);
5345
5346 return obj;
5347 }
5348
5349
5350 \f
5351 /***********************************************************************
5352 Protection from GC
5353 ***********************************************************************/
5354
5355 /* Put an entry in staticvec, pointing at the variable with address
5356 VARADDRESS. */
5357
5358 void
5359 staticpro (Lisp_Object *varaddress)
5360 {
5361 staticvec[staticidx++] = varaddress;
5362 if (staticidx >= NSTATICS)
5363 emacs_abort ();
5364 }
5365
5366 \f
5367 /***********************************************************************
5368 Protection from GC
5369 ***********************************************************************/
5370
5371 /* Temporarily prevent garbage collection. */
5372
5373 ptrdiff_t
5374 inhibit_garbage_collection (void)
5375 {
5376 ptrdiff_t count = SPECPDL_INDEX ();
5377
5378 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5379 return count;
5380 }
5381
5382 /* Used to avoid possible overflows when
5383 converting from C to Lisp integers. */
5384
5385 static inline Lisp_Object
5386 bounded_number (EMACS_INT number)
5387 {
5388 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5389 }
5390
5391 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5392 doc: /* Reclaim storage for Lisp objects no longer needed.
5393 Garbage collection happens automatically if you cons more than
5394 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5395 `garbage-collect' normally returns a list with info on amount of space in use,
5396 where each entry has the form (NAME SIZE USED FREE), where:
5397 - NAME is a symbol describing the kind of objects this entry represents,
5398 - SIZE is the number of bytes used by each one,
5399 - USED is the number of those objects that were found live in the heap,
5400 - FREE is the number of those objects that are not live but that Emacs
5401 keeps around for future allocations (maybe because it does not know how
5402 to return them to the OS).
5403 However, if there was overflow in pure space, `garbage-collect'
5404 returns nil, because real GC can't be done.
5405 See Info node `(elisp)Garbage Collection'. */)
5406 (void)
5407 {
5408 struct specbinding *bind;
5409 struct buffer *nextb;
5410 char stack_top_variable;
5411 ptrdiff_t i;
5412 bool message_p;
5413 ptrdiff_t count = SPECPDL_INDEX ();
5414 EMACS_TIME start;
5415 Lisp_Object retval = Qnil;
5416
5417 if (abort_on_gc)
5418 emacs_abort ();
5419
5420 /* Can't GC if pure storage overflowed because we can't determine
5421 if something is a pure object or not. */
5422 if (pure_bytes_used_before_overflow)
5423 return Qnil;
5424
5425 check_cons_list ();
5426
5427 /* Don't keep undo information around forever.
5428 Do this early on, so it is no problem if the user quits. */
5429 FOR_EACH_BUFFER (nextb)
5430 compact_buffer (nextb);
5431
5432 start = current_emacs_time ();
5433
5434 /* In case user calls debug_print during GC,
5435 don't let that cause a recursive GC. */
5436 consing_since_gc = 0;
5437
5438 /* Save what's currently displayed in the echo area. */
5439 message_p = push_message ();
5440 record_unwind_protect (pop_message_unwind, Qnil);
5441
5442 /* Save a copy of the contents of the stack, for debugging. */
5443 #if MAX_SAVE_STACK > 0
5444 if (NILP (Vpurify_flag))
5445 {
5446 char *stack;
5447 ptrdiff_t stack_size;
5448 if (&stack_top_variable < stack_bottom)
5449 {
5450 stack = &stack_top_variable;
5451 stack_size = stack_bottom - &stack_top_variable;
5452 }
5453 else
5454 {
5455 stack = stack_bottom;
5456 stack_size = &stack_top_variable - stack_bottom;
5457 }
5458 if (stack_size <= MAX_SAVE_STACK)
5459 {
5460 if (stack_copy_size < stack_size)
5461 {
5462 stack_copy = xrealloc (stack_copy, stack_size);
5463 stack_copy_size = stack_size;
5464 }
5465 memcpy (stack_copy, stack, stack_size);
5466 }
5467 }
5468 #endif /* MAX_SAVE_STACK > 0 */
5469
5470 if (garbage_collection_messages)
5471 message1_nolog ("Garbage collecting...");
5472
5473 BLOCK_INPUT;
5474
5475 shrink_regexp_cache ();
5476
5477 gc_in_progress = 1;
5478
5479 /* Mark all the special slots that serve as the roots of accessibility. */
5480
5481 mark_buffer (&buffer_defaults);
5482 mark_buffer (&buffer_local_symbols);
5483
5484 for (i = 0; i < staticidx; i++)
5485 mark_object (*staticvec[i]);
5486
5487 for (bind = specpdl; bind != specpdl_ptr; bind++)
5488 {
5489 mark_object (bind->symbol);
5490 mark_object (bind->old_value);
5491 }
5492 mark_terminals ();
5493 mark_kboards ();
5494
5495 #ifdef USE_GTK
5496 xg_mark_data ();
5497 #endif
5498
5499 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5500 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5501 mark_stack ();
5502 #else
5503 {
5504 register struct gcpro *tail;
5505 for (tail = gcprolist; tail; tail = tail->next)
5506 for (i = 0; i < tail->nvars; i++)
5507 mark_object (tail->var[i]);
5508 }
5509 mark_byte_stack ();
5510 {
5511 struct catchtag *catch;
5512 struct handler *handler;
5513
5514 for (catch = catchlist; catch; catch = catch->next)
5515 {
5516 mark_object (catch->tag);
5517 mark_object (catch->val);
5518 }
5519 for (handler = handlerlist; handler; handler = handler->next)
5520 {
5521 mark_object (handler->handler);
5522 mark_object (handler->var);
5523 }
5524 }
5525 mark_backtrace ();
5526 #endif
5527
5528 #ifdef HAVE_WINDOW_SYSTEM
5529 mark_fringe_data ();
5530 #endif
5531
5532 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5533 mark_stack ();
5534 #endif
5535
5536 /* Everything is now marked, except for the things that require special
5537 finalization, i.e. the undo_list.
5538 Look thru every buffer's undo list
5539 for elements that update markers that were not marked,
5540 and delete them. */
5541 FOR_EACH_BUFFER (nextb)
5542 {
5543 /* If a buffer's undo list is Qt, that means that undo is
5544 turned off in that buffer. Calling truncate_undo_list on
5545 Qt tends to return NULL, which effectively turns undo back on.
5546 So don't call truncate_undo_list if undo_list is Qt. */
5547 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5548 {
5549 Lisp_Object tail, prev;
5550 tail = nextb->INTERNAL_FIELD (undo_list);
5551 prev = Qnil;
5552 while (CONSP (tail))
5553 {
5554 if (CONSP (XCAR (tail))
5555 && MARKERP (XCAR (XCAR (tail)))
5556 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5557 {
5558 if (NILP (prev))
5559 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5560 else
5561 {
5562 tail = XCDR (tail);
5563 XSETCDR (prev, tail);
5564 }
5565 }
5566 else
5567 {
5568 prev = tail;
5569 tail = XCDR (tail);
5570 }
5571 }
5572 }
5573 /* Now that we have stripped the elements that need not be in the
5574 undo_list any more, we can finally mark the list. */
5575 mark_object (nextb->INTERNAL_FIELD (undo_list));
5576 }
5577
5578 gc_sweep ();
5579
5580 /* Clear the mark bits that we set in certain root slots. */
5581
5582 unmark_byte_stack ();
5583 VECTOR_UNMARK (&buffer_defaults);
5584 VECTOR_UNMARK (&buffer_local_symbols);
5585
5586 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5587 dump_zombies ();
5588 #endif
5589
5590 UNBLOCK_INPUT;
5591
5592 check_cons_list ();
5593
5594 gc_in_progress = 0;
5595
5596 consing_since_gc = 0;
5597 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5598 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5599
5600 gc_relative_threshold = 0;
5601 if (FLOATP (Vgc_cons_percentage))
5602 { /* Set gc_cons_combined_threshold. */
5603 double tot = 0;
5604
5605 tot += total_conses * sizeof (struct Lisp_Cons);
5606 tot += total_symbols * sizeof (struct Lisp_Symbol);
5607 tot += total_markers * sizeof (union Lisp_Misc);
5608 tot += total_string_bytes;
5609 tot += total_vector_slots * word_size;
5610 tot += total_floats * sizeof (struct Lisp_Float);
5611 tot += total_intervals * sizeof (struct interval);
5612 tot += total_strings * sizeof (struct Lisp_String);
5613
5614 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5615 if (0 < tot)
5616 {
5617 if (tot < TYPE_MAXIMUM (EMACS_INT))
5618 gc_relative_threshold = tot;
5619 else
5620 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5621 }
5622 }
5623
5624 if (garbage_collection_messages)
5625 {
5626 if (message_p || minibuf_level > 0)
5627 restore_message ();
5628 else
5629 message1_nolog ("Garbage collecting...done");
5630 }
5631
5632 unbind_to (count, Qnil);
5633 {
5634 Lisp_Object total[11];
5635 int total_size = 10;
5636
5637 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5638 bounded_number (total_conses),
5639 bounded_number (total_free_conses));
5640
5641 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5642 bounded_number (total_symbols),
5643 bounded_number (total_free_symbols));
5644
5645 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5646 bounded_number (total_markers),
5647 bounded_number (total_free_markers));
5648
5649 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5650 bounded_number (total_strings),
5651 bounded_number (total_free_strings));
5652
5653 total[4] = list3 (Qstring_bytes, make_number (1),
5654 bounded_number (total_string_bytes));
5655
5656 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5657 bounded_number (total_vectors));
5658
5659 total[6] = list4 (Qvector_slots, make_number (word_size),
5660 bounded_number (total_vector_slots),
5661 bounded_number (total_free_vector_slots));
5662
5663 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5664 bounded_number (total_floats),
5665 bounded_number (total_free_floats));
5666
5667 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5668 bounded_number (total_intervals),
5669 bounded_number (total_free_intervals));
5670
5671 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5672 bounded_number (total_buffers));
5673
5674 #ifdef DOUG_LEA_MALLOC
5675 total_size++;
5676 total[10] = list4 (Qheap, make_number (1024),
5677 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5678 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5679 #endif
5680 retval = Flist (total_size, total);
5681 }
5682
5683 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5684 {
5685 /* Compute average percentage of zombies. */
5686 double nlive
5687 = (total_conses + total_symbols + total_markers + total_strings
5688 + total_vectors + total_floats + total_intervals + total_buffers);
5689
5690 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5691 max_live = max (nlive, max_live);
5692 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5693 max_zombies = max (nzombies, max_zombies);
5694 ++ngcs;
5695 }
5696 #endif
5697
5698 if (!NILP (Vpost_gc_hook))
5699 {
5700 ptrdiff_t gc_count = inhibit_garbage_collection ();
5701 safe_run_hooks (Qpost_gc_hook);
5702 unbind_to (gc_count, Qnil);
5703 }
5704
5705 /* Accumulate statistics. */
5706 if (FLOATP (Vgc_elapsed))
5707 {
5708 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5709 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5710 + EMACS_TIME_TO_DOUBLE (since_start));
5711 }
5712
5713 gcs_done++;
5714
5715 return retval;
5716 }
5717
5718
5719 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5720 only interesting objects referenced from glyphs are strings. */
5721
5722 static void
5723 mark_glyph_matrix (struct glyph_matrix *matrix)
5724 {
5725 struct glyph_row *row = matrix->rows;
5726 struct glyph_row *end = row + matrix->nrows;
5727
5728 for (; row < end; ++row)
5729 if (row->enabled_p)
5730 {
5731 int area;
5732 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5733 {
5734 struct glyph *glyph = row->glyphs[area];
5735 struct glyph *end_glyph = glyph + row->used[area];
5736
5737 for (; glyph < end_glyph; ++glyph)
5738 if (STRINGP (glyph->object)
5739 && !STRING_MARKED_P (XSTRING (glyph->object)))
5740 mark_object (glyph->object);
5741 }
5742 }
5743 }
5744
5745
5746 /* Mark Lisp faces in the face cache C. */
5747
5748 static void
5749 mark_face_cache (struct face_cache *c)
5750 {
5751 if (c)
5752 {
5753 int i, j;
5754 for (i = 0; i < c->used; ++i)
5755 {
5756 struct face *face = FACE_FROM_ID (c->f, i);
5757
5758 if (face)
5759 {
5760 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5761 mark_object (face->lface[j]);
5762 }
5763 }
5764 }
5765 }
5766
5767
5768 \f
5769 /* Mark reference to a Lisp_Object.
5770 If the object referred to has not been seen yet, recursively mark
5771 all the references contained in it. */
5772
5773 #define LAST_MARKED_SIZE 500
5774 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5775 static int last_marked_index;
5776
5777 /* For debugging--call abort when we cdr down this many
5778 links of a list, in mark_object. In debugging,
5779 the call to abort will hit a breakpoint.
5780 Normally this is zero and the check never goes off. */
5781 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5782
5783 static void
5784 mark_vectorlike (struct Lisp_Vector *ptr)
5785 {
5786 ptrdiff_t size = ptr->header.size;
5787 ptrdiff_t i;
5788
5789 eassert (!VECTOR_MARKED_P (ptr));
5790 VECTOR_MARK (ptr); /* Else mark it. */
5791 if (size & PSEUDOVECTOR_FLAG)
5792 size &= PSEUDOVECTOR_SIZE_MASK;
5793
5794 /* Note that this size is not the memory-footprint size, but only
5795 the number of Lisp_Object fields that we should trace.
5796 The distinction is used e.g. by Lisp_Process which places extra
5797 non-Lisp_Object fields at the end of the structure... */
5798 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5799 mark_object (ptr->contents[i]);
5800 }
5801
5802 /* Like mark_vectorlike but optimized for char-tables (and
5803 sub-char-tables) assuming that the contents are mostly integers or
5804 symbols. */
5805
5806 static void
5807 mark_char_table (struct Lisp_Vector *ptr)
5808 {
5809 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5810 int i;
5811
5812 eassert (!VECTOR_MARKED_P (ptr));
5813 VECTOR_MARK (ptr);
5814 for (i = 0; i < size; i++)
5815 {
5816 Lisp_Object val = ptr->contents[i];
5817
5818 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5819 continue;
5820 if (SUB_CHAR_TABLE_P (val))
5821 {
5822 if (! VECTOR_MARKED_P (XVECTOR (val)))
5823 mark_char_table (XVECTOR (val));
5824 }
5825 else
5826 mark_object (val);
5827 }
5828 }
5829
5830 /* Mark the chain of overlays starting at PTR. */
5831
5832 static void
5833 mark_overlay (struct Lisp_Overlay *ptr)
5834 {
5835 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5836 {
5837 ptr->gcmarkbit = 1;
5838 mark_object (ptr->start);
5839 mark_object (ptr->end);
5840 mark_object (ptr->plist);
5841 }
5842 }
5843
5844 /* Mark Lisp_Objects and special pointers in BUFFER. */
5845
5846 static void
5847 mark_buffer (struct buffer *buffer)
5848 {
5849 /* This is handled much like other pseudovectors... */
5850 mark_vectorlike ((struct Lisp_Vector *) buffer);
5851
5852 /* ...but there are some buffer-specific things. */
5853
5854 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5855
5856 /* For now, we just don't mark the undo_list. It's done later in
5857 a special way just before the sweep phase, and after stripping
5858 some of its elements that are not needed any more. */
5859
5860 mark_overlay (buffer->overlays_before);
5861 mark_overlay (buffer->overlays_after);
5862
5863 /* If this is an indirect buffer, mark its base buffer. */
5864 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5865 mark_buffer (buffer->base_buffer);
5866 }
5867
5868 /* Determine type of generic Lisp_Object and mark it accordingly. */
5869
5870 void
5871 mark_object (Lisp_Object arg)
5872 {
5873 register Lisp_Object obj = arg;
5874 #ifdef GC_CHECK_MARKED_OBJECTS
5875 void *po;
5876 struct mem_node *m;
5877 #endif
5878 ptrdiff_t cdr_count = 0;
5879
5880 loop:
5881
5882 if (PURE_POINTER_P (XPNTR (obj)))
5883 return;
5884
5885 last_marked[last_marked_index++] = obj;
5886 if (last_marked_index == LAST_MARKED_SIZE)
5887 last_marked_index = 0;
5888
5889 /* Perform some sanity checks on the objects marked here. Abort if
5890 we encounter an object we know is bogus. This increases GC time
5891 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5892 #ifdef GC_CHECK_MARKED_OBJECTS
5893
5894 po = (void *) XPNTR (obj);
5895
5896 /* Check that the object pointed to by PO is known to be a Lisp
5897 structure allocated from the heap. */
5898 #define CHECK_ALLOCATED() \
5899 do { \
5900 m = mem_find (po); \
5901 if (m == MEM_NIL) \
5902 emacs_abort (); \
5903 } while (0)
5904
5905 /* Check that the object pointed to by PO is live, using predicate
5906 function LIVEP. */
5907 #define CHECK_LIVE(LIVEP) \
5908 do { \
5909 if (!LIVEP (m, po)) \
5910 emacs_abort (); \
5911 } while (0)
5912
5913 /* Check both of the above conditions. */
5914 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5915 do { \
5916 CHECK_ALLOCATED (); \
5917 CHECK_LIVE (LIVEP); \
5918 } while (0) \
5919
5920 #else /* not GC_CHECK_MARKED_OBJECTS */
5921
5922 #define CHECK_LIVE(LIVEP) (void) 0
5923 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5924
5925 #endif /* not GC_CHECK_MARKED_OBJECTS */
5926
5927 switch (XTYPE (obj))
5928 {
5929 case Lisp_String:
5930 {
5931 register struct Lisp_String *ptr = XSTRING (obj);
5932 if (STRING_MARKED_P (ptr))
5933 break;
5934 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5935 MARK_STRING (ptr);
5936 MARK_INTERVAL_TREE (ptr->intervals);
5937 #ifdef GC_CHECK_STRING_BYTES
5938 /* Check that the string size recorded in the string is the
5939 same as the one recorded in the sdata structure. */
5940 string_bytes (ptr);
5941 #endif /* GC_CHECK_STRING_BYTES */
5942 }
5943 break;
5944
5945 case Lisp_Vectorlike:
5946 {
5947 register struct Lisp_Vector *ptr = XVECTOR (obj);
5948 register ptrdiff_t pvectype;
5949
5950 if (VECTOR_MARKED_P (ptr))
5951 break;
5952
5953 #ifdef GC_CHECK_MARKED_OBJECTS
5954 m = mem_find (po);
5955 if (m == MEM_NIL && !SUBRP (obj))
5956 emacs_abort ();
5957 #endif /* GC_CHECK_MARKED_OBJECTS */
5958
5959 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5960 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5961 >> PSEUDOVECTOR_SIZE_BITS);
5962 else
5963 pvectype = 0;
5964
5965 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5966 CHECK_LIVE (live_vector_p);
5967
5968 switch (pvectype)
5969 {
5970 case PVEC_BUFFER:
5971 #ifdef GC_CHECK_MARKED_OBJECTS
5972 {
5973 struct buffer *b;
5974 FOR_EACH_BUFFER (b)
5975 if (b == po)
5976 break;
5977 if (b == NULL)
5978 emacs_abort ();
5979 }
5980 #endif /* GC_CHECK_MARKED_OBJECTS */
5981 mark_buffer ((struct buffer *) ptr);
5982 break;
5983
5984 case PVEC_COMPILED:
5985 { /* We could treat this just like a vector, but it is better
5986 to save the COMPILED_CONSTANTS element for last and avoid
5987 recursion there. */
5988 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5989 int i;
5990
5991 VECTOR_MARK (ptr);
5992 for (i = 0; i < size; i++)
5993 if (i != COMPILED_CONSTANTS)
5994 mark_object (ptr->contents[i]);
5995 if (size > COMPILED_CONSTANTS)
5996 {
5997 obj = ptr->contents[COMPILED_CONSTANTS];
5998 goto loop;
5999 }
6000 }
6001 break;
6002
6003 case PVEC_FRAME:
6004 mark_vectorlike (ptr);
6005 mark_face_cache (((struct frame *) ptr)->face_cache);
6006 break;
6007
6008 case PVEC_WINDOW:
6009 {
6010 struct window *w = (struct window *) ptr;
6011
6012 mark_vectorlike (ptr);
6013 /* Mark glyphs for leaf windows. Marking window
6014 matrices is sufficient because frame matrices
6015 use the same glyph memory. */
6016 if (NILP (w->hchild) && NILP (w->vchild)
6017 && w->current_matrix)
6018 {
6019 mark_glyph_matrix (w->current_matrix);
6020 mark_glyph_matrix (w->desired_matrix);
6021 }
6022 }
6023 break;
6024
6025 case PVEC_HASH_TABLE:
6026 {
6027 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6028
6029 mark_vectorlike (ptr);
6030 /* If hash table is not weak, mark all keys and values.
6031 For weak tables, mark only the vector. */
6032 if (NILP (h->weak))
6033 mark_object (h->key_and_value);
6034 else
6035 VECTOR_MARK (XVECTOR (h->key_and_value));
6036 }
6037 break;
6038
6039 case PVEC_CHAR_TABLE:
6040 mark_char_table (ptr);
6041 break;
6042
6043 case PVEC_BOOL_VECTOR:
6044 /* No Lisp_Objects to mark in a bool vector. */
6045 VECTOR_MARK (ptr);
6046 break;
6047
6048 case PVEC_SUBR:
6049 break;
6050
6051 case PVEC_FREE:
6052 emacs_abort ();
6053
6054 default:
6055 mark_vectorlike (ptr);
6056 }
6057 }
6058 break;
6059
6060 case Lisp_Symbol:
6061 {
6062 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6063 struct Lisp_Symbol *ptrx;
6064
6065 if (ptr->gcmarkbit)
6066 break;
6067 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6068 ptr->gcmarkbit = 1;
6069 mark_object (ptr->function);
6070 mark_object (ptr->plist);
6071 switch (ptr->redirect)
6072 {
6073 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6074 case SYMBOL_VARALIAS:
6075 {
6076 Lisp_Object tem;
6077 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6078 mark_object (tem);
6079 break;
6080 }
6081 case SYMBOL_LOCALIZED:
6082 {
6083 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6084 /* If the value is forwarded to a buffer or keyboard field,
6085 these are marked when we see the corresponding object.
6086 And if it's forwarded to a C variable, either it's not
6087 a Lisp_Object var, or it's staticpro'd already. */
6088 mark_object (blv->where);
6089 mark_object (blv->valcell);
6090 mark_object (blv->defcell);
6091 break;
6092 }
6093 case SYMBOL_FORWARDED:
6094 /* If the value is forwarded to a buffer or keyboard field,
6095 these are marked when we see the corresponding object.
6096 And if it's forwarded to a C variable, either it's not
6097 a Lisp_Object var, or it's staticpro'd already. */
6098 break;
6099 default: emacs_abort ();
6100 }
6101 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6102 MARK_STRING (XSTRING (ptr->name));
6103 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6104
6105 ptr = ptr->next;
6106 if (ptr)
6107 {
6108 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6109 XSETSYMBOL (obj, ptrx);
6110 goto loop;
6111 }
6112 }
6113 break;
6114
6115 case Lisp_Misc:
6116 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6117
6118 if (XMISCANY (obj)->gcmarkbit)
6119 break;
6120
6121 switch (XMISCTYPE (obj))
6122 {
6123 case Lisp_Misc_Marker:
6124 /* DO NOT mark thru the marker's chain.
6125 The buffer's markers chain does not preserve markers from gc;
6126 instead, markers are removed from the chain when freed by gc. */
6127 XMISCANY (obj)->gcmarkbit = 1;
6128 break;
6129
6130 case Lisp_Misc_Save_Value:
6131 XMISCANY (obj)->gcmarkbit = 1;
6132 #if GC_MARK_STACK
6133 {
6134 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6135 /* If DOGC is set, POINTER is the address of a memory
6136 area containing INTEGER potential Lisp_Objects. */
6137 if (ptr->dogc)
6138 {
6139 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6140 ptrdiff_t nelt;
6141 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6142 mark_maybe_object (*p);
6143 }
6144 }
6145 #endif
6146 break;
6147
6148 case Lisp_Misc_Overlay:
6149 mark_overlay (XOVERLAY (obj));
6150 break;
6151
6152 default:
6153 emacs_abort ();
6154 }
6155 break;
6156
6157 case Lisp_Cons:
6158 {
6159 register struct Lisp_Cons *ptr = XCONS (obj);
6160 if (CONS_MARKED_P (ptr))
6161 break;
6162 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6163 CONS_MARK (ptr);
6164 /* If the cdr is nil, avoid recursion for the car. */
6165 if (EQ (ptr->u.cdr, Qnil))
6166 {
6167 obj = ptr->car;
6168 cdr_count = 0;
6169 goto loop;
6170 }
6171 mark_object (ptr->car);
6172 obj = ptr->u.cdr;
6173 cdr_count++;
6174 if (cdr_count == mark_object_loop_halt)
6175 emacs_abort ();
6176 goto loop;
6177 }
6178
6179 case Lisp_Float:
6180 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6181 FLOAT_MARK (XFLOAT (obj));
6182 break;
6183
6184 case_Lisp_Int:
6185 break;
6186
6187 default:
6188 emacs_abort ();
6189 }
6190
6191 #undef CHECK_LIVE
6192 #undef CHECK_ALLOCATED
6193 #undef CHECK_ALLOCATED_AND_LIVE
6194 }
6195 /* Mark the Lisp pointers in the terminal objects.
6196 Called by Fgarbage_collect. */
6197
6198 static void
6199 mark_terminals (void)
6200 {
6201 struct terminal *t;
6202 for (t = terminal_list; t; t = t->next_terminal)
6203 {
6204 eassert (t->name != NULL);
6205 #ifdef HAVE_WINDOW_SYSTEM
6206 /* If a terminal object is reachable from a stacpro'ed object,
6207 it might have been marked already. Make sure the image cache
6208 gets marked. */
6209 mark_image_cache (t->image_cache);
6210 #endif /* HAVE_WINDOW_SYSTEM */
6211 if (!VECTOR_MARKED_P (t))
6212 mark_vectorlike ((struct Lisp_Vector *)t);
6213 }
6214 }
6215
6216
6217
6218 /* Value is non-zero if OBJ will survive the current GC because it's
6219 either marked or does not need to be marked to survive. */
6220
6221 bool
6222 survives_gc_p (Lisp_Object obj)
6223 {
6224 bool survives_p;
6225
6226 switch (XTYPE (obj))
6227 {
6228 case_Lisp_Int:
6229 survives_p = 1;
6230 break;
6231
6232 case Lisp_Symbol:
6233 survives_p = XSYMBOL (obj)->gcmarkbit;
6234 break;
6235
6236 case Lisp_Misc:
6237 survives_p = XMISCANY (obj)->gcmarkbit;
6238 break;
6239
6240 case Lisp_String:
6241 survives_p = STRING_MARKED_P (XSTRING (obj));
6242 break;
6243
6244 case Lisp_Vectorlike:
6245 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6246 break;
6247
6248 case Lisp_Cons:
6249 survives_p = CONS_MARKED_P (XCONS (obj));
6250 break;
6251
6252 case Lisp_Float:
6253 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6254 break;
6255
6256 default:
6257 emacs_abort ();
6258 }
6259
6260 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6261 }
6262
6263
6264 \f
6265 /* Sweep: find all structures not marked, and free them. */
6266
6267 static void
6268 gc_sweep (void)
6269 {
6270 /* Remove or mark entries in weak hash tables.
6271 This must be done before any object is unmarked. */
6272 sweep_weak_hash_tables ();
6273
6274 sweep_strings ();
6275 check_string_bytes (!noninteractive);
6276
6277 /* Put all unmarked conses on free list */
6278 {
6279 register struct cons_block *cblk;
6280 struct cons_block **cprev = &cons_block;
6281 register int lim = cons_block_index;
6282 EMACS_INT num_free = 0, num_used = 0;
6283
6284 cons_free_list = 0;
6285
6286 for (cblk = cons_block; cblk; cblk = *cprev)
6287 {
6288 register int i = 0;
6289 int this_free = 0;
6290 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6291
6292 /* Scan the mark bits an int at a time. */
6293 for (i = 0; i < ilim; i++)
6294 {
6295 if (cblk->gcmarkbits[i] == -1)
6296 {
6297 /* Fast path - all cons cells for this int are marked. */
6298 cblk->gcmarkbits[i] = 0;
6299 num_used += BITS_PER_INT;
6300 }
6301 else
6302 {
6303 /* Some cons cells for this int are not marked.
6304 Find which ones, and free them. */
6305 int start, pos, stop;
6306
6307 start = i * BITS_PER_INT;
6308 stop = lim - start;
6309 if (stop > BITS_PER_INT)
6310 stop = BITS_PER_INT;
6311 stop += start;
6312
6313 for (pos = start; pos < stop; pos++)
6314 {
6315 if (!CONS_MARKED_P (&cblk->conses[pos]))
6316 {
6317 this_free++;
6318 cblk->conses[pos].u.chain = cons_free_list;
6319 cons_free_list = &cblk->conses[pos];
6320 #if GC_MARK_STACK
6321 cons_free_list->car = Vdead;
6322 #endif
6323 }
6324 else
6325 {
6326 num_used++;
6327 CONS_UNMARK (&cblk->conses[pos]);
6328 }
6329 }
6330 }
6331 }
6332
6333 lim = CONS_BLOCK_SIZE;
6334 /* If this block contains only free conses and we have already
6335 seen more than two blocks worth of free conses then deallocate
6336 this block. */
6337 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6338 {
6339 *cprev = cblk->next;
6340 /* Unhook from the free list. */
6341 cons_free_list = cblk->conses[0].u.chain;
6342 lisp_align_free (cblk);
6343 }
6344 else
6345 {
6346 num_free += this_free;
6347 cprev = &cblk->next;
6348 }
6349 }
6350 total_conses = num_used;
6351 total_free_conses = num_free;
6352 }
6353
6354 /* Put all unmarked floats on free list */
6355 {
6356 register struct float_block *fblk;
6357 struct float_block **fprev = &float_block;
6358 register int lim = float_block_index;
6359 EMACS_INT num_free = 0, num_used = 0;
6360
6361 float_free_list = 0;
6362
6363 for (fblk = float_block; fblk; fblk = *fprev)
6364 {
6365 register int i;
6366 int this_free = 0;
6367 for (i = 0; i < lim; i++)
6368 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6369 {
6370 this_free++;
6371 fblk->floats[i].u.chain = float_free_list;
6372 float_free_list = &fblk->floats[i];
6373 }
6374 else
6375 {
6376 num_used++;
6377 FLOAT_UNMARK (&fblk->floats[i]);
6378 }
6379 lim = FLOAT_BLOCK_SIZE;
6380 /* If this block contains only free floats and we have already
6381 seen more than two blocks worth of free floats then deallocate
6382 this block. */
6383 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6384 {
6385 *fprev = fblk->next;
6386 /* Unhook from the free list. */
6387 float_free_list = fblk->floats[0].u.chain;
6388 lisp_align_free (fblk);
6389 }
6390 else
6391 {
6392 num_free += this_free;
6393 fprev = &fblk->next;
6394 }
6395 }
6396 total_floats = num_used;
6397 total_free_floats = num_free;
6398 }
6399
6400 /* Put all unmarked intervals on free list */
6401 {
6402 register struct interval_block *iblk;
6403 struct interval_block **iprev = &interval_block;
6404 register int lim = interval_block_index;
6405 EMACS_INT num_free = 0, num_used = 0;
6406
6407 interval_free_list = 0;
6408
6409 for (iblk = interval_block; iblk; iblk = *iprev)
6410 {
6411 register int i;
6412 int this_free = 0;
6413
6414 for (i = 0; i < lim; i++)
6415 {
6416 if (!iblk->intervals[i].gcmarkbit)
6417 {
6418 set_interval_parent (&iblk->intervals[i], interval_free_list);
6419 interval_free_list = &iblk->intervals[i];
6420 this_free++;
6421 }
6422 else
6423 {
6424 num_used++;
6425 iblk->intervals[i].gcmarkbit = 0;
6426 }
6427 }
6428 lim = INTERVAL_BLOCK_SIZE;
6429 /* If this block contains only free intervals and we have already
6430 seen more than two blocks worth of free intervals then
6431 deallocate this block. */
6432 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6433 {
6434 *iprev = iblk->next;
6435 /* Unhook from the free list. */
6436 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6437 lisp_free (iblk);
6438 }
6439 else
6440 {
6441 num_free += this_free;
6442 iprev = &iblk->next;
6443 }
6444 }
6445 total_intervals = num_used;
6446 total_free_intervals = num_free;
6447 }
6448
6449 /* Put all unmarked symbols on free list */
6450 {
6451 register struct symbol_block *sblk;
6452 struct symbol_block **sprev = &symbol_block;
6453 register int lim = symbol_block_index;
6454 EMACS_INT num_free = 0, num_used = 0;
6455
6456 symbol_free_list = NULL;
6457
6458 for (sblk = symbol_block; sblk; sblk = *sprev)
6459 {
6460 int this_free = 0;
6461 union aligned_Lisp_Symbol *sym = sblk->symbols;
6462 union aligned_Lisp_Symbol *end = sym + lim;
6463
6464 for (; sym < end; ++sym)
6465 {
6466 /* Check if the symbol was created during loadup. In such a case
6467 it might be pointed to by pure bytecode which we don't trace,
6468 so we conservatively assume that it is live. */
6469 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6470
6471 if (!sym->s.gcmarkbit && !pure_p)
6472 {
6473 if (sym->s.redirect == SYMBOL_LOCALIZED)
6474 xfree (SYMBOL_BLV (&sym->s));
6475 sym->s.next = symbol_free_list;
6476 symbol_free_list = &sym->s;
6477 #if GC_MARK_STACK
6478 symbol_free_list->function = Vdead;
6479 #endif
6480 ++this_free;
6481 }
6482 else
6483 {
6484 ++num_used;
6485 if (!pure_p)
6486 UNMARK_STRING (XSTRING (sym->s.name));
6487 sym->s.gcmarkbit = 0;
6488 }
6489 }
6490
6491 lim = SYMBOL_BLOCK_SIZE;
6492 /* If this block contains only free symbols and we have already
6493 seen more than two blocks worth of free symbols then deallocate
6494 this block. */
6495 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6496 {
6497 *sprev = sblk->next;
6498 /* Unhook from the free list. */
6499 symbol_free_list = sblk->symbols[0].s.next;
6500 lisp_free (sblk);
6501 }
6502 else
6503 {
6504 num_free += this_free;
6505 sprev = &sblk->next;
6506 }
6507 }
6508 total_symbols = num_used;
6509 total_free_symbols = num_free;
6510 }
6511
6512 /* Put all unmarked misc's on free list.
6513 For a marker, first unchain it from the buffer it points into. */
6514 {
6515 register struct marker_block *mblk;
6516 struct marker_block **mprev = &marker_block;
6517 register int lim = marker_block_index;
6518 EMACS_INT num_free = 0, num_used = 0;
6519
6520 marker_free_list = 0;
6521
6522 for (mblk = marker_block; mblk; mblk = *mprev)
6523 {
6524 register int i;
6525 int this_free = 0;
6526
6527 for (i = 0; i < lim; i++)
6528 {
6529 if (!mblk->markers[i].m.u_any.gcmarkbit)
6530 {
6531 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6532 unchain_marker (&mblk->markers[i].m.u_marker);
6533 /* Set the type of the freed object to Lisp_Misc_Free.
6534 We could leave the type alone, since nobody checks it,
6535 but this might catch bugs faster. */
6536 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6537 mblk->markers[i].m.u_free.chain = marker_free_list;
6538 marker_free_list = &mblk->markers[i].m;
6539 this_free++;
6540 }
6541 else
6542 {
6543 num_used++;
6544 mblk->markers[i].m.u_any.gcmarkbit = 0;
6545 }
6546 }
6547 lim = MARKER_BLOCK_SIZE;
6548 /* If this block contains only free markers and we have already
6549 seen more than two blocks worth of free markers then deallocate
6550 this block. */
6551 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6552 {
6553 *mprev = mblk->next;
6554 /* Unhook from the free list. */
6555 marker_free_list = mblk->markers[0].m.u_free.chain;
6556 lisp_free (mblk);
6557 }
6558 else
6559 {
6560 num_free += this_free;
6561 mprev = &mblk->next;
6562 }
6563 }
6564
6565 total_markers = num_used;
6566 total_free_markers = num_free;
6567 }
6568
6569 /* Free all unmarked buffers */
6570 {
6571 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6572
6573 total_buffers = 0;
6574 while (buffer)
6575 if (!VECTOR_MARKED_P (buffer))
6576 {
6577 if (prev)
6578 prev->header.next = buffer->header.next;
6579 else
6580 all_buffers = buffer->header.next.buffer;
6581 next = buffer->header.next.buffer;
6582 lisp_free (buffer);
6583 buffer = next;
6584 }
6585 else
6586 {
6587 VECTOR_UNMARK (buffer);
6588 /* Do not use buffer_(set|get)_intervals here. */
6589 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6590 total_buffers++;
6591 prev = buffer, buffer = buffer->header.next.buffer;
6592 }
6593 }
6594
6595 sweep_vectors ();
6596 check_string_bytes (!noninteractive);
6597 }
6598
6599
6600
6601 \f
6602 /* Debugging aids. */
6603
6604 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6605 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6606 This may be helpful in debugging Emacs's memory usage.
6607 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6608 (void)
6609 {
6610 Lisp_Object end;
6611
6612 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6613
6614 return end;
6615 }
6616
6617 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6618 doc: /* Return a list of counters that measure how much consing there has been.
6619 Each of these counters increments for a certain kind of object.
6620 The counters wrap around from the largest positive integer to zero.
6621 Garbage collection does not decrease them.
6622 The elements of the value are as follows:
6623 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6624 All are in units of 1 = one object consed
6625 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6626 objects consed.
6627 MISCS include overlays, markers, and some internal types.
6628 Frames, windows, buffers, and subprocesses count as vectors
6629 (but the contents of a buffer's text do not count here). */)
6630 (void)
6631 {
6632 return listn (CONSTYPE_HEAP, 8,
6633 bounded_number (cons_cells_consed),
6634 bounded_number (floats_consed),
6635 bounded_number (vector_cells_consed),
6636 bounded_number (symbols_consed),
6637 bounded_number (string_chars_consed),
6638 bounded_number (misc_objects_consed),
6639 bounded_number (intervals_consed),
6640 bounded_number (strings_consed));
6641 }
6642
6643 /* Find at most FIND_MAX symbols which have OBJ as their value or
6644 function. This is used in gdbinit's `xwhichsymbols' command. */
6645
6646 Lisp_Object
6647 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6648 {
6649 struct symbol_block *sblk;
6650 ptrdiff_t gc_count = inhibit_garbage_collection ();
6651 Lisp_Object found = Qnil;
6652
6653 if (! DEADP (obj))
6654 {
6655 for (sblk = symbol_block; sblk; sblk = sblk->next)
6656 {
6657 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6658 int bn;
6659
6660 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6661 {
6662 struct Lisp_Symbol *sym = &aligned_sym->s;
6663 Lisp_Object val;
6664 Lisp_Object tem;
6665
6666 if (sblk == symbol_block && bn >= symbol_block_index)
6667 break;
6668
6669 XSETSYMBOL (tem, sym);
6670 val = find_symbol_value (tem);
6671 if (EQ (val, obj)
6672 || EQ (sym->function, obj)
6673 || (!NILP (sym->function)
6674 && COMPILEDP (sym->function)
6675 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6676 || (!NILP (val)
6677 && COMPILEDP (val)
6678 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6679 {
6680 found = Fcons (tem, found);
6681 if (--find_max == 0)
6682 goto out;
6683 }
6684 }
6685 }
6686 }
6687
6688 out:
6689 unbind_to (gc_count, Qnil);
6690 return found;
6691 }
6692
6693 #ifdef ENABLE_CHECKING
6694
6695 bool suppress_checking;
6696
6697 void
6698 die (const char *msg, const char *file, int line)
6699 {
6700 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6701 file, line, msg);
6702 fatal_error_backtrace (SIGABRT, INT_MAX);
6703 }
6704 #endif
6705 \f
6706 /* Initialization */
6707
6708 void
6709 init_alloc_once (void)
6710 {
6711 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6712 purebeg = PUREBEG;
6713 pure_size = PURESIZE;
6714
6715 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6716 mem_init ();
6717 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6718 #endif
6719
6720 #ifdef DOUG_LEA_MALLOC
6721 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6722 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6723 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6724 #endif
6725 init_strings ();
6726 init_vectors ();
6727
6728 #ifdef REL_ALLOC
6729 malloc_hysteresis = 32;
6730 #else
6731 malloc_hysteresis = 0;
6732 #endif
6733
6734 refill_memory_reserve ();
6735 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6736 }
6737
6738 void
6739 init_alloc (void)
6740 {
6741 gcprolist = 0;
6742 byte_stack_list = 0;
6743 #if GC_MARK_STACK
6744 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6745 setjmp_tested_p = longjmps_done = 0;
6746 #endif
6747 #endif
6748 Vgc_elapsed = make_float (0.0);
6749 gcs_done = 0;
6750 }
6751
6752 void
6753 syms_of_alloc (void)
6754 {
6755 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6756 doc: /* Number of bytes of consing between garbage collections.
6757 Garbage collection can happen automatically once this many bytes have been
6758 allocated since the last garbage collection. All data types count.
6759
6760 Garbage collection happens automatically only when `eval' is called.
6761
6762 By binding this temporarily to a large number, you can effectively
6763 prevent garbage collection during a part of the program.
6764 See also `gc-cons-percentage'. */);
6765
6766 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6767 doc: /* Portion of the heap used for allocation.
6768 Garbage collection can happen automatically once this portion of the heap
6769 has been allocated since the last garbage collection.
6770 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6771 Vgc_cons_percentage = make_float (0.1);
6772
6773 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6774 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6775
6776 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6777 doc: /* Number of cons cells that have been consed so far. */);
6778
6779 DEFVAR_INT ("floats-consed", floats_consed,
6780 doc: /* Number of floats that have been consed so far. */);
6781
6782 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6783 doc: /* Number of vector cells that have been consed so far. */);
6784
6785 DEFVAR_INT ("symbols-consed", symbols_consed,
6786 doc: /* Number of symbols that have been consed so far. */);
6787
6788 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6789 doc: /* Number of string characters that have been consed so far. */);
6790
6791 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6792 doc: /* Number of miscellaneous objects that have been consed so far.
6793 These include markers and overlays, plus certain objects not visible
6794 to users. */);
6795
6796 DEFVAR_INT ("intervals-consed", intervals_consed,
6797 doc: /* Number of intervals that have been consed so far. */);
6798
6799 DEFVAR_INT ("strings-consed", strings_consed,
6800 doc: /* Number of strings that have been consed so far. */);
6801
6802 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6803 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6804 This means that certain objects should be allocated in shared (pure) space.
6805 It can also be set to a hash-table, in which case this table is used to
6806 do hash-consing of the objects allocated to pure space. */);
6807
6808 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6809 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6810 garbage_collection_messages = 0;
6811
6812 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6813 doc: /* Hook run after garbage collection has finished. */);
6814 Vpost_gc_hook = Qnil;
6815 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6816
6817 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6818 doc: /* Precomputed `signal' argument for memory-full error. */);
6819 /* We build this in advance because if we wait until we need it, we might
6820 not be able to allocate the memory to hold it. */
6821 Vmemory_signal_data
6822 = listn (CONSTYPE_PURE, 2, Qerror,
6823 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6824
6825 DEFVAR_LISP ("memory-full", Vmemory_full,
6826 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6827 Vmemory_full = Qnil;
6828
6829 DEFSYM (Qconses, "conses");
6830 DEFSYM (Qsymbols, "symbols");
6831 DEFSYM (Qmiscs, "miscs");
6832 DEFSYM (Qstrings, "strings");
6833 DEFSYM (Qvectors, "vectors");
6834 DEFSYM (Qfloats, "floats");
6835 DEFSYM (Qintervals, "intervals");
6836 DEFSYM (Qbuffers, "buffers");
6837 DEFSYM (Qstring_bytes, "string-bytes");
6838 DEFSYM (Qvector_slots, "vector-slots");
6839 DEFSYM (Qheap, "heap");
6840
6841 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6842 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6843
6844 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6845 doc: /* Accumulated time elapsed in garbage collections.
6846 The time is in seconds as a floating point value. */);
6847 DEFVAR_INT ("gcs-done", gcs_done,
6848 doc: /* Accumulated number of garbage collections done. */);
6849
6850 defsubr (&Scons);
6851 defsubr (&Slist);
6852 defsubr (&Svector);
6853 defsubr (&Smake_byte_code);
6854 defsubr (&Smake_list);
6855 defsubr (&Smake_vector);
6856 defsubr (&Smake_string);
6857 defsubr (&Smake_bool_vector);
6858 defsubr (&Smake_symbol);
6859 defsubr (&Smake_marker);
6860 defsubr (&Spurecopy);
6861 defsubr (&Sgarbage_collect);
6862 defsubr (&Smemory_limit);
6863 defsubr (&Smemory_use_counts);
6864
6865 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6866 defsubr (&Sgc_status);
6867 #endif
6868 }
6869
6870 /* When compiled with GCC, GDB might say "No enum type named
6871 pvec_type" if we don't have at least one symbol with that type, and
6872 then xbacktrace could fail. Similarly for the other enums and
6873 their values. */
6874 union
6875 {
6876 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6877 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6878 enum char_bits char_bits;
6879 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6880 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6881 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6882 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6883 enum Lisp_Bits Lisp_Bits;
6884 enum Lisp_Compiled Lisp_Compiled;
6885 enum maxargs maxargs;
6886 enum MAX_ALLOCA MAX_ALLOCA;
6887 enum More_Lisp_Bits More_Lisp_Bits;
6888 enum pvec_type pvec_type;
6889 #if USE_LSB_TAG
6890 enum lsb_bits lsb_bits;
6891 #endif
6892 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};