* buffer.h (FETCH_MULTIBYTE_CHAR): Define as inline.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 EMACS_INT consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* Nonzero during GC. */
181
182 int gc_in_progress;
183
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 int abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
204
205 #define SPARE_MEMORY (1 << 14)
206
207 /* Number of extra blocks malloc should get when it needs more core. */
208
209 static int malloc_hysteresis;
210
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
216
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
219
220 /* Pointer to the pure area, and its size. */
221
222 static char *purebeg;
223 static ptrdiff_t pure_size;
224
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
228 static ptrdiff_t pure_bytes_used_before_overflow;
229
230 /* Value is non-zero if P points into pure space. */
231
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
234
235 /* Index in pure at which next pure Lisp object will be allocated.. */
236
237 static ptrdiff_t pure_bytes_used_lisp;
238
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
240
241 static ptrdiff_t pure_bytes_used_non_lisp;
242
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
246 const char *pending_malloc_warning;
247
248 /* Maximum amount of C stack to save when a GC happens. */
249
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
253
254 /* Buffer in which we save a copy of the C stack at each GC. */
255
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
260
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
264 static int ignore_warnings;
265
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_buffer (Lisp_Object);
274 static void mark_terminals (void);
275 static void gc_sweep (void);
276 static Lisp_Object make_pure_vector (ptrdiff_t);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static struct Lisp_String *allocate_string (void);
284 static void compact_small_strings (void);
285 static void free_large_strings (void);
286 static void sweep_strings (void);
287 static void free_misc (Lisp_Object);
288 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
289
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294 enum mem_type
295 {
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
310 };
311
312 static void *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325 #define DEADP(x) EQ (x, Vdead)
326
327 #ifdef GC_MALLOC_CHECK
328
329 enum mem_type allocated_mem_type;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
394 static void lisp_free (void *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *);
405 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 #endif
410 static void mem_rotate_left (struct mem_node *);
411 static void mem_rotate_right (struct mem_node *);
412 static void mem_delete (struct mem_node *);
413 static void mem_delete_fixup (struct mem_node *);
414 static inline struct mem_node *mem_find (void *);
415
416
417 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
418 static void check_gcpros (void);
419 #endif
420
421 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
422
423 #ifndef DEADP
424 # define DEADP(x) 0
425 #endif
426
427 /* Recording what needs to be marked for gc. */
428
429 struct gcpro *gcprolist;
430
431 /* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
433
434 #define NSTATICS 0x640
435 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
436
437 /* Index of next unused slot in staticvec. */
438
439 static int staticidx = 0;
440
441 static void *pure_alloc (size_t, int);
442
443
444 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
446
447 #define ALIGN(ptr, ALIGNMENT) \
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
450
451
452 \f
453 /************************************************************************
454 Malloc
455 ************************************************************************/
456
457 /* Function malloc calls this if it finds we are near exhausting storage. */
458
459 void
460 malloc_warning (const char *str)
461 {
462 pending_malloc_warning = str;
463 }
464
465
466 /* Display an already-pending malloc warning. */
467
468 void
469 display_malloc_warning (void)
470 {
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
475 pending_malloc_warning = 0;
476 }
477 \f
478 /* Called if we can't allocate relocatable space for a buffer. */
479
480 void
481 buffer_memory_full (ptrdiff_t nbytes)
482 {
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
489
490 #ifndef REL_ALLOC
491 memory_full (nbytes);
492 #endif
493
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 }
498
499 /* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502 #define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
504
505 #ifndef XMALLOC_OVERRUN_CHECK
506 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
507 #else
508
509 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
511
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
516
517 The header is used to detect whether this block has been allocated
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
520
521 #define XMALLOC_OVERRUN_CHECK_SIZE 16
522 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
524
525 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528 #define XMALLOC_BASE_ALIGNMENT \
529 offsetof ( \
530 struct { \
531 union { long double d; intmax_t i; void *p; } u; \
532 char c; \
533 }, \
534 c)
535
536 #if USE_LSB_TAG
537 # define XMALLOC_HEADER_ALIGNMENT \
538 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
539 #else
540 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
541 #endif
542 #define XMALLOC_OVERRUN_SIZE_SIZE \
543 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
544 + XMALLOC_HEADER_ALIGNMENT - 1) \
545 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
546 - XMALLOC_OVERRUN_CHECK_SIZE)
547
548 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\x9a', '\x9b', '\xae', '\xaf',
550 '\xbf', '\xbe', '\xce', '\xcf',
551 '\xea', '\xeb', '\xec', '\xed',
552 '\xdf', '\xde', '\x9c', '\x9d' };
553
554 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
555 { '\xaa', '\xab', '\xac', '\xad',
556 '\xba', '\xbb', '\xbc', '\xbd',
557 '\xca', '\xcb', '\xcc', '\xcd',
558 '\xda', '\xdb', '\xdc', '\xdd' };
559
560 /* Insert and extract the block size in the header. */
561
562 static void
563 xmalloc_put_size (unsigned char *ptr, size_t size)
564 {
565 int i;
566 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
567 {
568 *--ptr = size & ((1 << CHAR_BIT) - 1);
569 size >>= CHAR_BIT;
570 }
571 }
572
573 static size_t
574 xmalloc_get_size (unsigned char *ptr)
575 {
576 size_t size = 0;
577 int i;
578 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
579 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
580 {
581 size <<= CHAR_BIT;
582 size += *ptr++;
583 }
584 return size;
585 }
586
587
588 /* The call depth in overrun_check functions. For example, this might happen:
589 xmalloc()
590 overrun_check_malloc()
591 -> malloc -> (via hook)_-> emacs_blocked_malloc
592 -> overrun_check_malloc
593 call malloc (hooks are NULL, so real malloc is called).
594 malloc returns 10000.
595 add overhead, return 10016.
596 <- (back in overrun_check_malloc)
597 add overhead again, return 10032
598 xmalloc returns 10032.
599
600 (time passes).
601
602 xfree(10032)
603 overrun_check_free(10032)
604 decrease overhead
605 free(10016) <- crash, because 10000 is the original pointer. */
606
607 static ptrdiff_t check_depth;
608
609 /* Like malloc, but wraps allocated block with header and trailer. */
610
611 static void *
612 overrun_check_malloc (size_t size)
613 {
614 register unsigned char *val;
615 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
616 if (SIZE_MAX - overhead < size)
617 abort ();
618
619 val = (unsigned char *) malloc (size + overhead);
620 if (val && check_depth == 1)
621 {
622 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
623 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
624 xmalloc_put_size (val, size);
625 memcpy (val + size, xmalloc_overrun_check_trailer,
626 XMALLOC_OVERRUN_CHECK_SIZE);
627 }
628 --check_depth;
629 return val;
630 }
631
632
633 /* Like realloc, but checks old block for overrun, and wraps new block
634 with header and trailer. */
635
636 static void *
637 overrun_check_realloc (void *block, size_t size)
638 {
639 register unsigned char *val = (unsigned char *) block;
640 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
641 if (SIZE_MAX - overhead < size)
642 abort ();
643
644 if (val
645 && check_depth == 1
646 && memcmp (xmalloc_overrun_check_header,
647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
649 {
650 size_t osize = xmalloc_get_size (val);
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
653 abort ();
654 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
657 }
658
659 val = realloc (val, size + overhead);
660
661 if (val && check_depth == 1)
662 {
663 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
664 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 xmalloc_put_size (val, size);
666 memcpy (val + size, xmalloc_overrun_check_trailer,
667 XMALLOC_OVERRUN_CHECK_SIZE);
668 }
669 --check_depth;
670 return val;
671 }
672
673 /* Like free, but checks block for overrun. */
674
675 static void
676 overrun_check_free (void *block)
677 {
678 unsigned char *val = (unsigned char *) block;
679
680 ++check_depth;
681 if (val
682 && check_depth == 1
683 && memcmp (xmalloc_overrun_check_header,
684 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
685 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
686 {
687 size_t osize = xmalloc_get_size (val);
688 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
689 XMALLOC_OVERRUN_CHECK_SIZE))
690 abort ();
691 #ifdef XMALLOC_CLEAR_FREE_MEMORY
692 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
693 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
694 #else
695 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
696 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
697 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
698 #endif
699 }
700
701 free (val);
702 --check_depth;
703 }
704
705 #undef malloc
706 #undef realloc
707 #undef free
708 #define malloc overrun_check_malloc
709 #define realloc overrun_check_realloc
710 #define free overrun_check_free
711 #endif
712
713 #ifdef SYNC_INPUT
714 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
715 there's no need to block input around malloc. */
716 #define MALLOC_BLOCK_INPUT ((void)0)
717 #define MALLOC_UNBLOCK_INPUT ((void)0)
718 #else
719 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
720 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
721 #endif
722
723 /* Like malloc but check for no memory and block interrupt input.. */
724
725 void *
726 xmalloc (size_t size)
727 {
728 void *val;
729
730 MALLOC_BLOCK_INPUT;
731 val = malloc (size);
732 MALLOC_UNBLOCK_INPUT;
733
734 if (!val && size)
735 memory_full (size);
736 return val;
737 }
738
739
740 /* Like realloc but check for no memory and block interrupt input.. */
741
742 void *
743 xrealloc (void *block, size_t size)
744 {
745 void *val;
746
747 MALLOC_BLOCK_INPUT;
748 /* We must call malloc explicitly when BLOCK is 0, since some
749 reallocs don't do this. */
750 if (! block)
751 val = malloc (size);
752 else
753 val = realloc (block, size);
754 MALLOC_UNBLOCK_INPUT;
755
756 if (!val && size)
757 memory_full (size);
758 return val;
759 }
760
761
762 /* Like free but block interrupt input. */
763
764 void
765 xfree (void *block)
766 {
767 if (!block)
768 return;
769 MALLOC_BLOCK_INPUT;
770 free (block);
771 MALLOC_UNBLOCK_INPUT;
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
775 }
776
777
778 /* Other parts of Emacs pass large int values to allocator functions
779 expecting ptrdiff_t. This is portable in practice, but check it to
780 be safe. */
781 verify (INT_MAX <= PTRDIFF_MAX);
782
783
784 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
785 Signal an error on memory exhaustion, and block interrupt input. */
786
787 void *
788 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
789 {
790 xassert (0 <= nitems && 0 < item_size);
791 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
792 memory_full (SIZE_MAX);
793 return xmalloc (nitems * item_size);
794 }
795
796
797 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
798 Signal an error on memory exhaustion, and block interrupt input. */
799
800 void *
801 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
802 {
803 xassert (0 <= nitems && 0 < item_size);
804 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
805 memory_full (SIZE_MAX);
806 return xrealloc (pa, nitems * item_size);
807 }
808
809
810 /* Grow PA, which points to an array of *NITEMS items, and return the
811 location of the reallocated array, updating *NITEMS to reflect its
812 new size. The new array will contain at least NITEMS_INCR_MIN more
813 items, but will not contain more than NITEMS_MAX items total.
814 ITEM_SIZE is the size of each item, in bytes.
815
816 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
817 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
818 infinity.
819
820 If PA is null, then allocate a new array instead of reallocating
821 the old one. Thus, to grow an array A without saving its old
822 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
823 &NITEMS, ...).
824
825 Block interrupt input as needed. If memory exhaustion occurs, set
826 *NITEMS to zero if PA is null, and signal an error (i.e., do not
827 return). */
828
829 void *
830 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
831 ptrdiff_t nitems_max, ptrdiff_t item_size)
832 {
833 /* The approximate size to use for initial small allocation
834 requests. This is the largest "small" request for the GNU C
835 library malloc. */
836 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
837
838 /* If the array is tiny, grow it to about (but no greater than)
839 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
840 ptrdiff_t n = *nitems;
841 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
842 ptrdiff_t half_again = n >> 1;
843 ptrdiff_t incr_estimate = max (tiny_max, half_again);
844
845 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
846 NITEMS_MAX, and what the C language can represent safely. */
847 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
848 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
849 ? nitems_max : C_language_max);
850 ptrdiff_t nitems_incr_max = n_max - n;
851 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
852
853 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
854 if (! pa)
855 *nitems = 0;
856 if (nitems_incr_max < incr)
857 memory_full (SIZE_MAX);
858 n += incr;
859 pa = xrealloc (pa, n * item_size);
860 *nitems = n;
861 return pa;
862 }
863
864
865 /* Like strdup, but uses xmalloc. */
866
867 char *
868 xstrdup (const char *s)
869 {
870 size_t len = strlen (s) + 1;
871 char *p = (char *) xmalloc (len);
872 memcpy (p, s, len);
873 return p;
874 }
875
876
877 /* Unwind for SAFE_ALLOCA */
878
879 Lisp_Object
880 safe_alloca_unwind (Lisp_Object arg)
881 {
882 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
883
884 p->dogc = 0;
885 xfree (p->pointer);
886 p->pointer = 0;
887 free_misc (arg);
888 return Qnil;
889 }
890
891
892 /* Like malloc but used for allocating Lisp data. NBYTES is the
893 number of bytes to allocate, TYPE describes the intended use of the
894 allocated memory block (for strings, for conses, ...). */
895
896 #if ! USE_LSB_TAG
897 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
898 #endif
899
900 static void *
901 lisp_malloc (size_t nbytes, enum mem_type type)
902 {
903 register void *val;
904
905 MALLOC_BLOCK_INPUT;
906
907 #ifdef GC_MALLOC_CHECK
908 allocated_mem_type = type;
909 #endif
910
911 val = (void *) malloc (nbytes);
912
913 #if ! USE_LSB_TAG
914 /* If the memory just allocated cannot be addressed thru a Lisp
915 object's pointer, and it needs to be,
916 that's equivalent to running out of memory. */
917 if (val && type != MEM_TYPE_NON_LISP)
918 {
919 Lisp_Object tem;
920 XSETCONS (tem, (char *) val + nbytes - 1);
921 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
922 {
923 lisp_malloc_loser = val;
924 free (val);
925 val = 0;
926 }
927 }
928 #endif
929
930 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
931 if (val && type != MEM_TYPE_NON_LISP)
932 mem_insert (val, (char *) val + nbytes, type);
933 #endif
934
935 MALLOC_UNBLOCK_INPUT;
936 if (!val && nbytes)
937 memory_full (nbytes);
938 return val;
939 }
940
941 /* Free BLOCK. This must be called to free memory allocated with a
942 call to lisp_malloc. */
943
944 static void
945 lisp_free (void *block)
946 {
947 MALLOC_BLOCK_INPUT;
948 free (block);
949 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
950 mem_delete (mem_find (block));
951 #endif
952 MALLOC_UNBLOCK_INPUT;
953 }
954
955 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
956
957 /* The entry point is lisp_align_malloc which returns blocks of at most
958 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
959
960 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
961 #define USE_POSIX_MEMALIGN 1
962 #endif
963
964 /* BLOCK_ALIGN has to be a power of 2. */
965 #define BLOCK_ALIGN (1 << 10)
966
967 /* Padding to leave at the end of a malloc'd block. This is to give
968 malloc a chance to minimize the amount of memory wasted to alignment.
969 It should be tuned to the particular malloc library used.
970 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
971 posix_memalign on the other hand would ideally prefer a value of 4
972 because otherwise, there's 1020 bytes wasted between each ablocks.
973 In Emacs, testing shows that those 1020 can most of the time be
974 efficiently used by malloc to place other objects, so a value of 0 can
975 still preferable unless you have a lot of aligned blocks and virtually
976 nothing else. */
977 #define BLOCK_PADDING 0
978 #define BLOCK_BYTES \
979 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
980
981 /* Internal data structures and constants. */
982
983 #define ABLOCKS_SIZE 16
984
985 /* An aligned block of memory. */
986 struct ablock
987 {
988 union
989 {
990 char payload[BLOCK_BYTES];
991 struct ablock *next_free;
992 } x;
993 /* `abase' is the aligned base of the ablocks. */
994 /* It is overloaded to hold the virtual `busy' field that counts
995 the number of used ablock in the parent ablocks.
996 The first ablock has the `busy' field, the others have the `abase'
997 field. To tell the difference, we assume that pointers will have
998 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
999 is used to tell whether the real base of the parent ablocks is `abase'
1000 (if not, the word before the first ablock holds a pointer to the
1001 real base). */
1002 struct ablocks *abase;
1003 /* The padding of all but the last ablock is unused. The padding of
1004 the last ablock in an ablocks is not allocated. */
1005 #if BLOCK_PADDING
1006 char padding[BLOCK_PADDING];
1007 #endif
1008 };
1009
1010 /* A bunch of consecutive aligned blocks. */
1011 struct ablocks
1012 {
1013 struct ablock blocks[ABLOCKS_SIZE];
1014 };
1015
1016 /* Size of the block requested from malloc or posix_memalign. */
1017 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1018
1019 #define ABLOCK_ABASE(block) \
1020 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1021 ? (struct ablocks *)(block) \
1022 : (block)->abase)
1023
1024 /* Virtual `busy' field. */
1025 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1026
1027 /* Pointer to the (not necessarily aligned) malloc block. */
1028 #ifdef USE_POSIX_MEMALIGN
1029 #define ABLOCKS_BASE(abase) (abase)
1030 #else
1031 #define ABLOCKS_BASE(abase) \
1032 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1033 #endif
1034
1035 /* The list of free ablock. */
1036 static struct ablock *free_ablock;
1037
1038 /* Allocate an aligned block of nbytes.
1039 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1040 smaller or equal to BLOCK_BYTES. */
1041 static void *
1042 lisp_align_malloc (size_t nbytes, enum mem_type type)
1043 {
1044 void *base, *val;
1045 struct ablocks *abase;
1046
1047 eassert (nbytes <= BLOCK_BYTES);
1048
1049 MALLOC_BLOCK_INPUT;
1050
1051 #ifdef GC_MALLOC_CHECK
1052 allocated_mem_type = type;
1053 #endif
1054
1055 if (!free_ablock)
1056 {
1057 int i;
1058 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1059
1060 #ifdef DOUG_LEA_MALLOC
1061 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1062 because mapped region contents are not preserved in
1063 a dumped Emacs. */
1064 mallopt (M_MMAP_MAX, 0);
1065 #endif
1066
1067 #ifdef USE_POSIX_MEMALIGN
1068 {
1069 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1070 if (err)
1071 base = NULL;
1072 abase = base;
1073 }
1074 #else
1075 base = malloc (ABLOCKS_BYTES);
1076 abase = ALIGN (base, BLOCK_ALIGN);
1077 #endif
1078
1079 if (base == 0)
1080 {
1081 MALLOC_UNBLOCK_INPUT;
1082 memory_full (ABLOCKS_BYTES);
1083 }
1084
1085 aligned = (base == abase);
1086 if (!aligned)
1087 ((void**)abase)[-1] = base;
1088
1089 #ifdef DOUG_LEA_MALLOC
1090 /* Back to a reasonable maximum of mmap'ed areas. */
1091 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1092 #endif
1093
1094 #if ! USE_LSB_TAG
1095 /* If the memory just allocated cannot be addressed thru a Lisp
1096 object's pointer, and it needs to be, that's equivalent to
1097 running out of memory. */
1098 if (type != MEM_TYPE_NON_LISP)
1099 {
1100 Lisp_Object tem;
1101 char *end = (char *) base + ABLOCKS_BYTES - 1;
1102 XSETCONS (tem, end);
1103 if ((char *) XCONS (tem) != end)
1104 {
1105 lisp_malloc_loser = base;
1106 free (base);
1107 MALLOC_UNBLOCK_INPUT;
1108 memory_full (SIZE_MAX);
1109 }
1110 }
1111 #endif
1112
1113 /* Initialize the blocks and put them on the free list.
1114 If `base' was not properly aligned, we can't use the last block. */
1115 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1116 {
1117 abase->blocks[i].abase = abase;
1118 abase->blocks[i].x.next_free = free_ablock;
1119 free_ablock = &abase->blocks[i];
1120 }
1121 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1122
1123 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1124 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1125 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1126 eassert (ABLOCKS_BASE (abase) == base);
1127 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1128 }
1129
1130 abase = ABLOCK_ABASE (free_ablock);
1131 ABLOCKS_BUSY (abase) =
1132 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1133 val = free_ablock;
1134 free_ablock = free_ablock->x.next_free;
1135
1136 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1137 if (type != MEM_TYPE_NON_LISP)
1138 mem_insert (val, (char *) val + nbytes, type);
1139 #endif
1140
1141 MALLOC_UNBLOCK_INPUT;
1142
1143 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1144 return val;
1145 }
1146
1147 static void
1148 lisp_align_free (void *block)
1149 {
1150 struct ablock *ablock = block;
1151 struct ablocks *abase = ABLOCK_ABASE (ablock);
1152
1153 MALLOC_BLOCK_INPUT;
1154 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1155 mem_delete (mem_find (block));
1156 #endif
1157 /* Put on free list. */
1158 ablock->x.next_free = free_ablock;
1159 free_ablock = ablock;
1160 /* Update busy count. */
1161 ABLOCKS_BUSY (abase)
1162 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1163
1164 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1165 { /* All the blocks are free. */
1166 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1167 struct ablock **tem = &free_ablock;
1168 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1169
1170 while (*tem)
1171 {
1172 if (*tem >= (struct ablock *) abase && *tem < atop)
1173 {
1174 i++;
1175 *tem = (*tem)->x.next_free;
1176 }
1177 else
1178 tem = &(*tem)->x.next_free;
1179 }
1180 eassert ((aligned & 1) == aligned);
1181 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1182 #ifdef USE_POSIX_MEMALIGN
1183 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1184 #endif
1185 free (ABLOCKS_BASE (abase));
1186 }
1187 MALLOC_UNBLOCK_INPUT;
1188 }
1189
1190 /* Return a new buffer structure allocated from the heap with
1191 a call to lisp_malloc. */
1192
1193 struct buffer *
1194 allocate_buffer (void)
1195 {
1196 struct buffer *b
1197 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1198 MEM_TYPE_BUFFER);
1199 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1200 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1201 / sizeof (EMACS_INT)));
1202 return b;
1203 }
1204
1205 \f
1206 #ifndef SYSTEM_MALLOC
1207
1208 /* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1217
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1221
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1231
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1237
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1241
1242 static size_t bytes_used_when_reconsidered;
1243
1244 /* Value of _bytes_used, when spare_memory was freed. */
1245
1246 static size_t bytes_used_when_full;
1247
1248 /* This function is used as the hook for free to call. */
1249
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1252 {
1253 BLOCK_INPUT_ALLOC;
1254
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1257 {
1258 struct mem_node *m;
1259
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
1273 #endif /* GC_MALLOC_CHECK */
1274
1275 __free_hook = old_free_hook;
1276 free (ptr);
1277
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1290
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1293 }
1294
1295
1296 /* This function is the malloc hook that Emacs uses. */
1297
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1300 {
1301 void *value;
1302
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1311
1312 value = (void *) malloc (size);
1313
1314 #ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333 #endif /* GC_MALLOC_CHECK */
1334
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1337
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1340 }
1341
1342
1343 /* This function is the realloc hook that Emacs uses. */
1344
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1347 {
1348 void *value;
1349
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1352
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
1367
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1369
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1373
1374 value = (void *) realloc (ptr, size);
1375
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
1390
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1393
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1396
1397 return value;
1398 }
1399
1400
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407 void
1408 reset_malloc_hooks (void)
1409 {
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1413 }
1414 #endif /* HAVE_PTHREAD */
1415
1416
1417 /* Called from main to set up malloc to use our hooks. */
1418
1419 void
1420 uninterrupt_malloc (void)
1421 {
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1425
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1437
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1441
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1445
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1449 }
1450
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1453
1454
1455 \f
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1459
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
1469 struct interval_block
1470 {
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1474 };
1475
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
1479 static struct interval_block *interval_block;
1480
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1483
1484 static int interval_block_index;
1485
1486 /* Number of free and live intervals. */
1487
1488 static EMACS_INT total_free_intervals, total_intervals;
1489
1490 /* List of free intervals. */
1491
1492 static INTERVAL interval_free_list;
1493
1494
1495 /* Initialize interval allocation. */
1496
1497 static void
1498 init_intervals (void)
1499 {
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1503 }
1504
1505
1506 /* Return a new interval. */
1507
1508 INTERVAL
1509 make_interval (void)
1510 {
1511 INTERVAL val;
1512
1513 /* eassert (!handling_signal); */
1514
1515 MALLOC_BLOCK_INPUT;
1516
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
1526 register struct interval_block *newi;
1527
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
1530
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1534 }
1535 val = &interval_block->intervals[interval_block_index++];
1536 }
1537
1538 MALLOC_UNBLOCK_INPUT;
1539
1540 consing_since_gc += sizeof (struct interval);
1541 intervals_consed++;
1542 RESET_INTERVAL (val);
1543 val->gcmarkbit = 0;
1544 return val;
1545 }
1546
1547
1548 /* Mark Lisp objects in interval I. */
1549
1550 static void
1551 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 {
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
1555 mark_object (i->plist);
1556 }
1557
1558
1559 /* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1561
1562 static void
1563 mark_interval_tree (register INTERVAL tree)
1564 {
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1568
1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
1570 }
1571
1572
1573 /* Mark the interval tree rooted in I. */
1574
1575 #define MARK_INTERVAL_TREE(i) \
1576 do { \
1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1578 mark_interval_tree (i); \
1579 } while (0)
1580
1581
1582 #define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
1585 (i) = balance_intervals (i); \
1586 } while (0)
1587 \f
1588 /***********************************************************************
1589 String Allocation
1590 ***********************************************************************/
1591
1592 /* Lisp_Strings are allocated in string_block structures. When a new
1593 string_block is allocated, all the Lisp_Strings it contains are
1594 added to a free-list string_free_list. When a new Lisp_String is
1595 needed, it is taken from that list. During the sweep phase of GC,
1596 string_blocks that are entirely free are freed, except two which
1597 we keep.
1598
1599 String data is allocated from sblock structures. Strings larger
1600 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1601 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1602
1603 Sblocks consist internally of sdata structures, one for each
1604 Lisp_String. The sdata structure points to the Lisp_String it
1605 belongs to. The Lisp_String points back to the `u.data' member of
1606 its sdata structure.
1607
1608 When a Lisp_String is freed during GC, it is put back on
1609 string_free_list, and its `data' member and its sdata's `string'
1610 pointer is set to null. The size of the string is recorded in the
1611 `u.nbytes' member of the sdata. So, sdata structures that are no
1612 longer used, can be easily recognized, and it's easy to compact the
1613 sblocks of small strings which we do in compact_small_strings. */
1614
1615 /* Size in bytes of an sblock structure used for small strings. This
1616 is 8192 minus malloc overhead. */
1617
1618 #define SBLOCK_SIZE 8188
1619
1620 /* Strings larger than this are considered large strings. String data
1621 for large strings is allocated from individual sblocks. */
1622
1623 #define LARGE_STRING_BYTES 1024
1624
1625 /* Structure describing string memory sub-allocated from an sblock.
1626 This is where the contents of Lisp strings are stored. */
1627
1628 struct sdata
1629 {
1630 /* Back-pointer to the string this sdata belongs to. If null, this
1631 structure is free, and the NBYTES member of the union below
1632 contains the string's byte size (the same value that STRING_BYTES
1633 would return if STRING were non-null). If non-null, STRING_BYTES
1634 (STRING) is the size of the data, and DATA contains the string's
1635 contents. */
1636 struct Lisp_String *string;
1637
1638 #ifdef GC_CHECK_STRING_BYTES
1639
1640 ptrdiff_t nbytes;
1641 unsigned char data[1];
1642
1643 #define SDATA_NBYTES(S) (S)->nbytes
1644 #define SDATA_DATA(S) (S)->data
1645 #define SDATA_SELECTOR(member) member
1646
1647 #else /* not GC_CHECK_STRING_BYTES */
1648
1649 union
1650 {
1651 /* When STRING is non-null. */
1652 unsigned char data[1];
1653
1654 /* When STRING is null. */
1655 ptrdiff_t nbytes;
1656 } u;
1657
1658 #define SDATA_NBYTES(S) (S)->u.nbytes
1659 #define SDATA_DATA(S) (S)->u.data
1660 #define SDATA_SELECTOR(member) u.member
1661
1662 #endif /* not GC_CHECK_STRING_BYTES */
1663
1664 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1665 };
1666
1667
1668 /* Structure describing a block of memory which is sub-allocated to
1669 obtain string data memory for strings. Blocks for small strings
1670 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1671 as large as needed. */
1672
1673 struct sblock
1674 {
1675 /* Next in list. */
1676 struct sblock *next;
1677
1678 /* Pointer to the next free sdata block. This points past the end
1679 of the sblock if there isn't any space left in this block. */
1680 struct sdata *next_free;
1681
1682 /* Start of data. */
1683 struct sdata first_data;
1684 };
1685
1686 /* Number of Lisp strings in a string_block structure. The 1020 is
1687 1024 minus malloc overhead. */
1688
1689 #define STRING_BLOCK_SIZE \
1690 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1691
1692 /* Structure describing a block from which Lisp_String structures
1693 are allocated. */
1694
1695 struct string_block
1696 {
1697 /* Place `strings' first, to preserve alignment. */
1698 struct Lisp_String strings[STRING_BLOCK_SIZE];
1699 struct string_block *next;
1700 };
1701
1702 /* Head and tail of the list of sblock structures holding Lisp string
1703 data. We always allocate from current_sblock. The NEXT pointers
1704 in the sblock structures go from oldest_sblock to current_sblock. */
1705
1706 static struct sblock *oldest_sblock, *current_sblock;
1707
1708 /* List of sblocks for large strings. */
1709
1710 static struct sblock *large_sblocks;
1711
1712 /* List of string_block structures. */
1713
1714 static struct string_block *string_blocks;
1715
1716 /* Free-list of Lisp_Strings. */
1717
1718 static struct Lisp_String *string_free_list;
1719
1720 /* Number of live and free Lisp_Strings. */
1721
1722 static EMACS_INT total_strings, total_free_strings;
1723
1724 /* Number of bytes used by live strings. */
1725
1726 static EMACS_INT total_string_size;
1727
1728 /* Given a pointer to a Lisp_String S which is on the free-list
1729 string_free_list, return a pointer to its successor in the
1730 free-list. */
1731
1732 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1733
1734 /* Return a pointer to the sdata structure belonging to Lisp string S.
1735 S must be live, i.e. S->data must not be null. S->data is actually
1736 a pointer to the `u.data' member of its sdata structure; the
1737 structure starts at a constant offset in front of that. */
1738
1739 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1740
1741
1742 #ifdef GC_CHECK_STRING_OVERRUN
1743
1744 /* We check for overrun in string data blocks by appending a small
1745 "cookie" after each allocated string data block, and check for the
1746 presence of this cookie during GC. */
1747
1748 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1749 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1750 { '\xde', '\xad', '\xbe', '\xef' };
1751
1752 #else
1753 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1754 #endif
1755
1756 /* Value is the size of an sdata structure large enough to hold NBYTES
1757 bytes of string data. The value returned includes a terminating
1758 NUL byte, the size of the sdata structure, and padding. */
1759
1760 #ifdef GC_CHECK_STRING_BYTES
1761
1762 #define SDATA_SIZE(NBYTES) \
1763 ((SDATA_DATA_OFFSET \
1764 + (NBYTES) + 1 \
1765 + sizeof (ptrdiff_t) - 1) \
1766 & ~(sizeof (ptrdiff_t) - 1))
1767
1768 #else /* not GC_CHECK_STRING_BYTES */
1769
1770 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1771 less than the size of that member. The 'max' is not needed when
1772 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1773 alignment code reserves enough space. */
1774
1775 #define SDATA_SIZE(NBYTES) \
1776 ((SDATA_DATA_OFFSET \
1777 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1778 ? NBYTES \
1779 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1780 + 1 \
1781 + sizeof (ptrdiff_t) - 1) \
1782 & ~(sizeof (ptrdiff_t) - 1))
1783
1784 #endif /* not GC_CHECK_STRING_BYTES */
1785
1786 /* Extra bytes to allocate for each string. */
1787
1788 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1789
1790 /* Exact bound on the number of bytes in a string, not counting the
1791 terminating null. A string cannot contain more bytes than
1792 STRING_BYTES_BOUND, nor can it be so long that the size_t
1793 arithmetic in allocate_string_data would overflow while it is
1794 calculating a value to be passed to malloc. */
1795 #define STRING_BYTES_MAX \
1796 min (STRING_BYTES_BOUND, \
1797 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1798 - GC_STRING_EXTRA \
1799 - offsetof (struct sblock, first_data) \
1800 - SDATA_DATA_OFFSET) \
1801 & ~(sizeof (EMACS_INT) - 1)))
1802
1803 /* Initialize string allocation. Called from init_alloc_once. */
1804
1805 static void
1806 init_strings (void)
1807 {
1808 total_strings = total_free_strings = total_string_size = 0;
1809 oldest_sblock = current_sblock = large_sblocks = NULL;
1810 string_blocks = NULL;
1811 string_free_list = NULL;
1812 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1813 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1814 }
1815
1816
1817 #ifdef GC_CHECK_STRING_BYTES
1818
1819 static int check_string_bytes_count;
1820
1821 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1822
1823
1824 /* Like GC_STRING_BYTES, but with debugging check. */
1825
1826 ptrdiff_t
1827 string_bytes (struct Lisp_String *s)
1828 {
1829 ptrdiff_t nbytes =
1830 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1831
1832 if (!PURE_POINTER_P (s)
1833 && s->data
1834 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1835 abort ();
1836 return nbytes;
1837 }
1838
1839 /* Check validity of Lisp strings' string_bytes member in B. */
1840
1841 static void
1842 check_sblock (struct sblock *b)
1843 {
1844 struct sdata *from, *end, *from_end;
1845
1846 end = b->next_free;
1847
1848 for (from = &b->first_data; from < end; from = from_end)
1849 {
1850 /* Compute the next FROM here because copying below may
1851 overwrite data we need to compute it. */
1852 ptrdiff_t nbytes;
1853
1854 /* Check that the string size recorded in the string is the
1855 same as the one recorded in the sdata structure. */
1856 if (from->string)
1857 CHECK_STRING_BYTES (from->string);
1858
1859 if (from->string)
1860 nbytes = GC_STRING_BYTES (from->string);
1861 else
1862 nbytes = SDATA_NBYTES (from);
1863
1864 nbytes = SDATA_SIZE (nbytes);
1865 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1866 }
1867 }
1868
1869
1870 /* Check validity of Lisp strings' string_bytes member. ALL_P
1871 non-zero means check all strings, otherwise check only most
1872 recently allocated strings. Used for hunting a bug. */
1873
1874 static void
1875 check_string_bytes (int all_p)
1876 {
1877 if (all_p)
1878 {
1879 struct sblock *b;
1880
1881 for (b = large_sblocks; b; b = b->next)
1882 {
1883 struct Lisp_String *s = b->first_data.string;
1884 if (s)
1885 CHECK_STRING_BYTES (s);
1886 }
1887
1888 for (b = oldest_sblock; b; b = b->next)
1889 check_sblock (b);
1890 }
1891 else
1892 check_sblock (current_sblock);
1893 }
1894
1895 #endif /* GC_CHECK_STRING_BYTES */
1896
1897 #ifdef GC_CHECK_STRING_FREE_LIST
1898
1899 /* Walk through the string free list looking for bogus next pointers.
1900 This may catch buffer overrun from a previous string. */
1901
1902 static void
1903 check_string_free_list (void)
1904 {
1905 struct Lisp_String *s;
1906
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 while (s != NULL)
1910 {
1911 if ((uintptr_t) s < 1024)
1912 abort ();
1913 s = NEXT_FREE_LISP_STRING (s);
1914 }
1915 }
1916 #else
1917 #define check_string_free_list()
1918 #endif
1919
1920 /* Return a new Lisp_String. */
1921
1922 static struct Lisp_String *
1923 allocate_string (void)
1924 {
1925 struct Lisp_String *s;
1926
1927 /* eassert (!handling_signal); */
1928
1929 MALLOC_BLOCK_INPUT;
1930
1931 /* If the free-list is empty, allocate a new string_block, and
1932 add all the Lisp_Strings in it to the free-list. */
1933 if (string_free_list == NULL)
1934 {
1935 struct string_block *b;
1936 int i;
1937
1938 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1939 memset (b, 0, sizeof *b);
1940 b->next = string_blocks;
1941 string_blocks = b;
1942
1943 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1944 {
1945 s = b->strings + i;
1946 NEXT_FREE_LISP_STRING (s) = string_free_list;
1947 string_free_list = s;
1948 }
1949
1950 total_free_strings += STRING_BLOCK_SIZE;
1951 }
1952
1953 check_string_free_list ();
1954
1955 /* Pop a Lisp_String off the free-list. */
1956 s = string_free_list;
1957 string_free_list = NEXT_FREE_LISP_STRING (s);
1958
1959 MALLOC_UNBLOCK_INPUT;
1960
1961 /* Probably not strictly necessary, but play it safe. */
1962 memset (s, 0, sizeof *s);
1963
1964 --total_free_strings;
1965 ++total_strings;
1966 ++strings_consed;
1967 consing_since_gc += sizeof *s;
1968
1969 #ifdef GC_CHECK_STRING_BYTES
1970 if (!noninteractive)
1971 {
1972 if (++check_string_bytes_count == 200)
1973 {
1974 check_string_bytes_count = 0;
1975 check_string_bytes (1);
1976 }
1977 else
1978 check_string_bytes (0);
1979 }
1980 #endif /* GC_CHECK_STRING_BYTES */
1981
1982 return s;
1983 }
1984
1985
1986 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1987 plus a NUL byte at the end. Allocate an sdata structure for S, and
1988 set S->data to its `u.data' member. Store a NUL byte at the end of
1989 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1990 S->data if it was initially non-null. */
1991
1992 void
1993 allocate_string_data (struct Lisp_String *s,
1994 EMACS_INT nchars, EMACS_INT nbytes)
1995 {
1996 struct sdata *data, *old_data;
1997 struct sblock *b;
1998 ptrdiff_t needed, old_nbytes;
1999
2000 if (STRING_BYTES_MAX < nbytes)
2001 string_overflow ();
2002
2003 /* Determine the number of bytes needed to store NBYTES bytes
2004 of string data. */
2005 needed = SDATA_SIZE (nbytes);
2006 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2007 old_nbytes = GC_STRING_BYTES (s);
2008
2009 MALLOC_BLOCK_INPUT;
2010
2011 if (nbytes > LARGE_STRING_BYTES)
2012 {
2013 size_t size = offsetof (struct sblock, first_data) + needed;
2014
2015 #ifdef DOUG_LEA_MALLOC
2016 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2017 because mapped region contents are not preserved in
2018 a dumped Emacs.
2019
2020 In case you think of allowing it in a dumped Emacs at the
2021 cost of not being able to re-dump, there's another reason:
2022 mmap'ed data typically have an address towards the top of the
2023 address space, which won't fit into an EMACS_INT (at least on
2024 32-bit systems with the current tagging scheme). --fx */
2025 mallopt (M_MMAP_MAX, 0);
2026 #endif
2027
2028 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2029
2030 #ifdef DOUG_LEA_MALLOC
2031 /* Back to a reasonable maximum of mmap'ed areas. */
2032 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2033 #endif
2034
2035 b->next_free = &b->first_data;
2036 b->first_data.string = NULL;
2037 b->next = large_sblocks;
2038 large_sblocks = b;
2039 }
2040 else if (current_sblock == NULL
2041 || (((char *) current_sblock + SBLOCK_SIZE
2042 - (char *) current_sblock->next_free)
2043 < (needed + GC_STRING_EXTRA)))
2044 {
2045 /* Not enough room in the current sblock. */
2046 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2047 b->next_free = &b->first_data;
2048 b->first_data.string = NULL;
2049 b->next = NULL;
2050
2051 if (current_sblock)
2052 current_sblock->next = b;
2053 else
2054 oldest_sblock = b;
2055 current_sblock = b;
2056 }
2057 else
2058 b = current_sblock;
2059
2060 data = b->next_free;
2061 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2062
2063 MALLOC_UNBLOCK_INPUT;
2064
2065 data->string = s;
2066 s->data = SDATA_DATA (data);
2067 #ifdef GC_CHECK_STRING_BYTES
2068 SDATA_NBYTES (data) = nbytes;
2069 #endif
2070 s->size = nchars;
2071 s->size_byte = nbytes;
2072 s->data[nbytes] = '\0';
2073 #ifdef GC_CHECK_STRING_OVERRUN
2074 memcpy ((char *) data + needed, string_overrun_cookie,
2075 GC_STRING_OVERRUN_COOKIE_SIZE);
2076 #endif
2077
2078 /* If S had already data assigned, mark that as free by setting its
2079 string back-pointer to null, and recording the size of the data
2080 in it. */
2081 if (old_data)
2082 {
2083 SDATA_NBYTES (old_data) = old_nbytes;
2084 old_data->string = NULL;
2085 }
2086
2087 consing_since_gc += needed;
2088 }
2089
2090
2091 /* Sweep and compact strings. */
2092
2093 static void
2094 sweep_strings (void)
2095 {
2096 struct string_block *b, *next;
2097 struct string_block *live_blocks = NULL;
2098
2099 string_free_list = NULL;
2100 total_strings = total_free_strings = 0;
2101 total_string_size = 0;
2102
2103 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2104 for (b = string_blocks; b; b = next)
2105 {
2106 int i, nfree = 0;
2107 struct Lisp_String *free_list_before = string_free_list;
2108
2109 next = b->next;
2110
2111 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2112 {
2113 struct Lisp_String *s = b->strings + i;
2114
2115 if (s->data)
2116 {
2117 /* String was not on free-list before. */
2118 if (STRING_MARKED_P (s))
2119 {
2120 /* String is live; unmark it and its intervals. */
2121 UNMARK_STRING (s);
2122
2123 if (!NULL_INTERVAL_P (s->intervals))
2124 UNMARK_BALANCE_INTERVALS (s->intervals);
2125
2126 ++total_strings;
2127 total_string_size += STRING_BYTES (s);
2128 }
2129 else
2130 {
2131 /* String is dead. Put it on the free-list. */
2132 struct sdata *data = SDATA_OF_STRING (s);
2133
2134 /* Save the size of S in its sdata so that we know
2135 how large that is. Reset the sdata's string
2136 back-pointer so that we know it's free. */
2137 #ifdef GC_CHECK_STRING_BYTES
2138 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2139 abort ();
2140 #else
2141 data->u.nbytes = GC_STRING_BYTES (s);
2142 #endif
2143 data->string = NULL;
2144
2145 /* Reset the strings's `data' member so that we
2146 know it's free. */
2147 s->data = NULL;
2148
2149 /* Put the string on the free-list. */
2150 NEXT_FREE_LISP_STRING (s) = string_free_list;
2151 string_free_list = s;
2152 ++nfree;
2153 }
2154 }
2155 else
2156 {
2157 /* S was on the free-list before. Put it there again. */
2158 NEXT_FREE_LISP_STRING (s) = string_free_list;
2159 string_free_list = s;
2160 ++nfree;
2161 }
2162 }
2163
2164 /* Free blocks that contain free Lisp_Strings only, except
2165 the first two of them. */
2166 if (nfree == STRING_BLOCK_SIZE
2167 && total_free_strings > STRING_BLOCK_SIZE)
2168 {
2169 lisp_free (b);
2170 string_free_list = free_list_before;
2171 }
2172 else
2173 {
2174 total_free_strings += nfree;
2175 b->next = live_blocks;
2176 live_blocks = b;
2177 }
2178 }
2179
2180 check_string_free_list ();
2181
2182 string_blocks = live_blocks;
2183 free_large_strings ();
2184 compact_small_strings ();
2185
2186 check_string_free_list ();
2187 }
2188
2189
2190 /* Free dead large strings. */
2191
2192 static void
2193 free_large_strings (void)
2194 {
2195 struct sblock *b, *next;
2196 struct sblock *live_blocks = NULL;
2197
2198 for (b = large_sblocks; b; b = next)
2199 {
2200 next = b->next;
2201
2202 if (b->first_data.string == NULL)
2203 lisp_free (b);
2204 else
2205 {
2206 b->next = live_blocks;
2207 live_blocks = b;
2208 }
2209 }
2210
2211 large_sblocks = live_blocks;
2212 }
2213
2214
2215 /* Compact data of small strings. Free sblocks that don't contain
2216 data of live strings after compaction. */
2217
2218 static void
2219 compact_small_strings (void)
2220 {
2221 struct sblock *b, *tb, *next;
2222 struct sdata *from, *to, *end, *tb_end;
2223 struct sdata *to_end, *from_end;
2224
2225 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2226 to, and TB_END is the end of TB. */
2227 tb = oldest_sblock;
2228 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2229 to = &tb->first_data;
2230
2231 /* Step through the blocks from the oldest to the youngest. We
2232 expect that old blocks will stabilize over time, so that less
2233 copying will happen this way. */
2234 for (b = oldest_sblock; b; b = b->next)
2235 {
2236 end = b->next_free;
2237 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2238
2239 for (from = &b->first_data; from < end; from = from_end)
2240 {
2241 /* Compute the next FROM here because copying below may
2242 overwrite data we need to compute it. */
2243 ptrdiff_t nbytes;
2244
2245 #ifdef GC_CHECK_STRING_BYTES
2246 /* Check that the string size recorded in the string is the
2247 same as the one recorded in the sdata structure. */
2248 if (from->string
2249 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2250 abort ();
2251 #endif /* GC_CHECK_STRING_BYTES */
2252
2253 if (from->string)
2254 nbytes = GC_STRING_BYTES (from->string);
2255 else
2256 nbytes = SDATA_NBYTES (from);
2257
2258 if (nbytes > LARGE_STRING_BYTES)
2259 abort ();
2260
2261 nbytes = SDATA_SIZE (nbytes);
2262 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2263
2264 #ifdef GC_CHECK_STRING_OVERRUN
2265 if (memcmp (string_overrun_cookie,
2266 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2267 GC_STRING_OVERRUN_COOKIE_SIZE))
2268 abort ();
2269 #endif
2270
2271 /* FROM->string non-null means it's alive. Copy its data. */
2272 if (from->string)
2273 {
2274 /* If TB is full, proceed with the next sblock. */
2275 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2276 if (to_end > tb_end)
2277 {
2278 tb->next_free = to;
2279 tb = tb->next;
2280 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2281 to = &tb->first_data;
2282 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2283 }
2284
2285 /* Copy, and update the string's `data' pointer. */
2286 if (from != to)
2287 {
2288 xassert (tb != b || to < from);
2289 memmove (to, from, nbytes + GC_STRING_EXTRA);
2290 to->string->data = SDATA_DATA (to);
2291 }
2292
2293 /* Advance past the sdata we copied to. */
2294 to = to_end;
2295 }
2296 }
2297 }
2298
2299 /* The rest of the sblocks following TB don't contain live data, so
2300 we can free them. */
2301 for (b = tb->next; b; b = next)
2302 {
2303 next = b->next;
2304 lisp_free (b);
2305 }
2306
2307 tb->next_free = to;
2308 tb->next = NULL;
2309 current_sblock = tb;
2310 }
2311
2312 void
2313 string_overflow (void)
2314 {
2315 error ("Maximum string size exceeded");
2316 }
2317
2318 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2319 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2320 LENGTH must be an integer.
2321 INIT must be an integer that represents a character. */)
2322 (Lisp_Object length, Lisp_Object init)
2323 {
2324 register Lisp_Object val;
2325 register unsigned char *p, *end;
2326 int c;
2327 EMACS_INT nbytes;
2328
2329 CHECK_NATNUM (length);
2330 CHECK_CHARACTER (init);
2331
2332 c = XFASTINT (init);
2333 if (ASCII_CHAR_P (c))
2334 {
2335 nbytes = XINT (length);
2336 val = make_uninit_string (nbytes);
2337 p = SDATA (val);
2338 end = p + SCHARS (val);
2339 while (p != end)
2340 *p++ = c;
2341 }
2342 else
2343 {
2344 unsigned char str[MAX_MULTIBYTE_LENGTH];
2345 int len = CHAR_STRING (c, str);
2346 EMACS_INT string_len = XINT (length);
2347
2348 if (string_len > STRING_BYTES_MAX / len)
2349 string_overflow ();
2350 nbytes = len * string_len;
2351 val = make_uninit_multibyte_string (string_len, nbytes);
2352 p = SDATA (val);
2353 end = p + nbytes;
2354 while (p != end)
2355 {
2356 memcpy (p, str, len);
2357 p += len;
2358 }
2359 }
2360
2361 *p = 0;
2362 return val;
2363 }
2364
2365
2366 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2367 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2368 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2369 (Lisp_Object length, Lisp_Object init)
2370 {
2371 register Lisp_Object val;
2372 struct Lisp_Bool_Vector *p;
2373 ptrdiff_t length_in_chars;
2374 EMACS_INT length_in_elts;
2375 int bits_per_value;
2376
2377 CHECK_NATNUM (length);
2378
2379 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2380
2381 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2382
2383 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2384 slot `size' of the struct Lisp_Bool_Vector. */
2385 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2386
2387 /* No Lisp_Object to trace in there. */
2388 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2389
2390 p = XBOOL_VECTOR (val);
2391 p->size = XFASTINT (length);
2392
2393 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2394 / BOOL_VECTOR_BITS_PER_CHAR);
2395 if (length_in_chars)
2396 {
2397 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2398
2399 /* Clear any extraneous bits in the last byte. */
2400 p->data[length_in_chars - 1]
2401 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2402 }
2403
2404 return val;
2405 }
2406
2407
2408 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2409 of characters from the contents. This string may be unibyte or
2410 multibyte, depending on the contents. */
2411
2412 Lisp_Object
2413 make_string (const char *contents, ptrdiff_t nbytes)
2414 {
2415 register Lisp_Object val;
2416 ptrdiff_t nchars, multibyte_nbytes;
2417
2418 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2419 &nchars, &multibyte_nbytes);
2420 if (nbytes == nchars || nbytes != multibyte_nbytes)
2421 /* CONTENTS contains no multibyte sequences or contains an invalid
2422 multibyte sequence. We must make unibyte string. */
2423 val = make_unibyte_string (contents, nbytes);
2424 else
2425 val = make_multibyte_string (contents, nchars, nbytes);
2426 return val;
2427 }
2428
2429
2430 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2431
2432 Lisp_Object
2433 make_unibyte_string (const char *contents, ptrdiff_t length)
2434 {
2435 register Lisp_Object val;
2436 val = make_uninit_string (length);
2437 memcpy (SDATA (val), contents, length);
2438 return val;
2439 }
2440
2441
2442 /* Make a multibyte string from NCHARS characters occupying NBYTES
2443 bytes at CONTENTS. */
2444
2445 Lisp_Object
2446 make_multibyte_string (const char *contents,
2447 ptrdiff_t nchars, ptrdiff_t nbytes)
2448 {
2449 register Lisp_Object val;
2450 val = make_uninit_multibyte_string (nchars, nbytes);
2451 memcpy (SDATA (val), contents, nbytes);
2452 return val;
2453 }
2454
2455
2456 /* Make a string from NCHARS characters occupying NBYTES bytes at
2457 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2458
2459 Lisp_Object
2460 make_string_from_bytes (const char *contents,
2461 ptrdiff_t nchars, ptrdiff_t nbytes)
2462 {
2463 register Lisp_Object val;
2464 val = make_uninit_multibyte_string (nchars, nbytes);
2465 memcpy (SDATA (val), contents, nbytes);
2466 if (SBYTES (val) == SCHARS (val))
2467 STRING_SET_UNIBYTE (val);
2468 return val;
2469 }
2470
2471
2472 /* Make a string from NCHARS characters occupying NBYTES bytes at
2473 CONTENTS. The argument MULTIBYTE controls whether to label the
2474 string as multibyte. If NCHARS is negative, it counts the number of
2475 characters by itself. */
2476
2477 Lisp_Object
2478 make_specified_string (const char *contents,
2479 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2480 {
2481 register Lisp_Object val;
2482
2483 if (nchars < 0)
2484 {
2485 if (multibyte)
2486 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2487 nbytes);
2488 else
2489 nchars = nbytes;
2490 }
2491 val = make_uninit_multibyte_string (nchars, nbytes);
2492 memcpy (SDATA (val), contents, nbytes);
2493 if (!multibyte)
2494 STRING_SET_UNIBYTE (val);
2495 return val;
2496 }
2497
2498
2499 /* Make a string from the data at STR, treating it as multibyte if the
2500 data warrants. */
2501
2502 Lisp_Object
2503 build_string (const char *str)
2504 {
2505 return make_string (str, strlen (str));
2506 }
2507
2508
2509 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2510 occupying LENGTH bytes. */
2511
2512 Lisp_Object
2513 make_uninit_string (EMACS_INT length)
2514 {
2515 Lisp_Object val;
2516
2517 if (!length)
2518 return empty_unibyte_string;
2519 val = make_uninit_multibyte_string (length, length);
2520 STRING_SET_UNIBYTE (val);
2521 return val;
2522 }
2523
2524
2525 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2526 which occupy NBYTES bytes. */
2527
2528 Lisp_Object
2529 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2530 {
2531 Lisp_Object string;
2532 struct Lisp_String *s;
2533
2534 if (nchars < 0)
2535 abort ();
2536 if (!nbytes)
2537 return empty_multibyte_string;
2538
2539 s = allocate_string ();
2540 allocate_string_data (s, nchars, nbytes);
2541 XSETSTRING (string, s);
2542 string_chars_consed += nbytes;
2543 return string;
2544 }
2545
2546
2547 \f
2548 /***********************************************************************
2549 Float Allocation
2550 ***********************************************************************/
2551
2552 /* We store float cells inside of float_blocks, allocating a new
2553 float_block with malloc whenever necessary. Float cells reclaimed
2554 by GC are put on a free list to be reallocated before allocating
2555 any new float cells from the latest float_block. */
2556
2557 #define FLOAT_BLOCK_SIZE \
2558 (((BLOCK_BYTES - sizeof (struct float_block *) \
2559 /* The compiler might add padding at the end. */ \
2560 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2561 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2562
2563 #define GETMARKBIT(block,n) \
2564 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2565 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2566 & 1)
2567
2568 #define SETMARKBIT(block,n) \
2569 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2570 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2571
2572 #define UNSETMARKBIT(block,n) \
2573 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2574 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2575
2576 #define FLOAT_BLOCK(fptr) \
2577 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2578
2579 #define FLOAT_INDEX(fptr) \
2580 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2581
2582 struct float_block
2583 {
2584 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2585 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2586 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2587 struct float_block *next;
2588 };
2589
2590 #define FLOAT_MARKED_P(fptr) \
2591 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2592
2593 #define FLOAT_MARK(fptr) \
2594 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2595
2596 #define FLOAT_UNMARK(fptr) \
2597 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2598
2599 /* Current float_block. */
2600
2601 static struct float_block *float_block;
2602
2603 /* Index of first unused Lisp_Float in the current float_block. */
2604
2605 static int float_block_index;
2606
2607 /* Free-list of Lisp_Floats. */
2608
2609 static struct Lisp_Float *float_free_list;
2610
2611
2612 /* Initialize float allocation. */
2613
2614 static void
2615 init_float (void)
2616 {
2617 float_block = NULL;
2618 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2619 float_free_list = 0;
2620 }
2621
2622
2623 /* Return a new float object with value FLOAT_VALUE. */
2624
2625 Lisp_Object
2626 make_float (double float_value)
2627 {
2628 register Lisp_Object val;
2629
2630 /* eassert (!handling_signal); */
2631
2632 MALLOC_BLOCK_INPUT;
2633
2634 if (float_free_list)
2635 {
2636 /* We use the data field for chaining the free list
2637 so that we won't use the same field that has the mark bit. */
2638 XSETFLOAT (val, float_free_list);
2639 float_free_list = float_free_list->u.chain;
2640 }
2641 else
2642 {
2643 if (float_block_index == FLOAT_BLOCK_SIZE)
2644 {
2645 register struct float_block *new;
2646
2647 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2648 MEM_TYPE_FLOAT);
2649 new->next = float_block;
2650 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2651 float_block = new;
2652 float_block_index = 0;
2653 }
2654 XSETFLOAT (val, &float_block->floats[float_block_index]);
2655 float_block_index++;
2656 }
2657
2658 MALLOC_UNBLOCK_INPUT;
2659
2660 XFLOAT_INIT (val, float_value);
2661 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2662 consing_since_gc += sizeof (struct Lisp_Float);
2663 floats_consed++;
2664 return val;
2665 }
2666
2667
2668 \f
2669 /***********************************************************************
2670 Cons Allocation
2671 ***********************************************************************/
2672
2673 /* We store cons cells inside of cons_blocks, allocating a new
2674 cons_block with malloc whenever necessary. Cons cells reclaimed by
2675 GC are put on a free list to be reallocated before allocating
2676 any new cons cells from the latest cons_block. */
2677
2678 #define CONS_BLOCK_SIZE \
2679 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2680 /* The compiler might add padding at the end. */ \
2681 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2682 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2683
2684 #define CONS_BLOCK(fptr) \
2685 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2686
2687 #define CONS_INDEX(fptr) \
2688 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2689
2690 struct cons_block
2691 {
2692 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2693 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2694 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2695 struct cons_block *next;
2696 };
2697
2698 #define CONS_MARKED_P(fptr) \
2699 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2700
2701 #define CONS_MARK(fptr) \
2702 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2703
2704 #define CONS_UNMARK(fptr) \
2705 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2706
2707 /* Current cons_block. */
2708
2709 static struct cons_block *cons_block;
2710
2711 /* Index of first unused Lisp_Cons in the current block. */
2712
2713 static int cons_block_index;
2714
2715 /* Free-list of Lisp_Cons structures. */
2716
2717 static struct Lisp_Cons *cons_free_list;
2718
2719
2720 /* Initialize cons allocation. */
2721
2722 static void
2723 init_cons (void)
2724 {
2725 cons_block = NULL;
2726 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2727 cons_free_list = 0;
2728 }
2729
2730
2731 /* Explicitly free a cons cell by putting it on the free-list. */
2732
2733 void
2734 free_cons (struct Lisp_Cons *ptr)
2735 {
2736 ptr->u.chain = cons_free_list;
2737 #if GC_MARK_STACK
2738 ptr->car = Vdead;
2739 #endif
2740 cons_free_list = ptr;
2741 }
2742
2743 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2744 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2745 (Lisp_Object car, Lisp_Object cdr)
2746 {
2747 register Lisp_Object val;
2748
2749 /* eassert (!handling_signal); */
2750
2751 MALLOC_BLOCK_INPUT;
2752
2753 if (cons_free_list)
2754 {
2755 /* We use the cdr for chaining the free list
2756 so that we won't use the same field that has the mark bit. */
2757 XSETCONS (val, cons_free_list);
2758 cons_free_list = cons_free_list->u.chain;
2759 }
2760 else
2761 {
2762 if (cons_block_index == CONS_BLOCK_SIZE)
2763 {
2764 register struct cons_block *new;
2765 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2766 MEM_TYPE_CONS);
2767 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2768 new->next = cons_block;
2769 cons_block = new;
2770 cons_block_index = 0;
2771 }
2772 XSETCONS (val, &cons_block->conses[cons_block_index]);
2773 cons_block_index++;
2774 }
2775
2776 MALLOC_UNBLOCK_INPUT;
2777
2778 XSETCAR (val, car);
2779 XSETCDR (val, cdr);
2780 eassert (!CONS_MARKED_P (XCONS (val)));
2781 consing_since_gc += sizeof (struct Lisp_Cons);
2782 cons_cells_consed++;
2783 return val;
2784 }
2785
2786 #ifdef GC_CHECK_CONS_LIST
2787 /* Get an error now if there's any junk in the cons free list. */
2788 void
2789 check_cons_list (void)
2790 {
2791 struct Lisp_Cons *tail = cons_free_list;
2792
2793 while (tail)
2794 tail = tail->u.chain;
2795 }
2796 #endif
2797
2798 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2799
2800 Lisp_Object
2801 list1 (Lisp_Object arg1)
2802 {
2803 return Fcons (arg1, Qnil);
2804 }
2805
2806 Lisp_Object
2807 list2 (Lisp_Object arg1, Lisp_Object arg2)
2808 {
2809 return Fcons (arg1, Fcons (arg2, Qnil));
2810 }
2811
2812
2813 Lisp_Object
2814 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2815 {
2816 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2817 }
2818
2819
2820 Lisp_Object
2821 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2822 {
2823 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2824 }
2825
2826
2827 Lisp_Object
2828 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2829 {
2830 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2831 Fcons (arg5, Qnil)))));
2832 }
2833
2834
2835 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2836 doc: /* Return a newly created list with specified arguments as elements.
2837 Any number of arguments, even zero arguments, are allowed.
2838 usage: (list &rest OBJECTS) */)
2839 (ptrdiff_t nargs, Lisp_Object *args)
2840 {
2841 register Lisp_Object val;
2842 val = Qnil;
2843
2844 while (nargs > 0)
2845 {
2846 nargs--;
2847 val = Fcons (args[nargs], val);
2848 }
2849 return val;
2850 }
2851
2852
2853 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2854 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2855 (register Lisp_Object length, Lisp_Object init)
2856 {
2857 register Lisp_Object val;
2858 register EMACS_INT size;
2859
2860 CHECK_NATNUM (length);
2861 size = XFASTINT (length);
2862
2863 val = Qnil;
2864 while (size > 0)
2865 {
2866 val = Fcons (init, val);
2867 --size;
2868
2869 if (size > 0)
2870 {
2871 val = Fcons (init, val);
2872 --size;
2873
2874 if (size > 0)
2875 {
2876 val = Fcons (init, val);
2877 --size;
2878
2879 if (size > 0)
2880 {
2881 val = Fcons (init, val);
2882 --size;
2883
2884 if (size > 0)
2885 {
2886 val = Fcons (init, val);
2887 --size;
2888 }
2889 }
2890 }
2891 }
2892
2893 QUIT;
2894 }
2895
2896 return val;
2897 }
2898
2899
2900 \f
2901 /***********************************************************************
2902 Vector Allocation
2903 ***********************************************************************/
2904
2905 /* This value is balanced well enough to avoid too much internal overhead
2906 for the most common cases; it's not required to be a power of two, but
2907 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2908
2909 #define VECTOR_BLOCK_SIZE 4096
2910
2911 /* Handy constants for vectorlike objects. */
2912 enum
2913 {
2914 header_size = offsetof (struct Lisp_Vector, contents),
2915 word_size = sizeof (Lisp_Object),
2916 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2917 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2918 };
2919
2920 /* ROUNDUP_SIZE must be a power of 2. */
2921 verify ((roundup_size & (roundup_size - 1)) == 0);
2922
2923 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2924
2925 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2926
2927 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2928
2929 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2930
2931 /* Size of the minimal vector allocated from block. */
2932
2933 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2934
2935 /* Size of the largest vector allocated from block. */
2936
2937 #define VBLOCK_BYTES_MAX \
2938 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2939
2940 /* We maintain one free list for each possible block-allocated
2941 vector size, and this is the number of free lists we have. */
2942
2943 #define VECTOR_MAX_FREE_LIST_INDEX \
2944 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2945
2946 /* When the vector is on a free list, vectorlike_header.SIZE is set to
2947 this special value ORed with vector's memory footprint size. */
2948
2949 #define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2950 | (VECTOR_BLOCK_SIZE - 1)))
2951
2952 /* Common shortcut to advance vector pointer over a block data. */
2953
2954 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2955
2956 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2957
2958 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2959
2960 /* Common shortcut to setup vector on a free list. */
2961
2962 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2963 do { \
2964 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2965 eassert ((nbytes) % roundup_size == 0); \
2966 (index) = VINDEX (nbytes); \
2967 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2968 (v)->header.next.vector = vector_free_lists[index]; \
2969 vector_free_lists[index] = (v); \
2970 } while (0)
2971
2972 struct vector_block
2973 {
2974 char data[VECTOR_BLOCK_BYTES];
2975 struct vector_block *next;
2976 };
2977
2978 /* Chain of vector blocks. */
2979
2980 static struct vector_block *vector_blocks;
2981
2982 /* Vector free lists, where NTH item points to a chain of free
2983 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2984
2985 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2986
2987 /* Singly-linked list of large vectors. */
2988
2989 static struct Lisp_Vector *large_vectors;
2990
2991 /* The only vector with 0 slots, allocated from pure space. */
2992
2993 static struct Lisp_Vector *zero_vector;
2994
2995 /* Get a new vector block. */
2996
2997 static struct vector_block *
2998 allocate_vector_block (void)
2999 {
3000 struct vector_block *block;
3001
3002 #ifdef DOUG_LEA_MALLOC
3003 mallopt (M_MMAP_MAX, 0);
3004 #endif
3005
3006 block = xmalloc (sizeof (struct vector_block));
3007
3008 #ifdef DOUG_LEA_MALLOC
3009 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3010 #endif
3011
3012 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3013 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3014 MEM_TYPE_VECTOR_BLOCK);
3015 #endif
3016
3017 block->next = vector_blocks;
3018 vector_blocks = block;
3019 return block;
3020 }
3021
3022 /* Called once to initialize vector allocation. */
3023
3024 static void
3025 init_vectors (void)
3026 {
3027 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3028 zero_vector->header.size = 0;
3029 }
3030
3031 /* Allocate vector from a vector block. */
3032
3033 static struct Lisp_Vector *
3034 allocate_vector_from_block (size_t nbytes)
3035 {
3036 struct Lisp_Vector *vector, *rest;
3037 struct vector_block *block;
3038 size_t index, restbytes;
3039
3040 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3041 eassert (nbytes % roundup_size == 0);
3042
3043 /* First, try to allocate from a free list
3044 containing vectors of the requested size. */
3045 index = VINDEX (nbytes);
3046 if (vector_free_lists[index])
3047 {
3048 vector = vector_free_lists[index];
3049 vector_free_lists[index] = vector->header.next.vector;
3050 vector->header.next.nbytes = nbytes;
3051 return vector;
3052 }
3053
3054 /* Next, check free lists containing larger vectors. Since
3055 we will split the result, we should have remaining space
3056 large enough to use for one-slot vector at least. */
3057 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3058 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3059 if (vector_free_lists[index])
3060 {
3061 /* This vector is larger than requested. */
3062 vector = vector_free_lists[index];
3063 vector_free_lists[index] = vector->header.next.vector;
3064 vector->header.next.nbytes = nbytes;
3065
3066 /* Excess bytes are used for the smaller vector,
3067 which should be set on an appropriate free list. */
3068 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3069 eassert (restbytes % roundup_size == 0);
3070 rest = ADVANCE (vector, nbytes);
3071 SETUP_ON_FREE_LIST (rest, restbytes, index);
3072 return vector;
3073 }
3074
3075 /* Finally, need a new vector block. */
3076 block = allocate_vector_block ();
3077
3078 /* New vector will be at the beginning of this block. */
3079 vector = (struct Lisp_Vector *) block->data;
3080 vector->header.next.nbytes = nbytes;
3081
3082 /* If the rest of space from this block is large enough
3083 for one-slot vector at least, set up it on a free list. */
3084 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3085 if (restbytes >= VBLOCK_BYTES_MIN)
3086 {
3087 eassert (restbytes % roundup_size == 0);
3088 rest = ADVANCE (vector, nbytes);
3089 SETUP_ON_FREE_LIST (rest, restbytes, index);
3090 }
3091 return vector;
3092 }
3093
3094 /* Return how many Lisp_Objects can be stored in V. */
3095
3096 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3097 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3098 (v)->header.size)
3099
3100 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3101
3102 #define VECTOR_IN_BLOCK(vector, block) \
3103 ((char *) (vector) <= (block)->data \
3104 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3105
3106 /* Reclaim space used by unmarked vectors. */
3107
3108 static void
3109 sweep_vectors (void)
3110 {
3111 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3112 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3113
3114 total_vector_size = 0;
3115 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3116
3117 /* Looking through vector blocks. */
3118
3119 for (block = vector_blocks; block; block = *bprev)
3120 {
3121 int free_this_block = 0;
3122
3123 for (vector = (struct Lisp_Vector *) block->data;
3124 VECTOR_IN_BLOCK (vector, block); vector = next)
3125 {
3126 if (VECTOR_MARKED_P (vector))
3127 {
3128 VECTOR_UNMARK (vector);
3129 total_vector_size += VECTOR_SIZE (vector);
3130 next = ADVANCE (vector, vector->header.next.nbytes);
3131 }
3132 else
3133 {
3134 ptrdiff_t nbytes;
3135
3136 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3137 == VECTOR_FREE_LIST_FLAG)
3138 vector->header.next.nbytes =
3139 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
3140
3141 next = ADVANCE (vector, vector->header.next.nbytes);
3142
3143 /* While NEXT is not marked, try to coalesce with VECTOR,
3144 thus making VECTOR of the largest possible size. */
3145
3146 while (VECTOR_IN_BLOCK (next, block))
3147 {
3148 if (VECTOR_MARKED_P (next))
3149 break;
3150 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3151 == VECTOR_FREE_LIST_FLAG)
3152 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3153 else
3154 nbytes = next->header.next.nbytes;
3155 vector->header.next.nbytes += nbytes;
3156 next = ADVANCE (next, nbytes);
3157 }
3158
3159 eassert (vector->header.next.nbytes % roundup_size == 0);
3160
3161 if (vector == (struct Lisp_Vector *) block->data
3162 && !VECTOR_IN_BLOCK (next, block))
3163 /* This block should be freed because all of it's
3164 space was coalesced into the only free vector. */
3165 free_this_block = 1;
3166 else
3167 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3168 }
3169 }
3170
3171 if (free_this_block)
3172 {
3173 *bprev = block->next;
3174 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3175 mem_delete (mem_find (block->data));
3176 #endif
3177 xfree (block);
3178 }
3179 else
3180 bprev = &block->next;
3181 }
3182
3183 /* Sweep large vectors. */
3184
3185 for (vector = large_vectors; vector; vector = *vprev)
3186 {
3187 if (VECTOR_MARKED_P (vector))
3188 {
3189 VECTOR_UNMARK (vector);
3190 total_vector_size += VECTOR_SIZE (vector);
3191 vprev = &vector->header.next.vector;
3192 }
3193 else
3194 {
3195 *vprev = vector->header.next.vector;
3196 lisp_free (vector);
3197 }
3198 }
3199 }
3200
3201 /* Value is a pointer to a newly allocated Lisp_Vector structure
3202 with room for LEN Lisp_Objects. */
3203
3204 static struct Lisp_Vector *
3205 allocate_vectorlike (ptrdiff_t len)
3206 {
3207 struct Lisp_Vector *p;
3208 size_t nbytes;
3209
3210 MALLOC_BLOCK_INPUT;
3211
3212 #ifdef DOUG_LEA_MALLOC
3213 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3214 because mapped region contents are not preserved in
3215 a dumped Emacs. */
3216 mallopt (M_MMAP_MAX, 0);
3217 #endif
3218
3219 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3220 /* eassert (!handling_signal); */
3221
3222 if (len == 0)
3223 {
3224 MALLOC_UNBLOCK_INPUT;
3225 return zero_vector;
3226 }
3227
3228 nbytes = header_size + len * word_size;
3229
3230 if (nbytes <= VBLOCK_BYTES_MAX)
3231 p = allocate_vector_from_block (vroundup (nbytes));
3232 else
3233 {
3234 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3235 p->header.next.vector = large_vectors;
3236 large_vectors = p;
3237 }
3238
3239 #ifdef DOUG_LEA_MALLOC
3240 /* Back to a reasonable maximum of mmap'ed areas. */
3241 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3242 #endif
3243
3244 consing_since_gc += nbytes;
3245 vector_cells_consed += len;
3246
3247 MALLOC_UNBLOCK_INPUT;
3248
3249 return p;
3250 }
3251
3252
3253 /* Allocate a vector with LEN slots. */
3254
3255 struct Lisp_Vector *
3256 allocate_vector (EMACS_INT len)
3257 {
3258 struct Lisp_Vector *v;
3259 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3260
3261 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3262 memory_full (SIZE_MAX);
3263 v = allocate_vectorlike (len);
3264 v->header.size = len;
3265 return v;
3266 }
3267
3268
3269 /* Allocate other vector-like structures. */
3270
3271 struct Lisp_Vector *
3272 allocate_pseudovector (int memlen, int lisplen, int tag)
3273 {
3274 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3275 int i;
3276
3277 /* Only the first lisplen slots will be traced normally by the GC. */
3278 for (i = 0; i < lisplen; ++i)
3279 v->contents[i] = Qnil;
3280
3281 XSETPVECTYPESIZE (v, tag, lisplen);
3282 return v;
3283 }
3284
3285 struct Lisp_Hash_Table *
3286 allocate_hash_table (void)
3287 {
3288 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3289 }
3290
3291
3292 struct window *
3293 allocate_window (void)
3294 {
3295 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3296 }
3297
3298
3299 struct terminal *
3300 allocate_terminal (void)
3301 {
3302 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3303 next_terminal, PVEC_TERMINAL);
3304 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3305 memset (&t->next_terminal, 0,
3306 (char*) (t + 1) - (char*) &t->next_terminal);
3307
3308 return t;
3309 }
3310
3311 struct frame *
3312 allocate_frame (void)
3313 {
3314 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3315 face_cache, PVEC_FRAME);
3316 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3317 memset (&f->face_cache, 0,
3318 (char *) (f + 1) - (char *) &f->face_cache);
3319 return f;
3320 }
3321
3322
3323 struct Lisp_Process *
3324 allocate_process (void)
3325 {
3326 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3327 }
3328
3329
3330 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3331 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3332 See also the function `vector'. */)
3333 (register Lisp_Object length, Lisp_Object init)
3334 {
3335 Lisp_Object vector;
3336 register ptrdiff_t sizei;
3337 register ptrdiff_t i;
3338 register struct Lisp_Vector *p;
3339
3340 CHECK_NATNUM (length);
3341
3342 p = allocate_vector (XFASTINT (length));
3343 sizei = XFASTINT (length);
3344 for (i = 0; i < sizei; i++)
3345 p->contents[i] = init;
3346
3347 XSETVECTOR (vector, p);
3348 return vector;
3349 }
3350
3351
3352 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3353 doc: /* Return a newly created vector with specified arguments as elements.
3354 Any number of arguments, even zero arguments, are allowed.
3355 usage: (vector &rest OBJECTS) */)
3356 (ptrdiff_t nargs, Lisp_Object *args)
3357 {
3358 register Lisp_Object len, val;
3359 ptrdiff_t i;
3360 register struct Lisp_Vector *p;
3361
3362 XSETFASTINT (len, nargs);
3363 val = Fmake_vector (len, Qnil);
3364 p = XVECTOR (val);
3365 for (i = 0; i < nargs; i++)
3366 p->contents[i] = args[i];
3367 return val;
3368 }
3369
3370 void
3371 make_byte_code (struct Lisp_Vector *v)
3372 {
3373 if (v->header.size > 1 && STRINGP (v->contents[1])
3374 && STRING_MULTIBYTE (v->contents[1]))
3375 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3376 earlier because they produced a raw 8-bit string for byte-code
3377 and now such a byte-code string is loaded as multibyte while
3378 raw 8-bit characters converted to multibyte form. Thus, now we
3379 must convert them back to the original unibyte form. */
3380 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3381 XSETPVECTYPE (v, PVEC_COMPILED);
3382 }
3383
3384 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3385 doc: /* Create a byte-code object with specified arguments as elements.
3386 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3387 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3388 and (optional) INTERACTIVE-SPEC.
3389 The first four arguments are required; at most six have any
3390 significance.
3391 The ARGLIST can be either like the one of `lambda', in which case the arguments
3392 will be dynamically bound before executing the byte code, or it can be an
3393 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3394 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3395 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3396 argument to catch the left-over arguments. If such an integer is used, the
3397 arguments will not be dynamically bound but will be instead pushed on the
3398 stack before executing the byte-code.
3399 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3400 (ptrdiff_t nargs, Lisp_Object *args)
3401 {
3402 register Lisp_Object len, val;
3403 ptrdiff_t i;
3404 register struct Lisp_Vector *p;
3405
3406 /* We used to purecopy everything here, if purify-flga was set. This worked
3407 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3408 dangerous, since make-byte-code is used during execution to build
3409 closures, so any closure built during the preload phase would end up
3410 copied into pure space, including its free variables, which is sometimes
3411 just wasteful and other times plainly wrong (e.g. those free vars may want
3412 to be setcar'd). */
3413
3414 XSETFASTINT (len, nargs);
3415 val = Fmake_vector (len, Qnil);
3416
3417 p = XVECTOR (val);
3418 for (i = 0; i < nargs; i++)
3419 p->contents[i] = args[i];
3420 make_byte_code (p);
3421 XSETCOMPILED (val, p);
3422 return val;
3423 }
3424
3425
3426 \f
3427 /***********************************************************************
3428 Symbol Allocation
3429 ***********************************************************************/
3430
3431 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3432 of the required alignment if LSB tags are used. */
3433
3434 union aligned_Lisp_Symbol
3435 {
3436 struct Lisp_Symbol s;
3437 #if USE_LSB_TAG
3438 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3439 & -(1 << GCTYPEBITS)];
3440 #endif
3441 };
3442
3443 /* Each symbol_block is just under 1020 bytes long, since malloc
3444 really allocates in units of powers of two and uses 4 bytes for its
3445 own overhead. */
3446
3447 #define SYMBOL_BLOCK_SIZE \
3448 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3449
3450 struct symbol_block
3451 {
3452 /* Place `symbols' first, to preserve alignment. */
3453 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3454 struct symbol_block *next;
3455 };
3456
3457 /* Current symbol block and index of first unused Lisp_Symbol
3458 structure in it. */
3459
3460 static struct symbol_block *symbol_block;
3461 static int symbol_block_index;
3462
3463 /* List of free symbols. */
3464
3465 static struct Lisp_Symbol *symbol_free_list;
3466
3467
3468 /* Initialize symbol allocation. */
3469
3470 static void
3471 init_symbol (void)
3472 {
3473 symbol_block = NULL;
3474 symbol_block_index = SYMBOL_BLOCK_SIZE;
3475 symbol_free_list = 0;
3476 }
3477
3478
3479 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3480 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3481 Its value and function definition are void, and its property list is nil. */)
3482 (Lisp_Object name)
3483 {
3484 register Lisp_Object val;
3485 register struct Lisp_Symbol *p;
3486
3487 CHECK_STRING (name);
3488
3489 /* eassert (!handling_signal); */
3490
3491 MALLOC_BLOCK_INPUT;
3492
3493 if (symbol_free_list)
3494 {
3495 XSETSYMBOL (val, symbol_free_list);
3496 symbol_free_list = symbol_free_list->next;
3497 }
3498 else
3499 {
3500 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3501 {
3502 struct symbol_block *new;
3503 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3504 MEM_TYPE_SYMBOL);
3505 new->next = symbol_block;
3506 symbol_block = new;
3507 symbol_block_index = 0;
3508 }
3509 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3510 symbol_block_index++;
3511 }
3512
3513 MALLOC_UNBLOCK_INPUT;
3514
3515 p = XSYMBOL (val);
3516 p->xname = name;
3517 p->plist = Qnil;
3518 p->redirect = SYMBOL_PLAINVAL;
3519 SET_SYMBOL_VAL (p, Qunbound);
3520 p->function = Qunbound;
3521 p->next = NULL;
3522 p->gcmarkbit = 0;
3523 p->interned = SYMBOL_UNINTERNED;
3524 p->constant = 0;
3525 p->declared_special = 0;
3526 consing_since_gc += sizeof (struct Lisp_Symbol);
3527 symbols_consed++;
3528 return val;
3529 }
3530
3531
3532 \f
3533 /***********************************************************************
3534 Marker (Misc) Allocation
3535 ***********************************************************************/
3536
3537 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3538 the required alignment when LSB tags are used. */
3539
3540 union aligned_Lisp_Misc
3541 {
3542 union Lisp_Misc m;
3543 #if USE_LSB_TAG
3544 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3545 & -(1 << GCTYPEBITS)];
3546 #endif
3547 };
3548
3549 /* Allocation of markers and other objects that share that structure.
3550 Works like allocation of conses. */
3551
3552 #define MARKER_BLOCK_SIZE \
3553 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3554
3555 struct marker_block
3556 {
3557 /* Place `markers' first, to preserve alignment. */
3558 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3559 struct marker_block *next;
3560 };
3561
3562 static struct marker_block *marker_block;
3563 static int marker_block_index;
3564
3565 static union Lisp_Misc *marker_free_list;
3566
3567 static void
3568 init_marker (void)
3569 {
3570 marker_block = NULL;
3571 marker_block_index = MARKER_BLOCK_SIZE;
3572 marker_free_list = 0;
3573 }
3574
3575 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3576
3577 Lisp_Object
3578 allocate_misc (void)
3579 {
3580 Lisp_Object val;
3581
3582 /* eassert (!handling_signal); */
3583
3584 MALLOC_BLOCK_INPUT;
3585
3586 if (marker_free_list)
3587 {
3588 XSETMISC (val, marker_free_list);
3589 marker_free_list = marker_free_list->u_free.chain;
3590 }
3591 else
3592 {
3593 if (marker_block_index == MARKER_BLOCK_SIZE)
3594 {
3595 struct marker_block *new;
3596 new = (struct marker_block *) lisp_malloc (sizeof *new,
3597 MEM_TYPE_MISC);
3598 new->next = marker_block;
3599 marker_block = new;
3600 marker_block_index = 0;
3601 total_free_markers += MARKER_BLOCK_SIZE;
3602 }
3603 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3604 marker_block_index++;
3605 }
3606
3607 MALLOC_UNBLOCK_INPUT;
3608
3609 --total_free_markers;
3610 consing_since_gc += sizeof (union Lisp_Misc);
3611 misc_objects_consed++;
3612 XMISCANY (val)->gcmarkbit = 0;
3613 return val;
3614 }
3615
3616 /* Free a Lisp_Misc object */
3617
3618 static void
3619 free_misc (Lisp_Object misc)
3620 {
3621 XMISCTYPE (misc) = Lisp_Misc_Free;
3622 XMISC (misc)->u_free.chain = marker_free_list;
3623 marker_free_list = XMISC (misc);
3624
3625 total_free_markers++;
3626 }
3627
3628 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3629 INTEGER. This is used to package C values to call record_unwind_protect.
3630 The unwind function can get the C values back using XSAVE_VALUE. */
3631
3632 Lisp_Object
3633 make_save_value (void *pointer, ptrdiff_t integer)
3634 {
3635 register Lisp_Object val;
3636 register struct Lisp_Save_Value *p;
3637
3638 val = allocate_misc ();
3639 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3640 p = XSAVE_VALUE (val);
3641 p->pointer = pointer;
3642 p->integer = integer;
3643 p->dogc = 0;
3644 return val;
3645 }
3646
3647 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3648 doc: /* Return a newly allocated marker which does not point at any place. */)
3649 (void)
3650 {
3651 register Lisp_Object val;
3652 register struct Lisp_Marker *p;
3653
3654 val = allocate_misc ();
3655 XMISCTYPE (val) = Lisp_Misc_Marker;
3656 p = XMARKER (val);
3657 p->buffer = 0;
3658 p->bytepos = 0;
3659 p->charpos = 0;
3660 p->next = NULL;
3661 p->insertion_type = 0;
3662 return val;
3663 }
3664
3665 /* Put MARKER back on the free list after using it temporarily. */
3666
3667 void
3668 free_marker (Lisp_Object marker)
3669 {
3670 unchain_marker (XMARKER (marker));
3671 free_misc (marker);
3672 }
3673
3674 \f
3675 /* Return a newly created vector or string with specified arguments as
3676 elements. If all the arguments are characters that can fit
3677 in a string of events, make a string; otherwise, make a vector.
3678
3679 Any number of arguments, even zero arguments, are allowed. */
3680
3681 Lisp_Object
3682 make_event_array (register int nargs, Lisp_Object *args)
3683 {
3684 int i;
3685
3686 for (i = 0; i < nargs; i++)
3687 /* The things that fit in a string
3688 are characters that are in 0...127,
3689 after discarding the meta bit and all the bits above it. */
3690 if (!INTEGERP (args[i])
3691 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3692 return Fvector (nargs, args);
3693
3694 /* Since the loop exited, we know that all the things in it are
3695 characters, so we can make a string. */
3696 {
3697 Lisp_Object result;
3698
3699 result = Fmake_string (make_number (nargs), make_number (0));
3700 for (i = 0; i < nargs; i++)
3701 {
3702 SSET (result, i, XINT (args[i]));
3703 /* Move the meta bit to the right place for a string char. */
3704 if (XINT (args[i]) & CHAR_META)
3705 SSET (result, i, SREF (result, i) | 0x80);
3706 }
3707
3708 return result;
3709 }
3710 }
3711
3712
3713 \f
3714 /************************************************************************
3715 Memory Full Handling
3716 ************************************************************************/
3717
3718
3719 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3720 there may have been size_t overflow so that malloc was never
3721 called, or perhaps malloc was invoked successfully but the
3722 resulting pointer had problems fitting into a tagged EMACS_INT. In
3723 either case this counts as memory being full even though malloc did
3724 not fail. */
3725
3726 void
3727 memory_full (size_t nbytes)
3728 {
3729 /* Do not go into hysterics merely because a large request failed. */
3730 int enough_free_memory = 0;
3731 if (SPARE_MEMORY < nbytes)
3732 {
3733 void *p;
3734
3735 MALLOC_BLOCK_INPUT;
3736 p = malloc (SPARE_MEMORY);
3737 if (p)
3738 {
3739 free (p);
3740 enough_free_memory = 1;
3741 }
3742 MALLOC_UNBLOCK_INPUT;
3743 }
3744
3745 if (! enough_free_memory)
3746 {
3747 int i;
3748
3749 Vmemory_full = Qt;
3750
3751 memory_full_cons_threshold = sizeof (struct cons_block);
3752
3753 /* The first time we get here, free the spare memory. */
3754 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3755 if (spare_memory[i])
3756 {
3757 if (i == 0)
3758 free (spare_memory[i]);
3759 else if (i >= 1 && i <= 4)
3760 lisp_align_free (spare_memory[i]);
3761 else
3762 lisp_free (spare_memory[i]);
3763 spare_memory[i] = 0;
3764 }
3765
3766 /* Record the space now used. When it decreases substantially,
3767 we can refill the memory reserve. */
3768 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3769 bytes_used_when_full = BYTES_USED;
3770 #endif
3771 }
3772
3773 /* This used to call error, but if we've run out of memory, we could
3774 get infinite recursion trying to build the string. */
3775 xsignal (Qnil, Vmemory_signal_data);
3776 }
3777
3778 /* If we released our reserve (due to running out of memory),
3779 and we have a fair amount free once again,
3780 try to set aside another reserve in case we run out once more.
3781
3782 This is called when a relocatable block is freed in ralloc.c,
3783 and also directly from this file, in case we're not using ralloc.c. */
3784
3785 void
3786 refill_memory_reserve (void)
3787 {
3788 #ifndef SYSTEM_MALLOC
3789 if (spare_memory[0] == 0)
3790 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3791 if (spare_memory[1] == 0)
3792 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3793 MEM_TYPE_CONS);
3794 if (spare_memory[2] == 0)
3795 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3796 MEM_TYPE_CONS);
3797 if (spare_memory[3] == 0)
3798 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3799 MEM_TYPE_CONS);
3800 if (spare_memory[4] == 0)
3801 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3802 MEM_TYPE_CONS);
3803 if (spare_memory[5] == 0)
3804 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3805 MEM_TYPE_STRING);
3806 if (spare_memory[6] == 0)
3807 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3808 MEM_TYPE_STRING);
3809 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3810 Vmemory_full = Qnil;
3811 #endif
3812 }
3813 \f
3814 /************************************************************************
3815 C Stack Marking
3816 ************************************************************************/
3817
3818 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3819
3820 /* Conservative C stack marking requires a method to identify possibly
3821 live Lisp objects given a pointer value. We do this by keeping
3822 track of blocks of Lisp data that are allocated in a red-black tree
3823 (see also the comment of mem_node which is the type of nodes in
3824 that tree). Function lisp_malloc adds information for an allocated
3825 block to the red-black tree with calls to mem_insert, and function
3826 lisp_free removes it with mem_delete. Functions live_string_p etc
3827 call mem_find to lookup information about a given pointer in the
3828 tree, and use that to determine if the pointer points to a Lisp
3829 object or not. */
3830
3831 /* Initialize this part of alloc.c. */
3832
3833 static void
3834 mem_init (void)
3835 {
3836 mem_z.left = mem_z.right = MEM_NIL;
3837 mem_z.parent = NULL;
3838 mem_z.color = MEM_BLACK;
3839 mem_z.start = mem_z.end = NULL;
3840 mem_root = MEM_NIL;
3841 }
3842
3843
3844 /* Value is a pointer to the mem_node containing START. Value is
3845 MEM_NIL if there is no node in the tree containing START. */
3846
3847 static inline struct mem_node *
3848 mem_find (void *start)
3849 {
3850 struct mem_node *p;
3851
3852 if (start < min_heap_address || start > max_heap_address)
3853 return MEM_NIL;
3854
3855 /* Make the search always successful to speed up the loop below. */
3856 mem_z.start = start;
3857 mem_z.end = (char *) start + 1;
3858
3859 p = mem_root;
3860 while (start < p->start || start >= p->end)
3861 p = start < p->start ? p->left : p->right;
3862 return p;
3863 }
3864
3865
3866 /* Insert a new node into the tree for a block of memory with start
3867 address START, end address END, and type TYPE. Value is a
3868 pointer to the node that was inserted. */
3869
3870 static struct mem_node *
3871 mem_insert (void *start, void *end, enum mem_type type)
3872 {
3873 struct mem_node *c, *parent, *x;
3874
3875 if (min_heap_address == NULL || start < min_heap_address)
3876 min_heap_address = start;
3877 if (max_heap_address == NULL || end > max_heap_address)
3878 max_heap_address = end;
3879
3880 /* See where in the tree a node for START belongs. In this
3881 particular application, it shouldn't happen that a node is already
3882 present. For debugging purposes, let's check that. */
3883 c = mem_root;
3884 parent = NULL;
3885
3886 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3887
3888 while (c != MEM_NIL)
3889 {
3890 if (start >= c->start && start < c->end)
3891 abort ();
3892 parent = c;
3893 c = start < c->start ? c->left : c->right;
3894 }
3895
3896 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3897
3898 while (c != MEM_NIL)
3899 {
3900 parent = c;
3901 c = start < c->start ? c->left : c->right;
3902 }
3903
3904 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3905
3906 /* Create a new node. */
3907 #ifdef GC_MALLOC_CHECK
3908 x = (struct mem_node *) _malloc_internal (sizeof *x);
3909 if (x == NULL)
3910 abort ();
3911 #else
3912 x = (struct mem_node *) xmalloc (sizeof *x);
3913 #endif
3914 x->start = start;
3915 x->end = end;
3916 x->type = type;
3917 x->parent = parent;
3918 x->left = x->right = MEM_NIL;
3919 x->color = MEM_RED;
3920
3921 /* Insert it as child of PARENT or install it as root. */
3922 if (parent)
3923 {
3924 if (start < parent->start)
3925 parent->left = x;
3926 else
3927 parent->right = x;
3928 }
3929 else
3930 mem_root = x;
3931
3932 /* Re-establish red-black tree properties. */
3933 mem_insert_fixup (x);
3934
3935 return x;
3936 }
3937
3938
3939 /* Re-establish the red-black properties of the tree, and thereby
3940 balance the tree, after node X has been inserted; X is always red. */
3941
3942 static void
3943 mem_insert_fixup (struct mem_node *x)
3944 {
3945 while (x != mem_root && x->parent->color == MEM_RED)
3946 {
3947 /* X is red and its parent is red. This is a violation of
3948 red-black tree property #3. */
3949
3950 if (x->parent == x->parent->parent->left)
3951 {
3952 /* We're on the left side of our grandparent, and Y is our
3953 "uncle". */
3954 struct mem_node *y = x->parent->parent->right;
3955
3956 if (y->color == MEM_RED)
3957 {
3958 /* Uncle and parent are red but should be black because
3959 X is red. Change the colors accordingly and proceed
3960 with the grandparent. */
3961 x->parent->color = MEM_BLACK;
3962 y->color = MEM_BLACK;
3963 x->parent->parent->color = MEM_RED;
3964 x = x->parent->parent;
3965 }
3966 else
3967 {
3968 /* Parent and uncle have different colors; parent is
3969 red, uncle is black. */
3970 if (x == x->parent->right)
3971 {
3972 x = x->parent;
3973 mem_rotate_left (x);
3974 }
3975
3976 x->parent->color = MEM_BLACK;
3977 x->parent->parent->color = MEM_RED;
3978 mem_rotate_right (x->parent->parent);
3979 }
3980 }
3981 else
3982 {
3983 /* This is the symmetrical case of above. */
3984 struct mem_node *y = x->parent->parent->left;
3985
3986 if (y->color == MEM_RED)
3987 {
3988 x->parent->color = MEM_BLACK;
3989 y->color = MEM_BLACK;
3990 x->parent->parent->color = MEM_RED;
3991 x = x->parent->parent;
3992 }
3993 else
3994 {
3995 if (x == x->parent->left)
3996 {
3997 x = x->parent;
3998 mem_rotate_right (x);
3999 }
4000
4001 x->parent->color = MEM_BLACK;
4002 x->parent->parent->color = MEM_RED;
4003 mem_rotate_left (x->parent->parent);
4004 }
4005 }
4006 }
4007
4008 /* The root may have been changed to red due to the algorithm. Set
4009 it to black so that property #5 is satisfied. */
4010 mem_root->color = MEM_BLACK;
4011 }
4012
4013
4014 /* (x) (y)
4015 / \ / \
4016 a (y) ===> (x) c
4017 / \ / \
4018 b c a b */
4019
4020 static void
4021 mem_rotate_left (struct mem_node *x)
4022 {
4023 struct mem_node *y;
4024
4025 /* Turn y's left sub-tree into x's right sub-tree. */
4026 y = x->right;
4027 x->right = y->left;
4028 if (y->left != MEM_NIL)
4029 y->left->parent = x;
4030
4031 /* Y's parent was x's parent. */
4032 if (y != MEM_NIL)
4033 y->parent = x->parent;
4034
4035 /* Get the parent to point to y instead of x. */
4036 if (x->parent)
4037 {
4038 if (x == x->parent->left)
4039 x->parent->left = y;
4040 else
4041 x->parent->right = y;
4042 }
4043 else
4044 mem_root = y;
4045
4046 /* Put x on y's left. */
4047 y->left = x;
4048 if (x != MEM_NIL)
4049 x->parent = y;
4050 }
4051
4052
4053 /* (x) (Y)
4054 / \ / \
4055 (y) c ===> a (x)
4056 / \ / \
4057 a b b c */
4058
4059 static void
4060 mem_rotate_right (struct mem_node *x)
4061 {
4062 struct mem_node *y = x->left;
4063
4064 x->left = y->right;
4065 if (y->right != MEM_NIL)
4066 y->right->parent = x;
4067
4068 if (y != MEM_NIL)
4069 y->parent = x->parent;
4070 if (x->parent)
4071 {
4072 if (x == x->parent->right)
4073 x->parent->right = y;
4074 else
4075 x->parent->left = y;
4076 }
4077 else
4078 mem_root = y;
4079
4080 y->right = x;
4081 if (x != MEM_NIL)
4082 x->parent = y;
4083 }
4084
4085
4086 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4087
4088 static void
4089 mem_delete (struct mem_node *z)
4090 {
4091 struct mem_node *x, *y;
4092
4093 if (!z || z == MEM_NIL)
4094 return;
4095
4096 if (z->left == MEM_NIL || z->right == MEM_NIL)
4097 y = z;
4098 else
4099 {
4100 y = z->right;
4101 while (y->left != MEM_NIL)
4102 y = y->left;
4103 }
4104
4105 if (y->left != MEM_NIL)
4106 x = y->left;
4107 else
4108 x = y->right;
4109
4110 x->parent = y->parent;
4111 if (y->parent)
4112 {
4113 if (y == y->parent->left)
4114 y->parent->left = x;
4115 else
4116 y->parent->right = x;
4117 }
4118 else
4119 mem_root = x;
4120
4121 if (y != z)
4122 {
4123 z->start = y->start;
4124 z->end = y->end;
4125 z->type = y->type;
4126 }
4127
4128 if (y->color == MEM_BLACK)
4129 mem_delete_fixup (x);
4130
4131 #ifdef GC_MALLOC_CHECK
4132 _free_internal (y);
4133 #else
4134 xfree (y);
4135 #endif
4136 }
4137
4138
4139 /* Re-establish the red-black properties of the tree, after a
4140 deletion. */
4141
4142 static void
4143 mem_delete_fixup (struct mem_node *x)
4144 {
4145 while (x != mem_root && x->color == MEM_BLACK)
4146 {
4147 if (x == x->parent->left)
4148 {
4149 struct mem_node *w = x->parent->right;
4150
4151 if (w->color == MEM_RED)
4152 {
4153 w->color = MEM_BLACK;
4154 x->parent->color = MEM_RED;
4155 mem_rotate_left (x->parent);
4156 w = x->parent->right;
4157 }
4158
4159 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4160 {
4161 w->color = MEM_RED;
4162 x = x->parent;
4163 }
4164 else
4165 {
4166 if (w->right->color == MEM_BLACK)
4167 {
4168 w->left->color = MEM_BLACK;
4169 w->color = MEM_RED;
4170 mem_rotate_right (w);
4171 w = x->parent->right;
4172 }
4173 w->color = x->parent->color;
4174 x->parent->color = MEM_BLACK;
4175 w->right->color = MEM_BLACK;
4176 mem_rotate_left (x->parent);
4177 x = mem_root;
4178 }
4179 }
4180 else
4181 {
4182 struct mem_node *w = x->parent->left;
4183
4184 if (w->color == MEM_RED)
4185 {
4186 w->color = MEM_BLACK;
4187 x->parent->color = MEM_RED;
4188 mem_rotate_right (x->parent);
4189 w = x->parent->left;
4190 }
4191
4192 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4193 {
4194 w->color = MEM_RED;
4195 x = x->parent;
4196 }
4197 else
4198 {
4199 if (w->left->color == MEM_BLACK)
4200 {
4201 w->right->color = MEM_BLACK;
4202 w->color = MEM_RED;
4203 mem_rotate_left (w);
4204 w = x->parent->left;
4205 }
4206
4207 w->color = x->parent->color;
4208 x->parent->color = MEM_BLACK;
4209 w->left->color = MEM_BLACK;
4210 mem_rotate_right (x->parent);
4211 x = mem_root;
4212 }
4213 }
4214 }
4215
4216 x->color = MEM_BLACK;
4217 }
4218
4219
4220 /* Value is non-zero if P is a pointer to a live Lisp string on
4221 the heap. M is a pointer to the mem_block for P. */
4222
4223 static inline int
4224 live_string_p (struct mem_node *m, void *p)
4225 {
4226 if (m->type == MEM_TYPE_STRING)
4227 {
4228 struct string_block *b = (struct string_block *) m->start;
4229 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4230
4231 /* P must point to the start of a Lisp_String structure, and it
4232 must not be on the free-list. */
4233 return (offset >= 0
4234 && offset % sizeof b->strings[0] == 0
4235 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4236 && ((struct Lisp_String *) p)->data != NULL);
4237 }
4238 else
4239 return 0;
4240 }
4241
4242
4243 /* Value is non-zero if P is a pointer to a live Lisp cons on
4244 the heap. M is a pointer to the mem_block for P. */
4245
4246 static inline int
4247 live_cons_p (struct mem_node *m, void *p)
4248 {
4249 if (m->type == MEM_TYPE_CONS)
4250 {
4251 struct cons_block *b = (struct cons_block *) m->start;
4252 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4253
4254 /* P must point to the start of a Lisp_Cons, not be
4255 one of the unused cells in the current cons block,
4256 and not be on the free-list. */
4257 return (offset >= 0
4258 && offset % sizeof b->conses[0] == 0
4259 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4260 && (b != cons_block
4261 || offset / sizeof b->conses[0] < cons_block_index)
4262 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4263 }
4264 else
4265 return 0;
4266 }
4267
4268
4269 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4270 the heap. M is a pointer to the mem_block for P. */
4271
4272 static inline int
4273 live_symbol_p (struct mem_node *m, void *p)
4274 {
4275 if (m->type == MEM_TYPE_SYMBOL)
4276 {
4277 struct symbol_block *b = (struct symbol_block *) m->start;
4278 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4279
4280 /* P must point to the start of a Lisp_Symbol, not be
4281 one of the unused cells in the current symbol block,
4282 and not be on the free-list. */
4283 return (offset >= 0
4284 && offset % sizeof b->symbols[0] == 0
4285 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4286 && (b != symbol_block
4287 || offset / sizeof b->symbols[0] < symbol_block_index)
4288 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4289 }
4290 else
4291 return 0;
4292 }
4293
4294
4295 /* Value is non-zero if P is a pointer to a live Lisp float on
4296 the heap. M is a pointer to the mem_block for P. */
4297
4298 static inline int
4299 live_float_p (struct mem_node *m, void *p)
4300 {
4301 if (m->type == MEM_TYPE_FLOAT)
4302 {
4303 struct float_block *b = (struct float_block *) m->start;
4304 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4305
4306 /* P must point to the start of a Lisp_Float and not be
4307 one of the unused cells in the current float block. */
4308 return (offset >= 0
4309 && offset % sizeof b->floats[0] == 0
4310 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4311 && (b != float_block
4312 || offset / sizeof b->floats[0] < float_block_index));
4313 }
4314 else
4315 return 0;
4316 }
4317
4318
4319 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4320 the heap. M is a pointer to the mem_block for P. */
4321
4322 static inline int
4323 live_misc_p (struct mem_node *m, void *p)
4324 {
4325 if (m->type == MEM_TYPE_MISC)
4326 {
4327 struct marker_block *b = (struct marker_block *) m->start;
4328 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4329
4330 /* P must point to the start of a Lisp_Misc, not be
4331 one of the unused cells in the current misc block,
4332 and not be on the free-list. */
4333 return (offset >= 0
4334 && offset % sizeof b->markers[0] == 0
4335 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4336 && (b != marker_block
4337 || offset / sizeof b->markers[0] < marker_block_index)
4338 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4339 }
4340 else
4341 return 0;
4342 }
4343
4344
4345 /* Value is non-zero if P is a pointer to a live vector-like object.
4346 M is a pointer to the mem_block for P. */
4347
4348 static inline int
4349 live_vector_p (struct mem_node *m, void *p)
4350 {
4351 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4352 {
4353 /* This memory node corresponds to a vector block. */
4354 struct vector_block *block = (struct vector_block *) m->start;
4355 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4356
4357 /* P is in the block's allocation range. Scan the block
4358 up to P and see whether P points to the start of some
4359 vector which is not on a free list. FIXME: check whether
4360 some allocation patterns (probably a lot of short vectors)
4361 may cause a substantial overhead of this loop. */
4362 while (VECTOR_IN_BLOCK (vector, block)
4363 && vector <= (struct Lisp_Vector *) p)
4364 {
4365 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4366 == VECTOR_FREE_LIST_FLAG)
4367 vector = ADVANCE (vector, (vector->header.size
4368 & (VECTOR_BLOCK_SIZE - 1)));
4369 else if (vector == p)
4370 return 1;
4371 else
4372 vector = ADVANCE (vector, vector->header.next.nbytes);
4373 }
4374 }
4375 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4376 /* This memory node corresponds to a large vector. */
4377 return 1;
4378 return 0;
4379 }
4380
4381
4382 /* Value is non-zero if P is a pointer to a live buffer. M is a
4383 pointer to the mem_block for P. */
4384
4385 static inline int
4386 live_buffer_p (struct mem_node *m, void *p)
4387 {
4388 /* P must point to the start of the block, and the buffer
4389 must not have been killed. */
4390 return (m->type == MEM_TYPE_BUFFER
4391 && p == m->start
4392 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4393 }
4394
4395 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4396
4397 #if GC_MARK_STACK
4398
4399 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4400
4401 /* Array of objects that are kept alive because the C stack contains
4402 a pattern that looks like a reference to them . */
4403
4404 #define MAX_ZOMBIES 10
4405 static Lisp_Object zombies[MAX_ZOMBIES];
4406
4407 /* Number of zombie objects. */
4408
4409 static EMACS_INT nzombies;
4410
4411 /* Number of garbage collections. */
4412
4413 static EMACS_INT ngcs;
4414
4415 /* Average percentage of zombies per collection. */
4416
4417 static double avg_zombies;
4418
4419 /* Max. number of live and zombie objects. */
4420
4421 static EMACS_INT max_live, max_zombies;
4422
4423 /* Average number of live objects per GC. */
4424
4425 static double avg_live;
4426
4427 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4428 doc: /* Show information about live and zombie objects. */)
4429 (void)
4430 {
4431 Lisp_Object args[8], zombie_list = Qnil;
4432 EMACS_INT i;
4433 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4434 zombie_list = Fcons (zombies[i], zombie_list);
4435 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4436 args[1] = make_number (ngcs);
4437 args[2] = make_float (avg_live);
4438 args[3] = make_float (avg_zombies);
4439 args[4] = make_float (avg_zombies / avg_live / 100);
4440 args[5] = make_number (max_live);
4441 args[6] = make_number (max_zombies);
4442 args[7] = zombie_list;
4443 return Fmessage (8, args);
4444 }
4445
4446 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4447
4448
4449 /* Mark OBJ if we can prove it's a Lisp_Object. */
4450
4451 static inline void
4452 mark_maybe_object (Lisp_Object obj)
4453 {
4454 void *po;
4455 struct mem_node *m;
4456
4457 if (INTEGERP (obj))
4458 return;
4459
4460 po = (void *) XPNTR (obj);
4461 m = mem_find (po);
4462
4463 if (m != MEM_NIL)
4464 {
4465 int mark_p = 0;
4466
4467 switch (XTYPE (obj))
4468 {
4469 case Lisp_String:
4470 mark_p = (live_string_p (m, po)
4471 && !STRING_MARKED_P ((struct Lisp_String *) po));
4472 break;
4473
4474 case Lisp_Cons:
4475 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4476 break;
4477
4478 case Lisp_Symbol:
4479 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4480 break;
4481
4482 case Lisp_Float:
4483 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4484 break;
4485
4486 case Lisp_Vectorlike:
4487 /* Note: can't check BUFFERP before we know it's a
4488 buffer because checking that dereferences the pointer
4489 PO which might point anywhere. */
4490 if (live_vector_p (m, po))
4491 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4492 else if (live_buffer_p (m, po))
4493 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4494 break;
4495
4496 case Lisp_Misc:
4497 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4498 break;
4499
4500 default:
4501 break;
4502 }
4503
4504 if (mark_p)
4505 {
4506 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4507 if (nzombies < MAX_ZOMBIES)
4508 zombies[nzombies] = obj;
4509 ++nzombies;
4510 #endif
4511 mark_object (obj);
4512 }
4513 }
4514 }
4515
4516
4517 /* If P points to Lisp data, mark that as live if it isn't already
4518 marked. */
4519
4520 static inline void
4521 mark_maybe_pointer (void *p)
4522 {
4523 struct mem_node *m;
4524
4525 /* Quickly rule out some values which can't point to Lisp data.
4526 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4527 Otherwise, assume that Lisp data is aligned on even addresses. */
4528 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4529 return;
4530
4531 m = mem_find (p);
4532 if (m != MEM_NIL)
4533 {
4534 Lisp_Object obj = Qnil;
4535
4536 switch (m->type)
4537 {
4538 case MEM_TYPE_NON_LISP:
4539 /* Nothing to do; not a pointer to Lisp memory. */
4540 break;
4541
4542 case MEM_TYPE_BUFFER:
4543 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4544 XSETVECTOR (obj, p);
4545 break;
4546
4547 case MEM_TYPE_CONS:
4548 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4549 XSETCONS (obj, p);
4550 break;
4551
4552 case MEM_TYPE_STRING:
4553 if (live_string_p (m, p)
4554 && !STRING_MARKED_P ((struct Lisp_String *) p))
4555 XSETSTRING (obj, p);
4556 break;
4557
4558 case MEM_TYPE_MISC:
4559 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4560 XSETMISC (obj, p);
4561 break;
4562
4563 case MEM_TYPE_SYMBOL:
4564 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4565 XSETSYMBOL (obj, p);
4566 break;
4567
4568 case MEM_TYPE_FLOAT:
4569 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4570 XSETFLOAT (obj, p);
4571 break;
4572
4573 case MEM_TYPE_VECTORLIKE:
4574 case MEM_TYPE_VECTOR_BLOCK:
4575 if (live_vector_p (m, p))
4576 {
4577 Lisp_Object tem;
4578 XSETVECTOR (tem, p);
4579 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4580 obj = tem;
4581 }
4582 break;
4583
4584 default:
4585 abort ();
4586 }
4587
4588 if (!NILP (obj))
4589 mark_object (obj);
4590 }
4591 }
4592
4593
4594 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4595 a smaller alignment than GCC's __alignof__ and mark_memory might
4596 miss objects if __alignof__ were used. */
4597 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4598
4599 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4600 not suffice, which is the typical case. A host where a Lisp_Object is
4601 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4602 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4603 suffice to widen it to to a Lisp_Object and check it that way. */
4604 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4605 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4606 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4607 nor mark_maybe_object can follow the pointers. This should not occur on
4608 any practical porting target. */
4609 # error "MSB type bits straddle pointer-word boundaries"
4610 # endif
4611 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4612 pointer words that hold pointers ORed with type bits. */
4613 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4614 #else
4615 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4616 words that hold unmodified pointers. */
4617 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4618 #endif
4619
4620 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4621 or END+OFFSET..START. */
4622
4623 static void
4624 mark_memory (void *start, void *end)
4625 {
4626 void **pp;
4627 int i;
4628
4629 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4630 nzombies = 0;
4631 #endif
4632
4633 /* Make START the pointer to the start of the memory region,
4634 if it isn't already. */
4635 if (end < start)
4636 {
4637 void *tem = start;
4638 start = end;
4639 end = tem;
4640 }
4641
4642 /* Mark Lisp data pointed to. This is necessary because, in some
4643 situations, the C compiler optimizes Lisp objects away, so that
4644 only a pointer to them remains. Example:
4645
4646 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4647 ()
4648 {
4649 Lisp_Object obj = build_string ("test");
4650 struct Lisp_String *s = XSTRING (obj);
4651 Fgarbage_collect ();
4652 fprintf (stderr, "test `%s'\n", s->data);
4653 return Qnil;
4654 }
4655
4656 Here, `obj' isn't really used, and the compiler optimizes it
4657 away. The only reference to the life string is through the
4658 pointer `s'. */
4659
4660 for (pp = start; (void *) pp < end; pp++)
4661 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4662 {
4663 void *p = *(void **) ((char *) pp + i);
4664 mark_maybe_pointer (p);
4665 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4666 mark_maybe_object (XIL ((intptr_t) p));
4667 }
4668 }
4669
4670 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4671 the GCC system configuration. In gcc 3.2, the only systems for
4672 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4673 by others?) and ns32k-pc532-min. */
4674
4675 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4676
4677 static int setjmp_tested_p, longjmps_done;
4678
4679 #define SETJMP_WILL_LIKELY_WORK "\
4680 \n\
4681 Emacs garbage collector has been changed to use conservative stack\n\
4682 marking. Emacs has determined that the method it uses to do the\n\
4683 marking will likely work on your system, but this isn't sure.\n\
4684 \n\
4685 If you are a system-programmer, or can get the help of a local wizard\n\
4686 who is, please take a look at the function mark_stack in alloc.c, and\n\
4687 verify that the methods used are appropriate for your system.\n\
4688 \n\
4689 Please mail the result to <emacs-devel@gnu.org>.\n\
4690 "
4691
4692 #define SETJMP_WILL_NOT_WORK "\
4693 \n\
4694 Emacs garbage collector has been changed to use conservative stack\n\
4695 marking. Emacs has determined that the default method it uses to do the\n\
4696 marking will not work on your system. We will need a system-dependent\n\
4697 solution for your system.\n\
4698 \n\
4699 Please take a look at the function mark_stack in alloc.c, and\n\
4700 try to find a way to make it work on your system.\n\
4701 \n\
4702 Note that you may get false negatives, depending on the compiler.\n\
4703 In particular, you need to use -O with GCC for this test.\n\
4704 \n\
4705 Please mail the result to <emacs-devel@gnu.org>.\n\
4706 "
4707
4708
4709 /* Perform a quick check if it looks like setjmp saves registers in a
4710 jmp_buf. Print a message to stderr saying so. When this test
4711 succeeds, this is _not_ a proof that setjmp is sufficient for
4712 conservative stack marking. Only the sources or a disassembly
4713 can prove that. */
4714
4715 static void
4716 test_setjmp (void)
4717 {
4718 char buf[10];
4719 register int x;
4720 jmp_buf jbuf;
4721 int result = 0;
4722
4723 /* Arrange for X to be put in a register. */
4724 sprintf (buf, "1");
4725 x = strlen (buf);
4726 x = 2 * x - 1;
4727
4728 setjmp (jbuf);
4729 if (longjmps_done == 1)
4730 {
4731 /* Came here after the longjmp at the end of the function.
4732
4733 If x == 1, the longjmp has restored the register to its
4734 value before the setjmp, and we can hope that setjmp
4735 saves all such registers in the jmp_buf, although that
4736 isn't sure.
4737
4738 For other values of X, either something really strange is
4739 taking place, or the setjmp just didn't save the register. */
4740
4741 if (x == 1)
4742 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4743 else
4744 {
4745 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4746 exit (1);
4747 }
4748 }
4749
4750 ++longjmps_done;
4751 x = 2;
4752 if (longjmps_done == 1)
4753 longjmp (jbuf, 1);
4754 }
4755
4756 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4757
4758
4759 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4760
4761 /* Abort if anything GCPRO'd doesn't survive the GC. */
4762
4763 static void
4764 check_gcpros (void)
4765 {
4766 struct gcpro *p;
4767 ptrdiff_t i;
4768
4769 for (p = gcprolist; p; p = p->next)
4770 for (i = 0; i < p->nvars; ++i)
4771 if (!survives_gc_p (p->var[i]))
4772 /* FIXME: It's not necessarily a bug. It might just be that the
4773 GCPRO is unnecessary or should release the object sooner. */
4774 abort ();
4775 }
4776
4777 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4778
4779 static void
4780 dump_zombies (void)
4781 {
4782 int i;
4783
4784 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4785 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4786 {
4787 fprintf (stderr, " %d = ", i);
4788 debug_print (zombies[i]);
4789 }
4790 }
4791
4792 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4793
4794
4795 /* Mark live Lisp objects on the C stack.
4796
4797 There are several system-dependent problems to consider when
4798 porting this to new architectures:
4799
4800 Processor Registers
4801
4802 We have to mark Lisp objects in CPU registers that can hold local
4803 variables or are used to pass parameters.
4804
4805 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4806 something that either saves relevant registers on the stack, or
4807 calls mark_maybe_object passing it each register's contents.
4808
4809 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4810 implementation assumes that calling setjmp saves registers we need
4811 to see in a jmp_buf which itself lies on the stack. This doesn't
4812 have to be true! It must be verified for each system, possibly
4813 by taking a look at the source code of setjmp.
4814
4815 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4816 can use it as a machine independent method to store all registers
4817 to the stack. In this case the macros described in the previous
4818 two paragraphs are not used.
4819
4820 Stack Layout
4821
4822 Architectures differ in the way their processor stack is organized.
4823 For example, the stack might look like this
4824
4825 +----------------+
4826 | Lisp_Object | size = 4
4827 +----------------+
4828 | something else | size = 2
4829 +----------------+
4830 | Lisp_Object | size = 4
4831 +----------------+
4832 | ... |
4833
4834 In such a case, not every Lisp_Object will be aligned equally. To
4835 find all Lisp_Object on the stack it won't be sufficient to walk
4836 the stack in steps of 4 bytes. Instead, two passes will be
4837 necessary, one starting at the start of the stack, and a second
4838 pass starting at the start of the stack + 2. Likewise, if the
4839 minimal alignment of Lisp_Objects on the stack is 1, four passes
4840 would be necessary, each one starting with one byte more offset
4841 from the stack start. */
4842
4843 static void
4844 mark_stack (void)
4845 {
4846 void *end;
4847
4848 #ifdef HAVE___BUILTIN_UNWIND_INIT
4849 /* Force callee-saved registers and register windows onto the stack.
4850 This is the preferred method if available, obviating the need for
4851 machine dependent methods. */
4852 __builtin_unwind_init ();
4853 end = &end;
4854 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4855 #ifndef GC_SAVE_REGISTERS_ON_STACK
4856 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4857 union aligned_jmpbuf {
4858 Lisp_Object o;
4859 jmp_buf j;
4860 } j;
4861 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4862 #endif
4863 /* This trick flushes the register windows so that all the state of
4864 the process is contained in the stack. */
4865 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4866 needed on ia64 too. See mach_dep.c, where it also says inline
4867 assembler doesn't work with relevant proprietary compilers. */
4868 #ifdef __sparc__
4869 #if defined (__sparc64__) && defined (__FreeBSD__)
4870 /* FreeBSD does not have a ta 3 handler. */
4871 asm ("flushw");
4872 #else
4873 asm ("ta 3");
4874 #endif
4875 #endif
4876
4877 /* Save registers that we need to see on the stack. We need to see
4878 registers used to hold register variables and registers used to
4879 pass parameters. */
4880 #ifdef GC_SAVE_REGISTERS_ON_STACK
4881 GC_SAVE_REGISTERS_ON_STACK (end);
4882 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4883
4884 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4885 setjmp will definitely work, test it
4886 and print a message with the result
4887 of the test. */
4888 if (!setjmp_tested_p)
4889 {
4890 setjmp_tested_p = 1;
4891 test_setjmp ();
4892 }
4893 #endif /* GC_SETJMP_WORKS */
4894
4895 setjmp (j.j);
4896 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4897 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4898 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4899
4900 /* This assumes that the stack is a contiguous region in memory. If
4901 that's not the case, something has to be done here to iterate
4902 over the stack segments. */
4903 mark_memory (stack_base, end);
4904
4905 /* Allow for marking a secondary stack, like the register stack on the
4906 ia64. */
4907 #ifdef GC_MARK_SECONDARY_STACK
4908 GC_MARK_SECONDARY_STACK ();
4909 #endif
4910
4911 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4912 check_gcpros ();
4913 #endif
4914 }
4915
4916 #endif /* GC_MARK_STACK != 0 */
4917
4918
4919 /* Determine whether it is safe to access memory at address P. */
4920 static int
4921 valid_pointer_p (void *p)
4922 {
4923 #ifdef WINDOWSNT
4924 return w32_valid_pointer_p (p, 16);
4925 #else
4926 int fd[2];
4927
4928 /* Obviously, we cannot just access it (we would SEGV trying), so we
4929 trick the o/s to tell us whether p is a valid pointer.
4930 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4931 not validate p in that case. */
4932
4933 if (pipe (fd) == 0)
4934 {
4935 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4936 emacs_close (fd[1]);
4937 emacs_close (fd[0]);
4938 return valid;
4939 }
4940
4941 return -1;
4942 #endif
4943 }
4944
4945 /* Return 1 if OBJ is a valid lisp object.
4946 Return 0 if OBJ is NOT a valid lisp object.
4947 Return -1 if we cannot validate OBJ.
4948 This function can be quite slow,
4949 so it should only be used in code for manual debugging. */
4950
4951 int
4952 valid_lisp_object_p (Lisp_Object obj)
4953 {
4954 void *p;
4955 #if GC_MARK_STACK
4956 struct mem_node *m;
4957 #endif
4958
4959 if (INTEGERP (obj))
4960 return 1;
4961
4962 p = (void *) XPNTR (obj);
4963 if (PURE_POINTER_P (p))
4964 return 1;
4965
4966 #if !GC_MARK_STACK
4967 return valid_pointer_p (p);
4968 #else
4969
4970 m = mem_find (p);
4971
4972 if (m == MEM_NIL)
4973 {
4974 int valid = valid_pointer_p (p);
4975 if (valid <= 0)
4976 return valid;
4977
4978 if (SUBRP (obj))
4979 return 1;
4980
4981 return 0;
4982 }
4983
4984 switch (m->type)
4985 {
4986 case MEM_TYPE_NON_LISP:
4987 return 0;
4988
4989 case MEM_TYPE_BUFFER:
4990 return live_buffer_p (m, p);
4991
4992 case MEM_TYPE_CONS:
4993 return live_cons_p (m, p);
4994
4995 case MEM_TYPE_STRING:
4996 return live_string_p (m, p);
4997
4998 case MEM_TYPE_MISC:
4999 return live_misc_p (m, p);
5000
5001 case MEM_TYPE_SYMBOL:
5002 return live_symbol_p (m, p);
5003
5004 case MEM_TYPE_FLOAT:
5005 return live_float_p (m, p);
5006
5007 case MEM_TYPE_VECTORLIKE:
5008 case MEM_TYPE_VECTOR_BLOCK:
5009 return live_vector_p (m, p);
5010
5011 default:
5012 break;
5013 }
5014
5015 return 0;
5016 #endif
5017 }
5018
5019
5020
5021 \f
5022 /***********************************************************************
5023 Pure Storage Management
5024 ***********************************************************************/
5025
5026 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5027 pointer to it. TYPE is the Lisp type for which the memory is
5028 allocated. TYPE < 0 means it's not used for a Lisp object. */
5029
5030 static void *
5031 pure_alloc (size_t size, int type)
5032 {
5033 void *result;
5034 #if USE_LSB_TAG
5035 size_t alignment = (1 << GCTYPEBITS);
5036 #else
5037 size_t alignment = sizeof (EMACS_INT);
5038
5039 /* Give Lisp_Floats an extra alignment. */
5040 if (type == Lisp_Float)
5041 {
5042 #if defined __GNUC__ && __GNUC__ >= 2
5043 alignment = __alignof (struct Lisp_Float);
5044 #else
5045 alignment = sizeof (struct Lisp_Float);
5046 #endif
5047 }
5048 #endif
5049
5050 again:
5051 if (type >= 0)
5052 {
5053 /* Allocate space for a Lisp object from the beginning of the free
5054 space with taking account of alignment. */
5055 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5056 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5057 }
5058 else
5059 {
5060 /* Allocate space for a non-Lisp object from the end of the free
5061 space. */
5062 pure_bytes_used_non_lisp += size;
5063 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5064 }
5065 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5066
5067 if (pure_bytes_used <= pure_size)
5068 return result;
5069
5070 /* Don't allocate a large amount here,
5071 because it might get mmap'd and then its address
5072 might not be usable. */
5073 purebeg = (char *) xmalloc (10000);
5074 pure_size = 10000;
5075 pure_bytes_used_before_overflow += pure_bytes_used - size;
5076 pure_bytes_used = 0;
5077 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5078 goto again;
5079 }
5080
5081
5082 /* Print a warning if PURESIZE is too small. */
5083
5084 void
5085 check_pure_size (void)
5086 {
5087 if (pure_bytes_used_before_overflow)
5088 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5089 " bytes needed)"),
5090 pure_bytes_used + pure_bytes_used_before_overflow);
5091 }
5092
5093
5094 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5095 the non-Lisp data pool of the pure storage, and return its start
5096 address. Return NULL if not found. */
5097
5098 static char *
5099 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5100 {
5101 int i;
5102 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5103 const unsigned char *p;
5104 char *non_lisp_beg;
5105
5106 if (pure_bytes_used_non_lisp <= nbytes)
5107 return NULL;
5108
5109 /* Set up the Boyer-Moore table. */
5110 skip = nbytes + 1;
5111 for (i = 0; i < 256; i++)
5112 bm_skip[i] = skip;
5113
5114 p = (const unsigned char *) data;
5115 while (--skip > 0)
5116 bm_skip[*p++] = skip;
5117
5118 last_char_skip = bm_skip['\0'];
5119
5120 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5121 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5122
5123 /* See the comments in the function `boyer_moore' (search.c) for the
5124 use of `infinity'. */
5125 infinity = pure_bytes_used_non_lisp + 1;
5126 bm_skip['\0'] = infinity;
5127
5128 p = (const unsigned char *) non_lisp_beg + nbytes;
5129 start = 0;
5130 do
5131 {
5132 /* Check the last character (== '\0'). */
5133 do
5134 {
5135 start += bm_skip[*(p + start)];
5136 }
5137 while (start <= start_max);
5138
5139 if (start < infinity)
5140 /* Couldn't find the last character. */
5141 return NULL;
5142
5143 /* No less than `infinity' means we could find the last
5144 character at `p[start - infinity]'. */
5145 start -= infinity;
5146
5147 /* Check the remaining characters. */
5148 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5149 /* Found. */
5150 return non_lisp_beg + start;
5151
5152 start += last_char_skip;
5153 }
5154 while (start <= start_max);
5155
5156 return NULL;
5157 }
5158
5159
5160 /* Return a string allocated in pure space. DATA is a buffer holding
5161 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5162 non-zero means make the result string multibyte.
5163
5164 Must get an error if pure storage is full, since if it cannot hold
5165 a large string it may be able to hold conses that point to that
5166 string; then the string is not protected from gc. */
5167
5168 Lisp_Object
5169 make_pure_string (const char *data,
5170 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5171 {
5172 Lisp_Object string;
5173 struct Lisp_String *s;
5174
5175 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5176 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5177 if (s->data == NULL)
5178 {
5179 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5180 memcpy (s->data, data, nbytes);
5181 s->data[nbytes] = '\0';
5182 }
5183 s->size = nchars;
5184 s->size_byte = multibyte ? nbytes : -1;
5185 s->intervals = NULL_INTERVAL;
5186 XSETSTRING (string, s);
5187 return string;
5188 }
5189
5190 /* Return a string a string allocated in pure space. Do not allocate
5191 the string data, just point to DATA. */
5192
5193 Lisp_Object
5194 make_pure_c_string (const char *data)
5195 {
5196 Lisp_Object string;
5197 struct Lisp_String *s;
5198 ptrdiff_t nchars = strlen (data);
5199
5200 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5201 s->size = nchars;
5202 s->size_byte = -1;
5203 s->data = (unsigned char *) data;
5204 s->intervals = NULL_INTERVAL;
5205 XSETSTRING (string, s);
5206 return string;
5207 }
5208
5209 /* Return a cons allocated from pure space. Give it pure copies
5210 of CAR as car and CDR as cdr. */
5211
5212 Lisp_Object
5213 pure_cons (Lisp_Object car, Lisp_Object cdr)
5214 {
5215 register Lisp_Object new;
5216 struct Lisp_Cons *p;
5217
5218 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5219 XSETCONS (new, p);
5220 XSETCAR (new, Fpurecopy (car));
5221 XSETCDR (new, Fpurecopy (cdr));
5222 return new;
5223 }
5224
5225
5226 /* Value is a float object with value NUM allocated from pure space. */
5227
5228 static Lisp_Object
5229 make_pure_float (double num)
5230 {
5231 register Lisp_Object new;
5232 struct Lisp_Float *p;
5233
5234 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5235 XSETFLOAT (new, p);
5236 XFLOAT_INIT (new, num);
5237 return new;
5238 }
5239
5240
5241 /* Return a vector with room for LEN Lisp_Objects allocated from
5242 pure space. */
5243
5244 static Lisp_Object
5245 make_pure_vector (ptrdiff_t len)
5246 {
5247 Lisp_Object new;
5248 struct Lisp_Vector *p;
5249 size_t size = (offsetof (struct Lisp_Vector, contents)
5250 + len * sizeof (Lisp_Object));
5251
5252 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5253 XSETVECTOR (new, p);
5254 XVECTOR (new)->header.size = len;
5255 return new;
5256 }
5257
5258
5259 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5260 doc: /* Make a copy of object OBJ in pure storage.
5261 Recursively copies contents of vectors and cons cells.
5262 Does not copy symbols. Copies strings without text properties. */)
5263 (register Lisp_Object obj)
5264 {
5265 if (NILP (Vpurify_flag))
5266 return obj;
5267
5268 if (PURE_POINTER_P (XPNTR (obj)))
5269 return obj;
5270
5271 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5272 {
5273 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5274 if (!NILP (tmp))
5275 return tmp;
5276 }
5277
5278 if (CONSP (obj))
5279 obj = pure_cons (XCAR (obj), XCDR (obj));
5280 else if (FLOATP (obj))
5281 obj = make_pure_float (XFLOAT_DATA (obj));
5282 else if (STRINGP (obj))
5283 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5284 SBYTES (obj),
5285 STRING_MULTIBYTE (obj));
5286 else if (COMPILEDP (obj) || VECTORP (obj))
5287 {
5288 register struct Lisp_Vector *vec;
5289 register ptrdiff_t i;
5290 ptrdiff_t size;
5291
5292 size = ASIZE (obj);
5293 if (size & PSEUDOVECTOR_FLAG)
5294 size &= PSEUDOVECTOR_SIZE_MASK;
5295 vec = XVECTOR (make_pure_vector (size));
5296 for (i = 0; i < size; i++)
5297 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
5298 if (COMPILEDP (obj))
5299 {
5300 XSETPVECTYPE (vec, PVEC_COMPILED);
5301 XSETCOMPILED (obj, vec);
5302 }
5303 else
5304 XSETVECTOR (obj, vec);
5305 }
5306 else if (MARKERP (obj))
5307 error ("Attempt to copy a marker to pure storage");
5308 else
5309 /* Not purified, don't hash-cons. */
5310 return obj;
5311
5312 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5313 Fputhash (obj, obj, Vpurify_flag);
5314
5315 return obj;
5316 }
5317
5318
5319 \f
5320 /***********************************************************************
5321 Protection from GC
5322 ***********************************************************************/
5323
5324 /* Put an entry in staticvec, pointing at the variable with address
5325 VARADDRESS. */
5326
5327 void
5328 staticpro (Lisp_Object *varaddress)
5329 {
5330 staticvec[staticidx++] = varaddress;
5331 if (staticidx >= NSTATICS)
5332 abort ();
5333 }
5334
5335 \f
5336 /***********************************************************************
5337 Protection from GC
5338 ***********************************************************************/
5339
5340 /* Temporarily prevent garbage collection. */
5341
5342 ptrdiff_t
5343 inhibit_garbage_collection (void)
5344 {
5345 ptrdiff_t count = SPECPDL_INDEX ();
5346
5347 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5348 return count;
5349 }
5350
5351
5352 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5353 doc: /* Reclaim storage for Lisp objects no longer needed.
5354 Garbage collection happens automatically if you cons more than
5355 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5356 `garbage-collect' normally returns a list with info on amount of space in use:
5357 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5358 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5359 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5360 (USED-STRINGS . FREE-STRINGS))
5361 However, if there was overflow in pure space, `garbage-collect'
5362 returns nil, because real GC can't be done.
5363 See Info node `(elisp)Garbage Collection'. */)
5364 (void)
5365 {
5366 register struct specbinding *bind;
5367 char stack_top_variable;
5368 ptrdiff_t i;
5369 int message_p;
5370 Lisp_Object total[8];
5371 ptrdiff_t count = SPECPDL_INDEX ();
5372 EMACS_TIME t1, t2, t3;
5373
5374 if (abort_on_gc)
5375 abort ();
5376
5377 /* Can't GC if pure storage overflowed because we can't determine
5378 if something is a pure object or not. */
5379 if (pure_bytes_used_before_overflow)
5380 return Qnil;
5381
5382 CHECK_CONS_LIST ();
5383
5384 /* Don't keep undo information around forever.
5385 Do this early on, so it is no problem if the user quits. */
5386 {
5387 register struct buffer *nextb = all_buffers;
5388
5389 while (nextb)
5390 {
5391 /* If a buffer's undo list is Qt, that means that undo is
5392 turned off in that buffer. Calling truncate_undo_list on
5393 Qt tends to return NULL, which effectively turns undo back on.
5394 So don't call truncate_undo_list if undo_list is Qt. */
5395 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5396 truncate_undo_list (nextb);
5397
5398 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5399 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5400 && ! nextb->text->inhibit_shrinking)
5401 {
5402 /* If a buffer's gap size is more than 10% of the buffer
5403 size, or larger than 2000 bytes, then shrink it
5404 accordingly. Keep a minimum size of 20 bytes. */
5405 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5406
5407 if (nextb->text->gap_size > size)
5408 {
5409 struct buffer *save_current = current_buffer;
5410 current_buffer = nextb;
5411 make_gap (-(nextb->text->gap_size - size));
5412 current_buffer = save_current;
5413 }
5414 }
5415
5416 nextb = nextb->header.next.buffer;
5417 }
5418 }
5419
5420 EMACS_GET_TIME (t1);
5421
5422 /* In case user calls debug_print during GC,
5423 don't let that cause a recursive GC. */
5424 consing_since_gc = 0;
5425
5426 /* Save what's currently displayed in the echo area. */
5427 message_p = push_message ();
5428 record_unwind_protect (pop_message_unwind, Qnil);
5429
5430 /* Save a copy of the contents of the stack, for debugging. */
5431 #if MAX_SAVE_STACK > 0
5432 if (NILP (Vpurify_flag))
5433 {
5434 char *stack;
5435 ptrdiff_t stack_size;
5436 if (&stack_top_variable < stack_bottom)
5437 {
5438 stack = &stack_top_variable;
5439 stack_size = stack_bottom - &stack_top_variable;
5440 }
5441 else
5442 {
5443 stack = stack_bottom;
5444 stack_size = &stack_top_variable - stack_bottom;
5445 }
5446 if (stack_size <= MAX_SAVE_STACK)
5447 {
5448 if (stack_copy_size < stack_size)
5449 {
5450 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5451 stack_copy_size = stack_size;
5452 }
5453 memcpy (stack_copy, stack, stack_size);
5454 }
5455 }
5456 #endif /* MAX_SAVE_STACK > 0 */
5457
5458 if (garbage_collection_messages)
5459 message1_nolog ("Garbage collecting...");
5460
5461 BLOCK_INPUT;
5462
5463 shrink_regexp_cache ();
5464
5465 gc_in_progress = 1;
5466
5467 /* clear_marks (); */
5468
5469 /* Mark all the special slots that serve as the roots of accessibility. */
5470
5471 for (i = 0; i < staticidx; i++)
5472 mark_object (*staticvec[i]);
5473
5474 for (bind = specpdl; bind != specpdl_ptr; bind++)
5475 {
5476 mark_object (bind->symbol);
5477 mark_object (bind->old_value);
5478 }
5479 mark_terminals ();
5480 mark_kboards ();
5481 mark_ttys ();
5482
5483 #ifdef USE_GTK
5484 {
5485 extern void xg_mark_data (void);
5486 xg_mark_data ();
5487 }
5488 #endif
5489
5490 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5491 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5492 mark_stack ();
5493 #else
5494 {
5495 register struct gcpro *tail;
5496 for (tail = gcprolist; tail; tail = tail->next)
5497 for (i = 0; i < tail->nvars; i++)
5498 mark_object (tail->var[i]);
5499 }
5500 mark_byte_stack ();
5501 {
5502 struct catchtag *catch;
5503 struct handler *handler;
5504
5505 for (catch = catchlist; catch; catch = catch->next)
5506 {
5507 mark_object (catch->tag);
5508 mark_object (catch->val);
5509 }
5510 for (handler = handlerlist; handler; handler = handler->next)
5511 {
5512 mark_object (handler->handler);
5513 mark_object (handler->var);
5514 }
5515 }
5516 mark_backtrace ();
5517 #endif
5518
5519 #ifdef HAVE_WINDOW_SYSTEM
5520 mark_fringe_data ();
5521 #endif
5522
5523 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5524 mark_stack ();
5525 #endif
5526
5527 /* Everything is now marked, except for the things that require special
5528 finalization, i.e. the undo_list.
5529 Look thru every buffer's undo list
5530 for elements that update markers that were not marked,
5531 and delete them. */
5532 {
5533 register struct buffer *nextb = all_buffers;
5534
5535 while (nextb)
5536 {
5537 /* If a buffer's undo list is Qt, that means that undo is
5538 turned off in that buffer. Calling truncate_undo_list on
5539 Qt tends to return NULL, which effectively turns undo back on.
5540 So don't call truncate_undo_list if undo_list is Qt. */
5541 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5542 {
5543 Lisp_Object tail, prev;
5544 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5545 prev = Qnil;
5546 while (CONSP (tail))
5547 {
5548 if (CONSP (XCAR (tail))
5549 && MARKERP (XCAR (XCAR (tail)))
5550 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5551 {
5552 if (NILP (prev))
5553 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5554 else
5555 {
5556 tail = XCDR (tail);
5557 XSETCDR (prev, tail);
5558 }
5559 }
5560 else
5561 {
5562 prev = tail;
5563 tail = XCDR (tail);
5564 }
5565 }
5566 }
5567 /* Now that we have stripped the elements that need not be in the
5568 undo_list any more, we can finally mark the list. */
5569 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5570
5571 nextb = nextb->header.next.buffer;
5572 }
5573 }
5574
5575 gc_sweep ();
5576
5577 /* Clear the mark bits that we set in certain root slots. */
5578
5579 unmark_byte_stack ();
5580 VECTOR_UNMARK (&buffer_defaults);
5581 VECTOR_UNMARK (&buffer_local_symbols);
5582
5583 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5584 dump_zombies ();
5585 #endif
5586
5587 UNBLOCK_INPUT;
5588
5589 CHECK_CONS_LIST ();
5590
5591 /* clear_marks (); */
5592 gc_in_progress = 0;
5593
5594 consing_since_gc = 0;
5595 if (gc_cons_threshold < 10000)
5596 gc_cons_threshold = 10000;
5597
5598 gc_relative_threshold = 0;
5599 if (FLOATP (Vgc_cons_percentage))
5600 { /* Set gc_cons_combined_threshold. */
5601 double tot = 0;
5602
5603 tot += total_conses * sizeof (struct Lisp_Cons);
5604 tot += total_symbols * sizeof (struct Lisp_Symbol);
5605 tot += total_markers * sizeof (union Lisp_Misc);
5606 tot += total_string_size;
5607 tot += total_vector_size * sizeof (Lisp_Object);
5608 tot += total_floats * sizeof (struct Lisp_Float);
5609 tot += total_intervals * sizeof (struct interval);
5610 tot += total_strings * sizeof (struct Lisp_String);
5611
5612 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5613 if (0 < tot)
5614 {
5615 if (tot < TYPE_MAXIMUM (EMACS_INT))
5616 gc_relative_threshold = tot;
5617 else
5618 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5619 }
5620 }
5621
5622 if (garbage_collection_messages)
5623 {
5624 if (message_p || minibuf_level > 0)
5625 restore_message ();
5626 else
5627 message1_nolog ("Garbage collecting...done");
5628 }
5629
5630 unbind_to (count, Qnil);
5631
5632 total[0] = Fcons (make_number (total_conses),
5633 make_number (total_free_conses));
5634 total[1] = Fcons (make_number (total_symbols),
5635 make_number (total_free_symbols));
5636 total[2] = Fcons (make_number (total_markers),
5637 make_number (total_free_markers));
5638 total[3] = make_number (total_string_size);
5639 total[4] = make_number (total_vector_size);
5640 total[5] = Fcons (make_number (total_floats),
5641 make_number (total_free_floats));
5642 total[6] = Fcons (make_number (total_intervals),
5643 make_number (total_free_intervals));
5644 total[7] = Fcons (make_number (total_strings),
5645 make_number (total_free_strings));
5646
5647 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5648 {
5649 /* Compute average percentage of zombies. */
5650 double nlive = 0;
5651
5652 for (i = 0; i < 7; ++i)
5653 if (CONSP (total[i]))
5654 nlive += XFASTINT (XCAR (total[i]));
5655
5656 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5657 max_live = max (nlive, max_live);
5658 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5659 max_zombies = max (nzombies, max_zombies);
5660 ++ngcs;
5661 }
5662 #endif
5663
5664 if (!NILP (Vpost_gc_hook))
5665 {
5666 ptrdiff_t gc_count = inhibit_garbage_collection ();
5667 safe_run_hooks (Qpost_gc_hook);
5668 unbind_to (gc_count, Qnil);
5669 }
5670
5671 /* Accumulate statistics. */
5672 EMACS_GET_TIME (t2);
5673 EMACS_SUB_TIME (t3, t2, t1);
5674 if (FLOATP (Vgc_elapsed))
5675 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5676 EMACS_SECS (t3) +
5677 EMACS_USECS (t3) * 1.0e-6);
5678 gcs_done++;
5679
5680 return Flist (sizeof total / sizeof *total, total);
5681 }
5682
5683
5684 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5685 only interesting objects referenced from glyphs are strings. */
5686
5687 static void
5688 mark_glyph_matrix (struct glyph_matrix *matrix)
5689 {
5690 struct glyph_row *row = matrix->rows;
5691 struct glyph_row *end = row + matrix->nrows;
5692
5693 for (; row < end; ++row)
5694 if (row->enabled_p)
5695 {
5696 int area;
5697 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5698 {
5699 struct glyph *glyph = row->glyphs[area];
5700 struct glyph *end_glyph = glyph + row->used[area];
5701
5702 for (; glyph < end_glyph; ++glyph)
5703 if (STRINGP (glyph->object)
5704 && !STRING_MARKED_P (XSTRING (glyph->object)))
5705 mark_object (glyph->object);
5706 }
5707 }
5708 }
5709
5710
5711 /* Mark Lisp faces in the face cache C. */
5712
5713 static void
5714 mark_face_cache (struct face_cache *c)
5715 {
5716 if (c)
5717 {
5718 int i, j;
5719 for (i = 0; i < c->used; ++i)
5720 {
5721 struct face *face = FACE_FROM_ID (c->f, i);
5722
5723 if (face)
5724 {
5725 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5726 mark_object (face->lface[j]);
5727 }
5728 }
5729 }
5730 }
5731
5732
5733 \f
5734 /* Mark reference to a Lisp_Object.
5735 If the object referred to has not been seen yet, recursively mark
5736 all the references contained in it. */
5737
5738 #define LAST_MARKED_SIZE 500
5739 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5740 static int last_marked_index;
5741
5742 /* For debugging--call abort when we cdr down this many
5743 links of a list, in mark_object. In debugging,
5744 the call to abort will hit a breakpoint.
5745 Normally this is zero and the check never goes off. */
5746 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5747
5748 static void
5749 mark_vectorlike (struct Lisp_Vector *ptr)
5750 {
5751 ptrdiff_t size = ptr->header.size;
5752 ptrdiff_t i;
5753
5754 eassert (!VECTOR_MARKED_P (ptr));
5755 VECTOR_MARK (ptr); /* Else mark it */
5756 if (size & PSEUDOVECTOR_FLAG)
5757 size &= PSEUDOVECTOR_SIZE_MASK;
5758
5759 /* Note that this size is not the memory-footprint size, but only
5760 the number of Lisp_Object fields that we should trace.
5761 The distinction is used e.g. by Lisp_Process which places extra
5762 non-Lisp_Object fields at the end of the structure. */
5763 for (i = 0; i < size; i++) /* and then mark its elements */
5764 mark_object (ptr->contents[i]);
5765 }
5766
5767 /* Like mark_vectorlike but optimized for char-tables (and
5768 sub-char-tables) assuming that the contents are mostly integers or
5769 symbols. */
5770
5771 static void
5772 mark_char_table (struct Lisp_Vector *ptr)
5773 {
5774 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5775 int i;
5776
5777 eassert (!VECTOR_MARKED_P (ptr));
5778 VECTOR_MARK (ptr);
5779 for (i = 0; i < size; i++)
5780 {
5781 Lisp_Object val = ptr->contents[i];
5782
5783 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5784 continue;
5785 if (SUB_CHAR_TABLE_P (val))
5786 {
5787 if (! VECTOR_MARKED_P (XVECTOR (val)))
5788 mark_char_table (XVECTOR (val));
5789 }
5790 else
5791 mark_object (val);
5792 }
5793 }
5794
5795 void
5796 mark_object (Lisp_Object arg)
5797 {
5798 register Lisp_Object obj = arg;
5799 #ifdef GC_CHECK_MARKED_OBJECTS
5800 void *po;
5801 struct mem_node *m;
5802 #endif
5803 ptrdiff_t cdr_count = 0;
5804
5805 loop:
5806
5807 if (PURE_POINTER_P (XPNTR (obj)))
5808 return;
5809
5810 last_marked[last_marked_index++] = obj;
5811 if (last_marked_index == LAST_MARKED_SIZE)
5812 last_marked_index = 0;
5813
5814 /* Perform some sanity checks on the objects marked here. Abort if
5815 we encounter an object we know is bogus. This increases GC time
5816 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5817 #ifdef GC_CHECK_MARKED_OBJECTS
5818
5819 po = (void *) XPNTR (obj);
5820
5821 /* Check that the object pointed to by PO is known to be a Lisp
5822 structure allocated from the heap. */
5823 #define CHECK_ALLOCATED() \
5824 do { \
5825 m = mem_find (po); \
5826 if (m == MEM_NIL) \
5827 abort (); \
5828 } while (0)
5829
5830 /* Check that the object pointed to by PO is live, using predicate
5831 function LIVEP. */
5832 #define CHECK_LIVE(LIVEP) \
5833 do { \
5834 if (!LIVEP (m, po)) \
5835 abort (); \
5836 } while (0)
5837
5838 /* Check both of the above conditions. */
5839 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5840 do { \
5841 CHECK_ALLOCATED (); \
5842 CHECK_LIVE (LIVEP); \
5843 } while (0) \
5844
5845 #else /* not GC_CHECK_MARKED_OBJECTS */
5846
5847 #define CHECK_LIVE(LIVEP) (void) 0
5848 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5849
5850 #endif /* not GC_CHECK_MARKED_OBJECTS */
5851
5852 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5853 {
5854 case Lisp_String:
5855 {
5856 register struct Lisp_String *ptr = XSTRING (obj);
5857 if (STRING_MARKED_P (ptr))
5858 break;
5859 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5860 MARK_INTERVAL_TREE (ptr->intervals);
5861 MARK_STRING (ptr);
5862 #ifdef GC_CHECK_STRING_BYTES
5863 /* Check that the string size recorded in the string is the
5864 same as the one recorded in the sdata structure. */
5865 CHECK_STRING_BYTES (ptr);
5866 #endif /* GC_CHECK_STRING_BYTES */
5867 }
5868 break;
5869
5870 case Lisp_Vectorlike:
5871 if (VECTOR_MARKED_P (XVECTOR (obj)))
5872 break;
5873 #ifdef GC_CHECK_MARKED_OBJECTS
5874 m = mem_find (po);
5875 if (m == MEM_NIL && !SUBRP (obj)
5876 && po != &buffer_defaults
5877 && po != &buffer_local_symbols)
5878 abort ();
5879 #endif /* GC_CHECK_MARKED_OBJECTS */
5880
5881 if (BUFFERP (obj))
5882 {
5883 #ifdef GC_CHECK_MARKED_OBJECTS
5884 if (po != &buffer_defaults && po != &buffer_local_symbols)
5885 {
5886 struct buffer *b;
5887 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5888 ;
5889 if (b == NULL)
5890 abort ();
5891 }
5892 #endif /* GC_CHECK_MARKED_OBJECTS */
5893 mark_buffer (obj);
5894 }
5895 else if (SUBRP (obj))
5896 break;
5897 else if (COMPILEDP (obj))
5898 /* We could treat this just like a vector, but it is better to
5899 save the COMPILED_CONSTANTS element for last and avoid
5900 recursion there. */
5901 {
5902 register struct Lisp_Vector *ptr = XVECTOR (obj);
5903 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5904 int i;
5905
5906 CHECK_LIVE (live_vector_p);
5907 VECTOR_MARK (ptr); /* Else mark it */
5908 for (i = 0; i < size; i++) /* and then mark its elements */
5909 {
5910 if (i != COMPILED_CONSTANTS)
5911 mark_object (ptr->contents[i]);
5912 }
5913 obj = ptr->contents[COMPILED_CONSTANTS];
5914 goto loop;
5915 }
5916 else if (FRAMEP (obj))
5917 {
5918 register struct frame *ptr = XFRAME (obj);
5919 mark_vectorlike (XVECTOR (obj));
5920 mark_face_cache (ptr->face_cache);
5921 }
5922 else if (WINDOWP (obj))
5923 {
5924 register struct Lisp_Vector *ptr = XVECTOR (obj);
5925 struct window *w = XWINDOW (obj);
5926 mark_vectorlike (ptr);
5927 /* Mark glyphs for leaf windows. Marking window matrices is
5928 sufficient because frame matrices use the same glyph
5929 memory. */
5930 if (NILP (w->hchild)
5931 && NILP (w->vchild)
5932 && w->current_matrix)
5933 {
5934 mark_glyph_matrix (w->current_matrix);
5935 mark_glyph_matrix (w->desired_matrix);
5936 }
5937 }
5938 else if (HASH_TABLE_P (obj))
5939 {
5940 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5941 mark_vectorlike ((struct Lisp_Vector *)h);
5942 /* If hash table is not weak, mark all keys and values.
5943 For weak tables, mark only the vector. */
5944 if (NILP (h->weak))
5945 mark_object (h->key_and_value);
5946 else
5947 VECTOR_MARK (XVECTOR (h->key_and_value));
5948 }
5949 else if (CHAR_TABLE_P (obj))
5950 mark_char_table (XVECTOR (obj));
5951 else
5952 mark_vectorlike (XVECTOR (obj));
5953 break;
5954
5955 case Lisp_Symbol:
5956 {
5957 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5958 struct Lisp_Symbol *ptrx;
5959
5960 if (ptr->gcmarkbit)
5961 break;
5962 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5963 ptr->gcmarkbit = 1;
5964 mark_object (ptr->function);
5965 mark_object (ptr->plist);
5966 switch (ptr->redirect)
5967 {
5968 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5969 case SYMBOL_VARALIAS:
5970 {
5971 Lisp_Object tem;
5972 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5973 mark_object (tem);
5974 break;
5975 }
5976 case SYMBOL_LOCALIZED:
5977 {
5978 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5979 /* If the value is forwarded to a buffer or keyboard field,
5980 these are marked when we see the corresponding object.
5981 And if it's forwarded to a C variable, either it's not
5982 a Lisp_Object var, or it's staticpro'd already. */
5983 mark_object (blv->where);
5984 mark_object (blv->valcell);
5985 mark_object (blv->defcell);
5986 break;
5987 }
5988 case SYMBOL_FORWARDED:
5989 /* If the value is forwarded to a buffer or keyboard field,
5990 these are marked when we see the corresponding object.
5991 And if it's forwarded to a C variable, either it's not
5992 a Lisp_Object var, or it's staticpro'd already. */
5993 break;
5994 default: abort ();
5995 }
5996 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5997 MARK_STRING (XSTRING (ptr->xname));
5998 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5999
6000 ptr = ptr->next;
6001 if (ptr)
6002 {
6003 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
6004 XSETSYMBOL (obj, ptrx);
6005 goto loop;
6006 }
6007 }
6008 break;
6009
6010 case Lisp_Misc:
6011 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6012 if (XMISCANY (obj)->gcmarkbit)
6013 break;
6014 XMISCANY (obj)->gcmarkbit = 1;
6015
6016 switch (XMISCTYPE (obj))
6017 {
6018
6019 case Lisp_Misc_Marker:
6020 /* DO NOT mark thru the marker's chain.
6021 The buffer's markers chain does not preserve markers from gc;
6022 instead, markers are removed from the chain when freed by gc. */
6023 break;
6024
6025 case Lisp_Misc_Save_Value:
6026 #if GC_MARK_STACK
6027 {
6028 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6029 /* If DOGC is set, POINTER is the address of a memory
6030 area containing INTEGER potential Lisp_Objects. */
6031 if (ptr->dogc)
6032 {
6033 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6034 ptrdiff_t nelt;
6035 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6036 mark_maybe_object (*p);
6037 }
6038 }
6039 #endif
6040 break;
6041
6042 case Lisp_Misc_Overlay:
6043 {
6044 struct Lisp_Overlay *ptr = XOVERLAY (obj);
6045 mark_object (ptr->start);
6046 mark_object (ptr->end);
6047 mark_object (ptr->plist);
6048 if (ptr->next)
6049 {
6050 XSETMISC (obj, ptr->next);
6051 goto loop;
6052 }
6053 }
6054 break;
6055
6056 default:
6057 abort ();
6058 }
6059 break;
6060
6061 case Lisp_Cons:
6062 {
6063 register struct Lisp_Cons *ptr = XCONS (obj);
6064 if (CONS_MARKED_P (ptr))
6065 break;
6066 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6067 CONS_MARK (ptr);
6068 /* If the cdr is nil, avoid recursion for the car. */
6069 if (EQ (ptr->u.cdr, Qnil))
6070 {
6071 obj = ptr->car;
6072 cdr_count = 0;
6073 goto loop;
6074 }
6075 mark_object (ptr->car);
6076 obj = ptr->u.cdr;
6077 cdr_count++;
6078 if (cdr_count == mark_object_loop_halt)
6079 abort ();
6080 goto loop;
6081 }
6082
6083 case Lisp_Float:
6084 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6085 FLOAT_MARK (XFLOAT (obj));
6086 break;
6087
6088 case_Lisp_Int:
6089 break;
6090
6091 default:
6092 abort ();
6093 }
6094
6095 #undef CHECK_LIVE
6096 #undef CHECK_ALLOCATED
6097 #undef CHECK_ALLOCATED_AND_LIVE
6098 }
6099
6100 /* Mark the pointers in a buffer structure. */
6101
6102 static void
6103 mark_buffer (Lisp_Object buf)
6104 {
6105 register struct buffer *buffer = XBUFFER (buf);
6106 register Lisp_Object *ptr, tmp;
6107 Lisp_Object base_buffer;
6108
6109 eassert (!VECTOR_MARKED_P (buffer));
6110 VECTOR_MARK (buffer);
6111
6112 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
6113
6114 /* For now, we just don't mark the undo_list. It's done later in
6115 a special way just before the sweep phase, and after stripping
6116 some of its elements that are not needed any more. */
6117
6118 if (buffer->overlays_before)
6119 {
6120 XSETMISC (tmp, buffer->overlays_before);
6121 mark_object (tmp);
6122 }
6123 if (buffer->overlays_after)
6124 {
6125 XSETMISC (tmp, buffer->overlays_after);
6126 mark_object (tmp);
6127 }
6128
6129 /* buffer-local Lisp variables start at `undo_list',
6130 tho only the ones from `name' on are GC'd normally. */
6131 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
6132 ptr <= &PER_BUFFER_VALUE (buffer,
6133 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
6134 ptr++)
6135 mark_object (*ptr);
6136
6137 /* If this is an indirect buffer, mark its base buffer. */
6138 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6139 {
6140 XSETBUFFER (base_buffer, buffer->base_buffer);
6141 mark_buffer (base_buffer);
6142 }
6143 }
6144
6145 /* Mark the Lisp pointers in the terminal objects.
6146 Called by Fgarbage_collect. */
6147
6148 static void
6149 mark_terminals (void)
6150 {
6151 struct terminal *t;
6152 for (t = terminal_list; t; t = t->next_terminal)
6153 {
6154 eassert (t->name != NULL);
6155 #ifdef HAVE_WINDOW_SYSTEM
6156 /* If a terminal object is reachable from a stacpro'ed object,
6157 it might have been marked already. Make sure the image cache
6158 gets marked. */
6159 mark_image_cache (t->image_cache);
6160 #endif /* HAVE_WINDOW_SYSTEM */
6161 if (!VECTOR_MARKED_P (t))
6162 mark_vectorlike ((struct Lisp_Vector *)t);
6163 }
6164 }
6165
6166
6167
6168 /* Value is non-zero if OBJ will survive the current GC because it's
6169 either marked or does not need to be marked to survive. */
6170
6171 int
6172 survives_gc_p (Lisp_Object obj)
6173 {
6174 int survives_p;
6175
6176 switch (XTYPE (obj))
6177 {
6178 case_Lisp_Int:
6179 survives_p = 1;
6180 break;
6181
6182 case Lisp_Symbol:
6183 survives_p = XSYMBOL (obj)->gcmarkbit;
6184 break;
6185
6186 case Lisp_Misc:
6187 survives_p = XMISCANY (obj)->gcmarkbit;
6188 break;
6189
6190 case Lisp_String:
6191 survives_p = STRING_MARKED_P (XSTRING (obj));
6192 break;
6193
6194 case Lisp_Vectorlike:
6195 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6196 break;
6197
6198 case Lisp_Cons:
6199 survives_p = CONS_MARKED_P (XCONS (obj));
6200 break;
6201
6202 case Lisp_Float:
6203 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6204 break;
6205
6206 default:
6207 abort ();
6208 }
6209
6210 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6211 }
6212
6213
6214 \f
6215 /* Sweep: find all structures not marked, and free them. */
6216
6217 static void
6218 gc_sweep (void)
6219 {
6220 /* Remove or mark entries in weak hash tables.
6221 This must be done before any object is unmarked. */
6222 sweep_weak_hash_tables ();
6223
6224 sweep_strings ();
6225 #ifdef GC_CHECK_STRING_BYTES
6226 if (!noninteractive)
6227 check_string_bytes (1);
6228 #endif
6229
6230 /* Put all unmarked conses on free list */
6231 {
6232 register struct cons_block *cblk;
6233 struct cons_block **cprev = &cons_block;
6234 register int lim = cons_block_index;
6235 EMACS_INT num_free = 0, num_used = 0;
6236
6237 cons_free_list = 0;
6238
6239 for (cblk = cons_block; cblk; cblk = *cprev)
6240 {
6241 register int i = 0;
6242 int this_free = 0;
6243 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6244
6245 /* Scan the mark bits an int at a time. */
6246 for (i = 0; i < ilim; i++)
6247 {
6248 if (cblk->gcmarkbits[i] == -1)
6249 {
6250 /* Fast path - all cons cells for this int are marked. */
6251 cblk->gcmarkbits[i] = 0;
6252 num_used += BITS_PER_INT;
6253 }
6254 else
6255 {
6256 /* Some cons cells for this int are not marked.
6257 Find which ones, and free them. */
6258 int start, pos, stop;
6259
6260 start = i * BITS_PER_INT;
6261 stop = lim - start;
6262 if (stop > BITS_PER_INT)
6263 stop = BITS_PER_INT;
6264 stop += start;
6265
6266 for (pos = start; pos < stop; pos++)
6267 {
6268 if (!CONS_MARKED_P (&cblk->conses[pos]))
6269 {
6270 this_free++;
6271 cblk->conses[pos].u.chain = cons_free_list;
6272 cons_free_list = &cblk->conses[pos];
6273 #if GC_MARK_STACK
6274 cons_free_list->car = Vdead;
6275 #endif
6276 }
6277 else
6278 {
6279 num_used++;
6280 CONS_UNMARK (&cblk->conses[pos]);
6281 }
6282 }
6283 }
6284 }
6285
6286 lim = CONS_BLOCK_SIZE;
6287 /* If this block contains only free conses and we have already
6288 seen more than two blocks worth of free conses then deallocate
6289 this block. */
6290 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6291 {
6292 *cprev = cblk->next;
6293 /* Unhook from the free list. */
6294 cons_free_list = cblk->conses[0].u.chain;
6295 lisp_align_free (cblk);
6296 }
6297 else
6298 {
6299 num_free += this_free;
6300 cprev = &cblk->next;
6301 }
6302 }
6303 total_conses = num_used;
6304 total_free_conses = num_free;
6305 }
6306
6307 /* Put all unmarked floats on free list */
6308 {
6309 register struct float_block *fblk;
6310 struct float_block **fprev = &float_block;
6311 register int lim = float_block_index;
6312 EMACS_INT num_free = 0, num_used = 0;
6313
6314 float_free_list = 0;
6315
6316 for (fblk = float_block; fblk; fblk = *fprev)
6317 {
6318 register int i;
6319 int this_free = 0;
6320 for (i = 0; i < lim; i++)
6321 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6322 {
6323 this_free++;
6324 fblk->floats[i].u.chain = float_free_list;
6325 float_free_list = &fblk->floats[i];
6326 }
6327 else
6328 {
6329 num_used++;
6330 FLOAT_UNMARK (&fblk->floats[i]);
6331 }
6332 lim = FLOAT_BLOCK_SIZE;
6333 /* If this block contains only free floats and we have already
6334 seen more than two blocks worth of free floats then deallocate
6335 this block. */
6336 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6337 {
6338 *fprev = fblk->next;
6339 /* Unhook from the free list. */
6340 float_free_list = fblk->floats[0].u.chain;
6341 lisp_align_free (fblk);
6342 }
6343 else
6344 {
6345 num_free += this_free;
6346 fprev = &fblk->next;
6347 }
6348 }
6349 total_floats = num_used;
6350 total_free_floats = num_free;
6351 }
6352
6353 /* Put all unmarked intervals on free list */
6354 {
6355 register struct interval_block *iblk;
6356 struct interval_block **iprev = &interval_block;
6357 register int lim = interval_block_index;
6358 EMACS_INT num_free = 0, num_used = 0;
6359
6360 interval_free_list = 0;
6361
6362 for (iblk = interval_block; iblk; iblk = *iprev)
6363 {
6364 register int i;
6365 int this_free = 0;
6366
6367 for (i = 0; i < lim; i++)
6368 {
6369 if (!iblk->intervals[i].gcmarkbit)
6370 {
6371 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6372 interval_free_list = &iblk->intervals[i];
6373 this_free++;
6374 }
6375 else
6376 {
6377 num_used++;
6378 iblk->intervals[i].gcmarkbit = 0;
6379 }
6380 }
6381 lim = INTERVAL_BLOCK_SIZE;
6382 /* If this block contains only free intervals and we have already
6383 seen more than two blocks worth of free intervals then
6384 deallocate this block. */
6385 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6386 {
6387 *iprev = iblk->next;
6388 /* Unhook from the free list. */
6389 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6390 lisp_free (iblk);
6391 }
6392 else
6393 {
6394 num_free += this_free;
6395 iprev = &iblk->next;
6396 }
6397 }
6398 total_intervals = num_used;
6399 total_free_intervals = num_free;
6400 }
6401
6402 /* Put all unmarked symbols on free list */
6403 {
6404 register struct symbol_block *sblk;
6405 struct symbol_block **sprev = &symbol_block;
6406 register int lim = symbol_block_index;
6407 EMACS_INT num_free = 0, num_used = 0;
6408
6409 symbol_free_list = NULL;
6410
6411 for (sblk = symbol_block; sblk; sblk = *sprev)
6412 {
6413 int this_free = 0;
6414 union aligned_Lisp_Symbol *sym = sblk->symbols;
6415 union aligned_Lisp_Symbol *end = sym + lim;
6416
6417 for (; sym < end; ++sym)
6418 {
6419 /* Check if the symbol was created during loadup. In such a case
6420 it might be pointed to by pure bytecode which we don't trace,
6421 so we conservatively assume that it is live. */
6422 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6423
6424 if (!sym->s.gcmarkbit && !pure_p)
6425 {
6426 if (sym->s.redirect == SYMBOL_LOCALIZED)
6427 xfree (SYMBOL_BLV (&sym->s));
6428 sym->s.next = symbol_free_list;
6429 symbol_free_list = &sym->s;
6430 #if GC_MARK_STACK
6431 symbol_free_list->function = Vdead;
6432 #endif
6433 ++this_free;
6434 }
6435 else
6436 {
6437 ++num_used;
6438 if (!pure_p)
6439 UNMARK_STRING (XSTRING (sym->s.xname));
6440 sym->s.gcmarkbit = 0;
6441 }
6442 }
6443
6444 lim = SYMBOL_BLOCK_SIZE;
6445 /* If this block contains only free symbols and we have already
6446 seen more than two blocks worth of free symbols then deallocate
6447 this block. */
6448 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6449 {
6450 *sprev = sblk->next;
6451 /* Unhook from the free list. */
6452 symbol_free_list = sblk->symbols[0].s.next;
6453 lisp_free (sblk);
6454 }
6455 else
6456 {
6457 num_free += this_free;
6458 sprev = &sblk->next;
6459 }
6460 }
6461 total_symbols = num_used;
6462 total_free_symbols = num_free;
6463 }
6464
6465 /* Put all unmarked misc's on free list.
6466 For a marker, first unchain it from the buffer it points into. */
6467 {
6468 register struct marker_block *mblk;
6469 struct marker_block **mprev = &marker_block;
6470 register int lim = marker_block_index;
6471 EMACS_INT num_free = 0, num_used = 0;
6472
6473 marker_free_list = 0;
6474
6475 for (mblk = marker_block; mblk; mblk = *mprev)
6476 {
6477 register int i;
6478 int this_free = 0;
6479
6480 for (i = 0; i < lim; i++)
6481 {
6482 if (!mblk->markers[i].m.u_any.gcmarkbit)
6483 {
6484 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6485 unchain_marker (&mblk->markers[i].m.u_marker);
6486 /* Set the type of the freed object to Lisp_Misc_Free.
6487 We could leave the type alone, since nobody checks it,
6488 but this might catch bugs faster. */
6489 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6490 mblk->markers[i].m.u_free.chain = marker_free_list;
6491 marker_free_list = &mblk->markers[i].m;
6492 this_free++;
6493 }
6494 else
6495 {
6496 num_used++;
6497 mblk->markers[i].m.u_any.gcmarkbit = 0;
6498 }
6499 }
6500 lim = MARKER_BLOCK_SIZE;
6501 /* If this block contains only free markers and we have already
6502 seen more than two blocks worth of free markers then deallocate
6503 this block. */
6504 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6505 {
6506 *mprev = mblk->next;
6507 /* Unhook from the free list. */
6508 marker_free_list = mblk->markers[0].m.u_free.chain;
6509 lisp_free (mblk);
6510 }
6511 else
6512 {
6513 num_free += this_free;
6514 mprev = &mblk->next;
6515 }
6516 }
6517
6518 total_markers = num_used;
6519 total_free_markers = num_free;
6520 }
6521
6522 /* Free all unmarked buffers */
6523 {
6524 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6525
6526 while (buffer)
6527 if (!VECTOR_MARKED_P (buffer))
6528 {
6529 if (prev)
6530 prev->header.next = buffer->header.next;
6531 else
6532 all_buffers = buffer->header.next.buffer;
6533 next = buffer->header.next.buffer;
6534 lisp_free (buffer);
6535 buffer = next;
6536 }
6537 else
6538 {
6539 VECTOR_UNMARK (buffer);
6540 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6541 prev = buffer, buffer = buffer->header.next.buffer;
6542 }
6543 }
6544
6545 sweep_vectors ();
6546
6547 #ifdef GC_CHECK_STRING_BYTES
6548 if (!noninteractive)
6549 check_string_bytes (1);
6550 #endif
6551 }
6552
6553
6554
6555 \f
6556 /* Debugging aids. */
6557
6558 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6559 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6560 This may be helpful in debugging Emacs's memory usage.
6561 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6562 (void)
6563 {
6564 Lisp_Object end;
6565
6566 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6567
6568 return end;
6569 }
6570
6571 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6572 doc: /* Return a list of counters that measure how much consing there has been.
6573 Each of these counters increments for a certain kind of object.
6574 The counters wrap around from the largest positive integer to zero.
6575 Garbage collection does not decrease them.
6576 The elements of the value are as follows:
6577 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6578 All are in units of 1 = one object consed
6579 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6580 objects consed.
6581 MISCS include overlays, markers, and some internal types.
6582 Frames, windows, buffers, and subprocesses count as vectors
6583 (but the contents of a buffer's text do not count here). */)
6584 (void)
6585 {
6586 Lisp_Object consed[8];
6587
6588 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6589 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6590 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6591 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6592 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6593 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6594 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6595 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6596
6597 return Flist (8, consed);
6598 }
6599
6600 /* Find at most FIND_MAX symbols which have OBJ as their value or
6601 function. This is used in gdbinit's `xwhichsymbols' command. */
6602
6603 Lisp_Object
6604 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6605 {
6606 struct symbol_block *sblk;
6607 ptrdiff_t gc_count = inhibit_garbage_collection ();
6608 Lisp_Object found = Qnil;
6609
6610 if (! DEADP (obj))
6611 {
6612 for (sblk = symbol_block; sblk; sblk = sblk->next)
6613 {
6614 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6615 int bn;
6616
6617 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6618 {
6619 struct Lisp_Symbol *sym = &aligned_sym->s;
6620 Lisp_Object val;
6621 Lisp_Object tem;
6622
6623 if (sblk == symbol_block && bn >= symbol_block_index)
6624 break;
6625
6626 XSETSYMBOL (tem, sym);
6627 val = find_symbol_value (tem);
6628 if (EQ (val, obj)
6629 || EQ (sym->function, obj)
6630 || (!NILP (sym->function)
6631 && COMPILEDP (sym->function)
6632 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6633 || (!NILP (val)
6634 && COMPILEDP (val)
6635 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6636 {
6637 found = Fcons (tem, found);
6638 if (--find_max == 0)
6639 goto out;
6640 }
6641 }
6642 }
6643 }
6644
6645 out:
6646 unbind_to (gc_count, Qnil);
6647 return found;
6648 }
6649
6650 #ifdef ENABLE_CHECKING
6651 int suppress_checking;
6652
6653 void
6654 die (const char *msg, const char *file, int line)
6655 {
6656 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6657 file, line, msg);
6658 abort ();
6659 }
6660 #endif
6661 \f
6662 /* Initialization */
6663
6664 void
6665 init_alloc_once (void)
6666 {
6667 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6668 purebeg = PUREBEG;
6669 pure_size = PURESIZE;
6670 pure_bytes_used = 0;
6671 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6672 pure_bytes_used_before_overflow = 0;
6673
6674 /* Initialize the list of free aligned blocks. */
6675 free_ablock = NULL;
6676
6677 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6678 mem_init ();
6679 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6680 #endif
6681
6682 ignore_warnings = 1;
6683 #ifdef DOUG_LEA_MALLOC
6684 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6685 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6686 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6687 #endif
6688 init_strings ();
6689 init_cons ();
6690 init_symbol ();
6691 init_marker ();
6692 init_float ();
6693 init_intervals ();
6694 init_vectors ();
6695 init_weak_hash_tables ();
6696
6697 #ifdef REL_ALLOC
6698 malloc_hysteresis = 32;
6699 #else
6700 malloc_hysteresis = 0;
6701 #endif
6702
6703 refill_memory_reserve ();
6704
6705 ignore_warnings = 0;
6706 gcprolist = 0;
6707 byte_stack_list = 0;
6708 staticidx = 0;
6709 consing_since_gc = 0;
6710 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6711 gc_relative_threshold = 0;
6712 }
6713
6714 void
6715 init_alloc (void)
6716 {
6717 gcprolist = 0;
6718 byte_stack_list = 0;
6719 #if GC_MARK_STACK
6720 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6721 setjmp_tested_p = longjmps_done = 0;
6722 #endif
6723 #endif
6724 Vgc_elapsed = make_float (0.0);
6725 gcs_done = 0;
6726 }
6727
6728 void
6729 syms_of_alloc (void)
6730 {
6731 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6732 doc: /* Number of bytes of consing between garbage collections.
6733 Garbage collection can happen automatically once this many bytes have been
6734 allocated since the last garbage collection. All data types count.
6735
6736 Garbage collection happens automatically only when `eval' is called.
6737
6738 By binding this temporarily to a large number, you can effectively
6739 prevent garbage collection during a part of the program.
6740 See also `gc-cons-percentage'. */);
6741
6742 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6743 doc: /* Portion of the heap used for allocation.
6744 Garbage collection can happen automatically once this portion of the heap
6745 has been allocated since the last garbage collection.
6746 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6747 Vgc_cons_percentage = make_float (0.1);
6748
6749 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6750 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6751
6752 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6753 doc: /* Number of cons cells that have been consed so far. */);
6754
6755 DEFVAR_INT ("floats-consed", floats_consed,
6756 doc: /* Number of floats that have been consed so far. */);
6757
6758 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6759 doc: /* Number of vector cells that have been consed so far. */);
6760
6761 DEFVAR_INT ("symbols-consed", symbols_consed,
6762 doc: /* Number of symbols that have been consed so far. */);
6763
6764 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6765 doc: /* Number of string characters that have been consed so far. */);
6766
6767 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6768 doc: /* Number of miscellaneous objects that have been consed so far.
6769 These include markers and overlays, plus certain objects not visible
6770 to users. */);
6771
6772 DEFVAR_INT ("intervals-consed", intervals_consed,
6773 doc: /* Number of intervals that have been consed so far. */);
6774
6775 DEFVAR_INT ("strings-consed", strings_consed,
6776 doc: /* Number of strings that have been consed so far. */);
6777
6778 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6779 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6780 This means that certain objects should be allocated in shared (pure) space.
6781 It can also be set to a hash-table, in which case this table is used to
6782 do hash-consing of the objects allocated to pure space. */);
6783
6784 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6785 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6786 garbage_collection_messages = 0;
6787
6788 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6789 doc: /* Hook run after garbage collection has finished. */);
6790 Vpost_gc_hook = Qnil;
6791 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6792
6793 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6794 doc: /* Precomputed `signal' argument for memory-full error. */);
6795 /* We build this in advance because if we wait until we need it, we might
6796 not be able to allocate the memory to hold it. */
6797 Vmemory_signal_data
6798 = pure_cons (Qerror,
6799 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6800
6801 DEFVAR_LISP ("memory-full", Vmemory_full,
6802 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6803 Vmemory_full = Qnil;
6804
6805 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6806 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6807
6808 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6809 doc: /* Accumulated time elapsed in garbage collections.
6810 The time is in seconds as a floating point value. */);
6811 DEFVAR_INT ("gcs-done", gcs_done,
6812 doc: /* Accumulated number of garbage collections done. */);
6813
6814 defsubr (&Scons);
6815 defsubr (&Slist);
6816 defsubr (&Svector);
6817 defsubr (&Smake_byte_code);
6818 defsubr (&Smake_list);
6819 defsubr (&Smake_vector);
6820 defsubr (&Smake_string);
6821 defsubr (&Smake_bool_vector);
6822 defsubr (&Smake_symbol);
6823 defsubr (&Smake_marker);
6824 defsubr (&Spurecopy);
6825 defsubr (&Sgarbage_collect);
6826 defsubr (&Smemory_limit);
6827 defsubr (&Smemory_use_counts);
6828
6829 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6830 defsubr (&Sgc_status);
6831 #endif
6832 }