* movemail.c:
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <config.h>
24 #include <stdio.h>
25 #include <limits.h> /* For CHAR_BIT. */
26
27 #ifdef STDC_HEADERS
28 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
29 #endif
30
31 #ifdef ALLOC_DEBUG
32 #undef INLINE
33 #endif
34
35 /* Note that this declares bzero on OSF/1. How dumb. */
36
37 #include <signal.h>
38
39 #ifdef HAVE_GTK_AND_PTHREAD
40 #include <pthread.h>
41 #endif
42
43 /* This file is part of the core Lisp implementation, and thus must
44 deal with the real data structures. If the Lisp implementation is
45 replaced, this file likely will not be used. */
46
47 #undef HIDE_LISP_IMPLEMENTATION
48 #include "lisp.h"
49 #include "process.h"
50 #include "intervals.h"
51 #include "puresize.h"
52 #include "buffer.h"
53 #include "window.h"
54 #include "keyboard.h"
55 #include "frame.h"
56 #include "blockinput.h"
57 #include "charset.h"
58 #include "syssignal.h"
59 #include "termhooks.h" /* For struct terminal. */
60 #include <setjmp.h>
61
62 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
63 memory. Can do this only if using gmalloc.c. */
64
65 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
66 #undef GC_MALLOC_CHECK
67 #endif
68
69 #ifdef HAVE_UNISTD_H
70 #include <unistd.h>
71 #else
72 extern POINTER_TYPE *sbrk ();
73 #endif
74
75 #ifdef HAVE_FCNTL_H
76 #define INCLUDED_FCNTL
77 #include <fcntl.h>
78 #endif
79 #ifndef O_WRONLY
80 #define O_WRONLY 1
81 #endif
82
83 #ifdef WINDOWSNT
84 #include <fcntl.h>
85 #include "w32.h"
86 #endif
87
88 #ifdef DOUG_LEA_MALLOC
89
90 #include <malloc.h>
91 /* malloc.h #defines this as size_t, at least in glibc2. */
92 #ifndef __malloc_size_t
93 #define __malloc_size_t int
94 #endif
95
96 /* Specify maximum number of areas to mmap. It would be nice to use a
97 value that explicitly means "no limit". */
98
99 #define MMAP_MAX_AREAS 100000000
100
101 #else /* not DOUG_LEA_MALLOC */
102
103 /* The following come from gmalloc.c. */
104
105 #define __malloc_size_t size_t
106 extern __malloc_size_t _bytes_used;
107 extern __malloc_size_t __malloc_extra_blocks;
108
109 #endif /* not DOUG_LEA_MALLOC */
110
111 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
112
113 /* When GTK uses the file chooser dialog, different backends can be loaded
114 dynamically. One such a backend is the Gnome VFS backend that gets loaded
115 if you run Gnome. That backend creates several threads and also allocates
116 memory with malloc.
117
118 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
119 functions below are called from malloc, there is a chance that one
120 of these threads preempts the Emacs main thread and the hook variables
121 end up in an inconsistent state. So we have a mutex to prevent that (note
122 that the backend handles concurrent access to malloc within its own threads
123 but Emacs code running in the main thread is not included in that control).
124
125 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
126 happens in one of the backend threads we will have two threads that tries
127 to run Emacs code at once, and the code is not prepared for that.
128 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
129
130 static pthread_mutex_t alloc_mutex;
131
132 #define BLOCK_INPUT_ALLOC \
133 do \
134 { \
135 if (pthread_equal (pthread_self (), main_thread)) \
136 BLOCK_INPUT; \
137 pthread_mutex_lock (&alloc_mutex); \
138 } \
139 while (0)
140 #define UNBLOCK_INPUT_ALLOC \
141 do \
142 { \
143 pthread_mutex_unlock (&alloc_mutex); \
144 if (pthread_equal (pthread_self (), main_thread)) \
145 UNBLOCK_INPUT; \
146 } \
147 while (0)
148
149 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
150
151 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
152 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
153
154 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
155
156 /* Value of _bytes_used, when spare_memory was freed. */
157
158 static __malloc_size_t bytes_used_when_full;
159
160 static __malloc_size_t bytes_used_when_reconsidered;
161
162 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
163 to a struct Lisp_String. */
164
165 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
166 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
167 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
168
169 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
170 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
171 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
172
173 /* Value is the number of bytes/chars of S, a pointer to a struct
174 Lisp_String. This must be used instead of STRING_BYTES (S) or
175 S->size during GC, because S->size contains the mark bit for
176 strings. */
177
178 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
179 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
180
181 /* Number of bytes of consing done since the last gc. */
182
183 int consing_since_gc;
184
185 /* Count the amount of consing of various sorts of space. */
186
187 EMACS_INT cons_cells_consed;
188 EMACS_INT floats_consed;
189 EMACS_INT vector_cells_consed;
190 EMACS_INT symbols_consed;
191 EMACS_INT string_chars_consed;
192 EMACS_INT misc_objects_consed;
193 EMACS_INT intervals_consed;
194 EMACS_INT strings_consed;
195
196 /* Minimum number of bytes of consing since GC before next GC. */
197
198 EMACS_INT gc_cons_threshold;
199
200 /* Similar minimum, computed from Vgc_cons_percentage. */
201
202 EMACS_INT gc_relative_threshold;
203
204 static Lisp_Object Vgc_cons_percentage;
205
206 /* Minimum number of bytes of consing since GC before next GC,
207 when memory is full. */
208
209 EMACS_INT memory_full_cons_threshold;
210
211 /* Nonzero during GC. */
212
213 int gc_in_progress;
214
215 /* Nonzero means abort if try to GC.
216 This is for code which is written on the assumption that
217 no GC will happen, so as to verify that assumption. */
218
219 int abort_on_gc;
220
221 /* Nonzero means display messages at beginning and end of GC. */
222
223 int garbage_collection_messages;
224
225 #ifndef VIRT_ADDR_VARIES
226 extern
227 #endif /* VIRT_ADDR_VARIES */
228 int malloc_sbrk_used;
229
230 #ifndef VIRT_ADDR_VARIES
231 extern
232 #endif /* VIRT_ADDR_VARIES */
233 int malloc_sbrk_unused;
234
235 /* Number of live and free conses etc. */
236
237 static int total_conses, total_markers, total_symbols, total_vector_size;
238 static int total_free_conses, total_free_markers, total_free_symbols;
239 static int total_free_floats, total_floats;
240
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
244
245 static char *spare_memory[7];
246
247 /* Amount of spare memory to keep in large reserve block. */
248
249 #define SPARE_MEMORY (1 << 14)
250
251 /* Number of extra blocks malloc should get when it needs more core. */
252
253 static int malloc_hysteresis;
254
255 /* Non-nil means defun should do purecopy on the function definition. */
256
257 Lisp_Object Vpurify_flag;
258
259 /* Non-nil means we are handling a memory-full error. */
260
261 Lisp_Object Vmemory_full;
262
263 #ifndef HAVE_SHM
264
265 /* Initialize it to a nonzero value to force it into data space
266 (rather than bss space). That way unexec will remap it into text
267 space (pure), on some systems. We have not implemented the
268 remapping on more recent systems because this is less important
269 nowadays than in the days of small memories and timesharing. */
270
271 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
272 #define PUREBEG (char *) pure
273
274 #else /* HAVE_SHM */
275
276 #define pure PURE_SEG_BITS /* Use shared memory segment */
277 #define PUREBEG (char *)PURE_SEG_BITS
278
279 #endif /* HAVE_SHM */
280
281 /* Pointer to the pure area, and its size. */
282
283 static char *purebeg;
284 static size_t pure_size;
285
286 /* Number of bytes of pure storage used before pure storage overflowed.
287 If this is non-zero, this implies that an overflow occurred. */
288
289 static size_t pure_bytes_used_before_overflow;
290
291 /* Value is non-zero if P points into pure space. */
292
293 #define PURE_POINTER_P(P) \
294 (((PNTR_COMPARISON_TYPE) (P) \
295 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
296 && ((PNTR_COMPARISON_TYPE) (P) \
297 >= (PNTR_COMPARISON_TYPE) purebeg))
298
299 /* Total number of bytes allocated in pure storage. */
300
301 EMACS_INT pure_bytes_used;
302
303 /* Index in pure at which next pure Lisp object will be allocated.. */
304
305 static EMACS_INT pure_bytes_used_lisp;
306
307 /* Number of bytes allocated for non-Lisp objects in pure storage. */
308
309 static EMACS_INT pure_bytes_used_non_lisp;
310
311 /* If nonzero, this is a warning delivered by malloc and not yet
312 displayed. */
313
314 char *pending_malloc_warning;
315
316 /* Pre-computed signal argument for use when memory is exhausted. */
317
318 Lisp_Object Vmemory_signal_data;
319
320 /* Maximum amount of C stack to save when a GC happens. */
321
322 #ifndef MAX_SAVE_STACK
323 #define MAX_SAVE_STACK 16000
324 #endif
325
326 /* Buffer in which we save a copy of the C stack at each GC. */
327
328 static char *stack_copy;
329 static int stack_copy_size;
330
331 /* Non-zero means ignore malloc warnings. Set during initialization.
332 Currently not used. */
333
334 static int ignore_warnings;
335
336 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
337
338 /* Hook run after GC has finished. */
339
340 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
341
342 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
343 EMACS_INT gcs_done; /* accumulated GCs */
344
345 static void mark_buffer P_ ((Lisp_Object));
346 static void mark_terminals P_ ((void));
347 extern void mark_kboards P_ ((void));
348 extern void mark_ttys P_ ((void));
349 extern void mark_backtrace P_ ((void));
350 static void gc_sweep P_ ((void));
351 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
352 static void mark_face_cache P_ ((struct face_cache *));
353
354 #ifdef HAVE_WINDOW_SYSTEM
355 extern void mark_fringe_data P_ ((void));
356 static void mark_image P_ ((struct image *));
357 static void mark_image_cache P_ ((struct frame *));
358 #endif /* HAVE_WINDOW_SYSTEM */
359
360 static struct Lisp_String *allocate_string P_ ((void));
361 static void compact_small_strings P_ ((void));
362 static void free_large_strings P_ ((void));
363 static void sweep_strings P_ ((void));
364
365 extern int message_enable_multibyte;
366
367 /* When scanning the C stack for live Lisp objects, Emacs keeps track
368 of what memory allocated via lisp_malloc is intended for what
369 purpose. This enumeration specifies the type of memory. */
370
371 enum mem_type
372 {
373 MEM_TYPE_NON_LISP,
374 MEM_TYPE_BUFFER,
375 MEM_TYPE_CONS,
376 MEM_TYPE_STRING,
377 MEM_TYPE_MISC,
378 MEM_TYPE_SYMBOL,
379 MEM_TYPE_FLOAT,
380 /* We used to keep separate mem_types for subtypes of vectors such as
381 process, hash_table, frame, terminal, and window, but we never made
382 use of the distinction, so it only caused source-code complexity
383 and runtime slowdown. Minor but pointless. */
384 MEM_TYPE_VECTORLIKE
385 };
386
387 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
388 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
389 void refill_memory_reserve ();
390
391
392 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
393
394 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
395 #include <stdio.h> /* For fprintf. */
396 #endif
397
398 /* A unique object in pure space used to make some Lisp objects
399 on free lists recognizable in O(1). */
400
401 static Lisp_Object Vdead;
402
403 #ifdef GC_MALLOC_CHECK
404
405 enum mem_type allocated_mem_type;
406 static int dont_register_blocks;
407
408 #endif /* GC_MALLOC_CHECK */
409
410 /* A node in the red-black tree describing allocated memory containing
411 Lisp data. Each such block is recorded with its start and end
412 address when it is allocated, and removed from the tree when it
413 is freed.
414
415 A red-black tree is a balanced binary tree with the following
416 properties:
417
418 1. Every node is either red or black.
419 2. Every leaf is black.
420 3. If a node is red, then both of its children are black.
421 4. Every simple path from a node to a descendant leaf contains
422 the same number of black nodes.
423 5. The root is always black.
424
425 When nodes are inserted into the tree, or deleted from the tree,
426 the tree is "fixed" so that these properties are always true.
427
428 A red-black tree with N internal nodes has height at most 2
429 log(N+1). Searches, insertions and deletions are done in O(log N).
430 Please see a text book about data structures for a detailed
431 description of red-black trees. Any book worth its salt should
432 describe them. */
433
434 struct mem_node
435 {
436 /* Children of this node. These pointers are never NULL. When there
437 is no child, the value is MEM_NIL, which points to a dummy node. */
438 struct mem_node *left, *right;
439
440 /* The parent of this node. In the root node, this is NULL. */
441 struct mem_node *parent;
442
443 /* Start and end of allocated region. */
444 void *start, *end;
445
446 /* Node color. */
447 enum {MEM_BLACK, MEM_RED} color;
448
449 /* Memory type. */
450 enum mem_type type;
451 };
452
453 /* Base address of stack. Set in main. */
454
455 Lisp_Object *stack_base;
456
457 /* Root of the tree describing allocated Lisp memory. */
458
459 static struct mem_node *mem_root;
460
461 /* Lowest and highest known address in the heap. */
462
463 static void *min_heap_address, *max_heap_address;
464
465 /* Sentinel node of the tree. */
466
467 static struct mem_node mem_z;
468 #define MEM_NIL &mem_z
469
470 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
471 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
472 static void lisp_free P_ ((POINTER_TYPE *));
473 static void mark_stack P_ ((void));
474 static int live_vector_p P_ ((struct mem_node *, void *));
475 static int live_buffer_p P_ ((struct mem_node *, void *));
476 static int live_string_p P_ ((struct mem_node *, void *));
477 static int live_cons_p P_ ((struct mem_node *, void *));
478 static int live_symbol_p P_ ((struct mem_node *, void *));
479 static int live_float_p P_ ((struct mem_node *, void *));
480 static int live_misc_p P_ ((struct mem_node *, void *));
481 static void mark_maybe_object P_ ((Lisp_Object));
482 static void mark_memory P_ ((void *, void *, int));
483 static void mem_init P_ ((void));
484 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
485 static void mem_insert_fixup P_ ((struct mem_node *));
486 static void mem_rotate_left P_ ((struct mem_node *));
487 static void mem_rotate_right P_ ((struct mem_node *));
488 static void mem_delete P_ ((struct mem_node *));
489 static void mem_delete_fixup P_ ((struct mem_node *));
490 static INLINE struct mem_node *mem_find P_ ((void *));
491
492
493 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
494 static void check_gcpros P_ ((void));
495 #endif
496
497 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
498
499 /* Recording what needs to be marked for gc. */
500
501 struct gcpro *gcprolist;
502
503 /* Addresses of staticpro'd variables. Initialize it to a nonzero
504 value; otherwise some compilers put it into BSS. */
505
506 #define NSTATICS 1280
507 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
508
509 /* Index of next unused slot in staticvec. */
510
511 static int staticidx = 0;
512
513 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
514
515
516 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
517 ALIGNMENT must be a power of 2. */
518
519 #define ALIGN(ptr, ALIGNMENT) \
520 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
521 & ~((ALIGNMENT) - 1)))
522
523
524 \f
525 /************************************************************************
526 Malloc
527 ************************************************************************/
528
529 /* Function malloc calls this if it finds we are near exhausting storage. */
530
531 void
532 malloc_warning (str)
533 char *str;
534 {
535 pending_malloc_warning = str;
536 }
537
538
539 /* Display an already-pending malloc warning. */
540
541 void
542 display_malloc_warning ()
543 {
544 call3 (intern ("display-warning"),
545 intern ("alloc"),
546 build_string (pending_malloc_warning),
547 intern ("emergency"));
548 pending_malloc_warning = 0;
549 }
550
551
552 #ifdef DOUG_LEA_MALLOC
553 # define BYTES_USED (mallinfo ().uordblks)
554 #else
555 # define BYTES_USED _bytes_used
556 #endif
557 \f
558 /* Called if we can't allocate relocatable space for a buffer. */
559
560 void
561 buffer_memory_full ()
562 {
563 /* If buffers use the relocating allocator, no need to free
564 spare_memory, because we may have plenty of malloc space left
565 that we could get, and if we don't, the malloc that fails will
566 itself cause spare_memory to be freed. If buffers don't use the
567 relocating allocator, treat this like any other failing
568 malloc. */
569
570 #ifndef REL_ALLOC
571 memory_full ();
572 #endif
573
574 /* This used to call error, but if we've run out of memory, we could
575 get infinite recursion trying to build the string. */
576 xsignal (Qnil, Vmemory_signal_data);
577 }
578
579
580 #ifdef XMALLOC_OVERRUN_CHECK
581
582 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
583 and a 16 byte trailer around each block.
584
585 The header consists of 12 fixed bytes + a 4 byte integer contaning the
586 original block size, while the trailer consists of 16 fixed bytes.
587
588 The header is used to detect whether this block has been allocated
589 through these functions -- as it seems that some low-level libc
590 functions may bypass the malloc hooks.
591 */
592
593
594 #define XMALLOC_OVERRUN_CHECK_SIZE 16
595
596 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
597 { 0x9a, 0x9b, 0xae, 0xaf,
598 0xbf, 0xbe, 0xce, 0xcf,
599 0xea, 0xeb, 0xec, 0xed };
600
601 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
602 { 0xaa, 0xab, 0xac, 0xad,
603 0xba, 0xbb, 0xbc, 0xbd,
604 0xca, 0xcb, 0xcc, 0xcd,
605 0xda, 0xdb, 0xdc, 0xdd };
606
607 /* Macros to insert and extract the block size in the header. */
608
609 #define XMALLOC_PUT_SIZE(ptr, size) \
610 (ptr[-1] = (size & 0xff), \
611 ptr[-2] = ((size >> 8) & 0xff), \
612 ptr[-3] = ((size >> 16) & 0xff), \
613 ptr[-4] = ((size >> 24) & 0xff))
614
615 #define XMALLOC_GET_SIZE(ptr) \
616 (size_t)((unsigned)(ptr[-1]) | \
617 ((unsigned)(ptr[-2]) << 8) | \
618 ((unsigned)(ptr[-3]) << 16) | \
619 ((unsigned)(ptr[-4]) << 24))
620
621
622 /* The call depth in overrun_check functions. For example, this might happen:
623 xmalloc()
624 overrun_check_malloc()
625 -> malloc -> (via hook)_-> emacs_blocked_malloc
626 -> overrun_check_malloc
627 call malloc (hooks are NULL, so real malloc is called).
628 malloc returns 10000.
629 add overhead, return 10016.
630 <- (back in overrun_check_malloc)
631 add overhead again, return 10032
632 xmalloc returns 10032.
633
634 (time passes).
635
636 xfree(10032)
637 overrun_check_free(10032)
638 decrease overhed
639 free(10016) <- crash, because 10000 is the original pointer. */
640
641 static int check_depth;
642
643 /* Like malloc, but wraps allocated block with header and trailer. */
644
645 POINTER_TYPE *
646 overrun_check_malloc (size)
647 size_t size;
648 {
649 register unsigned char *val;
650 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
651
652 val = (unsigned char *) malloc (size + overhead);
653 if (val && check_depth == 1)
654 {
655 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
656 val += XMALLOC_OVERRUN_CHECK_SIZE;
657 XMALLOC_PUT_SIZE(val, size);
658 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
659 }
660 --check_depth;
661 return (POINTER_TYPE *)val;
662 }
663
664
665 /* Like realloc, but checks old block for overrun, and wraps new block
666 with header and trailer. */
667
668 POINTER_TYPE *
669 overrun_check_realloc (block, size)
670 POINTER_TYPE *block;
671 size_t size;
672 {
673 register unsigned char *val = (unsigned char *)block;
674 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
675
676 if (val
677 && check_depth == 1
678 && bcmp (xmalloc_overrun_check_header,
679 val - XMALLOC_OVERRUN_CHECK_SIZE,
680 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
681 {
682 size_t osize = XMALLOC_GET_SIZE (val);
683 if (bcmp (xmalloc_overrun_check_trailer,
684 val + osize,
685 XMALLOC_OVERRUN_CHECK_SIZE))
686 abort ();
687 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
688 val -= XMALLOC_OVERRUN_CHECK_SIZE;
689 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
690 }
691
692 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
693
694 if (val && check_depth == 1)
695 {
696 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
697 val += XMALLOC_OVERRUN_CHECK_SIZE;
698 XMALLOC_PUT_SIZE(val, size);
699 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
700 }
701 --check_depth;
702 return (POINTER_TYPE *)val;
703 }
704
705 /* Like free, but checks block for overrun. */
706
707 void
708 overrun_check_free (block)
709 POINTER_TYPE *block;
710 {
711 unsigned char *val = (unsigned char *)block;
712
713 ++check_depth;
714 if (val
715 && check_depth == 1
716 && bcmp (xmalloc_overrun_check_header,
717 val - XMALLOC_OVERRUN_CHECK_SIZE,
718 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
719 {
720 size_t osize = XMALLOC_GET_SIZE (val);
721 if (bcmp (xmalloc_overrun_check_trailer,
722 val + osize,
723 XMALLOC_OVERRUN_CHECK_SIZE))
724 abort ();
725 #ifdef XMALLOC_CLEAR_FREE_MEMORY
726 val -= XMALLOC_OVERRUN_CHECK_SIZE;
727 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
728 #else
729 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
730 val -= XMALLOC_OVERRUN_CHECK_SIZE;
731 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
732 #endif
733 }
734
735 free (val);
736 --check_depth;
737 }
738
739 #undef malloc
740 #undef realloc
741 #undef free
742 #define malloc overrun_check_malloc
743 #define realloc overrun_check_realloc
744 #define free overrun_check_free
745 #endif
746
747 #ifdef SYNC_INPUT
748 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
749 there's no need to block input around malloc. */
750 #define MALLOC_BLOCK_INPUT ((void)0)
751 #define MALLOC_UNBLOCK_INPUT ((void)0)
752 #else
753 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
754 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
755 #endif
756
757 /* Like malloc but check for no memory and block interrupt input.. */
758
759 POINTER_TYPE *
760 xmalloc (size)
761 size_t size;
762 {
763 register POINTER_TYPE *val;
764
765 MALLOC_BLOCK_INPUT;
766 val = (POINTER_TYPE *) malloc (size);
767 MALLOC_UNBLOCK_INPUT;
768
769 if (!val && size)
770 memory_full ();
771 return val;
772 }
773
774
775 /* Like realloc but check for no memory and block interrupt input.. */
776
777 POINTER_TYPE *
778 xrealloc (block, size)
779 POINTER_TYPE *block;
780 size_t size;
781 {
782 register POINTER_TYPE *val;
783
784 MALLOC_BLOCK_INPUT;
785 /* We must call malloc explicitly when BLOCK is 0, since some
786 reallocs don't do this. */
787 if (! block)
788 val = (POINTER_TYPE *) malloc (size);
789 else
790 val = (POINTER_TYPE *) realloc (block, size);
791 MALLOC_UNBLOCK_INPUT;
792
793 if (!val && size) memory_full ();
794 return val;
795 }
796
797
798 /* Like free but block interrupt input. */
799
800 void
801 xfree (block)
802 POINTER_TYPE *block;
803 {
804 MALLOC_BLOCK_INPUT;
805 free (block);
806 MALLOC_UNBLOCK_INPUT;
807 /* We don't call refill_memory_reserve here
808 because that duplicates doing so in emacs_blocked_free
809 and the criterion should go there. */
810 }
811
812
813 /* Like strdup, but uses xmalloc. */
814
815 char *
816 xstrdup (s)
817 const char *s;
818 {
819 size_t len = strlen (s) + 1;
820 char *p = (char *) xmalloc (len);
821 bcopy (s, p, len);
822 return p;
823 }
824
825
826 /* Unwind for SAFE_ALLOCA */
827
828 Lisp_Object
829 safe_alloca_unwind (arg)
830 Lisp_Object arg;
831 {
832 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
833
834 p->dogc = 0;
835 xfree (p->pointer);
836 p->pointer = 0;
837 free_misc (arg);
838 return Qnil;
839 }
840
841
842 /* Like malloc but used for allocating Lisp data. NBYTES is the
843 number of bytes to allocate, TYPE describes the intended use of the
844 allcated memory block (for strings, for conses, ...). */
845
846 #ifndef USE_LSB_TAG
847 static void *lisp_malloc_loser;
848 #endif
849
850 static POINTER_TYPE *
851 lisp_malloc (nbytes, type)
852 size_t nbytes;
853 enum mem_type type;
854 {
855 register void *val;
856
857 MALLOC_BLOCK_INPUT;
858
859 #ifdef GC_MALLOC_CHECK
860 allocated_mem_type = type;
861 #endif
862
863 val = (void *) malloc (nbytes);
864
865 #ifndef USE_LSB_TAG
866 /* If the memory just allocated cannot be addressed thru a Lisp
867 object's pointer, and it needs to be,
868 that's equivalent to running out of memory. */
869 if (val && type != MEM_TYPE_NON_LISP)
870 {
871 Lisp_Object tem;
872 XSETCONS (tem, (char *) val + nbytes - 1);
873 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
874 {
875 lisp_malloc_loser = val;
876 free (val);
877 val = 0;
878 }
879 }
880 #endif
881
882 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
883 if (val && type != MEM_TYPE_NON_LISP)
884 mem_insert (val, (char *) val + nbytes, type);
885 #endif
886
887 MALLOC_UNBLOCK_INPUT;
888 if (!val && nbytes)
889 memory_full ();
890 return val;
891 }
892
893 /* Free BLOCK. This must be called to free memory allocated with a
894 call to lisp_malloc. */
895
896 static void
897 lisp_free (block)
898 POINTER_TYPE *block;
899 {
900 MALLOC_BLOCK_INPUT;
901 free (block);
902 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
903 mem_delete (mem_find (block));
904 #endif
905 MALLOC_UNBLOCK_INPUT;
906 }
907
908 /* Allocation of aligned blocks of memory to store Lisp data. */
909 /* The entry point is lisp_align_malloc which returns blocks of at most */
910 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
911
912 /* Use posix_memalloc if the system has it and we're using the system's
913 malloc (because our gmalloc.c routines don't have posix_memalign although
914 its memalloc could be used). */
915 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
916 #define USE_POSIX_MEMALIGN 1
917 #endif
918
919 /* BLOCK_ALIGN has to be a power of 2. */
920 #define BLOCK_ALIGN (1 << 10)
921
922 /* Padding to leave at the end of a malloc'd block. This is to give
923 malloc a chance to minimize the amount of memory wasted to alignment.
924 It should be tuned to the particular malloc library used.
925 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
926 posix_memalign on the other hand would ideally prefer a value of 4
927 because otherwise, there's 1020 bytes wasted between each ablocks.
928 In Emacs, testing shows that those 1020 can most of the time be
929 efficiently used by malloc to place other objects, so a value of 0 can
930 still preferable unless you have a lot of aligned blocks and virtually
931 nothing else. */
932 #define BLOCK_PADDING 0
933 #define BLOCK_BYTES \
934 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
935
936 /* Internal data structures and constants. */
937
938 #define ABLOCKS_SIZE 16
939
940 /* An aligned block of memory. */
941 struct ablock
942 {
943 union
944 {
945 char payload[BLOCK_BYTES];
946 struct ablock *next_free;
947 } x;
948 /* `abase' is the aligned base of the ablocks. */
949 /* It is overloaded to hold the virtual `busy' field that counts
950 the number of used ablock in the parent ablocks.
951 The first ablock has the `busy' field, the others have the `abase'
952 field. To tell the difference, we assume that pointers will have
953 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
954 is used to tell whether the real base of the parent ablocks is `abase'
955 (if not, the word before the first ablock holds a pointer to the
956 real base). */
957 struct ablocks *abase;
958 /* The padding of all but the last ablock is unused. The padding of
959 the last ablock in an ablocks is not allocated. */
960 #if BLOCK_PADDING
961 char padding[BLOCK_PADDING];
962 #endif
963 };
964
965 /* A bunch of consecutive aligned blocks. */
966 struct ablocks
967 {
968 struct ablock blocks[ABLOCKS_SIZE];
969 };
970
971 /* Size of the block requested from malloc or memalign. */
972 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
973
974 #define ABLOCK_ABASE(block) \
975 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
976 ? (struct ablocks *)(block) \
977 : (block)->abase)
978
979 /* Virtual `busy' field. */
980 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
981
982 /* Pointer to the (not necessarily aligned) malloc block. */
983 #ifdef USE_POSIX_MEMALIGN
984 #define ABLOCKS_BASE(abase) (abase)
985 #else
986 #define ABLOCKS_BASE(abase) \
987 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
988 #endif
989
990 /* The list of free ablock. */
991 static struct ablock *free_ablock;
992
993 /* Allocate an aligned block of nbytes.
994 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
995 smaller or equal to BLOCK_BYTES. */
996 static POINTER_TYPE *
997 lisp_align_malloc (nbytes, type)
998 size_t nbytes;
999 enum mem_type type;
1000 {
1001 void *base, *val;
1002 struct ablocks *abase;
1003
1004 eassert (nbytes <= BLOCK_BYTES);
1005
1006 MALLOC_BLOCK_INPUT;
1007
1008 #ifdef GC_MALLOC_CHECK
1009 allocated_mem_type = type;
1010 #endif
1011
1012 if (!free_ablock)
1013 {
1014 int i;
1015 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1016
1017 #ifdef DOUG_LEA_MALLOC
1018 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1019 because mapped region contents are not preserved in
1020 a dumped Emacs. */
1021 mallopt (M_MMAP_MAX, 0);
1022 #endif
1023
1024 #ifdef USE_POSIX_MEMALIGN
1025 {
1026 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1027 if (err)
1028 base = NULL;
1029 abase = base;
1030 }
1031 #else
1032 base = malloc (ABLOCKS_BYTES);
1033 abase = ALIGN (base, BLOCK_ALIGN);
1034 #endif
1035
1036 if (base == 0)
1037 {
1038 MALLOC_UNBLOCK_INPUT;
1039 memory_full ();
1040 }
1041
1042 aligned = (base == abase);
1043 if (!aligned)
1044 ((void**)abase)[-1] = base;
1045
1046 #ifdef DOUG_LEA_MALLOC
1047 /* Back to a reasonable maximum of mmap'ed areas. */
1048 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1049 #endif
1050
1051 #ifndef USE_LSB_TAG
1052 /* If the memory just allocated cannot be addressed thru a Lisp
1053 object's pointer, and it needs to be, that's equivalent to
1054 running out of memory. */
1055 if (type != MEM_TYPE_NON_LISP)
1056 {
1057 Lisp_Object tem;
1058 char *end = (char *) base + ABLOCKS_BYTES - 1;
1059 XSETCONS (tem, end);
1060 if ((char *) XCONS (tem) != end)
1061 {
1062 lisp_malloc_loser = base;
1063 free (base);
1064 MALLOC_UNBLOCK_INPUT;
1065 memory_full ();
1066 }
1067 }
1068 #endif
1069
1070 /* Initialize the blocks and put them on the free list.
1071 Is `base' was not properly aligned, we can't use the last block. */
1072 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1073 {
1074 abase->blocks[i].abase = abase;
1075 abase->blocks[i].x.next_free = free_ablock;
1076 free_ablock = &abase->blocks[i];
1077 }
1078 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1079
1080 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1081 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1082 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1083 eassert (ABLOCKS_BASE (abase) == base);
1084 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1085 }
1086
1087 abase = ABLOCK_ABASE (free_ablock);
1088 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1089 val = free_ablock;
1090 free_ablock = free_ablock->x.next_free;
1091
1092 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1093 if (val && type != MEM_TYPE_NON_LISP)
1094 mem_insert (val, (char *) val + nbytes, type);
1095 #endif
1096
1097 MALLOC_UNBLOCK_INPUT;
1098 if (!val && nbytes)
1099 memory_full ();
1100
1101 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1102 return val;
1103 }
1104
1105 static void
1106 lisp_align_free (block)
1107 POINTER_TYPE *block;
1108 {
1109 struct ablock *ablock = block;
1110 struct ablocks *abase = ABLOCK_ABASE (ablock);
1111
1112 MALLOC_BLOCK_INPUT;
1113 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1114 mem_delete (mem_find (block));
1115 #endif
1116 /* Put on free list. */
1117 ablock->x.next_free = free_ablock;
1118 free_ablock = ablock;
1119 /* Update busy count. */
1120 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1121
1122 if (2 > (long) ABLOCKS_BUSY (abase))
1123 { /* All the blocks are free. */
1124 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1125 struct ablock **tem = &free_ablock;
1126 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1127
1128 while (*tem)
1129 {
1130 if (*tem >= (struct ablock *) abase && *tem < atop)
1131 {
1132 i++;
1133 *tem = (*tem)->x.next_free;
1134 }
1135 else
1136 tem = &(*tem)->x.next_free;
1137 }
1138 eassert ((aligned & 1) == aligned);
1139 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1140 #ifdef USE_POSIX_MEMALIGN
1141 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1142 #endif
1143 free (ABLOCKS_BASE (abase));
1144 }
1145 MALLOC_UNBLOCK_INPUT;
1146 }
1147
1148 /* Return a new buffer structure allocated from the heap with
1149 a call to lisp_malloc. */
1150
1151 struct buffer *
1152 allocate_buffer ()
1153 {
1154 struct buffer *b
1155 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1156 MEM_TYPE_BUFFER);
1157 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1158 XSETPVECTYPE (b, PVEC_BUFFER);
1159 return b;
1160 }
1161
1162 \f
1163 #ifndef SYSTEM_MALLOC
1164
1165 /* Arranging to disable input signals while we're in malloc.
1166
1167 This only works with GNU malloc. To help out systems which can't
1168 use GNU malloc, all the calls to malloc, realloc, and free
1169 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1170 pair; unfortunately, we have no idea what C library functions
1171 might call malloc, so we can't really protect them unless you're
1172 using GNU malloc. Fortunately, most of the major operating systems
1173 can use GNU malloc. */
1174
1175 #ifndef SYNC_INPUT
1176 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1177 there's no need to block input around malloc. */
1178
1179 #ifndef DOUG_LEA_MALLOC
1180 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1181 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1182 extern void (*__free_hook) P_ ((void *, const void *));
1183 /* Else declared in malloc.h, perhaps with an extra arg. */
1184 #endif /* DOUG_LEA_MALLOC */
1185 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1186 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1187 static void (*old_free_hook) P_ ((void*, const void*));
1188
1189 /* This function is used as the hook for free to call. */
1190
1191 static void
1192 emacs_blocked_free (ptr, ptr2)
1193 void *ptr;
1194 const void *ptr2;
1195 {
1196 BLOCK_INPUT_ALLOC;
1197
1198 #ifdef GC_MALLOC_CHECK
1199 if (ptr)
1200 {
1201 struct mem_node *m;
1202
1203 m = mem_find (ptr);
1204 if (m == MEM_NIL || m->start != ptr)
1205 {
1206 fprintf (stderr,
1207 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1208 abort ();
1209 }
1210 else
1211 {
1212 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1213 mem_delete (m);
1214 }
1215 }
1216 #endif /* GC_MALLOC_CHECK */
1217
1218 __free_hook = old_free_hook;
1219 free (ptr);
1220
1221 /* If we released our reserve (due to running out of memory),
1222 and we have a fair amount free once again,
1223 try to set aside another reserve in case we run out once more. */
1224 if (! NILP (Vmemory_full)
1225 /* Verify there is enough space that even with the malloc
1226 hysteresis this call won't run out again.
1227 The code here is correct as long as SPARE_MEMORY
1228 is substantially larger than the block size malloc uses. */
1229 && (bytes_used_when_full
1230 > ((bytes_used_when_reconsidered = BYTES_USED)
1231 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1232 refill_memory_reserve ();
1233
1234 __free_hook = emacs_blocked_free;
1235 UNBLOCK_INPUT_ALLOC;
1236 }
1237
1238
1239 /* This function is the malloc hook that Emacs uses. */
1240
1241 static void *
1242 emacs_blocked_malloc (size, ptr)
1243 size_t size;
1244 const void *ptr;
1245 {
1246 void *value;
1247
1248 BLOCK_INPUT_ALLOC;
1249 __malloc_hook = old_malloc_hook;
1250 #ifdef DOUG_LEA_MALLOC
1251 /* Segfaults on my system. --lorentey */
1252 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1253 #else
1254 __malloc_extra_blocks = malloc_hysteresis;
1255 #endif
1256
1257 value = (void *) malloc (size);
1258
1259 #ifdef GC_MALLOC_CHECK
1260 {
1261 struct mem_node *m = mem_find (value);
1262 if (m != MEM_NIL)
1263 {
1264 fprintf (stderr, "Malloc returned %p which is already in use\n",
1265 value);
1266 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1267 m->start, m->end, (char *) m->end - (char *) m->start,
1268 m->type);
1269 abort ();
1270 }
1271
1272 if (!dont_register_blocks)
1273 {
1274 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1275 allocated_mem_type = MEM_TYPE_NON_LISP;
1276 }
1277 }
1278 #endif /* GC_MALLOC_CHECK */
1279
1280 __malloc_hook = emacs_blocked_malloc;
1281 UNBLOCK_INPUT_ALLOC;
1282
1283 /* fprintf (stderr, "%p malloc\n", value); */
1284 return value;
1285 }
1286
1287
1288 /* This function is the realloc hook that Emacs uses. */
1289
1290 static void *
1291 emacs_blocked_realloc (ptr, size, ptr2)
1292 void *ptr;
1293 size_t size;
1294 const void *ptr2;
1295 {
1296 void *value;
1297
1298 BLOCK_INPUT_ALLOC;
1299 __realloc_hook = old_realloc_hook;
1300
1301 #ifdef GC_MALLOC_CHECK
1302 if (ptr)
1303 {
1304 struct mem_node *m = mem_find (ptr);
1305 if (m == MEM_NIL || m->start != ptr)
1306 {
1307 fprintf (stderr,
1308 "Realloc of %p which wasn't allocated with malloc\n",
1309 ptr);
1310 abort ();
1311 }
1312
1313 mem_delete (m);
1314 }
1315
1316 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1317
1318 /* Prevent malloc from registering blocks. */
1319 dont_register_blocks = 1;
1320 #endif /* GC_MALLOC_CHECK */
1321
1322 value = (void *) realloc (ptr, size);
1323
1324 #ifdef GC_MALLOC_CHECK
1325 dont_register_blocks = 0;
1326
1327 {
1328 struct mem_node *m = mem_find (value);
1329 if (m != MEM_NIL)
1330 {
1331 fprintf (stderr, "Realloc returns memory that is already in use\n");
1332 abort ();
1333 }
1334
1335 /* Can't handle zero size regions in the red-black tree. */
1336 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1337 }
1338
1339 /* fprintf (stderr, "%p <- realloc\n", value); */
1340 #endif /* GC_MALLOC_CHECK */
1341
1342 __realloc_hook = emacs_blocked_realloc;
1343 UNBLOCK_INPUT_ALLOC;
1344
1345 return value;
1346 }
1347
1348
1349 #ifdef HAVE_GTK_AND_PTHREAD
1350 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1351 normal malloc. Some thread implementations need this as they call
1352 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1353 calls malloc because it is the first call, and we have an endless loop. */
1354
1355 void
1356 reset_malloc_hooks ()
1357 {
1358 __free_hook = old_free_hook;
1359 __malloc_hook = old_malloc_hook;
1360 __realloc_hook = old_realloc_hook;
1361 }
1362 #endif /* HAVE_GTK_AND_PTHREAD */
1363
1364
1365 /* Called from main to set up malloc to use our hooks. */
1366
1367 void
1368 uninterrupt_malloc ()
1369 {
1370 #ifdef HAVE_GTK_AND_PTHREAD
1371 pthread_mutexattr_t attr;
1372
1373 /* GLIBC has a faster way to do this, but lets keep it portable.
1374 This is according to the Single UNIX Specification. */
1375 pthread_mutexattr_init (&attr);
1376 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1377 pthread_mutex_init (&alloc_mutex, &attr);
1378 #endif /* HAVE_GTK_AND_PTHREAD */
1379
1380 if (__free_hook != emacs_blocked_free)
1381 old_free_hook = __free_hook;
1382 __free_hook = emacs_blocked_free;
1383
1384 if (__malloc_hook != emacs_blocked_malloc)
1385 old_malloc_hook = __malloc_hook;
1386 __malloc_hook = emacs_blocked_malloc;
1387
1388 if (__realloc_hook != emacs_blocked_realloc)
1389 old_realloc_hook = __realloc_hook;
1390 __realloc_hook = emacs_blocked_realloc;
1391 }
1392
1393 #endif /* not SYNC_INPUT */
1394 #endif /* not SYSTEM_MALLOC */
1395
1396
1397 \f
1398 /***********************************************************************
1399 Interval Allocation
1400 ***********************************************************************/
1401
1402 /* Number of intervals allocated in an interval_block structure.
1403 The 1020 is 1024 minus malloc overhead. */
1404
1405 #define INTERVAL_BLOCK_SIZE \
1406 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1407
1408 /* Intervals are allocated in chunks in form of an interval_block
1409 structure. */
1410
1411 struct interval_block
1412 {
1413 /* Place `intervals' first, to preserve alignment. */
1414 struct interval intervals[INTERVAL_BLOCK_SIZE];
1415 struct interval_block *next;
1416 };
1417
1418 /* Current interval block. Its `next' pointer points to older
1419 blocks. */
1420
1421 static struct interval_block *interval_block;
1422
1423 /* Index in interval_block above of the next unused interval
1424 structure. */
1425
1426 static int interval_block_index;
1427
1428 /* Number of free and live intervals. */
1429
1430 static int total_free_intervals, total_intervals;
1431
1432 /* List of free intervals. */
1433
1434 INTERVAL interval_free_list;
1435
1436 /* Total number of interval blocks now in use. */
1437
1438 static int n_interval_blocks;
1439
1440
1441 /* Initialize interval allocation. */
1442
1443 static void
1444 init_intervals ()
1445 {
1446 interval_block = NULL;
1447 interval_block_index = INTERVAL_BLOCK_SIZE;
1448 interval_free_list = 0;
1449 n_interval_blocks = 0;
1450 }
1451
1452
1453 /* Return a new interval. */
1454
1455 INTERVAL
1456 make_interval ()
1457 {
1458 INTERVAL val;
1459
1460 /* eassert (!handling_signal); */
1461
1462 MALLOC_BLOCK_INPUT;
1463
1464 if (interval_free_list)
1465 {
1466 val = interval_free_list;
1467 interval_free_list = INTERVAL_PARENT (interval_free_list);
1468 }
1469 else
1470 {
1471 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1472 {
1473 register struct interval_block *newi;
1474
1475 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1476 MEM_TYPE_NON_LISP);
1477
1478 newi->next = interval_block;
1479 interval_block = newi;
1480 interval_block_index = 0;
1481 n_interval_blocks++;
1482 }
1483 val = &interval_block->intervals[interval_block_index++];
1484 }
1485
1486 MALLOC_UNBLOCK_INPUT;
1487
1488 consing_since_gc += sizeof (struct interval);
1489 intervals_consed++;
1490 RESET_INTERVAL (val);
1491 val->gcmarkbit = 0;
1492 return val;
1493 }
1494
1495
1496 /* Mark Lisp objects in interval I. */
1497
1498 static void
1499 mark_interval (i, dummy)
1500 register INTERVAL i;
1501 Lisp_Object dummy;
1502 {
1503 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1504 i->gcmarkbit = 1;
1505 mark_object (i->plist);
1506 }
1507
1508
1509 /* Mark the interval tree rooted in TREE. Don't call this directly;
1510 use the macro MARK_INTERVAL_TREE instead. */
1511
1512 static void
1513 mark_interval_tree (tree)
1514 register INTERVAL tree;
1515 {
1516 /* No need to test if this tree has been marked already; this
1517 function is always called through the MARK_INTERVAL_TREE macro,
1518 which takes care of that. */
1519
1520 traverse_intervals_noorder (tree, mark_interval, Qnil);
1521 }
1522
1523
1524 /* Mark the interval tree rooted in I. */
1525
1526 #define MARK_INTERVAL_TREE(i) \
1527 do { \
1528 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1529 mark_interval_tree (i); \
1530 } while (0)
1531
1532
1533 #define UNMARK_BALANCE_INTERVALS(i) \
1534 do { \
1535 if (! NULL_INTERVAL_P (i)) \
1536 (i) = balance_intervals (i); \
1537 } while (0)
1538
1539 \f
1540 /* Number support. If NO_UNION_TYPE isn't in effect, we
1541 can't create number objects in macros. */
1542 #ifndef make_number
1543 Lisp_Object
1544 make_number (n)
1545 EMACS_INT n;
1546 {
1547 Lisp_Object obj;
1548 obj.s.val = n;
1549 obj.s.type = Lisp_Int;
1550 return obj;
1551 }
1552 #endif
1553 \f
1554 /***********************************************************************
1555 String Allocation
1556 ***********************************************************************/
1557
1558 /* Lisp_Strings are allocated in string_block structures. When a new
1559 string_block is allocated, all the Lisp_Strings it contains are
1560 added to a free-list string_free_list. When a new Lisp_String is
1561 needed, it is taken from that list. During the sweep phase of GC,
1562 string_blocks that are entirely free are freed, except two which
1563 we keep.
1564
1565 String data is allocated from sblock structures. Strings larger
1566 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1567 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1568
1569 Sblocks consist internally of sdata structures, one for each
1570 Lisp_String. The sdata structure points to the Lisp_String it
1571 belongs to. The Lisp_String points back to the `u.data' member of
1572 its sdata structure.
1573
1574 When a Lisp_String is freed during GC, it is put back on
1575 string_free_list, and its `data' member and its sdata's `string'
1576 pointer is set to null. The size of the string is recorded in the
1577 `u.nbytes' member of the sdata. So, sdata structures that are no
1578 longer used, can be easily recognized, and it's easy to compact the
1579 sblocks of small strings which we do in compact_small_strings. */
1580
1581 /* Size in bytes of an sblock structure used for small strings. This
1582 is 8192 minus malloc overhead. */
1583
1584 #define SBLOCK_SIZE 8188
1585
1586 /* Strings larger than this are considered large strings. String data
1587 for large strings is allocated from individual sblocks. */
1588
1589 #define LARGE_STRING_BYTES 1024
1590
1591 /* Structure describing string memory sub-allocated from an sblock.
1592 This is where the contents of Lisp strings are stored. */
1593
1594 struct sdata
1595 {
1596 /* Back-pointer to the string this sdata belongs to. If null, this
1597 structure is free, and the NBYTES member of the union below
1598 contains the string's byte size (the same value that STRING_BYTES
1599 would return if STRING were non-null). If non-null, STRING_BYTES
1600 (STRING) is the size of the data, and DATA contains the string's
1601 contents. */
1602 struct Lisp_String *string;
1603
1604 #ifdef GC_CHECK_STRING_BYTES
1605
1606 EMACS_INT nbytes;
1607 unsigned char data[1];
1608
1609 #define SDATA_NBYTES(S) (S)->nbytes
1610 #define SDATA_DATA(S) (S)->data
1611
1612 #else /* not GC_CHECK_STRING_BYTES */
1613
1614 union
1615 {
1616 /* When STRING in non-null. */
1617 unsigned char data[1];
1618
1619 /* When STRING is null. */
1620 EMACS_INT nbytes;
1621 } u;
1622
1623
1624 #define SDATA_NBYTES(S) (S)->u.nbytes
1625 #define SDATA_DATA(S) (S)->u.data
1626
1627 #endif /* not GC_CHECK_STRING_BYTES */
1628 };
1629
1630
1631 /* Structure describing a block of memory which is sub-allocated to
1632 obtain string data memory for strings. Blocks for small strings
1633 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1634 as large as needed. */
1635
1636 struct sblock
1637 {
1638 /* Next in list. */
1639 struct sblock *next;
1640
1641 /* Pointer to the next free sdata block. This points past the end
1642 of the sblock if there isn't any space left in this block. */
1643 struct sdata *next_free;
1644
1645 /* Start of data. */
1646 struct sdata first_data;
1647 };
1648
1649 /* Number of Lisp strings in a string_block structure. The 1020 is
1650 1024 minus malloc overhead. */
1651
1652 #define STRING_BLOCK_SIZE \
1653 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1654
1655 /* Structure describing a block from which Lisp_String structures
1656 are allocated. */
1657
1658 struct string_block
1659 {
1660 /* Place `strings' first, to preserve alignment. */
1661 struct Lisp_String strings[STRING_BLOCK_SIZE];
1662 struct string_block *next;
1663 };
1664
1665 /* Head and tail of the list of sblock structures holding Lisp string
1666 data. We always allocate from current_sblock. The NEXT pointers
1667 in the sblock structures go from oldest_sblock to current_sblock. */
1668
1669 static struct sblock *oldest_sblock, *current_sblock;
1670
1671 /* List of sblocks for large strings. */
1672
1673 static struct sblock *large_sblocks;
1674
1675 /* List of string_block structures, and how many there are. */
1676
1677 static struct string_block *string_blocks;
1678 static int n_string_blocks;
1679
1680 /* Free-list of Lisp_Strings. */
1681
1682 static struct Lisp_String *string_free_list;
1683
1684 /* Number of live and free Lisp_Strings. */
1685
1686 static int total_strings, total_free_strings;
1687
1688 /* Number of bytes used by live strings. */
1689
1690 static int total_string_size;
1691
1692 /* Given a pointer to a Lisp_String S which is on the free-list
1693 string_free_list, return a pointer to its successor in the
1694 free-list. */
1695
1696 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1697
1698 /* Return a pointer to the sdata structure belonging to Lisp string S.
1699 S must be live, i.e. S->data must not be null. S->data is actually
1700 a pointer to the `u.data' member of its sdata structure; the
1701 structure starts at a constant offset in front of that. */
1702
1703 #ifdef GC_CHECK_STRING_BYTES
1704
1705 #define SDATA_OF_STRING(S) \
1706 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1707 - sizeof (EMACS_INT)))
1708
1709 #else /* not GC_CHECK_STRING_BYTES */
1710
1711 #define SDATA_OF_STRING(S) \
1712 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1713
1714 #endif /* not GC_CHECK_STRING_BYTES */
1715
1716
1717 #ifdef GC_CHECK_STRING_OVERRUN
1718
1719 /* We check for overrun in string data blocks by appending a small
1720 "cookie" after each allocated string data block, and check for the
1721 presence of this cookie during GC. */
1722
1723 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1724 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1725 { 0xde, 0xad, 0xbe, 0xef };
1726
1727 #else
1728 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1729 #endif
1730
1731 /* Value is the size of an sdata structure large enough to hold NBYTES
1732 bytes of string data. The value returned includes a terminating
1733 NUL byte, the size of the sdata structure, and padding. */
1734
1735 #ifdef GC_CHECK_STRING_BYTES
1736
1737 #define SDATA_SIZE(NBYTES) \
1738 ((sizeof (struct Lisp_String *) \
1739 + (NBYTES) + 1 \
1740 + sizeof (EMACS_INT) \
1741 + sizeof (EMACS_INT) - 1) \
1742 & ~(sizeof (EMACS_INT) - 1))
1743
1744 #else /* not GC_CHECK_STRING_BYTES */
1745
1746 #define SDATA_SIZE(NBYTES) \
1747 ((sizeof (struct Lisp_String *) \
1748 + (NBYTES) + 1 \
1749 + sizeof (EMACS_INT) - 1) \
1750 & ~(sizeof (EMACS_INT) - 1))
1751
1752 #endif /* not GC_CHECK_STRING_BYTES */
1753
1754 /* Extra bytes to allocate for each string. */
1755
1756 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1757
1758 /* Initialize string allocation. Called from init_alloc_once. */
1759
1760 static void
1761 init_strings ()
1762 {
1763 total_strings = total_free_strings = total_string_size = 0;
1764 oldest_sblock = current_sblock = large_sblocks = NULL;
1765 string_blocks = NULL;
1766 n_string_blocks = 0;
1767 string_free_list = NULL;
1768 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1769 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1770 }
1771
1772
1773 #ifdef GC_CHECK_STRING_BYTES
1774
1775 static int check_string_bytes_count;
1776
1777 static void check_string_bytes P_ ((int));
1778 static void check_sblock P_ ((struct sblock *));
1779
1780 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1781
1782
1783 /* Like GC_STRING_BYTES, but with debugging check. */
1784
1785 int
1786 string_bytes (s)
1787 struct Lisp_String *s;
1788 {
1789 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1790 if (!PURE_POINTER_P (s)
1791 && s->data
1792 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1793 abort ();
1794 return nbytes;
1795 }
1796
1797 /* Check validity of Lisp strings' string_bytes member in B. */
1798
1799 static void
1800 check_sblock (b)
1801 struct sblock *b;
1802 {
1803 struct sdata *from, *end, *from_end;
1804
1805 end = b->next_free;
1806
1807 for (from = &b->first_data; from < end; from = from_end)
1808 {
1809 /* Compute the next FROM here because copying below may
1810 overwrite data we need to compute it. */
1811 int nbytes;
1812
1813 /* Check that the string size recorded in the string is the
1814 same as the one recorded in the sdata structure. */
1815 if (from->string)
1816 CHECK_STRING_BYTES (from->string);
1817
1818 if (from->string)
1819 nbytes = GC_STRING_BYTES (from->string);
1820 else
1821 nbytes = SDATA_NBYTES (from);
1822
1823 nbytes = SDATA_SIZE (nbytes);
1824 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1825 }
1826 }
1827
1828
1829 /* Check validity of Lisp strings' string_bytes member. ALL_P
1830 non-zero means check all strings, otherwise check only most
1831 recently allocated strings. Used for hunting a bug. */
1832
1833 static void
1834 check_string_bytes (all_p)
1835 int all_p;
1836 {
1837 if (all_p)
1838 {
1839 struct sblock *b;
1840
1841 for (b = large_sblocks; b; b = b->next)
1842 {
1843 struct Lisp_String *s = b->first_data.string;
1844 if (s)
1845 CHECK_STRING_BYTES (s);
1846 }
1847
1848 for (b = oldest_sblock; b; b = b->next)
1849 check_sblock (b);
1850 }
1851 else
1852 check_sblock (current_sblock);
1853 }
1854
1855 #endif /* GC_CHECK_STRING_BYTES */
1856
1857 #ifdef GC_CHECK_STRING_FREE_LIST
1858
1859 /* Walk through the string free list looking for bogus next pointers.
1860 This may catch buffer overrun from a previous string. */
1861
1862 static void
1863 check_string_free_list ()
1864 {
1865 struct Lisp_String *s;
1866
1867 /* Pop a Lisp_String off the free-list. */
1868 s = string_free_list;
1869 while (s != NULL)
1870 {
1871 if ((unsigned)s < 1024)
1872 abort();
1873 s = NEXT_FREE_LISP_STRING (s);
1874 }
1875 }
1876 #else
1877 #define check_string_free_list()
1878 #endif
1879
1880 /* Return a new Lisp_String. */
1881
1882 static struct Lisp_String *
1883 allocate_string ()
1884 {
1885 struct Lisp_String *s;
1886
1887 /* eassert (!handling_signal); */
1888
1889 MALLOC_BLOCK_INPUT;
1890
1891 /* If the free-list is empty, allocate a new string_block, and
1892 add all the Lisp_Strings in it to the free-list. */
1893 if (string_free_list == NULL)
1894 {
1895 struct string_block *b;
1896 int i;
1897
1898 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1899 bzero (b, sizeof *b);
1900 b->next = string_blocks;
1901 string_blocks = b;
1902 ++n_string_blocks;
1903
1904 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1905 {
1906 s = b->strings + i;
1907 NEXT_FREE_LISP_STRING (s) = string_free_list;
1908 string_free_list = s;
1909 }
1910
1911 total_free_strings += STRING_BLOCK_SIZE;
1912 }
1913
1914 check_string_free_list ();
1915
1916 /* Pop a Lisp_String off the free-list. */
1917 s = string_free_list;
1918 string_free_list = NEXT_FREE_LISP_STRING (s);
1919
1920 MALLOC_UNBLOCK_INPUT;
1921
1922 /* Probably not strictly necessary, but play it safe. */
1923 bzero (s, sizeof *s);
1924
1925 --total_free_strings;
1926 ++total_strings;
1927 ++strings_consed;
1928 consing_since_gc += sizeof *s;
1929
1930 #ifdef GC_CHECK_STRING_BYTES
1931 if (!noninteractive)
1932 {
1933 if (++check_string_bytes_count == 200)
1934 {
1935 check_string_bytes_count = 0;
1936 check_string_bytes (1);
1937 }
1938 else
1939 check_string_bytes (0);
1940 }
1941 #endif /* GC_CHECK_STRING_BYTES */
1942
1943 return s;
1944 }
1945
1946
1947 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1948 plus a NUL byte at the end. Allocate an sdata structure for S, and
1949 set S->data to its `u.data' member. Store a NUL byte at the end of
1950 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1951 S->data if it was initially non-null. */
1952
1953 void
1954 allocate_string_data (s, nchars, nbytes)
1955 struct Lisp_String *s;
1956 int nchars, nbytes;
1957 {
1958 struct sdata *data, *old_data;
1959 struct sblock *b;
1960 int needed, old_nbytes;
1961
1962 /* Determine the number of bytes needed to store NBYTES bytes
1963 of string data. */
1964 needed = SDATA_SIZE (nbytes);
1965 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1966 old_nbytes = GC_STRING_BYTES (s);
1967
1968 MALLOC_BLOCK_INPUT;
1969
1970 if (nbytes > LARGE_STRING_BYTES)
1971 {
1972 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1973
1974 #ifdef DOUG_LEA_MALLOC
1975 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1976 because mapped region contents are not preserved in
1977 a dumped Emacs.
1978
1979 In case you think of allowing it in a dumped Emacs at the
1980 cost of not being able to re-dump, there's another reason:
1981 mmap'ed data typically have an address towards the top of the
1982 address space, which won't fit into an EMACS_INT (at least on
1983 32-bit systems with the current tagging scheme). --fx */
1984 mallopt (M_MMAP_MAX, 0);
1985 #endif
1986
1987 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1988
1989 #ifdef DOUG_LEA_MALLOC
1990 /* Back to a reasonable maximum of mmap'ed areas. */
1991 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1992 #endif
1993
1994 b->next_free = &b->first_data;
1995 b->first_data.string = NULL;
1996 b->next = large_sblocks;
1997 large_sblocks = b;
1998 }
1999 else if (current_sblock == NULL
2000 || (((char *) current_sblock + SBLOCK_SIZE
2001 - (char *) current_sblock->next_free)
2002 < (needed + GC_STRING_EXTRA)))
2003 {
2004 /* Not enough room in the current sblock. */
2005 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2006 b->next_free = &b->first_data;
2007 b->first_data.string = NULL;
2008 b->next = NULL;
2009
2010 if (current_sblock)
2011 current_sblock->next = b;
2012 else
2013 oldest_sblock = b;
2014 current_sblock = b;
2015 }
2016 else
2017 b = current_sblock;
2018
2019 data = b->next_free;
2020 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2021
2022 MALLOC_UNBLOCK_INPUT;
2023
2024 data->string = s;
2025 s->data = SDATA_DATA (data);
2026 #ifdef GC_CHECK_STRING_BYTES
2027 SDATA_NBYTES (data) = nbytes;
2028 #endif
2029 s->size = nchars;
2030 s->size_byte = nbytes;
2031 s->data[nbytes] = '\0';
2032 #ifdef GC_CHECK_STRING_OVERRUN
2033 bcopy (string_overrun_cookie, (char *) data + needed,
2034 GC_STRING_OVERRUN_COOKIE_SIZE);
2035 #endif
2036
2037 /* If S had already data assigned, mark that as free by setting its
2038 string back-pointer to null, and recording the size of the data
2039 in it. */
2040 if (old_data)
2041 {
2042 SDATA_NBYTES (old_data) = old_nbytes;
2043 old_data->string = NULL;
2044 }
2045
2046 consing_since_gc += needed;
2047 }
2048
2049
2050 /* Sweep and compact strings. */
2051
2052 static void
2053 sweep_strings ()
2054 {
2055 struct string_block *b, *next;
2056 struct string_block *live_blocks = NULL;
2057
2058 string_free_list = NULL;
2059 total_strings = total_free_strings = 0;
2060 total_string_size = 0;
2061
2062 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2063 for (b = string_blocks; b; b = next)
2064 {
2065 int i, nfree = 0;
2066 struct Lisp_String *free_list_before = string_free_list;
2067
2068 next = b->next;
2069
2070 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2071 {
2072 struct Lisp_String *s = b->strings + i;
2073
2074 if (s->data)
2075 {
2076 /* String was not on free-list before. */
2077 if (STRING_MARKED_P (s))
2078 {
2079 /* String is live; unmark it and its intervals. */
2080 UNMARK_STRING (s);
2081
2082 if (!NULL_INTERVAL_P (s->intervals))
2083 UNMARK_BALANCE_INTERVALS (s->intervals);
2084
2085 ++total_strings;
2086 total_string_size += STRING_BYTES (s);
2087 }
2088 else
2089 {
2090 /* String is dead. Put it on the free-list. */
2091 struct sdata *data = SDATA_OF_STRING (s);
2092
2093 /* Save the size of S in its sdata so that we know
2094 how large that is. Reset the sdata's string
2095 back-pointer so that we know it's free. */
2096 #ifdef GC_CHECK_STRING_BYTES
2097 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2098 abort ();
2099 #else
2100 data->u.nbytes = GC_STRING_BYTES (s);
2101 #endif
2102 data->string = NULL;
2103
2104 /* Reset the strings's `data' member so that we
2105 know it's free. */
2106 s->data = NULL;
2107
2108 /* Put the string on the free-list. */
2109 NEXT_FREE_LISP_STRING (s) = string_free_list;
2110 string_free_list = s;
2111 ++nfree;
2112 }
2113 }
2114 else
2115 {
2116 /* S was on the free-list before. Put it there again. */
2117 NEXT_FREE_LISP_STRING (s) = string_free_list;
2118 string_free_list = s;
2119 ++nfree;
2120 }
2121 }
2122
2123 /* Free blocks that contain free Lisp_Strings only, except
2124 the first two of them. */
2125 if (nfree == STRING_BLOCK_SIZE
2126 && total_free_strings > STRING_BLOCK_SIZE)
2127 {
2128 lisp_free (b);
2129 --n_string_blocks;
2130 string_free_list = free_list_before;
2131 }
2132 else
2133 {
2134 total_free_strings += nfree;
2135 b->next = live_blocks;
2136 live_blocks = b;
2137 }
2138 }
2139
2140 check_string_free_list ();
2141
2142 string_blocks = live_blocks;
2143 free_large_strings ();
2144 compact_small_strings ();
2145
2146 check_string_free_list ();
2147 }
2148
2149
2150 /* Free dead large strings. */
2151
2152 static void
2153 free_large_strings ()
2154 {
2155 struct sblock *b, *next;
2156 struct sblock *live_blocks = NULL;
2157
2158 for (b = large_sblocks; b; b = next)
2159 {
2160 next = b->next;
2161
2162 if (b->first_data.string == NULL)
2163 lisp_free (b);
2164 else
2165 {
2166 b->next = live_blocks;
2167 live_blocks = b;
2168 }
2169 }
2170
2171 large_sblocks = live_blocks;
2172 }
2173
2174
2175 /* Compact data of small strings. Free sblocks that don't contain
2176 data of live strings after compaction. */
2177
2178 static void
2179 compact_small_strings ()
2180 {
2181 struct sblock *b, *tb, *next;
2182 struct sdata *from, *to, *end, *tb_end;
2183 struct sdata *to_end, *from_end;
2184
2185 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2186 to, and TB_END is the end of TB. */
2187 tb = oldest_sblock;
2188 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2189 to = &tb->first_data;
2190
2191 /* Step through the blocks from the oldest to the youngest. We
2192 expect that old blocks will stabilize over time, so that less
2193 copying will happen this way. */
2194 for (b = oldest_sblock; b; b = b->next)
2195 {
2196 end = b->next_free;
2197 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2198
2199 for (from = &b->first_data; from < end; from = from_end)
2200 {
2201 /* Compute the next FROM here because copying below may
2202 overwrite data we need to compute it. */
2203 int nbytes;
2204
2205 #ifdef GC_CHECK_STRING_BYTES
2206 /* Check that the string size recorded in the string is the
2207 same as the one recorded in the sdata structure. */
2208 if (from->string
2209 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2210 abort ();
2211 #endif /* GC_CHECK_STRING_BYTES */
2212
2213 if (from->string)
2214 nbytes = GC_STRING_BYTES (from->string);
2215 else
2216 nbytes = SDATA_NBYTES (from);
2217
2218 if (nbytes > LARGE_STRING_BYTES)
2219 abort ();
2220
2221 nbytes = SDATA_SIZE (nbytes);
2222 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2223
2224 #ifdef GC_CHECK_STRING_OVERRUN
2225 if (bcmp (string_overrun_cookie,
2226 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2227 GC_STRING_OVERRUN_COOKIE_SIZE))
2228 abort ();
2229 #endif
2230
2231 /* FROM->string non-null means it's alive. Copy its data. */
2232 if (from->string)
2233 {
2234 /* If TB is full, proceed with the next sblock. */
2235 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2236 if (to_end > tb_end)
2237 {
2238 tb->next_free = to;
2239 tb = tb->next;
2240 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2241 to = &tb->first_data;
2242 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2243 }
2244
2245 /* Copy, and update the string's `data' pointer. */
2246 if (from != to)
2247 {
2248 xassert (tb != b || to <= from);
2249 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2250 to->string->data = SDATA_DATA (to);
2251 }
2252
2253 /* Advance past the sdata we copied to. */
2254 to = to_end;
2255 }
2256 }
2257 }
2258
2259 /* The rest of the sblocks following TB don't contain live data, so
2260 we can free them. */
2261 for (b = tb->next; b; b = next)
2262 {
2263 next = b->next;
2264 lisp_free (b);
2265 }
2266
2267 tb->next_free = to;
2268 tb->next = NULL;
2269 current_sblock = tb;
2270 }
2271
2272
2273 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2274 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2275 LENGTH must be an integer.
2276 INIT must be an integer that represents a character. */)
2277 (length, init)
2278 Lisp_Object length, init;
2279 {
2280 register Lisp_Object val;
2281 register unsigned char *p, *end;
2282 int c, nbytes;
2283
2284 CHECK_NATNUM (length);
2285 CHECK_NUMBER (init);
2286
2287 c = XINT (init);
2288 if (SINGLE_BYTE_CHAR_P (c))
2289 {
2290 nbytes = XINT (length);
2291 val = make_uninit_string (nbytes);
2292 p = SDATA (val);
2293 end = p + SCHARS (val);
2294 while (p != end)
2295 *p++ = c;
2296 }
2297 else
2298 {
2299 unsigned char str[MAX_MULTIBYTE_LENGTH];
2300 int len = CHAR_STRING (c, str);
2301
2302 nbytes = len * XINT (length);
2303 val = make_uninit_multibyte_string (XINT (length), nbytes);
2304 p = SDATA (val);
2305 end = p + nbytes;
2306 while (p != end)
2307 {
2308 bcopy (str, p, len);
2309 p += len;
2310 }
2311 }
2312
2313 *p = 0;
2314 return val;
2315 }
2316
2317
2318 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2319 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2320 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2321 (length, init)
2322 Lisp_Object length, init;
2323 {
2324 register Lisp_Object val;
2325 struct Lisp_Bool_Vector *p;
2326 int real_init, i;
2327 int length_in_chars, length_in_elts, bits_per_value;
2328
2329 CHECK_NATNUM (length);
2330
2331 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2332
2333 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2334 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2335 / BOOL_VECTOR_BITS_PER_CHAR);
2336
2337 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2338 slot `size' of the struct Lisp_Bool_Vector. */
2339 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2340
2341 /* Get rid of any bits that would cause confusion. */
2342 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2343 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2344 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2345
2346 p = XBOOL_VECTOR (val);
2347 p->size = XFASTINT (length);
2348
2349 real_init = (NILP (init) ? 0 : -1);
2350 for (i = 0; i < length_in_chars ; i++)
2351 p->data[i] = real_init;
2352
2353 /* Clear the extraneous bits in the last byte. */
2354 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2355 p->data[length_in_chars - 1]
2356 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2357
2358 return val;
2359 }
2360
2361
2362 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2363 of characters from the contents. This string may be unibyte or
2364 multibyte, depending on the contents. */
2365
2366 Lisp_Object
2367 make_string (contents, nbytes)
2368 const char *contents;
2369 int nbytes;
2370 {
2371 register Lisp_Object val;
2372 int nchars, multibyte_nbytes;
2373
2374 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2375 if (nbytes == nchars || nbytes != multibyte_nbytes)
2376 /* CONTENTS contains no multibyte sequences or contains an invalid
2377 multibyte sequence. We must make unibyte string. */
2378 val = make_unibyte_string (contents, nbytes);
2379 else
2380 val = make_multibyte_string (contents, nchars, nbytes);
2381 return val;
2382 }
2383
2384
2385 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2386
2387 Lisp_Object
2388 make_unibyte_string (contents, length)
2389 const char *contents;
2390 int length;
2391 {
2392 register Lisp_Object val;
2393 val = make_uninit_string (length);
2394 bcopy (contents, SDATA (val), length);
2395 STRING_SET_UNIBYTE (val);
2396 return val;
2397 }
2398
2399
2400 /* Make a multibyte string from NCHARS characters occupying NBYTES
2401 bytes at CONTENTS. */
2402
2403 Lisp_Object
2404 make_multibyte_string (contents, nchars, nbytes)
2405 const char *contents;
2406 int nchars, nbytes;
2407 {
2408 register Lisp_Object val;
2409 val = make_uninit_multibyte_string (nchars, nbytes);
2410 bcopy (contents, SDATA (val), nbytes);
2411 return val;
2412 }
2413
2414
2415 /* Make a string from NCHARS characters occupying NBYTES bytes at
2416 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2417
2418 Lisp_Object
2419 make_string_from_bytes (contents, nchars, nbytes)
2420 const char *contents;
2421 int nchars, nbytes;
2422 {
2423 register Lisp_Object val;
2424 val = make_uninit_multibyte_string (nchars, nbytes);
2425 bcopy (contents, SDATA (val), nbytes);
2426 if (SBYTES (val) == SCHARS (val))
2427 STRING_SET_UNIBYTE (val);
2428 return val;
2429 }
2430
2431
2432 /* Make a string from NCHARS characters occupying NBYTES bytes at
2433 CONTENTS. The argument MULTIBYTE controls whether to label the
2434 string as multibyte. If NCHARS is negative, it counts the number of
2435 characters by itself. */
2436
2437 Lisp_Object
2438 make_specified_string (contents, nchars, nbytes, multibyte)
2439 const char *contents;
2440 int nchars, nbytes;
2441 int multibyte;
2442 {
2443 register Lisp_Object val;
2444
2445 if (nchars < 0)
2446 {
2447 if (multibyte)
2448 nchars = multibyte_chars_in_text (contents, nbytes);
2449 else
2450 nchars = nbytes;
2451 }
2452 val = make_uninit_multibyte_string (nchars, nbytes);
2453 bcopy (contents, SDATA (val), nbytes);
2454 if (!multibyte)
2455 STRING_SET_UNIBYTE (val);
2456 return val;
2457 }
2458
2459
2460 /* Make a string from the data at STR, treating it as multibyte if the
2461 data warrants. */
2462
2463 Lisp_Object
2464 build_string (str)
2465 const char *str;
2466 {
2467 return make_string (str, strlen (str));
2468 }
2469
2470
2471 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2472 occupying LENGTH bytes. */
2473
2474 Lisp_Object
2475 make_uninit_string (length)
2476 int length;
2477 {
2478 Lisp_Object val;
2479
2480 if (!length)
2481 return empty_unibyte_string;
2482 val = make_uninit_multibyte_string (length, length);
2483 STRING_SET_UNIBYTE (val);
2484 return val;
2485 }
2486
2487
2488 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2489 which occupy NBYTES bytes. */
2490
2491 Lisp_Object
2492 make_uninit_multibyte_string (nchars, nbytes)
2493 int nchars, nbytes;
2494 {
2495 Lisp_Object string;
2496 struct Lisp_String *s;
2497
2498 if (nchars < 0)
2499 abort ();
2500 if (!nbytes)
2501 return empty_multibyte_string;
2502
2503 s = allocate_string ();
2504 allocate_string_data (s, nchars, nbytes);
2505 XSETSTRING (string, s);
2506 string_chars_consed += nbytes;
2507 return string;
2508 }
2509
2510
2511 \f
2512 /***********************************************************************
2513 Float Allocation
2514 ***********************************************************************/
2515
2516 /* We store float cells inside of float_blocks, allocating a new
2517 float_block with malloc whenever necessary. Float cells reclaimed
2518 by GC are put on a free list to be reallocated before allocating
2519 any new float cells from the latest float_block. */
2520
2521 #define FLOAT_BLOCK_SIZE \
2522 (((BLOCK_BYTES - sizeof (struct float_block *) \
2523 /* The compiler might add padding at the end. */ \
2524 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2525 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2526
2527 #define GETMARKBIT(block,n) \
2528 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2529 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2530 & 1)
2531
2532 #define SETMARKBIT(block,n) \
2533 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2534 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2535
2536 #define UNSETMARKBIT(block,n) \
2537 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2538 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2539
2540 #define FLOAT_BLOCK(fptr) \
2541 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2542
2543 #define FLOAT_INDEX(fptr) \
2544 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2545
2546 struct float_block
2547 {
2548 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2549 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2550 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2551 struct float_block *next;
2552 };
2553
2554 #define FLOAT_MARKED_P(fptr) \
2555 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2556
2557 #define FLOAT_MARK(fptr) \
2558 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559
2560 #define FLOAT_UNMARK(fptr) \
2561 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2562
2563 /* Current float_block. */
2564
2565 struct float_block *float_block;
2566
2567 /* Index of first unused Lisp_Float in the current float_block. */
2568
2569 int float_block_index;
2570
2571 /* Total number of float blocks now in use. */
2572
2573 int n_float_blocks;
2574
2575 /* Free-list of Lisp_Floats. */
2576
2577 struct Lisp_Float *float_free_list;
2578
2579
2580 /* Initialize float allocation. */
2581
2582 static void
2583 init_float ()
2584 {
2585 float_block = NULL;
2586 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2587 float_free_list = 0;
2588 n_float_blocks = 0;
2589 }
2590
2591
2592 /* Explicitly free a float cell by putting it on the free-list. */
2593
2594 static void
2595 free_float (ptr)
2596 struct Lisp_Float *ptr;
2597 {
2598 ptr->u.chain = float_free_list;
2599 float_free_list = ptr;
2600 }
2601
2602
2603 /* Return a new float object with value FLOAT_VALUE. */
2604
2605 Lisp_Object
2606 make_float (float_value)
2607 double float_value;
2608 {
2609 register Lisp_Object val;
2610
2611 /* eassert (!handling_signal); */
2612
2613 MALLOC_BLOCK_INPUT;
2614
2615 if (float_free_list)
2616 {
2617 /* We use the data field for chaining the free list
2618 so that we won't use the same field that has the mark bit. */
2619 XSETFLOAT (val, float_free_list);
2620 float_free_list = float_free_list->u.chain;
2621 }
2622 else
2623 {
2624 if (float_block_index == FLOAT_BLOCK_SIZE)
2625 {
2626 register struct float_block *new;
2627
2628 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2629 MEM_TYPE_FLOAT);
2630 new->next = float_block;
2631 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2632 float_block = new;
2633 float_block_index = 0;
2634 n_float_blocks++;
2635 }
2636 XSETFLOAT (val, &float_block->floats[float_block_index]);
2637 float_block_index++;
2638 }
2639
2640 MALLOC_UNBLOCK_INPUT;
2641
2642 XFLOAT_DATA (val) = float_value;
2643 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2644 consing_since_gc += sizeof (struct Lisp_Float);
2645 floats_consed++;
2646 return val;
2647 }
2648
2649
2650 \f
2651 /***********************************************************************
2652 Cons Allocation
2653 ***********************************************************************/
2654
2655 /* We store cons cells inside of cons_blocks, allocating a new
2656 cons_block with malloc whenever necessary. Cons cells reclaimed by
2657 GC are put on a free list to be reallocated before allocating
2658 any new cons cells from the latest cons_block. */
2659
2660 #define CONS_BLOCK_SIZE \
2661 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2662 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2663
2664 #define CONS_BLOCK(fptr) \
2665 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2666
2667 #define CONS_INDEX(fptr) \
2668 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2669
2670 struct cons_block
2671 {
2672 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2673 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2674 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2675 struct cons_block *next;
2676 };
2677
2678 #define CONS_MARKED_P(fptr) \
2679 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2680
2681 #define CONS_MARK(fptr) \
2682 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684 #define CONS_UNMARK(fptr) \
2685 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687 /* Current cons_block. */
2688
2689 struct cons_block *cons_block;
2690
2691 /* Index of first unused Lisp_Cons in the current block. */
2692
2693 int cons_block_index;
2694
2695 /* Free-list of Lisp_Cons structures. */
2696
2697 struct Lisp_Cons *cons_free_list;
2698
2699 /* Total number of cons blocks now in use. */
2700
2701 static int n_cons_blocks;
2702
2703
2704 /* Initialize cons allocation. */
2705
2706 static void
2707 init_cons ()
2708 {
2709 cons_block = NULL;
2710 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2711 cons_free_list = 0;
2712 n_cons_blocks = 0;
2713 }
2714
2715
2716 /* Explicitly free a cons cell by putting it on the free-list. */
2717
2718 void
2719 free_cons (ptr)
2720 struct Lisp_Cons *ptr;
2721 {
2722 ptr->u.chain = cons_free_list;
2723 #if GC_MARK_STACK
2724 ptr->car = Vdead;
2725 #endif
2726 cons_free_list = ptr;
2727 }
2728
2729 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2730 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2731 (car, cdr)
2732 Lisp_Object car, cdr;
2733 {
2734 register Lisp_Object val;
2735
2736 /* eassert (!handling_signal); */
2737
2738 MALLOC_BLOCK_INPUT;
2739
2740 if (cons_free_list)
2741 {
2742 /* We use the cdr for chaining the free list
2743 so that we won't use the same field that has the mark bit. */
2744 XSETCONS (val, cons_free_list);
2745 cons_free_list = cons_free_list->u.chain;
2746 }
2747 else
2748 {
2749 if (cons_block_index == CONS_BLOCK_SIZE)
2750 {
2751 register struct cons_block *new;
2752 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2753 MEM_TYPE_CONS);
2754 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2755 new->next = cons_block;
2756 cons_block = new;
2757 cons_block_index = 0;
2758 n_cons_blocks++;
2759 }
2760 XSETCONS (val, &cons_block->conses[cons_block_index]);
2761 cons_block_index++;
2762 }
2763
2764 MALLOC_UNBLOCK_INPUT;
2765
2766 XSETCAR (val, car);
2767 XSETCDR (val, cdr);
2768 eassert (!CONS_MARKED_P (XCONS (val)));
2769 consing_since_gc += sizeof (struct Lisp_Cons);
2770 cons_cells_consed++;
2771 return val;
2772 }
2773
2774 /* Get an error now if there's any junk in the cons free list. */
2775 void
2776 check_cons_list ()
2777 {
2778 #ifdef GC_CHECK_CONS_LIST
2779 struct Lisp_Cons *tail = cons_free_list;
2780
2781 while (tail)
2782 tail = tail->u.chain;
2783 #endif
2784 }
2785
2786 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2787
2788 Lisp_Object
2789 list1 (arg1)
2790 Lisp_Object arg1;
2791 {
2792 return Fcons (arg1, Qnil);
2793 }
2794
2795 Lisp_Object
2796 list2 (arg1, arg2)
2797 Lisp_Object arg1, arg2;
2798 {
2799 return Fcons (arg1, Fcons (arg2, Qnil));
2800 }
2801
2802
2803 Lisp_Object
2804 list3 (arg1, arg2, arg3)
2805 Lisp_Object arg1, arg2, arg3;
2806 {
2807 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2808 }
2809
2810
2811 Lisp_Object
2812 list4 (arg1, arg2, arg3, arg4)
2813 Lisp_Object arg1, arg2, arg3, arg4;
2814 {
2815 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2816 }
2817
2818
2819 Lisp_Object
2820 list5 (arg1, arg2, arg3, arg4, arg5)
2821 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2822 {
2823 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2824 Fcons (arg5, Qnil)))));
2825 }
2826
2827
2828 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2829 doc: /* Return a newly created list with specified arguments as elements.
2830 Any number of arguments, even zero arguments, are allowed.
2831 usage: (list &rest OBJECTS) */)
2832 (nargs, args)
2833 int nargs;
2834 register Lisp_Object *args;
2835 {
2836 register Lisp_Object val;
2837 val = Qnil;
2838
2839 while (nargs > 0)
2840 {
2841 nargs--;
2842 val = Fcons (args[nargs], val);
2843 }
2844 return val;
2845 }
2846
2847
2848 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2849 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2850 (length, init)
2851 register Lisp_Object length, init;
2852 {
2853 register Lisp_Object val;
2854 register int size;
2855
2856 CHECK_NATNUM (length);
2857 size = XFASTINT (length);
2858
2859 val = Qnil;
2860 while (size > 0)
2861 {
2862 val = Fcons (init, val);
2863 --size;
2864
2865 if (size > 0)
2866 {
2867 val = Fcons (init, val);
2868 --size;
2869
2870 if (size > 0)
2871 {
2872 val = Fcons (init, val);
2873 --size;
2874
2875 if (size > 0)
2876 {
2877 val = Fcons (init, val);
2878 --size;
2879
2880 if (size > 0)
2881 {
2882 val = Fcons (init, val);
2883 --size;
2884 }
2885 }
2886 }
2887 }
2888
2889 QUIT;
2890 }
2891
2892 return val;
2893 }
2894
2895
2896 \f
2897 /***********************************************************************
2898 Vector Allocation
2899 ***********************************************************************/
2900
2901 /* Singly-linked list of all vectors. */
2902
2903 static struct Lisp_Vector *all_vectors;
2904
2905 /* Total number of vector-like objects now in use. */
2906
2907 static int n_vectors;
2908
2909
2910 /* Value is a pointer to a newly allocated Lisp_Vector structure
2911 with room for LEN Lisp_Objects. */
2912
2913 static struct Lisp_Vector *
2914 allocate_vectorlike (len)
2915 EMACS_INT len;
2916 {
2917 struct Lisp_Vector *p;
2918 size_t nbytes;
2919
2920 MALLOC_BLOCK_INPUT;
2921
2922 #ifdef DOUG_LEA_MALLOC
2923 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2924 because mapped region contents are not preserved in
2925 a dumped Emacs. */
2926 mallopt (M_MMAP_MAX, 0);
2927 #endif
2928
2929 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2930 /* eassert (!handling_signal); */
2931
2932 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2933 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2934
2935 #ifdef DOUG_LEA_MALLOC
2936 /* Back to a reasonable maximum of mmap'ed areas. */
2937 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2938 #endif
2939
2940 consing_since_gc += nbytes;
2941 vector_cells_consed += len;
2942
2943 p->next = all_vectors;
2944 all_vectors = p;
2945
2946 MALLOC_UNBLOCK_INPUT;
2947
2948 ++n_vectors;
2949 return p;
2950 }
2951
2952
2953 /* Allocate a vector with NSLOTS slots. */
2954
2955 struct Lisp_Vector *
2956 allocate_vector (nslots)
2957 EMACS_INT nslots;
2958 {
2959 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2960 v->size = nslots;
2961 return v;
2962 }
2963
2964
2965 /* Allocate other vector-like structures. */
2966
2967 struct Lisp_Vector *
2968 allocate_pseudovector (memlen, lisplen, tag)
2969 int memlen, lisplen;
2970 EMACS_INT tag;
2971 {
2972 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2973 EMACS_INT i;
2974
2975 /* Only the first lisplen slots will be traced normally by the GC. */
2976 v->size = lisplen;
2977 for (i = 0; i < lisplen; ++i)
2978 v->contents[i] = Qnil;
2979
2980 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2981 return v;
2982 }
2983
2984 struct Lisp_Hash_Table *
2985 allocate_hash_table (void)
2986 {
2987 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2988 }
2989
2990
2991 struct window *
2992 allocate_window ()
2993 {
2994 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2995 }
2996
2997
2998 struct terminal *
2999 allocate_terminal ()
3000 {
3001 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3002 next_terminal, PVEC_TERMINAL);
3003 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3004 bzero (&(t->next_terminal),
3005 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3006
3007 return t;
3008 }
3009
3010 struct frame *
3011 allocate_frame ()
3012 {
3013 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3014 face_cache, PVEC_FRAME);
3015 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3016 bzero (&(f->face_cache),
3017 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3018 return f;
3019 }
3020
3021
3022 struct Lisp_Process *
3023 allocate_process ()
3024 {
3025 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3026 }
3027
3028
3029 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3030 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3031 See also the function `vector'. */)
3032 (length, init)
3033 register Lisp_Object length, init;
3034 {
3035 Lisp_Object vector;
3036 register EMACS_INT sizei;
3037 register int index;
3038 register struct Lisp_Vector *p;
3039
3040 CHECK_NATNUM (length);
3041 sizei = XFASTINT (length);
3042
3043 p = allocate_vector (sizei);
3044 for (index = 0; index < sizei; index++)
3045 p->contents[index] = init;
3046
3047 XSETVECTOR (vector, p);
3048 return vector;
3049 }
3050
3051
3052 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3053 doc: /* Return a newly created char-table, with purpose PURPOSE.
3054 Each element is initialized to INIT, which defaults to nil.
3055 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3056 The property's value should be an integer between 0 and 10. */)
3057 (purpose, init)
3058 register Lisp_Object purpose, init;
3059 {
3060 Lisp_Object vector;
3061 Lisp_Object n;
3062 CHECK_SYMBOL (purpose);
3063 n = Fget (purpose, Qchar_table_extra_slots);
3064 CHECK_NUMBER (n);
3065 if (XINT (n) < 0 || XINT (n) > 10)
3066 args_out_of_range (n, Qnil);
3067 /* Add 2 to the size for the defalt and parent slots. */
3068 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3069 init);
3070 XSETPVECTYPE (XVECTOR (vector), PVEC_CHAR_TABLE);
3071 XCHAR_TABLE (vector)->top = Qt;
3072 XCHAR_TABLE (vector)->parent = Qnil;
3073 XCHAR_TABLE (vector)->purpose = purpose;
3074 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3075 return vector;
3076 }
3077
3078
3079 /* Return a newly created sub char table with slots initialized by INIT.
3080 Since a sub char table does not appear as a top level Emacs Lisp
3081 object, we don't need a Lisp interface to make it. */
3082
3083 Lisp_Object
3084 make_sub_char_table (init)
3085 Lisp_Object init;
3086 {
3087 Lisp_Object vector
3088 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3089 XSETPVECTYPE (XVECTOR (vector), PVEC_CHAR_TABLE);
3090 XCHAR_TABLE (vector)->top = Qnil;
3091 XCHAR_TABLE (vector)->defalt = Qnil;
3092 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3093 return vector;
3094 }
3095
3096
3097 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3098 doc: /* Return a newly created vector with specified arguments as elements.
3099 Any number of arguments, even zero arguments, are allowed.
3100 usage: (vector &rest OBJECTS) */)
3101 (nargs, args)
3102 register int nargs;
3103 Lisp_Object *args;
3104 {
3105 register Lisp_Object len, val;
3106 register int index;
3107 register struct Lisp_Vector *p;
3108
3109 XSETFASTINT (len, nargs);
3110 val = Fmake_vector (len, Qnil);
3111 p = XVECTOR (val);
3112 for (index = 0; index < nargs; index++)
3113 p->contents[index] = args[index];
3114 return val;
3115 }
3116
3117
3118 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3119 doc: /* Create a byte-code object with specified arguments as elements.
3120 The arguments should be the arglist, bytecode-string, constant vector,
3121 stack size, (optional) doc string, and (optional) interactive spec.
3122 The first four arguments are required; at most six have any
3123 significance.
3124 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3125 (nargs, args)
3126 register int nargs;
3127 Lisp_Object *args;
3128 {
3129 register Lisp_Object len, val;
3130 register int index;
3131 register struct Lisp_Vector *p;
3132
3133 XSETFASTINT (len, nargs);
3134 if (!NILP (Vpurify_flag))
3135 val = make_pure_vector ((EMACS_INT) nargs);
3136 else
3137 val = Fmake_vector (len, Qnil);
3138
3139 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3140 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3141 earlier because they produced a raw 8-bit string for byte-code
3142 and now such a byte-code string is loaded as multibyte while
3143 raw 8-bit characters converted to multibyte form. Thus, now we
3144 must convert them back to the original unibyte form. */
3145 args[1] = Fstring_as_unibyte (args[1]);
3146
3147 p = XVECTOR (val);
3148 for (index = 0; index < nargs; index++)
3149 {
3150 if (!NILP (Vpurify_flag))
3151 args[index] = Fpurecopy (args[index]);
3152 p->contents[index] = args[index];
3153 }
3154 XSETPVECTYPE (p, PVEC_COMPILED);
3155 XSETCOMPILED (val, p);
3156 return val;
3157 }
3158
3159
3160 \f
3161 /***********************************************************************
3162 Symbol Allocation
3163 ***********************************************************************/
3164
3165 /* Each symbol_block is just under 1020 bytes long, since malloc
3166 really allocates in units of powers of two and uses 4 bytes for its
3167 own overhead. */
3168
3169 #define SYMBOL_BLOCK_SIZE \
3170 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3171
3172 struct symbol_block
3173 {
3174 /* Place `symbols' first, to preserve alignment. */
3175 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3176 struct symbol_block *next;
3177 };
3178
3179 /* Current symbol block and index of first unused Lisp_Symbol
3180 structure in it. */
3181
3182 static struct symbol_block *symbol_block;
3183 static int symbol_block_index;
3184
3185 /* List of free symbols. */
3186
3187 static struct Lisp_Symbol *symbol_free_list;
3188
3189 /* Total number of symbol blocks now in use. */
3190
3191 static int n_symbol_blocks;
3192
3193
3194 /* Initialize symbol allocation. */
3195
3196 static void
3197 init_symbol ()
3198 {
3199 symbol_block = NULL;
3200 symbol_block_index = SYMBOL_BLOCK_SIZE;
3201 symbol_free_list = 0;
3202 n_symbol_blocks = 0;
3203 }
3204
3205
3206 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3207 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3208 Its value and function definition are void, and its property list is nil. */)
3209 (name)
3210 Lisp_Object name;
3211 {
3212 register Lisp_Object val;
3213 register struct Lisp_Symbol *p;
3214
3215 CHECK_STRING (name);
3216
3217 /* eassert (!handling_signal); */
3218
3219 MALLOC_BLOCK_INPUT;
3220
3221 if (symbol_free_list)
3222 {
3223 XSETSYMBOL (val, symbol_free_list);
3224 symbol_free_list = symbol_free_list->next;
3225 }
3226 else
3227 {
3228 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3229 {
3230 struct symbol_block *new;
3231 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3232 MEM_TYPE_SYMBOL);
3233 new->next = symbol_block;
3234 symbol_block = new;
3235 symbol_block_index = 0;
3236 n_symbol_blocks++;
3237 }
3238 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3239 symbol_block_index++;
3240 }
3241
3242 MALLOC_UNBLOCK_INPUT;
3243
3244 p = XSYMBOL (val);
3245 p->xname = name;
3246 p->plist = Qnil;
3247 p->value = Qunbound;
3248 p->function = Qunbound;
3249 p->next = NULL;
3250 p->gcmarkbit = 0;
3251 p->interned = SYMBOL_UNINTERNED;
3252 p->constant = 0;
3253 p->indirect_variable = 0;
3254 consing_since_gc += sizeof (struct Lisp_Symbol);
3255 symbols_consed++;
3256 return val;
3257 }
3258
3259
3260 \f
3261 /***********************************************************************
3262 Marker (Misc) Allocation
3263 ***********************************************************************/
3264
3265 /* Allocation of markers and other objects that share that structure.
3266 Works like allocation of conses. */
3267
3268 #define MARKER_BLOCK_SIZE \
3269 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3270
3271 struct marker_block
3272 {
3273 /* Place `markers' first, to preserve alignment. */
3274 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3275 struct marker_block *next;
3276 };
3277
3278 static struct marker_block *marker_block;
3279 static int marker_block_index;
3280
3281 static union Lisp_Misc *marker_free_list;
3282
3283 /* Total number of marker blocks now in use. */
3284
3285 static int n_marker_blocks;
3286
3287 static void
3288 init_marker ()
3289 {
3290 marker_block = NULL;
3291 marker_block_index = MARKER_BLOCK_SIZE;
3292 marker_free_list = 0;
3293 n_marker_blocks = 0;
3294 }
3295
3296 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3297
3298 Lisp_Object
3299 allocate_misc ()
3300 {
3301 Lisp_Object val;
3302
3303 /* eassert (!handling_signal); */
3304
3305 MALLOC_BLOCK_INPUT;
3306
3307 if (marker_free_list)
3308 {
3309 XSETMISC (val, marker_free_list);
3310 marker_free_list = marker_free_list->u_free.chain;
3311 }
3312 else
3313 {
3314 if (marker_block_index == MARKER_BLOCK_SIZE)
3315 {
3316 struct marker_block *new;
3317 new = (struct marker_block *) lisp_malloc (sizeof *new,
3318 MEM_TYPE_MISC);
3319 new->next = marker_block;
3320 marker_block = new;
3321 marker_block_index = 0;
3322 n_marker_blocks++;
3323 total_free_markers += MARKER_BLOCK_SIZE;
3324 }
3325 XSETMISC (val, &marker_block->markers[marker_block_index]);
3326 marker_block_index++;
3327 }
3328
3329 MALLOC_UNBLOCK_INPUT;
3330
3331 --total_free_markers;
3332 consing_since_gc += sizeof (union Lisp_Misc);
3333 misc_objects_consed++;
3334 XMISCANY (val)->gcmarkbit = 0;
3335 return val;
3336 }
3337
3338 /* Free a Lisp_Misc object */
3339
3340 void
3341 free_misc (misc)
3342 Lisp_Object misc;
3343 {
3344 XMISCTYPE (misc) = Lisp_Misc_Free;
3345 XMISC (misc)->u_free.chain = marker_free_list;
3346 marker_free_list = XMISC (misc);
3347
3348 total_free_markers++;
3349 }
3350
3351 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3352 INTEGER. This is used to package C values to call record_unwind_protect.
3353 The unwind function can get the C values back using XSAVE_VALUE. */
3354
3355 Lisp_Object
3356 make_save_value (pointer, integer)
3357 void *pointer;
3358 int integer;
3359 {
3360 register Lisp_Object val;
3361 register struct Lisp_Save_Value *p;
3362
3363 val = allocate_misc ();
3364 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3365 p = XSAVE_VALUE (val);
3366 p->pointer = pointer;
3367 p->integer = integer;
3368 p->dogc = 0;
3369 return val;
3370 }
3371
3372 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3373 doc: /* Return a newly allocated marker which does not point at any place. */)
3374 ()
3375 {
3376 register Lisp_Object val;
3377 register struct Lisp_Marker *p;
3378
3379 val = allocate_misc ();
3380 XMISCTYPE (val) = Lisp_Misc_Marker;
3381 p = XMARKER (val);
3382 p->buffer = 0;
3383 p->bytepos = 0;
3384 p->charpos = 0;
3385 p->next = NULL;
3386 p->insertion_type = 0;
3387 return val;
3388 }
3389
3390 /* Put MARKER back on the free list after using it temporarily. */
3391
3392 void
3393 free_marker (marker)
3394 Lisp_Object marker;
3395 {
3396 unchain_marker (XMARKER (marker));
3397 free_misc (marker);
3398 }
3399
3400 \f
3401 /* Return a newly created vector or string with specified arguments as
3402 elements. If all the arguments are characters that can fit
3403 in a string of events, make a string; otherwise, make a vector.
3404
3405 Any number of arguments, even zero arguments, are allowed. */
3406
3407 Lisp_Object
3408 make_event_array (nargs, args)
3409 register int nargs;
3410 Lisp_Object *args;
3411 {
3412 int i;
3413
3414 for (i = 0; i < nargs; i++)
3415 /* The things that fit in a string
3416 are characters that are in 0...127,
3417 after discarding the meta bit and all the bits above it. */
3418 if (!INTEGERP (args[i])
3419 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3420 return Fvector (nargs, args);
3421
3422 /* Since the loop exited, we know that all the things in it are
3423 characters, so we can make a string. */
3424 {
3425 Lisp_Object result;
3426
3427 result = Fmake_string (make_number (nargs), make_number (0));
3428 for (i = 0; i < nargs; i++)
3429 {
3430 SSET (result, i, XINT (args[i]));
3431 /* Move the meta bit to the right place for a string char. */
3432 if (XINT (args[i]) & CHAR_META)
3433 SSET (result, i, SREF (result, i) | 0x80);
3434 }
3435
3436 return result;
3437 }
3438 }
3439
3440
3441 \f
3442 /************************************************************************
3443 Memory Full Handling
3444 ************************************************************************/
3445
3446
3447 /* Called if malloc returns zero. */
3448
3449 void
3450 memory_full ()
3451 {
3452 int i;
3453
3454 Vmemory_full = Qt;
3455
3456 memory_full_cons_threshold = sizeof (struct cons_block);
3457
3458 /* The first time we get here, free the spare memory. */
3459 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3460 if (spare_memory[i])
3461 {
3462 if (i == 0)
3463 free (spare_memory[i]);
3464 else if (i >= 1 && i <= 4)
3465 lisp_align_free (spare_memory[i]);
3466 else
3467 lisp_free (spare_memory[i]);
3468 spare_memory[i] = 0;
3469 }
3470
3471 /* Record the space now used. When it decreases substantially,
3472 we can refill the memory reserve. */
3473 #ifndef SYSTEM_MALLOC
3474 bytes_used_when_full = BYTES_USED;
3475 #endif
3476
3477 /* This used to call error, but if we've run out of memory, we could
3478 get infinite recursion trying to build the string. */
3479 xsignal (Qnil, Vmemory_signal_data);
3480 }
3481
3482 /* If we released our reserve (due to running out of memory),
3483 and we have a fair amount free once again,
3484 try to set aside another reserve in case we run out once more.
3485
3486 This is called when a relocatable block is freed in ralloc.c,
3487 and also directly from this file, in case we're not using ralloc.c. */
3488
3489 void
3490 refill_memory_reserve ()
3491 {
3492 #ifndef SYSTEM_MALLOC
3493 if (spare_memory[0] == 0)
3494 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3495 if (spare_memory[1] == 0)
3496 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3497 MEM_TYPE_CONS);
3498 if (spare_memory[2] == 0)
3499 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3500 MEM_TYPE_CONS);
3501 if (spare_memory[3] == 0)
3502 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3503 MEM_TYPE_CONS);
3504 if (spare_memory[4] == 0)
3505 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3506 MEM_TYPE_CONS);
3507 if (spare_memory[5] == 0)
3508 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3509 MEM_TYPE_STRING);
3510 if (spare_memory[6] == 0)
3511 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3512 MEM_TYPE_STRING);
3513 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3514 Vmemory_full = Qnil;
3515 #endif
3516 }
3517 \f
3518 /************************************************************************
3519 C Stack Marking
3520 ************************************************************************/
3521
3522 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3523
3524 /* Conservative C stack marking requires a method to identify possibly
3525 live Lisp objects given a pointer value. We do this by keeping
3526 track of blocks of Lisp data that are allocated in a red-black tree
3527 (see also the comment of mem_node which is the type of nodes in
3528 that tree). Function lisp_malloc adds information for an allocated
3529 block to the red-black tree with calls to mem_insert, and function
3530 lisp_free removes it with mem_delete. Functions live_string_p etc
3531 call mem_find to lookup information about a given pointer in the
3532 tree, and use that to determine if the pointer points to a Lisp
3533 object or not. */
3534
3535 /* Initialize this part of alloc.c. */
3536
3537 static void
3538 mem_init ()
3539 {
3540 mem_z.left = mem_z.right = MEM_NIL;
3541 mem_z.parent = NULL;
3542 mem_z.color = MEM_BLACK;
3543 mem_z.start = mem_z.end = NULL;
3544 mem_root = MEM_NIL;
3545 }
3546
3547
3548 /* Value is a pointer to the mem_node containing START. Value is
3549 MEM_NIL if there is no node in the tree containing START. */
3550
3551 static INLINE struct mem_node *
3552 mem_find (start)
3553 void *start;
3554 {
3555 struct mem_node *p;
3556
3557 if (start < min_heap_address || start > max_heap_address)
3558 return MEM_NIL;
3559
3560 /* Make the search always successful to speed up the loop below. */
3561 mem_z.start = start;
3562 mem_z.end = (char *) start + 1;
3563
3564 p = mem_root;
3565 while (start < p->start || start >= p->end)
3566 p = start < p->start ? p->left : p->right;
3567 return p;
3568 }
3569
3570
3571 /* Insert a new node into the tree for a block of memory with start
3572 address START, end address END, and type TYPE. Value is a
3573 pointer to the node that was inserted. */
3574
3575 static struct mem_node *
3576 mem_insert (start, end, type)
3577 void *start, *end;
3578 enum mem_type type;
3579 {
3580 struct mem_node *c, *parent, *x;
3581
3582 if (min_heap_address == NULL || start < min_heap_address)
3583 min_heap_address = start;
3584 if (max_heap_address == NULL || end > max_heap_address)
3585 max_heap_address = end;
3586
3587 /* See where in the tree a node for START belongs. In this
3588 particular application, it shouldn't happen that a node is already
3589 present. For debugging purposes, let's check that. */
3590 c = mem_root;
3591 parent = NULL;
3592
3593 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3594
3595 while (c != MEM_NIL)
3596 {
3597 if (start >= c->start && start < c->end)
3598 abort ();
3599 parent = c;
3600 c = start < c->start ? c->left : c->right;
3601 }
3602
3603 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3604
3605 while (c != MEM_NIL)
3606 {
3607 parent = c;
3608 c = start < c->start ? c->left : c->right;
3609 }
3610
3611 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3612
3613 /* Create a new node. */
3614 #ifdef GC_MALLOC_CHECK
3615 x = (struct mem_node *) _malloc_internal (sizeof *x);
3616 if (x == NULL)
3617 abort ();
3618 #else
3619 x = (struct mem_node *) xmalloc (sizeof *x);
3620 #endif
3621 x->start = start;
3622 x->end = end;
3623 x->type = type;
3624 x->parent = parent;
3625 x->left = x->right = MEM_NIL;
3626 x->color = MEM_RED;
3627
3628 /* Insert it as child of PARENT or install it as root. */
3629 if (parent)
3630 {
3631 if (start < parent->start)
3632 parent->left = x;
3633 else
3634 parent->right = x;
3635 }
3636 else
3637 mem_root = x;
3638
3639 /* Re-establish red-black tree properties. */
3640 mem_insert_fixup (x);
3641
3642 return x;
3643 }
3644
3645
3646 /* Re-establish the red-black properties of the tree, and thereby
3647 balance the tree, after node X has been inserted; X is always red. */
3648
3649 static void
3650 mem_insert_fixup (x)
3651 struct mem_node *x;
3652 {
3653 while (x != mem_root && x->parent->color == MEM_RED)
3654 {
3655 /* X is red and its parent is red. This is a violation of
3656 red-black tree property #3. */
3657
3658 if (x->parent == x->parent->parent->left)
3659 {
3660 /* We're on the left side of our grandparent, and Y is our
3661 "uncle". */
3662 struct mem_node *y = x->parent->parent->right;
3663
3664 if (y->color == MEM_RED)
3665 {
3666 /* Uncle and parent are red but should be black because
3667 X is red. Change the colors accordingly and proceed
3668 with the grandparent. */
3669 x->parent->color = MEM_BLACK;
3670 y->color = MEM_BLACK;
3671 x->parent->parent->color = MEM_RED;
3672 x = x->parent->parent;
3673 }
3674 else
3675 {
3676 /* Parent and uncle have different colors; parent is
3677 red, uncle is black. */
3678 if (x == x->parent->right)
3679 {
3680 x = x->parent;
3681 mem_rotate_left (x);
3682 }
3683
3684 x->parent->color = MEM_BLACK;
3685 x->parent->parent->color = MEM_RED;
3686 mem_rotate_right (x->parent->parent);
3687 }
3688 }
3689 else
3690 {
3691 /* This is the symmetrical case of above. */
3692 struct mem_node *y = x->parent->parent->left;
3693
3694 if (y->color == MEM_RED)
3695 {
3696 x->parent->color = MEM_BLACK;
3697 y->color = MEM_BLACK;
3698 x->parent->parent->color = MEM_RED;
3699 x = x->parent->parent;
3700 }
3701 else
3702 {
3703 if (x == x->parent->left)
3704 {
3705 x = x->parent;
3706 mem_rotate_right (x);
3707 }
3708
3709 x->parent->color = MEM_BLACK;
3710 x->parent->parent->color = MEM_RED;
3711 mem_rotate_left (x->parent->parent);
3712 }
3713 }
3714 }
3715
3716 /* The root may have been changed to red due to the algorithm. Set
3717 it to black so that property #5 is satisfied. */
3718 mem_root->color = MEM_BLACK;
3719 }
3720
3721
3722 /* (x) (y)
3723 / \ / \
3724 a (y) ===> (x) c
3725 / \ / \
3726 b c a b */
3727
3728 static void
3729 mem_rotate_left (x)
3730 struct mem_node *x;
3731 {
3732 struct mem_node *y;
3733
3734 /* Turn y's left sub-tree into x's right sub-tree. */
3735 y = x->right;
3736 x->right = y->left;
3737 if (y->left != MEM_NIL)
3738 y->left->parent = x;
3739
3740 /* Y's parent was x's parent. */
3741 if (y != MEM_NIL)
3742 y->parent = x->parent;
3743
3744 /* Get the parent to point to y instead of x. */
3745 if (x->parent)
3746 {
3747 if (x == x->parent->left)
3748 x->parent->left = y;
3749 else
3750 x->parent->right = y;
3751 }
3752 else
3753 mem_root = y;
3754
3755 /* Put x on y's left. */
3756 y->left = x;
3757 if (x != MEM_NIL)
3758 x->parent = y;
3759 }
3760
3761
3762 /* (x) (Y)
3763 / \ / \
3764 (y) c ===> a (x)
3765 / \ / \
3766 a b b c */
3767
3768 static void
3769 mem_rotate_right (x)
3770 struct mem_node *x;
3771 {
3772 struct mem_node *y = x->left;
3773
3774 x->left = y->right;
3775 if (y->right != MEM_NIL)
3776 y->right->parent = x;
3777
3778 if (y != MEM_NIL)
3779 y->parent = x->parent;
3780 if (x->parent)
3781 {
3782 if (x == x->parent->right)
3783 x->parent->right = y;
3784 else
3785 x->parent->left = y;
3786 }
3787 else
3788 mem_root = y;
3789
3790 y->right = x;
3791 if (x != MEM_NIL)
3792 x->parent = y;
3793 }
3794
3795
3796 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3797
3798 static void
3799 mem_delete (z)
3800 struct mem_node *z;
3801 {
3802 struct mem_node *x, *y;
3803
3804 if (!z || z == MEM_NIL)
3805 return;
3806
3807 if (z->left == MEM_NIL || z->right == MEM_NIL)
3808 y = z;
3809 else
3810 {
3811 y = z->right;
3812 while (y->left != MEM_NIL)
3813 y = y->left;
3814 }
3815
3816 if (y->left != MEM_NIL)
3817 x = y->left;
3818 else
3819 x = y->right;
3820
3821 x->parent = y->parent;
3822 if (y->parent)
3823 {
3824 if (y == y->parent->left)
3825 y->parent->left = x;
3826 else
3827 y->parent->right = x;
3828 }
3829 else
3830 mem_root = x;
3831
3832 if (y != z)
3833 {
3834 z->start = y->start;
3835 z->end = y->end;
3836 z->type = y->type;
3837 }
3838
3839 if (y->color == MEM_BLACK)
3840 mem_delete_fixup (x);
3841
3842 #ifdef GC_MALLOC_CHECK
3843 _free_internal (y);
3844 #else
3845 xfree (y);
3846 #endif
3847 }
3848
3849
3850 /* Re-establish the red-black properties of the tree, after a
3851 deletion. */
3852
3853 static void
3854 mem_delete_fixup (x)
3855 struct mem_node *x;
3856 {
3857 while (x != mem_root && x->color == MEM_BLACK)
3858 {
3859 if (x == x->parent->left)
3860 {
3861 struct mem_node *w = x->parent->right;
3862
3863 if (w->color == MEM_RED)
3864 {
3865 w->color = MEM_BLACK;
3866 x->parent->color = MEM_RED;
3867 mem_rotate_left (x->parent);
3868 w = x->parent->right;
3869 }
3870
3871 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3872 {
3873 w->color = MEM_RED;
3874 x = x->parent;
3875 }
3876 else
3877 {
3878 if (w->right->color == MEM_BLACK)
3879 {
3880 w->left->color = MEM_BLACK;
3881 w->color = MEM_RED;
3882 mem_rotate_right (w);
3883 w = x->parent->right;
3884 }
3885 w->color = x->parent->color;
3886 x->parent->color = MEM_BLACK;
3887 w->right->color = MEM_BLACK;
3888 mem_rotate_left (x->parent);
3889 x = mem_root;
3890 }
3891 }
3892 else
3893 {
3894 struct mem_node *w = x->parent->left;
3895
3896 if (w->color == MEM_RED)
3897 {
3898 w->color = MEM_BLACK;
3899 x->parent->color = MEM_RED;
3900 mem_rotate_right (x->parent);
3901 w = x->parent->left;
3902 }
3903
3904 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3905 {
3906 w->color = MEM_RED;
3907 x = x->parent;
3908 }
3909 else
3910 {
3911 if (w->left->color == MEM_BLACK)
3912 {
3913 w->right->color = MEM_BLACK;
3914 w->color = MEM_RED;
3915 mem_rotate_left (w);
3916 w = x->parent->left;
3917 }
3918
3919 w->color = x->parent->color;
3920 x->parent->color = MEM_BLACK;
3921 w->left->color = MEM_BLACK;
3922 mem_rotate_right (x->parent);
3923 x = mem_root;
3924 }
3925 }
3926 }
3927
3928 x->color = MEM_BLACK;
3929 }
3930
3931
3932 /* Value is non-zero if P is a pointer to a live Lisp string on
3933 the heap. M is a pointer to the mem_block for P. */
3934
3935 static INLINE int
3936 live_string_p (m, p)
3937 struct mem_node *m;
3938 void *p;
3939 {
3940 if (m->type == MEM_TYPE_STRING)
3941 {
3942 struct string_block *b = (struct string_block *) m->start;
3943 int offset = (char *) p - (char *) &b->strings[0];
3944
3945 /* P must point to the start of a Lisp_String structure, and it
3946 must not be on the free-list. */
3947 return (offset >= 0
3948 && offset % sizeof b->strings[0] == 0
3949 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3950 && ((struct Lisp_String *) p)->data != NULL);
3951 }
3952 else
3953 return 0;
3954 }
3955
3956
3957 /* Value is non-zero if P is a pointer to a live Lisp cons on
3958 the heap. M is a pointer to the mem_block for P. */
3959
3960 static INLINE int
3961 live_cons_p (m, p)
3962 struct mem_node *m;
3963 void *p;
3964 {
3965 if (m->type == MEM_TYPE_CONS)
3966 {
3967 struct cons_block *b = (struct cons_block *) m->start;
3968 int offset = (char *) p - (char *) &b->conses[0];
3969
3970 /* P must point to the start of a Lisp_Cons, not be
3971 one of the unused cells in the current cons block,
3972 and not be on the free-list. */
3973 return (offset >= 0
3974 && offset % sizeof b->conses[0] == 0
3975 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3976 && (b != cons_block
3977 || offset / sizeof b->conses[0] < cons_block_index)
3978 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3979 }
3980 else
3981 return 0;
3982 }
3983
3984
3985 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3986 the heap. M is a pointer to the mem_block for P. */
3987
3988 static INLINE int
3989 live_symbol_p (m, p)
3990 struct mem_node *m;
3991 void *p;
3992 {
3993 if (m->type == MEM_TYPE_SYMBOL)
3994 {
3995 struct symbol_block *b = (struct symbol_block *) m->start;
3996 int offset = (char *) p - (char *) &b->symbols[0];
3997
3998 /* P must point to the start of a Lisp_Symbol, not be
3999 one of the unused cells in the current symbol block,
4000 and not be on the free-list. */
4001 return (offset >= 0
4002 && offset % sizeof b->symbols[0] == 0
4003 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4004 && (b != symbol_block
4005 || offset / sizeof b->symbols[0] < symbol_block_index)
4006 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4007 }
4008 else
4009 return 0;
4010 }
4011
4012
4013 /* Value is non-zero if P is a pointer to a live Lisp float on
4014 the heap. M is a pointer to the mem_block for P. */
4015
4016 static INLINE int
4017 live_float_p (m, p)
4018 struct mem_node *m;
4019 void *p;
4020 {
4021 if (m->type == MEM_TYPE_FLOAT)
4022 {
4023 struct float_block *b = (struct float_block *) m->start;
4024 int offset = (char *) p - (char *) &b->floats[0];
4025
4026 /* P must point to the start of a Lisp_Float and not be
4027 one of the unused cells in the current float block. */
4028 return (offset >= 0
4029 && offset % sizeof b->floats[0] == 0
4030 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4031 && (b != float_block
4032 || offset / sizeof b->floats[0] < float_block_index));
4033 }
4034 else
4035 return 0;
4036 }
4037
4038
4039 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4040 the heap. M is a pointer to the mem_block for P. */
4041
4042 static INLINE int
4043 live_misc_p (m, p)
4044 struct mem_node *m;
4045 void *p;
4046 {
4047 if (m->type == MEM_TYPE_MISC)
4048 {
4049 struct marker_block *b = (struct marker_block *) m->start;
4050 int offset = (char *) p - (char *) &b->markers[0];
4051
4052 /* P must point to the start of a Lisp_Misc, not be
4053 one of the unused cells in the current misc block,
4054 and not be on the free-list. */
4055 return (offset >= 0
4056 && offset % sizeof b->markers[0] == 0
4057 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4058 && (b != marker_block
4059 || offset / sizeof b->markers[0] < marker_block_index)
4060 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4061 }
4062 else
4063 return 0;
4064 }
4065
4066
4067 /* Value is non-zero if P is a pointer to a live vector-like object.
4068 M is a pointer to the mem_block for P. */
4069
4070 static INLINE int
4071 live_vector_p (m, p)
4072 struct mem_node *m;
4073 void *p;
4074 {
4075 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4076 }
4077
4078
4079 /* Value is non-zero if P is a pointer to a live buffer. M is a
4080 pointer to the mem_block for P. */
4081
4082 static INLINE int
4083 live_buffer_p (m, p)
4084 struct mem_node *m;
4085 void *p;
4086 {
4087 /* P must point to the start of the block, and the buffer
4088 must not have been killed. */
4089 return (m->type == MEM_TYPE_BUFFER
4090 && p == m->start
4091 && !NILP (((struct buffer *) p)->name));
4092 }
4093
4094 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4095
4096 #if GC_MARK_STACK
4097
4098 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4099
4100 /* Array of objects that are kept alive because the C stack contains
4101 a pattern that looks like a reference to them . */
4102
4103 #define MAX_ZOMBIES 10
4104 static Lisp_Object zombies[MAX_ZOMBIES];
4105
4106 /* Number of zombie objects. */
4107
4108 static int nzombies;
4109
4110 /* Number of garbage collections. */
4111
4112 static int ngcs;
4113
4114 /* Average percentage of zombies per collection. */
4115
4116 static double avg_zombies;
4117
4118 /* Max. number of live and zombie objects. */
4119
4120 static int max_live, max_zombies;
4121
4122 /* Average number of live objects per GC. */
4123
4124 static double avg_live;
4125
4126 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4127 doc: /* Show information about live and zombie objects. */)
4128 ()
4129 {
4130 Lisp_Object args[8], zombie_list = Qnil;
4131 int i;
4132 for (i = 0; i < nzombies; i++)
4133 zombie_list = Fcons (zombies[i], zombie_list);
4134 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4135 args[1] = make_number (ngcs);
4136 args[2] = make_float (avg_live);
4137 args[3] = make_float (avg_zombies);
4138 args[4] = make_float (avg_zombies / avg_live / 100);
4139 args[5] = make_number (max_live);
4140 args[6] = make_number (max_zombies);
4141 args[7] = zombie_list;
4142 return Fmessage (8, args);
4143 }
4144
4145 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4146
4147
4148 /* Mark OBJ if we can prove it's a Lisp_Object. */
4149
4150 static INLINE void
4151 mark_maybe_object (obj)
4152 Lisp_Object obj;
4153 {
4154 void *po = (void *) XPNTR (obj);
4155 struct mem_node *m = mem_find (po);
4156
4157 if (m != MEM_NIL)
4158 {
4159 int mark_p = 0;
4160
4161 switch (XGCTYPE (obj))
4162 {
4163 case Lisp_String:
4164 mark_p = (live_string_p (m, po)
4165 && !STRING_MARKED_P ((struct Lisp_String *) po));
4166 break;
4167
4168 case Lisp_Cons:
4169 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4170 break;
4171
4172 case Lisp_Symbol:
4173 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4174 break;
4175
4176 case Lisp_Float:
4177 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4178 break;
4179
4180 case Lisp_Vectorlike:
4181 /* Note: can't check GC_BUFFERP before we know it's a
4182 buffer because checking that dereferences the pointer
4183 PO which might point anywhere. */
4184 if (live_vector_p (m, po))
4185 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4186 else if (live_buffer_p (m, po))
4187 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4188 break;
4189
4190 case Lisp_Misc:
4191 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4192 break;
4193
4194 case Lisp_Int:
4195 case Lisp_Type_Limit:
4196 break;
4197 }
4198
4199 if (mark_p)
4200 {
4201 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4202 if (nzombies < MAX_ZOMBIES)
4203 zombies[nzombies] = obj;
4204 ++nzombies;
4205 #endif
4206 mark_object (obj);
4207 }
4208 }
4209 }
4210
4211
4212 /* If P points to Lisp data, mark that as live if it isn't already
4213 marked. */
4214
4215 static INLINE void
4216 mark_maybe_pointer (p)
4217 void *p;
4218 {
4219 struct mem_node *m;
4220
4221 /* Quickly rule out some values which can't point to Lisp data. */
4222 if ((EMACS_INT) p %
4223 #ifdef USE_LSB_TAG
4224 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4225 #else
4226 2 /* We assume that Lisp data is aligned on even addresses. */
4227 #endif
4228 )
4229 return;
4230
4231 m = mem_find (p);
4232 if (m != MEM_NIL)
4233 {
4234 Lisp_Object obj = Qnil;
4235
4236 switch (m->type)
4237 {
4238 case MEM_TYPE_NON_LISP:
4239 /* Nothing to do; not a pointer to Lisp memory. */
4240 break;
4241
4242 case MEM_TYPE_BUFFER:
4243 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4244 XSETVECTOR (obj, p);
4245 break;
4246
4247 case MEM_TYPE_CONS:
4248 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4249 XSETCONS (obj, p);
4250 break;
4251
4252 case MEM_TYPE_STRING:
4253 if (live_string_p (m, p)
4254 && !STRING_MARKED_P ((struct Lisp_String *) p))
4255 XSETSTRING (obj, p);
4256 break;
4257
4258 case MEM_TYPE_MISC:
4259 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4260 XSETMISC (obj, p);
4261 break;
4262
4263 case MEM_TYPE_SYMBOL:
4264 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4265 XSETSYMBOL (obj, p);
4266 break;
4267
4268 case MEM_TYPE_FLOAT:
4269 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4270 XSETFLOAT (obj, p);
4271 break;
4272
4273 case MEM_TYPE_VECTORLIKE:
4274 if (live_vector_p (m, p))
4275 {
4276 Lisp_Object tem;
4277 XSETVECTOR (tem, p);
4278 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4279 obj = tem;
4280 }
4281 break;
4282
4283 default:
4284 abort ();
4285 }
4286
4287 if (!GC_NILP (obj))
4288 mark_object (obj);
4289 }
4290 }
4291
4292
4293 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4294 or END+OFFSET..START. */
4295
4296 static void
4297 mark_memory (start, end, offset)
4298 void *start, *end;
4299 int offset;
4300 {
4301 Lisp_Object *p;
4302 void **pp;
4303
4304 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4305 nzombies = 0;
4306 #endif
4307
4308 /* Make START the pointer to the start of the memory region,
4309 if it isn't already. */
4310 if (end < start)
4311 {
4312 void *tem = start;
4313 start = end;
4314 end = tem;
4315 }
4316
4317 /* Mark Lisp_Objects. */
4318 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4319 mark_maybe_object (*p);
4320
4321 /* Mark Lisp data pointed to. This is necessary because, in some
4322 situations, the C compiler optimizes Lisp objects away, so that
4323 only a pointer to them remains. Example:
4324
4325 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4326 ()
4327 {
4328 Lisp_Object obj = build_string ("test");
4329 struct Lisp_String *s = XSTRING (obj);
4330 Fgarbage_collect ();
4331 fprintf (stderr, "test `%s'\n", s->data);
4332 return Qnil;
4333 }
4334
4335 Here, `obj' isn't really used, and the compiler optimizes it
4336 away. The only reference to the life string is through the
4337 pointer `s'. */
4338
4339 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4340 mark_maybe_pointer (*pp);
4341 }
4342
4343 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4344 the GCC system configuration. In gcc 3.2, the only systems for
4345 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4346 by others?) and ns32k-pc532-min. */
4347
4348 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4349
4350 static int setjmp_tested_p, longjmps_done;
4351
4352 #define SETJMP_WILL_LIKELY_WORK "\
4353 \n\
4354 Emacs garbage collector has been changed to use conservative stack\n\
4355 marking. Emacs has determined that the method it uses to do the\n\
4356 marking will likely work on your system, but this isn't sure.\n\
4357 \n\
4358 If you are a system-programmer, or can get the help of a local wizard\n\
4359 who is, please take a look at the function mark_stack in alloc.c, and\n\
4360 verify that the methods used are appropriate for your system.\n\
4361 \n\
4362 Please mail the result to <emacs-devel@gnu.org>.\n\
4363 "
4364
4365 #define SETJMP_WILL_NOT_WORK "\
4366 \n\
4367 Emacs garbage collector has been changed to use conservative stack\n\
4368 marking. Emacs has determined that the default method it uses to do the\n\
4369 marking will not work on your system. We will need a system-dependent\n\
4370 solution for your system.\n\
4371 \n\
4372 Please take a look at the function mark_stack in alloc.c, and\n\
4373 try to find a way to make it work on your system.\n\
4374 \n\
4375 Note that you may get false negatives, depending on the compiler.\n\
4376 In particular, you need to use -O with GCC for this test.\n\
4377 \n\
4378 Please mail the result to <emacs-devel@gnu.org>.\n\
4379 "
4380
4381
4382 /* Perform a quick check if it looks like setjmp saves registers in a
4383 jmp_buf. Print a message to stderr saying so. When this test
4384 succeeds, this is _not_ a proof that setjmp is sufficient for
4385 conservative stack marking. Only the sources or a disassembly
4386 can prove that. */
4387
4388 static void
4389 test_setjmp ()
4390 {
4391 char buf[10];
4392 register int x;
4393 jmp_buf jbuf;
4394 int result = 0;
4395
4396 /* Arrange for X to be put in a register. */
4397 sprintf (buf, "1");
4398 x = strlen (buf);
4399 x = 2 * x - 1;
4400
4401 setjmp (jbuf);
4402 if (longjmps_done == 1)
4403 {
4404 /* Came here after the longjmp at the end of the function.
4405
4406 If x == 1, the longjmp has restored the register to its
4407 value before the setjmp, and we can hope that setjmp
4408 saves all such registers in the jmp_buf, although that
4409 isn't sure.
4410
4411 For other values of X, either something really strange is
4412 taking place, or the setjmp just didn't save the register. */
4413
4414 if (x == 1)
4415 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4416 else
4417 {
4418 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4419 exit (1);
4420 }
4421 }
4422
4423 ++longjmps_done;
4424 x = 2;
4425 if (longjmps_done == 1)
4426 longjmp (jbuf, 1);
4427 }
4428
4429 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4430
4431
4432 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4433
4434 /* Abort if anything GCPRO'd doesn't survive the GC. */
4435
4436 static void
4437 check_gcpros ()
4438 {
4439 struct gcpro *p;
4440 int i;
4441
4442 for (p = gcprolist; p; p = p->next)
4443 for (i = 0; i < p->nvars; ++i)
4444 if (!survives_gc_p (p->var[i]))
4445 /* FIXME: It's not necessarily a bug. It might just be that the
4446 GCPRO is unnecessary or should release the object sooner. */
4447 abort ();
4448 }
4449
4450 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4451
4452 static void
4453 dump_zombies ()
4454 {
4455 int i;
4456
4457 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4458 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4459 {
4460 fprintf (stderr, " %d = ", i);
4461 debug_print (zombies[i]);
4462 }
4463 }
4464
4465 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4466
4467
4468 /* Mark live Lisp objects on the C stack.
4469
4470 There are several system-dependent problems to consider when
4471 porting this to new architectures:
4472
4473 Processor Registers
4474
4475 We have to mark Lisp objects in CPU registers that can hold local
4476 variables or are used to pass parameters.
4477
4478 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4479 something that either saves relevant registers on the stack, or
4480 calls mark_maybe_object passing it each register's contents.
4481
4482 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4483 implementation assumes that calling setjmp saves registers we need
4484 to see in a jmp_buf which itself lies on the stack. This doesn't
4485 have to be true! It must be verified for each system, possibly
4486 by taking a look at the source code of setjmp.
4487
4488 Stack Layout
4489
4490 Architectures differ in the way their processor stack is organized.
4491 For example, the stack might look like this
4492
4493 +----------------+
4494 | Lisp_Object | size = 4
4495 +----------------+
4496 | something else | size = 2
4497 +----------------+
4498 | Lisp_Object | size = 4
4499 +----------------+
4500 | ... |
4501
4502 In such a case, not every Lisp_Object will be aligned equally. To
4503 find all Lisp_Object on the stack it won't be sufficient to walk
4504 the stack in steps of 4 bytes. Instead, two passes will be
4505 necessary, one starting at the start of the stack, and a second
4506 pass starting at the start of the stack + 2. Likewise, if the
4507 minimal alignment of Lisp_Objects on the stack is 1, four passes
4508 would be necessary, each one starting with one byte more offset
4509 from the stack start.
4510
4511 The current code assumes by default that Lisp_Objects are aligned
4512 equally on the stack. */
4513
4514 static void
4515 mark_stack ()
4516 {
4517 int i;
4518 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4519 union aligned_jmpbuf {
4520 Lisp_Object o;
4521 jmp_buf j;
4522 } j;
4523 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4524 void *end;
4525
4526 /* This trick flushes the register windows so that all the state of
4527 the process is contained in the stack. */
4528 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4529 needed on ia64 too. See mach_dep.c, where it also says inline
4530 assembler doesn't work with relevant proprietary compilers. */
4531 #ifdef sparc
4532 asm ("ta 3");
4533 #endif
4534
4535 /* Save registers that we need to see on the stack. We need to see
4536 registers used to hold register variables and registers used to
4537 pass parameters. */
4538 #ifdef GC_SAVE_REGISTERS_ON_STACK
4539 GC_SAVE_REGISTERS_ON_STACK (end);
4540 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4541
4542 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4543 setjmp will definitely work, test it
4544 and print a message with the result
4545 of the test. */
4546 if (!setjmp_tested_p)
4547 {
4548 setjmp_tested_p = 1;
4549 test_setjmp ();
4550 }
4551 #endif /* GC_SETJMP_WORKS */
4552
4553 setjmp (j.j);
4554 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4555 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4556
4557 /* This assumes that the stack is a contiguous region in memory. If
4558 that's not the case, something has to be done here to iterate
4559 over the stack segments. */
4560 #ifndef GC_LISP_OBJECT_ALIGNMENT
4561 #ifdef __GNUC__
4562 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4563 #else
4564 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4565 #endif
4566 #endif
4567 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4568 mark_memory (stack_base, end, i);
4569 /* Allow for marking a secondary stack, like the register stack on the
4570 ia64. */
4571 #ifdef GC_MARK_SECONDARY_STACK
4572 GC_MARK_SECONDARY_STACK ();
4573 #endif
4574
4575 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4576 check_gcpros ();
4577 #endif
4578 }
4579
4580 #endif /* GC_MARK_STACK != 0 */
4581
4582
4583 /* Determine whether it is safe to access memory at address P. */
4584 static int
4585 valid_pointer_p (p)
4586 void *p;
4587 {
4588 #ifdef WINDOWSNT
4589 return w32_valid_pointer_p (p, 16);
4590 #else
4591 int fd;
4592
4593 /* Obviously, we cannot just access it (we would SEGV trying), so we
4594 trick the o/s to tell us whether p is a valid pointer.
4595 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4596 not validate p in that case. */
4597
4598 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4599 {
4600 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4601 emacs_close (fd);
4602 unlink ("__Valid__Lisp__Object__");
4603 return valid;
4604 }
4605
4606 return -1;
4607 #endif
4608 }
4609
4610 /* Return 1 if OBJ is a valid lisp object.
4611 Return 0 if OBJ is NOT a valid lisp object.
4612 Return -1 if we cannot validate OBJ.
4613 This function can be quite slow,
4614 so it should only be used in code for manual debugging. */
4615
4616 int
4617 valid_lisp_object_p (obj)
4618 Lisp_Object obj;
4619 {
4620 void *p;
4621 #if GC_MARK_STACK
4622 struct mem_node *m;
4623 #endif
4624
4625 if (INTEGERP (obj))
4626 return 1;
4627
4628 p = (void *) XPNTR (obj);
4629 if (PURE_POINTER_P (p))
4630 return 1;
4631
4632 #if !GC_MARK_STACK
4633 return valid_pointer_p (p);
4634 #else
4635
4636 m = mem_find (p);
4637
4638 if (m == MEM_NIL)
4639 {
4640 int valid = valid_pointer_p (p);
4641 if (valid <= 0)
4642 return valid;
4643
4644 if (SUBRP (obj))
4645 return 1;
4646
4647 return 0;
4648 }
4649
4650 switch (m->type)
4651 {
4652 case MEM_TYPE_NON_LISP:
4653 return 0;
4654
4655 case MEM_TYPE_BUFFER:
4656 return live_buffer_p (m, p);
4657
4658 case MEM_TYPE_CONS:
4659 return live_cons_p (m, p);
4660
4661 case MEM_TYPE_STRING:
4662 return live_string_p (m, p);
4663
4664 case MEM_TYPE_MISC:
4665 return live_misc_p (m, p);
4666
4667 case MEM_TYPE_SYMBOL:
4668 return live_symbol_p (m, p);
4669
4670 case MEM_TYPE_FLOAT:
4671 return live_float_p (m, p);
4672
4673 case MEM_TYPE_VECTORLIKE:
4674 return live_vector_p (m, p);
4675
4676 default:
4677 break;
4678 }
4679
4680 return 0;
4681 #endif
4682 }
4683
4684
4685
4686 \f
4687 /***********************************************************************
4688 Pure Storage Management
4689 ***********************************************************************/
4690
4691 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4692 pointer to it. TYPE is the Lisp type for which the memory is
4693 allocated. TYPE < 0 means it's not used for a Lisp object. */
4694
4695 static POINTER_TYPE *
4696 pure_alloc (size, type)
4697 size_t size;
4698 int type;
4699 {
4700 POINTER_TYPE *result;
4701 #ifdef USE_LSB_TAG
4702 size_t alignment = (1 << GCTYPEBITS);
4703 #else
4704 size_t alignment = sizeof (EMACS_INT);
4705
4706 /* Give Lisp_Floats an extra alignment. */
4707 if (type == Lisp_Float)
4708 {
4709 #if defined __GNUC__ && __GNUC__ >= 2
4710 alignment = __alignof (struct Lisp_Float);
4711 #else
4712 alignment = sizeof (struct Lisp_Float);
4713 #endif
4714 }
4715 #endif
4716
4717 again:
4718 if (type >= 0)
4719 {
4720 /* Allocate space for a Lisp object from the beginning of the free
4721 space with taking account of alignment. */
4722 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4723 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4724 }
4725 else
4726 {
4727 /* Allocate space for a non-Lisp object from the end of the free
4728 space. */
4729 pure_bytes_used_non_lisp += size;
4730 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4731 }
4732 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4733
4734 if (pure_bytes_used <= pure_size)
4735 return result;
4736
4737 /* Don't allocate a large amount here,
4738 because it might get mmap'd and then its address
4739 might not be usable. */
4740 purebeg = (char *) xmalloc (10000);
4741 pure_size = 10000;
4742 pure_bytes_used_before_overflow += pure_bytes_used - size;
4743 pure_bytes_used = 0;
4744 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4745 goto again;
4746 }
4747
4748
4749 /* Print a warning if PURESIZE is too small. */
4750
4751 void
4752 check_pure_size ()
4753 {
4754 if (pure_bytes_used_before_overflow)
4755 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4756 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4757 }
4758
4759
4760 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4761 the non-Lisp data pool of the pure storage, and return its start
4762 address. Return NULL if not found. */
4763
4764 static char *
4765 find_string_data_in_pure (data, nbytes)
4766 char *data;
4767 int nbytes;
4768 {
4769 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4770 unsigned char *p;
4771 char *non_lisp_beg;
4772
4773 if (pure_bytes_used_non_lisp < nbytes + 1)
4774 return NULL;
4775
4776 /* Set up the Boyer-Moore table. */
4777 skip = nbytes + 1;
4778 for (i = 0; i < 256; i++)
4779 bm_skip[i] = skip;
4780
4781 p = (unsigned char *) data;
4782 while (--skip > 0)
4783 bm_skip[*p++] = skip;
4784
4785 last_char_skip = bm_skip['\0'];
4786
4787 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4788 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4789
4790 /* See the comments in the function `boyer_moore' (search.c) for the
4791 use of `infinity'. */
4792 infinity = pure_bytes_used_non_lisp + 1;
4793 bm_skip['\0'] = infinity;
4794
4795 p = (unsigned char *) non_lisp_beg + nbytes;
4796 start = 0;
4797 do
4798 {
4799 /* Check the last character (== '\0'). */
4800 do
4801 {
4802 start += bm_skip[*(p + start)];
4803 }
4804 while (start <= start_max);
4805
4806 if (start < infinity)
4807 /* Couldn't find the last character. */
4808 return NULL;
4809
4810 /* No less than `infinity' means we could find the last
4811 character at `p[start - infinity]'. */
4812 start -= infinity;
4813
4814 /* Check the remaining characters. */
4815 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4816 /* Found. */
4817 return non_lisp_beg + start;
4818
4819 start += last_char_skip;
4820 }
4821 while (start <= start_max);
4822
4823 return NULL;
4824 }
4825
4826
4827 /* Return a string allocated in pure space. DATA is a buffer holding
4828 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4829 non-zero means make the result string multibyte.
4830
4831 Must get an error if pure storage is full, since if it cannot hold
4832 a large string it may be able to hold conses that point to that
4833 string; then the string is not protected from gc. */
4834
4835 Lisp_Object
4836 make_pure_string (data, nchars, nbytes, multibyte)
4837 char *data;
4838 int nchars, nbytes;
4839 int multibyte;
4840 {
4841 Lisp_Object string;
4842 struct Lisp_String *s;
4843
4844 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4845 s->data = find_string_data_in_pure (data, nbytes);
4846 if (s->data == NULL)
4847 {
4848 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4849 bcopy (data, s->data, nbytes);
4850 s->data[nbytes] = '\0';
4851 }
4852 s->size = nchars;
4853 s->size_byte = multibyte ? nbytes : -1;
4854 s->intervals = NULL_INTERVAL;
4855 XSETSTRING (string, s);
4856 return string;
4857 }
4858
4859
4860 /* Return a cons allocated from pure space. Give it pure copies
4861 of CAR as car and CDR as cdr. */
4862
4863 Lisp_Object
4864 pure_cons (car, cdr)
4865 Lisp_Object car, cdr;
4866 {
4867 register Lisp_Object new;
4868 struct Lisp_Cons *p;
4869
4870 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4871 XSETCONS (new, p);
4872 XSETCAR (new, Fpurecopy (car));
4873 XSETCDR (new, Fpurecopy (cdr));
4874 return new;
4875 }
4876
4877
4878 /* Value is a float object with value NUM allocated from pure space. */
4879
4880 static Lisp_Object
4881 make_pure_float (num)
4882 double num;
4883 {
4884 register Lisp_Object new;
4885 struct Lisp_Float *p;
4886
4887 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4888 XSETFLOAT (new, p);
4889 XFLOAT_DATA (new) = num;
4890 return new;
4891 }
4892
4893
4894 /* Return a vector with room for LEN Lisp_Objects allocated from
4895 pure space. */
4896
4897 Lisp_Object
4898 make_pure_vector (len)
4899 EMACS_INT len;
4900 {
4901 Lisp_Object new;
4902 struct Lisp_Vector *p;
4903 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4904
4905 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4906 XSETVECTOR (new, p);
4907 XVECTOR (new)->size = len;
4908 return new;
4909 }
4910
4911
4912 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4913 doc: /* Make a copy of object OBJ in pure storage.
4914 Recursively copies contents of vectors and cons cells.
4915 Does not copy symbols. Copies strings without text properties. */)
4916 (obj)
4917 register Lisp_Object obj;
4918 {
4919 if (NILP (Vpurify_flag))
4920 return obj;
4921
4922 if (PURE_POINTER_P (XPNTR (obj)))
4923 return obj;
4924
4925 if (CONSP (obj))
4926 return pure_cons (XCAR (obj), XCDR (obj));
4927 else if (FLOATP (obj))
4928 return make_pure_float (XFLOAT_DATA (obj));
4929 else if (STRINGP (obj))
4930 return make_pure_string (SDATA (obj), SCHARS (obj),
4931 SBYTES (obj),
4932 STRING_MULTIBYTE (obj));
4933 else if (COMPILEDP (obj) || VECTORP (obj))
4934 {
4935 register struct Lisp_Vector *vec;
4936 register int i;
4937 EMACS_INT size;
4938
4939 size = XVECTOR (obj)->size;
4940 if (size & PSEUDOVECTOR_FLAG)
4941 size &= PSEUDOVECTOR_SIZE_MASK;
4942 vec = XVECTOR (make_pure_vector (size));
4943 for (i = 0; i < size; i++)
4944 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4945 if (COMPILEDP (obj))
4946 {
4947 XSETPVECTYPE (vec, PVEC_COMPILED);
4948 XSETCOMPILED (obj, vec);
4949 }
4950 else
4951 XSETVECTOR (obj, vec);
4952 return obj;
4953 }
4954 else if (MARKERP (obj))
4955 error ("Attempt to copy a marker to pure storage");
4956
4957 return obj;
4958 }
4959
4960
4961 \f
4962 /***********************************************************************
4963 Protection from GC
4964 ***********************************************************************/
4965
4966 /* Put an entry in staticvec, pointing at the variable with address
4967 VARADDRESS. */
4968
4969 void
4970 staticpro (varaddress)
4971 Lisp_Object *varaddress;
4972 {
4973 staticvec[staticidx++] = varaddress;
4974 if (staticidx >= NSTATICS)
4975 abort ();
4976 }
4977
4978 struct catchtag
4979 {
4980 Lisp_Object tag;
4981 Lisp_Object val;
4982 struct catchtag *next;
4983 };
4984
4985 \f
4986 /***********************************************************************
4987 Protection from GC
4988 ***********************************************************************/
4989
4990 /* Temporarily prevent garbage collection. */
4991
4992 int
4993 inhibit_garbage_collection ()
4994 {
4995 int count = SPECPDL_INDEX ();
4996 int nbits = min (VALBITS, BITS_PER_INT);
4997
4998 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4999 return count;
5000 }
5001
5002
5003 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5004 doc: /* Reclaim storage for Lisp objects no longer needed.
5005 Garbage collection happens automatically if you cons more than
5006 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5007 `garbage-collect' normally returns a list with info on amount of space in use:
5008 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5009 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5010 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5011 (USED-STRINGS . FREE-STRINGS))
5012 However, if there was overflow in pure space, `garbage-collect'
5013 returns nil, because real GC can't be done. */)
5014 ()
5015 {
5016 register struct specbinding *bind;
5017 struct catchtag *catch;
5018 struct handler *handler;
5019 char stack_top_variable;
5020 register int i;
5021 int message_p;
5022 Lisp_Object total[8];
5023 int count = SPECPDL_INDEX ();
5024 EMACS_TIME t1, t2, t3;
5025
5026 if (abort_on_gc)
5027 abort ();
5028
5029 /* Can't GC if pure storage overflowed because we can't determine
5030 if something is a pure object or not. */
5031 if (pure_bytes_used_before_overflow)
5032 return Qnil;
5033
5034 CHECK_CONS_LIST ();
5035
5036 /* Don't keep undo information around forever.
5037 Do this early on, so it is no problem if the user quits. */
5038 {
5039 register struct buffer *nextb = all_buffers;
5040
5041 while (nextb)
5042 {
5043 /* If a buffer's undo list is Qt, that means that undo is
5044 turned off in that buffer. Calling truncate_undo_list on
5045 Qt tends to return NULL, which effectively turns undo back on.
5046 So don't call truncate_undo_list if undo_list is Qt. */
5047 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5048 truncate_undo_list (nextb);
5049
5050 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5051 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5052 {
5053 /* If a buffer's gap size is more than 10% of the buffer
5054 size, or larger than 2000 bytes, then shrink it
5055 accordingly. Keep a minimum size of 20 bytes. */
5056 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5057
5058 if (nextb->text->gap_size > size)
5059 {
5060 struct buffer *save_current = current_buffer;
5061 current_buffer = nextb;
5062 make_gap (-(nextb->text->gap_size - size));
5063 current_buffer = save_current;
5064 }
5065 }
5066
5067 nextb = nextb->next;
5068 }
5069 }
5070
5071 EMACS_GET_TIME (t1);
5072
5073 /* In case user calls debug_print during GC,
5074 don't let that cause a recursive GC. */
5075 consing_since_gc = 0;
5076
5077 /* Save what's currently displayed in the echo area. */
5078 message_p = push_message ();
5079 record_unwind_protect (pop_message_unwind, Qnil);
5080
5081 /* Save a copy of the contents of the stack, for debugging. */
5082 #if MAX_SAVE_STACK > 0
5083 if (NILP (Vpurify_flag))
5084 {
5085 i = &stack_top_variable - stack_bottom;
5086 if (i < 0) i = -i;
5087 if (i < MAX_SAVE_STACK)
5088 {
5089 if (stack_copy == 0)
5090 stack_copy = (char *) xmalloc (stack_copy_size = i);
5091 else if (stack_copy_size < i)
5092 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5093 if (stack_copy)
5094 {
5095 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5096 bcopy (stack_bottom, stack_copy, i);
5097 else
5098 bcopy (&stack_top_variable, stack_copy, i);
5099 }
5100 }
5101 }
5102 #endif /* MAX_SAVE_STACK > 0 */
5103
5104 if (garbage_collection_messages)
5105 message1_nolog ("Garbage collecting...");
5106
5107 BLOCK_INPUT;
5108
5109 shrink_regexp_cache ();
5110
5111 gc_in_progress = 1;
5112
5113 /* clear_marks (); */
5114
5115 /* Mark all the special slots that serve as the roots of accessibility. */
5116
5117 for (i = 0; i < staticidx; i++)
5118 mark_object (*staticvec[i]);
5119
5120 for (bind = specpdl; bind != specpdl_ptr; bind++)
5121 {
5122 mark_object (bind->symbol);
5123 mark_object (bind->old_value);
5124 }
5125 mark_terminals ();
5126 mark_kboards ();
5127 mark_ttys ();
5128
5129 #ifdef USE_GTK
5130 {
5131 extern void xg_mark_data ();
5132 xg_mark_data ();
5133 }
5134 #endif
5135
5136 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5137 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5138 mark_stack ();
5139 #else
5140 {
5141 register struct gcpro *tail;
5142 for (tail = gcprolist; tail; tail = tail->next)
5143 for (i = 0; i < tail->nvars; i++)
5144 mark_object (tail->var[i]);
5145 }
5146 #endif
5147
5148 mark_byte_stack ();
5149 for (catch = catchlist; catch; catch = catch->next)
5150 {
5151 mark_object (catch->tag);
5152 mark_object (catch->val);
5153 }
5154 for (handler = handlerlist; handler; handler = handler->next)
5155 {
5156 mark_object (handler->handler);
5157 mark_object (handler->var);
5158 }
5159 mark_backtrace ();
5160
5161 #ifdef HAVE_WINDOW_SYSTEM
5162 mark_fringe_data ();
5163 #endif
5164
5165 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5166 mark_stack ();
5167 #endif
5168
5169 /* Everything is now marked, except for the things that require special
5170 finalization, i.e. the undo_list.
5171 Look thru every buffer's undo list
5172 for elements that update markers that were not marked,
5173 and delete them. */
5174 {
5175 register struct buffer *nextb = all_buffers;
5176
5177 while (nextb)
5178 {
5179 /* If a buffer's undo list is Qt, that means that undo is
5180 turned off in that buffer. Calling truncate_undo_list on
5181 Qt tends to return NULL, which effectively turns undo back on.
5182 So don't call truncate_undo_list if undo_list is Qt. */
5183 if (! EQ (nextb->undo_list, Qt))
5184 {
5185 Lisp_Object tail, prev;
5186 tail = nextb->undo_list;
5187 prev = Qnil;
5188 while (CONSP (tail))
5189 {
5190 if (GC_CONSP (XCAR (tail))
5191 && GC_MARKERP (XCAR (XCAR (tail)))
5192 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5193 {
5194 if (NILP (prev))
5195 nextb->undo_list = tail = XCDR (tail);
5196 else
5197 {
5198 tail = XCDR (tail);
5199 XSETCDR (prev, tail);
5200 }
5201 }
5202 else
5203 {
5204 prev = tail;
5205 tail = XCDR (tail);
5206 }
5207 }
5208 }
5209 /* Now that we have stripped the elements that need not be in the
5210 undo_list any more, we can finally mark the list. */
5211 mark_object (nextb->undo_list);
5212
5213 nextb = nextb->next;
5214 }
5215 }
5216
5217 gc_sweep ();
5218
5219 /* Clear the mark bits that we set in certain root slots. */
5220
5221 unmark_byte_stack ();
5222 VECTOR_UNMARK (&buffer_defaults);
5223 VECTOR_UNMARK (&buffer_local_symbols);
5224
5225 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5226 dump_zombies ();
5227 #endif
5228
5229 UNBLOCK_INPUT;
5230
5231 CHECK_CONS_LIST ();
5232
5233 /* clear_marks (); */
5234 gc_in_progress = 0;
5235
5236 consing_since_gc = 0;
5237 if (gc_cons_threshold < 10000)
5238 gc_cons_threshold = 10000;
5239
5240 if (FLOATP (Vgc_cons_percentage))
5241 { /* Set gc_cons_combined_threshold. */
5242 EMACS_INT total = 0;
5243
5244 total += total_conses * sizeof (struct Lisp_Cons);
5245 total += total_symbols * sizeof (struct Lisp_Symbol);
5246 total += total_markers * sizeof (union Lisp_Misc);
5247 total += total_string_size;
5248 total += total_vector_size * sizeof (Lisp_Object);
5249 total += total_floats * sizeof (struct Lisp_Float);
5250 total += total_intervals * sizeof (struct interval);
5251 total += total_strings * sizeof (struct Lisp_String);
5252
5253 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5254 }
5255 else
5256 gc_relative_threshold = 0;
5257
5258 if (garbage_collection_messages)
5259 {
5260 if (message_p || minibuf_level > 0)
5261 restore_message ();
5262 else
5263 message1_nolog ("Garbage collecting...done");
5264 }
5265
5266 unbind_to (count, Qnil);
5267
5268 total[0] = Fcons (make_number (total_conses),
5269 make_number (total_free_conses));
5270 total[1] = Fcons (make_number (total_symbols),
5271 make_number (total_free_symbols));
5272 total[2] = Fcons (make_number (total_markers),
5273 make_number (total_free_markers));
5274 total[3] = make_number (total_string_size);
5275 total[4] = make_number (total_vector_size);
5276 total[5] = Fcons (make_number (total_floats),
5277 make_number (total_free_floats));
5278 total[6] = Fcons (make_number (total_intervals),
5279 make_number (total_free_intervals));
5280 total[7] = Fcons (make_number (total_strings),
5281 make_number (total_free_strings));
5282
5283 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5284 {
5285 /* Compute average percentage of zombies. */
5286 double nlive = 0;
5287
5288 for (i = 0; i < 7; ++i)
5289 if (CONSP (total[i]))
5290 nlive += XFASTINT (XCAR (total[i]));
5291
5292 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5293 max_live = max (nlive, max_live);
5294 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5295 max_zombies = max (nzombies, max_zombies);
5296 ++ngcs;
5297 }
5298 #endif
5299
5300 if (!NILP (Vpost_gc_hook))
5301 {
5302 int count = inhibit_garbage_collection ();
5303 safe_run_hooks (Qpost_gc_hook);
5304 unbind_to (count, Qnil);
5305 }
5306
5307 /* Accumulate statistics. */
5308 EMACS_GET_TIME (t2);
5309 EMACS_SUB_TIME (t3, t2, t1);
5310 if (FLOATP (Vgc_elapsed))
5311 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5312 EMACS_SECS (t3) +
5313 EMACS_USECS (t3) * 1.0e-6);
5314 gcs_done++;
5315
5316 return Flist (sizeof total / sizeof *total, total);
5317 }
5318
5319
5320 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5321 only interesting objects referenced from glyphs are strings. */
5322
5323 static void
5324 mark_glyph_matrix (matrix)
5325 struct glyph_matrix *matrix;
5326 {
5327 struct glyph_row *row = matrix->rows;
5328 struct glyph_row *end = row + matrix->nrows;
5329
5330 for (; row < end; ++row)
5331 if (row->enabled_p)
5332 {
5333 int area;
5334 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5335 {
5336 struct glyph *glyph = row->glyphs[area];
5337 struct glyph *end_glyph = glyph + row->used[area];
5338
5339 for (; glyph < end_glyph; ++glyph)
5340 if (GC_STRINGP (glyph->object)
5341 && !STRING_MARKED_P (XSTRING (glyph->object)))
5342 mark_object (glyph->object);
5343 }
5344 }
5345 }
5346
5347
5348 /* Mark Lisp faces in the face cache C. */
5349
5350 static void
5351 mark_face_cache (c)
5352 struct face_cache *c;
5353 {
5354 if (c)
5355 {
5356 int i, j;
5357 for (i = 0; i < c->used; ++i)
5358 {
5359 struct face *face = FACE_FROM_ID (c->f, i);
5360
5361 if (face)
5362 {
5363 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5364 mark_object (face->lface[j]);
5365 }
5366 }
5367 }
5368 }
5369
5370
5371 #ifdef HAVE_WINDOW_SYSTEM
5372
5373 /* Mark Lisp objects in image IMG. */
5374
5375 static void
5376 mark_image (img)
5377 struct image *img;
5378 {
5379 mark_object (img->spec);
5380
5381 if (!NILP (img->data.lisp_val))
5382 mark_object (img->data.lisp_val);
5383 }
5384
5385
5386 /* Mark Lisp objects in image cache of frame F. It's done this way so
5387 that we don't have to include xterm.h here. */
5388
5389 static void
5390 mark_image_cache (f)
5391 struct frame *f;
5392 {
5393 forall_images_in_image_cache (f, mark_image);
5394 }
5395
5396 #endif /* HAVE_X_WINDOWS */
5397
5398
5399 \f
5400 /* Mark reference to a Lisp_Object.
5401 If the object referred to has not been seen yet, recursively mark
5402 all the references contained in it. */
5403
5404 #define LAST_MARKED_SIZE 500
5405 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5406 int last_marked_index;
5407
5408 /* For debugging--call abort when we cdr down this many
5409 links of a list, in mark_object. In debugging,
5410 the call to abort will hit a breakpoint.
5411 Normally this is zero and the check never goes off. */
5412 static int mark_object_loop_halt;
5413
5414 /* Return non-zero if the object was not yet marked. */
5415 static int
5416 mark_vectorlike (ptr)
5417 struct Lisp_Vector *ptr;
5418 {
5419 register EMACS_INT size = ptr->size;
5420 register int i;
5421
5422 if (VECTOR_MARKED_P (ptr))
5423 return 0; /* Already marked */
5424 VECTOR_MARK (ptr); /* Else mark it */
5425 if (size & PSEUDOVECTOR_FLAG)
5426 size &= PSEUDOVECTOR_SIZE_MASK;
5427
5428 /* Note that this size is not the memory-footprint size, but only
5429 the number of Lisp_Object fields that we should trace.
5430 The distinction is used e.g. by Lisp_Process which places extra
5431 non-Lisp_Object fields at the end of the structure. */
5432 for (i = 0; i < size; i++) /* and then mark its elements */
5433 mark_object (ptr->contents[i]);
5434 return 1;
5435 }
5436
5437 void
5438 mark_object (arg)
5439 Lisp_Object arg;
5440 {
5441 register Lisp_Object obj = arg;
5442 #ifdef GC_CHECK_MARKED_OBJECTS
5443 void *po;
5444 struct mem_node *m;
5445 #endif
5446 int cdr_count = 0;
5447
5448 loop:
5449
5450 if (PURE_POINTER_P (XPNTR (obj)))
5451 return;
5452
5453 last_marked[last_marked_index++] = obj;
5454 if (last_marked_index == LAST_MARKED_SIZE)
5455 last_marked_index = 0;
5456
5457 /* Perform some sanity checks on the objects marked here. Abort if
5458 we encounter an object we know is bogus. This increases GC time
5459 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5460 #ifdef GC_CHECK_MARKED_OBJECTS
5461
5462 po = (void *) XPNTR (obj);
5463
5464 /* Check that the object pointed to by PO is known to be a Lisp
5465 structure allocated from the heap. */
5466 #define CHECK_ALLOCATED() \
5467 do { \
5468 m = mem_find (po); \
5469 if (m == MEM_NIL) \
5470 abort (); \
5471 } while (0)
5472
5473 /* Check that the object pointed to by PO is live, using predicate
5474 function LIVEP. */
5475 #define CHECK_LIVE(LIVEP) \
5476 do { \
5477 if (!LIVEP (m, po)) \
5478 abort (); \
5479 } while (0)
5480
5481 /* Check both of the above conditions. */
5482 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5483 do { \
5484 CHECK_ALLOCATED (); \
5485 CHECK_LIVE (LIVEP); \
5486 } while (0) \
5487
5488 #else /* not GC_CHECK_MARKED_OBJECTS */
5489
5490 #define CHECK_ALLOCATED() (void) 0
5491 #define CHECK_LIVE(LIVEP) (void) 0
5492 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5493
5494 #endif /* not GC_CHECK_MARKED_OBJECTS */
5495
5496 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5497 {
5498 case Lisp_String:
5499 {
5500 register struct Lisp_String *ptr = XSTRING (obj);
5501 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5502 MARK_INTERVAL_TREE (ptr->intervals);
5503 MARK_STRING (ptr);
5504 #ifdef GC_CHECK_STRING_BYTES
5505 /* Check that the string size recorded in the string is the
5506 same as the one recorded in the sdata structure. */
5507 CHECK_STRING_BYTES (ptr);
5508 #endif /* GC_CHECK_STRING_BYTES */
5509 }
5510 break;
5511
5512 case Lisp_Vectorlike:
5513 #ifdef GC_CHECK_MARKED_OBJECTS
5514 m = mem_find (po);
5515 if (m == MEM_NIL && !GC_SUBRP (obj)
5516 && po != &buffer_defaults
5517 && po != &buffer_local_symbols)
5518 abort ();
5519 #endif /* GC_CHECK_MARKED_OBJECTS */
5520
5521 if (GC_BUFFERP (obj))
5522 {
5523 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5524 {
5525 #ifdef GC_CHECK_MARKED_OBJECTS
5526 if (po != &buffer_defaults && po != &buffer_local_symbols)
5527 {
5528 struct buffer *b;
5529 for (b = all_buffers; b && b != po; b = b->next)
5530 ;
5531 if (b == NULL)
5532 abort ();
5533 }
5534 #endif /* GC_CHECK_MARKED_OBJECTS */
5535 mark_buffer (obj);
5536 }
5537 }
5538 else if (GC_SUBRP (obj))
5539 break;
5540 else if (GC_COMPILEDP (obj))
5541 /* We could treat this just like a vector, but it is better to
5542 save the COMPILED_CONSTANTS element for last and avoid
5543 recursion there. */
5544 {
5545 register struct Lisp_Vector *ptr = XVECTOR (obj);
5546 register EMACS_INT size = ptr->size;
5547 register int i;
5548
5549 if (VECTOR_MARKED_P (ptr))
5550 break; /* Already marked */
5551
5552 CHECK_LIVE (live_vector_p);
5553 VECTOR_MARK (ptr); /* Else mark it */
5554 size &= PSEUDOVECTOR_SIZE_MASK;
5555 for (i = 0; i < size; i++) /* and then mark its elements */
5556 {
5557 if (i != COMPILED_CONSTANTS)
5558 mark_object (ptr->contents[i]);
5559 }
5560 obj = ptr->contents[COMPILED_CONSTANTS];
5561 goto loop;
5562 }
5563 else if (GC_FRAMEP (obj))
5564 {
5565 register struct frame *ptr = XFRAME (obj);
5566 if (mark_vectorlike (XVECTOR (obj)))
5567 {
5568 mark_face_cache (ptr->face_cache);
5569 #ifdef HAVE_WINDOW_SYSTEM
5570 mark_image_cache (ptr);
5571 #endif /* HAVE_WINDOW_SYSTEM */
5572 }
5573 }
5574 else if (GC_WINDOWP (obj))
5575 {
5576 register struct Lisp_Vector *ptr = XVECTOR (obj);
5577 struct window *w = XWINDOW (obj);
5578 if (mark_vectorlike (ptr))
5579 {
5580 /* Mark glyphs for leaf windows. Marking window matrices is
5581 sufficient because frame matrices use the same glyph
5582 memory. */
5583 if (NILP (w->hchild)
5584 && NILP (w->vchild)
5585 && w->current_matrix)
5586 {
5587 mark_glyph_matrix (w->current_matrix);
5588 mark_glyph_matrix (w->desired_matrix);
5589 }
5590 }
5591 }
5592 else if (GC_HASH_TABLE_P (obj))
5593 {
5594 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5595 if (mark_vectorlike ((struct Lisp_Vector *)h))
5596 { /* If hash table is not weak, mark all keys and values.
5597 For weak tables, mark only the vector. */
5598 if (GC_NILP (h->weak))
5599 mark_object (h->key_and_value);
5600 else
5601 VECTOR_MARK (XVECTOR (h->key_and_value));
5602 }
5603 }
5604 else
5605 mark_vectorlike (XVECTOR (obj));
5606 break;
5607
5608 case Lisp_Symbol:
5609 {
5610 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5611 struct Lisp_Symbol *ptrx;
5612
5613 if (ptr->gcmarkbit) break;
5614 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5615 ptr->gcmarkbit = 1;
5616 mark_object (ptr->value);
5617 mark_object (ptr->function);
5618 mark_object (ptr->plist);
5619
5620 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5621 MARK_STRING (XSTRING (ptr->xname));
5622 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5623
5624 /* Note that we do not mark the obarray of the symbol.
5625 It is safe not to do so because nothing accesses that
5626 slot except to check whether it is nil. */
5627 ptr = ptr->next;
5628 if (ptr)
5629 {
5630 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5631 XSETSYMBOL (obj, ptrx);
5632 goto loop;
5633 }
5634 }
5635 break;
5636
5637 case Lisp_Misc:
5638 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5639 if (XMISCANY (obj)->gcmarkbit)
5640 break;
5641 XMISCANY (obj)->gcmarkbit = 1;
5642
5643 switch (XMISCTYPE (obj))
5644 {
5645 case Lisp_Misc_Buffer_Local_Value:
5646 {
5647 register struct Lisp_Buffer_Local_Value *ptr
5648 = XBUFFER_LOCAL_VALUE (obj);
5649 /* If the cdr is nil, avoid recursion for the car. */
5650 if (EQ (ptr->cdr, Qnil))
5651 {
5652 obj = ptr->realvalue;
5653 goto loop;
5654 }
5655 mark_object (ptr->realvalue);
5656 mark_object (ptr->buffer);
5657 mark_object (ptr->frame);
5658 obj = ptr->cdr;
5659 goto loop;
5660 }
5661
5662 case Lisp_Misc_Marker:
5663 /* DO NOT mark thru the marker's chain.
5664 The buffer's markers chain does not preserve markers from gc;
5665 instead, markers are removed from the chain when freed by gc. */
5666 break;
5667
5668 case Lisp_Misc_Intfwd:
5669 case Lisp_Misc_Boolfwd:
5670 case Lisp_Misc_Objfwd:
5671 case Lisp_Misc_Buffer_Objfwd:
5672 case Lisp_Misc_Kboard_Objfwd:
5673 /* Don't bother with Lisp_Buffer_Objfwd,
5674 since all markable slots in current buffer marked anyway. */
5675 /* Don't need to do Lisp_Objfwd, since the places they point
5676 are protected with staticpro. */
5677 break;
5678
5679 case Lisp_Misc_Save_Value:
5680 #if GC_MARK_STACK
5681 {
5682 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5683 /* If DOGC is set, POINTER is the address of a memory
5684 area containing INTEGER potential Lisp_Objects. */
5685 if (ptr->dogc)
5686 {
5687 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5688 int nelt;
5689 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5690 mark_maybe_object (*p);
5691 }
5692 }
5693 #endif
5694 break;
5695
5696 case Lisp_Misc_Overlay:
5697 {
5698 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5699 mark_object (ptr->start);
5700 mark_object (ptr->end);
5701 mark_object (ptr->plist);
5702 if (ptr->next)
5703 {
5704 XSETMISC (obj, ptr->next);
5705 goto loop;
5706 }
5707 }
5708 break;
5709
5710 default:
5711 abort ();
5712 }
5713 break;
5714
5715 case Lisp_Cons:
5716 {
5717 register struct Lisp_Cons *ptr = XCONS (obj);
5718 if (CONS_MARKED_P (ptr)) break;
5719 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5720 CONS_MARK (ptr);
5721 /* If the cdr is nil, avoid recursion for the car. */
5722 if (EQ (ptr->u.cdr, Qnil))
5723 {
5724 obj = ptr->car;
5725 cdr_count = 0;
5726 goto loop;
5727 }
5728 mark_object (ptr->car);
5729 obj = ptr->u.cdr;
5730 cdr_count++;
5731 if (cdr_count == mark_object_loop_halt)
5732 abort ();
5733 goto loop;
5734 }
5735
5736 case Lisp_Float:
5737 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5738 FLOAT_MARK (XFLOAT (obj));
5739 break;
5740
5741 case Lisp_Int:
5742 break;
5743
5744 default:
5745 abort ();
5746 }
5747
5748 #undef CHECK_LIVE
5749 #undef CHECK_ALLOCATED
5750 #undef CHECK_ALLOCATED_AND_LIVE
5751 }
5752
5753 /* Mark the pointers in a buffer structure. */
5754
5755 static void
5756 mark_buffer (buf)
5757 Lisp_Object buf;
5758 {
5759 register struct buffer *buffer = XBUFFER (buf);
5760 register Lisp_Object *ptr, tmp;
5761 Lisp_Object base_buffer;
5762
5763 VECTOR_MARK (buffer);
5764
5765 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5766
5767 /* For now, we just don't mark the undo_list. It's done later in
5768 a special way just before the sweep phase, and after stripping
5769 some of its elements that are not needed any more. */
5770
5771 if (buffer->overlays_before)
5772 {
5773 XSETMISC (tmp, buffer->overlays_before);
5774 mark_object (tmp);
5775 }
5776 if (buffer->overlays_after)
5777 {
5778 XSETMISC (tmp, buffer->overlays_after);
5779 mark_object (tmp);
5780 }
5781
5782 for (ptr = &buffer->name;
5783 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5784 ptr++)
5785 mark_object (*ptr);
5786
5787 /* If this is an indirect buffer, mark its base buffer. */
5788 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5789 {
5790 XSETBUFFER (base_buffer, buffer->base_buffer);
5791 mark_buffer (base_buffer);
5792 }
5793 }
5794
5795 /* Mark the Lisp pointers in the terminal objects.
5796 Called by the Fgarbage_collector. */
5797
5798 static void
5799 mark_terminals (void)
5800 {
5801 struct terminal *t;
5802 for (t = terminal_list; t; t = t->next_terminal)
5803 {
5804 eassert (t->name != NULL);
5805 mark_vectorlike ((struct Lisp_Vector *)t);
5806 }
5807 }
5808
5809
5810
5811 /* Value is non-zero if OBJ will survive the current GC because it's
5812 either marked or does not need to be marked to survive. */
5813
5814 int
5815 survives_gc_p (obj)
5816 Lisp_Object obj;
5817 {
5818 int survives_p;
5819
5820 switch (XGCTYPE (obj))
5821 {
5822 case Lisp_Int:
5823 survives_p = 1;
5824 break;
5825
5826 case Lisp_Symbol:
5827 survives_p = XSYMBOL (obj)->gcmarkbit;
5828 break;
5829
5830 case Lisp_Misc:
5831 survives_p = XMISCANY (obj)->gcmarkbit;
5832 break;
5833
5834 case Lisp_String:
5835 survives_p = STRING_MARKED_P (XSTRING (obj));
5836 break;
5837
5838 case Lisp_Vectorlike:
5839 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5840 break;
5841
5842 case Lisp_Cons:
5843 survives_p = CONS_MARKED_P (XCONS (obj));
5844 break;
5845
5846 case Lisp_Float:
5847 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5848 break;
5849
5850 default:
5851 abort ();
5852 }
5853
5854 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5855 }
5856
5857
5858 \f
5859 /* Sweep: find all structures not marked, and free them. */
5860
5861 static void
5862 gc_sweep ()
5863 {
5864 /* Remove or mark entries in weak hash tables.
5865 This must be done before any object is unmarked. */
5866 sweep_weak_hash_tables ();
5867
5868 sweep_strings ();
5869 #ifdef GC_CHECK_STRING_BYTES
5870 if (!noninteractive)
5871 check_string_bytes (1);
5872 #endif
5873
5874 /* Put all unmarked conses on free list */
5875 {
5876 register struct cons_block *cblk;
5877 struct cons_block **cprev = &cons_block;
5878 register int lim = cons_block_index;
5879 register int num_free = 0, num_used = 0;
5880
5881 cons_free_list = 0;
5882
5883 for (cblk = cons_block; cblk; cblk = *cprev)
5884 {
5885 register int i = 0;
5886 int this_free = 0;
5887 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5888
5889 /* Scan the mark bits an int at a time. */
5890 for (i = 0; i <= ilim; i++)
5891 {
5892 if (cblk->gcmarkbits[i] == -1)
5893 {
5894 /* Fast path - all cons cells for this int are marked. */
5895 cblk->gcmarkbits[i] = 0;
5896 num_used += BITS_PER_INT;
5897 }
5898 else
5899 {
5900 /* Some cons cells for this int are not marked.
5901 Find which ones, and free them. */
5902 int start, pos, stop;
5903
5904 start = i * BITS_PER_INT;
5905 stop = lim - start;
5906 if (stop > BITS_PER_INT)
5907 stop = BITS_PER_INT;
5908 stop += start;
5909
5910 for (pos = start; pos < stop; pos++)
5911 {
5912 if (!CONS_MARKED_P (&cblk->conses[pos]))
5913 {
5914 this_free++;
5915 cblk->conses[pos].u.chain = cons_free_list;
5916 cons_free_list = &cblk->conses[pos];
5917 #if GC_MARK_STACK
5918 cons_free_list->car = Vdead;
5919 #endif
5920 }
5921 else
5922 {
5923 num_used++;
5924 CONS_UNMARK (&cblk->conses[pos]);
5925 }
5926 }
5927 }
5928 }
5929
5930 lim = CONS_BLOCK_SIZE;
5931 /* If this block contains only free conses and we have already
5932 seen more than two blocks worth of free conses then deallocate
5933 this block. */
5934 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5935 {
5936 *cprev = cblk->next;
5937 /* Unhook from the free list. */
5938 cons_free_list = cblk->conses[0].u.chain;
5939 lisp_align_free (cblk);
5940 n_cons_blocks--;
5941 }
5942 else
5943 {
5944 num_free += this_free;
5945 cprev = &cblk->next;
5946 }
5947 }
5948 total_conses = num_used;
5949 total_free_conses = num_free;
5950 }
5951
5952 /* Put all unmarked floats on free list */
5953 {
5954 register struct float_block *fblk;
5955 struct float_block **fprev = &float_block;
5956 register int lim = float_block_index;
5957 register int num_free = 0, num_used = 0;
5958
5959 float_free_list = 0;
5960
5961 for (fblk = float_block; fblk; fblk = *fprev)
5962 {
5963 register int i;
5964 int this_free = 0;
5965 for (i = 0; i < lim; i++)
5966 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5967 {
5968 this_free++;
5969 fblk->floats[i].u.chain = float_free_list;
5970 float_free_list = &fblk->floats[i];
5971 }
5972 else
5973 {
5974 num_used++;
5975 FLOAT_UNMARK (&fblk->floats[i]);
5976 }
5977 lim = FLOAT_BLOCK_SIZE;
5978 /* If this block contains only free floats and we have already
5979 seen more than two blocks worth of free floats then deallocate
5980 this block. */
5981 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5982 {
5983 *fprev = fblk->next;
5984 /* Unhook from the free list. */
5985 float_free_list = fblk->floats[0].u.chain;
5986 lisp_align_free (fblk);
5987 n_float_blocks--;
5988 }
5989 else
5990 {
5991 num_free += this_free;
5992 fprev = &fblk->next;
5993 }
5994 }
5995 total_floats = num_used;
5996 total_free_floats = num_free;
5997 }
5998
5999 /* Put all unmarked intervals on free list */
6000 {
6001 register struct interval_block *iblk;
6002 struct interval_block **iprev = &interval_block;
6003 register int lim = interval_block_index;
6004 register int num_free = 0, num_used = 0;
6005
6006 interval_free_list = 0;
6007
6008 for (iblk = interval_block; iblk; iblk = *iprev)
6009 {
6010 register int i;
6011 int this_free = 0;
6012
6013 for (i = 0; i < lim; i++)
6014 {
6015 if (!iblk->intervals[i].gcmarkbit)
6016 {
6017 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6018 interval_free_list = &iblk->intervals[i];
6019 this_free++;
6020 }
6021 else
6022 {
6023 num_used++;
6024 iblk->intervals[i].gcmarkbit = 0;
6025 }
6026 }
6027 lim = INTERVAL_BLOCK_SIZE;
6028 /* If this block contains only free intervals and we have already
6029 seen more than two blocks worth of free intervals then
6030 deallocate this block. */
6031 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6032 {
6033 *iprev = iblk->next;
6034 /* Unhook from the free list. */
6035 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6036 lisp_free (iblk);
6037 n_interval_blocks--;
6038 }
6039 else
6040 {
6041 num_free += this_free;
6042 iprev = &iblk->next;
6043 }
6044 }
6045 total_intervals = num_used;
6046 total_free_intervals = num_free;
6047 }
6048
6049 /* Put all unmarked symbols on free list */
6050 {
6051 register struct symbol_block *sblk;
6052 struct symbol_block **sprev = &symbol_block;
6053 register int lim = symbol_block_index;
6054 register int num_free = 0, num_used = 0;
6055
6056 symbol_free_list = NULL;
6057
6058 for (sblk = symbol_block; sblk; sblk = *sprev)
6059 {
6060 int this_free = 0;
6061 struct Lisp_Symbol *sym = sblk->symbols;
6062 struct Lisp_Symbol *end = sym + lim;
6063
6064 for (; sym < end; ++sym)
6065 {
6066 /* Check if the symbol was created during loadup. In such a case
6067 it might be pointed to by pure bytecode which we don't trace,
6068 so we conservatively assume that it is live. */
6069 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6070
6071 if (!sym->gcmarkbit && !pure_p)
6072 {
6073 sym->next = symbol_free_list;
6074 symbol_free_list = sym;
6075 #if GC_MARK_STACK
6076 symbol_free_list->function = Vdead;
6077 #endif
6078 ++this_free;
6079 }
6080 else
6081 {
6082 ++num_used;
6083 if (!pure_p)
6084 UNMARK_STRING (XSTRING (sym->xname));
6085 sym->gcmarkbit = 0;
6086 }
6087 }
6088
6089 lim = SYMBOL_BLOCK_SIZE;
6090 /* If this block contains only free symbols and we have already
6091 seen more than two blocks worth of free symbols then deallocate
6092 this block. */
6093 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6094 {
6095 *sprev = sblk->next;
6096 /* Unhook from the free list. */
6097 symbol_free_list = sblk->symbols[0].next;
6098 lisp_free (sblk);
6099 n_symbol_blocks--;
6100 }
6101 else
6102 {
6103 num_free += this_free;
6104 sprev = &sblk->next;
6105 }
6106 }
6107 total_symbols = num_used;
6108 total_free_symbols = num_free;
6109 }
6110
6111 /* Put all unmarked misc's on free list.
6112 For a marker, first unchain it from the buffer it points into. */
6113 {
6114 register struct marker_block *mblk;
6115 struct marker_block **mprev = &marker_block;
6116 register int lim = marker_block_index;
6117 register int num_free = 0, num_used = 0;
6118
6119 marker_free_list = 0;
6120
6121 for (mblk = marker_block; mblk; mblk = *mprev)
6122 {
6123 register int i;
6124 int this_free = 0;
6125
6126 for (i = 0; i < lim; i++)
6127 {
6128 if (!mblk->markers[i].u_any.gcmarkbit)
6129 {
6130 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6131 unchain_marker (&mblk->markers[i].u_marker);
6132 /* Set the type of the freed object to Lisp_Misc_Free.
6133 We could leave the type alone, since nobody checks it,
6134 but this might catch bugs faster. */
6135 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6136 mblk->markers[i].u_free.chain = marker_free_list;
6137 marker_free_list = &mblk->markers[i];
6138 this_free++;
6139 }
6140 else
6141 {
6142 num_used++;
6143 mblk->markers[i].u_any.gcmarkbit = 0;
6144 }
6145 }
6146 lim = MARKER_BLOCK_SIZE;
6147 /* If this block contains only free markers and we have already
6148 seen more than two blocks worth of free markers then deallocate
6149 this block. */
6150 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6151 {
6152 *mprev = mblk->next;
6153 /* Unhook from the free list. */
6154 marker_free_list = mblk->markers[0].u_free.chain;
6155 lisp_free (mblk);
6156 n_marker_blocks--;
6157 }
6158 else
6159 {
6160 num_free += this_free;
6161 mprev = &mblk->next;
6162 }
6163 }
6164
6165 total_markers = num_used;
6166 total_free_markers = num_free;
6167 }
6168
6169 /* Free all unmarked buffers */
6170 {
6171 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6172
6173 while (buffer)
6174 if (!VECTOR_MARKED_P (buffer))
6175 {
6176 if (prev)
6177 prev->next = buffer->next;
6178 else
6179 all_buffers = buffer->next;
6180 next = buffer->next;
6181 lisp_free (buffer);
6182 buffer = next;
6183 }
6184 else
6185 {
6186 VECTOR_UNMARK (buffer);
6187 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6188 prev = buffer, buffer = buffer->next;
6189 }
6190 }
6191
6192 /* Free all unmarked vectors */
6193 {
6194 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6195 total_vector_size = 0;
6196
6197 while (vector)
6198 if (!VECTOR_MARKED_P (vector))
6199 {
6200 if (prev)
6201 prev->next = vector->next;
6202 else
6203 all_vectors = vector->next;
6204 next = vector->next;
6205 lisp_free (vector);
6206 n_vectors--;
6207 vector = next;
6208
6209 }
6210 else
6211 {
6212 VECTOR_UNMARK (vector);
6213 if (vector->size & PSEUDOVECTOR_FLAG)
6214 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6215 else
6216 total_vector_size += vector->size;
6217 prev = vector, vector = vector->next;
6218 }
6219 }
6220
6221 #ifdef GC_CHECK_STRING_BYTES
6222 if (!noninteractive)
6223 check_string_bytes (1);
6224 #endif
6225 }
6226
6227
6228
6229 \f
6230 /* Debugging aids. */
6231
6232 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6233 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6234 This may be helpful in debugging Emacs's memory usage.
6235 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6236 ()
6237 {
6238 Lisp_Object end;
6239
6240 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6241
6242 return end;
6243 }
6244
6245 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6246 doc: /* Return a list of counters that measure how much consing there has been.
6247 Each of these counters increments for a certain kind of object.
6248 The counters wrap around from the largest positive integer to zero.
6249 Garbage collection does not decrease them.
6250 The elements of the value are as follows:
6251 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6252 All are in units of 1 = one object consed
6253 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6254 objects consed.
6255 MISCS include overlays, markers, and some internal types.
6256 Frames, windows, buffers, and subprocesses count as vectors
6257 (but the contents of a buffer's text do not count here). */)
6258 ()
6259 {
6260 Lisp_Object consed[8];
6261
6262 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6263 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6264 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6265 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6266 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6267 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6268 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6269 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6270
6271 return Flist (8, consed);
6272 }
6273
6274 int suppress_checking;
6275
6276 void
6277 die (msg, file, line)
6278 const char *msg;
6279 const char *file;
6280 int line;
6281 {
6282 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6283 file, line, msg);
6284 abort ();
6285 }
6286 \f
6287 /* Initialization */
6288
6289 void
6290 init_alloc_once ()
6291 {
6292 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6293 purebeg = PUREBEG;
6294 pure_size = PURESIZE;
6295 pure_bytes_used = 0;
6296 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6297 pure_bytes_used_before_overflow = 0;
6298
6299 /* Initialize the list of free aligned blocks. */
6300 free_ablock = NULL;
6301
6302 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6303 mem_init ();
6304 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6305 #endif
6306
6307 all_vectors = 0;
6308 ignore_warnings = 1;
6309 #ifdef DOUG_LEA_MALLOC
6310 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6311 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6312 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6313 #endif
6314 init_strings ();
6315 init_cons ();
6316 init_symbol ();
6317 init_marker ();
6318 init_float ();
6319 init_intervals ();
6320
6321 #ifdef REL_ALLOC
6322 malloc_hysteresis = 32;
6323 #else
6324 malloc_hysteresis = 0;
6325 #endif
6326
6327 refill_memory_reserve ();
6328
6329 ignore_warnings = 0;
6330 gcprolist = 0;
6331 byte_stack_list = 0;
6332 staticidx = 0;
6333 consing_since_gc = 0;
6334 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6335 gc_relative_threshold = 0;
6336
6337 #ifdef VIRT_ADDR_VARIES
6338 malloc_sbrk_unused = 1<<22; /* A large number */
6339 malloc_sbrk_used = 100000; /* as reasonable as any number */
6340 #endif /* VIRT_ADDR_VARIES */
6341 }
6342
6343 void
6344 init_alloc ()
6345 {
6346 gcprolist = 0;
6347 byte_stack_list = 0;
6348 #if GC_MARK_STACK
6349 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6350 setjmp_tested_p = longjmps_done = 0;
6351 #endif
6352 #endif
6353 Vgc_elapsed = make_float (0.0);
6354 gcs_done = 0;
6355 }
6356
6357 void
6358 syms_of_alloc ()
6359 {
6360 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6361 doc: /* *Number of bytes of consing between garbage collections.
6362 Garbage collection can happen automatically once this many bytes have been
6363 allocated since the last garbage collection. All data types count.
6364
6365 Garbage collection happens automatically only when `eval' is called.
6366
6367 By binding this temporarily to a large number, you can effectively
6368 prevent garbage collection during a part of the program.
6369 See also `gc-cons-percentage'. */);
6370
6371 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6372 doc: /* *Portion of the heap used for allocation.
6373 Garbage collection can happen automatically once this portion of the heap
6374 has been allocated since the last garbage collection.
6375 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6376 Vgc_cons_percentage = make_float (0.1);
6377
6378 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6379 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6380
6381 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6382 doc: /* Number of cons cells that have been consed so far. */);
6383
6384 DEFVAR_INT ("floats-consed", &floats_consed,
6385 doc: /* Number of floats that have been consed so far. */);
6386
6387 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6388 doc: /* Number of vector cells that have been consed so far. */);
6389
6390 DEFVAR_INT ("symbols-consed", &symbols_consed,
6391 doc: /* Number of symbols that have been consed so far. */);
6392
6393 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6394 doc: /* Number of string characters that have been consed so far. */);
6395
6396 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6397 doc: /* Number of miscellaneous objects that have been consed so far. */);
6398
6399 DEFVAR_INT ("intervals-consed", &intervals_consed,
6400 doc: /* Number of intervals that have been consed so far. */);
6401
6402 DEFVAR_INT ("strings-consed", &strings_consed,
6403 doc: /* Number of strings that have been consed so far. */);
6404
6405 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6406 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6407 This means that certain objects should be allocated in shared (pure) space. */);
6408
6409 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6410 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6411 garbage_collection_messages = 0;
6412
6413 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6414 doc: /* Hook run after garbage collection has finished. */);
6415 Vpost_gc_hook = Qnil;
6416 Qpost_gc_hook = intern ("post-gc-hook");
6417 staticpro (&Qpost_gc_hook);
6418
6419 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6420 doc: /* Precomputed `signal' argument for memory-full error. */);
6421 /* We build this in advance because if we wait until we need it, we might
6422 not be able to allocate the memory to hold it. */
6423 Vmemory_signal_data
6424 = list2 (Qerror,
6425 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6426
6427 DEFVAR_LISP ("memory-full", &Vmemory_full,
6428 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6429 Vmemory_full = Qnil;
6430
6431 staticpro (&Qgc_cons_threshold);
6432 Qgc_cons_threshold = intern ("gc-cons-threshold");
6433
6434 staticpro (&Qchar_table_extra_slots);
6435 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6436
6437 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6438 doc: /* Accumulated time elapsed in garbage collections.
6439 The time is in seconds as a floating point value. */);
6440 DEFVAR_INT ("gcs-done", &gcs_done,
6441 doc: /* Accumulated number of garbage collections done. */);
6442
6443 defsubr (&Scons);
6444 defsubr (&Slist);
6445 defsubr (&Svector);
6446 defsubr (&Smake_byte_code);
6447 defsubr (&Smake_list);
6448 defsubr (&Smake_vector);
6449 defsubr (&Smake_char_table);
6450 defsubr (&Smake_string);
6451 defsubr (&Smake_bool_vector);
6452 defsubr (&Smake_symbol);
6453 defsubr (&Smake_marker);
6454 defsubr (&Spurecopy);
6455 defsubr (&Sgarbage_collect);
6456 defsubr (&Smemory_limit);
6457 defsubr (&Smemory_use_counts);
6458
6459 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6460 defsubr (&Sgc_status);
6461 #endif
6462 }
6463
6464 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6465 (do not change this comment) */