Follow Glenn's lead and update format of Copyright.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24
25 #ifdef STDC_HEADERS
26 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
27 #endif
28
29 #ifdef ALLOC_DEBUG
30 #undef INLINE
31 #endif
32
33 /* Note that this declares bzero on OSF/1. How dumb. */
34
35 #include <signal.h>
36
37 #ifdef HAVE_GTK_AND_PTHREAD
38 #include <pthread.h>
39 #endif
40
41 /* This file is part of the core Lisp implementation, and thus must
42 deal with the real data structures. If the Lisp implementation is
43 replaced, this file likely will not be used. */
44
45 #undef HIDE_LISP_IMPLEMENTATION
46 #include "lisp.h"
47 #include "process.h"
48 #include "intervals.h"
49 #include "puresize.h"
50 #include "buffer.h"
51 #include "window.h"
52 #include "keyboard.h"
53 #include "frame.h"
54 #include "blockinput.h"
55 #include "character.h"
56 #include "syssignal.h"
57 #include "termhooks.h" /* For struct terminal. */
58 #include <setjmp.h>
59
60 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61 memory. Can do this only if using gmalloc.c. */
62
63 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #ifdef HAVE_UNISTD_H
68 #include <unistd.h>
69 #else
70 extern POINTER_TYPE *sbrk ();
71 #endif
72
73 #ifdef HAVE_FCNTL_H
74 #define INCLUDED_FCNTL
75 #include <fcntl.h>
76 #endif
77 #ifndef O_WRONLY
78 #define O_WRONLY 1
79 #endif
80
81 #ifdef WINDOWSNT
82 #include <fcntl.h>
83 #include "w32.h"
84 #endif
85
86 #ifdef DOUG_LEA_MALLOC
87
88 #include <malloc.h>
89 /* malloc.h #defines this as size_t, at least in glibc2. */
90 #ifndef __malloc_size_t
91 #define __malloc_size_t int
92 #endif
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #else /* not DOUG_LEA_MALLOC */
100
101 /* The following come from gmalloc.c. */
102
103 #define __malloc_size_t size_t
104 extern __malloc_size_t _bytes_used;
105 extern __malloc_size_t __malloc_extra_blocks;
106
107 #endif /* not DOUG_LEA_MALLOC */
108
109 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110
111 /* When GTK uses the file chooser dialog, different backends can be loaded
112 dynamically. One such a backend is the Gnome VFS backend that gets loaded
113 if you run Gnome. That backend creates several threads and also allocates
114 memory with malloc.
115
116 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117 functions below are called from malloc, there is a chance that one
118 of these threads preempts the Emacs main thread and the hook variables
119 end up in an inconsistent state. So we have a mutex to prevent that (note
120 that the backend handles concurrent access to malloc within its own threads
121 but Emacs code running in the main thread is not included in that control).
122
123 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
124 happens in one of the backend threads we will have two threads that tries
125 to run Emacs code at once, and the code is not prepared for that.
126 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127
128 static pthread_mutex_t alloc_mutex;
129
130 #define BLOCK_INPUT_ALLOC \
131 do \
132 { \
133 if (pthread_equal (pthread_self (), main_thread)) \
134 BLOCK_INPUT; \
135 pthread_mutex_lock (&alloc_mutex); \
136 } \
137 while (0)
138 #define UNBLOCK_INPUT_ALLOC \
139 do \
140 { \
141 pthread_mutex_unlock (&alloc_mutex); \
142 if (pthread_equal (pthread_self (), main_thread)) \
143 UNBLOCK_INPUT; \
144 } \
145 while (0)
146
147 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148
149 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
150 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151
152 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153
154 /* Value of _bytes_used, when spare_memory was freed. */
155
156 static __malloc_size_t bytes_used_when_full;
157
158 static __malloc_size_t bytes_used_when_reconsidered;
159
160 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
161 to a struct Lisp_String. */
162
163 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
164 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
165 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
166
167 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
168 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
169 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
170
171 /* Value is the number of bytes/chars of S, a pointer to a struct
172 Lisp_String. This must be used instead of STRING_BYTES (S) or
173 S->size during GC, because S->size contains the mark bit for
174 strings. */
175
176 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
177 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
178
179 /* Number of bytes of consing done since the last gc. */
180
181 int consing_since_gc;
182
183 /* Count the amount of consing of various sorts of space. */
184
185 EMACS_INT cons_cells_consed;
186 EMACS_INT floats_consed;
187 EMACS_INT vector_cells_consed;
188 EMACS_INT symbols_consed;
189 EMACS_INT string_chars_consed;
190 EMACS_INT misc_objects_consed;
191 EMACS_INT intervals_consed;
192 EMACS_INT strings_consed;
193
194 /* Minimum number of bytes of consing since GC before next GC. */
195
196 EMACS_INT gc_cons_threshold;
197
198 /* Similar minimum, computed from Vgc_cons_percentage. */
199
200 EMACS_INT gc_relative_threshold;
201
202 static Lisp_Object Vgc_cons_percentage;
203
204 /* Minimum number of bytes of consing since GC before next GC,
205 when memory is full. */
206
207 EMACS_INT memory_full_cons_threshold;
208
209 /* Nonzero during GC. */
210
211 int gc_in_progress;
212
213 /* Nonzero means abort if try to GC.
214 This is for code which is written on the assumption that
215 no GC will happen, so as to verify that assumption. */
216
217 int abort_on_gc;
218
219 /* Nonzero means display messages at beginning and end of GC. */
220
221 int garbage_collection_messages;
222
223 #ifndef VIRT_ADDR_VARIES
224 extern
225 #endif /* VIRT_ADDR_VARIES */
226 int malloc_sbrk_used;
227
228 #ifndef VIRT_ADDR_VARIES
229 extern
230 #endif /* VIRT_ADDR_VARIES */
231 int malloc_sbrk_unused;
232
233 /* Number of live and free conses etc. */
234
235 static int total_conses, total_markers, total_symbols, total_vector_size;
236 static int total_free_conses, total_free_markers, total_free_symbols;
237 static int total_free_floats, total_floats;
238
239 /* Points to memory space allocated as "spare", to be freed if we run
240 out of memory. We keep one large block, four cons-blocks, and
241 two string blocks. */
242
243 static char *spare_memory[7];
244
245 /* Amount of spare memory to keep in large reserve block. */
246
247 #define SPARE_MEMORY (1 << 14)
248
249 /* Number of extra blocks malloc should get when it needs more core. */
250
251 static int malloc_hysteresis;
252
253 /* Non-nil means defun should do purecopy on the function definition. */
254
255 Lisp_Object Vpurify_flag;
256
257 /* Non-nil means we are handling a memory-full error. */
258
259 Lisp_Object Vmemory_full;
260
261 #ifndef HAVE_SHM
262
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
268
269 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
271
272 #else /* HAVE_SHM */
273
274 #define pure PURE_SEG_BITS /* Use shared memory segment */
275 #define PUREBEG (char *)PURE_SEG_BITS
276
277 #endif /* HAVE_SHM */
278
279 /* Pointer to the pure area, and its size. */
280
281 static char *purebeg;
282 static size_t pure_size;
283
284 /* Number of bytes of pure storage used before pure storage overflowed.
285 If this is non-zero, this implies that an overflow occurred. */
286
287 static size_t pure_bytes_used_before_overflow;
288
289 /* Value is non-zero if P points into pure space. */
290
291 #define PURE_POINTER_P(P) \
292 (((PNTR_COMPARISON_TYPE) (P) \
293 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
294 && ((PNTR_COMPARISON_TYPE) (P) \
295 >= (PNTR_COMPARISON_TYPE) purebeg))
296
297 /* Total number of bytes allocated in pure storage. */
298
299 EMACS_INT pure_bytes_used;
300
301 /* Index in pure at which next pure Lisp object will be allocated.. */
302
303 static EMACS_INT pure_bytes_used_lisp;
304
305 /* Number of bytes allocated for non-Lisp objects in pure storage. */
306
307 static EMACS_INT pure_bytes_used_non_lisp;
308
309 /* If nonzero, this is a warning delivered by malloc and not yet
310 displayed. */
311
312 char *pending_malloc_warning;
313
314 /* Pre-computed signal argument for use when memory is exhausted. */
315
316 Lisp_Object Vmemory_signal_data;
317
318 /* Maximum amount of C stack to save when a GC happens. */
319
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
323
324 /* Buffer in which we save a copy of the C stack at each GC. */
325
326 static char *stack_copy;
327 static int stack_copy_size;
328
329 /* Non-zero means ignore malloc warnings. Set during initialization.
330 Currently not used. */
331
332 static int ignore_warnings;
333
334 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
335
336 /* Hook run after GC has finished. */
337
338 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
339
340 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
341 EMACS_INT gcs_done; /* accumulated GCs */
342
343 static void mark_buffer P_ ((Lisp_Object));
344 static void mark_terminals P_ ((void));
345 extern void mark_kboards P_ ((void));
346 extern void mark_ttys P_ ((void));
347 extern void mark_backtrace P_ ((void));
348 static void gc_sweep P_ ((void));
349 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
350 static void mark_face_cache P_ ((struct face_cache *));
351
352 #ifdef HAVE_WINDOW_SYSTEM
353 extern void mark_fringe_data P_ ((void));
354 #endif /* HAVE_WINDOW_SYSTEM */
355
356 static struct Lisp_String *allocate_string P_ ((void));
357 static void compact_small_strings P_ ((void));
358 static void free_large_strings P_ ((void));
359 static void sweep_strings P_ ((void));
360
361 extern int message_enable_multibyte;
362
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track
364 of what memory allocated via lisp_malloc is intended for what
365 purpose. This enumeration specifies the type of memory. */
366
367 enum mem_type
368 {
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* We used to keep separate mem_types for subtypes of vectors such as
377 process, hash_table, frame, terminal, and window, but we never made
378 use of the distinction, so it only caused source-code complexity
379 and runtime slowdown. Minor but pointless. */
380 MEM_TYPE_VECTORLIKE
381 };
382
383 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
384 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
385 void refill_memory_reserve ();
386
387
388 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
389
390 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
391 #include <stdio.h> /* For fprintf. */
392 #endif
393
394 /* A unique object in pure space used to make some Lisp objects
395 on free lists recognizable in O(1). */
396
397 static Lisp_Object Vdead;
398
399 #ifdef GC_MALLOC_CHECK
400
401 enum mem_type allocated_mem_type;
402 static int dont_register_blocks;
403
404 #endif /* GC_MALLOC_CHECK */
405
406 /* A node in the red-black tree describing allocated memory containing
407 Lisp data. Each such block is recorded with its start and end
408 address when it is allocated, and removed from the tree when it
409 is freed.
410
411 A red-black tree is a balanced binary tree with the following
412 properties:
413
414 1. Every node is either red or black.
415 2. Every leaf is black.
416 3. If a node is red, then both of its children are black.
417 4. Every simple path from a node to a descendant leaf contains
418 the same number of black nodes.
419 5. The root is always black.
420
421 When nodes are inserted into the tree, or deleted from the tree,
422 the tree is "fixed" so that these properties are always true.
423
424 A red-black tree with N internal nodes has height at most 2
425 log(N+1). Searches, insertions and deletions are done in O(log N).
426 Please see a text book about data structures for a detailed
427 description of red-black trees. Any book worth its salt should
428 describe them. */
429
430 struct mem_node
431 {
432 /* Children of this node. These pointers are never NULL. When there
433 is no child, the value is MEM_NIL, which points to a dummy node. */
434 struct mem_node *left, *right;
435
436 /* The parent of this node. In the root node, this is NULL. */
437 struct mem_node *parent;
438
439 /* Start and end of allocated region. */
440 void *start, *end;
441
442 /* Node color. */
443 enum {MEM_BLACK, MEM_RED} color;
444
445 /* Memory type. */
446 enum mem_type type;
447 };
448
449 /* Base address of stack. Set in main. */
450
451 Lisp_Object *stack_base;
452
453 /* Root of the tree describing allocated Lisp memory. */
454
455 static struct mem_node *mem_root;
456
457 /* Lowest and highest known address in the heap. */
458
459 static void *min_heap_address, *max_heap_address;
460
461 /* Sentinel node of the tree. */
462
463 static struct mem_node mem_z;
464 #define MEM_NIL &mem_z
465
466 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
467 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
468 static void lisp_free P_ ((POINTER_TYPE *));
469 static void mark_stack P_ ((void));
470 static int live_vector_p P_ ((struct mem_node *, void *));
471 static int live_buffer_p P_ ((struct mem_node *, void *));
472 static int live_string_p P_ ((struct mem_node *, void *));
473 static int live_cons_p P_ ((struct mem_node *, void *));
474 static int live_symbol_p P_ ((struct mem_node *, void *));
475 static int live_float_p P_ ((struct mem_node *, void *));
476 static int live_misc_p P_ ((struct mem_node *, void *));
477 static void mark_maybe_object P_ ((Lisp_Object));
478 static void mark_memory P_ ((void *, void *, int));
479 static void mem_init P_ ((void));
480 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
481 static void mem_insert_fixup P_ ((struct mem_node *));
482 static void mem_rotate_left P_ ((struct mem_node *));
483 static void mem_rotate_right P_ ((struct mem_node *));
484 static void mem_delete P_ ((struct mem_node *));
485 static void mem_delete_fixup P_ ((struct mem_node *));
486 static INLINE struct mem_node *mem_find P_ ((void *));
487
488
489 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
490 static void check_gcpros P_ ((void));
491 #endif
492
493 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
494
495 /* Recording what needs to be marked for gc. */
496
497 struct gcpro *gcprolist;
498
499 /* Addresses of staticpro'd variables. Initialize it to a nonzero
500 value; otherwise some compilers put it into BSS. */
501
502 #define NSTATICS 0x640
503 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
504
505 /* Index of next unused slot in staticvec. */
506
507 static int staticidx = 0;
508
509 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
510
511
512 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
513 ALIGNMENT must be a power of 2. */
514
515 #define ALIGN(ptr, ALIGNMENT) \
516 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
517 & ~((ALIGNMENT) - 1)))
518
519
520 \f
521 /************************************************************************
522 Malloc
523 ************************************************************************/
524
525 /* Function malloc calls this if it finds we are near exhausting storage. */
526
527 void
528 malloc_warning (str)
529 char *str;
530 {
531 pending_malloc_warning = str;
532 }
533
534
535 /* Display an already-pending malloc warning. */
536
537 void
538 display_malloc_warning ()
539 {
540 call3 (intern ("display-warning"),
541 intern ("alloc"),
542 build_string (pending_malloc_warning),
543 intern ("emergency"));
544 pending_malloc_warning = 0;
545 }
546
547
548 #ifdef DOUG_LEA_MALLOC
549 # define BYTES_USED (mallinfo ().uordblks)
550 #else
551 # define BYTES_USED _bytes_used
552 #endif
553 \f
554 /* Called if we can't allocate relocatable space for a buffer. */
555
556 void
557 buffer_memory_full ()
558 {
559 /* If buffers use the relocating allocator, no need to free
560 spare_memory, because we may have plenty of malloc space left
561 that we could get, and if we don't, the malloc that fails will
562 itself cause spare_memory to be freed. If buffers don't use the
563 relocating allocator, treat this like any other failing
564 malloc. */
565
566 #ifndef REL_ALLOC
567 memory_full ();
568 #endif
569
570 /* This used to call error, but if we've run out of memory, we could
571 get infinite recursion trying to build the string. */
572 xsignal (Qnil, Vmemory_signal_data);
573 }
574
575
576 #ifdef XMALLOC_OVERRUN_CHECK
577
578 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
579 and a 16 byte trailer around each block.
580
581 The header consists of 12 fixed bytes + a 4 byte integer contaning the
582 original block size, while the trailer consists of 16 fixed bytes.
583
584 The header is used to detect whether this block has been allocated
585 through these functions -- as it seems that some low-level libc
586 functions may bypass the malloc hooks.
587 */
588
589
590 #define XMALLOC_OVERRUN_CHECK_SIZE 16
591
592 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
593 { 0x9a, 0x9b, 0xae, 0xaf,
594 0xbf, 0xbe, 0xce, 0xcf,
595 0xea, 0xeb, 0xec, 0xed };
596
597 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
598 { 0xaa, 0xab, 0xac, 0xad,
599 0xba, 0xbb, 0xbc, 0xbd,
600 0xca, 0xcb, 0xcc, 0xcd,
601 0xda, 0xdb, 0xdc, 0xdd };
602
603 /* Macros to insert and extract the block size in the header. */
604
605 #define XMALLOC_PUT_SIZE(ptr, size) \
606 (ptr[-1] = (size & 0xff), \
607 ptr[-2] = ((size >> 8) & 0xff), \
608 ptr[-3] = ((size >> 16) & 0xff), \
609 ptr[-4] = ((size >> 24) & 0xff))
610
611 #define XMALLOC_GET_SIZE(ptr) \
612 (size_t)((unsigned)(ptr[-1]) | \
613 ((unsigned)(ptr[-2]) << 8) | \
614 ((unsigned)(ptr[-3]) << 16) | \
615 ((unsigned)(ptr[-4]) << 24))
616
617
618 /* The call depth in overrun_check functions. For example, this might happen:
619 xmalloc()
620 overrun_check_malloc()
621 -> malloc -> (via hook)_-> emacs_blocked_malloc
622 -> overrun_check_malloc
623 call malloc (hooks are NULL, so real malloc is called).
624 malloc returns 10000.
625 add overhead, return 10016.
626 <- (back in overrun_check_malloc)
627 add overhead again, return 10032
628 xmalloc returns 10032.
629
630 (time passes).
631
632 xfree(10032)
633 overrun_check_free(10032)
634 decrease overhed
635 free(10016) <- crash, because 10000 is the original pointer. */
636
637 static int check_depth;
638
639 /* Like malloc, but wraps allocated block with header and trailer. */
640
641 POINTER_TYPE *
642 overrun_check_malloc (size)
643 size_t size;
644 {
645 register unsigned char *val;
646 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
647
648 val = (unsigned char *) malloc (size + overhead);
649 if (val && check_depth == 1)
650 {
651 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
652 val += XMALLOC_OVERRUN_CHECK_SIZE;
653 XMALLOC_PUT_SIZE(val, size);
654 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
655 }
656 --check_depth;
657 return (POINTER_TYPE *)val;
658 }
659
660
661 /* Like realloc, but checks old block for overrun, and wraps new block
662 with header and trailer. */
663
664 POINTER_TYPE *
665 overrun_check_realloc (block, size)
666 POINTER_TYPE *block;
667 size_t size;
668 {
669 register unsigned char *val = (unsigned char *)block;
670 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
671
672 if (val
673 && check_depth == 1
674 && bcmp (xmalloc_overrun_check_header,
675 val - XMALLOC_OVERRUN_CHECK_SIZE,
676 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
677 {
678 size_t osize = XMALLOC_GET_SIZE (val);
679 if (bcmp (xmalloc_overrun_check_trailer,
680 val + osize,
681 XMALLOC_OVERRUN_CHECK_SIZE))
682 abort ();
683 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
684 val -= XMALLOC_OVERRUN_CHECK_SIZE;
685 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
686 }
687
688 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
689
690 if (val && check_depth == 1)
691 {
692 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
693 val += XMALLOC_OVERRUN_CHECK_SIZE;
694 XMALLOC_PUT_SIZE(val, size);
695 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
696 }
697 --check_depth;
698 return (POINTER_TYPE *)val;
699 }
700
701 /* Like free, but checks block for overrun. */
702
703 void
704 overrun_check_free (block)
705 POINTER_TYPE *block;
706 {
707 unsigned char *val = (unsigned char *)block;
708
709 ++check_depth;
710 if (val
711 && check_depth == 1
712 && bcmp (xmalloc_overrun_check_header,
713 val - XMALLOC_OVERRUN_CHECK_SIZE,
714 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
715 {
716 size_t osize = XMALLOC_GET_SIZE (val);
717 if (bcmp (xmalloc_overrun_check_trailer,
718 val + osize,
719 XMALLOC_OVERRUN_CHECK_SIZE))
720 abort ();
721 #ifdef XMALLOC_CLEAR_FREE_MEMORY
722 val -= XMALLOC_OVERRUN_CHECK_SIZE;
723 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
724 #else
725 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
726 val -= XMALLOC_OVERRUN_CHECK_SIZE;
727 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
728 #endif
729 }
730
731 free (val);
732 --check_depth;
733 }
734
735 #undef malloc
736 #undef realloc
737 #undef free
738 #define malloc overrun_check_malloc
739 #define realloc overrun_check_realloc
740 #define free overrun_check_free
741 #endif
742
743 #ifdef SYNC_INPUT
744 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
745 there's no need to block input around malloc. */
746 #define MALLOC_BLOCK_INPUT ((void)0)
747 #define MALLOC_UNBLOCK_INPUT ((void)0)
748 #else
749 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
750 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
751 #endif
752
753 /* Like malloc but check for no memory and block interrupt input.. */
754
755 POINTER_TYPE *
756 xmalloc (size)
757 size_t size;
758 {
759 register POINTER_TYPE *val;
760
761 MALLOC_BLOCK_INPUT;
762 val = (POINTER_TYPE *) malloc (size);
763 MALLOC_UNBLOCK_INPUT;
764
765 if (!val && size)
766 memory_full ();
767 return val;
768 }
769
770
771 /* Like realloc but check for no memory and block interrupt input.. */
772
773 POINTER_TYPE *
774 xrealloc (block, size)
775 POINTER_TYPE *block;
776 size_t size;
777 {
778 register POINTER_TYPE *val;
779
780 MALLOC_BLOCK_INPUT;
781 /* We must call malloc explicitly when BLOCK is 0, since some
782 reallocs don't do this. */
783 if (! block)
784 val = (POINTER_TYPE *) malloc (size);
785 else
786 val = (POINTER_TYPE *) realloc (block, size);
787 MALLOC_UNBLOCK_INPUT;
788
789 if (!val && size) memory_full ();
790 return val;
791 }
792
793
794 /* Like free but block interrupt input. */
795
796 void
797 xfree (block)
798 POINTER_TYPE *block;
799 {
800 if (!block)
801 return;
802 MALLOC_BLOCK_INPUT;
803 free (block);
804 MALLOC_UNBLOCK_INPUT;
805 /* We don't call refill_memory_reserve here
806 because that duplicates doing so in emacs_blocked_free
807 and the criterion should go there. */
808 }
809
810
811 /* Like strdup, but uses xmalloc. */
812
813 char *
814 xstrdup (s)
815 const char *s;
816 {
817 size_t len = strlen (s) + 1;
818 char *p = (char *) xmalloc (len);
819 bcopy (s, p, len);
820 return p;
821 }
822
823
824 /* Unwind for SAFE_ALLOCA */
825
826 Lisp_Object
827 safe_alloca_unwind (arg)
828 Lisp_Object arg;
829 {
830 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
831
832 p->dogc = 0;
833 xfree (p->pointer);
834 p->pointer = 0;
835 free_misc (arg);
836 return Qnil;
837 }
838
839
840 /* Like malloc but used for allocating Lisp data. NBYTES is the
841 number of bytes to allocate, TYPE describes the intended use of the
842 allcated memory block (for strings, for conses, ...). */
843
844 #ifndef USE_LSB_TAG
845 static void *lisp_malloc_loser;
846 #endif
847
848 static POINTER_TYPE *
849 lisp_malloc (nbytes, type)
850 size_t nbytes;
851 enum mem_type type;
852 {
853 register void *val;
854
855 MALLOC_BLOCK_INPUT;
856
857 #ifdef GC_MALLOC_CHECK
858 allocated_mem_type = type;
859 #endif
860
861 val = (void *) malloc (nbytes);
862
863 #ifndef USE_LSB_TAG
864 /* If the memory just allocated cannot be addressed thru a Lisp
865 object's pointer, and it needs to be,
866 that's equivalent to running out of memory. */
867 if (val && type != MEM_TYPE_NON_LISP)
868 {
869 Lisp_Object tem;
870 XSETCONS (tem, (char *) val + nbytes - 1);
871 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
872 {
873 lisp_malloc_loser = val;
874 free (val);
875 val = 0;
876 }
877 }
878 #endif
879
880 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
881 if (val && type != MEM_TYPE_NON_LISP)
882 mem_insert (val, (char *) val + nbytes, type);
883 #endif
884
885 MALLOC_UNBLOCK_INPUT;
886 if (!val && nbytes)
887 memory_full ();
888 return val;
889 }
890
891 /* Free BLOCK. This must be called to free memory allocated with a
892 call to lisp_malloc. */
893
894 static void
895 lisp_free (block)
896 POINTER_TYPE *block;
897 {
898 MALLOC_BLOCK_INPUT;
899 free (block);
900 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
901 mem_delete (mem_find (block));
902 #endif
903 MALLOC_UNBLOCK_INPUT;
904 }
905
906 /* Allocation of aligned blocks of memory to store Lisp data. */
907 /* The entry point is lisp_align_malloc which returns blocks of at most */
908 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
909
910 /* Use posix_memalloc if the system has it and we're using the system's
911 malloc (because our gmalloc.c routines don't have posix_memalign although
912 its memalloc could be used). */
913 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
914 #define USE_POSIX_MEMALIGN 1
915 #endif
916
917 /* BLOCK_ALIGN has to be a power of 2. */
918 #define BLOCK_ALIGN (1 << 10)
919
920 /* Padding to leave at the end of a malloc'd block. This is to give
921 malloc a chance to minimize the amount of memory wasted to alignment.
922 It should be tuned to the particular malloc library used.
923 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
924 posix_memalign on the other hand would ideally prefer a value of 4
925 because otherwise, there's 1020 bytes wasted between each ablocks.
926 In Emacs, testing shows that those 1020 can most of the time be
927 efficiently used by malloc to place other objects, so a value of 0 can
928 still preferable unless you have a lot of aligned blocks and virtually
929 nothing else. */
930 #define BLOCK_PADDING 0
931 #define BLOCK_BYTES \
932 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
933
934 /* Internal data structures and constants. */
935
936 #define ABLOCKS_SIZE 16
937
938 /* An aligned block of memory. */
939 struct ablock
940 {
941 union
942 {
943 char payload[BLOCK_BYTES];
944 struct ablock *next_free;
945 } x;
946 /* `abase' is the aligned base of the ablocks. */
947 /* It is overloaded to hold the virtual `busy' field that counts
948 the number of used ablock in the parent ablocks.
949 The first ablock has the `busy' field, the others have the `abase'
950 field. To tell the difference, we assume that pointers will have
951 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
952 is used to tell whether the real base of the parent ablocks is `abase'
953 (if not, the word before the first ablock holds a pointer to the
954 real base). */
955 struct ablocks *abase;
956 /* The padding of all but the last ablock is unused. The padding of
957 the last ablock in an ablocks is not allocated. */
958 #if BLOCK_PADDING
959 char padding[BLOCK_PADDING];
960 #endif
961 };
962
963 /* A bunch of consecutive aligned blocks. */
964 struct ablocks
965 {
966 struct ablock blocks[ABLOCKS_SIZE];
967 };
968
969 /* Size of the block requested from malloc or memalign. */
970 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
971
972 #define ABLOCK_ABASE(block) \
973 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
974 ? (struct ablocks *)(block) \
975 : (block)->abase)
976
977 /* Virtual `busy' field. */
978 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
979
980 /* Pointer to the (not necessarily aligned) malloc block. */
981 #ifdef USE_POSIX_MEMALIGN
982 #define ABLOCKS_BASE(abase) (abase)
983 #else
984 #define ABLOCKS_BASE(abase) \
985 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
986 #endif
987
988 /* The list of free ablock. */
989 static struct ablock *free_ablock;
990
991 /* Allocate an aligned block of nbytes.
992 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
993 smaller or equal to BLOCK_BYTES. */
994 static POINTER_TYPE *
995 lisp_align_malloc (nbytes, type)
996 size_t nbytes;
997 enum mem_type type;
998 {
999 void *base, *val;
1000 struct ablocks *abase;
1001
1002 eassert (nbytes <= BLOCK_BYTES);
1003
1004 MALLOC_BLOCK_INPUT;
1005
1006 #ifdef GC_MALLOC_CHECK
1007 allocated_mem_type = type;
1008 #endif
1009
1010 if (!free_ablock)
1011 {
1012 int i;
1013 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1014
1015 #ifdef DOUG_LEA_MALLOC
1016 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1017 because mapped region contents are not preserved in
1018 a dumped Emacs. */
1019 mallopt (M_MMAP_MAX, 0);
1020 #endif
1021
1022 #ifdef USE_POSIX_MEMALIGN
1023 {
1024 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1025 if (err)
1026 base = NULL;
1027 abase = base;
1028 }
1029 #else
1030 base = malloc (ABLOCKS_BYTES);
1031 abase = ALIGN (base, BLOCK_ALIGN);
1032 #endif
1033
1034 if (base == 0)
1035 {
1036 MALLOC_UNBLOCK_INPUT;
1037 memory_full ();
1038 }
1039
1040 aligned = (base == abase);
1041 if (!aligned)
1042 ((void**)abase)[-1] = base;
1043
1044 #ifdef DOUG_LEA_MALLOC
1045 /* Back to a reasonable maximum of mmap'ed areas. */
1046 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1047 #endif
1048
1049 #ifndef USE_LSB_TAG
1050 /* If the memory just allocated cannot be addressed thru a Lisp
1051 object's pointer, and it needs to be, that's equivalent to
1052 running out of memory. */
1053 if (type != MEM_TYPE_NON_LISP)
1054 {
1055 Lisp_Object tem;
1056 char *end = (char *) base + ABLOCKS_BYTES - 1;
1057 XSETCONS (tem, end);
1058 if ((char *) XCONS (tem) != end)
1059 {
1060 lisp_malloc_loser = base;
1061 free (base);
1062 MALLOC_UNBLOCK_INPUT;
1063 memory_full ();
1064 }
1065 }
1066 #endif
1067
1068 /* Initialize the blocks and put them on the free list.
1069 Is `base' was not properly aligned, we can't use the last block. */
1070 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1071 {
1072 abase->blocks[i].abase = abase;
1073 abase->blocks[i].x.next_free = free_ablock;
1074 free_ablock = &abase->blocks[i];
1075 }
1076 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1077
1078 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1079 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1080 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1081 eassert (ABLOCKS_BASE (abase) == base);
1082 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1083 }
1084
1085 abase = ABLOCK_ABASE (free_ablock);
1086 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1087 val = free_ablock;
1088 free_ablock = free_ablock->x.next_free;
1089
1090 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1091 if (val && type != MEM_TYPE_NON_LISP)
1092 mem_insert (val, (char *) val + nbytes, type);
1093 #endif
1094
1095 MALLOC_UNBLOCK_INPUT;
1096 if (!val && nbytes)
1097 memory_full ();
1098
1099 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1100 return val;
1101 }
1102
1103 static void
1104 lisp_align_free (block)
1105 POINTER_TYPE *block;
1106 {
1107 struct ablock *ablock = block;
1108 struct ablocks *abase = ABLOCK_ABASE (ablock);
1109
1110 MALLOC_BLOCK_INPUT;
1111 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1112 mem_delete (mem_find (block));
1113 #endif
1114 /* Put on free list. */
1115 ablock->x.next_free = free_ablock;
1116 free_ablock = ablock;
1117 /* Update busy count. */
1118 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1119
1120 if (2 > (long) ABLOCKS_BUSY (abase))
1121 { /* All the blocks are free. */
1122 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1123 struct ablock **tem = &free_ablock;
1124 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1125
1126 while (*tem)
1127 {
1128 if (*tem >= (struct ablock *) abase && *tem < atop)
1129 {
1130 i++;
1131 *tem = (*tem)->x.next_free;
1132 }
1133 else
1134 tem = &(*tem)->x.next_free;
1135 }
1136 eassert ((aligned & 1) == aligned);
1137 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1138 #ifdef USE_POSIX_MEMALIGN
1139 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1140 #endif
1141 free (ABLOCKS_BASE (abase));
1142 }
1143 MALLOC_UNBLOCK_INPUT;
1144 }
1145
1146 /* Return a new buffer structure allocated from the heap with
1147 a call to lisp_malloc. */
1148
1149 struct buffer *
1150 allocate_buffer ()
1151 {
1152 struct buffer *b
1153 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1154 MEM_TYPE_BUFFER);
1155 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1156 XSETPVECTYPE (b, PVEC_BUFFER);
1157 return b;
1158 }
1159
1160 \f
1161 #ifndef SYSTEM_MALLOC
1162
1163 /* Arranging to disable input signals while we're in malloc.
1164
1165 This only works with GNU malloc. To help out systems which can't
1166 use GNU malloc, all the calls to malloc, realloc, and free
1167 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1168 pair; unfortunately, we have no idea what C library functions
1169 might call malloc, so we can't really protect them unless you're
1170 using GNU malloc. Fortunately, most of the major operating systems
1171 can use GNU malloc. */
1172
1173 #ifndef SYNC_INPUT
1174 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1175 there's no need to block input around malloc. */
1176
1177 #ifndef DOUG_LEA_MALLOC
1178 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1179 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1180 extern void (*__free_hook) P_ ((void *, const void *));
1181 /* Else declared in malloc.h, perhaps with an extra arg. */
1182 #endif /* DOUG_LEA_MALLOC */
1183 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1184 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1185 static void (*old_free_hook) P_ ((void*, const void*));
1186
1187 /* This function is used as the hook for free to call. */
1188
1189 static void
1190 emacs_blocked_free (ptr, ptr2)
1191 void *ptr;
1192 const void *ptr2;
1193 {
1194 BLOCK_INPUT_ALLOC;
1195
1196 #ifdef GC_MALLOC_CHECK
1197 if (ptr)
1198 {
1199 struct mem_node *m;
1200
1201 m = mem_find (ptr);
1202 if (m == MEM_NIL || m->start != ptr)
1203 {
1204 fprintf (stderr,
1205 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1206 abort ();
1207 }
1208 else
1209 {
1210 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1211 mem_delete (m);
1212 }
1213 }
1214 #endif /* GC_MALLOC_CHECK */
1215
1216 __free_hook = old_free_hook;
1217 free (ptr);
1218
1219 /* If we released our reserve (due to running out of memory),
1220 and we have a fair amount free once again,
1221 try to set aside another reserve in case we run out once more. */
1222 if (! NILP (Vmemory_full)
1223 /* Verify there is enough space that even with the malloc
1224 hysteresis this call won't run out again.
1225 The code here is correct as long as SPARE_MEMORY
1226 is substantially larger than the block size malloc uses. */
1227 && (bytes_used_when_full
1228 > ((bytes_used_when_reconsidered = BYTES_USED)
1229 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1230 refill_memory_reserve ();
1231
1232 __free_hook = emacs_blocked_free;
1233 UNBLOCK_INPUT_ALLOC;
1234 }
1235
1236
1237 /* This function is the malloc hook that Emacs uses. */
1238
1239 static void *
1240 emacs_blocked_malloc (size, ptr)
1241 size_t size;
1242 const void *ptr;
1243 {
1244 void *value;
1245
1246 BLOCK_INPUT_ALLOC;
1247 __malloc_hook = old_malloc_hook;
1248 #ifdef DOUG_LEA_MALLOC
1249 /* Segfaults on my system. --lorentey */
1250 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1251 #else
1252 __malloc_extra_blocks = malloc_hysteresis;
1253 #endif
1254
1255 value = (void *) malloc (size);
1256
1257 #ifdef GC_MALLOC_CHECK
1258 {
1259 struct mem_node *m = mem_find (value);
1260 if (m != MEM_NIL)
1261 {
1262 fprintf (stderr, "Malloc returned %p which is already in use\n",
1263 value);
1264 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1265 m->start, m->end, (char *) m->end - (char *) m->start,
1266 m->type);
1267 abort ();
1268 }
1269
1270 if (!dont_register_blocks)
1271 {
1272 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1273 allocated_mem_type = MEM_TYPE_NON_LISP;
1274 }
1275 }
1276 #endif /* GC_MALLOC_CHECK */
1277
1278 __malloc_hook = emacs_blocked_malloc;
1279 UNBLOCK_INPUT_ALLOC;
1280
1281 /* fprintf (stderr, "%p malloc\n", value); */
1282 return value;
1283 }
1284
1285
1286 /* This function is the realloc hook that Emacs uses. */
1287
1288 static void *
1289 emacs_blocked_realloc (ptr, size, ptr2)
1290 void *ptr;
1291 size_t size;
1292 const void *ptr2;
1293 {
1294 void *value;
1295
1296 BLOCK_INPUT_ALLOC;
1297 __realloc_hook = old_realloc_hook;
1298
1299 #ifdef GC_MALLOC_CHECK
1300 if (ptr)
1301 {
1302 struct mem_node *m = mem_find (ptr);
1303 if (m == MEM_NIL || m->start != ptr)
1304 {
1305 fprintf (stderr,
1306 "Realloc of %p which wasn't allocated with malloc\n",
1307 ptr);
1308 abort ();
1309 }
1310
1311 mem_delete (m);
1312 }
1313
1314 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1315
1316 /* Prevent malloc from registering blocks. */
1317 dont_register_blocks = 1;
1318 #endif /* GC_MALLOC_CHECK */
1319
1320 value = (void *) realloc (ptr, size);
1321
1322 #ifdef GC_MALLOC_CHECK
1323 dont_register_blocks = 0;
1324
1325 {
1326 struct mem_node *m = mem_find (value);
1327 if (m != MEM_NIL)
1328 {
1329 fprintf (stderr, "Realloc returns memory that is already in use\n");
1330 abort ();
1331 }
1332
1333 /* Can't handle zero size regions in the red-black tree. */
1334 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1335 }
1336
1337 /* fprintf (stderr, "%p <- realloc\n", value); */
1338 #endif /* GC_MALLOC_CHECK */
1339
1340 __realloc_hook = emacs_blocked_realloc;
1341 UNBLOCK_INPUT_ALLOC;
1342
1343 return value;
1344 }
1345
1346
1347 #ifdef HAVE_GTK_AND_PTHREAD
1348 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1349 normal malloc. Some thread implementations need this as they call
1350 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1351 calls malloc because it is the first call, and we have an endless loop. */
1352
1353 void
1354 reset_malloc_hooks ()
1355 {
1356 __free_hook = old_free_hook;
1357 __malloc_hook = old_malloc_hook;
1358 __realloc_hook = old_realloc_hook;
1359 }
1360 #endif /* HAVE_GTK_AND_PTHREAD */
1361
1362
1363 /* Called from main to set up malloc to use our hooks. */
1364
1365 void
1366 uninterrupt_malloc ()
1367 {
1368 #ifdef HAVE_GTK_AND_PTHREAD
1369 #ifdef DOUG_LEA_MALLOC
1370 pthread_mutexattr_t attr;
1371
1372 /* GLIBC has a faster way to do this, but lets keep it portable.
1373 This is according to the Single UNIX Specification. */
1374 pthread_mutexattr_init (&attr);
1375 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1376 pthread_mutex_init (&alloc_mutex, &attr);
1377 #else /* !DOUG_LEA_MALLOC */
1378 /* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
1379 and the bundled gmalloc.c doesn't require it. */
1380 pthread_mutex_init (&alloc_mutex, NULL);
1381 #endif /* !DOUG_LEA_MALLOC */
1382 #endif /* HAVE_GTK_AND_PTHREAD */
1383
1384 if (__free_hook != emacs_blocked_free)
1385 old_free_hook = __free_hook;
1386 __free_hook = emacs_blocked_free;
1387
1388 if (__malloc_hook != emacs_blocked_malloc)
1389 old_malloc_hook = __malloc_hook;
1390 __malloc_hook = emacs_blocked_malloc;
1391
1392 if (__realloc_hook != emacs_blocked_realloc)
1393 old_realloc_hook = __realloc_hook;
1394 __realloc_hook = emacs_blocked_realloc;
1395 }
1396
1397 #endif /* not SYNC_INPUT */
1398 #endif /* not SYSTEM_MALLOC */
1399
1400
1401 \f
1402 /***********************************************************************
1403 Interval Allocation
1404 ***********************************************************************/
1405
1406 /* Number of intervals allocated in an interval_block structure.
1407 The 1020 is 1024 minus malloc overhead. */
1408
1409 #define INTERVAL_BLOCK_SIZE \
1410 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1411
1412 /* Intervals are allocated in chunks in form of an interval_block
1413 structure. */
1414
1415 struct interval_block
1416 {
1417 /* Place `intervals' first, to preserve alignment. */
1418 struct interval intervals[INTERVAL_BLOCK_SIZE];
1419 struct interval_block *next;
1420 };
1421
1422 /* Current interval block. Its `next' pointer points to older
1423 blocks. */
1424
1425 static struct interval_block *interval_block;
1426
1427 /* Index in interval_block above of the next unused interval
1428 structure. */
1429
1430 static int interval_block_index;
1431
1432 /* Number of free and live intervals. */
1433
1434 static int total_free_intervals, total_intervals;
1435
1436 /* List of free intervals. */
1437
1438 INTERVAL interval_free_list;
1439
1440 /* Total number of interval blocks now in use. */
1441
1442 static int n_interval_blocks;
1443
1444
1445 /* Initialize interval allocation. */
1446
1447 static void
1448 init_intervals ()
1449 {
1450 interval_block = NULL;
1451 interval_block_index = INTERVAL_BLOCK_SIZE;
1452 interval_free_list = 0;
1453 n_interval_blocks = 0;
1454 }
1455
1456
1457 /* Return a new interval. */
1458
1459 INTERVAL
1460 make_interval ()
1461 {
1462 INTERVAL val;
1463
1464 /* eassert (!handling_signal); */
1465
1466 MALLOC_BLOCK_INPUT;
1467
1468 if (interval_free_list)
1469 {
1470 val = interval_free_list;
1471 interval_free_list = INTERVAL_PARENT (interval_free_list);
1472 }
1473 else
1474 {
1475 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1476 {
1477 register struct interval_block *newi;
1478
1479 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1480 MEM_TYPE_NON_LISP);
1481
1482 newi->next = interval_block;
1483 interval_block = newi;
1484 interval_block_index = 0;
1485 n_interval_blocks++;
1486 }
1487 val = &interval_block->intervals[interval_block_index++];
1488 }
1489
1490 MALLOC_UNBLOCK_INPUT;
1491
1492 consing_since_gc += sizeof (struct interval);
1493 intervals_consed++;
1494 RESET_INTERVAL (val);
1495 val->gcmarkbit = 0;
1496 return val;
1497 }
1498
1499
1500 /* Mark Lisp objects in interval I. */
1501
1502 static void
1503 mark_interval (i, dummy)
1504 register INTERVAL i;
1505 Lisp_Object dummy;
1506 {
1507 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1508 i->gcmarkbit = 1;
1509 mark_object (i->plist);
1510 }
1511
1512
1513 /* Mark the interval tree rooted in TREE. Don't call this directly;
1514 use the macro MARK_INTERVAL_TREE instead. */
1515
1516 static void
1517 mark_interval_tree (tree)
1518 register INTERVAL tree;
1519 {
1520 /* No need to test if this tree has been marked already; this
1521 function is always called through the MARK_INTERVAL_TREE macro,
1522 which takes care of that. */
1523
1524 traverse_intervals_noorder (tree, mark_interval, Qnil);
1525 }
1526
1527
1528 /* Mark the interval tree rooted in I. */
1529
1530 #define MARK_INTERVAL_TREE(i) \
1531 do { \
1532 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1533 mark_interval_tree (i); \
1534 } while (0)
1535
1536
1537 #define UNMARK_BALANCE_INTERVALS(i) \
1538 do { \
1539 if (! NULL_INTERVAL_P (i)) \
1540 (i) = balance_intervals (i); \
1541 } while (0)
1542
1543 \f
1544 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1545 can't create number objects in macros. */
1546 #ifndef make_number
1547 Lisp_Object
1548 make_number (n)
1549 EMACS_INT n;
1550 {
1551 Lisp_Object obj;
1552 obj.s.val = n;
1553 obj.s.type = Lisp_Int;
1554 return obj;
1555 }
1556 #endif
1557 \f
1558 /***********************************************************************
1559 String Allocation
1560 ***********************************************************************/
1561
1562 /* Lisp_Strings are allocated in string_block structures. When a new
1563 string_block is allocated, all the Lisp_Strings it contains are
1564 added to a free-list string_free_list. When a new Lisp_String is
1565 needed, it is taken from that list. During the sweep phase of GC,
1566 string_blocks that are entirely free are freed, except two which
1567 we keep.
1568
1569 String data is allocated from sblock structures. Strings larger
1570 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1571 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1572
1573 Sblocks consist internally of sdata structures, one for each
1574 Lisp_String. The sdata structure points to the Lisp_String it
1575 belongs to. The Lisp_String points back to the `u.data' member of
1576 its sdata structure.
1577
1578 When a Lisp_String is freed during GC, it is put back on
1579 string_free_list, and its `data' member and its sdata's `string'
1580 pointer is set to null. The size of the string is recorded in the
1581 `u.nbytes' member of the sdata. So, sdata structures that are no
1582 longer used, can be easily recognized, and it's easy to compact the
1583 sblocks of small strings which we do in compact_small_strings. */
1584
1585 /* Size in bytes of an sblock structure used for small strings. This
1586 is 8192 minus malloc overhead. */
1587
1588 #define SBLOCK_SIZE 8188
1589
1590 /* Strings larger than this are considered large strings. String data
1591 for large strings is allocated from individual sblocks. */
1592
1593 #define LARGE_STRING_BYTES 1024
1594
1595 /* Structure describing string memory sub-allocated from an sblock.
1596 This is where the contents of Lisp strings are stored. */
1597
1598 struct sdata
1599 {
1600 /* Back-pointer to the string this sdata belongs to. If null, this
1601 structure is free, and the NBYTES member of the union below
1602 contains the string's byte size (the same value that STRING_BYTES
1603 would return if STRING were non-null). If non-null, STRING_BYTES
1604 (STRING) is the size of the data, and DATA contains the string's
1605 contents. */
1606 struct Lisp_String *string;
1607
1608 #ifdef GC_CHECK_STRING_BYTES
1609
1610 EMACS_INT nbytes;
1611 unsigned char data[1];
1612
1613 #define SDATA_NBYTES(S) (S)->nbytes
1614 #define SDATA_DATA(S) (S)->data
1615
1616 #else /* not GC_CHECK_STRING_BYTES */
1617
1618 union
1619 {
1620 /* When STRING in non-null. */
1621 unsigned char data[1];
1622
1623 /* When STRING is null. */
1624 EMACS_INT nbytes;
1625 } u;
1626
1627
1628 #define SDATA_NBYTES(S) (S)->u.nbytes
1629 #define SDATA_DATA(S) (S)->u.data
1630
1631 #endif /* not GC_CHECK_STRING_BYTES */
1632 };
1633
1634
1635 /* Structure describing a block of memory which is sub-allocated to
1636 obtain string data memory for strings. Blocks for small strings
1637 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1638 as large as needed. */
1639
1640 struct sblock
1641 {
1642 /* Next in list. */
1643 struct sblock *next;
1644
1645 /* Pointer to the next free sdata block. This points past the end
1646 of the sblock if there isn't any space left in this block. */
1647 struct sdata *next_free;
1648
1649 /* Start of data. */
1650 struct sdata first_data;
1651 };
1652
1653 /* Number of Lisp strings in a string_block structure. The 1020 is
1654 1024 minus malloc overhead. */
1655
1656 #define STRING_BLOCK_SIZE \
1657 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1658
1659 /* Structure describing a block from which Lisp_String structures
1660 are allocated. */
1661
1662 struct string_block
1663 {
1664 /* Place `strings' first, to preserve alignment. */
1665 struct Lisp_String strings[STRING_BLOCK_SIZE];
1666 struct string_block *next;
1667 };
1668
1669 /* Head and tail of the list of sblock structures holding Lisp string
1670 data. We always allocate from current_sblock. The NEXT pointers
1671 in the sblock structures go from oldest_sblock to current_sblock. */
1672
1673 static struct sblock *oldest_sblock, *current_sblock;
1674
1675 /* List of sblocks for large strings. */
1676
1677 static struct sblock *large_sblocks;
1678
1679 /* List of string_block structures, and how many there are. */
1680
1681 static struct string_block *string_blocks;
1682 static int n_string_blocks;
1683
1684 /* Free-list of Lisp_Strings. */
1685
1686 static struct Lisp_String *string_free_list;
1687
1688 /* Number of live and free Lisp_Strings. */
1689
1690 static int total_strings, total_free_strings;
1691
1692 /* Number of bytes used by live strings. */
1693
1694 static int total_string_size;
1695
1696 /* Given a pointer to a Lisp_String S which is on the free-list
1697 string_free_list, return a pointer to its successor in the
1698 free-list. */
1699
1700 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1701
1702 /* Return a pointer to the sdata structure belonging to Lisp string S.
1703 S must be live, i.e. S->data must not be null. S->data is actually
1704 a pointer to the `u.data' member of its sdata structure; the
1705 structure starts at a constant offset in front of that. */
1706
1707 #ifdef GC_CHECK_STRING_BYTES
1708
1709 #define SDATA_OF_STRING(S) \
1710 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1711 - sizeof (EMACS_INT)))
1712
1713 #else /* not GC_CHECK_STRING_BYTES */
1714
1715 #define SDATA_OF_STRING(S) \
1716 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1717
1718 #endif /* not GC_CHECK_STRING_BYTES */
1719
1720
1721 #ifdef GC_CHECK_STRING_OVERRUN
1722
1723 /* We check for overrun in string data blocks by appending a small
1724 "cookie" after each allocated string data block, and check for the
1725 presence of this cookie during GC. */
1726
1727 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1728 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1729 { 0xde, 0xad, 0xbe, 0xef };
1730
1731 #else
1732 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1733 #endif
1734
1735 /* Value is the size of an sdata structure large enough to hold NBYTES
1736 bytes of string data. The value returned includes a terminating
1737 NUL byte, the size of the sdata structure, and padding. */
1738
1739 #ifdef GC_CHECK_STRING_BYTES
1740
1741 #define SDATA_SIZE(NBYTES) \
1742 ((sizeof (struct Lisp_String *) \
1743 + (NBYTES) + 1 \
1744 + sizeof (EMACS_INT) \
1745 + sizeof (EMACS_INT) - 1) \
1746 & ~(sizeof (EMACS_INT) - 1))
1747
1748 #else /* not GC_CHECK_STRING_BYTES */
1749
1750 #define SDATA_SIZE(NBYTES) \
1751 ((sizeof (struct Lisp_String *) \
1752 + (NBYTES) + 1 \
1753 + sizeof (EMACS_INT) - 1) \
1754 & ~(sizeof (EMACS_INT) - 1))
1755
1756 #endif /* not GC_CHECK_STRING_BYTES */
1757
1758 /* Extra bytes to allocate for each string. */
1759
1760 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1761
1762 /* Initialize string allocation. Called from init_alloc_once. */
1763
1764 static void
1765 init_strings ()
1766 {
1767 total_strings = total_free_strings = total_string_size = 0;
1768 oldest_sblock = current_sblock = large_sblocks = NULL;
1769 string_blocks = NULL;
1770 n_string_blocks = 0;
1771 string_free_list = NULL;
1772 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1773 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1774 }
1775
1776
1777 #ifdef GC_CHECK_STRING_BYTES
1778
1779 static int check_string_bytes_count;
1780
1781 static void check_string_bytes P_ ((int));
1782 static void check_sblock P_ ((struct sblock *));
1783
1784 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1785
1786
1787 /* Like GC_STRING_BYTES, but with debugging check. */
1788
1789 int
1790 string_bytes (s)
1791 struct Lisp_String *s;
1792 {
1793 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1794 if (!PURE_POINTER_P (s)
1795 && s->data
1796 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1797 abort ();
1798 return nbytes;
1799 }
1800
1801 /* Check validity of Lisp strings' string_bytes member in B. */
1802
1803 static void
1804 check_sblock (b)
1805 struct sblock *b;
1806 {
1807 struct sdata *from, *end, *from_end;
1808
1809 end = b->next_free;
1810
1811 for (from = &b->first_data; from < end; from = from_end)
1812 {
1813 /* Compute the next FROM here because copying below may
1814 overwrite data we need to compute it. */
1815 int nbytes;
1816
1817 /* Check that the string size recorded in the string is the
1818 same as the one recorded in the sdata structure. */
1819 if (from->string)
1820 CHECK_STRING_BYTES (from->string);
1821
1822 if (from->string)
1823 nbytes = GC_STRING_BYTES (from->string);
1824 else
1825 nbytes = SDATA_NBYTES (from);
1826
1827 nbytes = SDATA_SIZE (nbytes);
1828 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1829 }
1830 }
1831
1832
1833 /* Check validity of Lisp strings' string_bytes member. ALL_P
1834 non-zero means check all strings, otherwise check only most
1835 recently allocated strings. Used for hunting a bug. */
1836
1837 static void
1838 check_string_bytes (all_p)
1839 int all_p;
1840 {
1841 if (all_p)
1842 {
1843 struct sblock *b;
1844
1845 for (b = large_sblocks; b; b = b->next)
1846 {
1847 struct Lisp_String *s = b->first_data.string;
1848 if (s)
1849 CHECK_STRING_BYTES (s);
1850 }
1851
1852 for (b = oldest_sblock; b; b = b->next)
1853 check_sblock (b);
1854 }
1855 else
1856 check_sblock (current_sblock);
1857 }
1858
1859 #endif /* GC_CHECK_STRING_BYTES */
1860
1861 #ifdef GC_CHECK_STRING_FREE_LIST
1862
1863 /* Walk through the string free list looking for bogus next pointers.
1864 This may catch buffer overrun from a previous string. */
1865
1866 static void
1867 check_string_free_list ()
1868 {
1869 struct Lisp_String *s;
1870
1871 /* Pop a Lisp_String off the free-list. */
1872 s = string_free_list;
1873 while (s != NULL)
1874 {
1875 if ((unsigned)s < 1024)
1876 abort();
1877 s = NEXT_FREE_LISP_STRING (s);
1878 }
1879 }
1880 #else
1881 #define check_string_free_list()
1882 #endif
1883
1884 /* Return a new Lisp_String. */
1885
1886 static struct Lisp_String *
1887 allocate_string ()
1888 {
1889 struct Lisp_String *s;
1890
1891 /* eassert (!handling_signal); */
1892
1893 MALLOC_BLOCK_INPUT;
1894
1895 /* If the free-list is empty, allocate a new string_block, and
1896 add all the Lisp_Strings in it to the free-list. */
1897 if (string_free_list == NULL)
1898 {
1899 struct string_block *b;
1900 int i;
1901
1902 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1903 bzero (b, sizeof *b);
1904 b->next = string_blocks;
1905 string_blocks = b;
1906 ++n_string_blocks;
1907
1908 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1909 {
1910 s = b->strings + i;
1911 NEXT_FREE_LISP_STRING (s) = string_free_list;
1912 string_free_list = s;
1913 }
1914
1915 total_free_strings += STRING_BLOCK_SIZE;
1916 }
1917
1918 check_string_free_list ();
1919
1920 /* Pop a Lisp_String off the free-list. */
1921 s = string_free_list;
1922 string_free_list = NEXT_FREE_LISP_STRING (s);
1923
1924 MALLOC_UNBLOCK_INPUT;
1925
1926 /* Probably not strictly necessary, but play it safe. */
1927 bzero (s, sizeof *s);
1928
1929 --total_free_strings;
1930 ++total_strings;
1931 ++strings_consed;
1932 consing_since_gc += sizeof *s;
1933
1934 #ifdef GC_CHECK_STRING_BYTES
1935 if (!noninteractive)
1936 {
1937 if (++check_string_bytes_count == 200)
1938 {
1939 check_string_bytes_count = 0;
1940 check_string_bytes (1);
1941 }
1942 else
1943 check_string_bytes (0);
1944 }
1945 #endif /* GC_CHECK_STRING_BYTES */
1946
1947 return s;
1948 }
1949
1950
1951 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1952 plus a NUL byte at the end. Allocate an sdata structure for S, and
1953 set S->data to its `u.data' member. Store a NUL byte at the end of
1954 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1955 S->data if it was initially non-null. */
1956
1957 void
1958 allocate_string_data (s, nchars, nbytes)
1959 struct Lisp_String *s;
1960 int nchars, nbytes;
1961 {
1962 struct sdata *data, *old_data;
1963 struct sblock *b;
1964 int needed, old_nbytes;
1965
1966 /* Determine the number of bytes needed to store NBYTES bytes
1967 of string data. */
1968 needed = SDATA_SIZE (nbytes);
1969 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1970 old_nbytes = GC_STRING_BYTES (s);
1971
1972 MALLOC_BLOCK_INPUT;
1973
1974 if (nbytes > LARGE_STRING_BYTES)
1975 {
1976 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1977
1978 #ifdef DOUG_LEA_MALLOC
1979 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1980 because mapped region contents are not preserved in
1981 a dumped Emacs.
1982
1983 In case you think of allowing it in a dumped Emacs at the
1984 cost of not being able to re-dump, there's another reason:
1985 mmap'ed data typically have an address towards the top of the
1986 address space, which won't fit into an EMACS_INT (at least on
1987 32-bit systems with the current tagging scheme). --fx */
1988 mallopt (M_MMAP_MAX, 0);
1989 #endif
1990
1991 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1992
1993 #ifdef DOUG_LEA_MALLOC
1994 /* Back to a reasonable maximum of mmap'ed areas. */
1995 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1996 #endif
1997
1998 b->next_free = &b->first_data;
1999 b->first_data.string = NULL;
2000 b->next = large_sblocks;
2001 large_sblocks = b;
2002 }
2003 else if (current_sblock == NULL
2004 || (((char *) current_sblock + SBLOCK_SIZE
2005 - (char *) current_sblock->next_free)
2006 < (needed + GC_STRING_EXTRA)))
2007 {
2008 /* Not enough room in the current sblock. */
2009 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2010 b->next_free = &b->first_data;
2011 b->first_data.string = NULL;
2012 b->next = NULL;
2013
2014 if (current_sblock)
2015 current_sblock->next = b;
2016 else
2017 oldest_sblock = b;
2018 current_sblock = b;
2019 }
2020 else
2021 b = current_sblock;
2022
2023 data = b->next_free;
2024 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2025
2026 MALLOC_UNBLOCK_INPUT;
2027
2028 data->string = s;
2029 s->data = SDATA_DATA (data);
2030 #ifdef GC_CHECK_STRING_BYTES
2031 SDATA_NBYTES (data) = nbytes;
2032 #endif
2033 s->size = nchars;
2034 s->size_byte = nbytes;
2035 s->data[nbytes] = '\0';
2036 #ifdef GC_CHECK_STRING_OVERRUN
2037 bcopy (string_overrun_cookie, (char *) data + needed,
2038 GC_STRING_OVERRUN_COOKIE_SIZE);
2039 #endif
2040
2041 /* If S had already data assigned, mark that as free by setting its
2042 string back-pointer to null, and recording the size of the data
2043 in it. */
2044 if (old_data)
2045 {
2046 SDATA_NBYTES (old_data) = old_nbytes;
2047 old_data->string = NULL;
2048 }
2049
2050 consing_since_gc += needed;
2051 }
2052
2053
2054 /* Sweep and compact strings. */
2055
2056 static void
2057 sweep_strings ()
2058 {
2059 struct string_block *b, *next;
2060 struct string_block *live_blocks = NULL;
2061
2062 string_free_list = NULL;
2063 total_strings = total_free_strings = 0;
2064 total_string_size = 0;
2065
2066 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2067 for (b = string_blocks; b; b = next)
2068 {
2069 int i, nfree = 0;
2070 struct Lisp_String *free_list_before = string_free_list;
2071
2072 next = b->next;
2073
2074 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2075 {
2076 struct Lisp_String *s = b->strings + i;
2077
2078 if (s->data)
2079 {
2080 /* String was not on free-list before. */
2081 if (STRING_MARKED_P (s))
2082 {
2083 /* String is live; unmark it and its intervals. */
2084 UNMARK_STRING (s);
2085
2086 if (!NULL_INTERVAL_P (s->intervals))
2087 UNMARK_BALANCE_INTERVALS (s->intervals);
2088
2089 ++total_strings;
2090 total_string_size += STRING_BYTES (s);
2091 }
2092 else
2093 {
2094 /* String is dead. Put it on the free-list. */
2095 struct sdata *data = SDATA_OF_STRING (s);
2096
2097 /* Save the size of S in its sdata so that we know
2098 how large that is. Reset the sdata's string
2099 back-pointer so that we know it's free. */
2100 #ifdef GC_CHECK_STRING_BYTES
2101 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2102 abort ();
2103 #else
2104 data->u.nbytes = GC_STRING_BYTES (s);
2105 #endif
2106 data->string = NULL;
2107
2108 /* Reset the strings's `data' member so that we
2109 know it's free. */
2110 s->data = NULL;
2111
2112 /* Put the string on the free-list. */
2113 NEXT_FREE_LISP_STRING (s) = string_free_list;
2114 string_free_list = s;
2115 ++nfree;
2116 }
2117 }
2118 else
2119 {
2120 /* S was on the free-list before. Put it there again. */
2121 NEXT_FREE_LISP_STRING (s) = string_free_list;
2122 string_free_list = s;
2123 ++nfree;
2124 }
2125 }
2126
2127 /* Free blocks that contain free Lisp_Strings only, except
2128 the first two of them. */
2129 if (nfree == STRING_BLOCK_SIZE
2130 && total_free_strings > STRING_BLOCK_SIZE)
2131 {
2132 lisp_free (b);
2133 --n_string_blocks;
2134 string_free_list = free_list_before;
2135 }
2136 else
2137 {
2138 total_free_strings += nfree;
2139 b->next = live_blocks;
2140 live_blocks = b;
2141 }
2142 }
2143
2144 check_string_free_list ();
2145
2146 string_blocks = live_blocks;
2147 free_large_strings ();
2148 compact_small_strings ();
2149
2150 check_string_free_list ();
2151 }
2152
2153
2154 /* Free dead large strings. */
2155
2156 static void
2157 free_large_strings ()
2158 {
2159 struct sblock *b, *next;
2160 struct sblock *live_blocks = NULL;
2161
2162 for (b = large_sblocks; b; b = next)
2163 {
2164 next = b->next;
2165
2166 if (b->first_data.string == NULL)
2167 lisp_free (b);
2168 else
2169 {
2170 b->next = live_blocks;
2171 live_blocks = b;
2172 }
2173 }
2174
2175 large_sblocks = live_blocks;
2176 }
2177
2178
2179 /* Compact data of small strings. Free sblocks that don't contain
2180 data of live strings after compaction. */
2181
2182 static void
2183 compact_small_strings ()
2184 {
2185 struct sblock *b, *tb, *next;
2186 struct sdata *from, *to, *end, *tb_end;
2187 struct sdata *to_end, *from_end;
2188
2189 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2190 to, and TB_END is the end of TB. */
2191 tb = oldest_sblock;
2192 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2193 to = &tb->first_data;
2194
2195 /* Step through the blocks from the oldest to the youngest. We
2196 expect that old blocks will stabilize over time, so that less
2197 copying will happen this way. */
2198 for (b = oldest_sblock; b; b = b->next)
2199 {
2200 end = b->next_free;
2201 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2202
2203 for (from = &b->first_data; from < end; from = from_end)
2204 {
2205 /* Compute the next FROM here because copying below may
2206 overwrite data we need to compute it. */
2207 int nbytes;
2208
2209 #ifdef GC_CHECK_STRING_BYTES
2210 /* Check that the string size recorded in the string is the
2211 same as the one recorded in the sdata structure. */
2212 if (from->string
2213 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2214 abort ();
2215 #endif /* GC_CHECK_STRING_BYTES */
2216
2217 if (from->string)
2218 nbytes = GC_STRING_BYTES (from->string);
2219 else
2220 nbytes = SDATA_NBYTES (from);
2221
2222 if (nbytes > LARGE_STRING_BYTES)
2223 abort ();
2224
2225 nbytes = SDATA_SIZE (nbytes);
2226 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2227
2228 #ifdef GC_CHECK_STRING_OVERRUN
2229 if (bcmp (string_overrun_cookie,
2230 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2231 GC_STRING_OVERRUN_COOKIE_SIZE))
2232 abort ();
2233 #endif
2234
2235 /* FROM->string non-null means it's alive. Copy its data. */
2236 if (from->string)
2237 {
2238 /* If TB is full, proceed with the next sblock. */
2239 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2240 if (to_end > tb_end)
2241 {
2242 tb->next_free = to;
2243 tb = tb->next;
2244 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2245 to = &tb->first_data;
2246 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2247 }
2248
2249 /* Copy, and update the string's `data' pointer. */
2250 if (from != to)
2251 {
2252 xassert (tb != b || to <= from);
2253 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2254 to->string->data = SDATA_DATA (to);
2255 }
2256
2257 /* Advance past the sdata we copied to. */
2258 to = to_end;
2259 }
2260 }
2261 }
2262
2263 /* The rest of the sblocks following TB don't contain live data, so
2264 we can free them. */
2265 for (b = tb->next; b; b = next)
2266 {
2267 next = b->next;
2268 lisp_free (b);
2269 }
2270
2271 tb->next_free = to;
2272 tb->next = NULL;
2273 current_sblock = tb;
2274 }
2275
2276
2277 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2278 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2279 LENGTH must be an integer.
2280 INIT must be an integer that represents a character. */)
2281 (length, init)
2282 Lisp_Object length, init;
2283 {
2284 register Lisp_Object val;
2285 register unsigned char *p, *end;
2286 int c, nbytes;
2287
2288 CHECK_NATNUM (length);
2289 CHECK_NUMBER (init);
2290
2291 c = XINT (init);
2292 if (ASCII_CHAR_P (c))
2293 {
2294 nbytes = XINT (length);
2295 val = make_uninit_string (nbytes);
2296 p = SDATA (val);
2297 end = p + SCHARS (val);
2298 while (p != end)
2299 *p++ = c;
2300 }
2301 else
2302 {
2303 unsigned char str[MAX_MULTIBYTE_LENGTH];
2304 int len = CHAR_STRING (c, str);
2305
2306 nbytes = len * XINT (length);
2307 val = make_uninit_multibyte_string (XINT (length), nbytes);
2308 p = SDATA (val);
2309 end = p + nbytes;
2310 while (p != end)
2311 {
2312 bcopy (str, p, len);
2313 p += len;
2314 }
2315 }
2316
2317 *p = 0;
2318 return val;
2319 }
2320
2321
2322 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2323 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2324 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2325 (length, init)
2326 Lisp_Object length, init;
2327 {
2328 register Lisp_Object val;
2329 struct Lisp_Bool_Vector *p;
2330 int real_init, i;
2331 int length_in_chars, length_in_elts, bits_per_value;
2332
2333 CHECK_NATNUM (length);
2334
2335 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2336
2337 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2338 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2339 / BOOL_VECTOR_BITS_PER_CHAR);
2340
2341 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2342 slot `size' of the struct Lisp_Bool_Vector. */
2343 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2344
2345 /* Get rid of any bits that would cause confusion. */
2346 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2347 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2348 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2349
2350 p = XBOOL_VECTOR (val);
2351 p->size = XFASTINT (length);
2352
2353 real_init = (NILP (init) ? 0 : -1);
2354 for (i = 0; i < length_in_chars ; i++)
2355 p->data[i] = real_init;
2356
2357 /* Clear the extraneous bits in the last byte. */
2358 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2359 p->data[length_in_chars - 1]
2360 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2361
2362 return val;
2363 }
2364
2365
2366 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2367 of characters from the contents. This string may be unibyte or
2368 multibyte, depending on the contents. */
2369
2370 Lisp_Object
2371 make_string (contents, nbytes)
2372 const char *contents;
2373 int nbytes;
2374 {
2375 register Lisp_Object val;
2376 int nchars, multibyte_nbytes;
2377
2378 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2379 if (nbytes == nchars || nbytes != multibyte_nbytes)
2380 /* CONTENTS contains no multibyte sequences or contains an invalid
2381 multibyte sequence. We must make unibyte string. */
2382 val = make_unibyte_string (contents, nbytes);
2383 else
2384 val = make_multibyte_string (contents, nchars, nbytes);
2385 return val;
2386 }
2387
2388
2389 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2390
2391 Lisp_Object
2392 make_unibyte_string (contents, length)
2393 const char *contents;
2394 int length;
2395 {
2396 register Lisp_Object val;
2397 val = make_uninit_string (length);
2398 bcopy (contents, SDATA (val), length);
2399 STRING_SET_UNIBYTE (val);
2400 return val;
2401 }
2402
2403
2404 /* Make a multibyte string from NCHARS characters occupying NBYTES
2405 bytes at CONTENTS. */
2406
2407 Lisp_Object
2408 make_multibyte_string (contents, nchars, nbytes)
2409 const char *contents;
2410 int nchars, nbytes;
2411 {
2412 register Lisp_Object val;
2413 val = make_uninit_multibyte_string (nchars, nbytes);
2414 bcopy (contents, SDATA (val), nbytes);
2415 return val;
2416 }
2417
2418
2419 /* Make a string from NCHARS characters occupying NBYTES bytes at
2420 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2421
2422 Lisp_Object
2423 make_string_from_bytes (contents, nchars, nbytes)
2424 const char *contents;
2425 int nchars, nbytes;
2426 {
2427 register Lisp_Object val;
2428 val = make_uninit_multibyte_string (nchars, nbytes);
2429 bcopy (contents, SDATA (val), nbytes);
2430 if (SBYTES (val) == SCHARS (val))
2431 STRING_SET_UNIBYTE (val);
2432 return val;
2433 }
2434
2435
2436 /* Make a string from NCHARS characters occupying NBYTES bytes at
2437 CONTENTS. The argument MULTIBYTE controls whether to label the
2438 string as multibyte. If NCHARS is negative, it counts the number of
2439 characters by itself. */
2440
2441 Lisp_Object
2442 make_specified_string (contents, nchars, nbytes, multibyte)
2443 const char *contents;
2444 int nchars, nbytes;
2445 int multibyte;
2446 {
2447 register Lisp_Object val;
2448
2449 if (nchars < 0)
2450 {
2451 if (multibyte)
2452 nchars = multibyte_chars_in_text (contents, nbytes);
2453 else
2454 nchars = nbytes;
2455 }
2456 val = make_uninit_multibyte_string (nchars, nbytes);
2457 bcopy (contents, SDATA (val), nbytes);
2458 if (!multibyte)
2459 STRING_SET_UNIBYTE (val);
2460 return val;
2461 }
2462
2463
2464 /* Make a string from the data at STR, treating it as multibyte if the
2465 data warrants. */
2466
2467 Lisp_Object
2468 build_string (str)
2469 const char *str;
2470 {
2471 return make_string (str, strlen (str));
2472 }
2473
2474
2475 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2476 occupying LENGTH bytes. */
2477
2478 Lisp_Object
2479 make_uninit_string (length)
2480 int length;
2481 {
2482 Lisp_Object val;
2483
2484 if (!length)
2485 return empty_unibyte_string;
2486 val = make_uninit_multibyte_string (length, length);
2487 STRING_SET_UNIBYTE (val);
2488 return val;
2489 }
2490
2491
2492 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2493 which occupy NBYTES bytes. */
2494
2495 Lisp_Object
2496 make_uninit_multibyte_string (nchars, nbytes)
2497 int nchars, nbytes;
2498 {
2499 Lisp_Object string;
2500 struct Lisp_String *s;
2501
2502 if (nchars < 0)
2503 abort ();
2504 if (!nbytes)
2505 return empty_multibyte_string;
2506
2507 s = allocate_string ();
2508 allocate_string_data (s, nchars, nbytes);
2509 XSETSTRING (string, s);
2510 string_chars_consed += nbytes;
2511 return string;
2512 }
2513
2514
2515 \f
2516 /***********************************************************************
2517 Float Allocation
2518 ***********************************************************************/
2519
2520 /* We store float cells inside of float_blocks, allocating a new
2521 float_block with malloc whenever necessary. Float cells reclaimed
2522 by GC are put on a free list to be reallocated before allocating
2523 any new float cells from the latest float_block. */
2524
2525 #define FLOAT_BLOCK_SIZE \
2526 (((BLOCK_BYTES - sizeof (struct float_block *) \
2527 /* The compiler might add padding at the end. */ \
2528 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2529 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2530
2531 #define GETMARKBIT(block,n) \
2532 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2533 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2534 & 1)
2535
2536 #define SETMARKBIT(block,n) \
2537 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2538 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2539
2540 #define UNSETMARKBIT(block,n) \
2541 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2542 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2543
2544 #define FLOAT_BLOCK(fptr) \
2545 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2546
2547 #define FLOAT_INDEX(fptr) \
2548 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2549
2550 struct float_block
2551 {
2552 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2553 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2554 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2555 struct float_block *next;
2556 };
2557
2558 #define FLOAT_MARKED_P(fptr) \
2559 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560
2561 #define FLOAT_MARK(fptr) \
2562 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2563
2564 #define FLOAT_UNMARK(fptr) \
2565 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2566
2567 /* Current float_block. */
2568
2569 struct float_block *float_block;
2570
2571 /* Index of first unused Lisp_Float in the current float_block. */
2572
2573 int float_block_index;
2574
2575 /* Total number of float blocks now in use. */
2576
2577 int n_float_blocks;
2578
2579 /* Free-list of Lisp_Floats. */
2580
2581 struct Lisp_Float *float_free_list;
2582
2583
2584 /* Initialize float allocation. */
2585
2586 static void
2587 init_float ()
2588 {
2589 float_block = NULL;
2590 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2591 float_free_list = 0;
2592 n_float_blocks = 0;
2593 }
2594
2595
2596 /* Explicitly free a float cell by putting it on the free-list. */
2597
2598 static void
2599 free_float (ptr)
2600 struct Lisp_Float *ptr;
2601 {
2602 ptr->u.chain = float_free_list;
2603 float_free_list = ptr;
2604 }
2605
2606
2607 /* Return a new float object with value FLOAT_VALUE. */
2608
2609 Lisp_Object
2610 make_float (float_value)
2611 double float_value;
2612 {
2613 register Lisp_Object val;
2614
2615 /* eassert (!handling_signal); */
2616
2617 MALLOC_BLOCK_INPUT;
2618
2619 if (float_free_list)
2620 {
2621 /* We use the data field for chaining the free list
2622 so that we won't use the same field that has the mark bit. */
2623 XSETFLOAT (val, float_free_list);
2624 float_free_list = float_free_list->u.chain;
2625 }
2626 else
2627 {
2628 if (float_block_index == FLOAT_BLOCK_SIZE)
2629 {
2630 register struct float_block *new;
2631
2632 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2633 MEM_TYPE_FLOAT);
2634 new->next = float_block;
2635 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2636 float_block = new;
2637 float_block_index = 0;
2638 n_float_blocks++;
2639 }
2640 XSETFLOAT (val, &float_block->floats[float_block_index]);
2641 float_block_index++;
2642 }
2643
2644 MALLOC_UNBLOCK_INPUT;
2645
2646 XFLOAT_DATA (val) = float_value;
2647 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2648 consing_since_gc += sizeof (struct Lisp_Float);
2649 floats_consed++;
2650 return val;
2651 }
2652
2653
2654 \f
2655 /***********************************************************************
2656 Cons Allocation
2657 ***********************************************************************/
2658
2659 /* We store cons cells inside of cons_blocks, allocating a new
2660 cons_block with malloc whenever necessary. Cons cells reclaimed by
2661 GC are put on a free list to be reallocated before allocating
2662 any new cons cells from the latest cons_block. */
2663
2664 #define CONS_BLOCK_SIZE \
2665 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2666 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2667
2668 #define CONS_BLOCK(fptr) \
2669 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2670
2671 #define CONS_INDEX(fptr) \
2672 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2673
2674 struct cons_block
2675 {
2676 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2677 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2678 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2679 struct cons_block *next;
2680 };
2681
2682 #define CONS_MARKED_P(fptr) \
2683 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2684
2685 #define CONS_MARK(fptr) \
2686 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2687
2688 #define CONS_UNMARK(fptr) \
2689 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2690
2691 /* Current cons_block. */
2692
2693 struct cons_block *cons_block;
2694
2695 /* Index of first unused Lisp_Cons in the current block. */
2696
2697 int cons_block_index;
2698
2699 /* Free-list of Lisp_Cons structures. */
2700
2701 struct Lisp_Cons *cons_free_list;
2702
2703 /* Total number of cons blocks now in use. */
2704
2705 static int n_cons_blocks;
2706
2707
2708 /* Initialize cons allocation. */
2709
2710 static void
2711 init_cons ()
2712 {
2713 cons_block = NULL;
2714 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2715 cons_free_list = 0;
2716 n_cons_blocks = 0;
2717 }
2718
2719
2720 /* Explicitly free a cons cell by putting it on the free-list. */
2721
2722 void
2723 free_cons (ptr)
2724 struct Lisp_Cons *ptr;
2725 {
2726 ptr->u.chain = cons_free_list;
2727 #if GC_MARK_STACK
2728 ptr->car = Vdead;
2729 #endif
2730 cons_free_list = ptr;
2731 }
2732
2733 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2734 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2735 (car, cdr)
2736 Lisp_Object car, cdr;
2737 {
2738 register Lisp_Object val;
2739
2740 /* eassert (!handling_signal); */
2741
2742 MALLOC_BLOCK_INPUT;
2743
2744 if (cons_free_list)
2745 {
2746 /* We use the cdr for chaining the free list
2747 so that we won't use the same field that has the mark bit. */
2748 XSETCONS (val, cons_free_list);
2749 cons_free_list = cons_free_list->u.chain;
2750 }
2751 else
2752 {
2753 if (cons_block_index == CONS_BLOCK_SIZE)
2754 {
2755 register struct cons_block *new;
2756 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2757 MEM_TYPE_CONS);
2758 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2759 new->next = cons_block;
2760 cons_block = new;
2761 cons_block_index = 0;
2762 n_cons_blocks++;
2763 }
2764 XSETCONS (val, &cons_block->conses[cons_block_index]);
2765 cons_block_index++;
2766 }
2767
2768 MALLOC_UNBLOCK_INPUT;
2769
2770 XSETCAR (val, car);
2771 XSETCDR (val, cdr);
2772 eassert (!CONS_MARKED_P (XCONS (val)));
2773 consing_since_gc += sizeof (struct Lisp_Cons);
2774 cons_cells_consed++;
2775 return val;
2776 }
2777
2778 /* Get an error now if there's any junk in the cons free list. */
2779 void
2780 check_cons_list ()
2781 {
2782 #ifdef GC_CHECK_CONS_LIST
2783 struct Lisp_Cons *tail = cons_free_list;
2784
2785 while (tail)
2786 tail = tail->u.chain;
2787 #endif
2788 }
2789
2790 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2791
2792 Lisp_Object
2793 list1 (arg1)
2794 Lisp_Object arg1;
2795 {
2796 return Fcons (arg1, Qnil);
2797 }
2798
2799 Lisp_Object
2800 list2 (arg1, arg2)
2801 Lisp_Object arg1, arg2;
2802 {
2803 return Fcons (arg1, Fcons (arg2, Qnil));
2804 }
2805
2806
2807 Lisp_Object
2808 list3 (arg1, arg2, arg3)
2809 Lisp_Object arg1, arg2, arg3;
2810 {
2811 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2812 }
2813
2814
2815 Lisp_Object
2816 list4 (arg1, arg2, arg3, arg4)
2817 Lisp_Object arg1, arg2, arg3, arg4;
2818 {
2819 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2820 }
2821
2822
2823 Lisp_Object
2824 list5 (arg1, arg2, arg3, arg4, arg5)
2825 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2826 {
2827 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2828 Fcons (arg5, Qnil)))));
2829 }
2830
2831
2832 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2833 doc: /* Return a newly created list with specified arguments as elements.
2834 Any number of arguments, even zero arguments, are allowed.
2835 usage: (list &rest OBJECTS) */)
2836 (nargs, args)
2837 int nargs;
2838 register Lisp_Object *args;
2839 {
2840 register Lisp_Object val;
2841 val = Qnil;
2842
2843 while (nargs > 0)
2844 {
2845 nargs--;
2846 val = Fcons (args[nargs], val);
2847 }
2848 return val;
2849 }
2850
2851
2852 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2853 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2854 (length, init)
2855 register Lisp_Object length, init;
2856 {
2857 register Lisp_Object val;
2858 register int size;
2859
2860 CHECK_NATNUM (length);
2861 size = XFASTINT (length);
2862
2863 val = Qnil;
2864 while (size > 0)
2865 {
2866 val = Fcons (init, val);
2867 --size;
2868
2869 if (size > 0)
2870 {
2871 val = Fcons (init, val);
2872 --size;
2873
2874 if (size > 0)
2875 {
2876 val = Fcons (init, val);
2877 --size;
2878
2879 if (size > 0)
2880 {
2881 val = Fcons (init, val);
2882 --size;
2883
2884 if (size > 0)
2885 {
2886 val = Fcons (init, val);
2887 --size;
2888 }
2889 }
2890 }
2891 }
2892
2893 QUIT;
2894 }
2895
2896 return val;
2897 }
2898
2899
2900 \f
2901 /***********************************************************************
2902 Vector Allocation
2903 ***********************************************************************/
2904
2905 /* Singly-linked list of all vectors. */
2906
2907 static struct Lisp_Vector *all_vectors;
2908
2909 /* Total number of vector-like objects now in use. */
2910
2911 static int n_vectors;
2912
2913
2914 /* Value is a pointer to a newly allocated Lisp_Vector structure
2915 with room for LEN Lisp_Objects. */
2916
2917 static struct Lisp_Vector *
2918 allocate_vectorlike (len)
2919 EMACS_INT len;
2920 {
2921 struct Lisp_Vector *p;
2922 size_t nbytes;
2923
2924 MALLOC_BLOCK_INPUT;
2925
2926 #ifdef DOUG_LEA_MALLOC
2927 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2928 because mapped region contents are not preserved in
2929 a dumped Emacs. */
2930 mallopt (M_MMAP_MAX, 0);
2931 #endif
2932
2933 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2934 /* eassert (!handling_signal); */
2935
2936 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2937 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2938
2939 #ifdef DOUG_LEA_MALLOC
2940 /* Back to a reasonable maximum of mmap'ed areas. */
2941 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2942 #endif
2943
2944 consing_since_gc += nbytes;
2945 vector_cells_consed += len;
2946
2947 p->next = all_vectors;
2948 all_vectors = p;
2949
2950 MALLOC_UNBLOCK_INPUT;
2951
2952 ++n_vectors;
2953 return p;
2954 }
2955
2956
2957 /* Allocate a vector with NSLOTS slots. */
2958
2959 struct Lisp_Vector *
2960 allocate_vector (nslots)
2961 EMACS_INT nslots;
2962 {
2963 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2964 v->size = nslots;
2965 return v;
2966 }
2967
2968
2969 /* Allocate other vector-like structures. */
2970
2971 struct Lisp_Vector *
2972 allocate_pseudovector (memlen, lisplen, tag)
2973 int memlen, lisplen;
2974 EMACS_INT tag;
2975 {
2976 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2977 EMACS_INT i;
2978
2979 /* Only the first lisplen slots will be traced normally by the GC. */
2980 v->size = lisplen;
2981 for (i = 0; i < lisplen; ++i)
2982 v->contents[i] = Qnil;
2983
2984 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2985 return v;
2986 }
2987
2988 struct Lisp_Hash_Table *
2989 allocate_hash_table (void)
2990 {
2991 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2992 }
2993
2994
2995 struct window *
2996 allocate_window ()
2997 {
2998 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2999 }
3000
3001
3002 struct terminal *
3003 allocate_terminal ()
3004 {
3005 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3006 next_terminal, PVEC_TERMINAL);
3007 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3008 bzero (&(t->next_terminal),
3009 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3010
3011 return t;
3012 }
3013
3014 struct frame *
3015 allocate_frame ()
3016 {
3017 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3018 face_cache, PVEC_FRAME);
3019 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3020 bzero (&(f->face_cache),
3021 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3022 return f;
3023 }
3024
3025
3026 struct Lisp_Process *
3027 allocate_process ()
3028 {
3029 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3030 }
3031
3032
3033 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3034 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3035 See also the function `vector'. */)
3036 (length, init)
3037 register Lisp_Object length, init;
3038 {
3039 Lisp_Object vector;
3040 register EMACS_INT sizei;
3041 register int index;
3042 register struct Lisp_Vector *p;
3043
3044 CHECK_NATNUM (length);
3045 sizei = XFASTINT (length);
3046
3047 p = allocate_vector (sizei);
3048 for (index = 0; index < sizei; index++)
3049 p->contents[index] = init;
3050
3051 XSETVECTOR (vector, p);
3052 return vector;
3053 }
3054
3055
3056 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3057 doc: /* Return a newly created vector with specified arguments as elements.
3058 Any number of arguments, even zero arguments, are allowed.
3059 usage: (vector &rest OBJECTS) */)
3060 (nargs, args)
3061 register int nargs;
3062 Lisp_Object *args;
3063 {
3064 register Lisp_Object len, val;
3065 register int index;
3066 register struct Lisp_Vector *p;
3067
3068 XSETFASTINT (len, nargs);
3069 val = Fmake_vector (len, Qnil);
3070 p = XVECTOR (val);
3071 for (index = 0; index < nargs; index++)
3072 p->contents[index] = args[index];
3073 return val;
3074 }
3075
3076
3077 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3078 doc: /* Create a byte-code object with specified arguments as elements.
3079 The arguments should be the arglist, bytecode-string, constant vector,
3080 stack size, (optional) doc string, and (optional) interactive spec.
3081 The first four arguments are required; at most six have any
3082 significance.
3083 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3084 (nargs, args)
3085 register int nargs;
3086 Lisp_Object *args;
3087 {
3088 register Lisp_Object len, val;
3089 register int index;
3090 register struct Lisp_Vector *p;
3091
3092 XSETFASTINT (len, nargs);
3093 if (!NILP (Vpurify_flag))
3094 val = make_pure_vector ((EMACS_INT) nargs);
3095 else
3096 val = Fmake_vector (len, Qnil);
3097
3098 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3099 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3100 earlier because they produced a raw 8-bit string for byte-code
3101 and now such a byte-code string is loaded as multibyte while
3102 raw 8-bit characters converted to multibyte form. Thus, now we
3103 must convert them back to the original unibyte form. */
3104 args[1] = Fstring_as_unibyte (args[1]);
3105
3106 p = XVECTOR (val);
3107 for (index = 0; index < nargs; index++)
3108 {
3109 if (!NILP (Vpurify_flag))
3110 args[index] = Fpurecopy (args[index]);
3111 p->contents[index] = args[index];
3112 }
3113 XSETPVECTYPE (p, PVEC_COMPILED);
3114 XSETCOMPILED (val, p);
3115 return val;
3116 }
3117
3118
3119 \f
3120 /***********************************************************************
3121 Symbol Allocation
3122 ***********************************************************************/
3123
3124 /* Each symbol_block is just under 1020 bytes long, since malloc
3125 really allocates in units of powers of two and uses 4 bytes for its
3126 own overhead. */
3127
3128 #define SYMBOL_BLOCK_SIZE \
3129 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3130
3131 struct symbol_block
3132 {
3133 /* Place `symbols' first, to preserve alignment. */
3134 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3135 struct symbol_block *next;
3136 };
3137
3138 /* Current symbol block and index of first unused Lisp_Symbol
3139 structure in it. */
3140
3141 static struct symbol_block *symbol_block;
3142 static int symbol_block_index;
3143
3144 /* List of free symbols. */
3145
3146 static struct Lisp_Symbol *symbol_free_list;
3147
3148 /* Total number of symbol blocks now in use. */
3149
3150 static int n_symbol_blocks;
3151
3152
3153 /* Initialize symbol allocation. */
3154
3155 static void
3156 init_symbol ()
3157 {
3158 symbol_block = NULL;
3159 symbol_block_index = SYMBOL_BLOCK_SIZE;
3160 symbol_free_list = 0;
3161 n_symbol_blocks = 0;
3162 }
3163
3164
3165 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3166 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3167 Its value and function definition are void, and its property list is nil. */)
3168 (name)
3169 Lisp_Object name;
3170 {
3171 register Lisp_Object val;
3172 register struct Lisp_Symbol *p;
3173
3174 CHECK_STRING (name);
3175
3176 /* eassert (!handling_signal); */
3177
3178 MALLOC_BLOCK_INPUT;
3179
3180 if (symbol_free_list)
3181 {
3182 XSETSYMBOL (val, symbol_free_list);
3183 symbol_free_list = symbol_free_list->next;
3184 }
3185 else
3186 {
3187 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3188 {
3189 struct symbol_block *new;
3190 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3191 MEM_TYPE_SYMBOL);
3192 new->next = symbol_block;
3193 symbol_block = new;
3194 symbol_block_index = 0;
3195 n_symbol_blocks++;
3196 }
3197 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3198 symbol_block_index++;
3199 }
3200
3201 MALLOC_UNBLOCK_INPUT;
3202
3203 p = XSYMBOL (val);
3204 p->xname = name;
3205 p->plist = Qnil;
3206 p->value = Qunbound;
3207 p->function = Qunbound;
3208 p->next = NULL;
3209 p->gcmarkbit = 0;
3210 p->interned = SYMBOL_UNINTERNED;
3211 p->constant = 0;
3212 p->indirect_variable = 0;
3213 consing_since_gc += sizeof (struct Lisp_Symbol);
3214 symbols_consed++;
3215 return val;
3216 }
3217
3218
3219 \f
3220 /***********************************************************************
3221 Marker (Misc) Allocation
3222 ***********************************************************************/
3223
3224 /* Allocation of markers and other objects that share that structure.
3225 Works like allocation of conses. */
3226
3227 #define MARKER_BLOCK_SIZE \
3228 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3229
3230 struct marker_block
3231 {
3232 /* Place `markers' first, to preserve alignment. */
3233 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3234 struct marker_block *next;
3235 };
3236
3237 static struct marker_block *marker_block;
3238 static int marker_block_index;
3239
3240 static union Lisp_Misc *marker_free_list;
3241
3242 /* Total number of marker blocks now in use. */
3243
3244 static int n_marker_blocks;
3245
3246 static void
3247 init_marker ()
3248 {
3249 marker_block = NULL;
3250 marker_block_index = MARKER_BLOCK_SIZE;
3251 marker_free_list = 0;
3252 n_marker_blocks = 0;
3253 }
3254
3255 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3256
3257 Lisp_Object
3258 allocate_misc ()
3259 {
3260 Lisp_Object val;
3261
3262 /* eassert (!handling_signal); */
3263
3264 MALLOC_BLOCK_INPUT;
3265
3266 if (marker_free_list)
3267 {
3268 XSETMISC (val, marker_free_list);
3269 marker_free_list = marker_free_list->u_free.chain;
3270 }
3271 else
3272 {
3273 if (marker_block_index == MARKER_BLOCK_SIZE)
3274 {
3275 struct marker_block *new;
3276 new = (struct marker_block *) lisp_malloc (sizeof *new,
3277 MEM_TYPE_MISC);
3278 new->next = marker_block;
3279 marker_block = new;
3280 marker_block_index = 0;
3281 n_marker_blocks++;
3282 total_free_markers += MARKER_BLOCK_SIZE;
3283 }
3284 XSETMISC (val, &marker_block->markers[marker_block_index]);
3285 marker_block_index++;
3286 }
3287
3288 MALLOC_UNBLOCK_INPUT;
3289
3290 --total_free_markers;
3291 consing_since_gc += sizeof (union Lisp_Misc);
3292 misc_objects_consed++;
3293 XMISCANY (val)->gcmarkbit = 0;
3294 return val;
3295 }
3296
3297 /* Free a Lisp_Misc object */
3298
3299 void
3300 free_misc (misc)
3301 Lisp_Object misc;
3302 {
3303 XMISCTYPE (misc) = Lisp_Misc_Free;
3304 XMISC (misc)->u_free.chain = marker_free_list;
3305 marker_free_list = XMISC (misc);
3306
3307 total_free_markers++;
3308 }
3309
3310 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3311 INTEGER. This is used to package C values to call record_unwind_protect.
3312 The unwind function can get the C values back using XSAVE_VALUE. */
3313
3314 Lisp_Object
3315 make_save_value (pointer, integer)
3316 void *pointer;
3317 int integer;
3318 {
3319 register Lisp_Object val;
3320 register struct Lisp_Save_Value *p;
3321
3322 val = allocate_misc ();
3323 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3324 p = XSAVE_VALUE (val);
3325 p->pointer = pointer;
3326 p->integer = integer;
3327 p->dogc = 0;
3328 return val;
3329 }
3330
3331 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3332 doc: /* Return a newly allocated marker which does not point at any place. */)
3333 ()
3334 {
3335 register Lisp_Object val;
3336 register struct Lisp_Marker *p;
3337
3338 val = allocate_misc ();
3339 XMISCTYPE (val) = Lisp_Misc_Marker;
3340 p = XMARKER (val);
3341 p->buffer = 0;
3342 p->bytepos = 0;
3343 p->charpos = 0;
3344 p->next = NULL;
3345 p->insertion_type = 0;
3346 return val;
3347 }
3348
3349 /* Put MARKER back on the free list after using it temporarily. */
3350
3351 void
3352 free_marker (marker)
3353 Lisp_Object marker;
3354 {
3355 unchain_marker (XMARKER (marker));
3356 free_misc (marker);
3357 }
3358
3359 \f
3360 /* Return a newly created vector or string with specified arguments as
3361 elements. If all the arguments are characters that can fit
3362 in a string of events, make a string; otherwise, make a vector.
3363
3364 Any number of arguments, even zero arguments, are allowed. */
3365
3366 Lisp_Object
3367 make_event_array (nargs, args)
3368 register int nargs;
3369 Lisp_Object *args;
3370 {
3371 int i;
3372
3373 for (i = 0; i < nargs; i++)
3374 /* The things that fit in a string
3375 are characters that are in 0...127,
3376 after discarding the meta bit and all the bits above it. */
3377 if (!INTEGERP (args[i])
3378 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3379 return Fvector (nargs, args);
3380
3381 /* Since the loop exited, we know that all the things in it are
3382 characters, so we can make a string. */
3383 {
3384 Lisp_Object result;
3385
3386 result = Fmake_string (make_number (nargs), make_number (0));
3387 for (i = 0; i < nargs; i++)
3388 {
3389 SSET (result, i, XINT (args[i]));
3390 /* Move the meta bit to the right place for a string char. */
3391 if (XINT (args[i]) & CHAR_META)
3392 SSET (result, i, SREF (result, i) | 0x80);
3393 }
3394
3395 return result;
3396 }
3397 }
3398
3399
3400 \f
3401 /************************************************************************
3402 Memory Full Handling
3403 ************************************************************************/
3404
3405
3406 /* Called if malloc returns zero. */
3407
3408 void
3409 memory_full ()
3410 {
3411 int i;
3412
3413 Vmemory_full = Qt;
3414
3415 memory_full_cons_threshold = sizeof (struct cons_block);
3416
3417 /* The first time we get here, free the spare memory. */
3418 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3419 if (spare_memory[i])
3420 {
3421 if (i == 0)
3422 free (spare_memory[i]);
3423 else if (i >= 1 && i <= 4)
3424 lisp_align_free (spare_memory[i]);
3425 else
3426 lisp_free (spare_memory[i]);
3427 spare_memory[i] = 0;
3428 }
3429
3430 /* Record the space now used. When it decreases substantially,
3431 we can refill the memory reserve. */
3432 #ifndef SYSTEM_MALLOC
3433 bytes_used_when_full = BYTES_USED;
3434 #endif
3435
3436 /* This used to call error, but if we've run out of memory, we could
3437 get infinite recursion trying to build the string. */
3438 xsignal (Qnil, Vmemory_signal_data);
3439 }
3440
3441 /* If we released our reserve (due to running out of memory),
3442 and we have a fair amount free once again,
3443 try to set aside another reserve in case we run out once more.
3444
3445 This is called when a relocatable block is freed in ralloc.c,
3446 and also directly from this file, in case we're not using ralloc.c. */
3447
3448 void
3449 refill_memory_reserve ()
3450 {
3451 #ifndef SYSTEM_MALLOC
3452 if (spare_memory[0] == 0)
3453 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3454 if (spare_memory[1] == 0)
3455 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3456 MEM_TYPE_CONS);
3457 if (spare_memory[2] == 0)
3458 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3459 MEM_TYPE_CONS);
3460 if (spare_memory[3] == 0)
3461 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3462 MEM_TYPE_CONS);
3463 if (spare_memory[4] == 0)
3464 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3465 MEM_TYPE_CONS);
3466 if (spare_memory[5] == 0)
3467 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3468 MEM_TYPE_STRING);
3469 if (spare_memory[6] == 0)
3470 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3471 MEM_TYPE_STRING);
3472 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3473 Vmemory_full = Qnil;
3474 #endif
3475 }
3476 \f
3477 /************************************************************************
3478 C Stack Marking
3479 ************************************************************************/
3480
3481 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3482
3483 /* Conservative C stack marking requires a method to identify possibly
3484 live Lisp objects given a pointer value. We do this by keeping
3485 track of blocks of Lisp data that are allocated in a red-black tree
3486 (see also the comment of mem_node which is the type of nodes in
3487 that tree). Function lisp_malloc adds information for an allocated
3488 block to the red-black tree with calls to mem_insert, and function
3489 lisp_free removes it with mem_delete. Functions live_string_p etc
3490 call mem_find to lookup information about a given pointer in the
3491 tree, and use that to determine if the pointer points to a Lisp
3492 object or not. */
3493
3494 /* Initialize this part of alloc.c. */
3495
3496 static void
3497 mem_init ()
3498 {
3499 mem_z.left = mem_z.right = MEM_NIL;
3500 mem_z.parent = NULL;
3501 mem_z.color = MEM_BLACK;
3502 mem_z.start = mem_z.end = NULL;
3503 mem_root = MEM_NIL;
3504 }
3505
3506
3507 /* Value is a pointer to the mem_node containing START. Value is
3508 MEM_NIL if there is no node in the tree containing START. */
3509
3510 static INLINE struct mem_node *
3511 mem_find (start)
3512 void *start;
3513 {
3514 struct mem_node *p;
3515
3516 if (start < min_heap_address || start > max_heap_address)
3517 return MEM_NIL;
3518
3519 /* Make the search always successful to speed up the loop below. */
3520 mem_z.start = start;
3521 mem_z.end = (char *) start + 1;
3522
3523 p = mem_root;
3524 while (start < p->start || start >= p->end)
3525 p = start < p->start ? p->left : p->right;
3526 return p;
3527 }
3528
3529
3530 /* Insert a new node into the tree for a block of memory with start
3531 address START, end address END, and type TYPE. Value is a
3532 pointer to the node that was inserted. */
3533
3534 static struct mem_node *
3535 mem_insert (start, end, type)
3536 void *start, *end;
3537 enum mem_type type;
3538 {
3539 struct mem_node *c, *parent, *x;
3540
3541 if (min_heap_address == NULL || start < min_heap_address)
3542 min_heap_address = start;
3543 if (max_heap_address == NULL || end > max_heap_address)
3544 max_heap_address = end;
3545
3546 /* See where in the tree a node for START belongs. In this
3547 particular application, it shouldn't happen that a node is already
3548 present. For debugging purposes, let's check that. */
3549 c = mem_root;
3550 parent = NULL;
3551
3552 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3553
3554 while (c != MEM_NIL)
3555 {
3556 if (start >= c->start && start < c->end)
3557 abort ();
3558 parent = c;
3559 c = start < c->start ? c->left : c->right;
3560 }
3561
3562 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3563
3564 while (c != MEM_NIL)
3565 {
3566 parent = c;
3567 c = start < c->start ? c->left : c->right;
3568 }
3569
3570 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3571
3572 /* Create a new node. */
3573 #ifdef GC_MALLOC_CHECK
3574 x = (struct mem_node *) _malloc_internal (sizeof *x);
3575 if (x == NULL)
3576 abort ();
3577 #else
3578 x = (struct mem_node *) xmalloc (sizeof *x);
3579 #endif
3580 x->start = start;
3581 x->end = end;
3582 x->type = type;
3583 x->parent = parent;
3584 x->left = x->right = MEM_NIL;
3585 x->color = MEM_RED;
3586
3587 /* Insert it as child of PARENT or install it as root. */
3588 if (parent)
3589 {
3590 if (start < parent->start)
3591 parent->left = x;
3592 else
3593 parent->right = x;
3594 }
3595 else
3596 mem_root = x;
3597
3598 /* Re-establish red-black tree properties. */
3599 mem_insert_fixup (x);
3600
3601 return x;
3602 }
3603
3604
3605 /* Re-establish the red-black properties of the tree, and thereby
3606 balance the tree, after node X has been inserted; X is always red. */
3607
3608 static void
3609 mem_insert_fixup (x)
3610 struct mem_node *x;
3611 {
3612 while (x != mem_root && x->parent->color == MEM_RED)
3613 {
3614 /* X is red and its parent is red. This is a violation of
3615 red-black tree property #3. */
3616
3617 if (x->parent == x->parent->parent->left)
3618 {
3619 /* We're on the left side of our grandparent, and Y is our
3620 "uncle". */
3621 struct mem_node *y = x->parent->parent->right;
3622
3623 if (y->color == MEM_RED)
3624 {
3625 /* Uncle and parent are red but should be black because
3626 X is red. Change the colors accordingly and proceed
3627 with the grandparent. */
3628 x->parent->color = MEM_BLACK;
3629 y->color = MEM_BLACK;
3630 x->parent->parent->color = MEM_RED;
3631 x = x->parent->parent;
3632 }
3633 else
3634 {
3635 /* Parent and uncle have different colors; parent is
3636 red, uncle is black. */
3637 if (x == x->parent->right)
3638 {
3639 x = x->parent;
3640 mem_rotate_left (x);
3641 }
3642
3643 x->parent->color = MEM_BLACK;
3644 x->parent->parent->color = MEM_RED;
3645 mem_rotate_right (x->parent->parent);
3646 }
3647 }
3648 else
3649 {
3650 /* This is the symmetrical case of above. */
3651 struct mem_node *y = x->parent->parent->left;
3652
3653 if (y->color == MEM_RED)
3654 {
3655 x->parent->color = MEM_BLACK;
3656 y->color = MEM_BLACK;
3657 x->parent->parent->color = MEM_RED;
3658 x = x->parent->parent;
3659 }
3660 else
3661 {
3662 if (x == x->parent->left)
3663 {
3664 x = x->parent;
3665 mem_rotate_right (x);
3666 }
3667
3668 x->parent->color = MEM_BLACK;
3669 x->parent->parent->color = MEM_RED;
3670 mem_rotate_left (x->parent->parent);
3671 }
3672 }
3673 }
3674
3675 /* The root may have been changed to red due to the algorithm. Set
3676 it to black so that property #5 is satisfied. */
3677 mem_root->color = MEM_BLACK;
3678 }
3679
3680
3681 /* (x) (y)
3682 / \ / \
3683 a (y) ===> (x) c
3684 / \ / \
3685 b c a b */
3686
3687 static void
3688 mem_rotate_left (x)
3689 struct mem_node *x;
3690 {
3691 struct mem_node *y;
3692
3693 /* Turn y's left sub-tree into x's right sub-tree. */
3694 y = x->right;
3695 x->right = y->left;
3696 if (y->left != MEM_NIL)
3697 y->left->parent = x;
3698
3699 /* Y's parent was x's parent. */
3700 if (y != MEM_NIL)
3701 y->parent = x->parent;
3702
3703 /* Get the parent to point to y instead of x. */
3704 if (x->parent)
3705 {
3706 if (x == x->parent->left)
3707 x->parent->left = y;
3708 else
3709 x->parent->right = y;
3710 }
3711 else
3712 mem_root = y;
3713
3714 /* Put x on y's left. */
3715 y->left = x;
3716 if (x != MEM_NIL)
3717 x->parent = y;
3718 }
3719
3720
3721 /* (x) (Y)
3722 / \ / \
3723 (y) c ===> a (x)
3724 / \ / \
3725 a b b c */
3726
3727 static void
3728 mem_rotate_right (x)
3729 struct mem_node *x;
3730 {
3731 struct mem_node *y = x->left;
3732
3733 x->left = y->right;
3734 if (y->right != MEM_NIL)
3735 y->right->parent = x;
3736
3737 if (y != MEM_NIL)
3738 y->parent = x->parent;
3739 if (x->parent)
3740 {
3741 if (x == x->parent->right)
3742 x->parent->right = y;
3743 else
3744 x->parent->left = y;
3745 }
3746 else
3747 mem_root = y;
3748
3749 y->right = x;
3750 if (x != MEM_NIL)
3751 x->parent = y;
3752 }
3753
3754
3755 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3756
3757 static void
3758 mem_delete (z)
3759 struct mem_node *z;
3760 {
3761 struct mem_node *x, *y;
3762
3763 if (!z || z == MEM_NIL)
3764 return;
3765
3766 if (z->left == MEM_NIL || z->right == MEM_NIL)
3767 y = z;
3768 else
3769 {
3770 y = z->right;
3771 while (y->left != MEM_NIL)
3772 y = y->left;
3773 }
3774
3775 if (y->left != MEM_NIL)
3776 x = y->left;
3777 else
3778 x = y->right;
3779
3780 x->parent = y->parent;
3781 if (y->parent)
3782 {
3783 if (y == y->parent->left)
3784 y->parent->left = x;
3785 else
3786 y->parent->right = x;
3787 }
3788 else
3789 mem_root = x;
3790
3791 if (y != z)
3792 {
3793 z->start = y->start;
3794 z->end = y->end;
3795 z->type = y->type;
3796 }
3797
3798 if (y->color == MEM_BLACK)
3799 mem_delete_fixup (x);
3800
3801 #ifdef GC_MALLOC_CHECK
3802 _free_internal (y);
3803 #else
3804 xfree (y);
3805 #endif
3806 }
3807
3808
3809 /* Re-establish the red-black properties of the tree, after a
3810 deletion. */
3811
3812 static void
3813 mem_delete_fixup (x)
3814 struct mem_node *x;
3815 {
3816 while (x != mem_root && x->color == MEM_BLACK)
3817 {
3818 if (x == x->parent->left)
3819 {
3820 struct mem_node *w = x->parent->right;
3821
3822 if (w->color == MEM_RED)
3823 {
3824 w->color = MEM_BLACK;
3825 x->parent->color = MEM_RED;
3826 mem_rotate_left (x->parent);
3827 w = x->parent->right;
3828 }
3829
3830 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3831 {
3832 w->color = MEM_RED;
3833 x = x->parent;
3834 }
3835 else
3836 {
3837 if (w->right->color == MEM_BLACK)
3838 {
3839 w->left->color = MEM_BLACK;
3840 w->color = MEM_RED;
3841 mem_rotate_right (w);
3842 w = x->parent->right;
3843 }
3844 w->color = x->parent->color;
3845 x->parent->color = MEM_BLACK;
3846 w->right->color = MEM_BLACK;
3847 mem_rotate_left (x->parent);
3848 x = mem_root;
3849 }
3850 }
3851 else
3852 {
3853 struct mem_node *w = x->parent->left;
3854
3855 if (w->color == MEM_RED)
3856 {
3857 w->color = MEM_BLACK;
3858 x->parent->color = MEM_RED;
3859 mem_rotate_right (x->parent);
3860 w = x->parent->left;
3861 }
3862
3863 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3864 {
3865 w->color = MEM_RED;
3866 x = x->parent;
3867 }
3868 else
3869 {
3870 if (w->left->color == MEM_BLACK)
3871 {
3872 w->right->color = MEM_BLACK;
3873 w->color = MEM_RED;
3874 mem_rotate_left (w);
3875 w = x->parent->left;
3876 }
3877
3878 w->color = x->parent->color;
3879 x->parent->color = MEM_BLACK;
3880 w->left->color = MEM_BLACK;
3881 mem_rotate_right (x->parent);
3882 x = mem_root;
3883 }
3884 }
3885 }
3886
3887 x->color = MEM_BLACK;
3888 }
3889
3890
3891 /* Value is non-zero if P is a pointer to a live Lisp string on
3892 the heap. M is a pointer to the mem_block for P. */
3893
3894 static INLINE int
3895 live_string_p (m, p)
3896 struct mem_node *m;
3897 void *p;
3898 {
3899 if (m->type == MEM_TYPE_STRING)
3900 {
3901 struct string_block *b = (struct string_block *) m->start;
3902 int offset = (char *) p - (char *) &b->strings[0];
3903
3904 /* P must point to the start of a Lisp_String structure, and it
3905 must not be on the free-list. */
3906 return (offset >= 0
3907 && offset % sizeof b->strings[0] == 0
3908 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3909 && ((struct Lisp_String *) p)->data != NULL);
3910 }
3911 else
3912 return 0;
3913 }
3914
3915
3916 /* Value is non-zero if P is a pointer to a live Lisp cons on
3917 the heap. M is a pointer to the mem_block for P. */
3918
3919 static INLINE int
3920 live_cons_p (m, p)
3921 struct mem_node *m;
3922 void *p;
3923 {
3924 if (m->type == MEM_TYPE_CONS)
3925 {
3926 struct cons_block *b = (struct cons_block *) m->start;
3927 int offset = (char *) p - (char *) &b->conses[0];
3928
3929 /* P must point to the start of a Lisp_Cons, not be
3930 one of the unused cells in the current cons block,
3931 and not be on the free-list. */
3932 return (offset >= 0
3933 && offset % sizeof b->conses[0] == 0
3934 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3935 && (b != cons_block
3936 || offset / sizeof b->conses[0] < cons_block_index)
3937 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3938 }
3939 else
3940 return 0;
3941 }
3942
3943
3944 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3945 the heap. M is a pointer to the mem_block for P. */
3946
3947 static INLINE int
3948 live_symbol_p (m, p)
3949 struct mem_node *m;
3950 void *p;
3951 {
3952 if (m->type == MEM_TYPE_SYMBOL)
3953 {
3954 struct symbol_block *b = (struct symbol_block *) m->start;
3955 int offset = (char *) p - (char *) &b->symbols[0];
3956
3957 /* P must point to the start of a Lisp_Symbol, not be
3958 one of the unused cells in the current symbol block,
3959 and not be on the free-list. */
3960 return (offset >= 0
3961 && offset % sizeof b->symbols[0] == 0
3962 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3963 && (b != symbol_block
3964 || offset / sizeof b->symbols[0] < symbol_block_index)
3965 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3966 }
3967 else
3968 return 0;
3969 }
3970
3971
3972 /* Value is non-zero if P is a pointer to a live Lisp float on
3973 the heap. M is a pointer to the mem_block for P. */
3974
3975 static INLINE int
3976 live_float_p (m, p)
3977 struct mem_node *m;
3978 void *p;
3979 {
3980 if (m->type == MEM_TYPE_FLOAT)
3981 {
3982 struct float_block *b = (struct float_block *) m->start;
3983 int offset = (char *) p - (char *) &b->floats[0];
3984
3985 /* P must point to the start of a Lisp_Float and not be
3986 one of the unused cells in the current float block. */
3987 return (offset >= 0
3988 && offset % sizeof b->floats[0] == 0
3989 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3990 && (b != float_block
3991 || offset / sizeof b->floats[0] < float_block_index));
3992 }
3993 else
3994 return 0;
3995 }
3996
3997
3998 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3999 the heap. M is a pointer to the mem_block for P. */
4000
4001 static INLINE int
4002 live_misc_p (m, p)
4003 struct mem_node *m;
4004 void *p;
4005 {
4006 if (m->type == MEM_TYPE_MISC)
4007 {
4008 struct marker_block *b = (struct marker_block *) m->start;
4009 int offset = (char *) p - (char *) &b->markers[0];
4010
4011 /* P must point to the start of a Lisp_Misc, not be
4012 one of the unused cells in the current misc block,
4013 and not be on the free-list. */
4014 return (offset >= 0
4015 && offset % sizeof b->markers[0] == 0
4016 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4017 && (b != marker_block
4018 || offset / sizeof b->markers[0] < marker_block_index)
4019 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4020 }
4021 else
4022 return 0;
4023 }
4024
4025
4026 /* Value is non-zero if P is a pointer to a live vector-like object.
4027 M is a pointer to the mem_block for P. */
4028
4029 static INLINE int
4030 live_vector_p (m, p)
4031 struct mem_node *m;
4032 void *p;
4033 {
4034 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4035 }
4036
4037
4038 /* Value is non-zero if P is a pointer to a live buffer. M is a
4039 pointer to the mem_block for P. */
4040
4041 static INLINE int
4042 live_buffer_p (m, p)
4043 struct mem_node *m;
4044 void *p;
4045 {
4046 /* P must point to the start of the block, and the buffer
4047 must not have been killed. */
4048 return (m->type == MEM_TYPE_BUFFER
4049 && p == m->start
4050 && !NILP (((struct buffer *) p)->name));
4051 }
4052
4053 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4054
4055 #if GC_MARK_STACK
4056
4057 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4058
4059 /* Array of objects that are kept alive because the C stack contains
4060 a pattern that looks like a reference to them . */
4061
4062 #define MAX_ZOMBIES 10
4063 static Lisp_Object zombies[MAX_ZOMBIES];
4064
4065 /* Number of zombie objects. */
4066
4067 static int nzombies;
4068
4069 /* Number of garbage collections. */
4070
4071 static int ngcs;
4072
4073 /* Average percentage of zombies per collection. */
4074
4075 static double avg_zombies;
4076
4077 /* Max. number of live and zombie objects. */
4078
4079 static int max_live, max_zombies;
4080
4081 /* Average number of live objects per GC. */
4082
4083 static double avg_live;
4084
4085 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4086 doc: /* Show information about live and zombie objects. */)
4087 ()
4088 {
4089 Lisp_Object args[8], zombie_list = Qnil;
4090 int i;
4091 for (i = 0; i < nzombies; i++)
4092 zombie_list = Fcons (zombies[i], zombie_list);
4093 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4094 args[1] = make_number (ngcs);
4095 args[2] = make_float (avg_live);
4096 args[3] = make_float (avg_zombies);
4097 args[4] = make_float (avg_zombies / avg_live / 100);
4098 args[5] = make_number (max_live);
4099 args[6] = make_number (max_zombies);
4100 args[7] = zombie_list;
4101 return Fmessage (8, args);
4102 }
4103
4104 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4105
4106
4107 /* Mark OBJ if we can prove it's a Lisp_Object. */
4108
4109 static INLINE void
4110 mark_maybe_object (obj)
4111 Lisp_Object obj;
4112 {
4113 void *po = (void *) XPNTR (obj);
4114 struct mem_node *m = mem_find (po);
4115
4116 if (m != MEM_NIL)
4117 {
4118 int mark_p = 0;
4119
4120 switch (XTYPE (obj))
4121 {
4122 case Lisp_String:
4123 mark_p = (live_string_p (m, po)
4124 && !STRING_MARKED_P ((struct Lisp_String *) po));
4125 break;
4126
4127 case Lisp_Cons:
4128 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4129 break;
4130
4131 case Lisp_Symbol:
4132 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4133 break;
4134
4135 case Lisp_Float:
4136 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4137 break;
4138
4139 case Lisp_Vectorlike:
4140 /* Note: can't check BUFFERP before we know it's a
4141 buffer because checking that dereferences the pointer
4142 PO which might point anywhere. */
4143 if (live_vector_p (m, po))
4144 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4145 else if (live_buffer_p (m, po))
4146 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4147 break;
4148
4149 case Lisp_Misc:
4150 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4151 break;
4152
4153 case Lisp_Int:
4154 case Lisp_Type_Limit:
4155 break;
4156 }
4157
4158 if (mark_p)
4159 {
4160 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4161 if (nzombies < MAX_ZOMBIES)
4162 zombies[nzombies] = obj;
4163 ++nzombies;
4164 #endif
4165 mark_object (obj);
4166 }
4167 }
4168 }
4169
4170
4171 /* If P points to Lisp data, mark that as live if it isn't already
4172 marked. */
4173
4174 static INLINE void
4175 mark_maybe_pointer (p)
4176 void *p;
4177 {
4178 struct mem_node *m;
4179
4180 /* Quickly rule out some values which can't point to Lisp data. */
4181 if ((EMACS_INT) p %
4182 #ifdef USE_LSB_TAG
4183 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4184 #else
4185 2 /* We assume that Lisp data is aligned on even addresses. */
4186 #endif
4187 )
4188 return;
4189
4190 m = mem_find (p);
4191 if (m != MEM_NIL)
4192 {
4193 Lisp_Object obj = Qnil;
4194
4195 switch (m->type)
4196 {
4197 case MEM_TYPE_NON_LISP:
4198 /* Nothing to do; not a pointer to Lisp memory. */
4199 break;
4200
4201 case MEM_TYPE_BUFFER:
4202 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4203 XSETVECTOR (obj, p);
4204 break;
4205
4206 case MEM_TYPE_CONS:
4207 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4208 XSETCONS (obj, p);
4209 break;
4210
4211 case MEM_TYPE_STRING:
4212 if (live_string_p (m, p)
4213 && !STRING_MARKED_P ((struct Lisp_String *) p))
4214 XSETSTRING (obj, p);
4215 break;
4216
4217 case MEM_TYPE_MISC:
4218 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4219 XSETMISC (obj, p);
4220 break;
4221
4222 case MEM_TYPE_SYMBOL:
4223 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4224 XSETSYMBOL (obj, p);
4225 break;
4226
4227 case MEM_TYPE_FLOAT:
4228 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4229 XSETFLOAT (obj, p);
4230 break;
4231
4232 case MEM_TYPE_VECTORLIKE:
4233 if (live_vector_p (m, p))
4234 {
4235 Lisp_Object tem;
4236 XSETVECTOR (tem, p);
4237 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4238 obj = tem;
4239 }
4240 break;
4241
4242 default:
4243 abort ();
4244 }
4245
4246 if (!NILP (obj))
4247 mark_object (obj);
4248 }
4249 }
4250
4251
4252 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4253 or END+OFFSET..START. */
4254
4255 static void
4256 mark_memory (start, end, offset)
4257 void *start, *end;
4258 int offset;
4259 {
4260 Lisp_Object *p;
4261 void **pp;
4262
4263 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4264 nzombies = 0;
4265 #endif
4266
4267 /* Make START the pointer to the start of the memory region,
4268 if it isn't already. */
4269 if (end < start)
4270 {
4271 void *tem = start;
4272 start = end;
4273 end = tem;
4274 }
4275
4276 /* Mark Lisp_Objects. */
4277 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4278 mark_maybe_object (*p);
4279
4280 /* Mark Lisp data pointed to. This is necessary because, in some
4281 situations, the C compiler optimizes Lisp objects away, so that
4282 only a pointer to them remains. Example:
4283
4284 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4285 ()
4286 {
4287 Lisp_Object obj = build_string ("test");
4288 struct Lisp_String *s = XSTRING (obj);
4289 Fgarbage_collect ();
4290 fprintf (stderr, "test `%s'\n", s->data);
4291 return Qnil;
4292 }
4293
4294 Here, `obj' isn't really used, and the compiler optimizes it
4295 away. The only reference to the life string is through the
4296 pointer `s'. */
4297
4298 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4299 mark_maybe_pointer (*pp);
4300 }
4301
4302 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4303 the GCC system configuration. In gcc 3.2, the only systems for
4304 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4305 by others?) and ns32k-pc532-min. */
4306
4307 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4308
4309 static int setjmp_tested_p, longjmps_done;
4310
4311 #define SETJMP_WILL_LIKELY_WORK "\
4312 \n\
4313 Emacs garbage collector has been changed to use conservative stack\n\
4314 marking. Emacs has determined that the method it uses to do the\n\
4315 marking will likely work on your system, but this isn't sure.\n\
4316 \n\
4317 If you are a system-programmer, or can get the help of a local wizard\n\
4318 who is, please take a look at the function mark_stack in alloc.c, and\n\
4319 verify that the methods used are appropriate for your system.\n\
4320 \n\
4321 Please mail the result to <emacs-devel@gnu.org>.\n\
4322 "
4323
4324 #define SETJMP_WILL_NOT_WORK "\
4325 \n\
4326 Emacs garbage collector has been changed to use conservative stack\n\
4327 marking. Emacs has determined that the default method it uses to do the\n\
4328 marking will not work on your system. We will need a system-dependent\n\
4329 solution for your system.\n\
4330 \n\
4331 Please take a look at the function mark_stack in alloc.c, and\n\
4332 try to find a way to make it work on your system.\n\
4333 \n\
4334 Note that you may get false negatives, depending on the compiler.\n\
4335 In particular, you need to use -O with GCC for this test.\n\
4336 \n\
4337 Please mail the result to <emacs-devel@gnu.org>.\n\
4338 "
4339
4340
4341 /* Perform a quick check if it looks like setjmp saves registers in a
4342 jmp_buf. Print a message to stderr saying so. When this test
4343 succeeds, this is _not_ a proof that setjmp is sufficient for
4344 conservative stack marking. Only the sources or a disassembly
4345 can prove that. */
4346
4347 static void
4348 test_setjmp ()
4349 {
4350 char buf[10];
4351 register int x;
4352 jmp_buf jbuf;
4353 int result = 0;
4354
4355 /* Arrange for X to be put in a register. */
4356 sprintf (buf, "1");
4357 x = strlen (buf);
4358 x = 2 * x - 1;
4359
4360 setjmp (jbuf);
4361 if (longjmps_done == 1)
4362 {
4363 /* Came here after the longjmp at the end of the function.
4364
4365 If x == 1, the longjmp has restored the register to its
4366 value before the setjmp, and we can hope that setjmp
4367 saves all such registers in the jmp_buf, although that
4368 isn't sure.
4369
4370 For other values of X, either something really strange is
4371 taking place, or the setjmp just didn't save the register. */
4372
4373 if (x == 1)
4374 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4375 else
4376 {
4377 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4378 exit (1);
4379 }
4380 }
4381
4382 ++longjmps_done;
4383 x = 2;
4384 if (longjmps_done == 1)
4385 longjmp (jbuf, 1);
4386 }
4387
4388 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4389
4390
4391 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4392
4393 /* Abort if anything GCPRO'd doesn't survive the GC. */
4394
4395 static void
4396 check_gcpros ()
4397 {
4398 struct gcpro *p;
4399 int i;
4400
4401 for (p = gcprolist; p; p = p->next)
4402 for (i = 0; i < p->nvars; ++i)
4403 if (!survives_gc_p (p->var[i]))
4404 /* FIXME: It's not necessarily a bug. It might just be that the
4405 GCPRO is unnecessary or should release the object sooner. */
4406 abort ();
4407 }
4408
4409 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4410
4411 static void
4412 dump_zombies ()
4413 {
4414 int i;
4415
4416 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4417 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4418 {
4419 fprintf (stderr, " %d = ", i);
4420 debug_print (zombies[i]);
4421 }
4422 }
4423
4424 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4425
4426
4427 /* Mark live Lisp objects on the C stack.
4428
4429 There are several system-dependent problems to consider when
4430 porting this to new architectures:
4431
4432 Processor Registers
4433
4434 We have to mark Lisp objects in CPU registers that can hold local
4435 variables or are used to pass parameters.
4436
4437 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4438 something that either saves relevant registers on the stack, or
4439 calls mark_maybe_object passing it each register's contents.
4440
4441 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4442 implementation assumes that calling setjmp saves registers we need
4443 to see in a jmp_buf which itself lies on the stack. This doesn't
4444 have to be true! It must be verified for each system, possibly
4445 by taking a look at the source code of setjmp.
4446
4447 Stack Layout
4448
4449 Architectures differ in the way their processor stack is organized.
4450 For example, the stack might look like this
4451
4452 +----------------+
4453 | Lisp_Object | size = 4
4454 +----------------+
4455 | something else | size = 2
4456 +----------------+
4457 | Lisp_Object | size = 4
4458 +----------------+
4459 | ... |
4460
4461 In such a case, not every Lisp_Object will be aligned equally. To
4462 find all Lisp_Object on the stack it won't be sufficient to walk
4463 the stack in steps of 4 bytes. Instead, two passes will be
4464 necessary, one starting at the start of the stack, and a second
4465 pass starting at the start of the stack + 2. Likewise, if the
4466 minimal alignment of Lisp_Objects on the stack is 1, four passes
4467 would be necessary, each one starting with one byte more offset
4468 from the stack start.
4469
4470 The current code assumes by default that Lisp_Objects are aligned
4471 equally on the stack. */
4472
4473 static void
4474 mark_stack ()
4475 {
4476 int i;
4477 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4478 union aligned_jmpbuf {
4479 Lisp_Object o;
4480 jmp_buf j;
4481 } j;
4482 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4483 void *end;
4484
4485 /* This trick flushes the register windows so that all the state of
4486 the process is contained in the stack. */
4487 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4488 needed on ia64 too. See mach_dep.c, where it also says inline
4489 assembler doesn't work with relevant proprietary compilers. */
4490 #ifdef __sparc__
4491 #ifdef __sparc64__
4492 asm ("flushw");
4493 #else
4494 asm ("ta 3");
4495 #endif
4496 #endif
4497
4498 /* Save registers that we need to see on the stack. We need to see
4499 registers used to hold register variables and registers used to
4500 pass parameters. */
4501 #ifdef GC_SAVE_REGISTERS_ON_STACK
4502 GC_SAVE_REGISTERS_ON_STACK (end);
4503 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4504
4505 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4506 setjmp will definitely work, test it
4507 and print a message with the result
4508 of the test. */
4509 if (!setjmp_tested_p)
4510 {
4511 setjmp_tested_p = 1;
4512 test_setjmp ();
4513 }
4514 #endif /* GC_SETJMP_WORKS */
4515
4516 setjmp (j.j);
4517 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4518 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4519
4520 /* This assumes that the stack is a contiguous region in memory. If
4521 that's not the case, something has to be done here to iterate
4522 over the stack segments. */
4523 #ifndef GC_LISP_OBJECT_ALIGNMENT
4524 #ifdef __GNUC__
4525 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4526 #else
4527 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4528 #endif
4529 #endif
4530 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4531 mark_memory (stack_base, end, i);
4532 /* Allow for marking a secondary stack, like the register stack on the
4533 ia64. */
4534 #ifdef GC_MARK_SECONDARY_STACK
4535 GC_MARK_SECONDARY_STACK ();
4536 #endif
4537
4538 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4539 check_gcpros ();
4540 #endif
4541 }
4542
4543 #endif /* GC_MARK_STACK != 0 */
4544
4545
4546 /* Determine whether it is safe to access memory at address P. */
4547 static int
4548 valid_pointer_p (p)
4549 void *p;
4550 {
4551 #ifdef WINDOWSNT
4552 return w32_valid_pointer_p (p, 16);
4553 #else
4554 int fd;
4555
4556 /* Obviously, we cannot just access it (we would SEGV trying), so we
4557 trick the o/s to tell us whether p is a valid pointer.
4558 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4559 not validate p in that case. */
4560
4561 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4562 {
4563 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4564 emacs_close (fd);
4565 unlink ("__Valid__Lisp__Object__");
4566 return valid;
4567 }
4568
4569 return -1;
4570 #endif
4571 }
4572
4573 /* Return 1 if OBJ is a valid lisp object.
4574 Return 0 if OBJ is NOT a valid lisp object.
4575 Return -1 if we cannot validate OBJ.
4576 This function can be quite slow,
4577 so it should only be used in code for manual debugging. */
4578
4579 int
4580 valid_lisp_object_p (obj)
4581 Lisp_Object obj;
4582 {
4583 void *p;
4584 #if GC_MARK_STACK
4585 struct mem_node *m;
4586 #endif
4587
4588 if (INTEGERP (obj))
4589 return 1;
4590
4591 p = (void *) XPNTR (obj);
4592 if (PURE_POINTER_P (p))
4593 return 1;
4594
4595 #if !GC_MARK_STACK
4596 return valid_pointer_p (p);
4597 #else
4598
4599 m = mem_find (p);
4600
4601 if (m == MEM_NIL)
4602 {
4603 int valid = valid_pointer_p (p);
4604 if (valid <= 0)
4605 return valid;
4606
4607 if (SUBRP (obj))
4608 return 1;
4609
4610 return 0;
4611 }
4612
4613 switch (m->type)
4614 {
4615 case MEM_TYPE_NON_LISP:
4616 return 0;
4617
4618 case MEM_TYPE_BUFFER:
4619 return live_buffer_p (m, p);
4620
4621 case MEM_TYPE_CONS:
4622 return live_cons_p (m, p);
4623
4624 case MEM_TYPE_STRING:
4625 return live_string_p (m, p);
4626
4627 case MEM_TYPE_MISC:
4628 return live_misc_p (m, p);
4629
4630 case MEM_TYPE_SYMBOL:
4631 return live_symbol_p (m, p);
4632
4633 case MEM_TYPE_FLOAT:
4634 return live_float_p (m, p);
4635
4636 case MEM_TYPE_VECTORLIKE:
4637 return live_vector_p (m, p);
4638
4639 default:
4640 break;
4641 }
4642
4643 return 0;
4644 #endif
4645 }
4646
4647
4648
4649 \f
4650 /***********************************************************************
4651 Pure Storage Management
4652 ***********************************************************************/
4653
4654 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4655 pointer to it. TYPE is the Lisp type for which the memory is
4656 allocated. TYPE < 0 means it's not used for a Lisp object. */
4657
4658 static POINTER_TYPE *
4659 pure_alloc (size, type)
4660 size_t size;
4661 int type;
4662 {
4663 POINTER_TYPE *result;
4664 #ifdef USE_LSB_TAG
4665 size_t alignment = (1 << GCTYPEBITS);
4666 #else
4667 size_t alignment = sizeof (EMACS_INT);
4668
4669 /* Give Lisp_Floats an extra alignment. */
4670 if (type == Lisp_Float)
4671 {
4672 #if defined __GNUC__ && __GNUC__ >= 2
4673 alignment = __alignof (struct Lisp_Float);
4674 #else
4675 alignment = sizeof (struct Lisp_Float);
4676 #endif
4677 }
4678 #endif
4679
4680 again:
4681 if (type >= 0)
4682 {
4683 /* Allocate space for a Lisp object from the beginning of the free
4684 space with taking account of alignment. */
4685 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4686 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4687 }
4688 else
4689 {
4690 /* Allocate space for a non-Lisp object from the end of the free
4691 space. */
4692 pure_bytes_used_non_lisp += size;
4693 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4694 }
4695 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4696
4697 if (pure_bytes_used <= pure_size)
4698 return result;
4699
4700 /* Don't allocate a large amount here,
4701 because it might get mmap'd and then its address
4702 might not be usable. */
4703 purebeg = (char *) xmalloc (10000);
4704 pure_size = 10000;
4705 pure_bytes_used_before_overflow += pure_bytes_used - size;
4706 pure_bytes_used = 0;
4707 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4708 goto again;
4709 }
4710
4711
4712 /* Print a warning if PURESIZE is too small. */
4713
4714 void
4715 check_pure_size ()
4716 {
4717 if (pure_bytes_used_before_overflow)
4718 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4719 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4720 }
4721
4722
4723 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4724 the non-Lisp data pool of the pure storage, and return its start
4725 address. Return NULL if not found. */
4726
4727 static char *
4728 find_string_data_in_pure (data, nbytes)
4729 char *data;
4730 int nbytes;
4731 {
4732 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4733 unsigned char *p;
4734 char *non_lisp_beg;
4735
4736 if (pure_bytes_used_non_lisp < nbytes + 1)
4737 return NULL;
4738
4739 /* Set up the Boyer-Moore table. */
4740 skip = nbytes + 1;
4741 for (i = 0; i < 256; i++)
4742 bm_skip[i] = skip;
4743
4744 p = (unsigned char *) data;
4745 while (--skip > 0)
4746 bm_skip[*p++] = skip;
4747
4748 last_char_skip = bm_skip['\0'];
4749
4750 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4751 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4752
4753 /* See the comments in the function `boyer_moore' (search.c) for the
4754 use of `infinity'. */
4755 infinity = pure_bytes_used_non_lisp + 1;
4756 bm_skip['\0'] = infinity;
4757
4758 p = (unsigned char *) non_lisp_beg + nbytes;
4759 start = 0;
4760 do
4761 {
4762 /* Check the last character (== '\0'). */
4763 do
4764 {
4765 start += bm_skip[*(p + start)];
4766 }
4767 while (start <= start_max);
4768
4769 if (start < infinity)
4770 /* Couldn't find the last character. */
4771 return NULL;
4772
4773 /* No less than `infinity' means we could find the last
4774 character at `p[start - infinity]'. */
4775 start -= infinity;
4776
4777 /* Check the remaining characters. */
4778 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4779 /* Found. */
4780 return non_lisp_beg + start;
4781
4782 start += last_char_skip;
4783 }
4784 while (start <= start_max);
4785
4786 return NULL;
4787 }
4788
4789
4790 /* Return a string allocated in pure space. DATA is a buffer holding
4791 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4792 non-zero means make the result string multibyte.
4793
4794 Must get an error if pure storage is full, since if it cannot hold
4795 a large string it may be able to hold conses that point to that
4796 string; then the string is not protected from gc. */
4797
4798 Lisp_Object
4799 make_pure_string (data, nchars, nbytes, multibyte)
4800 char *data;
4801 int nchars, nbytes;
4802 int multibyte;
4803 {
4804 Lisp_Object string;
4805 struct Lisp_String *s;
4806
4807 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4808 s->data = find_string_data_in_pure (data, nbytes);
4809 if (s->data == NULL)
4810 {
4811 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4812 bcopy (data, s->data, nbytes);
4813 s->data[nbytes] = '\0';
4814 }
4815 s->size = nchars;
4816 s->size_byte = multibyte ? nbytes : -1;
4817 s->intervals = NULL_INTERVAL;
4818 XSETSTRING (string, s);
4819 return string;
4820 }
4821
4822
4823 /* Return a cons allocated from pure space. Give it pure copies
4824 of CAR as car and CDR as cdr. */
4825
4826 Lisp_Object
4827 pure_cons (car, cdr)
4828 Lisp_Object car, cdr;
4829 {
4830 register Lisp_Object new;
4831 struct Lisp_Cons *p;
4832
4833 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4834 XSETCONS (new, p);
4835 XSETCAR (new, Fpurecopy (car));
4836 XSETCDR (new, Fpurecopy (cdr));
4837 return new;
4838 }
4839
4840
4841 /* Value is a float object with value NUM allocated from pure space. */
4842
4843 static Lisp_Object
4844 make_pure_float (num)
4845 double num;
4846 {
4847 register Lisp_Object new;
4848 struct Lisp_Float *p;
4849
4850 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4851 XSETFLOAT (new, p);
4852 XFLOAT_DATA (new) = num;
4853 return new;
4854 }
4855
4856
4857 /* Return a vector with room for LEN Lisp_Objects allocated from
4858 pure space. */
4859
4860 Lisp_Object
4861 make_pure_vector (len)
4862 EMACS_INT len;
4863 {
4864 Lisp_Object new;
4865 struct Lisp_Vector *p;
4866 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4867
4868 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4869 XSETVECTOR (new, p);
4870 XVECTOR (new)->size = len;
4871 return new;
4872 }
4873
4874
4875 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4876 doc: /* Make a copy of object OBJ in pure storage.
4877 Recursively copies contents of vectors and cons cells.
4878 Does not copy symbols. Copies strings without text properties. */)
4879 (obj)
4880 register Lisp_Object obj;
4881 {
4882 if (NILP (Vpurify_flag))
4883 return obj;
4884
4885 if (PURE_POINTER_P (XPNTR (obj)))
4886 return obj;
4887
4888 if (CONSP (obj))
4889 return pure_cons (XCAR (obj), XCDR (obj));
4890 else if (FLOATP (obj))
4891 return make_pure_float (XFLOAT_DATA (obj));
4892 else if (STRINGP (obj))
4893 return make_pure_string (SDATA (obj), SCHARS (obj),
4894 SBYTES (obj),
4895 STRING_MULTIBYTE (obj));
4896 else if (COMPILEDP (obj) || VECTORP (obj))
4897 {
4898 register struct Lisp_Vector *vec;
4899 register int i;
4900 EMACS_INT size;
4901
4902 size = XVECTOR (obj)->size;
4903 if (size & PSEUDOVECTOR_FLAG)
4904 size &= PSEUDOVECTOR_SIZE_MASK;
4905 vec = XVECTOR (make_pure_vector (size));
4906 for (i = 0; i < size; i++)
4907 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4908 if (COMPILEDP (obj))
4909 {
4910 XSETPVECTYPE (vec, PVEC_COMPILED);
4911 XSETCOMPILED (obj, vec);
4912 }
4913 else
4914 XSETVECTOR (obj, vec);
4915 return obj;
4916 }
4917 else if (MARKERP (obj))
4918 error ("Attempt to copy a marker to pure storage");
4919
4920 return obj;
4921 }
4922
4923
4924 \f
4925 /***********************************************************************
4926 Protection from GC
4927 ***********************************************************************/
4928
4929 /* Put an entry in staticvec, pointing at the variable with address
4930 VARADDRESS. */
4931
4932 void
4933 staticpro (varaddress)
4934 Lisp_Object *varaddress;
4935 {
4936 staticvec[staticidx++] = varaddress;
4937 if (staticidx >= NSTATICS)
4938 abort ();
4939 }
4940
4941 struct catchtag
4942 {
4943 Lisp_Object tag;
4944 Lisp_Object val;
4945 struct catchtag *next;
4946 };
4947
4948 \f
4949 /***********************************************************************
4950 Protection from GC
4951 ***********************************************************************/
4952
4953 /* Temporarily prevent garbage collection. */
4954
4955 int
4956 inhibit_garbage_collection ()
4957 {
4958 int count = SPECPDL_INDEX ();
4959 int nbits = min (VALBITS, BITS_PER_INT);
4960
4961 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4962 return count;
4963 }
4964
4965
4966 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4967 doc: /* Reclaim storage for Lisp objects no longer needed.
4968 Garbage collection happens automatically if you cons more than
4969 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4970 `garbage-collect' normally returns a list with info on amount of space in use:
4971 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4972 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4973 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4974 (USED-STRINGS . FREE-STRINGS))
4975 However, if there was overflow in pure space, `garbage-collect'
4976 returns nil, because real GC can't be done. */)
4977 ()
4978 {
4979 register struct specbinding *bind;
4980 struct catchtag *catch;
4981 struct handler *handler;
4982 char stack_top_variable;
4983 register int i;
4984 int message_p;
4985 Lisp_Object total[8];
4986 int count = SPECPDL_INDEX ();
4987 EMACS_TIME t1, t2, t3;
4988
4989 if (abort_on_gc)
4990 abort ();
4991
4992 /* Can't GC if pure storage overflowed because we can't determine
4993 if something is a pure object or not. */
4994 if (pure_bytes_used_before_overflow)
4995 return Qnil;
4996
4997 CHECK_CONS_LIST ();
4998
4999 /* Don't keep undo information around forever.
5000 Do this early on, so it is no problem if the user quits. */
5001 {
5002 register struct buffer *nextb = all_buffers;
5003
5004 while (nextb)
5005 {
5006 /* If a buffer's undo list is Qt, that means that undo is
5007 turned off in that buffer. Calling truncate_undo_list on
5008 Qt tends to return NULL, which effectively turns undo back on.
5009 So don't call truncate_undo_list if undo_list is Qt. */
5010 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5011 truncate_undo_list (nextb);
5012
5013 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5014 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5015 && ! nextb->text->inhibit_shrinking)
5016 {
5017 /* If a buffer's gap size is more than 10% of the buffer
5018 size, or larger than 2000 bytes, then shrink it
5019 accordingly. Keep a minimum size of 20 bytes. */
5020 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5021
5022 if (nextb->text->gap_size > size)
5023 {
5024 struct buffer *save_current = current_buffer;
5025 current_buffer = nextb;
5026 make_gap (-(nextb->text->gap_size - size));
5027 current_buffer = save_current;
5028 }
5029 }
5030
5031 nextb = nextb->next;
5032 }
5033 }
5034
5035 EMACS_GET_TIME (t1);
5036
5037 /* In case user calls debug_print during GC,
5038 don't let that cause a recursive GC. */
5039 consing_since_gc = 0;
5040
5041 /* Save what's currently displayed in the echo area. */
5042 message_p = push_message ();
5043 record_unwind_protect (pop_message_unwind, Qnil);
5044
5045 /* Save a copy of the contents of the stack, for debugging. */
5046 #if MAX_SAVE_STACK > 0
5047 if (NILP (Vpurify_flag))
5048 {
5049 i = &stack_top_variable - stack_bottom;
5050 if (i < 0) i = -i;
5051 if (i < MAX_SAVE_STACK)
5052 {
5053 if (stack_copy == 0)
5054 stack_copy = (char *) xmalloc (stack_copy_size = i);
5055 else if (stack_copy_size < i)
5056 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5057 if (stack_copy)
5058 {
5059 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5060 bcopy (stack_bottom, stack_copy, i);
5061 else
5062 bcopy (&stack_top_variable, stack_copy, i);
5063 }
5064 }
5065 }
5066 #endif /* MAX_SAVE_STACK > 0 */
5067
5068 if (garbage_collection_messages)
5069 message1_nolog ("Garbage collecting...");
5070
5071 BLOCK_INPUT;
5072
5073 shrink_regexp_cache ();
5074
5075 gc_in_progress = 1;
5076
5077 /* clear_marks (); */
5078
5079 /* Mark all the special slots that serve as the roots of accessibility. */
5080
5081 for (i = 0; i < staticidx; i++)
5082 mark_object (*staticvec[i]);
5083
5084 for (bind = specpdl; bind != specpdl_ptr; bind++)
5085 {
5086 mark_object (bind->symbol);
5087 mark_object (bind->old_value);
5088 }
5089 mark_terminals ();
5090 mark_kboards ();
5091 mark_ttys ();
5092
5093 #ifdef USE_GTK
5094 {
5095 extern void xg_mark_data ();
5096 xg_mark_data ();
5097 }
5098 #endif
5099
5100 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5101 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5102 mark_stack ();
5103 #else
5104 {
5105 register struct gcpro *tail;
5106 for (tail = gcprolist; tail; tail = tail->next)
5107 for (i = 0; i < tail->nvars; i++)
5108 mark_object (tail->var[i]);
5109 }
5110 #endif
5111
5112 mark_byte_stack ();
5113 for (catch = catchlist; catch; catch = catch->next)
5114 {
5115 mark_object (catch->tag);
5116 mark_object (catch->val);
5117 }
5118 for (handler = handlerlist; handler; handler = handler->next)
5119 {
5120 mark_object (handler->handler);
5121 mark_object (handler->var);
5122 }
5123 mark_backtrace ();
5124
5125 #ifdef HAVE_WINDOW_SYSTEM
5126 mark_fringe_data ();
5127 #endif
5128
5129 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5130 mark_stack ();
5131 #endif
5132
5133 /* Everything is now marked, except for the things that require special
5134 finalization, i.e. the undo_list.
5135 Look thru every buffer's undo list
5136 for elements that update markers that were not marked,
5137 and delete them. */
5138 {
5139 register struct buffer *nextb = all_buffers;
5140
5141 while (nextb)
5142 {
5143 /* If a buffer's undo list is Qt, that means that undo is
5144 turned off in that buffer. Calling truncate_undo_list on
5145 Qt tends to return NULL, which effectively turns undo back on.
5146 So don't call truncate_undo_list if undo_list is Qt. */
5147 if (! EQ (nextb->undo_list, Qt))
5148 {
5149 Lisp_Object tail, prev;
5150 tail = nextb->undo_list;
5151 prev = Qnil;
5152 while (CONSP (tail))
5153 {
5154 if (CONSP (XCAR (tail))
5155 && MARKERP (XCAR (XCAR (tail)))
5156 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5157 {
5158 if (NILP (prev))
5159 nextb->undo_list = tail = XCDR (tail);
5160 else
5161 {
5162 tail = XCDR (tail);
5163 XSETCDR (prev, tail);
5164 }
5165 }
5166 else
5167 {
5168 prev = tail;
5169 tail = XCDR (tail);
5170 }
5171 }
5172 }
5173 /* Now that we have stripped the elements that need not be in the
5174 undo_list any more, we can finally mark the list. */
5175 mark_object (nextb->undo_list);
5176
5177 nextb = nextb->next;
5178 }
5179 }
5180
5181 gc_sweep ();
5182
5183 /* Clear the mark bits that we set in certain root slots. */
5184
5185 unmark_byte_stack ();
5186 VECTOR_UNMARK (&buffer_defaults);
5187 VECTOR_UNMARK (&buffer_local_symbols);
5188
5189 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5190 dump_zombies ();
5191 #endif
5192
5193 UNBLOCK_INPUT;
5194
5195 CHECK_CONS_LIST ();
5196
5197 /* clear_marks (); */
5198 gc_in_progress = 0;
5199
5200 consing_since_gc = 0;
5201 if (gc_cons_threshold < 10000)
5202 gc_cons_threshold = 10000;
5203
5204 if (FLOATP (Vgc_cons_percentage))
5205 { /* Set gc_cons_combined_threshold. */
5206 EMACS_INT total = 0;
5207
5208 total += total_conses * sizeof (struct Lisp_Cons);
5209 total += total_symbols * sizeof (struct Lisp_Symbol);
5210 total += total_markers * sizeof (union Lisp_Misc);
5211 total += total_string_size;
5212 total += total_vector_size * sizeof (Lisp_Object);
5213 total += total_floats * sizeof (struct Lisp_Float);
5214 total += total_intervals * sizeof (struct interval);
5215 total += total_strings * sizeof (struct Lisp_String);
5216
5217 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5218 }
5219 else
5220 gc_relative_threshold = 0;
5221
5222 if (garbage_collection_messages)
5223 {
5224 if (message_p || minibuf_level > 0)
5225 restore_message ();
5226 else
5227 message1_nolog ("Garbage collecting...done");
5228 }
5229
5230 unbind_to (count, Qnil);
5231
5232 total[0] = Fcons (make_number (total_conses),
5233 make_number (total_free_conses));
5234 total[1] = Fcons (make_number (total_symbols),
5235 make_number (total_free_symbols));
5236 total[2] = Fcons (make_number (total_markers),
5237 make_number (total_free_markers));
5238 total[3] = make_number (total_string_size);
5239 total[4] = make_number (total_vector_size);
5240 total[5] = Fcons (make_number (total_floats),
5241 make_number (total_free_floats));
5242 total[6] = Fcons (make_number (total_intervals),
5243 make_number (total_free_intervals));
5244 total[7] = Fcons (make_number (total_strings),
5245 make_number (total_free_strings));
5246
5247 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5248 {
5249 /* Compute average percentage of zombies. */
5250 double nlive = 0;
5251
5252 for (i = 0; i < 7; ++i)
5253 if (CONSP (total[i]))
5254 nlive += XFASTINT (XCAR (total[i]));
5255
5256 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5257 max_live = max (nlive, max_live);
5258 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5259 max_zombies = max (nzombies, max_zombies);
5260 ++ngcs;
5261 }
5262 #endif
5263
5264 if (!NILP (Vpost_gc_hook))
5265 {
5266 int count = inhibit_garbage_collection ();
5267 safe_run_hooks (Qpost_gc_hook);
5268 unbind_to (count, Qnil);
5269 }
5270
5271 /* Accumulate statistics. */
5272 EMACS_GET_TIME (t2);
5273 EMACS_SUB_TIME (t3, t2, t1);
5274 if (FLOATP (Vgc_elapsed))
5275 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5276 EMACS_SECS (t3) +
5277 EMACS_USECS (t3) * 1.0e-6);
5278 gcs_done++;
5279
5280 return Flist (sizeof total / sizeof *total, total);
5281 }
5282
5283
5284 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5285 only interesting objects referenced from glyphs are strings. */
5286
5287 static void
5288 mark_glyph_matrix (matrix)
5289 struct glyph_matrix *matrix;
5290 {
5291 struct glyph_row *row = matrix->rows;
5292 struct glyph_row *end = row + matrix->nrows;
5293
5294 for (; row < end; ++row)
5295 if (row->enabled_p)
5296 {
5297 int area;
5298 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5299 {
5300 struct glyph *glyph = row->glyphs[area];
5301 struct glyph *end_glyph = glyph + row->used[area];
5302
5303 for (; glyph < end_glyph; ++glyph)
5304 if (STRINGP (glyph->object)
5305 && !STRING_MARKED_P (XSTRING (glyph->object)))
5306 mark_object (glyph->object);
5307 }
5308 }
5309 }
5310
5311
5312 /* Mark Lisp faces in the face cache C. */
5313
5314 static void
5315 mark_face_cache (c)
5316 struct face_cache *c;
5317 {
5318 if (c)
5319 {
5320 int i, j;
5321 for (i = 0; i < c->used; ++i)
5322 {
5323 struct face *face = FACE_FROM_ID (c->f, i);
5324
5325 if (face)
5326 {
5327 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5328 mark_object (face->lface[j]);
5329 }
5330 }
5331 }
5332 }
5333
5334
5335 \f
5336 /* Mark reference to a Lisp_Object.
5337 If the object referred to has not been seen yet, recursively mark
5338 all the references contained in it. */
5339
5340 #define LAST_MARKED_SIZE 500
5341 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5342 int last_marked_index;
5343
5344 /* For debugging--call abort when we cdr down this many
5345 links of a list, in mark_object. In debugging,
5346 the call to abort will hit a breakpoint.
5347 Normally this is zero and the check never goes off. */
5348 static int mark_object_loop_halt;
5349
5350 /* Return non-zero if the object was not yet marked. */
5351 static int
5352 mark_vectorlike (ptr)
5353 struct Lisp_Vector *ptr;
5354 {
5355 register EMACS_INT size = ptr->size;
5356 register int i;
5357
5358 if (VECTOR_MARKED_P (ptr))
5359 return 0; /* Already marked */
5360 VECTOR_MARK (ptr); /* Else mark it */
5361 if (size & PSEUDOVECTOR_FLAG)
5362 size &= PSEUDOVECTOR_SIZE_MASK;
5363
5364 /* Note that this size is not the memory-footprint size, but only
5365 the number of Lisp_Object fields that we should trace.
5366 The distinction is used e.g. by Lisp_Process which places extra
5367 non-Lisp_Object fields at the end of the structure. */
5368 for (i = 0; i < size; i++) /* and then mark its elements */
5369 mark_object (ptr->contents[i]);
5370 return 1;
5371 }
5372
5373 void
5374 mark_object (arg)
5375 Lisp_Object arg;
5376 {
5377 register Lisp_Object obj = arg;
5378 #ifdef GC_CHECK_MARKED_OBJECTS
5379 void *po;
5380 struct mem_node *m;
5381 #endif
5382 int cdr_count = 0;
5383
5384 loop:
5385
5386 if (PURE_POINTER_P (XPNTR (obj)))
5387 return;
5388
5389 last_marked[last_marked_index++] = obj;
5390 if (last_marked_index == LAST_MARKED_SIZE)
5391 last_marked_index = 0;
5392
5393 /* Perform some sanity checks on the objects marked here. Abort if
5394 we encounter an object we know is bogus. This increases GC time
5395 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5396 #ifdef GC_CHECK_MARKED_OBJECTS
5397
5398 po = (void *) XPNTR (obj);
5399
5400 /* Check that the object pointed to by PO is known to be a Lisp
5401 structure allocated from the heap. */
5402 #define CHECK_ALLOCATED() \
5403 do { \
5404 m = mem_find (po); \
5405 if (m == MEM_NIL) \
5406 abort (); \
5407 } while (0)
5408
5409 /* Check that the object pointed to by PO is live, using predicate
5410 function LIVEP. */
5411 #define CHECK_LIVE(LIVEP) \
5412 do { \
5413 if (!LIVEP (m, po)) \
5414 abort (); \
5415 } while (0)
5416
5417 /* Check both of the above conditions. */
5418 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5419 do { \
5420 CHECK_ALLOCATED (); \
5421 CHECK_LIVE (LIVEP); \
5422 } while (0) \
5423
5424 #else /* not GC_CHECK_MARKED_OBJECTS */
5425
5426 #define CHECK_ALLOCATED() (void) 0
5427 #define CHECK_LIVE(LIVEP) (void) 0
5428 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5429
5430 #endif /* not GC_CHECK_MARKED_OBJECTS */
5431
5432 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5433 {
5434 case Lisp_String:
5435 {
5436 register struct Lisp_String *ptr = XSTRING (obj);
5437 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5438 MARK_INTERVAL_TREE (ptr->intervals);
5439 MARK_STRING (ptr);
5440 #ifdef GC_CHECK_STRING_BYTES
5441 /* Check that the string size recorded in the string is the
5442 same as the one recorded in the sdata structure. */
5443 CHECK_STRING_BYTES (ptr);
5444 #endif /* GC_CHECK_STRING_BYTES */
5445 }
5446 break;
5447
5448 case Lisp_Vectorlike:
5449 #ifdef GC_CHECK_MARKED_OBJECTS
5450 m = mem_find (po);
5451 if (m == MEM_NIL && !SUBRP (obj)
5452 && po != &buffer_defaults
5453 && po != &buffer_local_symbols)
5454 abort ();
5455 #endif /* GC_CHECK_MARKED_OBJECTS */
5456
5457 if (BUFFERP (obj))
5458 {
5459 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5460 {
5461 #ifdef GC_CHECK_MARKED_OBJECTS
5462 if (po != &buffer_defaults && po != &buffer_local_symbols)
5463 {
5464 struct buffer *b;
5465 for (b = all_buffers; b && b != po; b = b->next)
5466 ;
5467 if (b == NULL)
5468 abort ();
5469 }
5470 #endif /* GC_CHECK_MARKED_OBJECTS */
5471 mark_buffer (obj);
5472 }
5473 }
5474 else if (SUBRP (obj))
5475 break;
5476 else if (COMPILEDP (obj))
5477 /* We could treat this just like a vector, but it is better to
5478 save the COMPILED_CONSTANTS element for last and avoid
5479 recursion there. */
5480 {
5481 register struct Lisp_Vector *ptr = XVECTOR (obj);
5482 register EMACS_INT size = ptr->size;
5483 register int i;
5484
5485 if (VECTOR_MARKED_P (ptr))
5486 break; /* Already marked */
5487
5488 CHECK_LIVE (live_vector_p);
5489 VECTOR_MARK (ptr); /* Else mark it */
5490 size &= PSEUDOVECTOR_SIZE_MASK;
5491 for (i = 0; i < size; i++) /* and then mark its elements */
5492 {
5493 if (i != COMPILED_CONSTANTS)
5494 mark_object (ptr->contents[i]);
5495 }
5496 obj = ptr->contents[COMPILED_CONSTANTS];
5497 goto loop;
5498 }
5499 else if (FRAMEP (obj))
5500 {
5501 register struct frame *ptr = XFRAME (obj);
5502 if (mark_vectorlike (XVECTOR (obj)))
5503 mark_face_cache (ptr->face_cache);
5504 }
5505 else if (WINDOWP (obj))
5506 {
5507 register struct Lisp_Vector *ptr = XVECTOR (obj);
5508 struct window *w = XWINDOW (obj);
5509 if (mark_vectorlike (ptr))
5510 {
5511 /* Mark glyphs for leaf windows. Marking window matrices is
5512 sufficient because frame matrices use the same glyph
5513 memory. */
5514 if (NILP (w->hchild)
5515 && NILP (w->vchild)
5516 && w->current_matrix)
5517 {
5518 mark_glyph_matrix (w->current_matrix);
5519 mark_glyph_matrix (w->desired_matrix);
5520 }
5521 }
5522 }
5523 else if (HASH_TABLE_P (obj))
5524 {
5525 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5526 if (mark_vectorlike ((struct Lisp_Vector *)h))
5527 { /* If hash table is not weak, mark all keys and values.
5528 For weak tables, mark only the vector. */
5529 if (NILP (h->weak))
5530 mark_object (h->key_and_value);
5531 else
5532 VECTOR_MARK (XVECTOR (h->key_and_value));
5533 }
5534 }
5535 else
5536 mark_vectorlike (XVECTOR (obj));
5537 break;
5538
5539 case Lisp_Symbol:
5540 {
5541 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5542 struct Lisp_Symbol *ptrx;
5543
5544 if (ptr->gcmarkbit) break;
5545 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5546 ptr->gcmarkbit = 1;
5547 mark_object (ptr->value);
5548 mark_object (ptr->function);
5549 mark_object (ptr->plist);
5550
5551 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5552 MARK_STRING (XSTRING (ptr->xname));
5553 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5554
5555 /* Note that we do not mark the obarray of the symbol.
5556 It is safe not to do so because nothing accesses that
5557 slot except to check whether it is nil. */
5558 ptr = ptr->next;
5559 if (ptr)
5560 {
5561 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5562 XSETSYMBOL (obj, ptrx);
5563 goto loop;
5564 }
5565 }
5566 break;
5567
5568 case Lisp_Misc:
5569 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5570 if (XMISCANY (obj)->gcmarkbit)
5571 break;
5572 XMISCANY (obj)->gcmarkbit = 1;
5573
5574 switch (XMISCTYPE (obj))
5575 {
5576 case Lisp_Misc_Buffer_Local_Value:
5577 {
5578 register struct Lisp_Buffer_Local_Value *ptr
5579 = XBUFFER_LOCAL_VALUE (obj);
5580 /* If the cdr is nil, avoid recursion for the car. */
5581 if (EQ (ptr->cdr, Qnil))
5582 {
5583 obj = ptr->realvalue;
5584 goto loop;
5585 }
5586 mark_object (ptr->realvalue);
5587 mark_object (ptr->buffer);
5588 mark_object (ptr->frame);
5589 obj = ptr->cdr;
5590 goto loop;
5591 }
5592
5593 case Lisp_Misc_Marker:
5594 /* DO NOT mark thru the marker's chain.
5595 The buffer's markers chain does not preserve markers from gc;
5596 instead, markers are removed from the chain when freed by gc. */
5597 break;
5598
5599 case Lisp_Misc_Intfwd:
5600 case Lisp_Misc_Boolfwd:
5601 case Lisp_Misc_Objfwd:
5602 case Lisp_Misc_Buffer_Objfwd:
5603 case Lisp_Misc_Kboard_Objfwd:
5604 /* Don't bother with Lisp_Buffer_Objfwd,
5605 since all markable slots in current buffer marked anyway. */
5606 /* Don't need to do Lisp_Objfwd, since the places they point
5607 are protected with staticpro. */
5608 break;
5609
5610 case Lisp_Misc_Save_Value:
5611 #if GC_MARK_STACK
5612 {
5613 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5614 /* If DOGC is set, POINTER is the address of a memory
5615 area containing INTEGER potential Lisp_Objects. */
5616 if (ptr->dogc)
5617 {
5618 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5619 int nelt;
5620 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5621 mark_maybe_object (*p);
5622 }
5623 }
5624 #endif
5625 break;
5626
5627 case Lisp_Misc_Overlay:
5628 {
5629 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5630 mark_object (ptr->start);
5631 mark_object (ptr->end);
5632 mark_object (ptr->plist);
5633 if (ptr->next)
5634 {
5635 XSETMISC (obj, ptr->next);
5636 goto loop;
5637 }
5638 }
5639 break;
5640
5641 default:
5642 abort ();
5643 }
5644 break;
5645
5646 case Lisp_Cons:
5647 {
5648 register struct Lisp_Cons *ptr = XCONS (obj);
5649 if (CONS_MARKED_P (ptr)) break;
5650 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5651 CONS_MARK (ptr);
5652 /* If the cdr is nil, avoid recursion for the car. */
5653 if (EQ (ptr->u.cdr, Qnil))
5654 {
5655 obj = ptr->car;
5656 cdr_count = 0;
5657 goto loop;
5658 }
5659 mark_object (ptr->car);
5660 obj = ptr->u.cdr;
5661 cdr_count++;
5662 if (cdr_count == mark_object_loop_halt)
5663 abort ();
5664 goto loop;
5665 }
5666
5667 case Lisp_Float:
5668 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5669 FLOAT_MARK (XFLOAT (obj));
5670 break;
5671
5672 case Lisp_Int:
5673 break;
5674
5675 default:
5676 abort ();
5677 }
5678
5679 #undef CHECK_LIVE
5680 #undef CHECK_ALLOCATED
5681 #undef CHECK_ALLOCATED_AND_LIVE
5682 }
5683
5684 /* Mark the pointers in a buffer structure. */
5685
5686 static void
5687 mark_buffer (buf)
5688 Lisp_Object buf;
5689 {
5690 register struct buffer *buffer = XBUFFER (buf);
5691 register Lisp_Object *ptr, tmp;
5692 Lisp_Object base_buffer;
5693
5694 VECTOR_MARK (buffer);
5695
5696 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5697
5698 /* For now, we just don't mark the undo_list. It's done later in
5699 a special way just before the sweep phase, and after stripping
5700 some of its elements that are not needed any more. */
5701
5702 if (buffer->overlays_before)
5703 {
5704 XSETMISC (tmp, buffer->overlays_before);
5705 mark_object (tmp);
5706 }
5707 if (buffer->overlays_after)
5708 {
5709 XSETMISC (tmp, buffer->overlays_after);
5710 mark_object (tmp);
5711 }
5712
5713 /* buffer-local Lisp variables start at `undo_list',
5714 tho only the ones from `name' on are GC'd normally. */
5715 for (ptr = &buffer->name;
5716 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5717 ptr++)
5718 mark_object (*ptr);
5719
5720 /* If this is an indirect buffer, mark its base buffer. */
5721 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5722 {
5723 XSETBUFFER (base_buffer, buffer->base_buffer);
5724 mark_buffer (base_buffer);
5725 }
5726 }
5727
5728 /* Mark the Lisp pointers in the terminal objects.
5729 Called by the Fgarbage_collector. */
5730
5731 static void
5732 mark_terminals (void)
5733 {
5734 struct terminal *t;
5735 for (t = terminal_list; t; t = t->next_terminal)
5736 {
5737 eassert (t->name != NULL);
5738 #ifdef HAVE_WINDOW_SYSTEM
5739 mark_image_cache (t->image_cache);
5740 #endif /* HAVE_WINDOW_SYSTEM */
5741 mark_vectorlike ((struct Lisp_Vector *)t);
5742 }
5743 }
5744
5745
5746
5747 /* Value is non-zero if OBJ will survive the current GC because it's
5748 either marked or does not need to be marked to survive. */
5749
5750 int
5751 survives_gc_p (obj)
5752 Lisp_Object obj;
5753 {
5754 int survives_p;
5755
5756 switch (XTYPE (obj))
5757 {
5758 case Lisp_Int:
5759 survives_p = 1;
5760 break;
5761
5762 case Lisp_Symbol:
5763 survives_p = XSYMBOL (obj)->gcmarkbit;
5764 break;
5765
5766 case Lisp_Misc:
5767 survives_p = XMISCANY (obj)->gcmarkbit;
5768 break;
5769
5770 case Lisp_String:
5771 survives_p = STRING_MARKED_P (XSTRING (obj));
5772 break;
5773
5774 case Lisp_Vectorlike:
5775 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5776 break;
5777
5778 case Lisp_Cons:
5779 survives_p = CONS_MARKED_P (XCONS (obj));
5780 break;
5781
5782 case Lisp_Float:
5783 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5784 break;
5785
5786 default:
5787 abort ();
5788 }
5789
5790 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5791 }
5792
5793
5794 \f
5795 /* Sweep: find all structures not marked, and free them. */
5796
5797 static void
5798 gc_sweep ()
5799 {
5800 /* Remove or mark entries in weak hash tables.
5801 This must be done before any object is unmarked. */
5802 sweep_weak_hash_tables ();
5803
5804 sweep_strings ();
5805 #ifdef GC_CHECK_STRING_BYTES
5806 if (!noninteractive)
5807 check_string_bytes (1);
5808 #endif
5809
5810 /* Put all unmarked conses on free list */
5811 {
5812 register struct cons_block *cblk;
5813 struct cons_block **cprev = &cons_block;
5814 register int lim = cons_block_index;
5815 register int num_free = 0, num_used = 0;
5816
5817 cons_free_list = 0;
5818
5819 for (cblk = cons_block; cblk; cblk = *cprev)
5820 {
5821 register int i = 0;
5822 int this_free = 0;
5823 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5824
5825 /* Scan the mark bits an int at a time. */
5826 for (i = 0; i <= ilim; i++)
5827 {
5828 if (cblk->gcmarkbits[i] == -1)
5829 {
5830 /* Fast path - all cons cells for this int are marked. */
5831 cblk->gcmarkbits[i] = 0;
5832 num_used += BITS_PER_INT;
5833 }
5834 else
5835 {
5836 /* Some cons cells for this int are not marked.
5837 Find which ones, and free them. */
5838 int start, pos, stop;
5839
5840 start = i * BITS_PER_INT;
5841 stop = lim - start;
5842 if (stop > BITS_PER_INT)
5843 stop = BITS_PER_INT;
5844 stop += start;
5845
5846 for (pos = start; pos < stop; pos++)
5847 {
5848 if (!CONS_MARKED_P (&cblk->conses[pos]))
5849 {
5850 this_free++;
5851 cblk->conses[pos].u.chain = cons_free_list;
5852 cons_free_list = &cblk->conses[pos];
5853 #if GC_MARK_STACK
5854 cons_free_list->car = Vdead;
5855 #endif
5856 }
5857 else
5858 {
5859 num_used++;
5860 CONS_UNMARK (&cblk->conses[pos]);
5861 }
5862 }
5863 }
5864 }
5865
5866 lim = CONS_BLOCK_SIZE;
5867 /* If this block contains only free conses and we have already
5868 seen more than two blocks worth of free conses then deallocate
5869 this block. */
5870 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5871 {
5872 *cprev = cblk->next;
5873 /* Unhook from the free list. */
5874 cons_free_list = cblk->conses[0].u.chain;
5875 lisp_align_free (cblk);
5876 n_cons_blocks--;
5877 }
5878 else
5879 {
5880 num_free += this_free;
5881 cprev = &cblk->next;
5882 }
5883 }
5884 total_conses = num_used;
5885 total_free_conses = num_free;
5886 }
5887
5888 /* Put all unmarked floats on free list */
5889 {
5890 register struct float_block *fblk;
5891 struct float_block **fprev = &float_block;
5892 register int lim = float_block_index;
5893 register int num_free = 0, num_used = 0;
5894
5895 float_free_list = 0;
5896
5897 for (fblk = float_block; fblk; fblk = *fprev)
5898 {
5899 register int i;
5900 int this_free = 0;
5901 for (i = 0; i < lim; i++)
5902 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5903 {
5904 this_free++;
5905 fblk->floats[i].u.chain = float_free_list;
5906 float_free_list = &fblk->floats[i];
5907 }
5908 else
5909 {
5910 num_used++;
5911 FLOAT_UNMARK (&fblk->floats[i]);
5912 }
5913 lim = FLOAT_BLOCK_SIZE;
5914 /* If this block contains only free floats and we have already
5915 seen more than two blocks worth of free floats then deallocate
5916 this block. */
5917 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5918 {
5919 *fprev = fblk->next;
5920 /* Unhook from the free list. */
5921 float_free_list = fblk->floats[0].u.chain;
5922 lisp_align_free (fblk);
5923 n_float_blocks--;
5924 }
5925 else
5926 {
5927 num_free += this_free;
5928 fprev = &fblk->next;
5929 }
5930 }
5931 total_floats = num_used;
5932 total_free_floats = num_free;
5933 }
5934
5935 /* Put all unmarked intervals on free list */
5936 {
5937 register struct interval_block *iblk;
5938 struct interval_block **iprev = &interval_block;
5939 register int lim = interval_block_index;
5940 register int num_free = 0, num_used = 0;
5941
5942 interval_free_list = 0;
5943
5944 for (iblk = interval_block; iblk; iblk = *iprev)
5945 {
5946 register int i;
5947 int this_free = 0;
5948
5949 for (i = 0; i < lim; i++)
5950 {
5951 if (!iblk->intervals[i].gcmarkbit)
5952 {
5953 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5954 interval_free_list = &iblk->intervals[i];
5955 this_free++;
5956 }
5957 else
5958 {
5959 num_used++;
5960 iblk->intervals[i].gcmarkbit = 0;
5961 }
5962 }
5963 lim = INTERVAL_BLOCK_SIZE;
5964 /* If this block contains only free intervals and we have already
5965 seen more than two blocks worth of free intervals then
5966 deallocate this block. */
5967 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5968 {
5969 *iprev = iblk->next;
5970 /* Unhook from the free list. */
5971 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5972 lisp_free (iblk);
5973 n_interval_blocks--;
5974 }
5975 else
5976 {
5977 num_free += this_free;
5978 iprev = &iblk->next;
5979 }
5980 }
5981 total_intervals = num_used;
5982 total_free_intervals = num_free;
5983 }
5984
5985 /* Put all unmarked symbols on free list */
5986 {
5987 register struct symbol_block *sblk;
5988 struct symbol_block **sprev = &symbol_block;
5989 register int lim = symbol_block_index;
5990 register int num_free = 0, num_used = 0;
5991
5992 symbol_free_list = NULL;
5993
5994 for (sblk = symbol_block; sblk; sblk = *sprev)
5995 {
5996 int this_free = 0;
5997 struct Lisp_Symbol *sym = sblk->symbols;
5998 struct Lisp_Symbol *end = sym + lim;
5999
6000 for (; sym < end; ++sym)
6001 {
6002 /* Check if the symbol was created during loadup. In such a case
6003 it might be pointed to by pure bytecode which we don't trace,
6004 so we conservatively assume that it is live. */
6005 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6006
6007 if (!sym->gcmarkbit && !pure_p)
6008 {
6009 sym->next = symbol_free_list;
6010 symbol_free_list = sym;
6011 #if GC_MARK_STACK
6012 symbol_free_list->function = Vdead;
6013 #endif
6014 ++this_free;
6015 }
6016 else
6017 {
6018 ++num_used;
6019 if (!pure_p)
6020 UNMARK_STRING (XSTRING (sym->xname));
6021 sym->gcmarkbit = 0;
6022 }
6023 }
6024
6025 lim = SYMBOL_BLOCK_SIZE;
6026 /* If this block contains only free symbols and we have already
6027 seen more than two blocks worth of free symbols then deallocate
6028 this block. */
6029 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6030 {
6031 *sprev = sblk->next;
6032 /* Unhook from the free list. */
6033 symbol_free_list = sblk->symbols[0].next;
6034 lisp_free (sblk);
6035 n_symbol_blocks--;
6036 }
6037 else
6038 {
6039 num_free += this_free;
6040 sprev = &sblk->next;
6041 }
6042 }
6043 total_symbols = num_used;
6044 total_free_symbols = num_free;
6045 }
6046
6047 /* Put all unmarked misc's on free list.
6048 For a marker, first unchain it from the buffer it points into. */
6049 {
6050 register struct marker_block *mblk;
6051 struct marker_block **mprev = &marker_block;
6052 register int lim = marker_block_index;
6053 register int num_free = 0, num_used = 0;
6054
6055 marker_free_list = 0;
6056
6057 for (mblk = marker_block; mblk; mblk = *mprev)
6058 {
6059 register int i;
6060 int this_free = 0;
6061
6062 for (i = 0; i < lim; i++)
6063 {
6064 if (!mblk->markers[i].u_any.gcmarkbit)
6065 {
6066 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6067 unchain_marker (&mblk->markers[i].u_marker);
6068 /* Set the type of the freed object to Lisp_Misc_Free.
6069 We could leave the type alone, since nobody checks it,
6070 but this might catch bugs faster. */
6071 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6072 mblk->markers[i].u_free.chain = marker_free_list;
6073 marker_free_list = &mblk->markers[i];
6074 this_free++;
6075 }
6076 else
6077 {
6078 num_used++;
6079 mblk->markers[i].u_any.gcmarkbit = 0;
6080 }
6081 }
6082 lim = MARKER_BLOCK_SIZE;
6083 /* If this block contains only free markers and we have already
6084 seen more than two blocks worth of free markers then deallocate
6085 this block. */
6086 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6087 {
6088 *mprev = mblk->next;
6089 /* Unhook from the free list. */
6090 marker_free_list = mblk->markers[0].u_free.chain;
6091 lisp_free (mblk);
6092 n_marker_blocks--;
6093 }
6094 else
6095 {
6096 num_free += this_free;
6097 mprev = &mblk->next;
6098 }
6099 }
6100
6101 total_markers = num_used;
6102 total_free_markers = num_free;
6103 }
6104
6105 /* Free all unmarked buffers */
6106 {
6107 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6108
6109 while (buffer)
6110 if (!VECTOR_MARKED_P (buffer))
6111 {
6112 if (prev)
6113 prev->next = buffer->next;
6114 else
6115 all_buffers = buffer->next;
6116 next = buffer->next;
6117 lisp_free (buffer);
6118 buffer = next;
6119 }
6120 else
6121 {
6122 VECTOR_UNMARK (buffer);
6123 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6124 prev = buffer, buffer = buffer->next;
6125 }
6126 }
6127
6128 /* Free all unmarked vectors */
6129 {
6130 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6131 total_vector_size = 0;
6132
6133 while (vector)
6134 if (!VECTOR_MARKED_P (vector))
6135 {
6136 if (prev)
6137 prev->next = vector->next;
6138 else
6139 all_vectors = vector->next;
6140 next = vector->next;
6141 lisp_free (vector);
6142 n_vectors--;
6143 vector = next;
6144
6145 }
6146 else
6147 {
6148 VECTOR_UNMARK (vector);
6149 if (vector->size & PSEUDOVECTOR_FLAG)
6150 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6151 else
6152 total_vector_size += vector->size;
6153 prev = vector, vector = vector->next;
6154 }
6155 }
6156
6157 #ifdef GC_CHECK_STRING_BYTES
6158 if (!noninteractive)
6159 check_string_bytes (1);
6160 #endif
6161 }
6162
6163
6164
6165 \f
6166 /* Debugging aids. */
6167
6168 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6169 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6170 This may be helpful in debugging Emacs's memory usage.
6171 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6172 ()
6173 {
6174 Lisp_Object end;
6175
6176 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6177
6178 return end;
6179 }
6180
6181 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6182 doc: /* Return a list of counters that measure how much consing there has been.
6183 Each of these counters increments for a certain kind of object.
6184 The counters wrap around from the largest positive integer to zero.
6185 Garbage collection does not decrease them.
6186 The elements of the value are as follows:
6187 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6188 All are in units of 1 = one object consed
6189 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6190 objects consed.
6191 MISCS include overlays, markers, and some internal types.
6192 Frames, windows, buffers, and subprocesses count as vectors
6193 (but the contents of a buffer's text do not count here). */)
6194 ()
6195 {
6196 Lisp_Object consed[8];
6197
6198 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6199 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6200 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6201 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6202 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6203 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6204 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6205 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6206
6207 return Flist (8, consed);
6208 }
6209
6210 int suppress_checking;
6211
6212 void
6213 die (msg, file, line)
6214 const char *msg;
6215 const char *file;
6216 int line;
6217 {
6218 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6219 file, line, msg);
6220 abort ();
6221 }
6222 \f
6223 /* Initialization */
6224
6225 void
6226 init_alloc_once ()
6227 {
6228 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6229 purebeg = PUREBEG;
6230 pure_size = PURESIZE;
6231 pure_bytes_used = 0;
6232 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6233 pure_bytes_used_before_overflow = 0;
6234
6235 /* Initialize the list of free aligned blocks. */
6236 free_ablock = NULL;
6237
6238 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6239 mem_init ();
6240 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6241 #endif
6242
6243 all_vectors = 0;
6244 ignore_warnings = 1;
6245 #ifdef DOUG_LEA_MALLOC
6246 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6247 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6248 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6249 #endif
6250 init_strings ();
6251 init_cons ();
6252 init_symbol ();
6253 init_marker ();
6254 init_float ();
6255 init_intervals ();
6256 init_weak_hash_tables ();
6257
6258 #ifdef REL_ALLOC
6259 malloc_hysteresis = 32;
6260 #else
6261 malloc_hysteresis = 0;
6262 #endif
6263
6264 refill_memory_reserve ();
6265
6266 ignore_warnings = 0;
6267 gcprolist = 0;
6268 byte_stack_list = 0;
6269 staticidx = 0;
6270 consing_since_gc = 0;
6271 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6272 gc_relative_threshold = 0;
6273
6274 #ifdef VIRT_ADDR_VARIES
6275 malloc_sbrk_unused = 1<<22; /* A large number */
6276 malloc_sbrk_used = 100000; /* as reasonable as any number */
6277 #endif /* VIRT_ADDR_VARIES */
6278 }
6279
6280 void
6281 init_alloc ()
6282 {
6283 gcprolist = 0;
6284 byte_stack_list = 0;
6285 #if GC_MARK_STACK
6286 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6287 setjmp_tested_p = longjmps_done = 0;
6288 #endif
6289 #endif
6290 Vgc_elapsed = make_float (0.0);
6291 gcs_done = 0;
6292 }
6293
6294 void
6295 syms_of_alloc ()
6296 {
6297 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6298 doc: /* *Number of bytes of consing between garbage collections.
6299 Garbage collection can happen automatically once this many bytes have been
6300 allocated since the last garbage collection. All data types count.
6301
6302 Garbage collection happens automatically only when `eval' is called.
6303
6304 By binding this temporarily to a large number, you can effectively
6305 prevent garbage collection during a part of the program.
6306 See also `gc-cons-percentage'. */);
6307
6308 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6309 doc: /* *Portion of the heap used for allocation.
6310 Garbage collection can happen automatically once this portion of the heap
6311 has been allocated since the last garbage collection.
6312 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6313 Vgc_cons_percentage = make_float (0.1);
6314
6315 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6316 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6317
6318 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6319 doc: /* Number of cons cells that have been consed so far. */);
6320
6321 DEFVAR_INT ("floats-consed", &floats_consed,
6322 doc: /* Number of floats that have been consed so far. */);
6323
6324 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6325 doc: /* Number of vector cells that have been consed so far. */);
6326
6327 DEFVAR_INT ("symbols-consed", &symbols_consed,
6328 doc: /* Number of symbols that have been consed so far. */);
6329
6330 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6331 doc: /* Number of string characters that have been consed so far. */);
6332
6333 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6334 doc: /* Number of miscellaneous objects that have been consed so far. */);
6335
6336 DEFVAR_INT ("intervals-consed", &intervals_consed,
6337 doc: /* Number of intervals that have been consed so far. */);
6338
6339 DEFVAR_INT ("strings-consed", &strings_consed,
6340 doc: /* Number of strings that have been consed so far. */);
6341
6342 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6343 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6344 This means that certain objects should be allocated in shared (pure) space. */);
6345
6346 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6347 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6348 garbage_collection_messages = 0;
6349
6350 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6351 doc: /* Hook run after garbage collection has finished. */);
6352 Vpost_gc_hook = Qnil;
6353 Qpost_gc_hook = intern ("post-gc-hook");
6354 staticpro (&Qpost_gc_hook);
6355
6356 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6357 doc: /* Precomputed `signal' argument for memory-full error. */);
6358 /* We build this in advance because if we wait until we need it, we might
6359 not be able to allocate the memory to hold it. */
6360 Vmemory_signal_data
6361 = list2 (Qerror,
6362 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6363
6364 DEFVAR_LISP ("memory-full", &Vmemory_full,
6365 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6366 Vmemory_full = Qnil;
6367
6368 staticpro (&Qgc_cons_threshold);
6369 Qgc_cons_threshold = intern ("gc-cons-threshold");
6370
6371 staticpro (&Qchar_table_extra_slots);
6372 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6373
6374 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6375 doc: /* Accumulated time elapsed in garbage collections.
6376 The time is in seconds as a floating point value. */);
6377 DEFVAR_INT ("gcs-done", &gcs_done,
6378 doc: /* Accumulated number of garbage collections done. */);
6379
6380 defsubr (&Scons);
6381 defsubr (&Slist);
6382 defsubr (&Svector);
6383 defsubr (&Smake_byte_code);
6384 defsubr (&Smake_list);
6385 defsubr (&Smake_vector);
6386 defsubr (&Smake_string);
6387 defsubr (&Smake_bool_vector);
6388 defsubr (&Smake_symbol);
6389 defsubr (&Smake_marker);
6390 defsubr (&Spurecopy);
6391 defsubr (&Sgarbage_collect);
6392 defsubr (&Smemory_limit);
6393 defsubr (&Smemory_use_counts);
6394
6395 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6396 defsubr (&Sgc_status);
6397 #endif
6398 }
6399
6400 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6401 (do not change this comment) */