Spelling fixes.
[bpt/emacs.git] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2011 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 /* NOTES:
21
22 Have to ensure that we can't put symbol nil on a plist, or some
23 functions may work incorrectly.
24
25 An idea: Have the owner of the tree keep count of splits and/or
26 insertion lengths (in intervals), and balance after every N.
27
28 Need to call *_left_hook when buffer is killed.
29
30 Scan for zero-length, or 0-length to see notes about handling
31 zero length interval-markers.
32
33 There are comments around about freeing intervals. It might be
34 faster to explicitly free them (put them on the free list) than
35 to GC them.
36
37 */
38
39
40 #include <config.h>
41 #include <setjmp.h>
42 #include <intprops.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48 #include "keymap.h"
49
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
51 universal set. */
52
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
54
55 static Lisp_Object merge_properties_sticky (Lisp_Object, Lisp_Object);
56 static INTERVAL merge_interval_right (INTERVAL);
57 static INTERVAL reproduce_tree (INTERVAL, INTERVAL);
58 static INTERVAL reproduce_tree_obj (INTERVAL, Lisp_Object);
59 \f
60 /* Utility functions for intervals. */
61
62
63 /* Create the root interval of some object, a buffer or string. */
64
65 INTERVAL
66 create_root_interval (Lisp_Object parent)
67 {
68 INTERVAL new;
69
70 CHECK_IMPURE (parent);
71
72 new = make_interval ();
73
74 if (BUFFERP (parent))
75 {
76 new->total_length = (BUF_Z (XBUFFER (parent))
77 - BUF_BEG (XBUFFER (parent)));
78 CHECK_TOTAL_LENGTH (new);
79 BUF_INTERVALS (XBUFFER (parent)) = new;
80 new->position = BEG;
81 }
82 else if (STRINGP (parent))
83 {
84 new->total_length = SCHARS (parent);
85 CHECK_TOTAL_LENGTH (new);
86 STRING_SET_INTERVALS (parent, new);
87 new->position = 0;
88 }
89
90 SET_INTERVAL_OBJECT (new, parent);
91
92 return new;
93 }
94
95 /* Make the interval TARGET have exactly the properties of SOURCE */
96
97 void
98 copy_properties (register INTERVAL source, register INTERVAL target)
99 {
100 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
101 return;
102
103 COPY_INTERVAL_CACHE (source, target);
104 target->plist = Fcopy_sequence (source->plist);
105 }
106
107 /* Merge the properties of interval SOURCE into the properties
108 of interval TARGET. That is to say, each property in SOURCE
109 is added to TARGET if TARGET has no such property as yet. */
110
111 static void
112 merge_properties (register INTERVAL source, register INTERVAL target)
113 {
114 register Lisp_Object o, sym, val;
115
116 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
117 return;
118
119 MERGE_INTERVAL_CACHE (source, target);
120
121 o = source->plist;
122 while (CONSP (o))
123 {
124 sym = XCAR (o);
125 o = XCDR (o);
126 CHECK_CONS (o);
127
128 val = target->plist;
129 while (CONSP (val) && !EQ (XCAR (val), sym))
130 {
131 val = XCDR (val);
132 if (!CONSP (val))
133 break;
134 val = XCDR (val);
135 }
136
137 if (NILP (val))
138 {
139 val = XCAR (o);
140 target->plist = Fcons (sym, Fcons (val, target->plist));
141 }
142 o = XCDR (o);
143 }
144 }
145
146 /* Return 1 if the two intervals have the same properties,
147 0 otherwise. */
148
149 int
150 intervals_equal (INTERVAL i0, INTERVAL i1)
151 {
152 register Lisp_Object i0_cdr, i0_sym;
153 register Lisp_Object i1_cdr, i1_val;
154
155 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
156 return 1;
157
158 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
159 return 0;
160
161 i0_cdr = i0->plist;
162 i1_cdr = i1->plist;
163 while (CONSP (i0_cdr) && CONSP (i1_cdr))
164 {
165 i0_sym = XCAR (i0_cdr);
166 i0_cdr = XCDR (i0_cdr);
167 if (!CONSP (i0_cdr))
168 return 0; /* abort (); */
169 i1_val = i1->plist;
170 while (CONSP (i1_val) && !EQ (XCAR (i1_val), i0_sym))
171 {
172 i1_val = XCDR (i1_val);
173 if (!CONSP (i1_val))
174 return 0; /* abort (); */
175 i1_val = XCDR (i1_val);
176 }
177
178 /* i0 has something i1 doesn't. */
179 if (EQ (i1_val, Qnil))
180 return 0;
181
182 /* i0 and i1 both have sym, but it has different values in each. */
183 if (!CONSP (i1_val)
184 || (i1_val = XCDR (i1_val), !CONSP (i1_val))
185 || !EQ (XCAR (i1_val), XCAR (i0_cdr)))
186 return 0;
187
188 i0_cdr = XCDR (i0_cdr);
189
190 i1_cdr = XCDR (i1_cdr);
191 if (!CONSP (i1_cdr))
192 return 0; /* abort (); */
193 i1_cdr = XCDR (i1_cdr);
194 }
195
196 /* Lengths of the two plists were equal. */
197 return (NILP (i0_cdr) && NILP (i1_cdr));
198 }
199 \f
200
201 /* Traverse an interval tree TREE, performing FUNCTION on each node.
202 No guarantee is made about the order of traversal.
203 Pass FUNCTION two args: an interval, and ARG. */
204
205 void
206 traverse_intervals_noorder (INTERVAL tree, void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
207 {
208 /* Minimize stack usage. */
209 while (!NULL_INTERVAL_P (tree))
210 {
211 (*function) (tree, arg);
212 if (NULL_INTERVAL_P (tree->right))
213 tree = tree->left;
214 else
215 {
216 traverse_intervals_noorder (tree->left, function, arg);
217 tree = tree->right;
218 }
219 }
220 }
221
222 /* Traverse an interval tree TREE, performing FUNCTION on each node.
223 Pass FUNCTION two args: an interval, and ARG. */
224
225 void
226 traverse_intervals (INTERVAL tree, EMACS_INT position,
227 void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
228 {
229 while (!NULL_INTERVAL_P (tree))
230 {
231 traverse_intervals (tree->left, position, function, arg);
232 position += LEFT_TOTAL_LENGTH (tree);
233 tree->position = position;
234 (*function) (tree, arg);
235 position += LENGTH (tree); tree = tree->right;
236 }
237 }
238 \f
239 #if 0
240
241 static int icount;
242 static int idepth;
243 static int zero_length;
244
245 /* These functions are temporary, for debugging purposes only. */
246
247 INTERVAL search_interval, found_interval;
248
249 void
250 check_for_interval (INTERVAL i)
251 {
252 if (i == search_interval)
253 {
254 found_interval = i;
255 icount++;
256 }
257 }
258
259 INTERVAL
260 search_for_interval (INTERVAL i, INTERVAL tree)
261 {
262 icount = 0;
263 search_interval = i;
264 found_interval = NULL_INTERVAL;
265 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
266 return found_interval;
267 }
268
269 static void
270 inc_interval_count (INTERVAL i)
271 {
272 icount++;
273 if (LENGTH (i) == 0)
274 zero_length++;
275 if (depth > idepth)
276 idepth = depth;
277 }
278
279 int
280 count_intervals (INTERVAL i)
281 {
282 icount = 0;
283 idepth = 0;
284 zero_length = 0;
285 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
286
287 return icount;
288 }
289
290 static INTERVAL
291 root_interval (INTERVAL interval)
292 {
293 register INTERVAL i = interval;
294
295 while (! ROOT_INTERVAL_P (i))
296 i = INTERVAL_PARENT (i);
297
298 return i;
299 }
300 #endif
301 \f
302 /* Assuming that a left child exists, perform the following operation:
303
304 A B
305 / \ / \
306 B => A
307 / \ / \
308 c c
309 */
310
311 static inline INTERVAL
312 rotate_right (INTERVAL interval)
313 {
314 INTERVAL i;
315 INTERVAL B = interval->left;
316 EMACS_INT old_total = interval->total_length;
317
318 /* Deal with any Parent of A; make it point to B. */
319 if (! ROOT_INTERVAL_P (interval))
320 {
321 if (AM_LEFT_CHILD (interval))
322 INTERVAL_PARENT (interval)->left = B;
323 else
324 INTERVAL_PARENT (interval)->right = B;
325 }
326 COPY_INTERVAL_PARENT (B, interval);
327
328 /* Make B the parent of A */
329 i = B->right;
330 B->right = interval;
331 SET_INTERVAL_PARENT (interval, B);
332
333 /* Make A point to c */
334 interval->left = i;
335 if (! NULL_INTERVAL_P (i))
336 SET_INTERVAL_PARENT (i, interval);
337
338 /* A's total length is decreased by the length of B and its left child. */
339 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
340 CHECK_TOTAL_LENGTH (interval);
341
342 /* B must have the same total length of A. */
343 B->total_length = old_total;
344 CHECK_TOTAL_LENGTH (B);
345
346 return B;
347 }
348
349 /* Assuming that a right child exists, perform the following operation:
350
351 A B
352 / \ / \
353 B => A
354 / \ / \
355 c c
356 */
357
358 static inline INTERVAL
359 rotate_left (INTERVAL interval)
360 {
361 INTERVAL i;
362 INTERVAL B = interval->right;
363 EMACS_INT old_total = interval->total_length;
364
365 /* Deal with any parent of A; make it point to B. */
366 if (! ROOT_INTERVAL_P (interval))
367 {
368 if (AM_LEFT_CHILD (interval))
369 INTERVAL_PARENT (interval)->left = B;
370 else
371 INTERVAL_PARENT (interval)->right = B;
372 }
373 COPY_INTERVAL_PARENT (B, interval);
374
375 /* Make B the parent of A */
376 i = B->left;
377 B->left = interval;
378 SET_INTERVAL_PARENT (interval, B);
379
380 /* Make A point to c */
381 interval->right = i;
382 if (! NULL_INTERVAL_P (i))
383 SET_INTERVAL_PARENT (i, interval);
384
385 /* A's total length is decreased by the length of B and its right child. */
386 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
387 CHECK_TOTAL_LENGTH (interval);
388
389 /* B must have the same total length of A. */
390 B->total_length = old_total;
391 CHECK_TOTAL_LENGTH (B);
392
393 return B;
394 }
395 \f
396 /* Balance an interval tree with the assumption that the subtrees
397 themselves are already balanced. */
398
399 static INTERVAL
400 balance_an_interval (INTERVAL i)
401 {
402 register EMACS_INT old_diff, new_diff;
403
404 while (1)
405 {
406 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
407 if (old_diff > 0)
408 {
409 /* Since the left child is longer, there must be one. */
410 new_diff = i->total_length - i->left->total_length
411 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
412 if (eabs (new_diff) >= old_diff)
413 break;
414 i = rotate_right (i);
415 balance_an_interval (i->right);
416 }
417 else if (old_diff < 0)
418 {
419 /* Since the right child is longer, there must be one. */
420 new_diff = i->total_length - i->right->total_length
421 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
422 if (eabs (new_diff) >= -old_diff)
423 break;
424 i = rotate_left (i);
425 balance_an_interval (i->left);
426 }
427 else
428 break;
429 }
430 return i;
431 }
432
433 /* Balance INTERVAL, potentially stuffing it back into its parent
434 Lisp Object. */
435
436 static inline INTERVAL
437 balance_possible_root_interval (register INTERVAL interval)
438 {
439 Lisp_Object parent;
440 int have_parent = 0;
441
442 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
443 return interval;
444
445 if (INTERVAL_HAS_OBJECT (interval))
446 {
447 have_parent = 1;
448 GET_INTERVAL_OBJECT (parent, interval);
449 }
450 interval = balance_an_interval (interval);
451
452 if (have_parent)
453 {
454 if (BUFFERP (parent))
455 BUF_INTERVALS (XBUFFER (parent)) = interval;
456 else if (STRINGP (parent))
457 STRING_SET_INTERVALS (parent, interval);
458 }
459
460 return interval;
461 }
462
463 /* Balance the interval tree TREE. Balancing is by weight
464 (the amount of text). */
465
466 static INTERVAL
467 balance_intervals_internal (register INTERVAL tree)
468 {
469 /* Balance within each side. */
470 if (tree->left)
471 balance_intervals_internal (tree->left);
472 if (tree->right)
473 balance_intervals_internal (tree->right);
474 return balance_an_interval (tree);
475 }
476
477 /* Advertised interface to balance intervals. */
478
479 INTERVAL
480 balance_intervals (INTERVAL tree)
481 {
482 if (tree == NULL_INTERVAL)
483 return NULL_INTERVAL;
484
485 return balance_intervals_internal (tree);
486 }
487 \f
488 /* Split INTERVAL into two pieces, starting the second piece at
489 character position OFFSET (counting from 0), relative to INTERVAL.
490 INTERVAL becomes the left-hand piece, and the right-hand piece
491 (second, lexicographically) is returned.
492
493 The size and position fields of the two intervals are set based upon
494 those of the original interval. The property list of the new interval
495 is reset, thus it is up to the caller to do the right thing with the
496 result.
497
498 Note that this does not change the position of INTERVAL; if it is a root,
499 it is still a root after this operation. */
500
501 INTERVAL
502 split_interval_right (INTERVAL interval, EMACS_INT offset)
503 {
504 INTERVAL new = make_interval ();
505 EMACS_INT position = interval->position;
506 EMACS_INT new_length = LENGTH (interval) - offset;
507
508 new->position = position + offset;
509 SET_INTERVAL_PARENT (new, interval);
510
511 if (NULL_RIGHT_CHILD (interval))
512 {
513 interval->right = new;
514 new->total_length = new_length;
515 CHECK_TOTAL_LENGTH (new);
516 }
517 else
518 {
519 /* Insert the new node between INTERVAL and its right child. */
520 new->right = interval->right;
521 SET_INTERVAL_PARENT (interval->right, new);
522 interval->right = new;
523 new->total_length = new_length + new->right->total_length;
524 CHECK_TOTAL_LENGTH (new);
525 balance_an_interval (new);
526 }
527
528 balance_possible_root_interval (interval);
529
530 return new;
531 }
532
533 /* Split INTERVAL into two pieces, starting the second piece at
534 character position OFFSET (counting from 0), relative to INTERVAL.
535 INTERVAL becomes the right-hand piece, and the left-hand piece
536 (first, lexicographically) is returned.
537
538 The size and position fields of the two intervals are set based upon
539 those of the original interval. The property list of the new interval
540 is reset, thus it is up to the caller to do the right thing with the
541 result.
542
543 Note that this does not change the position of INTERVAL; if it is a root,
544 it is still a root after this operation. */
545
546 INTERVAL
547 split_interval_left (INTERVAL interval, EMACS_INT offset)
548 {
549 INTERVAL new = make_interval ();
550 EMACS_INT new_length = offset;
551
552 new->position = interval->position;
553 interval->position = interval->position + offset;
554 SET_INTERVAL_PARENT (new, interval);
555
556 if (NULL_LEFT_CHILD (interval))
557 {
558 interval->left = new;
559 new->total_length = new_length;
560 CHECK_TOTAL_LENGTH (new);
561 }
562 else
563 {
564 /* Insert the new node between INTERVAL and its left child. */
565 new->left = interval->left;
566 SET_INTERVAL_PARENT (new->left, new);
567 interval->left = new;
568 new->total_length = new_length + new->left->total_length;
569 CHECK_TOTAL_LENGTH (new);
570 balance_an_interval (new);
571 }
572
573 balance_possible_root_interval (interval);
574
575 return new;
576 }
577 \f
578 /* Return the proper position for the first character
579 described by the interval tree SOURCE.
580 This is 1 if the parent is a buffer,
581 0 if the parent is a string or if there is no parent.
582
583 Don't use this function on an interval which is the child
584 of another interval! */
585
586 static int
587 interval_start_pos (INTERVAL source)
588 {
589 Lisp_Object parent;
590
591 if (NULL_INTERVAL_P (source))
592 return 0;
593
594 if (! INTERVAL_HAS_OBJECT (source))
595 return 0;
596 GET_INTERVAL_OBJECT (parent, source);
597 if (BUFFERP (parent))
598 return BUF_BEG (XBUFFER (parent));
599 return 0;
600 }
601
602 /* Find the interval containing text position POSITION in the text
603 represented by the interval tree TREE. POSITION is a buffer
604 position (starting from 1) or a string index (starting from 0).
605 If POSITION is at the end of the buffer or string,
606 return the interval containing the last character.
607
608 The `position' field, which is a cache of an interval's position,
609 is updated in the interval found. Other functions (e.g., next_interval)
610 will update this cache based on the result of find_interval. */
611
612 INTERVAL
613 find_interval (register INTERVAL tree, register EMACS_INT position)
614 {
615 /* The distance from the left edge of the subtree at TREE
616 to POSITION. */
617 register EMACS_INT relative_position;
618
619 if (NULL_INTERVAL_P (tree))
620 return NULL_INTERVAL;
621
622 relative_position = position;
623 if (INTERVAL_HAS_OBJECT (tree))
624 {
625 Lisp_Object parent;
626 GET_INTERVAL_OBJECT (parent, tree);
627 if (BUFFERP (parent))
628 relative_position -= BUF_BEG (XBUFFER (parent));
629 }
630
631 if (relative_position > TOTAL_LENGTH (tree))
632 abort (); /* Paranoia */
633
634 if (!handling_signal)
635 tree = balance_possible_root_interval (tree);
636
637 while (1)
638 {
639 if (relative_position < LEFT_TOTAL_LENGTH (tree))
640 {
641 tree = tree->left;
642 }
643 else if (! NULL_RIGHT_CHILD (tree)
644 && relative_position >= (TOTAL_LENGTH (tree)
645 - RIGHT_TOTAL_LENGTH (tree)))
646 {
647 relative_position -= (TOTAL_LENGTH (tree)
648 - RIGHT_TOTAL_LENGTH (tree));
649 tree = tree->right;
650 }
651 else
652 {
653 tree->position
654 = (position - relative_position /* left edge of *tree. */
655 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
656
657 return tree;
658 }
659 }
660 }
661 \f
662 /* Find the succeeding interval (lexicographically) to INTERVAL.
663 Sets the `position' field based on that of INTERVAL (see
664 find_interval). */
665
666 INTERVAL
667 next_interval (register INTERVAL interval)
668 {
669 register INTERVAL i = interval;
670 register EMACS_INT next_position;
671
672 if (NULL_INTERVAL_P (i))
673 return NULL_INTERVAL;
674 next_position = interval->position + LENGTH (interval);
675
676 if (! NULL_RIGHT_CHILD (i))
677 {
678 i = i->right;
679 while (! NULL_LEFT_CHILD (i))
680 i = i->left;
681
682 i->position = next_position;
683 return i;
684 }
685
686 while (! NULL_PARENT (i))
687 {
688 if (AM_LEFT_CHILD (i))
689 {
690 i = INTERVAL_PARENT (i);
691 i->position = next_position;
692 return i;
693 }
694
695 i = INTERVAL_PARENT (i);
696 }
697
698 return NULL_INTERVAL;
699 }
700
701 /* Find the preceding interval (lexicographically) to INTERVAL.
702 Sets the `position' field based on that of INTERVAL (see
703 find_interval). */
704
705 INTERVAL
706 previous_interval (register INTERVAL interval)
707 {
708 register INTERVAL i;
709
710 if (NULL_INTERVAL_P (interval))
711 return NULL_INTERVAL;
712
713 if (! NULL_LEFT_CHILD (interval))
714 {
715 i = interval->left;
716 while (! NULL_RIGHT_CHILD (i))
717 i = i->right;
718
719 i->position = interval->position - LENGTH (i);
720 return i;
721 }
722
723 i = interval;
724 while (! NULL_PARENT (i))
725 {
726 if (AM_RIGHT_CHILD (i))
727 {
728 i = INTERVAL_PARENT (i);
729
730 i->position = interval->position - LENGTH (i);
731 return i;
732 }
733 i = INTERVAL_PARENT (i);
734 }
735
736 return NULL_INTERVAL;
737 }
738
739 /* Find the interval containing POS given some non-NULL INTERVAL
740 in the same tree. Note that we need to update interval->position
741 if we go down the tree.
742 To speed up the process, we assume that the ->position of
743 I and all its parents is already uptodate. */
744 INTERVAL
745 update_interval (register INTERVAL i, EMACS_INT pos)
746 {
747 if (NULL_INTERVAL_P (i))
748 return NULL_INTERVAL;
749
750 while (1)
751 {
752 if (pos < i->position)
753 {
754 /* Move left. */
755 if (pos >= i->position - TOTAL_LENGTH (i->left))
756 {
757 i->left->position = i->position - TOTAL_LENGTH (i->left)
758 + LEFT_TOTAL_LENGTH (i->left);
759 i = i->left; /* Move to the left child */
760 }
761 else if (NULL_PARENT (i))
762 error ("Point before start of properties");
763 else
764 i = INTERVAL_PARENT (i);
765 continue;
766 }
767 else if (pos >= INTERVAL_LAST_POS (i))
768 {
769 /* Move right. */
770 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
771 {
772 i->right->position = INTERVAL_LAST_POS (i)
773 + LEFT_TOTAL_LENGTH (i->right);
774 i = i->right; /* Move to the right child */
775 }
776 else if (NULL_PARENT (i))
777 error ("Point %"pI"d after end of properties", pos);
778 else
779 i = INTERVAL_PARENT (i);
780 continue;
781 }
782 else
783 return i;
784 }
785 }
786
787 \f
788 #if 0
789 /* Traverse a path down the interval tree TREE to the interval
790 containing POSITION, adjusting all nodes on the path for
791 an addition of LENGTH characters. Insertion between two intervals
792 (i.e., point == i->position, where i is second interval) means
793 text goes into second interval.
794
795 Modifications are needed to handle the hungry bits -- after simply
796 finding the interval at position (don't add length going down),
797 if it's the beginning of the interval, get the previous interval
798 and check the hungry bits of both. Then add the length going back up
799 to the root. */
800
801 static INTERVAL
802 adjust_intervals_for_insertion (INTERVAL tree, EMACS_INT position,
803 EMACS_INT length)
804 {
805 register EMACS_INT relative_position;
806 register INTERVAL this;
807
808 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
809 abort ();
810
811 /* If inserting at point-max of a buffer, that position
812 will be out of range */
813 if (position > TOTAL_LENGTH (tree))
814 position = TOTAL_LENGTH (tree);
815 relative_position = position;
816 this = tree;
817
818 while (1)
819 {
820 if (relative_position <= LEFT_TOTAL_LENGTH (this))
821 {
822 this->total_length += length;
823 CHECK_TOTAL_LENGTH (this);
824 this = this->left;
825 }
826 else if (relative_position > (TOTAL_LENGTH (this)
827 - RIGHT_TOTAL_LENGTH (this)))
828 {
829 relative_position -= (TOTAL_LENGTH (this)
830 - RIGHT_TOTAL_LENGTH (this));
831 this->total_length += length;
832 CHECK_TOTAL_LENGTH (this);
833 this = this->right;
834 }
835 else
836 {
837 /* If we are to use zero-length intervals as buffer pointers,
838 then this code will have to change. */
839 this->total_length += length;
840 CHECK_TOTAL_LENGTH (this);
841 this->position = LEFT_TOTAL_LENGTH (this)
842 + position - relative_position + 1;
843 return tree;
844 }
845 }
846 }
847 #endif
848
849 /* Effect an adjustment corresponding to the addition of LENGTH characters
850 of text. Do this by finding the interval containing POSITION in the
851 interval tree TREE, and then adjusting all of its ancestors by adding
852 LENGTH to them.
853
854 If POSITION is the first character of an interval, meaning that point
855 is actually between the two intervals, make the new text belong to
856 the interval which is "sticky".
857
858 If both intervals are "sticky", then make them belong to the left-most
859 interval. Another possibility would be to create a new interval for
860 this text, and make it have the merged properties of both ends. */
861
862 static INTERVAL
863 adjust_intervals_for_insertion (INTERVAL tree,
864 EMACS_INT position, EMACS_INT length)
865 {
866 register INTERVAL i;
867 register INTERVAL temp;
868 int eobp = 0;
869 Lisp_Object parent;
870 EMACS_INT offset;
871
872 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
873 abort ();
874
875 GET_INTERVAL_OBJECT (parent, tree);
876 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
877
878 /* If inserting at point-max of a buffer, that position will be out
879 of range. Remember that buffer positions are 1-based. */
880 if (position >= TOTAL_LENGTH (tree) + offset)
881 {
882 position = TOTAL_LENGTH (tree) + offset;
883 eobp = 1;
884 }
885
886 i = find_interval (tree, position);
887
888 /* If in middle of an interval which is not sticky either way,
889 we must not just give its properties to the insertion.
890 So split this interval at the insertion point.
891
892 Originally, the if condition here was this:
893 (! (position == i->position || eobp)
894 && END_NONSTICKY_P (i)
895 && FRONT_NONSTICKY_P (i))
896 But, these macros are now unreliable because of introduction of
897 Vtext_property_default_nonsticky. So, we always check properties
898 one by one if POSITION is in middle of an interval. */
899 if (! (position == i->position || eobp))
900 {
901 Lisp_Object tail;
902 Lisp_Object front, rear;
903
904 tail = i->plist;
905
906 /* Properties font-sticky and rear-nonsticky override
907 Vtext_property_default_nonsticky. So, if they are t, we can
908 skip one by one checking of properties. */
909 rear = textget (i->plist, Qrear_nonsticky);
910 if (! CONSP (rear) && ! NILP (rear))
911 {
912 /* All properties are nonsticky. We split the interval. */
913 goto check_done;
914 }
915 front = textget (i->plist, Qfront_sticky);
916 if (! CONSP (front) && ! NILP (front))
917 {
918 /* All properties are sticky. We don't split the interval. */
919 tail = Qnil;
920 goto check_done;
921 }
922
923 /* Does any actual property pose an actual problem? We break
924 the loop if we find a nonsticky property. */
925 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
926 {
927 Lisp_Object prop, tmp;
928 prop = XCAR (tail);
929
930 /* Is this particular property front-sticky? */
931 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
932 continue;
933
934 /* Is this particular property rear-nonsticky? */
935 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
936 break;
937
938 /* Is this particular property recorded as sticky or
939 nonsticky in Vtext_property_default_nonsticky? */
940 tmp = Fassq (prop, Vtext_property_default_nonsticky);
941 if (CONSP (tmp))
942 {
943 if (NILP (tmp))
944 continue;
945 break;
946 }
947
948 /* By default, a text property is rear-sticky, thus we
949 continue the loop. */
950 }
951
952 check_done:
953 /* If any property is a real problem, split the interval. */
954 if (! NILP (tail))
955 {
956 temp = split_interval_right (i, position - i->position);
957 copy_properties (i, temp);
958 i = temp;
959 }
960 }
961
962 /* If we are positioned between intervals, check the stickiness of
963 both of them. We have to do this too, if we are at BEG or Z. */
964 if (position == i->position || eobp)
965 {
966 register INTERVAL prev;
967
968 if (position == BEG)
969 prev = 0;
970 else if (eobp)
971 {
972 prev = i;
973 i = 0;
974 }
975 else
976 prev = previous_interval (i);
977
978 /* Even if we are positioned between intervals, we default
979 to the left one if it exists. We extend it now and split
980 off a part later, if stickiness demands it. */
981 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
982 {
983 temp->total_length += length;
984 CHECK_TOTAL_LENGTH (temp);
985 temp = balance_possible_root_interval (temp);
986 }
987
988 /* If at least one interval has sticky properties,
989 we check the stickiness property by property.
990
991 Originally, the if condition here was this:
992 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
993 But, these macros are now unreliable because of introduction
994 of Vtext_property_default_nonsticky. So, we always have to
995 check stickiness of properties one by one. If cache of
996 stickiness is implemented in the future, we may be able to
997 use those macros again. */
998 if (1)
999 {
1000 Lisp_Object pleft, pright;
1001 struct interval newi;
1002
1003 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
1004 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
1005 newi.plist = merge_properties_sticky (pleft, pright);
1006
1007 if (! prev) /* i.e. position == BEG */
1008 {
1009 if (! intervals_equal (i, &newi))
1010 {
1011 i = split_interval_left (i, length);
1012 i->plist = newi.plist;
1013 }
1014 }
1015 else if (! intervals_equal (prev, &newi))
1016 {
1017 prev = split_interval_right (prev,
1018 position - prev->position);
1019 prev->plist = newi.plist;
1020 if (! NULL_INTERVAL_P (i)
1021 && intervals_equal (prev, i))
1022 merge_interval_right (prev);
1023 }
1024
1025 /* We will need to update the cache here later. */
1026 }
1027 else if (! prev && ! NILP (i->plist))
1028 {
1029 /* Just split off a new interval at the left.
1030 Since I wasn't front-sticky, the empty plist is ok. */
1031 i = split_interval_left (i, length);
1032 }
1033 }
1034
1035 /* Otherwise just extend the interval. */
1036 else
1037 {
1038 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1039 {
1040 temp->total_length += length;
1041 CHECK_TOTAL_LENGTH (temp);
1042 temp = balance_possible_root_interval (temp);
1043 }
1044 }
1045
1046 return tree;
1047 }
1048
1049 /* Any property might be front-sticky on the left, rear-sticky on the left,
1050 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1051 can be arranged in a matrix with rows denoting the left conditions and
1052 columns denoting the right conditions:
1053 _ __ _
1054 _ FR FR FR FR
1055 FR__ 0 1 2 3
1056 _FR 4 5 6 7
1057 FR 8 9 A B
1058 FR C D E F
1059
1060 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1061 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1062 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1063 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1064 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1065 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1066 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1067 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1068
1069 We inherit from whoever has a sticky side facing us. If both sides
1070 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1071 non-nil value for the current property. If both sides do, then we take
1072 from the left.
1073
1074 When we inherit a property, we get its stickiness as well as its value.
1075 So, when we merge the above two lists, we expect to get this:
1076
1077 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1078 rear-nonsticky (p6 pa)
1079 p0 L p1 L p2 L p3 L p6 R p7 R
1080 pa R pb R pc L pd L pe L pf L)
1081
1082 The optimizable special cases are:
1083 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1084 left rear-nonsticky = t, right front-sticky = t (inherit right)
1085 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1086 */
1087
1088 static Lisp_Object
1089 merge_properties_sticky (Lisp_Object pleft, Lisp_Object pright)
1090 {
1091 register Lisp_Object props, front, rear;
1092 Lisp_Object lfront, lrear, rfront, rrear;
1093 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
1094 int use_left, use_right;
1095 int lpresent;
1096
1097 props = Qnil;
1098 front = Qnil;
1099 rear = Qnil;
1100 lfront = textget (pleft, Qfront_sticky);
1101 lrear = textget (pleft, Qrear_nonsticky);
1102 rfront = textget (pright, Qfront_sticky);
1103 rrear = textget (pright, Qrear_nonsticky);
1104
1105 /* Go through each element of PRIGHT. */
1106 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1107 {
1108 Lisp_Object tmp;
1109
1110 sym = XCAR (tail1);
1111
1112 /* Sticky properties get special treatment. */
1113 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1114 continue;
1115
1116 rval = Fcar (XCDR (tail1));
1117 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1118 if (EQ (sym, XCAR (tail2)))
1119 break;
1120
1121 /* Indicate whether the property is explicitly defined on the left.
1122 (We know it is defined explicitly on the right
1123 because otherwise we don't get here.) */
1124 lpresent = ! NILP (tail2);
1125 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1126
1127 /* Even if lrear or rfront say nothing about the stickiness of
1128 SYM, Vtext_property_default_nonsticky may give default
1129 stickiness to SYM. */
1130 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1131 use_left = (lpresent
1132 && ! (TMEM (sym, lrear)
1133 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1134 use_right = (TMEM (sym, rfront)
1135 || (CONSP (tmp) && NILP (XCDR (tmp))));
1136 if (use_left && use_right)
1137 {
1138 if (NILP (lval))
1139 use_left = 0;
1140 else if (NILP (rval))
1141 use_right = 0;
1142 }
1143 if (use_left)
1144 {
1145 /* We build props as (value sym ...) rather than (sym value ...)
1146 because we plan to nreverse it when we're done. */
1147 props = Fcons (lval, Fcons (sym, props));
1148 if (TMEM (sym, lfront))
1149 front = Fcons (sym, front);
1150 if (TMEM (sym, lrear))
1151 rear = Fcons (sym, rear);
1152 }
1153 else if (use_right)
1154 {
1155 props = Fcons (rval, Fcons (sym, props));
1156 if (TMEM (sym, rfront))
1157 front = Fcons (sym, front);
1158 if (TMEM (sym, rrear))
1159 rear = Fcons (sym, rear);
1160 }
1161 }
1162
1163 /* Now go through each element of PLEFT. */
1164 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1165 {
1166 Lisp_Object tmp;
1167
1168 sym = XCAR (tail2);
1169
1170 /* Sticky properties get special treatment. */
1171 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1172 continue;
1173
1174 /* If sym is in PRIGHT, we've already considered it. */
1175 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1176 if (EQ (sym, XCAR (tail1)))
1177 break;
1178 if (! NILP (tail1))
1179 continue;
1180
1181 lval = Fcar (XCDR (tail2));
1182
1183 /* Even if lrear or rfront say nothing about the stickiness of
1184 SYM, Vtext_property_default_nonsticky may give default
1185 stickiness to SYM. */
1186 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1187
1188 /* Since rval is known to be nil in this loop, the test simplifies. */
1189 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1190 {
1191 props = Fcons (lval, Fcons (sym, props));
1192 if (TMEM (sym, lfront))
1193 front = Fcons (sym, front);
1194 }
1195 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1196 {
1197 /* The value is nil, but we still inherit the stickiness
1198 from the right. */
1199 front = Fcons (sym, front);
1200 if (TMEM (sym, rrear))
1201 rear = Fcons (sym, rear);
1202 }
1203 }
1204 props = Fnreverse (props);
1205 if (! NILP (rear))
1206 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1207
1208 cat = textget (props, Qcategory);
1209 if (! NILP (front)
1210 &&
1211 /* If we have inherited a front-stick category property that is t,
1212 we don't need to set up a detailed one. */
1213 ! (! NILP (cat) && SYMBOLP (cat)
1214 && EQ (Fget (cat, Qfront_sticky), Qt)))
1215 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1216 return props;
1217 }
1218
1219 \f
1220 /* Delete a node I from its interval tree by merging its subtrees
1221 into one subtree which is then returned. Caller is responsible for
1222 storing the resulting subtree into its parent. */
1223
1224 static INTERVAL
1225 delete_node (register INTERVAL i)
1226 {
1227 register INTERVAL migrate, this;
1228 register EMACS_INT migrate_amt;
1229
1230 if (NULL_INTERVAL_P (i->left))
1231 return i->right;
1232 if (NULL_INTERVAL_P (i->right))
1233 return i->left;
1234
1235 migrate = i->left;
1236 migrate_amt = i->left->total_length;
1237 this = i->right;
1238 this->total_length += migrate_amt;
1239 while (! NULL_INTERVAL_P (this->left))
1240 {
1241 this = this->left;
1242 this->total_length += migrate_amt;
1243 }
1244 CHECK_TOTAL_LENGTH (this);
1245 this->left = migrate;
1246 SET_INTERVAL_PARENT (migrate, this);
1247
1248 return i->right;
1249 }
1250
1251 /* Delete interval I from its tree by calling `delete_node'
1252 and properly connecting the resultant subtree.
1253
1254 I is presumed to be empty; that is, no adjustments are made
1255 for the length of I. */
1256
1257 static void
1258 delete_interval (register INTERVAL i)
1259 {
1260 register INTERVAL parent;
1261 EMACS_INT amt = LENGTH (i);
1262
1263 if (amt > 0) /* Only used on zero-length intervals now. */
1264 abort ();
1265
1266 if (ROOT_INTERVAL_P (i))
1267 {
1268 Lisp_Object owner;
1269 GET_INTERVAL_OBJECT (owner, i);
1270 parent = delete_node (i);
1271 if (! NULL_INTERVAL_P (parent))
1272 SET_INTERVAL_OBJECT (parent, owner);
1273
1274 if (BUFFERP (owner))
1275 BUF_INTERVALS (XBUFFER (owner)) = parent;
1276 else if (STRINGP (owner))
1277 STRING_SET_INTERVALS (owner, parent);
1278 else
1279 abort ();
1280
1281 return;
1282 }
1283
1284 parent = INTERVAL_PARENT (i);
1285 if (AM_LEFT_CHILD (i))
1286 {
1287 parent->left = delete_node (i);
1288 if (! NULL_INTERVAL_P (parent->left))
1289 SET_INTERVAL_PARENT (parent->left, parent);
1290 }
1291 else
1292 {
1293 parent->right = delete_node (i);
1294 if (! NULL_INTERVAL_P (parent->right))
1295 SET_INTERVAL_PARENT (parent->right, parent);
1296 }
1297 }
1298 \f
1299 /* Find the interval in TREE corresponding to the relative position
1300 FROM and delete as much as possible of AMOUNT from that interval.
1301 Return the amount actually deleted, and if the interval was
1302 zeroed-out, delete that interval node from the tree.
1303
1304 Note that FROM is actually origin zero, aka relative to the
1305 leftmost edge of tree. This is appropriate since we call ourselves
1306 recursively on subtrees.
1307
1308 Do this by recursing down TREE to the interval in question, and
1309 deleting the appropriate amount of text. */
1310
1311 static EMACS_INT
1312 interval_deletion_adjustment (register INTERVAL tree, register EMACS_INT from,
1313 register EMACS_INT amount)
1314 {
1315 register EMACS_INT relative_position = from;
1316
1317 if (NULL_INTERVAL_P (tree))
1318 return 0;
1319
1320 /* Left branch */
1321 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1322 {
1323 EMACS_INT subtract = interval_deletion_adjustment (tree->left,
1324 relative_position,
1325 amount);
1326 tree->total_length -= subtract;
1327 CHECK_TOTAL_LENGTH (tree);
1328 return subtract;
1329 }
1330 /* Right branch */
1331 else if (relative_position >= (TOTAL_LENGTH (tree)
1332 - RIGHT_TOTAL_LENGTH (tree)))
1333 {
1334 EMACS_INT subtract;
1335
1336 relative_position -= (tree->total_length
1337 - RIGHT_TOTAL_LENGTH (tree));
1338 subtract = interval_deletion_adjustment (tree->right,
1339 relative_position,
1340 amount);
1341 tree->total_length -= subtract;
1342 CHECK_TOTAL_LENGTH (tree);
1343 return subtract;
1344 }
1345 /* Here -- this node. */
1346 else
1347 {
1348 /* How much can we delete from this interval? */
1349 EMACS_INT my_amount = ((tree->total_length
1350 - RIGHT_TOTAL_LENGTH (tree))
1351 - relative_position);
1352
1353 if (amount > my_amount)
1354 amount = my_amount;
1355
1356 tree->total_length -= amount;
1357 CHECK_TOTAL_LENGTH (tree);
1358 if (LENGTH (tree) == 0)
1359 delete_interval (tree);
1360
1361 return amount;
1362 }
1363
1364 /* Never reach here. */
1365 }
1366
1367 /* Effect the adjustments necessary to the interval tree of BUFFER to
1368 correspond to the deletion of LENGTH characters from that buffer
1369 text. The deletion is effected at position START (which is a
1370 buffer position, i.e. origin 1). */
1371
1372 static void
1373 adjust_intervals_for_deletion (struct buffer *buffer,
1374 EMACS_INT start, EMACS_INT length)
1375 {
1376 register EMACS_INT left_to_delete = length;
1377 register INTERVAL tree = BUF_INTERVALS (buffer);
1378 Lisp_Object parent;
1379 EMACS_INT offset;
1380
1381 GET_INTERVAL_OBJECT (parent, tree);
1382 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1383
1384 if (NULL_INTERVAL_P (tree))
1385 return;
1386
1387 if (start > offset + TOTAL_LENGTH (tree)
1388 || start + length > offset + TOTAL_LENGTH (tree))
1389 abort ();
1390
1391 if (length == TOTAL_LENGTH (tree))
1392 {
1393 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1394 return;
1395 }
1396
1397 if (ONLY_INTERVAL_P (tree))
1398 {
1399 tree->total_length -= length;
1400 CHECK_TOTAL_LENGTH (tree);
1401 return;
1402 }
1403
1404 if (start > offset + TOTAL_LENGTH (tree))
1405 start = offset + TOTAL_LENGTH (tree);
1406 while (left_to_delete > 0)
1407 {
1408 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1409 left_to_delete);
1410 tree = BUF_INTERVALS (buffer);
1411 if (left_to_delete == tree->total_length)
1412 {
1413 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1414 return;
1415 }
1416 }
1417 }
1418 \f
1419 /* Make the adjustments necessary to the interval tree of BUFFER to
1420 represent an addition or deletion of LENGTH characters starting
1421 at position START. Addition or deletion is indicated by the sign
1422 of LENGTH.
1423
1424 The two inline functions (one static) pacify Sun C 5.8, a pre-C99
1425 compiler that does not allow calling a static function (here,
1426 adjust_intervals_for_deletion) from a non-static inline function. */
1427
1428 void
1429 offset_intervals (struct buffer *buffer, EMACS_INT start, EMACS_INT length)
1430 {
1431 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1432 return;
1433
1434 if (length > 0)
1435 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1436 else
1437 {
1438 IF_LINT (if (length < - TYPE_MAXIMUM (EMACS_INT)) abort ();)
1439 adjust_intervals_for_deletion (buffer, start, -length);
1440 }
1441 }
1442 \f
1443 /* Merge interval I with its lexicographic successor. The resulting
1444 interval is returned, and has the properties of the original
1445 successor. The properties of I are lost. I is removed from the
1446 interval tree.
1447
1448 IMPORTANT:
1449 The caller must verify that this is not the last (rightmost)
1450 interval. */
1451
1452 static INTERVAL
1453 merge_interval_right (register INTERVAL i)
1454 {
1455 register EMACS_INT absorb = LENGTH (i);
1456 register INTERVAL successor;
1457
1458 /* Zero out this interval. */
1459 i->total_length -= absorb;
1460 CHECK_TOTAL_LENGTH (i);
1461
1462 /* Find the succeeding interval. */
1463 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1464 as we descend. */
1465 {
1466 successor = i->right;
1467 while (! NULL_LEFT_CHILD (successor))
1468 {
1469 successor->total_length += absorb;
1470 CHECK_TOTAL_LENGTH (successor);
1471 successor = successor->left;
1472 }
1473
1474 successor->total_length += absorb;
1475 CHECK_TOTAL_LENGTH (successor);
1476 delete_interval (i);
1477 return successor;
1478 }
1479
1480 successor = i;
1481 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1482 we ascend. */
1483 {
1484 if (AM_LEFT_CHILD (successor))
1485 {
1486 successor = INTERVAL_PARENT (successor);
1487 delete_interval (i);
1488 return successor;
1489 }
1490
1491 successor = INTERVAL_PARENT (successor);
1492 successor->total_length -= absorb;
1493 CHECK_TOTAL_LENGTH (successor);
1494 }
1495
1496 /* This must be the rightmost or last interval and cannot
1497 be merged right. The caller should have known. */
1498 abort ();
1499 }
1500 \f
1501 /* Merge interval I with its lexicographic predecessor. The resulting
1502 interval is returned, and has the properties of the original predecessor.
1503 The properties of I are lost. Interval node I is removed from the tree.
1504
1505 IMPORTANT:
1506 The caller must verify that this is not the first (leftmost) interval. */
1507
1508 INTERVAL
1509 merge_interval_left (register INTERVAL i)
1510 {
1511 register EMACS_INT absorb = LENGTH (i);
1512 register INTERVAL predecessor;
1513
1514 /* Zero out this interval. */
1515 i->total_length -= absorb;
1516 CHECK_TOTAL_LENGTH (i);
1517
1518 /* Find the preceding interval. */
1519 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1520 adding ABSORB as we go. */
1521 {
1522 predecessor = i->left;
1523 while (! NULL_RIGHT_CHILD (predecessor))
1524 {
1525 predecessor->total_length += absorb;
1526 CHECK_TOTAL_LENGTH (predecessor);
1527 predecessor = predecessor->right;
1528 }
1529
1530 predecessor->total_length += absorb;
1531 CHECK_TOTAL_LENGTH (predecessor);
1532 delete_interval (i);
1533 return predecessor;
1534 }
1535
1536 predecessor = i;
1537 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1538 subtracting ABSORB. */
1539 {
1540 if (AM_RIGHT_CHILD (predecessor))
1541 {
1542 predecessor = INTERVAL_PARENT (predecessor);
1543 delete_interval (i);
1544 return predecessor;
1545 }
1546
1547 predecessor = INTERVAL_PARENT (predecessor);
1548 predecessor->total_length -= absorb;
1549 CHECK_TOTAL_LENGTH (predecessor);
1550 }
1551
1552 /* This must be the leftmost or first interval and cannot
1553 be merged left. The caller should have known. */
1554 abort ();
1555 }
1556 \f
1557 /* Make an exact copy of interval tree SOURCE which descends from
1558 PARENT. This is done by recursing through SOURCE, copying
1559 the current interval and its properties, and then adjusting
1560 the pointers of the copy. */
1561
1562 static INTERVAL
1563 reproduce_tree (INTERVAL source, INTERVAL parent)
1564 {
1565 register INTERVAL t = make_interval ();
1566
1567 memcpy (t, source, INTERVAL_SIZE);
1568 copy_properties (source, t);
1569 SET_INTERVAL_PARENT (t, parent);
1570 if (! NULL_LEFT_CHILD (source))
1571 t->left = reproduce_tree (source->left, t);
1572 if (! NULL_RIGHT_CHILD (source))
1573 t->right = reproduce_tree (source->right, t);
1574
1575 return t;
1576 }
1577
1578 static INTERVAL
1579 reproduce_tree_obj (INTERVAL source, Lisp_Object parent)
1580 {
1581 register INTERVAL t = make_interval ();
1582
1583 memcpy (t, source, INTERVAL_SIZE);
1584 copy_properties (source, t);
1585 SET_INTERVAL_OBJECT (t, parent);
1586 if (! NULL_LEFT_CHILD (source))
1587 t->left = reproduce_tree (source->left, t);
1588 if (! NULL_RIGHT_CHILD (source))
1589 t->right = reproduce_tree (source->right, t);
1590
1591 return t;
1592 }
1593
1594 #if 0
1595 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1596
1597 /* Make a new interval of length LENGTH starting at START in the
1598 group of intervals INTERVALS, which is actually an interval tree.
1599 Returns the new interval.
1600
1601 Generate an error if the new positions would overlap an existing
1602 interval. */
1603
1604 static INTERVAL
1605 make_new_interval (INTERVAL intervals, EMACS_INT start, EMACS_INT length)
1606 {
1607 INTERVAL slot;
1608
1609 slot = find_interval (intervals, start);
1610 if (start + length > slot->position + LENGTH (slot))
1611 error ("Interval would overlap");
1612
1613 if (start == slot->position && length == LENGTH (slot))
1614 return slot;
1615
1616 if (slot->position == start)
1617 {
1618 /* New right node. */
1619 split_interval_right (slot, length);
1620 return slot;
1621 }
1622
1623 if (slot->position + LENGTH (slot) == start + length)
1624 {
1625 /* New left node. */
1626 split_interval_left (slot, LENGTH (slot) - length);
1627 return slot;
1628 }
1629
1630 /* Convert interval SLOT into three intervals. */
1631 split_interval_left (slot, start - slot->position);
1632 split_interval_right (slot, length);
1633 return slot;
1634 }
1635 #endif
1636 \f
1637 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1638 LENGTH is the length of the text in SOURCE.
1639
1640 The `position' field of the SOURCE intervals is assumed to be
1641 consistent with its parent; therefore, SOURCE must be an
1642 interval tree made with copy_interval or must be the whole
1643 tree of a buffer or a string.
1644
1645 This is used in insdel.c when inserting Lisp_Strings into the
1646 buffer. The text corresponding to SOURCE is already in the buffer
1647 when this is called. The intervals of new tree are a copy of those
1648 belonging to the string being inserted; intervals are never
1649 shared.
1650
1651 If the inserted text had no intervals associated, and we don't
1652 want to inherit the surrounding text's properties, this function
1653 simply returns -- offset_intervals should handle placing the
1654 text in the correct interval, depending on the sticky bits.
1655
1656 If the inserted text had properties (intervals), then there are two
1657 cases -- either insertion happened in the middle of some interval,
1658 or between two intervals.
1659
1660 If the text goes into the middle of an interval, then new
1661 intervals are created in the middle with only the properties of
1662 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1663 which case the new text has the union of its properties and those
1664 of the text into which it was inserted.
1665
1666 If the text goes between two intervals, then if neither interval
1667 had its appropriate sticky property set (front_sticky, rear_sticky),
1668 the new text has only its properties. If one of the sticky properties
1669 is set, then the new text "sticks" to that region and its properties
1670 depend on merging as above. If both the preceding and succeeding
1671 intervals to the new text are "sticky", then the new text retains
1672 only its properties, as if neither sticky property were set. Perhaps
1673 we should consider merging all three sets of properties onto the new
1674 text... */
1675
1676 void
1677 graft_intervals_into_buffer (INTERVAL source, EMACS_INT position,
1678 EMACS_INT length, struct buffer *buffer,
1679 int inherit)
1680 {
1681 register INTERVAL under, over, this;
1682 register INTERVAL tree;
1683 EMACS_INT over_used;
1684
1685 tree = BUF_INTERVALS (buffer);
1686
1687 /* If the new text has no properties, then with inheritance it
1688 becomes part of whatever interval it was inserted into.
1689 To prevent inheritance, we must clear out the properties
1690 of the newly inserted text. */
1691 if (NULL_INTERVAL_P (source))
1692 {
1693 Lisp_Object buf;
1694 if (!inherit && !NULL_INTERVAL_P (tree) && length > 0)
1695 {
1696 XSETBUFFER (buf, buffer);
1697 set_text_properties_1 (make_number (position),
1698 make_number (position + length),
1699 Qnil, buf, 0);
1700 }
1701 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1702 /* Shouldn't be necessary. -stef */
1703 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1704 return;
1705 }
1706
1707 if (NULL_INTERVAL_P (tree))
1708 {
1709 /* The inserted text constitutes the whole buffer, so
1710 simply copy over the interval structure. */
1711 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1712 {
1713 Lisp_Object buf;
1714 XSETBUFFER (buf, buffer);
1715 BUF_INTERVALS (buffer) = reproduce_tree_obj (source, buf);
1716 BUF_INTERVALS (buffer)->position = BEG;
1717 BUF_INTERVALS (buffer)->up_obj = 1;
1718
1719 return;
1720 }
1721
1722 /* Create an interval tree in which to place a copy
1723 of the intervals of the inserted string. */
1724 {
1725 Lisp_Object buf;
1726 XSETBUFFER (buf, buffer);
1727 tree = create_root_interval (buf);
1728 }
1729 }
1730 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1731 /* If the buffer contains only the new string, but
1732 there was already some interval tree there, then it may be
1733 some zero length intervals. Eventually, do something clever
1734 about inserting properly. For now, just waste the old intervals. */
1735 {
1736 BUF_INTERVALS (buffer) = reproduce_tree (source, INTERVAL_PARENT (tree));
1737 BUF_INTERVALS (buffer)->position = BEG;
1738 BUF_INTERVALS (buffer)->up_obj = 1;
1739 /* Explicitly free the old tree here. */
1740
1741 return;
1742 }
1743 /* Paranoia -- the text has already been added, so this buffer
1744 should be of non-zero length. */
1745 else if (TOTAL_LENGTH (tree) == 0)
1746 abort ();
1747
1748 this = under = find_interval (tree, position);
1749 if (NULL_INTERVAL_P (under)) /* Paranoia */
1750 abort ();
1751 over = find_interval (source, interval_start_pos (source));
1752
1753 /* Here for insertion in the middle of an interval.
1754 Split off an equivalent interval to the right,
1755 then don't bother with it any more. */
1756
1757 if (position > under->position)
1758 {
1759 INTERVAL end_unchanged
1760 = split_interval_left (this, position - under->position);
1761 copy_properties (under, end_unchanged);
1762 under->position = position;
1763 }
1764 else
1765 {
1766 /* This call may have some effect because previous_interval may
1767 update `position' fields of intervals. Thus, don't ignore it
1768 for the moment. Someone please tell me the truth (K.Handa). */
1769 INTERVAL prev = previous_interval (under);
1770 (void) prev;
1771 #if 0
1772 /* But, this code surely has no effect. And, anyway,
1773 END_NONSTICKY_P is unreliable now. */
1774 if (prev && !END_NONSTICKY_P (prev))
1775 prev = 0;
1776 #endif /* 0 */
1777 }
1778
1779 /* Insertion is now at beginning of UNDER. */
1780
1781 /* The inserted text "sticks" to the interval `under',
1782 which means it gets those properties.
1783 The properties of under are the result of
1784 adjust_intervals_for_insertion, so stickiness has
1785 already been taken care of. */
1786
1787 /* OVER is the interval we are copying from next.
1788 OVER_USED says how many characters' worth of OVER
1789 have already been copied into target intervals.
1790 UNDER is the next interval in the target. */
1791 over_used = 0;
1792 while (! NULL_INTERVAL_P (over))
1793 {
1794 /* If UNDER is longer than OVER, split it. */
1795 if (LENGTH (over) - over_used < LENGTH (under))
1796 {
1797 this = split_interval_left (under, LENGTH (over) - over_used);
1798 copy_properties (under, this);
1799 }
1800 else
1801 this = under;
1802
1803 /* THIS is now the interval to copy or merge into.
1804 OVER covers all of it. */
1805 if (inherit)
1806 merge_properties (over, this);
1807 else
1808 copy_properties (over, this);
1809
1810 /* If THIS and OVER end at the same place,
1811 advance OVER to a new source interval. */
1812 if (LENGTH (this) == LENGTH (over) - over_used)
1813 {
1814 over = next_interval (over);
1815 over_used = 0;
1816 }
1817 else
1818 /* Otherwise just record that more of OVER has been used. */
1819 over_used += LENGTH (this);
1820
1821 /* Always advance to a new target interval. */
1822 under = next_interval (this);
1823 }
1824
1825 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1826 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1827 return;
1828 }
1829
1830 /* Get the value of property PROP from PLIST,
1831 which is the plist of an interval.
1832 We check for direct properties, for categories with property PROP,
1833 and for PROP appearing on the default-text-properties list. */
1834
1835 Lisp_Object
1836 textget (Lisp_Object plist, register Lisp_Object prop)
1837 {
1838 return lookup_char_property (plist, prop, 1);
1839 }
1840
1841 Lisp_Object
1842 lookup_char_property (Lisp_Object plist, register Lisp_Object prop, int textprop)
1843 {
1844 register Lisp_Object tail, fallback = Qnil;
1845
1846 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1847 {
1848 register Lisp_Object tem;
1849 tem = XCAR (tail);
1850 if (EQ (prop, tem))
1851 return Fcar (XCDR (tail));
1852 if (EQ (tem, Qcategory))
1853 {
1854 tem = Fcar (XCDR (tail));
1855 if (SYMBOLP (tem))
1856 fallback = Fget (tem, prop);
1857 }
1858 }
1859
1860 if (! NILP (fallback))
1861 return fallback;
1862 /* Check for alternative properties */
1863 tail = Fassq (prop, Vchar_property_alias_alist);
1864 if (! NILP (tail))
1865 {
1866 tail = XCDR (tail);
1867 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1868 fallback = Fplist_get (plist, XCAR (tail));
1869 }
1870
1871 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1872 fallback = Fplist_get (Vdefault_text_properties, prop);
1873 return fallback;
1874 }
1875
1876 \f
1877 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1878 byte position BYTEPOS. */
1879
1880 void
1881 temp_set_point_both (struct buffer *buffer,
1882 EMACS_INT charpos, EMACS_INT bytepos)
1883 {
1884 /* In a single-byte buffer, the two positions must be equal. */
1885 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1886 && charpos != bytepos)
1887 abort ();
1888
1889 if (charpos > bytepos)
1890 abort ();
1891
1892 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1893 abort ();
1894
1895 SET_BUF_PT_BOTH (buffer, charpos, bytepos);
1896 }
1897
1898 /* Set point "temporarily", without checking any text properties. */
1899
1900 void
1901 temp_set_point (struct buffer *buffer, EMACS_INT charpos)
1902 {
1903 temp_set_point_both (buffer, charpos,
1904 buf_charpos_to_bytepos (buffer, charpos));
1905 }
1906
1907 /* Set point in BUFFER to CHARPOS. If the target position is
1908 before an intangible character, move to an ok place. */
1909
1910 void
1911 set_point (EMACS_INT charpos)
1912 {
1913 set_point_both (charpos, buf_charpos_to_bytepos (current_buffer, charpos));
1914 }
1915
1916 /* If there's an invisible character at position POS + TEST_OFFS in the
1917 current buffer, and the invisible property has a `stickiness' such that
1918 inserting a character at position POS would inherit the property it,
1919 return POS + ADJ, otherwise return POS. If TEST_INTANG is non-zero,
1920 then intangibility is required as well as invisibleness.
1921
1922 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1923
1924 Note that `stickiness' is determined by overlay marker insertion types,
1925 if the invisible property comes from an overlay. */
1926
1927 static EMACS_INT
1928 adjust_for_invis_intang (EMACS_INT pos, EMACS_INT test_offs, EMACS_INT adj,
1929 int test_intang)
1930 {
1931 Lisp_Object invis_propval, invis_overlay;
1932 Lisp_Object test_pos;
1933
1934 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1935 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1936 return pos;
1937
1938 test_pos = make_number (pos + test_offs);
1939
1940 invis_propval
1941 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1942 &invis_overlay);
1943
1944 if ((!test_intang
1945 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1946 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1947 /* This next test is true if the invisible property has a stickiness
1948 such that an insertion at POS would inherit it. */
1949 && (NILP (invis_overlay)
1950 /* Invisible property is from a text-property. */
1951 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1952 == (test_offs == 0 ? 1 : -1))
1953 /* Invisible property is from an overlay. */
1954 : (test_offs == 0
1955 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1956 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1957 pos += adj;
1958
1959 return pos;
1960 }
1961
1962 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1963 position BYTEPOS. If the target position is
1964 before an intangible character, move to an ok place. */
1965
1966 void
1967 set_point_both (EMACS_INT charpos, EMACS_INT bytepos)
1968 {
1969 register INTERVAL to, from, toprev, fromprev;
1970 EMACS_INT buffer_point;
1971 EMACS_INT old_position = PT;
1972 /* This ensures that we move forward past intangible text when the
1973 initial position is the same as the destination, in the rare
1974 instances where this is important, e.g. in line-move-finish
1975 (simple.el). */
1976 int backwards = (charpos < old_position ? 1 : 0);
1977 int have_overlays;
1978 EMACS_INT original_position;
1979
1980 BVAR (current_buffer, point_before_scroll) = Qnil;
1981
1982 if (charpos == PT)
1983 return;
1984
1985 /* In a single-byte buffer, the two positions must be equal. */
1986 eassert (ZV != ZV_BYTE || charpos == bytepos);
1987
1988 /* Check this now, before checking if the buffer has any intervals.
1989 That way, we can catch conditions which break this sanity check
1990 whether or not there are intervals in the buffer. */
1991 eassert (charpos <= ZV && charpos >= BEGV);
1992
1993 have_overlays = (current_buffer->overlays_before
1994 || current_buffer->overlays_after);
1995
1996 /* If we have no text properties and overlays,
1997 then we can do it quickly. */
1998 if (NULL_INTERVAL_P (BUF_INTERVALS (current_buffer)) && ! have_overlays)
1999 {
2000 temp_set_point_both (current_buffer, charpos, bytepos);
2001 return;
2002 }
2003
2004 /* Set TO to the interval containing the char after CHARPOS,
2005 and TOPREV to the interval containing the char before CHARPOS.
2006 Either one may be null. They may be equal. */
2007 to = find_interval (BUF_INTERVALS (current_buffer), charpos);
2008 if (charpos == BEGV)
2009 toprev = 0;
2010 else if (to && to->position == charpos)
2011 toprev = previous_interval (to);
2012 else
2013 toprev = to;
2014
2015 buffer_point = (PT == ZV ? ZV - 1 : PT);
2016
2017 /* Set FROM to the interval containing the char after PT,
2018 and FROMPREV to the interval containing the char before PT.
2019 Either one may be null. They may be equal. */
2020 /* We could cache this and save time. */
2021 from = find_interval (BUF_INTERVALS (current_buffer), buffer_point);
2022 if (buffer_point == BEGV)
2023 fromprev = 0;
2024 else if (from && from->position == PT)
2025 fromprev = previous_interval (from);
2026 else if (buffer_point != PT)
2027 fromprev = from, from = 0;
2028 else
2029 fromprev = from;
2030
2031 /* Moving within an interval. */
2032 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
2033 && ! have_overlays)
2034 {
2035 temp_set_point_both (current_buffer, charpos, bytepos);
2036 return;
2037 }
2038
2039 original_position = charpos;
2040
2041 /* If the new position is between two intangible characters
2042 with the same intangible property value,
2043 move forward or backward until a change in that property. */
2044 if (NILP (Vinhibit_point_motion_hooks)
2045 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
2046 || have_overlays)
2047 /* Intangibility never stops us from positioning at the beginning
2048 or end of the buffer, so don't bother checking in that case. */
2049 && charpos != BEGV && charpos != ZV)
2050 {
2051 Lisp_Object pos;
2052 Lisp_Object intangible_propval;
2053
2054 if (backwards)
2055 {
2056 /* If the preceding character is both intangible and invisible,
2057 and the invisible property is `rear-sticky', perturb it so
2058 that the search starts one character earlier -- this ensures
2059 that point can never move to the end of an invisible/
2060 intangible/rear-sticky region. */
2061 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
2062
2063 XSETINT (pos, charpos);
2064
2065 /* If following char is intangible,
2066 skip back over all chars with matching intangible property. */
2067
2068 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
2069
2070 if (! NILP (intangible_propval))
2071 {
2072 while (XINT (pos) > BEGV
2073 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2074 Qintangible, Qnil),
2075 intangible_propval))
2076 pos = Fprevious_char_property_change (pos, Qnil);
2077
2078 /* Set CHARPOS from POS, and if the final intangible character
2079 that we skipped over is also invisible, and the invisible
2080 property is `front-sticky', perturb it to be one character
2081 earlier -- this ensures that point can never move to the
2082 beginning of an invisible/intangible/front-sticky region. */
2083 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
2084 }
2085 }
2086 else
2087 {
2088 /* If the following character is both intangible and invisible,
2089 and the invisible property is `front-sticky', perturb it so
2090 that the search starts one character later -- this ensures
2091 that point can never move to the beginning of an
2092 invisible/intangible/front-sticky region. */
2093 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
2094
2095 XSETINT (pos, charpos);
2096
2097 /* If preceding char is intangible,
2098 skip forward over all chars with matching intangible property. */
2099
2100 intangible_propval = Fget_char_property (make_number (charpos - 1),
2101 Qintangible, Qnil);
2102
2103 if (! NILP (intangible_propval))
2104 {
2105 while (XINT (pos) < ZV
2106 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2107 intangible_propval))
2108 pos = Fnext_char_property_change (pos, Qnil);
2109
2110 /* Set CHARPOS from POS, and if the final intangible character
2111 that we skipped over is also invisible, and the invisible
2112 property is `rear-sticky', perturb it to be one character
2113 later -- this ensures that point can never move to the
2114 end of an invisible/intangible/rear-sticky region. */
2115 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
2116 }
2117 }
2118
2119 bytepos = buf_charpos_to_bytepos (current_buffer, charpos);
2120 }
2121
2122 if (charpos != original_position)
2123 {
2124 /* Set TO to the interval containing the char after CHARPOS,
2125 and TOPREV to the interval containing the char before CHARPOS.
2126 Either one may be null. They may be equal. */
2127 to = find_interval (BUF_INTERVALS (current_buffer), charpos);
2128 if (charpos == BEGV)
2129 toprev = 0;
2130 else if (to && to->position == charpos)
2131 toprev = previous_interval (to);
2132 else
2133 toprev = to;
2134 }
2135
2136 /* Here TO is the interval after the stopping point
2137 and TOPREV is the interval before the stopping point.
2138 One or the other may be null. */
2139
2140 temp_set_point_both (current_buffer, charpos, bytepos);
2141
2142 /* We run point-left and point-entered hooks here, if the
2143 two intervals are not equivalent. These hooks take
2144 (old_point, new_point) as arguments. */
2145 if (NILP (Vinhibit_point_motion_hooks)
2146 && (! intervals_equal (from, to)
2147 || ! intervals_equal (fromprev, toprev)))
2148 {
2149 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2150
2151 if (fromprev)
2152 leave_before = textget (fromprev->plist, Qpoint_left);
2153 else
2154 leave_before = Qnil;
2155
2156 if (from)
2157 leave_after = textget (from->plist, Qpoint_left);
2158 else
2159 leave_after = Qnil;
2160
2161 if (toprev)
2162 enter_before = textget (toprev->plist, Qpoint_entered);
2163 else
2164 enter_before = Qnil;
2165
2166 if (to)
2167 enter_after = textget (to->plist, Qpoint_entered);
2168 else
2169 enter_after = Qnil;
2170
2171 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2172 call2 (leave_before, make_number (old_position),
2173 make_number (charpos));
2174 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2175 call2 (leave_after, make_number (old_position),
2176 make_number (charpos));
2177
2178 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2179 call2 (enter_before, make_number (old_position),
2180 make_number (charpos));
2181 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2182 call2 (enter_after, make_number (old_position),
2183 make_number (charpos));
2184 }
2185 }
2186 \f
2187 /* Move point to POSITION, unless POSITION is inside an intangible
2188 segment that reaches all the way to point. */
2189
2190 void
2191 move_if_not_intangible (EMACS_INT position)
2192 {
2193 Lisp_Object pos;
2194 Lisp_Object intangible_propval;
2195
2196 XSETINT (pos, position);
2197
2198 if (! NILP (Vinhibit_point_motion_hooks))
2199 /* If intangible is inhibited, always move point to POSITION. */
2200 ;
2201 else if (PT < position && XINT (pos) < ZV)
2202 {
2203 /* We want to move forward, so check the text before POSITION. */
2204
2205 intangible_propval = Fget_char_property (pos,
2206 Qintangible, Qnil);
2207
2208 /* If following char is intangible,
2209 skip back over all chars with matching intangible property. */
2210 if (! NILP (intangible_propval))
2211 while (XINT (pos) > BEGV
2212 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2213 Qintangible, Qnil),
2214 intangible_propval))
2215 pos = Fprevious_char_property_change (pos, Qnil);
2216 }
2217 else if (XINT (pos) > BEGV)
2218 {
2219 /* We want to move backward, so check the text after POSITION. */
2220
2221 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2222 Qintangible, Qnil);
2223
2224 /* If following char is intangible,
2225 skip forward over all chars with matching intangible property. */
2226 if (! NILP (intangible_propval))
2227 while (XINT (pos) < ZV
2228 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2229 intangible_propval))
2230 pos = Fnext_char_property_change (pos, Qnil);
2231
2232 }
2233 else if (position < BEGV)
2234 position = BEGV;
2235 else if (position > ZV)
2236 position = ZV;
2237
2238 /* If the whole stretch between PT and POSITION isn't intangible,
2239 try moving to POSITION (which means we actually move farther
2240 if POSITION is inside of intangible text). */
2241
2242 if (XINT (pos) != PT)
2243 SET_PT (position);
2244 }
2245 \f
2246 /* If text at position POS has property PROP, set *VAL to the property
2247 value, *START and *END to the beginning and end of a region that
2248 has the same property, and return 1. Otherwise return 0.
2249
2250 OBJECT is the string or buffer to look for the property in;
2251 nil means the current buffer. */
2252
2253 int
2254 get_property_and_range (EMACS_INT pos, Lisp_Object prop, Lisp_Object *val,
2255 EMACS_INT *start, EMACS_INT *end, Lisp_Object object)
2256 {
2257 INTERVAL i, prev, next;
2258
2259 if (NILP (object))
2260 i = find_interval (BUF_INTERVALS (current_buffer), pos);
2261 else if (BUFFERP (object))
2262 i = find_interval (BUF_INTERVALS (XBUFFER (object)), pos);
2263 else if (STRINGP (object))
2264 i = find_interval (STRING_INTERVALS (object), pos);
2265 else
2266 abort ();
2267
2268 if (NULL_INTERVAL_P (i) || (i->position + LENGTH (i) <= pos))
2269 return 0;
2270 *val = textget (i->plist, prop);
2271 if (NILP (*val))
2272 return 0;
2273
2274 next = i; /* remember it in advance */
2275 prev = previous_interval (i);
2276 while (! NULL_INTERVAL_P (prev)
2277 && EQ (*val, textget (prev->plist, prop)))
2278 i = prev, prev = previous_interval (prev);
2279 *start = i->position;
2280
2281 next = next_interval (i);
2282 while (! NULL_INTERVAL_P (next)
2283 && EQ (*val, textget (next->plist, prop)))
2284 i = next, next = next_interval (next);
2285 *end = i->position + LENGTH (i);
2286
2287 return 1;
2288 }
2289 \f
2290 /* Return the proper local keymap TYPE for position POSITION in
2291 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2292 specified by the PROP property, if any. Otherwise, if TYPE is
2293 `local-map' use BUFFER's local map.
2294
2295 POSITION must be in the accessible part of BUFFER. */
2296
2297 Lisp_Object
2298 get_local_map (register EMACS_INT position, register struct buffer *buffer,
2299 Lisp_Object type)
2300 {
2301 Lisp_Object prop, lispy_position, lispy_buffer;
2302 EMACS_INT old_begv, old_zv, old_begv_byte, old_zv_byte;
2303
2304 /* Perhaps we should just change `position' to the limit. */
2305 if (position > BUF_ZV (buffer) || position < BUF_BEGV (buffer))
2306 abort ();
2307
2308 /* Ignore narrowing, so that a local map continues to be valid even if
2309 the visible region contains no characters and hence no properties. */
2310 old_begv = BUF_BEGV (buffer);
2311 old_zv = BUF_ZV (buffer);
2312 old_begv_byte = BUF_BEGV_BYTE (buffer);
2313 old_zv_byte = BUF_ZV_BYTE (buffer);
2314
2315 SET_BUF_BEGV_BOTH (buffer, BUF_BEG (buffer), BUF_BEG_BYTE (buffer));
2316 SET_BUF_ZV_BOTH (buffer, BUF_Z (buffer), BUF_Z_BYTE (buffer));
2317
2318 XSETFASTINT (lispy_position, position);
2319 XSETBUFFER (lispy_buffer, buffer);
2320 /* First check if the CHAR has any property. This is because when
2321 we click with the mouse, the mouse pointer is really pointing
2322 to the CHAR after POS. */
2323 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2324 /* If not, look at the POS's properties. This is necessary because when
2325 editing a field with a `local-map' property, we want insertion at the end
2326 to obey the `local-map' property. */
2327 if (NILP (prop))
2328 prop = get_pos_property (lispy_position, type, lispy_buffer);
2329
2330 SET_BUF_BEGV_BOTH (buffer, old_begv, old_begv_byte);
2331 SET_BUF_ZV_BOTH (buffer, old_zv, old_zv_byte);
2332
2333 /* Use the local map only if it is valid. */
2334 prop = get_keymap (prop, 0, 0);
2335 if (CONSP (prop))
2336 return prop;
2337
2338 if (EQ (type, Qkeymap))
2339 return Qnil;
2340 else
2341 return BVAR (buffer, keymap);
2342 }
2343 \f
2344 /* Produce an interval tree reflecting the intervals in
2345 TREE from START to START + LENGTH.
2346 The new interval tree has no parent and has a starting-position of 0. */
2347
2348 INTERVAL
2349 copy_intervals (INTERVAL tree, EMACS_INT start, EMACS_INT length)
2350 {
2351 register INTERVAL i, new, t;
2352 register EMACS_INT got, prevlen;
2353
2354 if (NULL_INTERVAL_P (tree) || length <= 0)
2355 return NULL_INTERVAL;
2356
2357 i = find_interval (tree, start);
2358 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
2359 abort ();
2360
2361 /* If there is only one interval and it's the default, return nil. */
2362 if ((start - i->position + 1 + length) < LENGTH (i)
2363 && DEFAULT_INTERVAL_P (i))
2364 return NULL_INTERVAL;
2365
2366 new = make_interval ();
2367 new->position = 0;
2368 got = (LENGTH (i) - (start - i->position));
2369 new->total_length = length;
2370 CHECK_TOTAL_LENGTH (new);
2371 copy_properties (i, new);
2372
2373 t = new;
2374 prevlen = got;
2375 while (got < length)
2376 {
2377 i = next_interval (i);
2378 t = split_interval_right (t, prevlen);
2379 copy_properties (i, t);
2380 prevlen = LENGTH (i);
2381 got += prevlen;
2382 }
2383
2384 return balance_an_interval (new);
2385 }
2386
2387 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2388
2389 void
2390 copy_intervals_to_string (Lisp_Object string, struct buffer *buffer,
2391 EMACS_INT position, EMACS_INT length)
2392 {
2393 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
2394 position, length);
2395 if (NULL_INTERVAL_P (interval_copy))
2396 return;
2397
2398 SET_INTERVAL_OBJECT (interval_copy, string);
2399 STRING_SET_INTERVALS (string, interval_copy);
2400 }
2401 \f
2402 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2403 Assume they have identical characters. */
2404
2405 int
2406 compare_string_intervals (Lisp_Object s1, Lisp_Object s2)
2407 {
2408 INTERVAL i1, i2;
2409 EMACS_INT pos = 0;
2410 EMACS_INT end = SCHARS (s1);
2411
2412 i1 = find_interval (STRING_INTERVALS (s1), 0);
2413 i2 = find_interval (STRING_INTERVALS (s2), 0);
2414
2415 while (pos < end)
2416 {
2417 /* Determine how far we can go before we reach the end of I1 or I2. */
2418 EMACS_INT len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2419 EMACS_INT len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2420 EMACS_INT distance = min (len1, len2);
2421
2422 /* If we ever find a mismatch between the strings,
2423 they differ. */
2424 if (! intervals_equal (i1, i2))
2425 return 0;
2426
2427 /* Advance POS till the end of the shorter interval,
2428 and advance one or both interval pointers for the new position. */
2429 pos += distance;
2430 if (len1 == distance)
2431 i1 = next_interval (i1);
2432 if (len2 == distance)
2433 i2 = next_interval (i2);
2434 }
2435 return 1;
2436 }
2437 \f
2438 /* Recursively adjust interval I in the current buffer
2439 for setting enable_multibyte_characters to MULTI_FLAG.
2440 The range of interval I is START ... END in characters,
2441 START_BYTE ... END_BYTE in bytes. */
2442
2443 static void
2444 set_intervals_multibyte_1 (INTERVAL i, int multi_flag,
2445 EMACS_INT start, EMACS_INT start_byte,
2446 EMACS_INT end, EMACS_INT end_byte)
2447 {
2448 /* Fix the length of this interval. */
2449 if (multi_flag)
2450 i->total_length = end - start;
2451 else
2452 i->total_length = end_byte - start_byte;
2453 CHECK_TOTAL_LENGTH (i);
2454
2455 if (TOTAL_LENGTH (i) == 0)
2456 {
2457 delete_interval (i);
2458 return;
2459 }
2460
2461 /* Recursively fix the length of the subintervals. */
2462 if (i->left)
2463 {
2464 EMACS_INT left_end, left_end_byte;
2465
2466 if (multi_flag)
2467 {
2468 EMACS_INT temp;
2469 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2470 left_end = BYTE_TO_CHAR (left_end_byte);
2471
2472 temp = CHAR_TO_BYTE (left_end);
2473
2474 /* If LEFT_END_BYTE is in the middle of a character,
2475 adjust it and LEFT_END to a char boundary. */
2476 if (left_end_byte > temp)
2477 {
2478 left_end_byte = temp;
2479 }
2480 if (left_end_byte < temp)
2481 {
2482 left_end--;
2483 left_end_byte = CHAR_TO_BYTE (left_end);
2484 }
2485 }
2486 else
2487 {
2488 left_end = start + LEFT_TOTAL_LENGTH (i);
2489 left_end_byte = CHAR_TO_BYTE (left_end);
2490 }
2491
2492 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2493 left_end, left_end_byte);
2494 }
2495 if (i->right)
2496 {
2497 EMACS_INT right_start_byte, right_start;
2498
2499 if (multi_flag)
2500 {
2501 EMACS_INT temp;
2502
2503 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2504 right_start = BYTE_TO_CHAR (right_start_byte);
2505
2506 /* If RIGHT_START_BYTE is in the middle of a character,
2507 adjust it and RIGHT_START to a char boundary. */
2508 temp = CHAR_TO_BYTE (right_start);
2509
2510 if (right_start_byte < temp)
2511 {
2512 right_start_byte = temp;
2513 }
2514 if (right_start_byte > temp)
2515 {
2516 right_start++;
2517 right_start_byte = CHAR_TO_BYTE (right_start);
2518 }
2519 }
2520 else
2521 {
2522 right_start = end - RIGHT_TOTAL_LENGTH (i);
2523 right_start_byte = CHAR_TO_BYTE (right_start);
2524 }
2525
2526 set_intervals_multibyte_1 (i->right, multi_flag,
2527 right_start, right_start_byte,
2528 end, end_byte);
2529 }
2530
2531 /* Rounding to char boundaries can theoretically ake this interval
2532 spurious. If so, delete one child, and copy its property list
2533 to this interval. */
2534 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2535 {
2536 if ((i)->left)
2537 {
2538 (i)->plist = (i)->left->plist;
2539 (i)->left->total_length = 0;
2540 delete_interval ((i)->left);
2541 }
2542 else
2543 {
2544 (i)->plist = (i)->right->plist;
2545 (i)->right->total_length = 0;
2546 delete_interval ((i)->right);
2547 }
2548 }
2549 }
2550
2551 /* Update the intervals of the current buffer
2552 to fit the contents as multibyte (if MULTI_FLAG is 1)
2553 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2554
2555 void
2556 set_intervals_multibyte (int multi_flag)
2557 {
2558 if (BUF_INTERVALS (current_buffer))
2559 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer), multi_flag,
2560 BEG, BEG_BYTE, Z, Z_BYTE);
2561 }