Simple wrapper for make_unibyte_string, adjust font_open_by_name.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #ifdef HAVE_MENUS
40 #if defined (HAVE_X_WINDOWS)
41 #include "xterm.h"
42 #endif
43 #endif /* HAVE_MENUS */
44
45 Lisp_Object Qstring_lessp;
46 static Lisp_Object Qprovide, Qrequire;
47 static Lisp_Object Qyes_or_no_p_history;
48 Lisp_Object Qcursor_in_echo_area;
49 static Lisp_Object Qwidget_type;
50 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
51
52 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
53
54 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
55
56 #ifndef HAVE_UNISTD_H
57 extern long time ();
58 #endif
59 \f
60 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
61 doc: /* Return the argument unchanged. */)
62 (Lisp_Object arg)
63 {
64 return arg;
65 }
66
67 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
68 doc: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
74 (Lisp_Object limit)
75 {
76 EMACS_INT val;
77 Lisp_Object lispy_val;
78
79 if (EQ (limit, Qt))
80 {
81 EMACS_TIME t = current_emacs_time ();
82 seed_random (getpid () ^ EMACS_SECS (t) ^ EMACS_NSECS (t));
83 }
84
85 if (NATNUMP (limit) && XFASTINT (limit) != 0)
86 {
87 /* Try to take our random number from the higher bits of VAL,
88 not the lower, since (says Gentzel) the low bits of `random'
89 are less random than the higher ones. We do this by using the
90 quotient rather than the remainder. At the high end of the RNG
91 it's possible to get a quotient larger than n; discarding
92 these values eliminates the bias that would otherwise appear
93 when using a large n. */
94 EMACS_INT denominator = (INTMASK + 1) / XFASTINT (limit);
95 do
96 val = get_random () / denominator;
97 while (val >= XFASTINT (limit));
98 }
99 else
100 val = get_random ();
101 XSETINT (lispy_val, val);
102 return lispy_val;
103 }
104 \f
105 /* Heuristic on how many iterations of a tight loop can be safely done
106 before it's time to do a QUIT. This must be a power of 2. */
107 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
108
109 /* Random data-structure functions */
110
111 DEFUN ("length", Flength, Slength, 1, 1, 0,
112 doc: /* Return the length of vector, list or string SEQUENCE.
113 A byte-code function object is also allowed.
114 If the string contains multibyte characters, this is not necessarily
115 the number of bytes in the string; it is the number of characters.
116 To get the number of bytes, use `string-bytes'. */)
117 (register Lisp_Object sequence)
118 {
119 register Lisp_Object val;
120
121 if (STRINGP (sequence))
122 XSETFASTINT (val, SCHARS (sequence));
123 else if (VECTORP (sequence))
124 XSETFASTINT (val, ASIZE (sequence));
125 else if (CHAR_TABLE_P (sequence))
126 XSETFASTINT (val, MAX_CHAR);
127 else if (BOOL_VECTOR_P (sequence))
128 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
129 else if (COMPILEDP (sequence))
130 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
131 else if (CONSP (sequence))
132 {
133 EMACS_INT i = 0;
134
135 do
136 {
137 ++i;
138 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
139 {
140 if (MOST_POSITIVE_FIXNUM < i)
141 error ("List too long");
142 QUIT;
143 }
144 sequence = XCDR (sequence);
145 }
146 while (CONSP (sequence));
147
148 CHECK_LIST_END (sequence, sequence);
149
150 val = make_number (i);
151 }
152 else if (NILP (sequence))
153 XSETFASTINT (val, 0);
154 else
155 wrong_type_argument (Qsequencep, sequence);
156
157 return val;
158 }
159
160 /* This does not check for quits. That is safe since it must terminate. */
161
162 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
163 doc: /* Return the length of a list, but avoid error or infinite loop.
164 This function never gets an error. If LIST is not really a list,
165 it returns 0. If LIST is circular, it returns a finite value
166 which is at least the number of distinct elements. */)
167 (Lisp_Object list)
168 {
169 Lisp_Object tail, halftail;
170 double hilen = 0;
171 uintmax_t lolen = 1;
172
173 if (! CONSP (list))
174 return make_number (0);
175
176 /* halftail is used to detect circular lists. */
177 for (tail = halftail = list; ; )
178 {
179 tail = XCDR (tail);
180 if (! CONSP (tail))
181 break;
182 if (EQ (tail, halftail))
183 break;
184 lolen++;
185 if ((lolen & 1) == 0)
186 {
187 halftail = XCDR (halftail);
188 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
189 {
190 QUIT;
191 if (lolen == 0)
192 hilen += UINTMAX_MAX + 1.0;
193 }
194 }
195 }
196
197 /* If the length does not fit into a fixnum, return a float.
198 On all known practical machines this returns an upper bound on
199 the true length. */
200 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
201 }
202
203 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
204 doc: /* Return the number of bytes in STRING.
205 If STRING is multibyte, this may be greater than the length of STRING. */)
206 (Lisp_Object string)
207 {
208 CHECK_STRING (string);
209 return make_number (SBYTES (string));
210 }
211
212 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
213 doc: /* Return t if two strings have identical contents.
214 Case is significant, but text properties are ignored.
215 Symbols are also allowed; their print names are used instead. */)
216 (register Lisp_Object s1, Lisp_Object s2)
217 {
218 if (SYMBOLP (s1))
219 s1 = SYMBOL_NAME (s1);
220 if (SYMBOLP (s2))
221 s2 = SYMBOL_NAME (s2);
222 CHECK_STRING (s1);
223 CHECK_STRING (s2);
224
225 if (SCHARS (s1) != SCHARS (s2)
226 || SBYTES (s1) != SBYTES (s2)
227 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
228 return Qnil;
229 return Qt;
230 }
231
232 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
233 doc: /* Compare the contents of two strings, converting to multibyte if needed.
234 In string STR1, skip the first START1 characters and stop at END1.
235 In string STR2, skip the first START2 characters and stop at END2.
236 END1 and END2 default to the full lengths of the respective strings.
237
238 Case is significant in this comparison if IGNORE-CASE is nil.
239 Unibyte strings are converted to multibyte for comparison.
240
241 The value is t if the strings (or specified portions) match.
242 If string STR1 is less, the value is a negative number N;
243 - 1 - N is the number of characters that match at the beginning.
244 If string STR1 is greater, the value is a positive number N;
245 N - 1 is the number of characters that match at the beginning. */)
246 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
247 {
248 register ptrdiff_t end1_char, end2_char;
249 register ptrdiff_t i1, i1_byte, i2, i2_byte;
250
251 CHECK_STRING (str1);
252 CHECK_STRING (str2);
253 if (NILP (start1))
254 start1 = make_number (0);
255 if (NILP (start2))
256 start2 = make_number (0);
257 CHECK_NATNUM (start1);
258 CHECK_NATNUM (start2);
259 if (! NILP (end1))
260 CHECK_NATNUM (end1);
261 if (! NILP (end2))
262 CHECK_NATNUM (end2);
263
264 end1_char = SCHARS (str1);
265 if (! NILP (end1) && end1_char > XINT (end1))
266 end1_char = XINT (end1);
267 if (end1_char < XINT (start1))
268 args_out_of_range (str1, start1);
269
270 end2_char = SCHARS (str2);
271 if (! NILP (end2) && end2_char > XINT (end2))
272 end2_char = XINT (end2);
273 if (end2_char < XINT (start2))
274 args_out_of_range (str2, start2);
275
276 i1 = XINT (start1);
277 i2 = XINT (start2);
278
279 i1_byte = string_char_to_byte (str1, i1);
280 i2_byte = string_char_to_byte (str2, i2);
281
282 while (i1 < end1_char && i2 < end2_char)
283 {
284 /* When we find a mismatch, we must compare the
285 characters, not just the bytes. */
286 int c1, c2;
287
288 if (STRING_MULTIBYTE (str1))
289 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
290 else
291 {
292 c1 = SREF (str1, i1++);
293 MAKE_CHAR_MULTIBYTE (c1);
294 }
295
296 if (STRING_MULTIBYTE (str2))
297 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
298 else
299 {
300 c2 = SREF (str2, i2++);
301 MAKE_CHAR_MULTIBYTE (c2);
302 }
303
304 if (c1 == c2)
305 continue;
306
307 if (! NILP (ignore_case))
308 {
309 Lisp_Object tem;
310
311 tem = Fupcase (make_number (c1));
312 c1 = XINT (tem);
313 tem = Fupcase (make_number (c2));
314 c2 = XINT (tem);
315 }
316
317 if (c1 == c2)
318 continue;
319
320 /* Note that I1 has already been incremented
321 past the character that we are comparing;
322 hence we don't add or subtract 1 here. */
323 if (c1 < c2)
324 return make_number (- i1 + XINT (start1));
325 else
326 return make_number (i1 - XINT (start1));
327 }
328
329 if (i1 < end1_char)
330 return make_number (i1 - XINT (start1) + 1);
331 if (i2 < end2_char)
332 return make_number (- i1 + XINT (start1) - 1);
333
334 return Qt;
335 }
336
337 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
338 doc: /* Return t if first arg string is less than second in lexicographic order.
339 Case is significant.
340 Symbols are also allowed; their print names are used instead. */)
341 (register Lisp_Object s1, Lisp_Object s2)
342 {
343 register ptrdiff_t end;
344 register ptrdiff_t i1, i1_byte, i2, i2_byte;
345
346 if (SYMBOLP (s1))
347 s1 = SYMBOL_NAME (s1);
348 if (SYMBOLP (s2))
349 s2 = SYMBOL_NAME (s2);
350 CHECK_STRING (s1);
351 CHECK_STRING (s2);
352
353 i1 = i1_byte = i2 = i2_byte = 0;
354
355 end = SCHARS (s1);
356 if (end > SCHARS (s2))
357 end = SCHARS (s2);
358
359 while (i1 < end)
360 {
361 /* When we find a mismatch, we must compare the
362 characters, not just the bytes. */
363 int c1, c2;
364
365 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
366 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
367
368 if (c1 != c2)
369 return c1 < c2 ? Qt : Qnil;
370 }
371 return i1 < SCHARS (s2) ? Qt : Qnil;
372 }
373 \f
374 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
375 enum Lisp_Type target_type, int last_special);
376
377 /* ARGSUSED */
378 Lisp_Object
379 concat2 (Lisp_Object s1, Lisp_Object s2)
380 {
381 Lisp_Object args[2];
382 args[0] = s1;
383 args[1] = s2;
384 return concat (2, args, Lisp_String, 0);
385 }
386
387 /* ARGSUSED */
388 Lisp_Object
389 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
390 {
391 Lisp_Object args[3];
392 args[0] = s1;
393 args[1] = s2;
394 args[2] = s3;
395 return concat (3, args, Lisp_String, 0);
396 }
397
398 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
399 doc: /* Concatenate all the arguments and make the result a list.
400 The result is a list whose elements are the elements of all the arguments.
401 Each argument may be a list, vector or string.
402 The last argument is not copied, just used as the tail of the new list.
403 usage: (append &rest SEQUENCES) */)
404 (ptrdiff_t nargs, Lisp_Object *args)
405 {
406 return concat (nargs, args, Lisp_Cons, 1);
407 }
408
409 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
410 doc: /* Concatenate all the arguments and make the result a string.
411 The result is a string whose elements are the elements of all the arguments.
412 Each argument may be a string or a list or vector of characters (integers).
413 usage: (concat &rest SEQUENCES) */)
414 (ptrdiff_t nargs, Lisp_Object *args)
415 {
416 return concat (nargs, args, Lisp_String, 0);
417 }
418
419 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
420 doc: /* Concatenate all the arguments and make the result a vector.
421 The result is a vector whose elements are the elements of all the arguments.
422 Each argument may be a list, vector or string.
423 usage: (vconcat &rest SEQUENCES) */)
424 (ptrdiff_t nargs, Lisp_Object *args)
425 {
426 return concat (nargs, args, Lisp_Vectorlike, 0);
427 }
428
429
430 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
431 doc: /* Return a copy of a list, vector, string or char-table.
432 The elements of a list or vector are not copied; they are shared
433 with the original. */)
434 (Lisp_Object arg)
435 {
436 if (NILP (arg)) return arg;
437
438 if (CHAR_TABLE_P (arg))
439 {
440 return copy_char_table (arg);
441 }
442
443 if (BOOL_VECTOR_P (arg))
444 {
445 Lisp_Object val;
446 ptrdiff_t size_in_chars
447 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
448 / BOOL_VECTOR_BITS_PER_CHAR);
449
450 val = Fmake_bool_vector (Flength (arg), Qnil);
451 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
452 size_in_chars);
453 return val;
454 }
455
456 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
457 wrong_type_argument (Qsequencep, arg);
458
459 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
460 }
461
462 /* This structure holds information of an argument of `concat' that is
463 a string and has text properties to be copied. */
464 struct textprop_rec
465 {
466 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
467 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
468 ptrdiff_t to; /* refer to VAL (the target string) */
469 };
470
471 static Lisp_Object
472 concat (ptrdiff_t nargs, Lisp_Object *args,
473 enum Lisp_Type target_type, int last_special)
474 {
475 Lisp_Object val;
476 register Lisp_Object tail;
477 register Lisp_Object this;
478 ptrdiff_t toindex;
479 ptrdiff_t toindex_byte = 0;
480 register EMACS_INT result_len;
481 register EMACS_INT result_len_byte;
482 ptrdiff_t argnum;
483 Lisp_Object last_tail;
484 Lisp_Object prev;
485 int some_multibyte;
486 /* When we make a multibyte string, we can't copy text properties
487 while concatenating each string because the length of resulting
488 string can't be decided until we finish the whole concatenation.
489 So, we record strings that have text properties to be copied
490 here, and copy the text properties after the concatenation. */
491 struct textprop_rec *textprops = NULL;
492 /* Number of elements in textprops. */
493 ptrdiff_t num_textprops = 0;
494 USE_SAFE_ALLOCA;
495
496 tail = Qnil;
497
498 /* In append, the last arg isn't treated like the others */
499 if (last_special && nargs > 0)
500 {
501 nargs--;
502 last_tail = args[nargs];
503 }
504 else
505 last_tail = Qnil;
506
507 /* Check each argument. */
508 for (argnum = 0; argnum < nargs; argnum++)
509 {
510 this = args[argnum];
511 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
512 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
513 wrong_type_argument (Qsequencep, this);
514 }
515
516 /* Compute total length in chars of arguments in RESULT_LEN.
517 If desired output is a string, also compute length in bytes
518 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
519 whether the result should be a multibyte string. */
520 result_len_byte = 0;
521 result_len = 0;
522 some_multibyte = 0;
523 for (argnum = 0; argnum < nargs; argnum++)
524 {
525 EMACS_INT len;
526 this = args[argnum];
527 len = XFASTINT (Flength (this));
528 if (target_type == Lisp_String)
529 {
530 /* We must count the number of bytes needed in the string
531 as well as the number of characters. */
532 ptrdiff_t i;
533 Lisp_Object ch;
534 int c;
535 ptrdiff_t this_len_byte;
536
537 if (VECTORP (this) || COMPILEDP (this))
538 for (i = 0; i < len; i++)
539 {
540 ch = AREF (this, i);
541 CHECK_CHARACTER (ch);
542 c = XFASTINT (ch);
543 this_len_byte = CHAR_BYTES (c);
544 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
545 string_overflow ();
546 result_len_byte += this_len_byte;
547 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
548 some_multibyte = 1;
549 }
550 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
551 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
552 else if (CONSP (this))
553 for (; CONSP (this); this = XCDR (this))
554 {
555 ch = XCAR (this);
556 CHECK_CHARACTER (ch);
557 c = XFASTINT (ch);
558 this_len_byte = CHAR_BYTES (c);
559 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
560 string_overflow ();
561 result_len_byte += this_len_byte;
562 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
563 some_multibyte = 1;
564 }
565 else if (STRINGP (this))
566 {
567 if (STRING_MULTIBYTE (this))
568 {
569 some_multibyte = 1;
570 this_len_byte = SBYTES (this);
571 }
572 else
573 this_len_byte = count_size_as_multibyte (SDATA (this),
574 SCHARS (this));
575 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
576 string_overflow ();
577 result_len_byte += this_len_byte;
578 }
579 }
580
581 result_len += len;
582 if (MOST_POSITIVE_FIXNUM < result_len)
583 memory_full (SIZE_MAX);
584 }
585
586 if (! some_multibyte)
587 result_len_byte = result_len;
588
589 /* Create the output object. */
590 if (target_type == Lisp_Cons)
591 val = Fmake_list (make_number (result_len), Qnil);
592 else if (target_type == Lisp_Vectorlike)
593 val = Fmake_vector (make_number (result_len), Qnil);
594 else if (some_multibyte)
595 val = make_uninit_multibyte_string (result_len, result_len_byte);
596 else
597 val = make_uninit_string (result_len);
598
599 /* In `append', if all but last arg are nil, return last arg. */
600 if (target_type == Lisp_Cons && EQ (val, Qnil))
601 return last_tail;
602
603 /* Copy the contents of the args into the result. */
604 if (CONSP (val))
605 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
606 else
607 toindex = 0, toindex_byte = 0;
608
609 prev = Qnil;
610 if (STRINGP (val))
611 SAFE_NALLOCA (textprops, 1, nargs);
612
613 for (argnum = 0; argnum < nargs; argnum++)
614 {
615 Lisp_Object thislen;
616 ptrdiff_t thisleni = 0;
617 register ptrdiff_t thisindex = 0;
618 register ptrdiff_t thisindex_byte = 0;
619
620 this = args[argnum];
621 if (!CONSP (this))
622 thislen = Flength (this), thisleni = XINT (thislen);
623
624 /* Between strings of the same kind, copy fast. */
625 if (STRINGP (this) && STRINGP (val)
626 && STRING_MULTIBYTE (this) == some_multibyte)
627 {
628 ptrdiff_t thislen_byte = SBYTES (this);
629
630 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
631 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
632 {
633 textprops[num_textprops].argnum = argnum;
634 textprops[num_textprops].from = 0;
635 textprops[num_textprops++].to = toindex;
636 }
637 toindex_byte += thislen_byte;
638 toindex += thisleni;
639 }
640 /* Copy a single-byte string to a multibyte string. */
641 else if (STRINGP (this) && STRINGP (val))
642 {
643 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
644 {
645 textprops[num_textprops].argnum = argnum;
646 textprops[num_textprops].from = 0;
647 textprops[num_textprops++].to = toindex;
648 }
649 toindex_byte += copy_text (SDATA (this),
650 SDATA (val) + toindex_byte,
651 SCHARS (this), 0, 1);
652 toindex += thisleni;
653 }
654 else
655 /* Copy element by element. */
656 while (1)
657 {
658 register Lisp_Object elt;
659
660 /* Fetch next element of `this' arg into `elt', or break if
661 `this' is exhausted. */
662 if (NILP (this)) break;
663 if (CONSP (this))
664 elt = XCAR (this), this = XCDR (this);
665 else if (thisindex >= thisleni)
666 break;
667 else if (STRINGP (this))
668 {
669 int c;
670 if (STRING_MULTIBYTE (this))
671 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
672 thisindex,
673 thisindex_byte);
674 else
675 {
676 c = SREF (this, thisindex); thisindex++;
677 if (some_multibyte && !ASCII_CHAR_P (c))
678 c = BYTE8_TO_CHAR (c);
679 }
680 XSETFASTINT (elt, c);
681 }
682 else if (BOOL_VECTOR_P (this))
683 {
684 int byte;
685 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
686 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
687 elt = Qt;
688 else
689 elt = Qnil;
690 thisindex++;
691 }
692 else
693 {
694 elt = AREF (this, thisindex);
695 thisindex++;
696 }
697
698 /* Store this element into the result. */
699 if (toindex < 0)
700 {
701 XSETCAR (tail, elt);
702 prev = tail;
703 tail = XCDR (tail);
704 }
705 else if (VECTORP (val))
706 {
707 ASET (val, toindex, elt);
708 toindex++;
709 }
710 else
711 {
712 int c;
713 CHECK_CHARACTER (elt);
714 c = XFASTINT (elt);
715 if (some_multibyte)
716 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
717 else
718 SSET (val, toindex_byte++, c);
719 toindex++;
720 }
721 }
722 }
723 if (!NILP (prev))
724 XSETCDR (prev, last_tail);
725
726 if (num_textprops > 0)
727 {
728 Lisp_Object props;
729 ptrdiff_t last_to_end = -1;
730
731 for (argnum = 0; argnum < num_textprops; argnum++)
732 {
733 this = args[textprops[argnum].argnum];
734 props = text_property_list (this,
735 make_number (0),
736 make_number (SCHARS (this)),
737 Qnil);
738 /* If successive arguments have properties, be sure that the
739 value of `composition' property be the copy. */
740 if (last_to_end == textprops[argnum].to)
741 make_composition_value_copy (props);
742 add_text_properties_from_list (val, props,
743 make_number (textprops[argnum].to));
744 last_to_end = textprops[argnum].to + SCHARS (this);
745 }
746 }
747
748 SAFE_FREE ();
749 return val;
750 }
751 \f
752 static Lisp_Object string_char_byte_cache_string;
753 static ptrdiff_t string_char_byte_cache_charpos;
754 static ptrdiff_t string_char_byte_cache_bytepos;
755
756 void
757 clear_string_char_byte_cache (void)
758 {
759 string_char_byte_cache_string = Qnil;
760 }
761
762 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
763
764 ptrdiff_t
765 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
766 {
767 ptrdiff_t i_byte;
768 ptrdiff_t best_below, best_below_byte;
769 ptrdiff_t best_above, best_above_byte;
770
771 best_below = best_below_byte = 0;
772 best_above = SCHARS (string);
773 best_above_byte = SBYTES (string);
774 if (best_above == best_above_byte)
775 return char_index;
776
777 if (EQ (string, string_char_byte_cache_string))
778 {
779 if (string_char_byte_cache_charpos < char_index)
780 {
781 best_below = string_char_byte_cache_charpos;
782 best_below_byte = string_char_byte_cache_bytepos;
783 }
784 else
785 {
786 best_above = string_char_byte_cache_charpos;
787 best_above_byte = string_char_byte_cache_bytepos;
788 }
789 }
790
791 if (char_index - best_below < best_above - char_index)
792 {
793 unsigned char *p = SDATA (string) + best_below_byte;
794
795 while (best_below < char_index)
796 {
797 p += BYTES_BY_CHAR_HEAD (*p);
798 best_below++;
799 }
800 i_byte = p - SDATA (string);
801 }
802 else
803 {
804 unsigned char *p = SDATA (string) + best_above_byte;
805
806 while (best_above > char_index)
807 {
808 p--;
809 while (!CHAR_HEAD_P (*p)) p--;
810 best_above--;
811 }
812 i_byte = p - SDATA (string);
813 }
814
815 string_char_byte_cache_bytepos = i_byte;
816 string_char_byte_cache_charpos = char_index;
817 string_char_byte_cache_string = string;
818
819 return i_byte;
820 }
821 \f
822 /* Return the character index corresponding to BYTE_INDEX in STRING. */
823
824 ptrdiff_t
825 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
826 {
827 ptrdiff_t i, i_byte;
828 ptrdiff_t best_below, best_below_byte;
829 ptrdiff_t best_above, best_above_byte;
830
831 best_below = best_below_byte = 0;
832 best_above = SCHARS (string);
833 best_above_byte = SBYTES (string);
834 if (best_above == best_above_byte)
835 return byte_index;
836
837 if (EQ (string, string_char_byte_cache_string))
838 {
839 if (string_char_byte_cache_bytepos < byte_index)
840 {
841 best_below = string_char_byte_cache_charpos;
842 best_below_byte = string_char_byte_cache_bytepos;
843 }
844 else
845 {
846 best_above = string_char_byte_cache_charpos;
847 best_above_byte = string_char_byte_cache_bytepos;
848 }
849 }
850
851 if (byte_index - best_below_byte < best_above_byte - byte_index)
852 {
853 unsigned char *p = SDATA (string) + best_below_byte;
854 unsigned char *pend = SDATA (string) + byte_index;
855
856 while (p < pend)
857 {
858 p += BYTES_BY_CHAR_HEAD (*p);
859 best_below++;
860 }
861 i = best_below;
862 i_byte = p - SDATA (string);
863 }
864 else
865 {
866 unsigned char *p = SDATA (string) + best_above_byte;
867 unsigned char *pbeg = SDATA (string) + byte_index;
868
869 while (p > pbeg)
870 {
871 p--;
872 while (!CHAR_HEAD_P (*p)) p--;
873 best_above--;
874 }
875 i = best_above;
876 i_byte = p - SDATA (string);
877 }
878
879 string_char_byte_cache_bytepos = i_byte;
880 string_char_byte_cache_charpos = i;
881 string_char_byte_cache_string = string;
882
883 return i;
884 }
885 \f
886 /* Convert STRING to a multibyte string. */
887
888 static Lisp_Object
889 string_make_multibyte (Lisp_Object string)
890 {
891 unsigned char *buf;
892 ptrdiff_t nbytes;
893 Lisp_Object ret;
894 USE_SAFE_ALLOCA;
895
896 if (STRING_MULTIBYTE (string))
897 return string;
898
899 nbytes = count_size_as_multibyte (SDATA (string),
900 SCHARS (string));
901 /* If all the chars are ASCII, they won't need any more bytes
902 once converted. In that case, we can return STRING itself. */
903 if (nbytes == SBYTES (string))
904 return string;
905
906 SAFE_ALLOCA (buf, unsigned char *, nbytes);
907 copy_text (SDATA (string), buf, SBYTES (string),
908 0, 1);
909
910 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
911 SAFE_FREE ();
912
913 return ret;
914 }
915
916
917 /* Convert STRING (if unibyte) to a multibyte string without changing
918 the number of characters. Characters 0200 trough 0237 are
919 converted to eight-bit characters. */
920
921 Lisp_Object
922 string_to_multibyte (Lisp_Object string)
923 {
924 unsigned char *buf;
925 ptrdiff_t nbytes;
926 Lisp_Object ret;
927 USE_SAFE_ALLOCA;
928
929 if (STRING_MULTIBYTE (string))
930 return string;
931
932 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
933 /* If all the chars are ASCII, they won't need any more bytes once
934 converted. */
935 if (nbytes == SBYTES (string))
936 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
937
938 SAFE_ALLOCA (buf, unsigned char *, nbytes);
939 memcpy (buf, SDATA (string), SBYTES (string));
940 str_to_multibyte (buf, nbytes, SBYTES (string));
941
942 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
943 SAFE_FREE ();
944
945 return ret;
946 }
947
948
949 /* Convert STRING to a single-byte string. */
950
951 Lisp_Object
952 string_make_unibyte (Lisp_Object string)
953 {
954 ptrdiff_t nchars;
955 unsigned char *buf;
956 Lisp_Object ret;
957 USE_SAFE_ALLOCA;
958
959 if (! STRING_MULTIBYTE (string))
960 return string;
961
962 nchars = SCHARS (string);
963
964 SAFE_ALLOCA (buf, unsigned char *, nchars);
965 copy_text (SDATA (string), buf, SBYTES (string),
966 1, 0);
967
968 ret = make_unibyte_string ((char *) buf, nchars);
969 SAFE_FREE ();
970
971 return ret;
972 }
973
974 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
975 1, 1, 0,
976 doc: /* Return the multibyte equivalent of STRING.
977 If STRING is unibyte and contains non-ASCII characters, the function
978 `unibyte-char-to-multibyte' is used to convert each unibyte character
979 to a multibyte character. In this case, the returned string is a
980 newly created string with no text properties. If STRING is multibyte
981 or entirely ASCII, it is returned unchanged. In particular, when
982 STRING is unibyte and entirely ASCII, the returned string is unibyte.
983 \(When the characters are all ASCII, Emacs primitives will treat the
984 string the same way whether it is unibyte or multibyte.) */)
985 (Lisp_Object string)
986 {
987 CHECK_STRING (string);
988
989 return string_make_multibyte (string);
990 }
991
992 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
993 1, 1, 0,
994 doc: /* Return the unibyte equivalent of STRING.
995 Multibyte character codes are converted to unibyte according to
996 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
997 If the lookup in the translation table fails, this function takes just
998 the low 8 bits of each character. */)
999 (Lisp_Object string)
1000 {
1001 CHECK_STRING (string);
1002
1003 return string_make_unibyte (string);
1004 }
1005
1006 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1007 1, 1, 0,
1008 doc: /* Return a unibyte string with the same individual bytes as STRING.
1009 If STRING is unibyte, the result is STRING itself.
1010 Otherwise it is a newly created string, with no text properties.
1011 If STRING is multibyte and contains a character of charset
1012 `eight-bit', it is converted to the corresponding single byte. */)
1013 (Lisp_Object string)
1014 {
1015 CHECK_STRING (string);
1016
1017 if (STRING_MULTIBYTE (string))
1018 {
1019 ptrdiff_t bytes = SBYTES (string);
1020 unsigned char *str = xmalloc (bytes);
1021
1022 memcpy (str, SDATA (string), bytes);
1023 bytes = str_as_unibyte (str, bytes);
1024 string = make_unibyte_string ((char *) str, bytes);
1025 xfree (str);
1026 }
1027 return string;
1028 }
1029
1030 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1031 1, 1, 0,
1032 doc: /* Return a multibyte string with the same individual bytes as STRING.
1033 If STRING is multibyte, the result is STRING itself.
1034 Otherwise it is a newly created string, with no text properties.
1035
1036 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1037 part of a correct utf-8 sequence), it is converted to the corresponding
1038 multibyte character of charset `eight-bit'.
1039 See also `string-to-multibyte'.
1040
1041 Beware, this often doesn't really do what you think it does.
1042 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1043 If you're not sure, whether to use `string-as-multibyte' or
1044 `string-to-multibyte', use `string-to-multibyte'. */)
1045 (Lisp_Object string)
1046 {
1047 CHECK_STRING (string);
1048
1049 if (! STRING_MULTIBYTE (string))
1050 {
1051 Lisp_Object new_string;
1052 ptrdiff_t nchars, nbytes;
1053
1054 parse_str_as_multibyte (SDATA (string),
1055 SBYTES (string),
1056 &nchars, &nbytes);
1057 new_string = make_uninit_multibyte_string (nchars, nbytes);
1058 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1059 if (nbytes != SBYTES (string))
1060 str_as_multibyte (SDATA (new_string), nbytes,
1061 SBYTES (string), NULL);
1062 string = new_string;
1063 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1064 }
1065 return string;
1066 }
1067
1068 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1069 1, 1, 0,
1070 doc: /* Return a multibyte string with the same individual chars as STRING.
1071 If STRING is multibyte, the result is STRING itself.
1072 Otherwise it is a newly created string, with no text properties.
1073
1074 If STRING is unibyte and contains an 8-bit byte, it is converted to
1075 the corresponding multibyte character of charset `eight-bit'.
1076
1077 This differs from `string-as-multibyte' by converting each byte of a correct
1078 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1079 correct sequence. */)
1080 (Lisp_Object string)
1081 {
1082 CHECK_STRING (string);
1083
1084 return string_to_multibyte (string);
1085 }
1086
1087 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1088 1, 1, 0,
1089 doc: /* Return a unibyte string with the same individual chars as STRING.
1090 If STRING is unibyte, the result is STRING itself.
1091 Otherwise it is a newly created string, with no text properties,
1092 where each `eight-bit' character is converted to the corresponding byte.
1093 If STRING contains a non-ASCII, non-`eight-bit' character,
1094 an error is signaled. */)
1095 (Lisp_Object string)
1096 {
1097 CHECK_STRING (string);
1098
1099 if (STRING_MULTIBYTE (string))
1100 {
1101 ptrdiff_t chars = SCHARS (string);
1102 unsigned char *str = xmalloc (chars);
1103 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars, 0);
1104
1105 if (converted < chars)
1106 error ("Can't convert the %"pD"dth character to unibyte", converted);
1107 string = make_unibyte_string ((char *) str, chars);
1108 xfree (str);
1109 }
1110 return string;
1111 }
1112
1113 \f
1114 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1115 doc: /* Return a copy of ALIST.
1116 This is an alist which represents the same mapping from objects to objects,
1117 but does not share the alist structure with ALIST.
1118 The objects mapped (cars and cdrs of elements of the alist)
1119 are shared, however.
1120 Elements of ALIST that are not conses are also shared. */)
1121 (Lisp_Object alist)
1122 {
1123 register Lisp_Object tem;
1124
1125 CHECK_LIST (alist);
1126 if (NILP (alist))
1127 return alist;
1128 alist = concat (1, &alist, Lisp_Cons, 0);
1129 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1130 {
1131 register Lisp_Object car;
1132 car = XCAR (tem);
1133
1134 if (CONSP (car))
1135 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1136 }
1137 return alist;
1138 }
1139
1140 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1141 doc: /* Return a new string whose contents are a substring of STRING.
1142 The returned string consists of the characters between index FROM
1143 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1144 zero-indexed: 0 means the first character of STRING. Negative values
1145 are counted from the end of STRING. If TO is nil, the substring runs
1146 to the end of STRING.
1147
1148 The STRING argument may also be a vector. In that case, the return
1149 value is a new vector that contains the elements between index FROM
1150 \(inclusive) and index TO (exclusive) of that vector argument. */)
1151 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1152 {
1153 Lisp_Object res;
1154 ptrdiff_t size;
1155 EMACS_INT from_char, to_char;
1156
1157 CHECK_VECTOR_OR_STRING (string);
1158 CHECK_NUMBER (from);
1159
1160 if (STRINGP (string))
1161 size = SCHARS (string);
1162 else
1163 size = ASIZE (string);
1164
1165 if (NILP (to))
1166 to_char = size;
1167 else
1168 {
1169 CHECK_NUMBER (to);
1170
1171 to_char = XINT (to);
1172 if (to_char < 0)
1173 to_char += size;
1174 }
1175
1176 from_char = XINT (from);
1177 if (from_char < 0)
1178 from_char += size;
1179 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1180 args_out_of_range_3 (string, make_number (from_char),
1181 make_number (to_char));
1182
1183 if (STRINGP (string))
1184 {
1185 ptrdiff_t to_byte =
1186 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1187 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1188 res = make_specified_string (SSDATA (string) + from_byte,
1189 to_char - from_char, to_byte - from_byte,
1190 STRING_MULTIBYTE (string));
1191 copy_text_properties (make_number (from_char), make_number (to_char),
1192 string, make_number (0), res, Qnil);
1193 }
1194 else
1195 res = Fvector (to_char - from_char, &AREF (string, from_char));
1196
1197 return res;
1198 }
1199
1200
1201 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1202 doc: /* Return a substring of STRING, without text properties.
1203 It starts at index FROM and ends before TO.
1204 TO may be nil or omitted; then the substring runs to the end of STRING.
1205 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1206 If FROM or TO is negative, it counts from the end.
1207
1208 With one argument, just copy STRING without its properties. */)
1209 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1210 {
1211 ptrdiff_t size;
1212 EMACS_INT from_char, to_char;
1213 ptrdiff_t from_byte, to_byte;
1214
1215 CHECK_STRING (string);
1216
1217 size = SCHARS (string);
1218
1219 if (NILP (from))
1220 from_char = 0;
1221 else
1222 {
1223 CHECK_NUMBER (from);
1224 from_char = XINT (from);
1225 if (from_char < 0)
1226 from_char += size;
1227 }
1228
1229 if (NILP (to))
1230 to_char = size;
1231 else
1232 {
1233 CHECK_NUMBER (to);
1234 to_char = XINT (to);
1235 if (to_char < 0)
1236 to_char += size;
1237 }
1238
1239 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1240 args_out_of_range_3 (string, make_number (from_char),
1241 make_number (to_char));
1242
1243 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1244 to_byte =
1245 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1246 return make_specified_string (SSDATA (string) + from_byte,
1247 to_char - from_char, to_byte - from_byte,
1248 STRING_MULTIBYTE (string));
1249 }
1250
1251 /* Extract a substring of STRING, giving start and end positions
1252 both in characters and in bytes. */
1253
1254 Lisp_Object
1255 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1256 ptrdiff_t to, ptrdiff_t to_byte)
1257 {
1258 Lisp_Object res;
1259 ptrdiff_t size;
1260
1261 CHECK_VECTOR_OR_STRING (string);
1262
1263 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1264
1265 if (!(0 <= from && from <= to && to <= size))
1266 args_out_of_range_3 (string, make_number (from), make_number (to));
1267
1268 if (STRINGP (string))
1269 {
1270 res = make_specified_string (SSDATA (string) + from_byte,
1271 to - from, to_byte - from_byte,
1272 STRING_MULTIBYTE (string));
1273 copy_text_properties (make_number (from), make_number (to),
1274 string, make_number (0), res, Qnil);
1275 }
1276 else
1277 res = Fvector (to - from, &AREF (string, from));
1278
1279 return res;
1280 }
1281 \f
1282 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1283 doc: /* Take cdr N times on LIST, return the result. */)
1284 (Lisp_Object n, Lisp_Object list)
1285 {
1286 EMACS_INT i, num;
1287 CHECK_NUMBER (n);
1288 num = XINT (n);
1289 for (i = 0; i < num && !NILP (list); i++)
1290 {
1291 QUIT;
1292 CHECK_LIST_CONS (list, list);
1293 list = XCDR (list);
1294 }
1295 return list;
1296 }
1297
1298 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1299 doc: /* Return the Nth element of LIST.
1300 N counts from zero. If LIST is not that long, nil is returned. */)
1301 (Lisp_Object n, Lisp_Object list)
1302 {
1303 return Fcar (Fnthcdr (n, list));
1304 }
1305
1306 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1307 doc: /* Return element of SEQUENCE at index N. */)
1308 (register Lisp_Object sequence, Lisp_Object n)
1309 {
1310 CHECK_NUMBER (n);
1311 if (CONSP (sequence) || NILP (sequence))
1312 return Fcar (Fnthcdr (n, sequence));
1313
1314 /* Faref signals a "not array" error, so check here. */
1315 CHECK_ARRAY (sequence, Qsequencep);
1316 return Faref (sequence, n);
1317 }
1318
1319 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1320 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1321 The value is actually the tail of LIST whose car is ELT. */)
1322 (register Lisp_Object elt, Lisp_Object list)
1323 {
1324 register Lisp_Object tail;
1325 for (tail = list; CONSP (tail); tail = XCDR (tail))
1326 {
1327 register Lisp_Object tem;
1328 CHECK_LIST_CONS (tail, list);
1329 tem = XCAR (tail);
1330 if (! NILP (Fequal (elt, tem)))
1331 return tail;
1332 QUIT;
1333 }
1334 return Qnil;
1335 }
1336
1337 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1338 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1339 The value is actually the tail of LIST whose car is ELT. */)
1340 (register Lisp_Object elt, Lisp_Object list)
1341 {
1342 while (1)
1343 {
1344 if (!CONSP (list) || EQ (XCAR (list), elt))
1345 break;
1346
1347 list = XCDR (list);
1348 if (!CONSP (list) || EQ (XCAR (list), elt))
1349 break;
1350
1351 list = XCDR (list);
1352 if (!CONSP (list) || EQ (XCAR (list), elt))
1353 break;
1354
1355 list = XCDR (list);
1356 QUIT;
1357 }
1358
1359 CHECK_LIST (list);
1360 return list;
1361 }
1362
1363 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1364 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1365 The value is actually the tail of LIST whose car is ELT. */)
1366 (register Lisp_Object elt, Lisp_Object list)
1367 {
1368 register Lisp_Object tail;
1369
1370 if (!FLOATP (elt))
1371 return Fmemq (elt, list);
1372
1373 for (tail = list; CONSP (tail); tail = XCDR (tail))
1374 {
1375 register Lisp_Object tem;
1376 CHECK_LIST_CONS (tail, list);
1377 tem = XCAR (tail);
1378 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1379 return tail;
1380 QUIT;
1381 }
1382 return Qnil;
1383 }
1384
1385 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1386 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1387 The value is actually the first element of LIST whose car is KEY.
1388 Elements of LIST that are not conses are ignored. */)
1389 (Lisp_Object key, Lisp_Object list)
1390 {
1391 while (1)
1392 {
1393 if (!CONSP (list)
1394 || (CONSP (XCAR (list))
1395 && EQ (XCAR (XCAR (list)), key)))
1396 break;
1397
1398 list = XCDR (list);
1399 if (!CONSP (list)
1400 || (CONSP (XCAR (list))
1401 && EQ (XCAR (XCAR (list)), key)))
1402 break;
1403
1404 list = XCDR (list);
1405 if (!CONSP (list)
1406 || (CONSP (XCAR (list))
1407 && EQ (XCAR (XCAR (list)), key)))
1408 break;
1409
1410 list = XCDR (list);
1411 QUIT;
1412 }
1413
1414 return CAR (list);
1415 }
1416
1417 /* Like Fassq but never report an error and do not allow quits.
1418 Use only on lists known never to be circular. */
1419
1420 Lisp_Object
1421 assq_no_quit (Lisp_Object key, Lisp_Object list)
1422 {
1423 while (CONSP (list)
1424 && (!CONSP (XCAR (list))
1425 || !EQ (XCAR (XCAR (list)), key)))
1426 list = XCDR (list);
1427
1428 return CAR_SAFE (list);
1429 }
1430
1431 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1432 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1433 The value is actually the first element of LIST whose car equals KEY. */)
1434 (Lisp_Object key, Lisp_Object list)
1435 {
1436 Lisp_Object car;
1437
1438 while (1)
1439 {
1440 if (!CONSP (list)
1441 || (CONSP (XCAR (list))
1442 && (car = XCAR (XCAR (list)),
1443 EQ (car, key) || !NILP (Fequal (car, key)))))
1444 break;
1445
1446 list = XCDR (list);
1447 if (!CONSP (list)
1448 || (CONSP (XCAR (list))
1449 && (car = XCAR (XCAR (list)),
1450 EQ (car, key) || !NILP (Fequal (car, key)))))
1451 break;
1452
1453 list = XCDR (list);
1454 if (!CONSP (list)
1455 || (CONSP (XCAR (list))
1456 && (car = XCAR (XCAR (list)),
1457 EQ (car, key) || !NILP (Fequal (car, key)))))
1458 break;
1459
1460 list = XCDR (list);
1461 QUIT;
1462 }
1463
1464 return CAR (list);
1465 }
1466
1467 /* Like Fassoc but never report an error and do not allow quits.
1468 Use only on lists known never to be circular. */
1469
1470 Lisp_Object
1471 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1472 {
1473 while (CONSP (list)
1474 && (!CONSP (XCAR (list))
1475 || (!EQ (XCAR (XCAR (list)), key)
1476 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1477 list = XCDR (list);
1478
1479 return CONSP (list) ? XCAR (list) : Qnil;
1480 }
1481
1482 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1483 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1484 The value is actually the first element of LIST whose cdr is KEY. */)
1485 (register Lisp_Object key, Lisp_Object list)
1486 {
1487 while (1)
1488 {
1489 if (!CONSP (list)
1490 || (CONSP (XCAR (list))
1491 && EQ (XCDR (XCAR (list)), key)))
1492 break;
1493
1494 list = XCDR (list);
1495 if (!CONSP (list)
1496 || (CONSP (XCAR (list))
1497 && EQ (XCDR (XCAR (list)), key)))
1498 break;
1499
1500 list = XCDR (list);
1501 if (!CONSP (list)
1502 || (CONSP (XCAR (list))
1503 && EQ (XCDR (XCAR (list)), key)))
1504 break;
1505
1506 list = XCDR (list);
1507 QUIT;
1508 }
1509
1510 return CAR (list);
1511 }
1512
1513 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1514 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1515 The value is actually the first element of LIST whose cdr equals KEY. */)
1516 (Lisp_Object key, Lisp_Object list)
1517 {
1518 Lisp_Object cdr;
1519
1520 while (1)
1521 {
1522 if (!CONSP (list)
1523 || (CONSP (XCAR (list))
1524 && (cdr = XCDR (XCAR (list)),
1525 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1526 break;
1527
1528 list = XCDR (list);
1529 if (!CONSP (list)
1530 || (CONSP (XCAR (list))
1531 && (cdr = XCDR (XCAR (list)),
1532 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1533 break;
1534
1535 list = XCDR (list);
1536 if (!CONSP (list)
1537 || (CONSP (XCAR (list))
1538 && (cdr = XCDR (XCAR (list)),
1539 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1540 break;
1541
1542 list = XCDR (list);
1543 QUIT;
1544 }
1545
1546 return CAR (list);
1547 }
1548 \f
1549 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1550 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1551 The modified LIST is returned. Comparison is done with `eq'.
1552 If the first member of LIST is ELT, there is no way to remove it by side effect;
1553 therefore, write `(setq foo (delq element foo))'
1554 to be sure of changing the value of `foo'. */)
1555 (register Lisp_Object elt, Lisp_Object list)
1556 {
1557 register Lisp_Object tail, prev;
1558 register Lisp_Object tem;
1559
1560 tail = list;
1561 prev = Qnil;
1562 while (!NILP (tail))
1563 {
1564 CHECK_LIST_CONS (tail, list);
1565 tem = XCAR (tail);
1566 if (EQ (elt, tem))
1567 {
1568 if (NILP (prev))
1569 list = XCDR (tail);
1570 else
1571 Fsetcdr (prev, XCDR (tail));
1572 }
1573 else
1574 prev = tail;
1575 tail = XCDR (tail);
1576 QUIT;
1577 }
1578 return list;
1579 }
1580
1581 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1582 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1583 SEQ must be a list, a vector, or a string.
1584 The modified SEQ is returned. Comparison is done with `equal'.
1585 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1586 is not a side effect; it is simply using a different sequence.
1587 Therefore, write `(setq foo (delete element foo))'
1588 to be sure of changing the value of `foo'. */)
1589 (Lisp_Object elt, Lisp_Object seq)
1590 {
1591 if (VECTORP (seq))
1592 {
1593 ptrdiff_t i, n;
1594
1595 for (i = n = 0; i < ASIZE (seq); ++i)
1596 if (NILP (Fequal (AREF (seq, i), elt)))
1597 ++n;
1598
1599 if (n != ASIZE (seq))
1600 {
1601 struct Lisp_Vector *p = allocate_vector (n);
1602
1603 for (i = n = 0; i < ASIZE (seq); ++i)
1604 if (NILP (Fequal (AREF (seq, i), elt)))
1605 p->contents[n++] = AREF (seq, i);
1606
1607 XSETVECTOR (seq, p);
1608 }
1609 }
1610 else if (STRINGP (seq))
1611 {
1612 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1613 int c;
1614
1615 for (i = nchars = nbytes = ibyte = 0;
1616 i < SCHARS (seq);
1617 ++i, ibyte += cbytes)
1618 {
1619 if (STRING_MULTIBYTE (seq))
1620 {
1621 c = STRING_CHAR (SDATA (seq) + ibyte);
1622 cbytes = CHAR_BYTES (c);
1623 }
1624 else
1625 {
1626 c = SREF (seq, i);
1627 cbytes = 1;
1628 }
1629
1630 if (!INTEGERP (elt) || c != XINT (elt))
1631 {
1632 ++nchars;
1633 nbytes += cbytes;
1634 }
1635 }
1636
1637 if (nchars != SCHARS (seq))
1638 {
1639 Lisp_Object tem;
1640
1641 tem = make_uninit_multibyte_string (nchars, nbytes);
1642 if (!STRING_MULTIBYTE (seq))
1643 STRING_SET_UNIBYTE (tem);
1644
1645 for (i = nchars = nbytes = ibyte = 0;
1646 i < SCHARS (seq);
1647 ++i, ibyte += cbytes)
1648 {
1649 if (STRING_MULTIBYTE (seq))
1650 {
1651 c = STRING_CHAR (SDATA (seq) + ibyte);
1652 cbytes = CHAR_BYTES (c);
1653 }
1654 else
1655 {
1656 c = SREF (seq, i);
1657 cbytes = 1;
1658 }
1659
1660 if (!INTEGERP (elt) || c != XINT (elt))
1661 {
1662 unsigned char *from = SDATA (seq) + ibyte;
1663 unsigned char *to = SDATA (tem) + nbytes;
1664 ptrdiff_t n;
1665
1666 ++nchars;
1667 nbytes += cbytes;
1668
1669 for (n = cbytes; n--; )
1670 *to++ = *from++;
1671 }
1672 }
1673
1674 seq = tem;
1675 }
1676 }
1677 else
1678 {
1679 Lisp_Object tail, prev;
1680
1681 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1682 {
1683 CHECK_LIST_CONS (tail, seq);
1684
1685 if (!NILP (Fequal (elt, XCAR (tail))))
1686 {
1687 if (NILP (prev))
1688 seq = XCDR (tail);
1689 else
1690 Fsetcdr (prev, XCDR (tail));
1691 }
1692 else
1693 prev = tail;
1694 QUIT;
1695 }
1696 }
1697
1698 return seq;
1699 }
1700
1701 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1702 doc: /* Reverse LIST by modifying cdr pointers.
1703 Return the reversed list. */)
1704 (Lisp_Object list)
1705 {
1706 register Lisp_Object prev, tail, next;
1707
1708 if (NILP (list)) return list;
1709 prev = Qnil;
1710 tail = list;
1711 while (!NILP (tail))
1712 {
1713 QUIT;
1714 CHECK_LIST_CONS (tail, list);
1715 next = XCDR (tail);
1716 Fsetcdr (tail, prev);
1717 prev = tail;
1718 tail = next;
1719 }
1720 return prev;
1721 }
1722
1723 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1724 doc: /* Reverse LIST, copying. Return the reversed list.
1725 See also the function `nreverse', which is used more often. */)
1726 (Lisp_Object list)
1727 {
1728 Lisp_Object new;
1729
1730 for (new = Qnil; CONSP (list); list = XCDR (list))
1731 {
1732 QUIT;
1733 new = Fcons (XCAR (list), new);
1734 }
1735 CHECK_LIST_END (list, list);
1736 return new;
1737 }
1738 \f
1739 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1740
1741 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1742 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1743 Returns the sorted list. LIST is modified by side effects.
1744 PREDICATE is called with two elements of LIST, and should return non-nil
1745 if the first element should sort before the second. */)
1746 (Lisp_Object list, Lisp_Object predicate)
1747 {
1748 Lisp_Object front, back;
1749 register Lisp_Object len, tem;
1750 struct gcpro gcpro1, gcpro2;
1751 EMACS_INT length;
1752
1753 front = list;
1754 len = Flength (list);
1755 length = XINT (len);
1756 if (length < 2)
1757 return list;
1758
1759 XSETINT (len, (length / 2) - 1);
1760 tem = Fnthcdr (len, list);
1761 back = Fcdr (tem);
1762 Fsetcdr (tem, Qnil);
1763
1764 GCPRO2 (front, back);
1765 front = Fsort (front, predicate);
1766 back = Fsort (back, predicate);
1767 UNGCPRO;
1768 return merge (front, back, predicate);
1769 }
1770
1771 Lisp_Object
1772 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1773 {
1774 Lisp_Object value;
1775 register Lisp_Object tail;
1776 Lisp_Object tem;
1777 register Lisp_Object l1, l2;
1778 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1779
1780 l1 = org_l1;
1781 l2 = org_l2;
1782 tail = Qnil;
1783 value = Qnil;
1784
1785 /* It is sufficient to protect org_l1 and org_l2.
1786 When l1 and l2 are updated, we copy the new values
1787 back into the org_ vars. */
1788 GCPRO4 (org_l1, org_l2, pred, value);
1789
1790 while (1)
1791 {
1792 if (NILP (l1))
1793 {
1794 UNGCPRO;
1795 if (NILP (tail))
1796 return l2;
1797 Fsetcdr (tail, l2);
1798 return value;
1799 }
1800 if (NILP (l2))
1801 {
1802 UNGCPRO;
1803 if (NILP (tail))
1804 return l1;
1805 Fsetcdr (tail, l1);
1806 return value;
1807 }
1808 tem = call2 (pred, Fcar (l2), Fcar (l1));
1809 if (NILP (tem))
1810 {
1811 tem = l1;
1812 l1 = Fcdr (l1);
1813 org_l1 = l1;
1814 }
1815 else
1816 {
1817 tem = l2;
1818 l2 = Fcdr (l2);
1819 org_l2 = l2;
1820 }
1821 if (NILP (tail))
1822 value = tem;
1823 else
1824 Fsetcdr (tail, tem);
1825 tail = tem;
1826 }
1827 }
1828
1829 \f
1830 /* This does not check for quits. That is safe since it must terminate. */
1831
1832 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1833 doc: /* Extract a value from a property list.
1834 PLIST is a property list, which is a list of the form
1835 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1836 corresponding to the given PROP, or nil if PROP is not one of the
1837 properties on the list. This function never signals an error. */)
1838 (Lisp_Object plist, Lisp_Object prop)
1839 {
1840 Lisp_Object tail, halftail;
1841
1842 /* halftail is used to detect circular lists. */
1843 tail = halftail = plist;
1844 while (CONSP (tail) && CONSP (XCDR (tail)))
1845 {
1846 if (EQ (prop, XCAR (tail)))
1847 return XCAR (XCDR (tail));
1848
1849 tail = XCDR (XCDR (tail));
1850 halftail = XCDR (halftail);
1851 if (EQ (tail, halftail))
1852 break;
1853
1854 #if 0 /* Unsafe version. */
1855 /* This function can be called asynchronously
1856 (setup_coding_system). Don't QUIT in that case. */
1857 if (!interrupt_input_blocked)
1858 QUIT;
1859 #endif
1860 }
1861
1862 return Qnil;
1863 }
1864
1865 DEFUN ("get", Fget, Sget, 2, 2, 0,
1866 doc: /* Return the value of SYMBOL's PROPNAME property.
1867 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1868 (Lisp_Object symbol, Lisp_Object propname)
1869 {
1870 CHECK_SYMBOL (symbol);
1871 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1872 }
1873
1874 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1875 doc: /* Change value in PLIST of PROP to VAL.
1876 PLIST is a property list, which is a list of the form
1877 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1878 If PROP is already a property on the list, its value is set to VAL,
1879 otherwise the new PROP VAL pair is added. The new plist is returned;
1880 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1881 The PLIST is modified by side effects. */)
1882 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1883 {
1884 register Lisp_Object tail, prev;
1885 Lisp_Object newcell;
1886 prev = Qnil;
1887 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1888 tail = XCDR (XCDR (tail)))
1889 {
1890 if (EQ (prop, XCAR (tail)))
1891 {
1892 Fsetcar (XCDR (tail), val);
1893 return plist;
1894 }
1895
1896 prev = tail;
1897 QUIT;
1898 }
1899 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1900 if (NILP (prev))
1901 return newcell;
1902 else
1903 Fsetcdr (XCDR (prev), newcell);
1904 return plist;
1905 }
1906
1907 DEFUN ("put", Fput, Sput, 3, 3, 0,
1908 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1909 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1910 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1911 {
1912 CHECK_SYMBOL (symbol);
1913 XSYMBOL (symbol)->plist
1914 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1915 return value;
1916 }
1917 \f
1918 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1919 doc: /* Extract a value from a property list, comparing with `equal'.
1920 PLIST is a property list, which is a list of the form
1921 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1922 corresponding to the given PROP, or nil if PROP is not
1923 one of the properties on the list. */)
1924 (Lisp_Object plist, Lisp_Object prop)
1925 {
1926 Lisp_Object tail;
1927
1928 for (tail = plist;
1929 CONSP (tail) && CONSP (XCDR (tail));
1930 tail = XCDR (XCDR (tail)))
1931 {
1932 if (! NILP (Fequal (prop, XCAR (tail))))
1933 return XCAR (XCDR (tail));
1934
1935 QUIT;
1936 }
1937
1938 CHECK_LIST_END (tail, prop);
1939
1940 return Qnil;
1941 }
1942
1943 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1944 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1945 PLIST is a property list, which is a list of the form
1946 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1947 If PROP is already a property on the list, its value is set to VAL,
1948 otherwise the new PROP VAL pair is added. The new plist is returned;
1949 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1950 The PLIST is modified by side effects. */)
1951 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1952 {
1953 register Lisp_Object tail, prev;
1954 Lisp_Object newcell;
1955 prev = Qnil;
1956 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1957 tail = XCDR (XCDR (tail)))
1958 {
1959 if (! NILP (Fequal (prop, XCAR (tail))))
1960 {
1961 Fsetcar (XCDR (tail), val);
1962 return plist;
1963 }
1964
1965 prev = tail;
1966 QUIT;
1967 }
1968 newcell = Fcons (prop, Fcons (val, Qnil));
1969 if (NILP (prev))
1970 return newcell;
1971 else
1972 Fsetcdr (XCDR (prev), newcell);
1973 return plist;
1974 }
1975 \f
1976 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1977 doc: /* Return t if the two args are the same Lisp object.
1978 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1979 (Lisp_Object obj1, Lisp_Object obj2)
1980 {
1981 if (FLOATP (obj1))
1982 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1983 else
1984 return EQ (obj1, obj2) ? Qt : Qnil;
1985 }
1986
1987 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1988 doc: /* Return t if two Lisp objects have similar structure and contents.
1989 They must have the same data type.
1990 Conses are compared by comparing the cars and the cdrs.
1991 Vectors and strings are compared element by element.
1992 Numbers are compared by value, but integers cannot equal floats.
1993 (Use `=' if you want integers and floats to be able to be equal.)
1994 Symbols must match exactly. */)
1995 (register Lisp_Object o1, Lisp_Object o2)
1996 {
1997 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1998 }
1999
2000 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2001 doc: /* Return t if two Lisp objects have similar structure and contents.
2002 This is like `equal' except that it compares the text properties
2003 of strings. (`equal' ignores text properties.) */)
2004 (register Lisp_Object o1, Lisp_Object o2)
2005 {
2006 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2007 }
2008
2009 /* DEPTH is current depth of recursion. Signal an error if it
2010 gets too deep.
2011 PROPS, if non-nil, means compare string text properties too. */
2012
2013 static int
2014 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2015 {
2016 if (depth > 200)
2017 error ("Stack overflow in equal");
2018
2019 tail_recurse:
2020 QUIT;
2021 if (EQ (o1, o2))
2022 return 1;
2023 if (XTYPE (o1) != XTYPE (o2))
2024 return 0;
2025
2026 switch (XTYPE (o1))
2027 {
2028 case Lisp_Float:
2029 {
2030 double d1, d2;
2031
2032 d1 = extract_float (o1);
2033 d2 = extract_float (o2);
2034 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2035 though they are not =. */
2036 return d1 == d2 || (d1 != d1 && d2 != d2);
2037 }
2038
2039 case Lisp_Cons:
2040 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2041 return 0;
2042 o1 = XCDR (o1);
2043 o2 = XCDR (o2);
2044 goto tail_recurse;
2045
2046 case Lisp_Misc:
2047 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2048 return 0;
2049 if (OVERLAYP (o1))
2050 {
2051 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2052 depth + 1, props)
2053 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2054 depth + 1, props))
2055 return 0;
2056 o1 = XOVERLAY (o1)->plist;
2057 o2 = XOVERLAY (o2)->plist;
2058 goto tail_recurse;
2059 }
2060 if (MARKERP (o1))
2061 {
2062 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2063 && (XMARKER (o1)->buffer == 0
2064 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2065 }
2066 break;
2067
2068 case Lisp_Vectorlike:
2069 {
2070 register int i;
2071 ptrdiff_t size = ASIZE (o1);
2072 /* Pseudovectors have the type encoded in the size field, so this test
2073 actually checks that the objects have the same type as well as the
2074 same size. */
2075 if (ASIZE (o2) != size)
2076 return 0;
2077 /* Boolvectors are compared much like strings. */
2078 if (BOOL_VECTOR_P (o1))
2079 {
2080 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2081 return 0;
2082 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2083 ((XBOOL_VECTOR (o1)->size
2084 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2085 / BOOL_VECTOR_BITS_PER_CHAR)))
2086 return 0;
2087 return 1;
2088 }
2089 if (WINDOW_CONFIGURATIONP (o1))
2090 return compare_window_configurations (o1, o2, 0);
2091
2092 /* Aside from them, only true vectors, char-tables, compiled
2093 functions, and fonts (font-spec, font-entity, font-object)
2094 are sensible to compare, so eliminate the others now. */
2095 if (size & PSEUDOVECTOR_FLAG)
2096 {
2097 if (!(size & ((PVEC_COMPILED | PVEC_CHAR_TABLE
2098 | PVEC_SUB_CHAR_TABLE | PVEC_FONT)
2099 << PSEUDOVECTOR_SIZE_BITS)))
2100 return 0;
2101 size &= PSEUDOVECTOR_SIZE_MASK;
2102 }
2103 for (i = 0; i < size; i++)
2104 {
2105 Lisp_Object v1, v2;
2106 v1 = AREF (o1, i);
2107 v2 = AREF (o2, i);
2108 if (!internal_equal (v1, v2, depth + 1, props))
2109 return 0;
2110 }
2111 return 1;
2112 }
2113 break;
2114
2115 case Lisp_String:
2116 if (SCHARS (o1) != SCHARS (o2))
2117 return 0;
2118 if (SBYTES (o1) != SBYTES (o2))
2119 return 0;
2120 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2121 return 0;
2122 if (props && !compare_string_intervals (o1, o2))
2123 return 0;
2124 return 1;
2125
2126 default:
2127 break;
2128 }
2129
2130 return 0;
2131 }
2132 \f
2133
2134 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2135 doc: /* Store each element of ARRAY with ITEM.
2136 ARRAY is a vector, string, char-table, or bool-vector. */)
2137 (Lisp_Object array, Lisp_Object item)
2138 {
2139 register ptrdiff_t size, idx;
2140
2141 if (VECTORP (array))
2142 {
2143 register Lisp_Object *p = XVECTOR (array)->contents;
2144 size = ASIZE (array);
2145 for (idx = 0; idx < size; idx++)
2146 p[idx] = item;
2147 }
2148 else if (CHAR_TABLE_P (array))
2149 {
2150 int i;
2151
2152 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2153 XCHAR_TABLE (array)->contents[i] = item;
2154 XCHAR_TABLE (array)->defalt = item;
2155 }
2156 else if (STRINGP (array))
2157 {
2158 register unsigned char *p = SDATA (array);
2159 int charval;
2160 CHECK_CHARACTER (item);
2161 charval = XFASTINT (item);
2162 size = SCHARS (array);
2163 if (STRING_MULTIBYTE (array))
2164 {
2165 unsigned char str[MAX_MULTIBYTE_LENGTH];
2166 int len = CHAR_STRING (charval, str);
2167 ptrdiff_t size_byte = SBYTES (array);
2168
2169 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2170 || SCHARS (array) * len != size_byte)
2171 error ("Attempt to change byte length of a string");
2172 for (idx = 0; idx < size_byte; idx++)
2173 *p++ = str[idx % len];
2174 }
2175 else
2176 for (idx = 0; idx < size; idx++)
2177 p[idx] = charval;
2178 }
2179 else if (BOOL_VECTOR_P (array))
2180 {
2181 register unsigned char *p = XBOOL_VECTOR (array)->data;
2182 size =
2183 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2184 / BOOL_VECTOR_BITS_PER_CHAR);
2185
2186 if (size)
2187 {
2188 memset (p, ! NILP (item) ? -1 : 0, size);
2189
2190 /* Clear any extraneous bits in the last byte. */
2191 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2192 }
2193 }
2194 else
2195 wrong_type_argument (Qarrayp, array);
2196 return array;
2197 }
2198
2199 DEFUN ("clear-string", Fclear_string, Sclear_string,
2200 1, 1, 0,
2201 doc: /* Clear the contents of STRING.
2202 This makes STRING unibyte and may change its length. */)
2203 (Lisp_Object string)
2204 {
2205 ptrdiff_t len;
2206 CHECK_STRING (string);
2207 len = SBYTES (string);
2208 memset (SDATA (string), 0, len);
2209 STRING_SET_CHARS (string, len);
2210 STRING_SET_UNIBYTE (string);
2211 return Qnil;
2212 }
2213 \f
2214 /* ARGSUSED */
2215 Lisp_Object
2216 nconc2 (Lisp_Object s1, Lisp_Object s2)
2217 {
2218 Lisp_Object args[2];
2219 args[0] = s1;
2220 args[1] = s2;
2221 return Fnconc (2, args);
2222 }
2223
2224 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2225 doc: /* Concatenate any number of lists by altering them.
2226 Only the last argument is not altered, and need not be a list.
2227 usage: (nconc &rest LISTS) */)
2228 (ptrdiff_t nargs, Lisp_Object *args)
2229 {
2230 ptrdiff_t argnum;
2231 register Lisp_Object tail, tem, val;
2232
2233 val = tail = Qnil;
2234
2235 for (argnum = 0; argnum < nargs; argnum++)
2236 {
2237 tem = args[argnum];
2238 if (NILP (tem)) continue;
2239
2240 if (NILP (val))
2241 val = tem;
2242
2243 if (argnum + 1 == nargs) break;
2244
2245 CHECK_LIST_CONS (tem, tem);
2246
2247 while (CONSP (tem))
2248 {
2249 tail = tem;
2250 tem = XCDR (tail);
2251 QUIT;
2252 }
2253
2254 tem = args[argnum + 1];
2255 Fsetcdr (tail, tem);
2256 if (NILP (tem))
2257 args[argnum + 1] = tail;
2258 }
2259
2260 return val;
2261 }
2262 \f
2263 /* This is the guts of all mapping functions.
2264 Apply FN to each element of SEQ, one by one,
2265 storing the results into elements of VALS, a C vector of Lisp_Objects.
2266 LENI is the length of VALS, which should also be the length of SEQ. */
2267
2268 static void
2269 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2270 {
2271 register Lisp_Object tail;
2272 Lisp_Object dummy;
2273 register EMACS_INT i;
2274 struct gcpro gcpro1, gcpro2, gcpro3;
2275
2276 if (vals)
2277 {
2278 /* Don't let vals contain any garbage when GC happens. */
2279 for (i = 0; i < leni; i++)
2280 vals[i] = Qnil;
2281
2282 GCPRO3 (dummy, fn, seq);
2283 gcpro1.var = vals;
2284 gcpro1.nvars = leni;
2285 }
2286 else
2287 GCPRO2 (fn, seq);
2288 /* We need not explicitly protect `tail' because it is used only on lists, and
2289 1) lists are not relocated and 2) the list is marked via `seq' so will not
2290 be freed */
2291
2292 if (VECTORP (seq) || COMPILEDP (seq))
2293 {
2294 for (i = 0; i < leni; i++)
2295 {
2296 dummy = call1 (fn, AREF (seq, i));
2297 if (vals)
2298 vals[i] = dummy;
2299 }
2300 }
2301 else if (BOOL_VECTOR_P (seq))
2302 {
2303 for (i = 0; i < leni; i++)
2304 {
2305 unsigned char byte;
2306 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2307 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2308 dummy = call1 (fn, dummy);
2309 if (vals)
2310 vals[i] = dummy;
2311 }
2312 }
2313 else if (STRINGP (seq))
2314 {
2315 ptrdiff_t i_byte;
2316
2317 for (i = 0, i_byte = 0; i < leni;)
2318 {
2319 int c;
2320 ptrdiff_t i_before = i;
2321
2322 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2323 XSETFASTINT (dummy, c);
2324 dummy = call1 (fn, dummy);
2325 if (vals)
2326 vals[i_before] = dummy;
2327 }
2328 }
2329 else /* Must be a list, since Flength did not get an error */
2330 {
2331 tail = seq;
2332 for (i = 0; i < leni && CONSP (tail); i++)
2333 {
2334 dummy = call1 (fn, XCAR (tail));
2335 if (vals)
2336 vals[i] = dummy;
2337 tail = XCDR (tail);
2338 }
2339 }
2340
2341 UNGCPRO;
2342 }
2343
2344 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2345 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2346 In between each pair of results, stick in SEPARATOR. Thus, " " as
2347 SEPARATOR results in spaces between the values returned by FUNCTION.
2348 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2349 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2350 {
2351 Lisp_Object len;
2352 register EMACS_INT leni;
2353 EMACS_INT nargs;
2354 ptrdiff_t i;
2355 register Lisp_Object *args;
2356 struct gcpro gcpro1;
2357 Lisp_Object ret;
2358 USE_SAFE_ALLOCA;
2359
2360 len = Flength (sequence);
2361 if (CHAR_TABLE_P (sequence))
2362 wrong_type_argument (Qlistp, sequence);
2363 leni = XINT (len);
2364 nargs = leni + leni - 1;
2365 if (nargs < 0) return empty_unibyte_string;
2366
2367 SAFE_ALLOCA_LISP (args, nargs);
2368
2369 GCPRO1 (separator);
2370 mapcar1 (leni, args, function, sequence);
2371 UNGCPRO;
2372
2373 for (i = leni - 1; i > 0; i--)
2374 args[i + i] = args[i];
2375
2376 for (i = 1; i < nargs; i += 2)
2377 args[i] = separator;
2378
2379 ret = Fconcat (nargs, args);
2380 SAFE_FREE ();
2381
2382 return ret;
2383 }
2384
2385 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2386 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2387 The result is a list just as long as SEQUENCE.
2388 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2389 (Lisp_Object function, Lisp_Object sequence)
2390 {
2391 register Lisp_Object len;
2392 register EMACS_INT leni;
2393 register Lisp_Object *args;
2394 Lisp_Object ret;
2395 USE_SAFE_ALLOCA;
2396
2397 len = Flength (sequence);
2398 if (CHAR_TABLE_P (sequence))
2399 wrong_type_argument (Qlistp, sequence);
2400 leni = XFASTINT (len);
2401
2402 SAFE_ALLOCA_LISP (args, leni);
2403
2404 mapcar1 (leni, args, function, sequence);
2405
2406 ret = Flist (leni, args);
2407 SAFE_FREE ();
2408
2409 return ret;
2410 }
2411
2412 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2413 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2414 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2415 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2416 (Lisp_Object function, Lisp_Object sequence)
2417 {
2418 register EMACS_INT leni;
2419
2420 leni = XFASTINT (Flength (sequence));
2421 if (CHAR_TABLE_P (sequence))
2422 wrong_type_argument (Qlistp, sequence);
2423 mapcar1 (leni, 0, function, sequence);
2424
2425 return sequence;
2426 }
2427 \f
2428 /* This is how C code calls `yes-or-no-p' and allows the user
2429 to redefined it.
2430
2431 Anything that calls this function must protect from GC! */
2432
2433 Lisp_Object
2434 do_yes_or_no_p (Lisp_Object prompt)
2435 {
2436 return call1 (intern ("yes-or-no-p"), prompt);
2437 }
2438
2439 /* Anything that calls this function must protect from GC! */
2440
2441 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2442 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2443 PROMPT is the string to display to ask the question. It should end in
2444 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2445
2446 The user must confirm the answer with RET, and can edit it until it
2447 has been confirmed.
2448
2449 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2450 is nil, and `use-dialog-box' is non-nil. */)
2451 (Lisp_Object prompt)
2452 {
2453 register Lisp_Object ans;
2454 Lisp_Object args[2];
2455 struct gcpro gcpro1;
2456
2457 CHECK_STRING (prompt);
2458
2459 #ifdef HAVE_MENUS
2460 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2461 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2462 && use_dialog_box
2463 && have_menus_p ())
2464 {
2465 Lisp_Object pane, menu, obj;
2466 redisplay_preserve_echo_area (4);
2467 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2468 Fcons (Fcons (build_string ("No"), Qnil),
2469 Qnil));
2470 GCPRO1 (pane);
2471 menu = Fcons (prompt, pane);
2472 obj = Fx_popup_dialog (Qt, menu, Qnil);
2473 UNGCPRO;
2474 return obj;
2475 }
2476 #endif /* HAVE_MENUS */
2477
2478 args[0] = prompt;
2479 args[1] = build_string ("(yes or no) ");
2480 prompt = Fconcat (2, args);
2481
2482 GCPRO1 (prompt);
2483
2484 while (1)
2485 {
2486 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2487 Qyes_or_no_p_history, Qnil,
2488 Qnil));
2489 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2490 {
2491 UNGCPRO;
2492 return Qt;
2493 }
2494 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2495 {
2496 UNGCPRO;
2497 return Qnil;
2498 }
2499
2500 Fding (Qnil);
2501 Fdiscard_input ();
2502 message ("Please answer yes or no.");
2503 Fsleep_for (make_number (2), Qnil);
2504 }
2505 }
2506 \f
2507 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2508 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2509
2510 Each of the three load averages is multiplied by 100, then converted
2511 to integer.
2512
2513 When USE-FLOATS is non-nil, floats will be used instead of integers.
2514 These floats are not multiplied by 100.
2515
2516 If the 5-minute or 15-minute load averages are not available, return a
2517 shortened list, containing only those averages which are available.
2518
2519 An error is thrown if the load average can't be obtained. In some
2520 cases making it work would require Emacs being installed setuid or
2521 setgid so that it can read kernel information, and that usually isn't
2522 advisable. */)
2523 (Lisp_Object use_floats)
2524 {
2525 double load_ave[3];
2526 int loads = getloadavg (load_ave, 3);
2527 Lisp_Object ret = Qnil;
2528
2529 if (loads < 0)
2530 error ("load-average not implemented for this operating system");
2531
2532 while (loads-- > 0)
2533 {
2534 Lisp_Object load = (NILP (use_floats)
2535 ? make_number (100.0 * load_ave[loads])
2536 : make_float (load_ave[loads]));
2537 ret = Fcons (load, ret);
2538 }
2539
2540 return ret;
2541 }
2542 \f
2543 static Lisp_Object Qsubfeatures;
2544
2545 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2546 doc: /* Return t if FEATURE is present in this Emacs.
2547
2548 Use this to conditionalize execution of lisp code based on the
2549 presence or absence of Emacs or environment extensions.
2550 Use `provide' to declare that a feature is available. This function
2551 looks at the value of the variable `features'. The optional argument
2552 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2553 (Lisp_Object feature, Lisp_Object subfeature)
2554 {
2555 register Lisp_Object tem;
2556 CHECK_SYMBOL (feature);
2557 tem = Fmemq (feature, Vfeatures);
2558 if (!NILP (tem) && !NILP (subfeature))
2559 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2560 return (NILP (tem)) ? Qnil : Qt;
2561 }
2562
2563 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2564 doc: /* Announce that FEATURE is a feature of the current Emacs.
2565 The optional argument SUBFEATURES should be a list of symbols listing
2566 particular subfeatures supported in this version of FEATURE. */)
2567 (Lisp_Object feature, Lisp_Object subfeatures)
2568 {
2569 register Lisp_Object tem;
2570 CHECK_SYMBOL (feature);
2571 CHECK_LIST (subfeatures);
2572 if (!NILP (Vautoload_queue))
2573 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2574 Vautoload_queue);
2575 tem = Fmemq (feature, Vfeatures);
2576 if (NILP (tem))
2577 Vfeatures = Fcons (feature, Vfeatures);
2578 if (!NILP (subfeatures))
2579 Fput (feature, Qsubfeatures, subfeatures);
2580 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2581
2582 /* Run any load-hooks for this file. */
2583 tem = Fassq (feature, Vafter_load_alist);
2584 if (CONSP (tem))
2585 Fprogn (XCDR (tem));
2586
2587 return feature;
2588 }
2589 \f
2590 /* `require' and its subroutines. */
2591
2592 /* List of features currently being require'd, innermost first. */
2593
2594 static Lisp_Object require_nesting_list;
2595
2596 static Lisp_Object
2597 require_unwind (Lisp_Object old_value)
2598 {
2599 return require_nesting_list = old_value;
2600 }
2601
2602 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2603 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2604 If FEATURE is not a member of the list `features', then the feature
2605 is not loaded; so load the file FILENAME.
2606 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2607 and `load' will try to load this name appended with the suffix `.elc' or
2608 `.el', in that order. The name without appended suffix will not be used.
2609 See `get-load-suffixes' for the complete list of suffixes.
2610 If the optional third argument NOERROR is non-nil,
2611 then return nil if the file is not found instead of signaling an error.
2612 Normally the return value is FEATURE.
2613 The normal messages at start and end of loading FILENAME are suppressed. */)
2614 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2615 {
2616 register Lisp_Object tem;
2617 struct gcpro gcpro1, gcpro2;
2618 int from_file = load_in_progress;
2619
2620 CHECK_SYMBOL (feature);
2621
2622 /* Record the presence of `require' in this file
2623 even if the feature specified is already loaded.
2624 But not more than once in any file,
2625 and not when we aren't loading or reading from a file. */
2626 if (!from_file)
2627 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2628 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2629 from_file = 1;
2630
2631 if (from_file)
2632 {
2633 tem = Fcons (Qrequire, feature);
2634 if (NILP (Fmember (tem, Vcurrent_load_list)))
2635 LOADHIST_ATTACH (tem);
2636 }
2637 tem = Fmemq (feature, Vfeatures);
2638
2639 if (NILP (tem))
2640 {
2641 ptrdiff_t count = SPECPDL_INDEX ();
2642 int nesting = 0;
2643
2644 /* This is to make sure that loadup.el gives a clear picture
2645 of what files are preloaded and when. */
2646 if (! NILP (Vpurify_flag))
2647 error ("(require %s) while preparing to dump",
2648 SDATA (SYMBOL_NAME (feature)));
2649
2650 /* A certain amount of recursive `require' is legitimate,
2651 but if we require the same feature recursively 3 times,
2652 signal an error. */
2653 tem = require_nesting_list;
2654 while (! NILP (tem))
2655 {
2656 if (! NILP (Fequal (feature, XCAR (tem))))
2657 nesting++;
2658 tem = XCDR (tem);
2659 }
2660 if (nesting > 3)
2661 error ("Recursive `require' for feature `%s'",
2662 SDATA (SYMBOL_NAME (feature)));
2663
2664 /* Update the list for any nested `require's that occur. */
2665 record_unwind_protect (require_unwind, require_nesting_list);
2666 require_nesting_list = Fcons (feature, require_nesting_list);
2667
2668 /* Value saved here is to be restored into Vautoload_queue */
2669 record_unwind_protect (un_autoload, Vautoload_queue);
2670 Vautoload_queue = Qt;
2671
2672 /* Load the file. */
2673 GCPRO2 (feature, filename);
2674 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2675 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2676 UNGCPRO;
2677
2678 /* If load failed entirely, return nil. */
2679 if (NILP (tem))
2680 return unbind_to (count, Qnil);
2681
2682 tem = Fmemq (feature, Vfeatures);
2683 if (NILP (tem))
2684 error ("Required feature `%s' was not provided",
2685 SDATA (SYMBOL_NAME (feature)));
2686
2687 /* Once loading finishes, don't undo it. */
2688 Vautoload_queue = Qt;
2689 feature = unbind_to (count, feature);
2690 }
2691
2692 return feature;
2693 }
2694 \f
2695 /* Primitives for work of the "widget" library.
2696 In an ideal world, this section would not have been necessary.
2697 However, lisp function calls being as slow as they are, it turns
2698 out that some functions in the widget library (wid-edit.el) are the
2699 bottleneck of Widget operation. Here is their translation to C,
2700 for the sole reason of efficiency. */
2701
2702 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2703 doc: /* Return non-nil if PLIST has the property PROP.
2704 PLIST is a property list, which is a list of the form
2705 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2706 Unlike `plist-get', this allows you to distinguish between a missing
2707 property and a property with the value nil.
2708 The value is actually the tail of PLIST whose car is PROP. */)
2709 (Lisp_Object plist, Lisp_Object prop)
2710 {
2711 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2712 {
2713 QUIT;
2714 plist = XCDR (plist);
2715 plist = CDR (plist);
2716 }
2717 return plist;
2718 }
2719
2720 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2721 doc: /* In WIDGET, set PROPERTY to VALUE.
2722 The value can later be retrieved with `widget-get'. */)
2723 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2724 {
2725 CHECK_CONS (widget);
2726 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2727 return value;
2728 }
2729
2730 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2731 doc: /* In WIDGET, get the value of PROPERTY.
2732 The value could either be specified when the widget was created, or
2733 later with `widget-put'. */)
2734 (Lisp_Object widget, Lisp_Object property)
2735 {
2736 Lisp_Object tmp;
2737
2738 while (1)
2739 {
2740 if (NILP (widget))
2741 return Qnil;
2742 CHECK_CONS (widget);
2743 tmp = Fplist_member (XCDR (widget), property);
2744 if (CONSP (tmp))
2745 {
2746 tmp = XCDR (tmp);
2747 return CAR (tmp);
2748 }
2749 tmp = XCAR (widget);
2750 if (NILP (tmp))
2751 return Qnil;
2752 widget = Fget (tmp, Qwidget_type);
2753 }
2754 }
2755
2756 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2757 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2758 ARGS are passed as extra arguments to the function.
2759 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2760 (ptrdiff_t nargs, Lisp_Object *args)
2761 {
2762 /* This function can GC. */
2763 Lisp_Object newargs[3];
2764 struct gcpro gcpro1, gcpro2;
2765 Lisp_Object result;
2766
2767 newargs[0] = Fwidget_get (args[0], args[1]);
2768 newargs[1] = args[0];
2769 newargs[2] = Flist (nargs - 2, args + 2);
2770 GCPRO2 (newargs[0], newargs[2]);
2771 result = Fapply (3, newargs);
2772 UNGCPRO;
2773 return result;
2774 }
2775
2776 #ifdef HAVE_LANGINFO_CODESET
2777 #include <langinfo.h>
2778 #endif
2779
2780 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2781 doc: /* Access locale data ITEM for the current C locale, if available.
2782 ITEM should be one of the following:
2783
2784 `codeset', returning the character set as a string (locale item CODESET);
2785
2786 `days', returning a 7-element vector of day names (locale items DAY_n);
2787
2788 `months', returning a 12-element vector of month names (locale items MON_n);
2789
2790 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2791 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2792
2793 If the system can't provide such information through a call to
2794 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2795
2796 See also Info node `(libc)Locales'.
2797
2798 The data read from the system are decoded using `locale-coding-system'. */)
2799 (Lisp_Object item)
2800 {
2801 char *str = NULL;
2802 #ifdef HAVE_LANGINFO_CODESET
2803 Lisp_Object val;
2804 if (EQ (item, Qcodeset))
2805 {
2806 str = nl_langinfo (CODESET);
2807 return build_string (str);
2808 }
2809 #ifdef DAY_1
2810 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2811 {
2812 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2813 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2814 int i;
2815 struct gcpro gcpro1;
2816 GCPRO1 (v);
2817 synchronize_system_time_locale ();
2818 for (i = 0; i < 7; i++)
2819 {
2820 str = nl_langinfo (days[i]);
2821 val = build_unibyte_string (str);
2822 /* Fixme: Is this coding system necessarily right, even if
2823 it is consistent with CODESET? If not, what to do? */
2824 Faset (v, make_number (i),
2825 code_convert_string_norecord (val, Vlocale_coding_system,
2826 0));
2827 }
2828 UNGCPRO;
2829 return v;
2830 }
2831 #endif /* DAY_1 */
2832 #ifdef MON_1
2833 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2834 {
2835 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2836 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2837 MON_8, MON_9, MON_10, MON_11, MON_12};
2838 int i;
2839 struct gcpro gcpro1;
2840 GCPRO1 (v);
2841 synchronize_system_time_locale ();
2842 for (i = 0; i < 12; i++)
2843 {
2844 str = nl_langinfo (months[i]);
2845 val = build_unibyte_string (str);
2846 Faset (v, make_number (i),
2847 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2848 }
2849 UNGCPRO;
2850 return v;
2851 }
2852 #endif /* MON_1 */
2853 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2854 but is in the locale files. This could be used by ps-print. */
2855 #ifdef PAPER_WIDTH
2856 else if (EQ (item, Qpaper))
2857 {
2858 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2859 make_number (nl_langinfo (PAPER_HEIGHT)));
2860 }
2861 #endif /* PAPER_WIDTH */
2862 #endif /* HAVE_LANGINFO_CODESET*/
2863 return Qnil;
2864 }
2865 \f
2866 /* base64 encode/decode functions (RFC 2045).
2867 Based on code from GNU recode. */
2868
2869 #define MIME_LINE_LENGTH 76
2870
2871 #define IS_ASCII(Character) \
2872 ((Character) < 128)
2873 #define IS_BASE64(Character) \
2874 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2875 #define IS_BASE64_IGNORABLE(Character) \
2876 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2877 || (Character) == '\f' || (Character) == '\r')
2878
2879 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2880 character or return retval if there are no characters left to
2881 process. */
2882 #define READ_QUADRUPLET_BYTE(retval) \
2883 do \
2884 { \
2885 if (i == length) \
2886 { \
2887 if (nchars_return) \
2888 *nchars_return = nchars; \
2889 return (retval); \
2890 } \
2891 c = from[i++]; \
2892 } \
2893 while (IS_BASE64_IGNORABLE (c))
2894
2895 /* Table of characters coding the 64 values. */
2896 static const char base64_value_to_char[64] =
2897 {
2898 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2899 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2900 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2901 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2902 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2903 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2904 '8', '9', '+', '/' /* 60-63 */
2905 };
2906
2907 /* Table of base64 values for first 128 characters. */
2908 static const short base64_char_to_value[128] =
2909 {
2910 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2911 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2912 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2913 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2914 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2915 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2916 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2917 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2918 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2919 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2920 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2921 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2922 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2923 };
2924
2925 /* The following diagram shows the logical steps by which three octets
2926 get transformed into four base64 characters.
2927
2928 .--------. .--------. .--------.
2929 |aaaaaabb| |bbbbcccc| |ccdddddd|
2930 `--------' `--------' `--------'
2931 6 2 4 4 2 6
2932 .--------+--------+--------+--------.
2933 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2934 `--------+--------+--------+--------'
2935
2936 .--------+--------+--------+--------.
2937 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2938 `--------+--------+--------+--------'
2939
2940 The octets are divided into 6 bit chunks, which are then encoded into
2941 base64 characters. */
2942
2943
2944 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, int, int);
2945 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, int,
2946 ptrdiff_t *);
2947
2948 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2949 2, 3, "r",
2950 doc: /* Base64-encode the region between BEG and END.
2951 Return the length of the encoded text.
2952 Optional third argument NO-LINE-BREAK means do not break long lines
2953 into shorter lines. */)
2954 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2955 {
2956 char *encoded;
2957 ptrdiff_t allength, length;
2958 ptrdiff_t ibeg, iend, encoded_length;
2959 ptrdiff_t old_pos = PT;
2960 USE_SAFE_ALLOCA;
2961
2962 validate_region (&beg, &end);
2963
2964 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2965 iend = CHAR_TO_BYTE (XFASTINT (end));
2966 move_gap_both (XFASTINT (beg), ibeg);
2967
2968 /* We need to allocate enough room for encoding the text.
2969 We need 33 1/3% more space, plus a newline every 76
2970 characters, and then we round up. */
2971 length = iend - ibeg;
2972 allength = length + length/3 + 1;
2973 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2974
2975 SAFE_ALLOCA (encoded, char *, allength);
2976 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2977 encoded, length, NILP (no_line_break),
2978 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2979 if (encoded_length > allength)
2980 abort ();
2981
2982 if (encoded_length < 0)
2983 {
2984 /* The encoding wasn't possible. */
2985 SAFE_FREE ();
2986 error ("Multibyte character in data for base64 encoding");
2987 }
2988
2989 /* Now we have encoded the region, so we insert the new contents
2990 and delete the old. (Insert first in order to preserve markers.) */
2991 SET_PT_BOTH (XFASTINT (beg), ibeg);
2992 insert (encoded, encoded_length);
2993 SAFE_FREE ();
2994 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2995
2996 /* If point was outside of the region, restore it exactly; else just
2997 move to the beginning of the region. */
2998 if (old_pos >= XFASTINT (end))
2999 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3000 else if (old_pos > XFASTINT (beg))
3001 old_pos = XFASTINT (beg);
3002 SET_PT (old_pos);
3003
3004 /* We return the length of the encoded text. */
3005 return make_number (encoded_length);
3006 }
3007
3008 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3009 1, 2, 0,
3010 doc: /* Base64-encode STRING and return the result.
3011 Optional second argument NO-LINE-BREAK means do not break long lines
3012 into shorter lines. */)
3013 (Lisp_Object string, Lisp_Object no_line_break)
3014 {
3015 ptrdiff_t allength, length, encoded_length;
3016 char *encoded;
3017 Lisp_Object encoded_string;
3018 USE_SAFE_ALLOCA;
3019
3020 CHECK_STRING (string);
3021
3022 /* We need to allocate enough room for encoding the text.
3023 We need 33 1/3% more space, plus a newline every 76
3024 characters, and then we round up. */
3025 length = SBYTES (string);
3026 allength = length + length/3 + 1;
3027 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3028
3029 /* We need to allocate enough room for decoding the text. */
3030 SAFE_ALLOCA (encoded, char *, allength);
3031
3032 encoded_length = base64_encode_1 (SSDATA (string),
3033 encoded, length, NILP (no_line_break),
3034 STRING_MULTIBYTE (string));
3035 if (encoded_length > allength)
3036 abort ();
3037
3038 if (encoded_length < 0)
3039 {
3040 /* The encoding wasn't possible. */
3041 SAFE_FREE ();
3042 error ("Multibyte character in data for base64 encoding");
3043 }
3044
3045 encoded_string = make_unibyte_string (encoded, encoded_length);
3046 SAFE_FREE ();
3047
3048 return encoded_string;
3049 }
3050
3051 static ptrdiff_t
3052 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3053 int line_break, int multibyte)
3054 {
3055 int counter = 0;
3056 ptrdiff_t i = 0;
3057 char *e = to;
3058 int c;
3059 unsigned int value;
3060 int bytes;
3061
3062 while (i < length)
3063 {
3064 if (multibyte)
3065 {
3066 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3067 if (CHAR_BYTE8_P (c))
3068 c = CHAR_TO_BYTE8 (c);
3069 else if (c >= 256)
3070 return -1;
3071 i += bytes;
3072 }
3073 else
3074 c = from[i++];
3075
3076 /* Wrap line every 76 characters. */
3077
3078 if (line_break)
3079 {
3080 if (counter < MIME_LINE_LENGTH / 4)
3081 counter++;
3082 else
3083 {
3084 *e++ = '\n';
3085 counter = 1;
3086 }
3087 }
3088
3089 /* Process first byte of a triplet. */
3090
3091 *e++ = base64_value_to_char[0x3f & c >> 2];
3092 value = (0x03 & c) << 4;
3093
3094 /* Process second byte of a triplet. */
3095
3096 if (i == length)
3097 {
3098 *e++ = base64_value_to_char[value];
3099 *e++ = '=';
3100 *e++ = '=';
3101 break;
3102 }
3103
3104 if (multibyte)
3105 {
3106 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3107 if (CHAR_BYTE8_P (c))
3108 c = CHAR_TO_BYTE8 (c);
3109 else if (c >= 256)
3110 return -1;
3111 i += bytes;
3112 }
3113 else
3114 c = from[i++];
3115
3116 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3117 value = (0x0f & c) << 2;
3118
3119 /* Process third byte of a triplet. */
3120
3121 if (i == length)
3122 {
3123 *e++ = base64_value_to_char[value];
3124 *e++ = '=';
3125 break;
3126 }
3127
3128 if (multibyte)
3129 {
3130 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3131 if (CHAR_BYTE8_P (c))
3132 c = CHAR_TO_BYTE8 (c);
3133 else if (c >= 256)
3134 return -1;
3135 i += bytes;
3136 }
3137 else
3138 c = from[i++];
3139
3140 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3141 *e++ = base64_value_to_char[0x3f & c];
3142 }
3143
3144 return e - to;
3145 }
3146
3147
3148 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3149 2, 2, "r",
3150 doc: /* Base64-decode the region between BEG and END.
3151 Return the length of the decoded text.
3152 If the region can't be decoded, signal an error and don't modify the buffer. */)
3153 (Lisp_Object beg, Lisp_Object end)
3154 {
3155 ptrdiff_t ibeg, iend, length, allength;
3156 char *decoded;
3157 ptrdiff_t old_pos = PT;
3158 ptrdiff_t decoded_length;
3159 ptrdiff_t inserted_chars;
3160 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3161 USE_SAFE_ALLOCA;
3162
3163 validate_region (&beg, &end);
3164
3165 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3166 iend = CHAR_TO_BYTE (XFASTINT (end));
3167
3168 length = iend - ibeg;
3169
3170 /* We need to allocate enough room for decoding the text. If we are
3171 working on a multibyte buffer, each decoded code may occupy at
3172 most two bytes. */
3173 allength = multibyte ? length * 2 : length;
3174 SAFE_ALLOCA (decoded, char *, allength);
3175
3176 move_gap_both (XFASTINT (beg), ibeg);
3177 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3178 decoded, length,
3179 multibyte, &inserted_chars);
3180 if (decoded_length > allength)
3181 abort ();
3182
3183 if (decoded_length < 0)
3184 {
3185 /* The decoding wasn't possible. */
3186 SAFE_FREE ();
3187 error ("Invalid base64 data");
3188 }
3189
3190 /* Now we have decoded the region, so we insert the new contents
3191 and delete the old. (Insert first in order to preserve markers.) */
3192 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3193 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3194 SAFE_FREE ();
3195
3196 /* Delete the original text. */
3197 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3198 iend + decoded_length, 1);
3199
3200 /* If point was outside of the region, restore it exactly; else just
3201 move to the beginning of the region. */
3202 if (old_pos >= XFASTINT (end))
3203 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3204 else if (old_pos > XFASTINT (beg))
3205 old_pos = XFASTINT (beg);
3206 SET_PT (old_pos > ZV ? ZV : old_pos);
3207
3208 return make_number (inserted_chars);
3209 }
3210
3211 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3212 1, 1, 0,
3213 doc: /* Base64-decode STRING and return the result. */)
3214 (Lisp_Object string)
3215 {
3216 char *decoded;
3217 ptrdiff_t length, decoded_length;
3218 Lisp_Object decoded_string;
3219 USE_SAFE_ALLOCA;
3220
3221 CHECK_STRING (string);
3222
3223 length = SBYTES (string);
3224 /* We need to allocate enough room for decoding the text. */
3225 SAFE_ALLOCA (decoded, char *, length);
3226
3227 /* The decoded result should be unibyte. */
3228 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3229 0, NULL);
3230 if (decoded_length > length)
3231 abort ();
3232 else if (decoded_length >= 0)
3233 decoded_string = make_unibyte_string (decoded, decoded_length);
3234 else
3235 decoded_string = Qnil;
3236
3237 SAFE_FREE ();
3238 if (!STRINGP (decoded_string))
3239 error ("Invalid base64 data");
3240
3241 return decoded_string;
3242 }
3243
3244 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3245 MULTIBYTE is nonzero, the decoded result should be in multibyte
3246 form. If NCHARS_RETURN is not NULL, store the number of produced
3247 characters in *NCHARS_RETURN. */
3248
3249 static ptrdiff_t
3250 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3251 int multibyte, ptrdiff_t *nchars_return)
3252 {
3253 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3254 char *e = to;
3255 unsigned char c;
3256 unsigned long value;
3257 ptrdiff_t nchars = 0;
3258
3259 while (1)
3260 {
3261 /* Process first byte of a quadruplet. */
3262
3263 READ_QUADRUPLET_BYTE (e-to);
3264
3265 if (!IS_BASE64 (c))
3266 return -1;
3267 value = base64_char_to_value[c] << 18;
3268
3269 /* Process second byte of a quadruplet. */
3270
3271 READ_QUADRUPLET_BYTE (-1);
3272
3273 if (!IS_BASE64 (c))
3274 return -1;
3275 value |= base64_char_to_value[c] << 12;
3276
3277 c = (unsigned char) (value >> 16);
3278 if (multibyte && c >= 128)
3279 e += BYTE8_STRING (c, e);
3280 else
3281 *e++ = c;
3282 nchars++;
3283
3284 /* Process third byte of a quadruplet. */
3285
3286 READ_QUADRUPLET_BYTE (-1);
3287
3288 if (c == '=')
3289 {
3290 READ_QUADRUPLET_BYTE (-1);
3291
3292 if (c != '=')
3293 return -1;
3294 continue;
3295 }
3296
3297 if (!IS_BASE64 (c))
3298 return -1;
3299 value |= base64_char_to_value[c] << 6;
3300
3301 c = (unsigned char) (0xff & value >> 8);
3302 if (multibyte && c >= 128)
3303 e += BYTE8_STRING (c, e);
3304 else
3305 *e++ = c;
3306 nchars++;
3307
3308 /* Process fourth byte of a quadruplet. */
3309
3310 READ_QUADRUPLET_BYTE (-1);
3311
3312 if (c == '=')
3313 continue;
3314
3315 if (!IS_BASE64 (c))
3316 return -1;
3317 value |= base64_char_to_value[c];
3318
3319 c = (unsigned char) (0xff & value);
3320 if (multibyte && c >= 128)
3321 e += BYTE8_STRING (c, e);
3322 else
3323 *e++ = c;
3324 nchars++;
3325 }
3326 }
3327
3328
3329 \f
3330 /***********************************************************************
3331 ***** *****
3332 ***** Hash Tables *****
3333 ***** *****
3334 ***********************************************************************/
3335
3336 /* Implemented by gerd@gnu.org. This hash table implementation was
3337 inspired by CMUCL hash tables. */
3338
3339 /* Ideas:
3340
3341 1. For small tables, association lists are probably faster than
3342 hash tables because they have lower overhead.
3343
3344 For uses of hash tables where the O(1) behavior of table
3345 operations is not a requirement, it might therefore be a good idea
3346 not to hash. Instead, we could just do a linear search in the
3347 key_and_value vector of the hash table. This could be done
3348 if a `:linear-search t' argument is given to make-hash-table. */
3349
3350
3351 /* The list of all weak hash tables. Don't staticpro this one. */
3352
3353 static struct Lisp_Hash_Table *weak_hash_tables;
3354
3355 /* Various symbols. */
3356
3357 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3358 Lisp_Object Qeq, Qeql, Qequal;
3359 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3360 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3361
3362 /* Function prototypes. */
3363
3364 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3365 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3366 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3367 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3368
3369
3370 \f
3371 /***********************************************************************
3372 Utilities
3373 ***********************************************************************/
3374
3375 /* If OBJ is a Lisp hash table, return a pointer to its struct
3376 Lisp_Hash_Table. Otherwise, signal an error. */
3377
3378 static struct Lisp_Hash_Table *
3379 check_hash_table (Lisp_Object obj)
3380 {
3381 CHECK_HASH_TABLE (obj);
3382 return XHASH_TABLE (obj);
3383 }
3384
3385
3386 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3387 number. A number is "almost" a prime number if it is not divisible
3388 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3389
3390 EMACS_INT
3391 next_almost_prime (EMACS_INT n)
3392 {
3393 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3394 for (n |= 1; ; n += 2)
3395 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3396 return n;
3397 }
3398
3399
3400 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3401 which USED[I] is non-zero. If found at index I in ARGS, set
3402 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3403 0. This function is used to extract a keyword/argument pair from
3404 a DEFUN parameter list. */
3405
3406 static ptrdiff_t
3407 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3408 {
3409 ptrdiff_t i;
3410
3411 for (i = 1; i < nargs; i++)
3412 if (!used[i - 1] && EQ (args[i - 1], key))
3413 {
3414 used[i - 1] = 1;
3415 used[i] = 1;
3416 return i;
3417 }
3418
3419 return 0;
3420 }
3421
3422
3423 /* Return a Lisp vector which has the same contents as VEC but has
3424 at least INCR_MIN more entries, where INCR_MIN is positive.
3425 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3426 than NITEMS_MAX. Entries in the resulting
3427 vector that are not copied from VEC are set to nil. */
3428
3429 Lisp_Object
3430 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3431 {
3432 struct Lisp_Vector *v;
3433 ptrdiff_t i, incr, incr_max, old_size, new_size;
3434 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3435 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3436 ? nitems_max : C_language_max);
3437 eassert (VECTORP (vec));
3438 eassert (0 < incr_min && -1 <= nitems_max);
3439 old_size = ASIZE (vec);
3440 incr_max = n_max - old_size;
3441 incr = max (incr_min, min (old_size >> 1, incr_max));
3442 if (incr_max < incr)
3443 memory_full (SIZE_MAX);
3444 new_size = old_size + incr;
3445 v = allocate_vector (new_size);
3446 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3447 for (i = old_size; i < new_size; ++i)
3448 v->contents[i] = Qnil;
3449 XSETVECTOR (vec, v);
3450 return vec;
3451 }
3452
3453
3454 /***********************************************************************
3455 Low-level Functions
3456 ***********************************************************************/
3457
3458 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3459 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3460 KEY2 are the same. */
3461
3462 static int
3463 cmpfn_eql (struct Lisp_Hash_Table *h,
3464 Lisp_Object key1, EMACS_UINT hash1,
3465 Lisp_Object key2, EMACS_UINT hash2)
3466 {
3467 return (FLOATP (key1)
3468 && FLOATP (key2)
3469 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3470 }
3471
3472
3473 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3474 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3475 KEY2 are the same. */
3476
3477 static int
3478 cmpfn_equal (struct Lisp_Hash_Table *h,
3479 Lisp_Object key1, EMACS_UINT hash1,
3480 Lisp_Object key2, EMACS_UINT hash2)
3481 {
3482 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3483 }
3484
3485
3486 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3487 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3488 if KEY1 and KEY2 are the same. */
3489
3490 static int
3491 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3492 Lisp_Object key1, EMACS_UINT hash1,
3493 Lisp_Object key2, EMACS_UINT hash2)
3494 {
3495 if (hash1 == hash2)
3496 {
3497 Lisp_Object args[3];
3498
3499 args[0] = h->user_cmp_function;
3500 args[1] = key1;
3501 args[2] = key2;
3502 return !NILP (Ffuncall (3, args));
3503 }
3504 else
3505 return 0;
3506 }
3507
3508
3509 /* Value is a hash code for KEY for use in hash table H which uses
3510 `eq' to compare keys. The hash code returned is guaranteed to fit
3511 in a Lisp integer. */
3512
3513 static EMACS_UINT
3514 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3515 {
3516 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3517 eassert ((hash & ~INTMASK) == 0);
3518 return hash;
3519 }
3520
3521
3522 /* Value is a hash code for KEY for use in hash table H which uses
3523 `eql' to compare keys. The hash code returned is guaranteed to fit
3524 in a Lisp integer. */
3525
3526 static EMACS_UINT
3527 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3528 {
3529 EMACS_UINT hash;
3530 if (FLOATP (key))
3531 hash = sxhash (key, 0);
3532 else
3533 hash = XUINT (key) ^ XTYPE (key);
3534 eassert ((hash & ~INTMASK) == 0);
3535 return hash;
3536 }
3537
3538
3539 /* Value is a hash code for KEY for use in hash table H which uses
3540 `equal' to compare keys. The hash code returned is guaranteed to fit
3541 in a Lisp integer. */
3542
3543 static EMACS_UINT
3544 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3545 {
3546 EMACS_UINT hash = sxhash (key, 0);
3547 eassert ((hash & ~INTMASK) == 0);
3548 return hash;
3549 }
3550
3551
3552 /* Value is a hash code for KEY for use in hash table H which uses as
3553 user-defined function to compare keys. The hash code returned is
3554 guaranteed to fit in a Lisp integer. */
3555
3556 static EMACS_UINT
3557 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3558 {
3559 Lisp_Object args[2], hash;
3560
3561 args[0] = h->user_hash_function;
3562 args[1] = key;
3563 hash = Ffuncall (2, args);
3564 if (!INTEGERP (hash))
3565 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3566 return XUINT (hash);
3567 }
3568
3569 /* An upper bound on the size of a hash table index. It must fit in
3570 ptrdiff_t and be a valid Emacs fixnum. */
3571 #define INDEX_SIZE_BOUND \
3572 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / sizeof (Lisp_Object)))
3573
3574 /* Create and initialize a new hash table.
3575
3576 TEST specifies the test the hash table will use to compare keys.
3577 It must be either one of the predefined tests `eq', `eql' or
3578 `equal' or a symbol denoting a user-defined test named TEST with
3579 test and hash functions USER_TEST and USER_HASH.
3580
3581 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3582
3583 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3584 new size when it becomes full is computed by adding REHASH_SIZE to
3585 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3586 table's new size is computed by multiplying its old size with
3587 REHASH_SIZE.
3588
3589 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3590 be resized when the ratio of (number of entries in the table) /
3591 (table size) is >= REHASH_THRESHOLD.
3592
3593 WEAK specifies the weakness of the table. If non-nil, it must be
3594 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3595
3596 Lisp_Object
3597 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3598 Lisp_Object rehash_threshold, Lisp_Object weak,
3599 Lisp_Object user_test, Lisp_Object user_hash)
3600 {
3601 struct Lisp_Hash_Table *h;
3602 Lisp_Object table;
3603 EMACS_INT index_size, sz;
3604 ptrdiff_t i;
3605 double index_float;
3606
3607 /* Preconditions. */
3608 eassert (SYMBOLP (test));
3609 eassert (INTEGERP (size) && XINT (size) >= 0);
3610 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3611 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3612 eassert (FLOATP (rehash_threshold)
3613 && 0 < XFLOAT_DATA (rehash_threshold)
3614 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3615
3616 if (XFASTINT (size) == 0)
3617 size = make_number (1);
3618
3619 sz = XFASTINT (size);
3620 index_float = sz / XFLOAT_DATA (rehash_threshold);
3621 index_size = (index_float < INDEX_SIZE_BOUND + 1
3622 ? next_almost_prime (index_float)
3623 : INDEX_SIZE_BOUND + 1);
3624 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3625 error ("Hash table too large");
3626
3627 /* Allocate a table and initialize it. */
3628 h = allocate_hash_table ();
3629
3630 /* Initialize hash table slots. */
3631 h->test = test;
3632 if (EQ (test, Qeql))
3633 {
3634 h->cmpfn = cmpfn_eql;
3635 h->hashfn = hashfn_eql;
3636 }
3637 else if (EQ (test, Qeq))
3638 {
3639 h->cmpfn = NULL;
3640 h->hashfn = hashfn_eq;
3641 }
3642 else if (EQ (test, Qequal))
3643 {
3644 h->cmpfn = cmpfn_equal;
3645 h->hashfn = hashfn_equal;
3646 }
3647 else
3648 {
3649 h->user_cmp_function = user_test;
3650 h->user_hash_function = user_hash;
3651 h->cmpfn = cmpfn_user_defined;
3652 h->hashfn = hashfn_user_defined;
3653 }
3654
3655 h->weak = weak;
3656 h->rehash_threshold = rehash_threshold;
3657 h->rehash_size = rehash_size;
3658 h->count = 0;
3659 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3660 h->hash = Fmake_vector (size, Qnil);
3661 h->next = Fmake_vector (size, Qnil);
3662 h->index = Fmake_vector (make_number (index_size), Qnil);
3663
3664 /* Set up the free list. */
3665 for (i = 0; i < sz - 1; ++i)
3666 HASH_NEXT (h, i) = make_number (i + 1);
3667 h->next_free = make_number (0);
3668
3669 XSET_HASH_TABLE (table, h);
3670 eassert (HASH_TABLE_P (table));
3671 eassert (XHASH_TABLE (table) == h);
3672
3673 /* Maybe add this hash table to the list of all weak hash tables. */
3674 if (NILP (h->weak))
3675 h->next_weak = NULL;
3676 else
3677 {
3678 h->next_weak = weak_hash_tables;
3679 weak_hash_tables = h;
3680 }
3681
3682 return table;
3683 }
3684
3685
3686 /* Return a copy of hash table H1. Keys and values are not copied,
3687 only the table itself is. */
3688
3689 static Lisp_Object
3690 copy_hash_table (struct Lisp_Hash_Table *h1)
3691 {
3692 Lisp_Object table;
3693 struct Lisp_Hash_Table *h2;
3694 struct Lisp_Vector *next;
3695
3696 h2 = allocate_hash_table ();
3697 next = h2->header.next.vector;
3698 memcpy (h2, h1, sizeof *h2);
3699 h2->header.next.vector = next;
3700 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3701 h2->hash = Fcopy_sequence (h1->hash);
3702 h2->next = Fcopy_sequence (h1->next);
3703 h2->index = Fcopy_sequence (h1->index);
3704 XSET_HASH_TABLE (table, h2);
3705
3706 /* Maybe add this hash table to the list of all weak hash tables. */
3707 if (!NILP (h2->weak))
3708 {
3709 h2->next_weak = weak_hash_tables;
3710 weak_hash_tables = h2;
3711 }
3712
3713 return table;
3714 }
3715
3716
3717 /* Resize hash table H if it's too full. If H cannot be resized
3718 because it's already too large, throw an error. */
3719
3720 static inline void
3721 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3722 {
3723 if (NILP (h->next_free))
3724 {
3725 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3726 EMACS_INT new_size, index_size, nsize;
3727 ptrdiff_t i;
3728 double index_float;
3729
3730 if (INTEGERP (h->rehash_size))
3731 new_size = old_size + XFASTINT (h->rehash_size);
3732 else
3733 {
3734 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3735 if (float_new_size < INDEX_SIZE_BOUND + 1)
3736 {
3737 new_size = float_new_size;
3738 if (new_size <= old_size)
3739 new_size = old_size + 1;
3740 }
3741 else
3742 new_size = INDEX_SIZE_BOUND + 1;
3743 }
3744 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3745 index_size = (index_float < INDEX_SIZE_BOUND + 1
3746 ? next_almost_prime (index_float)
3747 : INDEX_SIZE_BOUND + 1);
3748 nsize = max (index_size, 2 * new_size);
3749 if (INDEX_SIZE_BOUND < nsize)
3750 error ("Hash table too large to resize");
3751
3752 #ifdef ENABLE_CHECKING
3753 if (HASH_TABLE_P (Vpurify_flag)
3754 && XHASH_TABLE (Vpurify_flag) == h)
3755 {
3756 Lisp_Object args[2];
3757 args[0] = build_string ("Growing hash table to: %d");
3758 args[1] = make_number (new_size);
3759 Fmessage (2, args);
3760 }
3761 #endif
3762
3763 h->key_and_value = larger_vector (h->key_and_value,
3764 2 * (new_size - old_size), -1);
3765 h->next = larger_vector (h->next, new_size - old_size, -1);
3766 h->hash = larger_vector (h->hash, new_size - old_size, -1);
3767 h->index = Fmake_vector (make_number (index_size), Qnil);
3768
3769 /* Update the free list. Do it so that new entries are added at
3770 the end of the free list. This makes some operations like
3771 maphash faster. */
3772 for (i = old_size; i < new_size - 1; ++i)
3773 HASH_NEXT (h, i) = make_number (i + 1);
3774
3775 if (!NILP (h->next_free))
3776 {
3777 Lisp_Object last, next;
3778
3779 last = h->next_free;
3780 while (next = HASH_NEXT (h, XFASTINT (last)),
3781 !NILP (next))
3782 last = next;
3783
3784 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3785 }
3786 else
3787 XSETFASTINT (h->next_free, old_size);
3788
3789 /* Rehash. */
3790 for (i = 0; i < old_size; ++i)
3791 if (!NILP (HASH_HASH (h, i)))
3792 {
3793 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3794 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3795 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3796 HASH_INDEX (h, start_of_bucket) = make_number (i);
3797 }
3798 }
3799 }
3800
3801
3802 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3803 the hash code of KEY. Value is the index of the entry in H
3804 matching KEY, or -1 if not found. */
3805
3806 ptrdiff_t
3807 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3808 {
3809 EMACS_UINT hash_code;
3810 ptrdiff_t start_of_bucket;
3811 Lisp_Object idx;
3812
3813 hash_code = h->hashfn (h, key);
3814 if (hash)
3815 *hash = hash_code;
3816
3817 start_of_bucket = hash_code % ASIZE (h->index);
3818 idx = HASH_INDEX (h, start_of_bucket);
3819
3820 /* We need not gcpro idx since it's either an integer or nil. */
3821 while (!NILP (idx))
3822 {
3823 ptrdiff_t i = XFASTINT (idx);
3824 if (EQ (key, HASH_KEY (h, i))
3825 || (h->cmpfn
3826 && h->cmpfn (h, key, hash_code,
3827 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3828 break;
3829 idx = HASH_NEXT (h, i);
3830 }
3831
3832 return NILP (idx) ? -1 : XFASTINT (idx);
3833 }
3834
3835
3836 /* Put an entry into hash table H that associates KEY with VALUE.
3837 HASH is a previously computed hash code of KEY.
3838 Value is the index of the entry in H matching KEY. */
3839
3840 ptrdiff_t
3841 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3842 EMACS_UINT hash)
3843 {
3844 ptrdiff_t start_of_bucket, i;
3845
3846 eassert ((hash & ~INTMASK) == 0);
3847
3848 /* Increment count after resizing because resizing may fail. */
3849 maybe_resize_hash_table (h);
3850 h->count++;
3851
3852 /* Store key/value in the key_and_value vector. */
3853 i = XFASTINT (h->next_free);
3854 h->next_free = HASH_NEXT (h, i);
3855 HASH_KEY (h, i) = key;
3856 HASH_VALUE (h, i) = value;
3857
3858 /* Remember its hash code. */
3859 HASH_HASH (h, i) = make_number (hash);
3860
3861 /* Add new entry to its collision chain. */
3862 start_of_bucket = hash % ASIZE (h->index);
3863 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3864 HASH_INDEX (h, start_of_bucket) = make_number (i);
3865 return i;
3866 }
3867
3868
3869 /* Remove the entry matching KEY from hash table H, if there is one. */
3870
3871 static void
3872 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3873 {
3874 EMACS_UINT hash_code;
3875 ptrdiff_t start_of_bucket;
3876 Lisp_Object idx, prev;
3877
3878 hash_code = h->hashfn (h, key);
3879 start_of_bucket = hash_code % ASIZE (h->index);
3880 idx = HASH_INDEX (h, start_of_bucket);
3881 prev = Qnil;
3882
3883 /* We need not gcpro idx, prev since they're either integers or nil. */
3884 while (!NILP (idx))
3885 {
3886 ptrdiff_t i = XFASTINT (idx);
3887
3888 if (EQ (key, HASH_KEY (h, i))
3889 || (h->cmpfn
3890 && h->cmpfn (h, key, hash_code,
3891 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3892 {
3893 /* Take entry out of collision chain. */
3894 if (NILP (prev))
3895 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3896 else
3897 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3898
3899 /* Clear slots in key_and_value and add the slots to
3900 the free list. */
3901 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3902 HASH_NEXT (h, i) = h->next_free;
3903 h->next_free = make_number (i);
3904 h->count--;
3905 eassert (h->count >= 0);
3906 break;
3907 }
3908 else
3909 {
3910 prev = idx;
3911 idx = HASH_NEXT (h, i);
3912 }
3913 }
3914 }
3915
3916
3917 /* Clear hash table H. */
3918
3919 static void
3920 hash_clear (struct Lisp_Hash_Table *h)
3921 {
3922 if (h->count > 0)
3923 {
3924 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3925
3926 for (i = 0; i < size; ++i)
3927 {
3928 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3929 HASH_KEY (h, i) = Qnil;
3930 HASH_VALUE (h, i) = Qnil;
3931 HASH_HASH (h, i) = Qnil;
3932 }
3933
3934 for (i = 0; i < ASIZE (h->index); ++i)
3935 ASET (h->index, i, Qnil);
3936
3937 h->next_free = make_number (0);
3938 h->count = 0;
3939 }
3940 }
3941
3942
3943 \f
3944 /************************************************************************
3945 Weak Hash Tables
3946 ************************************************************************/
3947
3948 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3949 entries from the table that don't survive the current GC.
3950 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3951 non-zero if anything was marked. */
3952
3953 static int
3954 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3955 {
3956 ptrdiff_t bucket, n;
3957 int marked;
3958
3959 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3960 marked = 0;
3961
3962 for (bucket = 0; bucket < n; ++bucket)
3963 {
3964 Lisp_Object idx, next, prev;
3965
3966 /* Follow collision chain, removing entries that
3967 don't survive this garbage collection. */
3968 prev = Qnil;
3969 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3970 {
3971 ptrdiff_t i = XFASTINT (idx);
3972 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3973 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3974 int remove_p;
3975
3976 if (EQ (h->weak, Qkey))
3977 remove_p = !key_known_to_survive_p;
3978 else if (EQ (h->weak, Qvalue))
3979 remove_p = !value_known_to_survive_p;
3980 else if (EQ (h->weak, Qkey_or_value))
3981 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3982 else if (EQ (h->weak, Qkey_and_value))
3983 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3984 else
3985 abort ();
3986
3987 next = HASH_NEXT (h, i);
3988
3989 if (remove_entries_p)
3990 {
3991 if (remove_p)
3992 {
3993 /* Take out of collision chain. */
3994 if (NILP (prev))
3995 HASH_INDEX (h, bucket) = next;
3996 else
3997 HASH_NEXT (h, XFASTINT (prev)) = next;
3998
3999 /* Add to free list. */
4000 HASH_NEXT (h, i) = h->next_free;
4001 h->next_free = idx;
4002
4003 /* Clear key, value, and hash. */
4004 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4005 HASH_HASH (h, i) = Qnil;
4006
4007 h->count--;
4008 }
4009 else
4010 {
4011 prev = idx;
4012 }
4013 }
4014 else
4015 {
4016 if (!remove_p)
4017 {
4018 /* Make sure key and value survive. */
4019 if (!key_known_to_survive_p)
4020 {
4021 mark_object (HASH_KEY (h, i));
4022 marked = 1;
4023 }
4024
4025 if (!value_known_to_survive_p)
4026 {
4027 mark_object (HASH_VALUE (h, i));
4028 marked = 1;
4029 }
4030 }
4031 }
4032 }
4033 }
4034
4035 return marked;
4036 }
4037
4038 /* Remove elements from weak hash tables that don't survive the
4039 current garbage collection. Remove weak tables that don't survive
4040 from Vweak_hash_tables. Called from gc_sweep. */
4041
4042 void
4043 sweep_weak_hash_tables (void)
4044 {
4045 struct Lisp_Hash_Table *h, *used, *next;
4046 int marked;
4047
4048 /* Mark all keys and values that are in use. Keep on marking until
4049 there is no more change. This is necessary for cases like
4050 value-weak table A containing an entry X -> Y, where Y is used in a
4051 key-weak table B, Z -> Y. If B comes after A in the list of weak
4052 tables, X -> Y might be removed from A, although when looking at B
4053 one finds that it shouldn't. */
4054 do
4055 {
4056 marked = 0;
4057 for (h = weak_hash_tables; h; h = h->next_weak)
4058 {
4059 if (h->header.size & ARRAY_MARK_FLAG)
4060 marked |= sweep_weak_table (h, 0);
4061 }
4062 }
4063 while (marked);
4064
4065 /* Remove tables and entries that aren't used. */
4066 for (h = weak_hash_tables, used = NULL; h; h = next)
4067 {
4068 next = h->next_weak;
4069
4070 if (h->header.size & ARRAY_MARK_FLAG)
4071 {
4072 /* TABLE is marked as used. Sweep its contents. */
4073 if (h->count > 0)
4074 sweep_weak_table (h, 1);
4075
4076 /* Add table to the list of used weak hash tables. */
4077 h->next_weak = used;
4078 used = h;
4079 }
4080 }
4081
4082 weak_hash_tables = used;
4083 }
4084
4085
4086 \f
4087 /***********************************************************************
4088 Hash Code Computation
4089 ***********************************************************************/
4090
4091 /* Maximum depth up to which to dive into Lisp structures. */
4092
4093 #define SXHASH_MAX_DEPTH 3
4094
4095 /* Maximum length up to which to take list and vector elements into
4096 account. */
4097
4098 #define SXHASH_MAX_LEN 7
4099
4100 /* Combine two integers X and Y for hashing. The result might not fit
4101 into a Lisp integer. */
4102
4103 #define SXHASH_COMBINE(X, Y) \
4104 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4105 + (EMACS_UINT) (Y))
4106
4107 /* Hash X, returning a value that fits into a Lisp integer. */
4108 #define SXHASH_REDUCE(X) \
4109 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4110
4111 /* Return a hash for string PTR which has length LEN. The hash value
4112 can be any EMACS_UINT value. */
4113
4114 EMACS_UINT
4115 hash_string (char const *ptr, ptrdiff_t len)
4116 {
4117 char const *p = ptr;
4118 char const *end = p + len;
4119 unsigned char c;
4120 EMACS_UINT hash = 0;
4121
4122 while (p != end)
4123 {
4124 c = *p++;
4125 hash = SXHASH_COMBINE (hash, c);
4126 }
4127
4128 return hash;
4129 }
4130
4131 /* Return a hash for string PTR which has length LEN. The hash
4132 code returned is guaranteed to fit in a Lisp integer. */
4133
4134 static EMACS_UINT
4135 sxhash_string (char const *ptr, ptrdiff_t len)
4136 {
4137 EMACS_UINT hash = hash_string (ptr, len);
4138 return SXHASH_REDUCE (hash);
4139 }
4140
4141 /* Return a hash for the floating point value VAL. */
4142
4143 static EMACS_INT
4144 sxhash_float (double val)
4145 {
4146 EMACS_UINT hash = 0;
4147 enum {
4148 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4149 + (sizeof val % sizeof hash != 0))
4150 };
4151 union {
4152 double val;
4153 EMACS_UINT word[WORDS_PER_DOUBLE];
4154 } u;
4155 int i;
4156 u.val = val;
4157 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4158 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4159 hash = SXHASH_COMBINE (hash, u.word[i]);
4160 return SXHASH_REDUCE (hash);
4161 }
4162
4163 /* Return a hash for list LIST. DEPTH is the current depth in the
4164 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4165
4166 static EMACS_UINT
4167 sxhash_list (Lisp_Object list, int depth)
4168 {
4169 EMACS_UINT hash = 0;
4170 int i;
4171
4172 if (depth < SXHASH_MAX_DEPTH)
4173 for (i = 0;
4174 CONSP (list) && i < SXHASH_MAX_LEN;
4175 list = XCDR (list), ++i)
4176 {
4177 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4178 hash = SXHASH_COMBINE (hash, hash2);
4179 }
4180
4181 if (!NILP (list))
4182 {
4183 EMACS_UINT hash2 = sxhash (list, depth + 1);
4184 hash = SXHASH_COMBINE (hash, hash2);
4185 }
4186
4187 return SXHASH_REDUCE (hash);
4188 }
4189
4190
4191 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4192 the Lisp structure. */
4193
4194 static EMACS_UINT
4195 sxhash_vector (Lisp_Object vec, int depth)
4196 {
4197 EMACS_UINT hash = ASIZE (vec);
4198 int i, n;
4199
4200 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4201 for (i = 0; i < n; ++i)
4202 {
4203 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4204 hash = SXHASH_COMBINE (hash, hash2);
4205 }
4206
4207 return SXHASH_REDUCE (hash);
4208 }
4209
4210 /* Return a hash for bool-vector VECTOR. */
4211
4212 static EMACS_UINT
4213 sxhash_bool_vector (Lisp_Object vec)
4214 {
4215 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4216 int i, n;
4217
4218 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4219 for (i = 0; i < n; ++i)
4220 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4221
4222 return SXHASH_REDUCE (hash);
4223 }
4224
4225
4226 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4227 structure. Value is an unsigned integer clipped to INTMASK. */
4228
4229 EMACS_UINT
4230 sxhash (Lisp_Object obj, int depth)
4231 {
4232 EMACS_UINT hash;
4233
4234 if (depth > SXHASH_MAX_DEPTH)
4235 return 0;
4236
4237 switch (XTYPE (obj))
4238 {
4239 case_Lisp_Int:
4240 hash = XUINT (obj);
4241 break;
4242
4243 case Lisp_Misc:
4244 hash = XUINT (obj);
4245 break;
4246
4247 case Lisp_Symbol:
4248 obj = SYMBOL_NAME (obj);
4249 /* Fall through. */
4250
4251 case Lisp_String:
4252 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4253 break;
4254
4255 /* This can be everything from a vector to an overlay. */
4256 case Lisp_Vectorlike:
4257 if (VECTORP (obj))
4258 /* According to the CL HyperSpec, two arrays are equal only if
4259 they are `eq', except for strings and bit-vectors. In
4260 Emacs, this works differently. We have to compare element
4261 by element. */
4262 hash = sxhash_vector (obj, depth);
4263 else if (BOOL_VECTOR_P (obj))
4264 hash = sxhash_bool_vector (obj);
4265 else
4266 /* Others are `equal' if they are `eq', so let's take their
4267 address as hash. */
4268 hash = XUINT (obj);
4269 break;
4270
4271 case Lisp_Cons:
4272 hash = sxhash_list (obj, depth);
4273 break;
4274
4275 case Lisp_Float:
4276 hash = sxhash_float (XFLOAT_DATA (obj));
4277 break;
4278
4279 default:
4280 abort ();
4281 }
4282
4283 return hash;
4284 }
4285
4286
4287 \f
4288 /***********************************************************************
4289 Lisp Interface
4290 ***********************************************************************/
4291
4292
4293 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4294 doc: /* Compute a hash code for OBJ and return it as integer. */)
4295 (Lisp_Object obj)
4296 {
4297 EMACS_UINT hash = sxhash (obj, 0);
4298 return make_number (hash);
4299 }
4300
4301
4302 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4303 doc: /* Create and return a new hash table.
4304
4305 Arguments are specified as keyword/argument pairs. The following
4306 arguments are defined:
4307
4308 :test TEST -- TEST must be a symbol that specifies how to compare
4309 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4310 `equal'. User-supplied test and hash functions can be specified via
4311 `define-hash-table-test'.
4312
4313 :size SIZE -- A hint as to how many elements will be put in the table.
4314 Default is 65.
4315
4316 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4317 fills up. If REHASH-SIZE is an integer, increase the size by that
4318 amount. If it is a float, it must be > 1.0, and the new size is the
4319 old size multiplied by that factor. Default is 1.5.
4320
4321 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4322 Resize the hash table when the ratio (number of entries / table size)
4323 is greater than or equal to THRESHOLD. Default is 0.8.
4324
4325 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4326 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4327 returned is a weak table. Key/value pairs are removed from a weak
4328 hash table when there are no non-weak references pointing to their
4329 key, value, one of key or value, or both key and value, depending on
4330 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4331 is nil.
4332
4333 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4334 (ptrdiff_t nargs, Lisp_Object *args)
4335 {
4336 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4337 Lisp_Object user_test, user_hash;
4338 char *used;
4339 ptrdiff_t i;
4340
4341 /* The vector `used' is used to keep track of arguments that
4342 have been consumed. */
4343 used = alloca (nargs * sizeof *used);
4344 memset (used, 0, nargs * sizeof *used);
4345
4346 /* See if there's a `:test TEST' among the arguments. */
4347 i = get_key_arg (QCtest, nargs, args, used);
4348 test = i ? args[i] : Qeql;
4349 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4350 {
4351 /* See if it is a user-defined test. */
4352 Lisp_Object prop;
4353
4354 prop = Fget (test, Qhash_table_test);
4355 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4356 signal_error ("Invalid hash table test", test);
4357 user_test = XCAR (prop);
4358 user_hash = XCAR (XCDR (prop));
4359 }
4360 else
4361 user_test = user_hash = Qnil;
4362
4363 /* See if there's a `:size SIZE' argument. */
4364 i = get_key_arg (QCsize, nargs, args, used);
4365 size = i ? args[i] : Qnil;
4366 if (NILP (size))
4367 size = make_number (DEFAULT_HASH_SIZE);
4368 else if (!INTEGERP (size) || XINT (size) < 0)
4369 signal_error ("Invalid hash table size", size);
4370
4371 /* Look for `:rehash-size SIZE'. */
4372 i = get_key_arg (QCrehash_size, nargs, args, used);
4373 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4374 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4375 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4376 signal_error ("Invalid hash table rehash size", rehash_size);
4377
4378 /* Look for `:rehash-threshold THRESHOLD'. */
4379 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4380 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4381 if (! (FLOATP (rehash_threshold)
4382 && 0 < XFLOAT_DATA (rehash_threshold)
4383 && XFLOAT_DATA (rehash_threshold) <= 1))
4384 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4385
4386 /* Look for `:weakness WEAK'. */
4387 i = get_key_arg (QCweakness, nargs, args, used);
4388 weak = i ? args[i] : Qnil;
4389 if (EQ (weak, Qt))
4390 weak = Qkey_and_value;
4391 if (!NILP (weak)
4392 && !EQ (weak, Qkey)
4393 && !EQ (weak, Qvalue)
4394 && !EQ (weak, Qkey_or_value)
4395 && !EQ (weak, Qkey_and_value))
4396 signal_error ("Invalid hash table weakness", weak);
4397
4398 /* Now, all args should have been used up, or there's a problem. */
4399 for (i = 0; i < nargs; ++i)
4400 if (!used[i])
4401 signal_error ("Invalid argument list", args[i]);
4402
4403 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4404 user_test, user_hash);
4405 }
4406
4407
4408 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4409 doc: /* Return a copy of hash table TABLE. */)
4410 (Lisp_Object table)
4411 {
4412 return copy_hash_table (check_hash_table (table));
4413 }
4414
4415
4416 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4417 doc: /* Return the number of elements in TABLE. */)
4418 (Lisp_Object table)
4419 {
4420 return make_number (check_hash_table (table)->count);
4421 }
4422
4423
4424 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4425 Shash_table_rehash_size, 1, 1, 0,
4426 doc: /* Return the current rehash size of TABLE. */)
4427 (Lisp_Object table)
4428 {
4429 return check_hash_table (table)->rehash_size;
4430 }
4431
4432
4433 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4434 Shash_table_rehash_threshold, 1, 1, 0,
4435 doc: /* Return the current rehash threshold of TABLE. */)
4436 (Lisp_Object table)
4437 {
4438 return check_hash_table (table)->rehash_threshold;
4439 }
4440
4441
4442 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4443 doc: /* Return the size of TABLE.
4444 The size can be used as an argument to `make-hash-table' to create
4445 a hash table than can hold as many elements as TABLE holds
4446 without need for resizing. */)
4447 (Lisp_Object table)
4448 {
4449 struct Lisp_Hash_Table *h = check_hash_table (table);
4450 return make_number (HASH_TABLE_SIZE (h));
4451 }
4452
4453
4454 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4455 doc: /* Return the test TABLE uses. */)
4456 (Lisp_Object table)
4457 {
4458 return check_hash_table (table)->test;
4459 }
4460
4461
4462 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4463 1, 1, 0,
4464 doc: /* Return the weakness of TABLE. */)
4465 (Lisp_Object table)
4466 {
4467 return check_hash_table (table)->weak;
4468 }
4469
4470
4471 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4472 doc: /* Return t if OBJ is a Lisp hash table object. */)
4473 (Lisp_Object obj)
4474 {
4475 return HASH_TABLE_P (obj) ? Qt : Qnil;
4476 }
4477
4478
4479 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4480 doc: /* Clear hash table TABLE and return it. */)
4481 (Lisp_Object table)
4482 {
4483 hash_clear (check_hash_table (table));
4484 /* Be compatible with XEmacs. */
4485 return table;
4486 }
4487
4488
4489 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4490 doc: /* Look up KEY in TABLE and return its associated value.
4491 If KEY is not found, return DFLT which defaults to nil. */)
4492 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4493 {
4494 struct Lisp_Hash_Table *h = check_hash_table (table);
4495 ptrdiff_t i = hash_lookup (h, key, NULL);
4496 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4497 }
4498
4499
4500 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4501 doc: /* Associate KEY with VALUE in hash table TABLE.
4502 If KEY is already present in table, replace its current value with
4503 VALUE. In any case, return VALUE. */)
4504 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4505 {
4506 struct Lisp_Hash_Table *h = check_hash_table (table);
4507 ptrdiff_t i;
4508 EMACS_UINT hash;
4509
4510 i = hash_lookup (h, key, &hash);
4511 if (i >= 0)
4512 HASH_VALUE (h, i) = value;
4513 else
4514 hash_put (h, key, value, hash);
4515
4516 return value;
4517 }
4518
4519
4520 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4521 doc: /* Remove KEY from TABLE. */)
4522 (Lisp_Object key, Lisp_Object table)
4523 {
4524 struct Lisp_Hash_Table *h = check_hash_table (table);
4525 hash_remove_from_table (h, key);
4526 return Qnil;
4527 }
4528
4529
4530 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4531 doc: /* Call FUNCTION for all entries in hash table TABLE.
4532 FUNCTION is called with two arguments, KEY and VALUE. */)
4533 (Lisp_Object function, Lisp_Object table)
4534 {
4535 struct Lisp_Hash_Table *h = check_hash_table (table);
4536 Lisp_Object args[3];
4537 ptrdiff_t i;
4538
4539 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4540 if (!NILP (HASH_HASH (h, i)))
4541 {
4542 args[0] = function;
4543 args[1] = HASH_KEY (h, i);
4544 args[2] = HASH_VALUE (h, i);
4545 Ffuncall (3, args);
4546 }
4547
4548 return Qnil;
4549 }
4550
4551
4552 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4553 Sdefine_hash_table_test, 3, 3, 0,
4554 doc: /* Define a new hash table test with name NAME, a symbol.
4555
4556 In hash tables created with NAME specified as test, use TEST to
4557 compare keys, and HASH for computing hash codes of keys.
4558
4559 TEST must be a function taking two arguments and returning non-nil if
4560 both arguments are the same. HASH must be a function taking one
4561 argument and return an integer that is the hash code of the argument.
4562 Hash code computation should use the whole value range of integers,
4563 including negative integers. */)
4564 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4565 {
4566 return Fput (name, Qhash_table_test, list2 (test, hash));
4567 }
4568
4569
4570 \f
4571 /************************************************************************
4572 MD5, SHA-1, and SHA-2
4573 ************************************************************************/
4574
4575 #include "md5.h"
4576 #include "sha1.h"
4577 #include "sha256.h"
4578 #include "sha512.h"
4579
4580 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4581
4582 static Lisp_Object
4583 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4584 {
4585 int i;
4586 ptrdiff_t size;
4587 EMACS_INT start_char = 0, end_char = 0;
4588 ptrdiff_t start_byte, end_byte;
4589 register EMACS_INT b, e;
4590 register struct buffer *bp;
4591 EMACS_INT temp;
4592 int digest_size;
4593 void *(*hash_func) (const char *, size_t, void *);
4594 Lisp_Object digest;
4595
4596 CHECK_SYMBOL (algorithm);
4597
4598 if (STRINGP (object))
4599 {
4600 if (NILP (coding_system))
4601 {
4602 /* Decide the coding-system to encode the data with. */
4603
4604 if (STRING_MULTIBYTE (object))
4605 /* use default, we can't guess correct value */
4606 coding_system = preferred_coding_system ();
4607 else
4608 coding_system = Qraw_text;
4609 }
4610
4611 if (NILP (Fcoding_system_p (coding_system)))
4612 {
4613 /* Invalid coding system. */
4614
4615 if (!NILP (noerror))
4616 coding_system = Qraw_text;
4617 else
4618 xsignal1 (Qcoding_system_error, coding_system);
4619 }
4620
4621 if (STRING_MULTIBYTE (object))
4622 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4623
4624 size = SCHARS (object);
4625
4626 if (!NILP (start))
4627 {
4628 CHECK_NUMBER (start);
4629
4630 start_char = XINT (start);
4631
4632 if (start_char < 0)
4633 start_char += size;
4634 }
4635
4636 if (NILP (end))
4637 end_char = size;
4638 else
4639 {
4640 CHECK_NUMBER (end);
4641
4642 end_char = XINT (end);
4643
4644 if (end_char < 0)
4645 end_char += size;
4646 }
4647
4648 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4649 args_out_of_range_3 (object, make_number (start_char),
4650 make_number (end_char));
4651
4652 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4653 end_byte =
4654 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4655 }
4656 else
4657 {
4658 struct buffer *prev = current_buffer;
4659
4660 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4661
4662 CHECK_BUFFER (object);
4663
4664 bp = XBUFFER (object);
4665 if (bp != current_buffer)
4666 set_buffer_internal (bp);
4667
4668 if (NILP (start))
4669 b = BEGV;
4670 else
4671 {
4672 CHECK_NUMBER_COERCE_MARKER (start);
4673 b = XINT (start);
4674 }
4675
4676 if (NILP (end))
4677 e = ZV;
4678 else
4679 {
4680 CHECK_NUMBER_COERCE_MARKER (end);
4681 e = XINT (end);
4682 }
4683
4684 if (b > e)
4685 temp = b, b = e, e = temp;
4686
4687 if (!(BEGV <= b && e <= ZV))
4688 args_out_of_range (start, end);
4689
4690 if (NILP (coding_system))
4691 {
4692 /* Decide the coding-system to encode the data with.
4693 See fileio.c:Fwrite-region */
4694
4695 if (!NILP (Vcoding_system_for_write))
4696 coding_system = Vcoding_system_for_write;
4697 else
4698 {
4699 int force_raw_text = 0;
4700
4701 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4702 if (NILP (coding_system)
4703 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4704 {
4705 coding_system = Qnil;
4706 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4707 force_raw_text = 1;
4708 }
4709
4710 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4711 {
4712 /* Check file-coding-system-alist. */
4713 Lisp_Object args[4], val;
4714
4715 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4716 args[3] = Fbuffer_file_name (object);
4717 val = Ffind_operation_coding_system (4, args);
4718 if (CONSP (val) && !NILP (XCDR (val)))
4719 coding_system = XCDR (val);
4720 }
4721
4722 if (NILP (coding_system)
4723 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4724 {
4725 /* If we still have not decided a coding system, use the
4726 default value of buffer-file-coding-system. */
4727 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4728 }
4729
4730 if (!force_raw_text
4731 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4732 /* Confirm that VAL can surely encode the current region. */
4733 coding_system = call4 (Vselect_safe_coding_system_function,
4734 make_number (b), make_number (e),
4735 coding_system, Qnil);
4736
4737 if (force_raw_text)
4738 coding_system = Qraw_text;
4739 }
4740
4741 if (NILP (Fcoding_system_p (coding_system)))
4742 {
4743 /* Invalid coding system. */
4744
4745 if (!NILP (noerror))
4746 coding_system = Qraw_text;
4747 else
4748 xsignal1 (Qcoding_system_error, coding_system);
4749 }
4750 }
4751
4752 object = make_buffer_string (b, e, 0);
4753 if (prev != current_buffer)
4754 set_buffer_internal (prev);
4755 /* Discard the unwind protect for recovering the current
4756 buffer. */
4757 specpdl_ptr--;
4758
4759 if (STRING_MULTIBYTE (object))
4760 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4761 start_byte = 0;
4762 end_byte = SBYTES (object);
4763 }
4764
4765 if (EQ (algorithm, Qmd5))
4766 {
4767 digest_size = MD5_DIGEST_SIZE;
4768 hash_func = md5_buffer;
4769 }
4770 else if (EQ (algorithm, Qsha1))
4771 {
4772 digest_size = SHA1_DIGEST_SIZE;
4773 hash_func = sha1_buffer;
4774 }
4775 else if (EQ (algorithm, Qsha224))
4776 {
4777 digest_size = SHA224_DIGEST_SIZE;
4778 hash_func = sha224_buffer;
4779 }
4780 else if (EQ (algorithm, Qsha256))
4781 {
4782 digest_size = SHA256_DIGEST_SIZE;
4783 hash_func = sha256_buffer;
4784 }
4785 else if (EQ (algorithm, Qsha384))
4786 {
4787 digest_size = SHA384_DIGEST_SIZE;
4788 hash_func = sha384_buffer;
4789 }
4790 else if (EQ (algorithm, Qsha512))
4791 {
4792 digest_size = SHA512_DIGEST_SIZE;
4793 hash_func = sha512_buffer;
4794 }
4795 else
4796 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4797
4798 /* allocate 2 x digest_size so that it can be re-used to hold the
4799 hexified value */
4800 digest = make_uninit_string (digest_size * 2);
4801
4802 hash_func (SSDATA (object) + start_byte,
4803 end_byte - start_byte,
4804 SSDATA (digest));
4805
4806 if (NILP (binary))
4807 {
4808 unsigned char *p = SDATA (digest);
4809 for (i = digest_size - 1; i >= 0; i--)
4810 {
4811 static char const hexdigit[16] = "0123456789abcdef";
4812 int p_i = p[i];
4813 p[2 * i] = hexdigit[p_i >> 4];
4814 p[2 * i + 1] = hexdigit[p_i & 0xf];
4815 }
4816 return digest;
4817 }
4818 else
4819 return make_unibyte_string (SSDATA (digest), digest_size);
4820 }
4821
4822 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4823 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4824
4825 A message digest is a cryptographic checksum of a document, and the
4826 algorithm to calculate it is defined in RFC 1321.
4827
4828 The two optional arguments START and END are character positions
4829 specifying for which part of OBJECT the message digest should be
4830 computed. If nil or omitted, the digest is computed for the whole
4831 OBJECT.
4832
4833 The MD5 message digest is computed from the result of encoding the
4834 text in a coding system, not directly from the internal Emacs form of
4835 the text. The optional fourth argument CODING-SYSTEM specifies which
4836 coding system to encode the text with. It should be the same coding
4837 system that you used or will use when actually writing the text into a
4838 file.
4839
4840 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4841 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4842 system would be chosen by default for writing this text into a file.
4843
4844 If OBJECT is a string, the most preferred coding system (see the
4845 command `prefer-coding-system') is used.
4846
4847 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4848 guesswork fails. Normally, an error is signaled in such case. */)
4849 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4850 {
4851 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4852 }
4853
4854 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4855 doc: /* Return the secure hash of OBJECT, a buffer or string.
4856 ALGORITHM is a symbol specifying the hash to use:
4857 md5, sha1, sha224, sha256, sha384 or sha512.
4858
4859 The two optional arguments START and END are positions specifying for
4860 which part of OBJECT to compute the hash. If nil or omitted, uses the
4861 whole OBJECT.
4862
4863 If BINARY is non-nil, returns a string in binary form. */)
4864 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4865 {
4866 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4867 }
4868 \f
4869 void
4870 syms_of_fns (void)
4871 {
4872 DEFSYM (Qmd5, "md5");
4873 DEFSYM (Qsha1, "sha1");
4874 DEFSYM (Qsha224, "sha224");
4875 DEFSYM (Qsha256, "sha256");
4876 DEFSYM (Qsha384, "sha384");
4877 DEFSYM (Qsha512, "sha512");
4878
4879 /* Hash table stuff. */
4880 DEFSYM (Qhash_table_p, "hash-table-p");
4881 DEFSYM (Qeq, "eq");
4882 DEFSYM (Qeql, "eql");
4883 DEFSYM (Qequal, "equal");
4884 DEFSYM (QCtest, ":test");
4885 DEFSYM (QCsize, ":size");
4886 DEFSYM (QCrehash_size, ":rehash-size");
4887 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4888 DEFSYM (QCweakness, ":weakness");
4889 DEFSYM (Qkey, "key");
4890 DEFSYM (Qvalue, "value");
4891 DEFSYM (Qhash_table_test, "hash-table-test");
4892 DEFSYM (Qkey_or_value, "key-or-value");
4893 DEFSYM (Qkey_and_value, "key-and-value");
4894
4895 defsubr (&Ssxhash);
4896 defsubr (&Smake_hash_table);
4897 defsubr (&Scopy_hash_table);
4898 defsubr (&Shash_table_count);
4899 defsubr (&Shash_table_rehash_size);
4900 defsubr (&Shash_table_rehash_threshold);
4901 defsubr (&Shash_table_size);
4902 defsubr (&Shash_table_test);
4903 defsubr (&Shash_table_weakness);
4904 defsubr (&Shash_table_p);
4905 defsubr (&Sclrhash);
4906 defsubr (&Sgethash);
4907 defsubr (&Sputhash);
4908 defsubr (&Sremhash);
4909 defsubr (&Smaphash);
4910 defsubr (&Sdefine_hash_table_test);
4911
4912 DEFSYM (Qstring_lessp, "string-lessp");
4913 DEFSYM (Qprovide, "provide");
4914 DEFSYM (Qrequire, "require");
4915 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4916 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4917 DEFSYM (Qwidget_type, "widget-type");
4918
4919 staticpro (&string_char_byte_cache_string);
4920 string_char_byte_cache_string = Qnil;
4921
4922 require_nesting_list = Qnil;
4923 staticpro (&require_nesting_list);
4924
4925 Fset (Qyes_or_no_p_history, Qnil);
4926
4927 DEFVAR_LISP ("features", Vfeatures,
4928 doc: /* A list of symbols which are the features of the executing Emacs.
4929 Used by `featurep' and `require', and altered by `provide'. */);
4930 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4931 DEFSYM (Qsubfeatures, "subfeatures");
4932
4933 #ifdef HAVE_LANGINFO_CODESET
4934 DEFSYM (Qcodeset, "codeset");
4935 DEFSYM (Qdays, "days");
4936 DEFSYM (Qmonths, "months");
4937 DEFSYM (Qpaper, "paper");
4938 #endif /* HAVE_LANGINFO_CODESET */
4939
4940 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4941 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4942 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4943 invoked by mouse clicks and mouse menu items.
4944
4945 On some platforms, file selection dialogs are also enabled if this is
4946 non-nil. */);
4947 use_dialog_box = 1;
4948
4949 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4950 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4951 This applies to commands from menus and tool bar buttons even when
4952 they are initiated from the keyboard. If `use-dialog-box' is nil,
4953 that disables the use of a file dialog, regardless of the value of
4954 this variable. */);
4955 use_file_dialog = 1;
4956
4957 defsubr (&Sidentity);
4958 defsubr (&Srandom);
4959 defsubr (&Slength);
4960 defsubr (&Ssafe_length);
4961 defsubr (&Sstring_bytes);
4962 defsubr (&Sstring_equal);
4963 defsubr (&Scompare_strings);
4964 defsubr (&Sstring_lessp);
4965 defsubr (&Sappend);
4966 defsubr (&Sconcat);
4967 defsubr (&Svconcat);
4968 defsubr (&Scopy_sequence);
4969 defsubr (&Sstring_make_multibyte);
4970 defsubr (&Sstring_make_unibyte);
4971 defsubr (&Sstring_as_multibyte);
4972 defsubr (&Sstring_as_unibyte);
4973 defsubr (&Sstring_to_multibyte);
4974 defsubr (&Sstring_to_unibyte);
4975 defsubr (&Scopy_alist);
4976 defsubr (&Ssubstring);
4977 defsubr (&Ssubstring_no_properties);
4978 defsubr (&Snthcdr);
4979 defsubr (&Snth);
4980 defsubr (&Selt);
4981 defsubr (&Smember);
4982 defsubr (&Smemq);
4983 defsubr (&Smemql);
4984 defsubr (&Sassq);
4985 defsubr (&Sassoc);
4986 defsubr (&Srassq);
4987 defsubr (&Srassoc);
4988 defsubr (&Sdelq);
4989 defsubr (&Sdelete);
4990 defsubr (&Snreverse);
4991 defsubr (&Sreverse);
4992 defsubr (&Ssort);
4993 defsubr (&Splist_get);
4994 defsubr (&Sget);
4995 defsubr (&Splist_put);
4996 defsubr (&Sput);
4997 defsubr (&Slax_plist_get);
4998 defsubr (&Slax_plist_put);
4999 defsubr (&Seql);
5000 defsubr (&Sequal);
5001 defsubr (&Sequal_including_properties);
5002 defsubr (&Sfillarray);
5003 defsubr (&Sclear_string);
5004 defsubr (&Snconc);
5005 defsubr (&Smapcar);
5006 defsubr (&Smapc);
5007 defsubr (&Smapconcat);
5008 defsubr (&Syes_or_no_p);
5009 defsubr (&Sload_average);
5010 defsubr (&Sfeaturep);
5011 defsubr (&Srequire);
5012 defsubr (&Sprovide);
5013 defsubr (&Splist_member);
5014 defsubr (&Swidget_put);
5015 defsubr (&Swidget_get);
5016 defsubr (&Swidget_apply);
5017 defsubr (&Sbase64_encode_region);
5018 defsubr (&Sbase64_decode_region);
5019 defsubr (&Sbase64_encode_string);
5020 defsubr (&Sbase64_decode_string);
5021 defsubr (&Smd5);
5022 defsubr (&Ssecure_hash);
5023 defsubr (&Slocale_info);
5024 }