Cleanup miscellaneous objects allocation and initialization.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Default value of gc_cons_threshold (see below). */
165
166 #define GC_DEFAULT_THRESHOLD (100000 * sizeof (Lisp_Object))
167
168 /* Global variables. */
169 struct emacs_globals globals;
170
171 /* Number of bytes of consing done since the last gc. */
172
173 EMACS_INT consing_since_gc;
174
175 /* Similar minimum, computed from Vgc_cons_percentage. */
176
177 EMACS_INT gc_relative_threshold;
178
179 /* Minimum number of bytes of consing since GC before next GC,
180 when memory is full. */
181
182 EMACS_INT memory_full_cons_threshold;
183
184 /* Nonzero during GC. */
185
186 int gc_in_progress;
187
188 /* Nonzero means abort if try to GC.
189 This is for code which is written on the assumption that
190 no GC will happen, so as to verify that assumption. */
191
192 int abort_on_gc;
193
194 /* Number of live and free conses etc. */
195
196 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
197 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
198 static EMACS_INT total_free_floats, total_floats;
199
200 /* Points to memory space allocated as "spare", to be freed if we run
201 out of memory. We keep one large block, four cons-blocks, and
202 two string blocks. */
203
204 static char *spare_memory[7];
205
206 /* Amount of spare memory to keep in large reserve block, or to see
207 whether this much is available when malloc fails on a larger request. */
208
209 #define SPARE_MEMORY (1 << 14)
210
211 /* Number of extra blocks malloc should get when it needs more core. */
212
213 static int malloc_hysteresis;
214
215 /* Initialize it to a nonzero value to force it into data space
216 (rather than bss space). That way unexec will remap it into text
217 space (pure), on some systems. We have not implemented the
218 remapping on more recent systems because this is less important
219 nowadays than in the days of small memories and timesharing. */
220
221 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
222 #define PUREBEG (char *) pure
223
224 /* Pointer to the pure area, and its size. */
225
226 static char *purebeg;
227 static ptrdiff_t pure_size;
228
229 /* Number of bytes of pure storage used before pure storage overflowed.
230 If this is non-zero, this implies that an overflow occurred. */
231
232 static ptrdiff_t pure_bytes_used_before_overflow;
233
234 /* Value is non-zero if P points into pure space. */
235
236 #define PURE_POINTER_P(P) \
237 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
238
239 /* Index in pure at which next pure Lisp object will be allocated.. */
240
241 static ptrdiff_t pure_bytes_used_lisp;
242
243 /* Number of bytes allocated for non-Lisp objects in pure storage. */
244
245 static ptrdiff_t pure_bytes_used_non_lisp;
246
247 /* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
249
250 const char *pending_malloc_warning;
251
252 /* Maximum amount of C stack to save when a GC happens. */
253
254 #ifndef MAX_SAVE_STACK
255 #define MAX_SAVE_STACK 16000
256 #endif
257
258 /* Buffer in which we save a copy of the C stack at each GC. */
259
260 #if MAX_SAVE_STACK > 0
261 static char *stack_copy;
262 static ptrdiff_t stack_copy_size;
263 #endif
264
265 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_terminals (void);
274 static void gc_sweep (void);
275 static Lisp_Object make_pure_vector (ptrdiff_t);
276 static void mark_glyph_matrix (struct glyph_matrix *);
277 static void mark_face_cache (struct face_cache *);
278
279 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
280 static void refill_memory_reserve (void);
281 #endif
282 static struct Lisp_String *allocate_string (void);
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 static void sweep_strings (void);
286 static void free_misc (Lisp_Object);
287 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
288
289 /* Handy constants for vectorlike objects. */
290 enum
291 {
292 header_size = offsetof (struct Lisp_Vector, contents),
293 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
294 word_size = sizeof (Lisp_Object)
295 };
296
297 /* When scanning the C stack for live Lisp objects, Emacs keeps track
298 of what memory allocated via lisp_malloc is intended for what
299 purpose. This enumeration specifies the type of memory. */
300
301 enum mem_type
302 {
303 MEM_TYPE_NON_LISP,
304 MEM_TYPE_BUFFER,
305 MEM_TYPE_CONS,
306 MEM_TYPE_STRING,
307 MEM_TYPE_MISC,
308 MEM_TYPE_SYMBOL,
309 MEM_TYPE_FLOAT,
310 /* We used to keep separate mem_types for subtypes of vectors such as
311 process, hash_table, frame, terminal, and window, but we never made
312 use of the distinction, so it only caused source-code complexity
313 and runtime slowdown. Minor but pointless. */
314 MEM_TYPE_VECTORLIKE,
315 /* Special type to denote vector blocks. */
316 MEM_TYPE_VECTOR_BLOCK
317 };
318
319 static void *lisp_malloc (size_t, enum mem_type);
320
321
322 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
323
324 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
325 #include <stdio.h> /* For fprintf. */
326 #endif
327
328 /* A unique object in pure space used to make some Lisp objects
329 on free lists recognizable in O(1). */
330
331 static Lisp_Object Vdead;
332 #define DEADP(x) EQ (x, Vdead)
333
334 #ifdef GC_MALLOC_CHECK
335
336 enum mem_type allocated_mem_type;
337
338 #endif /* GC_MALLOC_CHECK */
339
340 /* A node in the red-black tree describing allocated memory containing
341 Lisp data. Each such block is recorded with its start and end
342 address when it is allocated, and removed from the tree when it
343 is freed.
344
345 A red-black tree is a balanced binary tree with the following
346 properties:
347
348 1. Every node is either red or black.
349 2. Every leaf is black.
350 3. If a node is red, then both of its children are black.
351 4. Every simple path from a node to a descendant leaf contains
352 the same number of black nodes.
353 5. The root is always black.
354
355 When nodes are inserted into the tree, or deleted from the tree,
356 the tree is "fixed" so that these properties are always true.
357
358 A red-black tree with N internal nodes has height at most 2
359 log(N+1). Searches, insertions and deletions are done in O(log N).
360 Please see a text book about data structures for a detailed
361 description of red-black trees. Any book worth its salt should
362 describe them. */
363
364 struct mem_node
365 {
366 /* Children of this node. These pointers are never NULL. When there
367 is no child, the value is MEM_NIL, which points to a dummy node. */
368 struct mem_node *left, *right;
369
370 /* The parent of this node. In the root node, this is NULL. */
371 struct mem_node *parent;
372
373 /* Start and end of allocated region. */
374 void *start, *end;
375
376 /* Node color. */
377 enum {MEM_BLACK, MEM_RED} color;
378
379 /* Memory type. */
380 enum mem_type type;
381 };
382
383 /* Base address of stack. Set in main. */
384
385 Lisp_Object *stack_base;
386
387 /* Root of the tree describing allocated Lisp memory. */
388
389 static struct mem_node *mem_root;
390
391 /* Lowest and highest known address in the heap. */
392
393 static void *min_heap_address, *max_heap_address;
394
395 /* Sentinel node of the tree. */
396
397 static struct mem_node mem_z;
398 #define MEM_NIL &mem_z
399
400 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
401 static void lisp_free (void *);
402 static void mark_stack (void);
403 static int live_vector_p (struct mem_node *, void *);
404 static int live_buffer_p (struct mem_node *, void *);
405 static int live_string_p (struct mem_node *, void *);
406 static int live_cons_p (struct mem_node *, void *);
407 static int live_symbol_p (struct mem_node *, void *);
408 static int live_float_p (struct mem_node *, void *);
409 static int live_misc_p (struct mem_node *, void *);
410 static void mark_maybe_object (Lisp_Object);
411 static void mark_memory (void *, void *);
412 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
413 static void mem_init (void);
414 static struct mem_node *mem_insert (void *, void *, enum mem_type);
415 static void mem_insert_fixup (struct mem_node *);
416 #endif
417 static void mem_rotate_left (struct mem_node *);
418 static void mem_rotate_right (struct mem_node *);
419 static void mem_delete (struct mem_node *);
420 static void mem_delete_fixup (struct mem_node *);
421 static inline struct mem_node *mem_find (void *);
422
423
424 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
425 static void check_gcpros (void);
426 #endif
427
428 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
429
430 #ifndef DEADP
431 # define DEADP(x) 0
432 #endif
433
434 /* Recording what needs to be marked for gc. */
435
436 struct gcpro *gcprolist;
437
438 /* Addresses of staticpro'd variables. Initialize it to a nonzero
439 value; otherwise some compilers put it into BSS. */
440
441 #define NSTATICS 0x650
442 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
443
444 /* Index of next unused slot in staticvec. */
445
446 static int staticidx;
447
448 static void *pure_alloc (size_t, int);
449
450
451 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
452 ALIGNMENT must be a power of 2. */
453
454 #define ALIGN(ptr, ALIGNMENT) \
455 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
456 & ~ ((ALIGNMENT) - 1)))
457
458
459 \f
460 /************************************************************************
461 Malloc
462 ************************************************************************/
463
464 /* Function malloc calls this if it finds we are near exhausting storage. */
465
466 void
467 malloc_warning (const char *str)
468 {
469 pending_malloc_warning = str;
470 }
471
472
473 /* Display an already-pending malloc warning. */
474
475 void
476 display_malloc_warning (void)
477 {
478 call3 (intern ("display-warning"),
479 intern ("alloc"),
480 build_string (pending_malloc_warning),
481 intern ("emergency"));
482 pending_malloc_warning = 0;
483 }
484 \f
485 /* Called if we can't allocate relocatable space for a buffer. */
486
487 void
488 buffer_memory_full (ptrdiff_t nbytes)
489 {
490 /* If buffers use the relocating allocator, no need to free
491 spare_memory, because we may have plenty of malloc space left
492 that we could get, and if we don't, the malloc that fails will
493 itself cause spare_memory to be freed. If buffers don't use the
494 relocating allocator, treat this like any other failing
495 malloc. */
496
497 #ifndef REL_ALLOC
498 memory_full (nbytes);
499 #endif
500
501 /* This used to call error, but if we've run out of memory, we could
502 get infinite recursion trying to build the string. */
503 xsignal (Qnil, Vmemory_signal_data);
504 }
505
506 /* A common multiple of the positive integers A and B. Ideally this
507 would be the least common multiple, but there's no way to do that
508 as a constant expression in C, so do the best that we can easily do. */
509 #define COMMON_MULTIPLE(a, b) \
510 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
511
512 #ifndef XMALLOC_OVERRUN_CHECK
513 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
514 #else
515
516 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
517 around each block.
518
519 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
520 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
521 block size in little-endian order. The trailer consists of
522 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
523
524 The header is used to detect whether this block has been allocated
525 through these functions, as some low-level libc functions may
526 bypass the malloc hooks. */
527
528 #define XMALLOC_OVERRUN_CHECK_SIZE 16
529 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
530 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
531
532 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
533 hold a size_t value and (2) the header size is a multiple of the
534 alignment that Emacs needs for C types and for USE_LSB_TAG. */
535 #define XMALLOC_BASE_ALIGNMENT \
536 offsetof ( \
537 struct { \
538 union { long double d; intmax_t i; void *p; } u; \
539 char c; \
540 }, \
541 c)
542
543 #if USE_LSB_TAG
544 # define XMALLOC_HEADER_ALIGNMENT \
545 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
546 #else
547 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
548 #endif
549 #define XMALLOC_OVERRUN_SIZE_SIZE \
550 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
551 + XMALLOC_HEADER_ALIGNMENT - 1) \
552 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
553 - XMALLOC_OVERRUN_CHECK_SIZE)
554
555 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
556 { '\x9a', '\x9b', '\xae', '\xaf',
557 '\xbf', '\xbe', '\xce', '\xcf',
558 '\xea', '\xeb', '\xec', '\xed',
559 '\xdf', '\xde', '\x9c', '\x9d' };
560
561 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
562 { '\xaa', '\xab', '\xac', '\xad',
563 '\xba', '\xbb', '\xbc', '\xbd',
564 '\xca', '\xcb', '\xcc', '\xcd',
565 '\xda', '\xdb', '\xdc', '\xdd' };
566
567 /* Insert and extract the block size in the header. */
568
569 static void
570 xmalloc_put_size (unsigned char *ptr, size_t size)
571 {
572 int i;
573 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
574 {
575 *--ptr = size & ((1 << CHAR_BIT) - 1);
576 size >>= CHAR_BIT;
577 }
578 }
579
580 static size_t
581 xmalloc_get_size (unsigned char *ptr)
582 {
583 size_t size = 0;
584 int i;
585 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
586 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
587 {
588 size <<= CHAR_BIT;
589 size += *ptr++;
590 }
591 return size;
592 }
593
594
595 /* The call depth in overrun_check functions. For example, this might happen:
596 xmalloc()
597 overrun_check_malloc()
598 -> malloc -> (via hook)_-> emacs_blocked_malloc
599 -> overrun_check_malloc
600 call malloc (hooks are NULL, so real malloc is called).
601 malloc returns 10000.
602 add overhead, return 10016.
603 <- (back in overrun_check_malloc)
604 add overhead again, return 10032
605 xmalloc returns 10032.
606
607 (time passes).
608
609 xfree(10032)
610 overrun_check_free(10032)
611 decrease overhead
612 free(10016) <- crash, because 10000 is the original pointer. */
613
614 static ptrdiff_t check_depth;
615
616 /* Like malloc, but wraps allocated block with header and trailer. */
617
618 static void *
619 overrun_check_malloc (size_t size)
620 {
621 register unsigned char *val;
622 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
623 if (SIZE_MAX - overhead < size)
624 abort ();
625
626 val = malloc (size + overhead);
627 if (val && check_depth == 1)
628 {
629 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
630 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
631 xmalloc_put_size (val, size);
632 memcpy (val + size, xmalloc_overrun_check_trailer,
633 XMALLOC_OVERRUN_CHECK_SIZE);
634 }
635 --check_depth;
636 return val;
637 }
638
639
640 /* Like realloc, but checks old block for overrun, and wraps new block
641 with header and trailer. */
642
643 static void *
644 overrun_check_realloc (void *block, size_t size)
645 {
646 register unsigned char *val = (unsigned char *) block;
647 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
648 if (SIZE_MAX - overhead < size)
649 abort ();
650
651 if (val
652 && check_depth == 1
653 && memcmp (xmalloc_overrun_check_header,
654 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
655 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
656 {
657 size_t osize = xmalloc_get_size (val);
658 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
659 XMALLOC_OVERRUN_CHECK_SIZE))
660 abort ();
661 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
662 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
663 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
664 }
665
666 val = realloc (val, size + overhead);
667
668 if (val && check_depth == 1)
669 {
670 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
671 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
672 xmalloc_put_size (val, size);
673 memcpy (val + size, xmalloc_overrun_check_trailer,
674 XMALLOC_OVERRUN_CHECK_SIZE);
675 }
676 --check_depth;
677 return val;
678 }
679
680 /* Like free, but checks block for overrun. */
681
682 static void
683 overrun_check_free (void *block)
684 {
685 unsigned char *val = (unsigned char *) block;
686
687 ++check_depth;
688 if (val
689 && check_depth == 1
690 && memcmp (xmalloc_overrun_check_header,
691 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
692 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
693 {
694 size_t osize = xmalloc_get_size (val);
695 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
696 XMALLOC_OVERRUN_CHECK_SIZE))
697 abort ();
698 #ifdef XMALLOC_CLEAR_FREE_MEMORY
699 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
700 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 #else
702 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
703 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
704 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
705 #endif
706 }
707
708 free (val);
709 --check_depth;
710 }
711
712 #undef malloc
713 #undef realloc
714 #undef free
715 #define malloc overrun_check_malloc
716 #define realloc overrun_check_realloc
717 #define free overrun_check_free
718 #endif
719
720 #ifdef SYNC_INPUT
721 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
722 there's no need to block input around malloc. */
723 #define MALLOC_BLOCK_INPUT ((void)0)
724 #define MALLOC_UNBLOCK_INPUT ((void)0)
725 #else
726 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
727 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
728 #endif
729
730 /* Like malloc but check for no memory and block interrupt input.. */
731
732 void *
733 xmalloc (size_t size)
734 {
735 void *val;
736
737 MALLOC_BLOCK_INPUT;
738 val = malloc (size);
739 MALLOC_UNBLOCK_INPUT;
740
741 if (!val && size)
742 memory_full (size);
743 return val;
744 }
745
746 /* Like the above, but zeroes out the memory just allocated. */
747
748 void *
749 xzalloc (size_t size)
750 {
751 void *val;
752
753 MALLOC_BLOCK_INPUT;
754 val = malloc (size);
755 MALLOC_UNBLOCK_INPUT;
756
757 if (!val && size)
758 memory_full (size);
759 memset (val, 0, size);
760 return val;
761 }
762
763 /* Like realloc but check for no memory and block interrupt input.. */
764
765 void *
766 xrealloc (void *block, size_t size)
767 {
768 void *val;
769
770 MALLOC_BLOCK_INPUT;
771 /* We must call malloc explicitly when BLOCK is 0, since some
772 reallocs don't do this. */
773 if (! block)
774 val = malloc (size);
775 else
776 val = realloc (block, size);
777 MALLOC_UNBLOCK_INPUT;
778
779 if (!val && size)
780 memory_full (size);
781 return val;
782 }
783
784
785 /* Like free but block interrupt input. */
786
787 void
788 xfree (void *block)
789 {
790 if (!block)
791 return;
792 MALLOC_BLOCK_INPUT;
793 free (block);
794 MALLOC_UNBLOCK_INPUT;
795 /* We don't call refill_memory_reserve here
796 because that duplicates doing so in emacs_blocked_free
797 and the criterion should go there. */
798 }
799
800
801 /* Other parts of Emacs pass large int values to allocator functions
802 expecting ptrdiff_t. This is portable in practice, but check it to
803 be safe. */
804 verify (INT_MAX <= PTRDIFF_MAX);
805
806
807 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
808 Signal an error on memory exhaustion, and block interrupt input. */
809
810 void *
811 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
812 {
813 eassert (0 <= nitems && 0 < item_size);
814 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
815 memory_full (SIZE_MAX);
816 return xmalloc (nitems * item_size);
817 }
818
819
820 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
821 Signal an error on memory exhaustion, and block interrupt input. */
822
823 void *
824 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
825 {
826 eassert (0 <= nitems && 0 < item_size);
827 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
828 memory_full (SIZE_MAX);
829 return xrealloc (pa, nitems * item_size);
830 }
831
832
833 /* Grow PA, which points to an array of *NITEMS items, and return the
834 location of the reallocated array, updating *NITEMS to reflect its
835 new size. The new array will contain at least NITEMS_INCR_MIN more
836 items, but will not contain more than NITEMS_MAX items total.
837 ITEM_SIZE is the size of each item, in bytes.
838
839 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
840 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
841 infinity.
842
843 If PA is null, then allocate a new array instead of reallocating
844 the old one. Thus, to grow an array A without saving its old
845 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
846 &NITEMS, ...).
847
848 Block interrupt input as needed. If memory exhaustion occurs, set
849 *NITEMS to zero if PA is null, and signal an error (i.e., do not
850 return). */
851
852 void *
853 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
855 {
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
860
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
867
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
875
876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
885 }
886
887
888 /* Like strdup, but uses xmalloc. */
889
890 char *
891 xstrdup (const char *s)
892 {
893 size_t len = strlen (s) + 1;
894 char *p = xmalloc (len);
895 memcpy (p, s, len);
896 return p;
897 }
898
899
900 /* Unwind for SAFE_ALLOCA */
901
902 Lisp_Object
903 safe_alloca_unwind (Lisp_Object arg)
904 {
905 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
906
907 p->dogc = 0;
908 xfree (p->pointer);
909 p->pointer = 0;
910 free_misc (arg);
911 return Qnil;
912 }
913
914
915 /* Like malloc but used for allocating Lisp data. NBYTES is the
916 number of bytes to allocate, TYPE describes the intended use of the
917 allocated memory block (for strings, for conses, ...). */
918
919 #if ! USE_LSB_TAG
920 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
921 #endif
922
923 static void *
924 lisp_malloc (size_t nbytes, enum mem_type type)
925 {
926 register void *val;
927
928 MALLOC_BLOCK_INPUT;
929
930 #ifdef GC_MALLOC_CHECK
931 allocated_mem_type = type;
932 #endif
933
934 val = malloc (nbytes);
935
936 #if ! USE_LSB_TAG
937 /* If the memory just allocated cannot be addressed thru a Lisp
938 object's pointer, and it needs to be,
939 that's equivalent to running out of memory. */
940 if (val && type != MEM_TYPE_NON_LISP)
941 {
942 Lisp_Object tem;
943 XSETCONS (tem, (char *) val + nbytes - 1);
944 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
945 {
946 lisp_malloc_loser = val;
947 free (val);
948 val = 0;
949 }
950 }
951 #endif
952
953 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
954 if (val && type != MEM_TYPE_NON_LISP)
955 mem_insert (val, (char *) val + nbytes, type);
956 #endif
957
958 MALLOC_UNBLOCK_INPUT;
959 if (!val && nbytes)
960 memory_full (nbytes);
961 return val;
962 }
963
964 /* Free BLOCK. This must be called to free memory allocated with a
965 call to lisp_malloc. */
966
967 static void
968 lisp_free (void *block)
969 {
970 MALLOC_BLOCK_INPUT;
971 free (block);
972 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
973 mem_delete (mem_find (block));
974 #endif
975 MALLOC_UNBLOCK_INPUT;
976 }
977
978 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
979
980 /* The entry point is lisp_align_malloc which returns blocks of at most
981 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
982
983 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
984 #define USE_POSIX_MEMALIGN 1
985 #endif
986
987 /* BLOCK_ALIGN has to be a power of 2. */
988 #define BLOCK_ALIGN (1 << 10)
989
990 /* Padding to leave at the end of a malloc'd block. This is to give
991 malloc a chance to minimize the amount of memory wasted to alignment.
992 It should be tuned to the particular malloc library used.
993 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
994 posix_memalign on the other hand would ideally prefer a value of 4
995 because otherwise, there's 1020 bytes wasted between each ablocks.
996 In Emacs, testing shows that those 1020 can most of the time be
997 efficiently used by malloc to place other objects, so a value of 0 can
998 still preferable unless you have a lot of aligned blocks and virtually
999 nothing else. */
1000 #define BLOCK_PADDING 0
1001 #define BLOCK_BYTES \
1002 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1003
1004 /* Internal data structures and constants. */
1005
1006 #define ABLOCKS_SIZE 16
1007
1008 /* An aligned block of memory. */
1009 struct ablock
1010 {
1011 union
1012 {
1013 char payload[BLOCK_BYTES];
1014 struct ablock *next_free;
1015 } x;
1016 /* `abase' is the aligned base of the ablocks. */
1017 /* It is overloaded to hold the virtual `busy' field that counts
1018 the number of used ablock in the parent ablocks.
1019 The first ablock has the `busy' field, the others have the `abase'
1020 field. To tell the difference, we assume that pointers will have
1021 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1022 is used to tell whether the real base of the parent ablocks is `abase'
1023 (if not, the word before the first ablock holds a pointer to the
1024 real base). */
1025 struct ablocks *abase;
1026 /* The padding of all but the last ablock is unused. The padding of
1027 the last ablock in an ablocks is not allocated. */
1028 #if BLOCK_PADDING
1029 char padding[BLOCK_PADDING];
1030 #endif
1031 };
1032
1033 /* A bunch of consecutive aligned blocks. */
1034 struct ablocks
1035 {
1036 struct ablock blocks[ABLOCKS_SIZE];
1037 };
1038
1039 /* Size of the block requested from malloc or posix_memalign. */
1040 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1041
1042 #define ABLOCK_ABASE(block) \
1043 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1044 ? (struct ablocks *)(block) \
1045 : (block)->abase)
1046
1047 /* Virtual `busy' field. */
1048 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1049
1050 /* Pointer to the (not necessarily aligned) malloc block. */
1051 #ifdef USE_POSIX_MEMALIGN
1052 #define ABLOCKS_BASE(abase) (abase)
1053 #else
1054 #define ABLOCKS_BASE(abase) \
1055 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1056 #endif
1057
1058 /* The list of free ablock. */
1059 static struct ablock *free_ablock;
1060
1061 /* Allocate an aligned block of nbytes.
1062 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1063 smaller or equal to BLOCK_BYTES. */
1064 static void *
1065 lisp_align_malloc (size_t nbytes, enum mem_type type)
1066 {
1067 void *base, *val;
1068 struct ablocks *abase;
1069
1070 eassert (nbytes <= BLOCK_BYTES);
1071
1072 MALLOC_BLOCK_INPUT;
1073
1074 #ifdef GC_MALLOC_CHECK
1075 allocated_mem_type = type;
1076 #endif
1077
1078 if (!free_ablock)
1079 {
1080 int i;
1081 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1082
1083 #ifdef DOUG_LEA_MALLOC
1084 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1085 because mapped region contents are not preserved in
1086 a dumped Emacs. */
1087 mallopt (M_MMAP_MAX, 0);
1088 #endif
1089
1090 #ifdef USE_POSIX_MEMALIGN
1091 {
1092 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1093 if (err)
1094 base = NULL;
1095 abase = base;
1096 }
1097 #else
1098 base = malloc (ABLOCKS_BYTES);
1099 abase = ALIGN (base, BLOCK_ALIGN);
1100 #endif
1101
1102 if (base == 0)
1103 {
1104 MALLOC_UNBLOCK_INPUT;
1105 memory_full (ABLOCKS_BYTES);
1106 }
1107
1108 aligned = (base == abase);
1109 if (!aligned)
1110 ((void**)abase)[-1] = base;
1111
1112 #ifdef DOUG_LEA_MALLOC
1113 /* Back to a reasonable maximum of mmap'ed areas. */
1114 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1115 #endif
1116
1117 #if ! USE_LSB_TAG
1118 /* If the memory just allocated cannot be addressed thru a Lisp
1119 object's pointer, and it needs to be, that's equivalent to
1120 running out of memory. */
1121 if (type != MEM_TYPE_NON_LISP)
1122 {
1123 Lisp_Object tem;
1124 char *end = (char *) base + ABLOCKS_BYTES - 1;
1125 XSETCONS (tem, end);
1126 if ((char *) XCONS (tem) != end)
1127 {
1128 lisp_malloc_loser = base;
1129 free (base);
1130 MALLOC_UNBLOCK_INPUT;
1131 memory_full (SIZE_MAX);
1132 }
1133 }
1134 #endif
1135
1136 /* Initialize the blocks and put them on the free list.
1137 If `base' was not properly aligned, we can't use the last block. */
1138 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1139 {
1140 abase->blocks[i].abase = abase;
1141 abase->blocks[i].x.next_free = free_ablock;
1142 free_ablock = &abase->blocks[i];
1143 }
1144 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1145
1146 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1147 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1148 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1149 eassert (ABLOCKS_BASE (abase) == base);
1150 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1151 }
1152
1153 abase = ABLOCK_ABASE (free_ablock);
1154 ABLOCKS_BUSY (abase) =
1155 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1156 val = free_ablock;
1157 free_ablock = free_ablock->x.next_free;
1158
1159 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1160 if (type != MEM_TYPE_NON_LISP)
1161 mem_insert (val, (char *) val + nbytes, type);
1162 #endif
1163
1164 MALLOC_UNBLOCK_INPUT;
1165
1166 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1167 return val;
1168 }
1169
1170 static void
1171 lisp_align_free (void *block)
1172 {
1173 struct ablock *ablock = block;
1174 struct ablocks *abase = ABLOCK_ABASE (ablock);
1175
1176 MALLOC_BLOCK_INPUT;
1177 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1178 mem_delete (mem_find (block));
1179 #endif
1180 /* Put on free list. */
1181 ablock->x.next_free = free_ablock;
1182 free_ablock = ablock;
1183 /* Update busy count. */
1184 ABLOCKS_BUSY (abase)
1185 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1186
1187 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1188 { /* All the blocks are free. */
1189 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1190 struct ablock **tem = &free_ablock;
1191 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1192
1193 while (*tem)
1194 {
1195 if (*tem >= (struct ablock *) abase && *tem < atop)
1196 {
1197 i++;
1198 *tem = (*tem)->x.next_free;
1199 }
1200 else
1201 tem = &(*tem)->x.next_free;
1202 }
1203 eassert ((aligned & 1) == aligned);
1204 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1205 #ifdef USE_POSIX_MEMALIGN
1206 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1207 #endif
1208 free (ABLOCKS_BASE (abase));
1209 }
1210 MALLOC_UNBLOCK_INPUT;
1211 }
1212
1213 \f
1214 #ifndef SYSTEM_MALLOC
1215
1216 /* Arranging to disable input signals while we're in malloc.
1217
1218 This only works with GNU malloc. To help out systems which can't
1219 use GNU malloc, all the calls to malloc, realloc, and free
1220 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1221 pair; unfortunately, we have no idea what C library functions
1222 might call malloc, so we can't really protect them unless you're
1223 using GNU malloc. Fortunately, most of the major operating systems
1224 can use GNU malloc. */
1225
1226 #ifndef SYNC_INPUT
1227 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1228 there's no need to block input around malloc. */
1229
1230 #ifndef DOUG_LEA_MALLOC
1231 extern void * (*__malloc_hook) (size_t, const void *);
1232 extern void * (*__realloc_hook) (void *, size_t, const void *);
1233 extern void (*__free_hook) (void *, const void *);
1234 /* Else declared in malloc.h, perhaps with an extra arg. */
1235 #endif /* DOUG_LEA_MALLOC */
1236 static void * (*old_malloc_hook) (size_t, const void *);
1237 static void * (*old_realloc_hook) (void *, size_t, const void*);
1238 static void (*old_free_hook) (void*, const void*);
1239
1240 #ifdef DOUG_LEA_MALLOC
1241 # define BYTES_USED (mallinfo ().uordblks)
1242 #else
1243 # define BYTES_USED _bytes_used
1244 #endif
1245
1246 #ifdef GC_MALLOC_CHECK
1247 static int dont_register_blocks;
1248 #endif
1249
1250 static size_t bytes_used_when_reconsidered;
1251
1252 /* Value of _bytes_used, when spare_memory was freed. */
1253
1254 static size_t bytes_used_when_full;
1255
1256 /* This function is used as the hook for free to call. */
1257
1258 static void
1259 emacs_blocked_free (void *ptr, const void *ptr2)
1260 {
1261 BLOCK_INPUT_ALLOC;
1262
1263 #ifdef GC_MALLOC_CHECK
1264 if (ptr)
1265 {
1266 struct mem_node *m;
1267
1268 m = mem_find (ptr);
1269 if (m == MEM_NIL || m->start != ptr)
1270 {
1271 fprintf (stderr,
1272 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1273 abort ();
1274 }
1275 else
1276 {
1277 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1278 mem_delete (m);
1279 }
1280 }
1281 #endif /* GC_MALLOC_CHECK */
1282
1283 __free_hook = old_free_hook;
1284 free (ptr);
1285
1286 /* If we released our reserve (due to running out of memory),
1287 and we have a fair amount free once again,
1288 try to set aside another reserve in case we run out once more. */
1289 if (! NILP (Vmemory_full)
1290 /* Verify there is enough space that even with the malloc
1291 hysteresis this call won't run out again.
1292 The code here is correct as long as SPARE_MEMORY
1293 is substantially larger than the block size malloc uses. */
1294 && (bytes_used_when_full
1295 > ((bytes_used_when_reconsidered = BYTES_USED)
1296 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1297 refill_memory_reserve ();
1298
1299 __free_hook = emacs_blocked_free;
1300 UNBLOCK_INPUT_ALLOC;
1301 }
1302
1303
1304 /* This function is the malloc hook that Emacs uses. */
1305
1306 static void *
1307 emacs_blocked_malloc (size_t size, const void *ptr)
1308 {
1309 void *value;
1310
1311 BLOCK_INPUT_ALLOC;
1312 __malloc_hook = old_malloc_hook;
1313 #ifdef DOUG_LEA_MALLOC
1314 /* Segfaults on my system. --lorentey */
1315 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1316 #else
1317 __malloc_extra_blocks = malloc_hysteresis;
1318 #endif
1319
1320 value = malloc (size);
1321
1322 #ifdef GC_MALLOC_CHECK
1323 {
1324 struct mem_node *m = mem_find (value);
1325 if (m != MEM_NIL)
1326 {
1327 fprintf (stderr, "Malloc returned %p which is already in use\n",
1328 value);
1329 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1330 m->start, m->end, (char *) m->end - (char *) m->start,
1331 m->type);
1332 abort ();
1333 }
1334
1335 if (!dont_register_blocks)
1336 {
1337 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1338 allocated_mem_type = MEM_TYPE_NON_LISP;
1339 }
1340 }
1341 #endif /* GC_MALLOC_CHECK */
1342
1343 __malloc_hook = emacs_blocked_malloc;
1344 UNBLOCK_INPUT_ALLOC;
1345
1346 /* fprintf (stderr, "%p malloc\n", value); */
1347 return value;
1348 }
1349
1350
1351 /* This function is the realloc hook that Emacs uses. */
1352
1353 static void *
1354 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1355 {
1356 void *value;
1357
1358 BLOCK_INPUT_ALLOC;
1359 __realloc_hook = old_realloc_hook;
1360
1361 #ifdef GC_MALLOC_CHECK
1362 if (ptr)
1363 {
1364 struct mem_node *m = mem_find (ptr);
1365 if (m == MEM_NIL || m->start != ptr)
1366 {
1367 fprintf (stderr,
1368 "Realloc of %p which wasn't allocated with malloc\n",
1369 ptr);
1370 abort ();
1371 }
1372
1373 mem_delete (m);
1374 }
1375
1376 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1377
1378 /* Prevent malloc from registering blocks. */
1379 dont_register_blocks = 1;
1380 #endif /* GC_MALLOC_CHECK */
1381
1382 value = realloc (ptr, size);
1383
1384 #ifdef GC_MALLOC_CHECK
1385 dont_register_blocks = 0;
1386
1387 {
1388 struct mem_node *m = mem_find (value);
1389 if (m != MEM_NIL)
1390 {
1391 fprintf (stderr, "Realloc returns memory that is already in use\n");
1392 abort ();
1393 }
1394
1395 /* Can't handle zero size regions in the red-black tree. */
1396 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1397 }
1398
1399 /* fprintf (stderr, "%p <- realloc\n", value); */
1400 #endif /* GC_MALLOC_CHECK */
1401
1402 __realloc_hook = emacs_blocked_realloc;
1403 UNBLOCK_INPUT_ALLOC;
1404
1405 return value;
1406 }
1407
1408
1409 #ifdef HAVE_PTHREAD
1410 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1411 normal malloc. Some thread implementations need this as they call
1412 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1413 calls malloc because it is the first call, and we have an endless loop. */
1414
1415 void
1416 reset_malloc_hooks (void)
1417 {
1418 __free_hook = old_free_hook;
1419 __malloc_hook = old_malloc_hook;
1420 __realloc_hook = old_realloc_hook;
1421 }
1422 #endif /* HAVE_PTHREAD */
1423
1424
1425 /* Called from main to set up malloc to use our hooks. */
1426
1427 void
1428 uninterrupt_malloc (void)
1429 {
1430 #ifdef HAVE_PTHREAD
1431 #ifdef DOUG_LEA_MALLOC
1432 pthread_mutexattr_t attr;
1433
1434 /* GLIBC has a faster way to do this, but let's keep it portable.
1435 This is according to the Single UNIX Specification. */
1436 pthread_mutexattr_init (&attr);
1437 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1438 pthread_mutex_init (&alloc_mutex, &attr);
1439 #else /* !DOUG_LEA_MALLOC */
1440 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1441 and the bundled gmalloc.c doesn't require it. */
1442 pthread_mutex_init (&alloc_mutex, NULL);
1443 #endif /* !DOUG_LEA_MALLOC */
1444 #endif /* HAVE_PTHREAD */
1445
1446 if (__free_hook != emacs_blocked_free)
1447 old_free_hook = __free_hook;
1448 __free_hook = emacs_blocked_free;
1449
1450 if (__malloc_hook != emacs_blocked_malloc)
1451 old_malloc_hook = __malloc_hook;
1452 __malloc_hook = emacs_blocked_malloc;
1453
1454 if (__realloc_hook != emacs_blocked_realloc)
1455 old_realloc_hook = __realloc_hook;
1456 __realloc_hook = emacs_blocked_realloc;
1457 }
1458
1459 #endif /* not SYNC_INPUT */
1460 #endif /* not SYSTEM_MALLOC */
1461
1462
1463 \f
1464 /***********************************************************************
1465 Interval Allocation
1466 ***********************************************************************/
1467
1468 /* Number of intervals allocated in an interval_block structure.
1469 The 1020 is 1024 minus malloc overhead. */
1470
1471 #define INTERVAL_BLOCK_SIZE \
1472 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1473
1474 /* Intervals are allocated in chunks in form of an interval_block
1475 structure. */
1476
1477 struct interval_block
1478 {
1479 /* Place `intervals' first, to preserve alignment. */
1480 struct interval intervals[INTERVAL_BLOCK_SIZE];
1481 struct interval_block *next;
1482 };
1483
1484 /* Current interval block. Its `next' pointer points to older
1485 blocks. */
1486
1487 static struct interval_block *interval_block;
1488
1489 /* Index in interval_block above of the next unused interval
1490 structure. */
1491
1492 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1493
1494 /* Number of free and live intervals. */
1495
1496 static EMACS_INT total_free_intervals, total_intervals;
1497
1498 /* List of free intervals. */
1499
1500 static INTERVAL interval_free_list;
1501
1502 /* Return a new interval. */
1503
1504 INTERVAL
1505 make_interval (void)
1506 {
1507 INTERVAL val;
1508
1509 /* eassert (!handling_signal); */
1510
1511 MALLOC_BLOCK_INPUT;
1512
1513 if (interval_free_list)
1514 {
1515 val = interval_free_list;
1516 interval_free_list = INTERVAL_PARENT (interval_free_list);
1517 }
1518 else
1519 {
1520 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1521 {
1522 struct interval_block *newi
1523 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1524
1525 newi->next = interval_block;
1526 interval_block = newi;
1527 interval_block_index = 0;
1528 total_free_intervals += INTERVAL_BLOCK_SIZE;
1529 }
1530 val = &interval_block->intervals[interval_block_index++];
1531 }
1532
1533 MALLOC_UNBLOCK_INPUT;
1534
1535 consing_since_gc += sizeof (struct interval);
1536 intervals_consed++;
1537 total_free_intervals--;
1538 RESET_INTERVAL (val);
1539 val->gcmarkbit = 0;
1540 return val;
1541 }
1542
1543
1544 /* Mark Lisp objects in interval I. */
1545
1546 static void
1547 mark_interval (register INTERVAL i, Lisp_Object dummy)
1548 {
1549 /* Intervals should never be shared. So, if extra internal checking is
1550 enabled, GC aborts if it seems to have visited an interval twice. */
1551 eassert (!i->gcmarkbit);
1552 i->gcmarkbit = 1;
1553 mark_object (i->plist);
1554 }
1555
1556
1557 /* Mark the interval tree rooted in TREE. Don't call this directly;
1558 use the macro MARK_INTERVAL_TREE instead. */
1559
1560 static void
1561 mark_interval_tree (register INTERVAL tree)
1562 {
1563 /* No need to test if this tree has been marked already; this
1564 function is always called through the MARK_INTERVAL_TREE macro,
1565 which takes care of that. */
1566
1567 traverse_intervals_noorder (tree, mark_interval, Qnil);
1568 }
1569
1570
1571 /* Mark the interval tree rooted in I. */
1572
1573 #define MARK_INTERVAL_TREE(i) \
1574 do { \
1575 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1576 mark_interval_tree (i); \
1577 } while (0)
1578
1579
1580 #define UNMARK_BALANCE_INTERVALS(i) \
1581 do { \
1582 if (! NULL_INTERVAL_P (i)) \
1583 (i) = balance_intervals (i); \
1584 } while (0)
1585 \f
1586 /***********************************************************************
1587 String Allocation
1588 ***********************************************************************/
1589
1590 /* Lisp_Strings are allocated in string_block structures. When a new
1591 string_block is allocated, all the Lisp_Strings it contains are
1592 added to a free-list string_free_list. When a new Lisp_String is
1593 needed, it is taken from that list. During the sweep phase of GC,
1594 string_blocks that are entirely free are freed, except two which
1595 we keep.
1596
1597 String data is allocated from sblock structures. Strings larger
1598 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1599 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1600
1601 Sblocks consist internally of sdata structures, one for each
1602 Lisp_String. The sdata structure points to the Lisp_String it
1603 belongs to. The Lisp_String points back to the `u.data' member of
1604 its sdata structure.
1605
1606 When a Lisp_String is freed during GC, it is put back on
1607 string_free_list, and its `data' member and its sdata's `string'
1608 pointer is set to null. The size of the string is recorded in the
1609 `u.nbytes' member of the sdata. So, sdata structures that are no
1610 longer used, can be easily recognized, and it's easy to compact the
1611 sblocks of small strings which we do in compact_small_strings. */
1612
1613 /* Size in bytes of an sblock structure used for small strings. This
1614 is 8192 minus malloc overhead. */
1615
1616 #define SBLOCK_SIZE 8188
1617
1618 /* Strings larger than this are considered large strings. String data
1619 for large strings is allocated from individual sblocks. */
1620
1621 #define LARGE_STRING_BYTES 1024
1622
1623 /* Structure describing string memory sub-allocated from an sblock.
1624 This is where the contents of Lisp strings are stored. */
1625
1626 struct sdata
1627 {
1628 /* Back-pointer to the string this sdata belongs to. If null, this
1629 structure is free, and the NBYTES member of the union below
1630 contains the string's byte size (the same value that STRING_BYTES
1631 would return if STRING were non-null). If non-null, STRING_BYTES
1632 (STRING) is the size of the data, and DATA contains the string's
1633 contents. */
1634 struct Lisp_String *string;
1635
1636 #ifdef GC_CHECK_STRING_BYTES
1637
1638 ptrdiff_t nbytes;
1639 unsigned char data[1];
1640
1641 #define SDATA_NBYTES(S) (S)->nbytes
1642 #define SDATA_DATA(S) (S)->data
1643 #define SDATA_SELECTOR(member) member
1644
1645 #else /* not GC_CHECK_STRING_BYTES */
1646
1647 union
1648 {
1649 /* When STRING is non-null. */
1650 unsigned char data[1];
1651
1652 /* When STRING is null. */
1653 ptrdiff_t nbytes;
1654 } u;
1655
1656 #define SDATA_NBYTES(S) (S)->u.nbytes
1657 #define SDATA_DATA(S) (S)->u.data
1658 #define SDATA_SELECTOR(member) u.member
1659
1660 #endif /* not GC_CHECK_STRING_BYTES */
1661
1662 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1663 };
1664
1665
1666 /* Structure describing a block of memory which is sub-allocated to
1667 obtain string data memory for strings. Blocks for small strings
1668 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1669 as large as needed. */
1670
1671 struct sblock
1672 {
1673 /* Next in list. */
1674 struct sblock *next;
1675
1676 /* Pointer to the next free sdata block. This points past the end
1677 of the sblock if there isn't any space left in this block. */
1678 struct sdata *next_free;
1679
1680 /* Start of data. */
1681 struct sdata first_data;
1682 };
1683
1684 /* Number of Lisp strings in a string_block structure. The 1020 is
1685 1024 minus malloc overhead. */
1686
1687 #define STRING_BLOCK_SIZE \
1688 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1689
1690 /* Structure describing a block from which Lisp_String structures
1691 are allocated. */
1692
1693 struct string_block
1694 {
1695 /* Place `strings' first, to preserve alignment. */
1696 struct Lisp_String strings[STRING_BLOCK_SIZE];
1697 struct string_block *next;
1698 };
1699
1700 /* Head and tail of the list of sblock structures holding Lisp string
1701 data. We always allocate from current_sblock. The NEXT pointers
1702 in the sblock structures go from oldest_sblock to current_sblock. */
1703
1704 static struct sblock *oldest_sblock, *current_sblock;
1705
1706 /* List of sblocks for large strings. */
1707
1708 static struct sblock *large_sblocks;
1709
1710 /* List of string_block structures. */
1711
1712 static struct string_block *string_blocks;
1713
1714 /* Free-list of Lisp_Strings. */
1715
1716 static struct Lisp_String *string_free_list;
1717
1718 /* Number of live and free Lisp_Strings. */
1719
1720 static EMACS_INT total_strings, total_free_strings;
1721
1722 /* Number of bytes used by live strings. */
1723
1724 static EMACS_INT total_string_bytes;
1725
1726 /* Given a pointer to a Lisp_String S which is on the free-list
1727 string_free_list, return a pointer to its successor in the
1728 free-list. */
1729
1730 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1731
1732 /* Return a pointer to the sdata structure belonging to Lisp string S.
1733 S must be live, i.e. S->data must not be null. S->data is actually
1734 a pointer to the `u.data' member of its sdata structure; the
1735 structure starts at a constant offset in front of that. */
1736
1737 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1738
1739
1740 #ifdef GC_CHECK_STRING_OVERRUN
1741
1742 /* We check for overrun in string data blocks by appending a small
1743 "cookie" after each allocated string data block, and check for the
1744 presence of this cookie during GC. */
1745
1746 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1747 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1748 { '\xde', '\xad', '\xbe', '\xef' };
1749
1750 #else
1751 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1752 #endif
1753
1754 /* Value is the size of an sdata structure large enough to hold NBYTES
1755 bytes of string data. The value returned includes a terminating
1756 NUL byte, the size of the sdata structure, and padding. */
1757
1758 #ifdef GC_CHECK_STRING_BYTES
1759
1760 #define SDATA_SIZE(NBYTES) \
1761 ((SDATA_DATA_OFFSET \
1762 + (NBYTES) + 1 \
1763 + sizeof (ptrdiff_t) - 1) \
1764 & ~(sizeof (ptrdiff_t) - 1))
1765
1766 #else /* not GC_CHECK_STRING_BYTES */
1767
1768 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1769 less than the size of that member. The 'max' is not needed when
1770 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1771 alignment code reserves enough space. */
1772
1773 #define SDATA_SIZE(NBYTES) \
1774 ((SDATA_DATA_OFFSET \
1775 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1776 ? NBYTES \
1777 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1778 + 1 \
1779 + sizeof (ptrdiff_t) - 1) \
1780 & ~(sizeof (ptrdiff_t) - 1))
1781
1782 #endif /* not GC_CHECK_STRING_BYTES */
1783
1784 /* Extra bytes to allocate for each string. */
1785
1786 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787
1788 /* Exact bound on the number of bytes in a string, not counting the
1789 terminating null. A string cannot contain more bytes than
1790 STRING_BYTES_BOUND, nor can it be so long that the size_t
1791 arithmetic in allocate_string_data would overflow while it is
1792 calculating a value to be passed to malloc. */
1793 #define STRING_BYTES_MAX \
1794 min (STRING_BYTES_BOUND, \
1795 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1796 - GC_STRING_EXTRA \
1797 - offsetof (struct sblock, first_data) \
1798 - SDATA_DATA_OFFSET) \
1799 & ~(sizeof (EMACS_INT) - 1)))
1800
1801 /* Initialize string allocation. Called from init_alloc_once. */
1802
1803 static void
1804 init_strings (void)
1805 {
1806 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1807 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1808 }
1809
1810
1811 #ifdef GC_CHECK_STRING_BYTES
1812
1813 static int check_string_bytes_count;
1814
1815 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1816
1817
1818 /* Like GC_STRING_BYTES, but with debugging check. */
1819
1820 ptrdiff_t
1821 string_bytes (struct Lisp_String *s)
1822 {
1823 ptrdiff_t nbytes =
1824 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1825
1826 if (!PURE_POINTER_P (s)
1827 && s->data
1828 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1829 abort ();
1830 return nbytes;
1831 }
1832
1833 /* Check validity of Lisp strings' string_bytes member in B. */
1834
1835 static void
1836 check_sblock (struct sblock *b)
1837 {
1838 struct sdata *from, *end, *from_end;
1839
1840 end = b->next_free;
1841
1842 for (from = &b->first_data; from < end; from = from_end)
1843 {
1844 /* Compute the next FROM here because copying below may
1845 overwrite data we need to compute it. */
1846 ptrdiff_t nbytes;
1847
1848 /* Check that the string size recorded in the string is the
1849 same as the one recorded in the sdata structure. */
1850 if (from->string)
1851 CHECK_STRING_BYTES (from->string);
1852
1853 if (from->string)
1854 nbytes = GC_STRING_BYTES (from->string);
1855 else
1856 nbytes = SDATA_NBYTES (from);
1857
1858 nbytes = SDATA_SIZE (nbytes);
1859 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1860 }
1861 }
1862
1863
1864 /* Check validity of Lisp strings' string_bytes member. ALL_P
1865 non-zero means check all strings, otherwise check only most
1866 recently allocated strings. Used for hunting a bug. */
1867
1868 static void
1869 check_string_bytes (int all_p)
1870 {
1871 if (all_p)
1872 {
1873 struct sblock *b;
1874
1875 for (b = large_sblocks; b; b = b->next)
1876 {
1877 struct Lisp_String *s = b->first_data.string;
1878 if (s)
1879 CHECK_STRING_BYTES (s);
1880 }
1881
1882 for (b = oldest_sblock; b; b = b->next)
1883 check_sblock (b);
1884 }
1885 else if (current_sblock)
1886 check_sblock (current_sblock);
1887 }
1888
1889 #endif /* GC_CHECK_STRING_BYTES */
1890
1891 #ifdef GC_CHECK_STRING_FREE_LIST
1892
1893 /* Walk through the string free list looking for bogus next pointers.
1894 This may catch buffer overrun from a previous string. */
1895
1896 static void
1897 check_string_free_list (void)
1898 {
1899 struct Lisp_String *s;
1900
1901 /* Pop a Lisp_String off the free-list. */
1902 s = string_free_list;
1903 while (s != NULL)
1904 {
1905 if ((uintptr_t) s < 1024)
1906 abort ();
1907 s = NEXT_FREE_LISP_STRING (s);
1908 }
1909 }
1910 #else
1911 #define check_string_free_list()
1912 #endif
1913
1914 /* Return a new Lisp_String. */
1915
1916 static struct Lisp_String *
1917 allocate_string (void)
1918 {
1919 struct Lisp_String *s;
1920
1921 /* eassert (!handling_signal); */
1922
1923 MALLOC_BLOCK_INPUT;
1924
1925 /* If the free-list is empty, allocate a new string_block, and
1926 add all the Lisp_Strings in it to the free-list. */
1927 if (string_free_list == NULL)
1928 {
1929 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1930 int i;
1931
1932 b->next = string_blocks;
1933 string_blocks = b;
1934
1935 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1936 {
1937 s = b->strings + i;
1938 /* Every string on a free list should have NULL data pointer. */
1939 s->data = NULL;
1940 NEXT_FREE_LISP_STRING (s) = string_free_list;
1941 string_free_list = s;
1942 }
1943
1944 total_free_strings += STRING_BLOCK_SIZE;
1945 }
1946
1947 check_string_free_list ();
1948
1949 /* Pop a Lisp_String off the free-list. */
1950 s = string_free_list;
1951 string_free_list = NEXT_FREE_LISP_STRING (s);
1952
1953 MALLOC_UNBLOCK_INPUT;
1954
1955 --total_free_strings;
1956 ++total_strings;
1957 ++strings_consed;
1958 consing_since_gc += sizeof *s;
1959
1960 #ifdef GC_CHECK_STRING_BYTES
1961 if (!noninteractive)
1962 {
1963 if (++check_string_bytes_count == 200)
1964 {
1965 check_string_bytes_count = 0;
1966 check_string_bytes (1);
1967 }
1968 else
1969 check_string_bytes (0);
1970 }
1971 #endif /* GC_CHECK_STRING_BYTES */
1972
1973 return s;
1974 }
1975
1976
1977 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1978 plus a NUL byte at the end. Allocate an sdata structure for S, and
1979 set S->data to its `u.data' member. Store a NUL byte at the end of
1980 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1981 S->data if it was initially non-null. */
1982
1983 void
1984 allocate_string_data (struct Lisp_String *s,
1985 EMACS_INT nchars, EMACS_INT nbytes)
1986 {
1987 struct sdata *data, *old_data;
1988 struct sblock *b;
1989 ptrdiff_t needed, old_nbytes;
1990
1991 if (STRING_BYTES_MAX < nbytes)
1992 string_overflow ();
1993
1994 /* Determine the number of bytes needed to store NBYTES bytes
1995 of string data. */
1996 needed = SDATA_SIZE (nbytes);
1997 if (s->data)
1998 {
1999 old_data = SDATA_OF_STRING (s);
2000 old_nbytes = GC_STRING_BYTES (s);
2001 }
2002 else
2003 old_data = NULL;
2004
2005 MALLOC_BLOCK_INPUT;
2006
2007 if (nbytes > LARGE_STRING_BYTES)
2008 {
2009 size_t size = offsetof (struct sblock, first_data) + needed;
2010
2011 #ifdef DOUG_LEA_MALLOC
2012 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2013 because mapped region contents are not preserved in
2014 a dumped Emacs.
2015
2016 In case you think of allowing it in a dumped Emacs at the
2017 cost of not being able to re-dump, there's another reason:
2018 mmap'ed data typically have an address towards the top of the
2019 address space, which won't fit into an EMACS_INT (at least on
2020 32-bit systems with the current tagging scheme). --fx */
2021 mallopt (M_MMAP_MAX, 0);
2022 #endif
2023
2024 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2025
2026 #ifdef DOUG_LEA_MALLOC
2027 /* Back to a reasonable maximum of mmap'ed areas. */
2028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2029 #endif
2030
2031 b->next_free = &b->first_data;
2032 b->first_data.string = NULL;
2033 b->next = large_sblocks;
2034 large_sblocks = b;
2035 }
2036 else if (current_sblock == NULL
2037 || (((char *) current_sblock + SBLOCK_SIZE
2038 - (char *) current_sblock->next_free)
2039 < (needed + GC_STRING_EXTRA)))
2040 {
2041 /* Not enough room in the current sblock. */
2042 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2043 b->next_free = &b->first_data;
2044 b->first_data.string = NULL;
2045 b->next = NULL;
2046
2047 if (current_sblock)
2048 current_sblock->next = b;
2049 else
2050 oldest_sblock = b;
2051 current_sblock = b;
2052 }
2053 else
2054 b = current_sblock;
2055
2056 data = b->next_free;
2057 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2058
2059 MALLOC_UNBLOCK_INPUT;
2060
2061 data->string = s;
2062 s->data = SDATA_DATA (data);
2063 #ifdef GC_CHECK_STRING_BYTES
2064 SDATA_NBYTES (data) = nbytes;
2065 #endif
2066 s->size = nchars;
2067 s->size_byte = nbytes;
2068 s->data[nbytes] = '\0';
2069 #ifdef GC_CHECK_STRING_OVERRUN
2070 memcpy ((char *) data + needed, string_overrun_cookie,
2071 GC_STRING_OVERRUN_COOKIE_SIZE);
2072 #endif
2073
2074 /* Note that Faset may call to this function when S has already data
2075 assigned. In this case, mark data as free by setting it's string
2076 back-pointer to null, and record the size of the data in it. */
2077 if (old_data)
2078 {
2079 SDATA_NBYTES (old_data) = old_nbytes;
2080 old_data->string = NULL;
2081 }
2082
2083 consing_since_gc += needed;
2084 }
2085
2086
2087 /* Sweep and compact strings. */
2088
2089 static void
2090 sweep_strings (void)
2091 {
2092 struct string_block *b, *next;
2093 struct string_block *live_blocks = NULL;
2094
2095 string_free_list = NULL;
2096 total_strings = total_free_strings = 0;
2097 total_string_bytes = 0;
2098
2099 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2100 for (b = string_blocks; b; b = next)
2101 {
2102 int i, nfree = 0;
2103 struct Lisp_String *free_list_before = string_free_list;
2104
2105 next = b->next;
2106
2107 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2108 {
2109 struct Lisp_String *s = b->strings + i;
2110
2111 if (s->data)
2112 {
2113 /* String was not on free-list before. */
2114 if (STRING_MARKED_P (s))
2115 {
2116 /* String is live; unmark it and its intervals. */
2117 UNMARK_STRING (s);
2118
2119 if (!NULL_INTERVAL_P (s->intervals))
2120 UNMARK_BALANCE_INTERVALS (s->intervals);
2121
2122 ++total_strings;
2123 total_string_bytes += STRING_BYTES (s);
2124 }
2125 else
2126 {
2127 /* String is dead. Put it on the free-list. */
2128 struct sdata *data = SDATA_OF_STRING (s);
2129
2130 /* Save the size of S in its sdata so that we know
2131 how large that is. Reset the sdata's string
2132 back-pointer so that we know it's free. */
2133 #ifdef GC_CHECK_STRING_BYTES
2134 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2135 abort ();
2136 #else
2137 data->u.nbytes = GC_STRING_BYTES (s);
2138 #endif
2139 data->string = NULL;
2140
2141 /* Reset the strings's `data' member so that we
2142 know it's free. */
2143 s->data = NULL;
2144
2145 /* Put the string on the free-list. */
2146 NEXT_FREE_LISP_STRING (s) = string_free_list;
2147 string_free_list = s;
2148 ++nfree;
2149 }
2150 }
2151 else
2152 {
2153 /* S was on the free-list before. Put it there again. */
2154 NEXT_FREE_LISP_STRING (s) = string_free_list;
2155 string_free_list = s;
2156 ++nfree;
2157 }
2158 }
2159
2160 /* Free blocks that contain free Lisp_Strings only, except
2161 the first two of them. */
2162 if (nfree == STRING_BLOCK_SIZE
2163 && total_free_strings > STRING_BLOCK_SIZE)
2164 {
2165 lisp_free (b);
2166 string_free_list = free_list_before;
2167 }
2168 else
2169 {
2170 total_free_strings += nfree;
2171 b->next = live_blocks;
2172 live_blocks = b;
2173 }
2174 }
2175
2176 check_string_free_list ();
2177
2178 string_blocks = live_blocks;
2179 free_large_strings ();
2180 compact_small_strings ();
2181
2182 check_string_free_list ();
2183 }
2184
2185
2186 /* Free dead large strings. */
2187
2188 static void
2189 free_large_strings (void)
2190 {
2191 struct sblock *b, *next;
2192 struct sblock *live_blocks = NULL;
2193
2194 for (b = large_sblocks; b; b = next)
2195 {
2196 next = b->next;
2197
2198 if (b->first_data.string == NULL)
2199 lisp_free (b);
2200 else
2201 {
2202 b->next = live_blocks;
2203 live_blocks = b;
2204 }
2205 }
2206
2207 large_sblocks = live_blocks;
2208 }
2209
2210
2211 /* Compact data of small strings. Free sblocks that don't contain
2212 data of live strings after compaction. */
2213
2214 static void
2215 compact_small_strings (void)
2216 {
2217 struct sblock *b, *tb, *next;
2218 struct sdata *from, *to, *end, *tb_end;
2219 struct sdata *to_end, *from_end;
2220
2221 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2222 to, and TB_END is the end of TB. */
2223 tb = oldest_sblock;
2224 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2225 to = &tb->first_data;
2226
2227 /* Step through the blocks from the oldest to the youngest. We
2228 expect that old blocks will stabilize over time, so that less
2229 copying will happen this way. */
2230 for (b = oldest_sblock; b; b = b->next)
2231 {
2232 end = b->next_free;
2233 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2234
2235 for (from = &b->first_data; from < end; from = from_end)
2236 {
2237 /* Compute the next FROM here because copying below may
2238 overwrite data we need to compute it. */
2239 ptrdiff_t nbytes;
2240
2241 #ifdef GC_CHECK_STRING_BYTES
2242 /* Check that the string size recorded in the string is the
2243 same as the one recorded in the sdata structure. */
2244 if (from->string
2245 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2246 abort ();
2247 #endif /* GC_CHECK_STRING_BYTES */
2248
2249 if (from->string)
2250 nbytes = GC_STRING_BYTES (from->string);
2251 else
2252 nbytes = SDATA_NBYTES (from);
2253
2254 if (nbytes > LARGE_STRING_BYTES)
2255 abort ();
2256
2257 nbytes = SDATA_SIZE (nbytes);
2258 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2259
2260 #ifdef GC_CHECK_STRING_OVERRUN
2261 if (memcmp (string_overrun_cookie,
2262 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2263 GC_STRING_OVERRUN_COOKIE_SIZE))
2264 abort ();
2265 #endif
2266
2267 /* FROM->string non-null means it's alive. Copy its data. */
2268 if (from->string)
2269 {
2270 /* If TB is full, proceed with the next sblock. */
2271 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2272 if (to_end > tb_end)
2273 {
2274 tb->next_free = to;
2275 tb = tb->next;
2276 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2277 to = &tb->first_data;
2278 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2279 }
2280
2281 /* Copy, and update the string's `data' pointer. */
2282 if (from != to)
2283 {
2284 eassert (tb != b || to < from);
2285 memmove (to, from, nbytes + GC_STRING_EXTRA);
2286 to->string->data = SDATA_DATA (to);
2287 }
2288
2289 /* Advance past the sdata we copied to. */
2290 to = to_end;
2291 }
2292 }
2293 }
2294
2295 /* The rest of the sblocks following TB don't contain live data, so
2296 we can free them. */
2297 for (b = tb->next; b; b = next)
2298 {
2299 next = b->next;
2300 lisp_free (b);
2301 }
2302
2303 tb->next_free = to;
2304 tb->next = NULL;
2305 current_sblock = tb;
2306 }
2307
2308 void
2309 string_overflow (void)
2310 {
2311 error ("Maximum string size exceeded");
2312 }
2313
2314 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2315 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2316 LENGTH must be an integer.
2317 INIT must be an integer that represents a character. */)
2318 (Lisp_Object length, Lisp_Object init)
2319 {
2320 register Lisp_Object val;
2321 register unsigned char *p, *end;
2322 int c;
2323 EMACS_INT nbytes;
2324
2325 CHECK_NATNUM (length);
2326 CHECK_CHARACTER (init);
2327
2328 c = XFASTINT (init);
2329 if (ASCII_CHAR_P (c))
2330 {
2331 nbytes = XINT (length);
2332 val = make_uninit_string (nbytes);
2333 p = SDATA (val);
2334 end = p + SCHARS (val);
2335 while (p != end)
2336 *p++ = c;
2337 }
2338 else
2339 {
2340 unsigned char str[MAX_MULTIBYTE_LENGTH];
2341 int len = CHAR_STRING (c, str);
2342 EMACS_INT string_len = XINT (length);
2343
2344 if (string_len > STRING_BYTES_MAX / len)
2345 string_overflow ();
2346 nbytes = len * string_len;
2347 val = make_uninit_multibyte_string (string_len, nbytes);
2348 p = SDATA (val);
2349 end = p + nbytes;
2350 while (p != end)
2351 {
2352 memcpy (p, str, len);
2353 p += len;
2354 }
2355 }
2356
2357 *p = 0;
2358 return val;
2359 }
2360
2361
2362 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2363 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2364 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2365 (Lisp_Object length, Lisp_Object init)
2366 {
2367 register Lisp_Object val;
2368 struct Lisp_Bool_Vector *p;
2369 ptrdiff_t length_in_chars;
2370 EMACS_INT length_in_elts;
2371 int bits_per_value;
2372 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2373 / word_size);
2374
2375 CHECK_NATNUM (length);
2376
2377 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2378
2379 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2380
2381 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2382
2383 /* No Lisp_Object to trace in there. */
2384 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2385
2386 p = XBOOL_VECTOR (val);
2387 p->size = XFASTINT (length);
2388
2389 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2390 / BOOL_VECTOR_BITS_PER_CHAR);
2391 if (length_in_chars)
2392 {
2393 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2394
2395 /* Clear any extraneous bits in the last byte. */
2396 p->data[length_in_chars - 1]
2397 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2398 }
2399
2400 return val;
2401 }
2402
2403
2404 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2405 of characters from the contents. This string may be unibyte or
2406 multibyte, depending on the contents. */
2407
2408 Lisp_Object
2409 make_string (const char *contents, ptrdiff_t nbytes)
2410 {
2411 register Lisp_Object val;
2412 ptrdiff_t nchars, multibyte_nbytes;
2413
2414 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2415 &nchars, &multibyte_nbytes);
2416 if (nbytes == nchars || nbytes != multibyte_nbytes)
2417 /* CONTENTS contains no multibyte sequences or contains an invalid
2418 multibyte sequence. We must make unibyte string. */
2419 val = make_unibyte_string (contents, nbytes);
2420 else
2421 val = make_multibyte_string (contents, nchars, nbytes);
2422 return val;
2423 }
2424
2425
2426 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2427
2428 Lisp_Object
2429 make_unibyte_string (const char *contents, ptrdiff_t length)
2430 {
2431 register Lisp_Object val;
2432 val = make_uninit_string (length);
2433 memcpy (SDATA (val), contents, length);
2434 return val;
2435 }
2436
2437
2438 /* Make a multibyte string from NCHARS characters occupying NBYTES
2439 bytes at CONTENTS. */
2440
2441 Lisp_Object
2442 make_multibyte_string (const char *contents,
2443 ptrdiff_t nchars, ptrdiff_t nbytes)
2444 {
2445 register Lisp_Object val;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
2447 memcpy (SDATA (val), contents, nbytes);
2448 return val;
2449 }
2450
2451
2452 /* Make a string from NCHARS characters occupying NBYTES bytes at
2453 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2454
2455 Lisp_Object
2456 make_string_from_bytes (const char *contents,
2457 ptrdiff_t nchars, ptrdiff_t nbytes)
2458 {
2459 register Lisp_Object val;
2460 val = make_uninit_multibyte_string (nchars, nbytes);
2461 memcpy (SDATA (val), contents, nbytes);
2462 if (SBYTES (val) == SCHARS (val))
2463 STRING_SET_UNIBYTE (val);
2464 return val;
2465 }
2466
2467
2468 /* Make a string from NCHARS characters occupying NBYTES bytes at
2469 CONTENTS. The argument MULTIBYTE controls whether to label the
2470 string as multibyte. If NCHARS is negative, it counts the number of
2471 characters by itself. */
2472
2473 Lisp_Object
2474 make_specified_string (const char *contents,
2475 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2476 {
2477 register Lisp_Object val;
2478
2479 if (nchars < 0)
2480 {
2481 if (multibyte)
2482 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2483 nbytes);
2484 else
2485 nchars = nbytes;
2486 }
2487 val = make_uninit_multibyte_string (nchars, nbytes);
2488 memcpy (SDATA (val), contents, nbytes);
2489 if (!multibyte)
2490 STRING_SET_UNIBYTE (val);
2491 return val;
2492 }
2493
2494
2495 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2496 occupying LENGTH bytes. */
2497
2498 Lisp_Object
2499 make_uninit_string (EMACS_INT length)
2500 {
2501 Lisp_Object val;
2502
2503 if (!length)
2504 return empty_unibyte_string;
2505 val = make_uninit_multibyte_string (length, length);
2506 STRING_SET_UNIBYTE (val);
2507 return val;
2508 }
2509
2510
2511 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2512 which occupy NBYTES bytes. */
2513
2514 Lisp_Object
2515 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2516 {
2517 Lisp_Object string;
2518 struct Lisp_String *s;
2519
2520 if (nchars < 0)
2521 abort ();
2522 if (!nbytes)
2523 return empty_multibyte_string;
2524
2525 s = allocate_string ();
2526 s->intervals = NULL_INTERVAL;
2527 allocate_string_data (s, nchars, nbytes);
2528 XSETSTRING (string, s);
2529 string_chars_consed += nbytes;
2530 return string;
2531 }
2532
2533 /* Print arguments to BUF according to a FORMAT, then return
2534 a Lisp_String initialized with the data from BUF. */
2535
2536 Lisp_Object
2537 make_formatted_string (char *buf, const char *format, ...)
2538 {
2539 va_list ap;
2540 int length;
2541
2542 va_start (ap, format);
2543 length = vsprintf (buf, format, ap);
2544 va_end (ap);
2545 return make_string (buf, length);
2546 }
2547
2548 \f
2549 /***********************************************************************
2550 Float Allocation
2551 ***********************************************************************/
2552
2553 /* We store float cells inside of float_blocks, allocating a new
2554 float_block with malloc whenever necessary. Float cells reclaimed
2555 by GC are put on a free list to be reallocated before allocating
2556 any new float cells from the latest float_block. */
2557
2558 #define FLOAT_BLOCK_SIZE \
2559 (((BLOCK_BYTES - sizeof (struct float_block *) \
2560 /* The compiler might add padding at the end. */ \
2561 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2562 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2563
2564 #define GETMARKBIT(block,n) \
2565 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2566 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2567 & 1)
2568
2569 #define SETMARKBIT(block,n) \
2570 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2571 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2572
2573 #define UNSETMARKBIT(block,n) \
2574 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2575 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2576
2577 #define FLOAT_BLOCK(fptr) \
2578 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2579
2580 #define FLOAT_INDEX(fptr) \
2581 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2582
2583 struct float_block
2584 {
2585 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2586 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2587 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2588 struct float_block *next;
2589 };
2590
2591 #define FLOAT_MARKED_P(fptr) \
2592 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2593
2594 #define FLOAT_MARK(fptr) \
2595 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2596
2597 #define FLOAT_UNMARK(fptr) \
2598 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2599
2600 /* Current float_block. */
2601
2602 static struct float_block *float_block;
2603
2604 /* Index of first unused Lisp_Float in the current float_block. */
2605
2606 static int float_block_index = FLOAT_BLOCK_SIZE;
2607
2608 /* Free-list of Lisp_Floats. */
2609
2610 static struct Lisp_Float *float_free_list;
2611
2612 /* Return a new float object with value FLOAT_VALUE. */
2613
2614 Lisp_Object
2615 make_float (double float_value)
2616 {
2617 register Lisp_Object val;
2618
2619 /* eassert (!handling_signal); */
2620
2621 MALLOC_BLOCK_INPUT;
2622
2623 if (float_free_list)
2624 {
2625 /* We use the data field for chaining the free list
2626 so that we won't use the same field that has the mark bit. */
2627 XSETFLOAT (val, float_free_list);
2628 float_free_list = float_free_list->u.chain;
2629 }
2630 else
2631 {
2632 if (float_block_index == FLOAT_BLOCK_SIZE)
2633 {
2634 struct float_block *new
2635 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2636 new->next = float_block;
2637 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2638 float_block = new;
2639 float_block_index = 0;
2640 total_free_floats += FLOAT_BLOCK_SIZE;
2641 }
2642 XSETFLOAT (val, &float_block->floats[float_block_index]);
2643 float_block_index++;
2644 }
2645
2646 MALLOC_UNBLOCK_INPUT;
2647
2648 XFLOAT_INIT (val, float_value);
2649 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2650 consing_since_gc += sizeof (struct Lisp_Float);
2651 floats_consed++;
2652 total_free_floats--;
2653 return val;
2654 }
2655
2656
2657 \f
2658 /***********************************************************************
2659 Cons Allocation
2660 ***********************************************************************/
2661
2662 /* We store cons cells inside of cons_blocks, allocating a new
2663 cons_block with malloc whenever necessary. Cons cells reclaimed by
2664 GC are put on a free list to be reallocated before allocating
2665 any new cons cells from the latest cons_block. */
2666
2667 #define CONS_BLOCK_SIZE \
2668 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2669 /* The compiler might add padding at the end. */ \
2670 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2671 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2672
2673 #define CONS_BLOCK(fptr) \
2674 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2675
2676 #define CONS_INDEX(fptr) \
2677 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2678
2679 struct cons_block
2680 {
2681 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2682 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2683 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2684 struct cons_block *next;
2685 };
2686
2687 #define CONS_MARKED_P(fptr) \
2688 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 #define CONS_MARK(fptr) \
2691 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2692
2693 #define CONS_UNMARK(fptr) \
2694 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2695
2696 /* Current cons_block. */
2697
2698 static struct cons_block *cons_block;
2699
2700 /* Index of first unused Lisp_Cons in the current block. */
2701
2702 static int cons_block_index = CONS_BLOCK_SIZE;
2703
2704 /* Free-list of Lisp_Cons structures. */
2705
2706 static struct Lisp_Cons *cons_free_list;
2707
2708 /* Explicitly free a cons cell by putting it on the free-list. */
2709
2710 void
2711 free_cons (struct Lisp_Cons *ptr)
2712 {
2713 ptr->u.chain = cons_free_list;
2714 #if GC_MARK_STACK
2715 ptr->car = Vdead;
2716 #endif
2717 cons_free_list = ptr;
2718 consing_since_gc -= sizeof *ptr;
2719 total_free_conses++;
2720 }
2721
2722 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2723 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2724 (Lisp_Object car, Lisp_Object cdr)
2725 {
2726 register Lisp_Object val;
2727
2728 /* eassert (!handling_signal); */
2729
2730 MALLOC_BLOCK_INPUT;
2731
2732 if (cons_free_list)
2733 {
2734 /* We use the cdr for chaining the free list
2735 so that we won't use the same field that has the mark bit. */
2736 XSETCONS (val, cons_free_list);
2737 cons_free_list = cons_free_list->u.chain;
2738 }
2739 else
2740 {
2741 if (cons_block_index == CONS_BLOCK_SIZE)
2742 {
2743 struct cons_block *new
2744 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2745 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2746 new->next = cons_block;
2747 cons_block = new;
2748 cons_block_index = 0;
2749 total_free_conses += CONS_BLOCK_SIZE;
2750 }
2751 XSETCONS (val, &cons_block->conses[cons_block_index]);
2752 cons_block_index++;
2753 }
2754
2755 MALLOC_UNBLOCK_INPUT;
2756
2757 XSETCAR (val, car);
2758 XSETCDR (val, cdr);
2759 eassert (!CONS_MARKED_P (XCONS (val)));
2760 consing_since_gc += sizeof (struct Lisp_Cons);
2761 total_free_conses--;
2762 cons_cells_consed++;
2763 return val;
2764 }
2765
2766 #ifdef GC_CHECK_CONS_LIST
2767 /* Get an error now if there's any junk in the cons free list. */
2768 void
2769 check_cons_list (void)
2770 {
2771 struct Lisp_Cons *tail = cons_free_list;
2772
2773 while (tail)
2774 tail = tail->u.chain;
2775 }
2776 #endif
2777
2778 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2779
2780 Lisp_Object
2781 list1 (Lisp_Object arg1)
2782 {
2783 return Fcons (arg1, Qnil);
2784 }
2785
2786 Lisp_Object
2787 list2 (Lisp_Object arg1, Lisp_Object arg2)
2788 {
2789 return Fcons (arg1, Fcons (arg2, Qnil));
2790 }
2791
2792
2793 Lisp_Object
2794 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2795 {
2796 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2797 }
2798
2799
2800 Lisp_Object
2801 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2802 {
2803 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2804 }
2805
2806
2807 Lisp_Object
2808 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2809 {
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2811 Fcons (arg5, Qnil)))));
2812 }
2813
2814
2815 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2816 doc: /* Return a newly created list with specified arguments as elements.
2817 Any number of arguments, even zero arguments, are allowed.
2818 usage: (list &rest OBJECTS) */)
2819 (ptrdiff_t nargs, Lisp_Object *args)
2820 {
2821 register Lisp_Object val;
2822 val = Qnil;
2823
2824 while (nargs > 0)
2825 {
2826 nargs--;
2827 val = Fcons (args[nargs], val);
2828 }
2829 return val;
2830 }
2831
2832
2833 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2834 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2835 (register Lisp_Object length, Lisp_Object init)
2836 {
2837 register Lisp_Object val;
2838 register EMACS_INT size;
2839
2840 CHECK_NATNUM (length);
2841 size = XFASTINT (length);
2842
2843 val = Qnil;
2844 while (size > 0)
2845 {
2846 val = Fcons (init, val);
2847 --size;
2848
2849 if (size > 0)
2850 {
2851 val = Fcons (init, val);
2852 --size;
2853
2854 if (size > 0)
2855 {
2856 val = Fcons (init, val);
2857 --size;
2858
2859 if (size > 0)
2860 {
2861 val = Fcons (init, val);
2862 --size;
2863
2864 if (size > 0)
2865 {
2866 val = Fcons (init, val);
2867 --size;
2868 }
2869 }
2870 }
2871 }
2872
2873 QUIT;
2874 }
2875
2876 return val;
2877 }
2878
2879
2880 \f
2881 /***********************************************************************
2882 Vector Allocation
2883 ***********************************************************************/
2884
2885 /* This value is balanced well enough to avoid too much internal overhead
2886 for the most common cases; it's not required to be a power of two, but
2887 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2888
2889 #define VECTOR_BLOCK_SIZE 4096
2890
2891 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2892 enum
2893 {
2894 roundup_size = COMMON_MULTIPLE (word_size,
2895 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2896 };
2897
2898 /* ROUNDUP_SIZE must be a power of 2. */
2899 verify ((roundup_size & (roundup_size - 1)) == 0);
2900
2901 /* Verify assumptions described above. */
2902 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2903 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2904
2905 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2906
2907 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2908
2909 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2910
2911 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2912
2913 /* Size of the minimal vector allocated from block. */
2914
2915 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2916
2917 /* Size of the largest vector allocated from block. */
2918
2919 #define VBLOCK_BYTES_MAX \
2920 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2921
2922 /* We maintain one free list for each possible block-allocated
2923 vector size, and this is the number of free lists we have. */
2924
2925 #define VECTOR_MAX_FREE_LIST_INDEX \
2926 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2927
2928 /* Common shortcut to advance vector pointer over a block data. */
2929
2930 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2931
2932 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2933
2934 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2935
2936 /* Common shortcut to setup vector on a free list. */
2937
2938 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2939 do { \
2940 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2941 eassert ((nbytes) % roundup_size == 0); \
2942 (index) = VINDEX (nbytes); \
2943 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2944 (v)->header.next.vector = vector_free_lists[index]; \
2945 vector_free_lists[index] = (v); \
2946 total_free_vector_slots += (nbytes) / word_size; \
2947 } while (0)
2948
2949 struct vector_block
2950 {
2951 char data[VECTOR_BLOCK_BYTES];
2952 struct vector_block *next;
2953 };
2954
2955 /* Chain of vector blocks. */
2956
2957 static struct vector_block *vector_blocks;
2958
2959 /* Vector free lists, where NTH item points to a chain of free
2960 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2961
2962 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2963
2964 /* Singly-linked list of large vectors. */
2965
2966 static struct Lisp_Vector *large_vectors;
2967
2968 /* The only vector with 0 slots, allocated from pure space. */
2969
2970 Lisp_Object zero_vector;
2971
2972 /* Number of live vectors. */
2973
2974 static EMACS_INT total_vectors;
2975
2976 /* Total size of live and free vectors, in Lisp_Object units. */
2977
2978 static EMACS_INT total_vector_slots, total_free_vector_slots;
2979
2980 /* Get a new vector block. */
2981
2982 static struct vector_block *
2983 allocate_vector_block (void)
2984 {
2985 struct vector_block *block = xmalloc (sizeof *block);
2986
2987 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2988 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2989 MEM_TYPE_VECTOR_BLOCK);
2990 #endif
2991
2992 block->next = vector_blocks;
2993 vector_blocks = block;
2994 return block;
2995 }
2996
2997 /* Called once to initialize vector allocation. */
2998
2999 static void
3000 init_vectors (void)
3001 {
3002 zero_vector = make_pure_vector (0);
3003 }
3004
3005 /* Allocate vector from a vector block. */
3006
3007 static struct Lisp_Vector *
3008 allocate_vector_from_block (size_t nbytes)
3009 {
3010 struct Lisp_Vector *vector, *rest;
3011 struct vector_block *block;
3012 size_t index, restbytes;
3013
3014 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3015 eassert (nbytes % roundup_size == 0);
3016
3017 /* First, try to allocate from a free list
3018 containing vectors of the requested size. */
3019 index = VINDEX (nbytes);
3020 if (vector_free_lists[index])
3021 {
3022 vector = vector_free_lists[index];
3023 vector_free_lists[index] = vector->header.next.vector;
3024 vector->header.next.nbytes = nbytes;
3025 total_free_vector_slots -= nbytes / word_size;
3026 return vector;
3027 }
3028
3029 /* Next, check free lists containing larger vectors. Since
3030 we will split the result, we should have remaining space
3031 large enough to use for one-slot vector at least. */
3032 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3033 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3034 if (vector_free_lists[index])
3035 {
3036 /* This vector is larger than requested. */
3037 vector = vector_free_lists[index];
3038 vector_free_lists[index] = vector->header.next.vector;
3039 vector->header.next.nbytes = nbytes;
3040 total_free_vector_slots -= nbytes / word_size;
3041
3042 /* Excess bytes are used for the smaller vector,
3043 which should be set on an appropriate free list. */
3044 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3045 eassert (restbytes % roundup_size == 0);
3046 rest = ADVANCE (vector, nbytes);
3047 SETUP_ON_FREE_LIST (rest, restbytes, index);
3048 return vector;
3049 }
3050
3051 /* Finally, need a new vector block. */
3052 block = allocate_vector_block ();
3053
3054 /* New vector will be at the beginning of this block. */
3055 vector = (struct Lisp_Vector *) block->data;
3056 vector->header.next.nbytes = nbytes;
3057
3058 /* If the rest of space from this block is large enough
3059 for one-slot vector at least, set up it on a free list. */
3060 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3061 if (restbytes >= VBLOCK_BYTES_MIN)
3062 {
3063 eassert (restbytes % roundup_size == 0);
3064 rest = ADVANCE (vector, nbytes);
3065 SETUP_ON_FREE_LIST (rest, restbytes, index);
3066 }
3067 return vector;
3068 }
3069
3070 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3071
3072 #define VECTOR_IN_BLOCK(vector, block) \
3073 ((char *) (vector) <= (block)->data \
3074 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3075
3076 /* Number of bytes used by vector-block-allocated object. This is the only
3077 place where we actually use the `nbytes' field of the vector-header.
3078 I.e. we could get rid of the `nbytes' field by computing it based on the
3079 vector-type. */
3080
3081 #define PSEUDOVECTOR_NBYTES(vector) \
3082 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3083 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3084 : vector->header.next.nbytes)
3085
3086 /* Reclaim space used by unmarked vectors. */
3087
3088 static void
3089 sweep_vectors (void)
3090 {
3091 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3092 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3093
3094 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3095 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3096
3097 /* Looking through vector blocks. */
3098
3099 for (block = vector_blocks; block; block = *bprev)
3100 {
3101 int free_this_block = 0;
3102
3103 for (vector = (struct Lisp_Vector *) block->data;
3104 VECTOR_IN_BLOCK (vector, block); vector = next)
3105 {
3106 if (VECTOR_MARKED_P (vector))
3107 {
3108 VECTOR_UNMARK (vector);
3109 total_vectors++;
3110 total_vector_slots += vector->header.next.nbytes / word_size;
3111 next = ADVANCE (vector, vector->header.next.nbytes);
3112 }
3113 else
3114 {
3115 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3116 ptrdiff_t total_bytes = nbytes;
3117
3118 next = ADVANCE (vector, nbytes);
3119
3120 /* While NEXT is not marked, try to coalesce with VECTOR,
3121 thus making VECTOR of the largest possible size. */
3122
3123 while (VECTOR_IN_BLOCK (next, block))
3124 {
3125 if (VECTOR_MARKED_P (next))
3126 break;
3127 nbytes = PSEUDOVECTOR_NBYTES (next);
3128 total_bytes += nbytes;
3129 next = ADVANCE (next, nbytes);
3130 }
3131
3132 eassert (total_bytes % roundup_size == 0);
3133
3134 if (vector == (struct Lisp_Vector *) block->data
3135 && !VECTOR_IN_BLOCK (next, block))
3136 /* This block should be freed because all of it's
3137 space was coalesced into the only free vector. */
3138 free_this_block = 1;
3139 else
3140 {
3141 int tmp;
3142 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3143 }
3144 }
3145 }
3146
3147 if (free_this_block)
3148 {
3149 *bprev = block->next;
3150 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3151 mem_delete (mem_find (block->data));
3152 #endif
3153 xfree (block);
3154 }
3155 else
3156 bprev = &block->next;
3157 }
3158
3159 /* Sweep large vectors. */
3160
3161 for (vector = large_vectors; vector; vector = *vprev)
3162 {
3163 if (VECTOR_MARKED_P (vector))
3164 {
3165 VECTOR_UNMARK (vector);
3166 total_vectors++;
3167 if (vector->header.size & PSEUDOVECTOR_FLAG)
3168 {
3169 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3170
3171 /* All non-bool pseudovectors are small enough to be allocated
3172 from vector blocks. This code should be redesigned if some
3173 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3174 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3175
3176 total_vector_slots
3177 += (bool_header_size
3178 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3179 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
3180 }
3181 else
3182 total_vector_slots
3183 += header_size / word_size + vector->header.size;
3184 vprev = &vector->header.next.vector;
3185 }
3186 else
3187 {
3188 *vprev = vector->header.next.vector;
3189 lisp_free (vector);
3190 }
3191 }
3192 }
3193
3194 /* Value is a pointer to a newly allocated Lisp_Vector structure
3195 with room for LEN Lisp_Objects. */
3196
3197 static struct Lisp_Vector *
3198 allocate_vectorlike (ptrdiff_t len)
3199 {
3200 struct Lisp_Vector *p;
3201
3202 MALLOC_BLOCK_INPUT;
3203
3204 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3205 /* eassert (!handling_signal); */
3206
3207 if (len == 0)
3208 p = XVECTOR (zero_vector);
3209 else
3210 {
3211 size_t nbytes = header_size + len * word_size;
3212
3213 #ifdef DOUG_LEA_MALLOC
3214 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3215 because mapped region contents are not preserved in
3216 a dumped Emacs. */
3217 mallopt (M_MMAP_MAX, 0);
3218 #endif
3219
3220 if (nbytes <= VBLOCK_BYTES_MAX)
3221 p = allocate_vector_from_block (vroundup (nbytes));
3222 else
3223 {
3224 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3225 p->header.next.vector = large_vectors;
3226 large_vectors = p;
3227 }
3228
3229 #ifdef DOUG_LEA_MALLOC
3230 /* Back to a reasonable maximum of mmap'ed areas. */
3231 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3232 #endif
3233
3234 consing_since_gc += nbytes;
3235 vector_cells_consed += len;
3236 }
3237
3238 MALLOC_UNBLOCK_INPUT;
3239
3240 return p;
3241 }
3242
3243
3244 /* Allocate a vector with LEN slots. */
3245
3246 struct Lisp_Vector *
3247 allocate_vector (EMACS_INT len)
3248 {
3249 struct Lisp_Vector *v;
3250 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3251
3252 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3253 memory_full (SIZE_MAX);
3254 v = allocate_vectorlike (len);
3255 v->header.size = len;
3256 return v;
3257 }
3258
3259
3260 /* Allocate other vector-like structures. */
3261
3262 struct Lisp_Vector *
3263 allocate_pseudovector (int memlen, int lisplen, int tag)
3264 {
3265 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3266 int i;
3267
3268 /* Only the first lisplen slots will be traced normally by the GC. */
3269 for (i = 0; i < lisplen; ++i)
3270 v->contents[i] = Qnil;
3271
3272 XSETPVECTYPESIZE (v, tag, lisplen);
3273 return v;
3274 }
3275
3276 struct buffer *
3277 allocate_buffer (void)
3278 {
3279 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3280
3281 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3282 - header_size) / word_size);
3283 /* Note that the fields of B are not initialized. */
3284 return b;
3285 }
3286
3287 struct Lisp_Hash_Table *
3288 allocate_hash_table (void)
3289 {
3290 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3291 }
3292
3293 struct window *
3294 allocate_window (void)
3295 {
3296 struct window *w;
3297
3298 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3299 /* Users assumes that non-Lisp data is zeroed. */
3300 memset (&w->current_matrix, 0,
3301 sizeof (*w) - offsetof (struct window, current_matrix));
3302 return w;
3303 }
3304
3305 struct terminal *
3306 allocate_terminal (void)
3307 {
3308 struct terminal *t;
3309
3310 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3311 /* Users assumes that non-Lisp data is zeroed. */
3312 memset (&t->next_terminal, 0,
3313 sizeof (*t) - offsetof (struct terminal, next_terminal));
3314 return t;
3315 }
3316
3317 struct frame *
3318 allocate_frame (void)
3319 {
3320 struct frame *f;
3321
3322 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3323 /* Users assumes that non-Lisp data is zeroed. */
3324 memset (&f->face_cache, 0,
3325 sizeof (*f) - offsetof (struct frame, face_cache));
3326 return f;
3327 }
3328
3329 struct Lisp_Process *
3330 allocate_process (void)
3331 {
3332 struct Lisp_Process *p;
3333
3334 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3335 /* Users assumes that non-Lisp data is zeroed. */
3336 memset (&p->pid, 0,
3337 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3338 return p;
3339 }
3340
3341 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3342 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3343 See also the function `vector'. */)
3344 (register Lisp_Object length, Lisp_Object init)
3345 {
3346 Lisp_Object vector;
3347 register ptrdiff_t sizei;
3348 register ptrdiff_t i;
3349 register struct Lisp_Vector *p;
3350
3351 CHECK_NATNUM (length);
3352
3353 p = allocate_vector (XFASTINT (length));
3354 sizei = XFASTINT (length);
3355 for (i = 0; i < sizei; i++)
3356 p->contents[i] = init;
3357
3358 XSETVECTOR (vector, p);
3359 return vector;
3360 }
3361
3362
3363 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3364 doc: /* Return a newly created vector with specified arguments as elements.
3365 Any number of arguments, even zero arguments, are allowed.
3366 usage: (vector &rest OBJECTS) */)
3367 (ptrdiff_t nargs, Lisp_Object *args)
3368 {
3369 register Lisp_Object len, val;
3370 ptrdiff_t i;
3371 register struct Lisp_Vector *p;
3372
3373 XSETFASTINT (len, nargs);
3374 val = Fmake_vector (len, Qnil);
3375 p = XVECTOR (val);
3376 for (i = 0; i < nargs; i++)
3377 p->contents[i] = args[i];
3378 return val;
3379 }
3380
3381 void
3382 make_byte_code (struct Lisp_Vector *v)
3383 {
3384 if (v->header.size > 1 && STRINGP (v->contents[1])
3385 && STRING_MULTIBYTE (v->contents[1]))
3386 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3387 earlier because they produced a raw 8-bit string for byte-code
3388 and now such a byte-code string is loaded as multibyte while
3389 raw 8-bit characters converted to multibyte form. Thus, now we
3390 must convert them back to the original unibyte form. */
3391 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3392 XSETPVECTYPE (v, PVEC_COMPILED);
3393 }
3394
3395 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3396 doc: /* Create a byte-code object with specified arguments as elements.
3397 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3398 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3399 and (optional) INTERACTIVE-SPEC.
3400 The first four arguments are required; at most six have any
3401 significance.
3402 The ARGLIST can be either like the one of `lambda', in which case the arguments
3403 will be dynamically bound before executing the byte code, or it can be an
3404 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3405 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3406 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3407 argument to catch the left-over arguments. If such an integer is used, the
3408 arguments will not be dynamically bound but will be instead pushed on the
3409 stack before executing the byte-code.
3410 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3411 (ptrdiff_t nargs, Lisp_Object *args)
3412 {
3413 register Lisp_Object len, val;
3414 ptrdiff_t i;
3415 register struct Lisp_Vector *p;
3416
3417 /* We used to purecopy everything here, if purify-flga was set. This worked
3418 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3419 dangerous, since make-byte-code is used during execution to build
3420 closures, so any closure built during the preload phase would end up
3421 copied into pure space, including its free variables, which is sometimes
3422 just wasteful and other times plainly wrong (e.g. those free vars may want
3423 to be setcar'd). */
3424
3425 XSETFASTINT (len, nargs);
3426 val = Fmake_vector (len, Qnil);
3427
3428 p = XVECTOR (val);
3429 for (i = 0; i < nargs; i++)
3430 p->contents[i] = args[i];
3431 make_byte_code (p);
3432 XSETCOMPILED (val, p);
3433 return val;
3434 }
3435
3436
3437 \f
3438 /***********************************************************************
3439 Symbol Allocation
3440 ***********************************************************************/
3441
3442 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3443 of the required alignment if LSB tags are used. */
3444
3445 union aligned_Lisp_Symbol
3446 {
3447 struct Lisp_Symbol s;
3448 #if USE_LSB_TAG
3449 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3450 & -(1 << GCTYPEBITS)];
3451 #endif
3452 };
3453
3454 /* Each symbol_block is just under 1020 bytes long, since malloc
3455 really allocates in units of powers of two and uses 4 bytes for its
3456 own overhead. */
3457
3458 #define SYMBOL_BLOCK_SIZE \
3459 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3460
3461 struct symbol_block
3462 {
3463 /* Place `symbols' first, to preserve alignment. */
3464 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3465 struct symbol_block *next;
3466 };
3467
3468 /* Current symbol block and index of first unused Lisp_Symbol
3469 structure in it. */
3470
3471 static struct symbol_block *symbol_block;
3472 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3473
3474 /* List of free symbols. */
3475
3476 static struct Lisp_Symbol *symbol_free_list;
3477
3478 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3479 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3480 Its value and function definition are void, and its property list is nil. */)
3481 (Lisp_Object name)
3482 {
3483 register Lisp_Object val;
3484 register struct Lisp_Symbol *p;
3485
3486 CHECK_STRING (name);
3487
3488 /* eassert (!handling_signal); */
3489
3490 MALLOC_BLOCK_INPUT;
3491
3492 if (symbol_free_list)
3493 {
3494 XSETSYMBOL (val, symbol_free_list);
3495 symbol_free_list = symbol_free_list->next;
3496 }
3497 else
3498 {
3499 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3500 {
3501 struct symbol_block *new
3502 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3503 new->next = symbol_block;
3504 symbol_block = new;
3505 symbol_block_index = 0;
3506 total_free_symbols += SYMBOL_BLOCK_SIZE;
3507 }
3508 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3509 symbol_block_index++;
3510 }
3511
3512 MALLOC_UNBLOCK_INPUT;
3513
3514 p = XSYMBOL (val);
3515 p->xname = name;
3516 p->plist = Qnil;
3517 p->redirect = SYMBOL_PLAINVAL;
3518 SET_SYMBOL_VAL (p, Qunbound);
3519 p->function = Qunbound;
3520 p->next = NULL;
3521 p->gcmarkbit = 0;
3522 p->interned = SYMBOL_UNINTERNED;
3523 p->constant = 0;
3524 p->declared_special = 0;
3525 consing_since_gc += sizeof (struct Lisp_Symbol);
3526 symbols_consed++;
3527 total_free_symbols--;
3528 return val;
3529 }
3530
3531
3532 \f
3533 /***********************************************************************
3534 Marker (Misc) Allocation
3535 ***********************************************************************/
3536
3537 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3538 the required alignment when LSB tags are used. */
3539
3540 union aligned_Lisp_Misc
3541 {
3542 union Lisp_Misc m;
3543 #if USE_LSB_TAG
3544 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3545 & -(1 << GCTYPEBITS)];
3546 #endif
3547 };
3548
3549 /* Allocation of markers and other objects that share that structure.
3550 Works like allocation of conses. */
3551
3552 #define MARKER_BLOCK_SIZE \
3553 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3554
3555 struct marker_block
3556 {
3557 /* Place `markers' first, to preserve alignment. */
3558 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3559 struct marker_block *next;
3560 };
3561
3562 static struct marker_block *marker_block;
3563 static int marker_block_index = MARKER_BLOCK_SIZE;
3564
3565 static union Lisp_Misc *marker_free_list;
3566
3567 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3568
3569 static Lisp_Object
3570 allocate_misc (enum Lisp_Misc_Type type)
3571 {
3572 Lisp_Object val;
3573
3574 /* eassert (!handling_signal); */
3575
3576 MALLOC_BLOCK_INPUT;
3577
3578 if (marker_free_list)
3579 {
3580 XSETMISC (val, marker_free_list);
3581 marker_free_list = marker_free_list->u_free.chain;
3582 }
3583 else
3584 {
3585 if (marker_block_index == MARKER_BLOCK_SIZE)
3586 {
3587 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3588 new->next = marker_block;
3589 marker_block = new;
3590 marker_block_index = 0;
3591 total_free_markers += MARKER_BLOCK_SIZE;
3592 }
3593 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3594 marker_block_index++;
3595 }
3596
3597 MALLOC_UNBLOCK_INPUT;
3598
3599 --total_free_markers;
3600 consing_since_gc += sizeof (union Lisp_Misc);
3601 misc_objects_consed++;
3602 XMISCTYPE (val) = type;
3603 XMISCANY (val)->gcmarkbit = 0;
3604 return val;
3605 }
3606
3607 /* Free a Lisp_Misc object */
3608
3609 static void
3610 free_misc (Lisp_Object misc)
3611 {
3612 XMISCTYPE (misc) = Lisp_Misc_Free;
3613 XMISC (misc)->u_free.chain = marker_free_list;
3614 marker_free_list = XMISC (misc);
3615 consing_since_gc -= sizeof (union Lisp_Misc);
3616 total_free_markers++;
3617 }
3618
3619 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3620 INTEGER. This is used to package C values to call record_unwind_protect.
3621 The unwind function can get the C values back using XSAVE_VALUE. */
3622
3623 Lisp_Object
3624 make_save_value (void *pointer, ptrdiff_t integer)
3625 {
3626 register Lisp_Object val;
3627 register struct Lisp_Save_Value *p;
3628
3629 val = allocate_misc (Lisp_Misc_Save_Value);
3630 p = XSAVE_VALUE (val);
3631 p->pointer = pointer;
3632 p->integer = integer;
3633 p->dogc = 0;
3634 return val;
3635 }
3636
3637 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3638
3639 Lisp_Object
3640 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3641 {
3642 register Lisp_Object overlay;
3643
3644 overlay = allocate_misc (Lisp_Misc_Overlay);
3645 OVERLAY_START (overlay) = start;
3646 OVERLAY_END (overlay) = end;
3647 OVERLAY_PLIST (overlay) = plist;
3648 XOVERLAY (overlay)->next = NULL;
3649 return overlay;
3650 }
3651
3652 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3653 doc: /* Return a newly allocated marker which does not point at any place. */)
3654 (void)
3655 {
3656 register Lisp_Object val;
3657 register struct Lisp_Marker *p;
3658
3659 val = allocate_misc (Lisp_Misc_Marker);
3660 p = XMARKER (val);
3661 p->buffer = 0;
3662 p->bytepos = 0;
3663 p->charpos = 0;
3664 p->next = NULL;
3665 p->insertion_type = 0;
3666 return val;
3667 }
3668
3669 /* Return a newly allocated marker which points into BUF
3670 at character position CHARPOS and byte position BYTEPOS. */
3671
3672 Lisp_Object
3673 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3674 {
3675 Lisp_Object obj;
3676 struct Lisp_Marker *m;
3677
3678 /* No dead buffers here. */
3679 eassert (!NILP (BVAR (buf, name)));
3680
3681 /* Every character is at least one byte. */
3682 eassert (charpos <= bytepos);
3683
3684 obj = allocate_misc (Lisp_Misc_Marker);
3685 m = XMARKER (obj);
3686 m->buffer = buf;
3687 m->charpos = charpos;
3688 m->bytepos = bytepos;
3689 m->insertion_type = 0;
3690 m->next = BUF_MARKERS (buf);
3691 BUF_MARKERS (buf) = m;
3692 return obj;
3693 }
3694
3695 /* Put MARKER back on the free list after using it temporarily. */
3696
3697 void
3698 free_marker (Lisp_Object marker)
3699 {
3700 unchain_marker (XMARKER (marker));
3701 free_misc (marker);
3702 }
3703
3704 \f
3705 /* Return a newly created vector or string with specified arguments as
3706 elements. If all the arguments are characters that can fit
3707 in a string of events, make a string; otherwise, make a vector.
3708
3709 Any number of arguments, even zero arguments, are allowed. */
3710
3711 Lisp_Object
3712 make_event_array (register int nargs, Lisp_Object *args)
3713 {
3714 int i;
3715
3716 for (i = 0; i < nargs; i++)
3717 /* The things that fit in a string
3718 are characters that are in 0...127,
3719 after discarding the meta bit and all the bits above it. */
3720 if (!INTEGERP (args[i])
3721 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3722 return Fvector (nargs, args);
3723
3724 /* Since the loop exited, we know that all the things in it are
3725 characters, so we can make a string. */
3726 {
3727 Lisp_Object result;
3728
3729 result = Fmake_string (make_number (nargs), make_number (0));
3730 for (i = 0; i < nargs; i++)
3731 {
3732 SSET (result, i, XINT (args[i]));
3733 /* Move the meta bit to the right place for a string char. */
3734 if (XINT (args[i]) & CHAR_META)
3735 SSET (result, i, SREF (result, i) | 0x80);
3736 }
3737
3738 return result;
3739 }
3740 }
3741
3742
3743 \f
3744 /************************************************************************
3745 Memory Full Handling
3746 ************************************************************************/
3747
3748
3749 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3750 there may have been size_t overflow so that malloc was never
3751 called, or perhaps malloc was invoked successfully but the
3752 resulting pointer had problems fitting into a tagged EMACS_INT. In
3753 either case this counts as memory being full even though malloc did
3754 not fail. */
3755
3756 void
3757 memory_full (size_t nbytes)
3758 {
3759 /* Do not go into hysterics merely because a large request failed. */
3760 int enough_free_memory = 0;
3761 if (SPARE_MEMORY < nbytes)
3762 {
3763 void *p;
3764
3765 MALLOC_BLOCK_INPUT;
3766 p = malloc (SPARE_MEMORY);
3767 if (p)
3768 {
3769 free (p);
3770 enough_free_memory = 1;
3771 }
3772 MALLOC_UNBLOCK_INPUT;
3773 }
3774
3775 if (! enough_free_memory)
3776 {
3777 int i;
3778
3779 Vmemory_full = Qt;
3780
3781 memory_full_cons_threshold = sizeof (struct cons_block);
3782
3783 /* The first time we get here, free the spare memory. */
3784 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3785 if (spare_memory[i])
3786 {
3787 if (i == 0)
3788 free (spare_memory[i]);
3789 else if (i >= 1 && i <= 4)
3790 lisp_align_free (spare_memory[i]);
3791 else
3792 lisp_free (spare_memory[i]);
3793 spare_memory[i] = 0;
3794 }
3795
3796 /* Record the space now used. When it decreases substantially,
3797 we can refill the memory reserve. */
3798 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3799 bytes_used_when_full = BYTES_USED;
3800 #endif
3801 }
3802
3803 /* This used to call error, but if we've run out of memory, we could
3804 get infinite recursion trying to build the string. */
3805 xsignal (Qnil, Vmemory_signal_data);
3806 }
3807
3808 /* If we released our reserve (due to running out of memory),
3809 and we have a fair amount free once again,
3810 try to set aside another reserve in case we run out once more.
3811
3812 This is called when a relocatable block is freed in ralloc.c,
3813 and also directly from this file, in case we're not using ralloc.c. */
3814
3815 void
3816 refill_memory_reserve (void)
3817 {
3818 #ifndef SYSTEM_MALLOC
3819 if (spare_memory[0] == 0)
3820 spare_memory[0] = malloc (SPARE_MEMORY);
3821 if (spare_memory[1] == 0)
3822 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3823 MEM_TYPE_CONS);
3824 if (spare_memory[2] == 0)
3825 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3826 MEM_TYPE_CONS);
3827 if (spare_memory[3] == 0)
3828 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3829 MEM_TYPE_CONS);
3830 if (spare_memory[4] == 0)
3831 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3832 MEM_TYPE_CONS);
3833 if (spare_memory[5] == 0)
3834 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3835 MEM_TYPE_STRING);
3836 if (spare_memory[6] == 0)
3837 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3838 MEM_TYPE_STRING);
3839 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3840 Vmemory_full = Qnil;
3841 #endif
3842 }
3843 \f
3844 /************************************************************************
3845 C Stack Marking
3846 ************************************************************************/
3847
3848 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3849
3850 /* Conservative C stack marking requires a method to identify possibly
3851 live Lisp objects given a pointer value. We do this by keeping
3852 track of blocks of Lisp data that are allocated in a red-black tree
3853 (see also the comment of mem_node which is the type of nodes in
3854 that tree). Function lisp_malloc adds information for an allocated
3855 block to the red-black tree with calls to mem_insert, and function
3856 lisp_free removes it with mem_delete. Functions live_string_p etc
3857 call mem_find to lookup information about a given pointer in the
3858 tree, and use that to determine if the pointer points to a Lisp
3859 object or not. */
3860
3861 /* Initialize this part of alloc.c. */
3862
3863 static void
3864 mem_init (void)
3865 {
3866 mem_z.left = mem_z.right = MEM_NIL;
3867 mem_z.parent = NULL;
3868 mem_z.color = MEM_BLACK;
3869 mem_z.start = mem_z.end = NULL;
3870 mem_root = MEM_NIL;
3871 }
3872
3873
3874 /* Value is a pointer to the mem_node containing START. Value is
3875 MEM_NIL if there is no node in the tree containing START. */
3876
3877 static inline struct mem_node *
3878 mem_find (void *start)
3879 {
3880 struct mem_node *p;
3881
3882 if (start < min_heap_address || start > max_heap_address)
3883 return MEM_NIL;
3884
3885 /* Make the search always successful to speed up the loop below. */
3886 mem_z.start = start;
3887 mem_z.end = (char *) start + 1;
3888
3889 p = mem_root;
3890 while (start < p->start || start >= p->end)
3891 p = start < p->start ? p->left : p->right;
3892 return p;
3893 }
3894
3895
3896 /* Insert a new node into the tree for a block of memory with start
3897 address START, end address END, and type TYPE. Value is a
3898 pointer to the node that was inserted. */
3899
3900 static struct mem_node *
3901 mem_insert (void *start, void *end, enum mem_type type)
3902 {
3903 struct mem_node *c, *parent, *x;
3904
3905 if (min_heap_address == NULL || start < min_heap_address)
3906 min_heap_address = start;
3907 if (max_heap_address == NULL || end > max_heap_address)
3908 max_heap_address = end;
3909
3910 /* See where in the tree a node for START belongs. In this
3911 particular application, it shouldn't happen that a node is already
3912 present. For debugging purposes, let's check that. */
3913 c = mem_root;
3914 parent = NULL;
3915
3916 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3917
3918 while (c != MEM_NIL)
3919 {
3920 if (start >= c->start && start < c->end)
3921 abort ();
3922 parent = c;
3923 c = start < c->start ? c->left : c->right;
3924 }
3925
3926 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3927
3928 while (c != MEM_NIL)
3929 {
3930 parent = c;
3931 c = start < c->start ? c->left : c->right;
3932 }
3933
3934 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3935
3936 /* Create a new node. */
3937 #ifdef GC_MALLOC_CHECK
3938 x = _malloc_internal (sizeof *x);
3939 if (x == NULL)
3940 abort ();
3941 #else
3942 x = xmalloc (sizeof *x);
3943 #endif
3944 x->start = start;
3945 x->end = end;
3946 x->type = type;
3947 x->parent = parent;
3948 x->left = x->right = MEM_NIL;
3949 x->color = MEM_RED;
3950
3951 /* Insert it as child of PARENT or install it as root. */
3952 if (parent)
3953 {
3954 if (start < parent->start)
3955 parent->left = x;
3956 else
3957 parent->right = x;
3958 }
3959 else
3960 mem_root = x;
3961
3962 /* Re-establish red-black tree properties. */
3963 mem_insert_fixup (x);
3964
3965 return x;
3966 }
3967
3968
3969 /* Re-establish the red-black properties of the tree, and thereby
3970 balance the tree, after node X has been inserted; X is always red. */
3971
3972 static void
3973 mem_insert_fixup (struct mem_node *x)
3974 {
3975 while (x != mem_root && x->parent->color == MEM_RED)
3976 {
3977 /* X is red and its parent is red. This is a violation of
3978 red-black tree property #3. */
3979
3980 if (x->parent == x->parent->parent->left)
3981 {
3982 /* We're on the left side of our grandparent, and Y is our
3983 "uncle". */
3984 struct mem_node *y = x->parent->parent->right;
3985
3986 if (y->color == MEM_RED)
3987 {
3988 /* Uncle and parent are red but should be black because
3989 X is red. Change the colors accordingly and proceed
3990 with the grandparent. */
3991 x->parent->color = MEM_BLACK;
3992 y->color = MEM_BLACK;
3993 x->parent->parent->color = MEM_RED;
3994 x = x->parent->parent;
3995 }
3996 else
3997 {
3998 /* Parent and uncle have different colors; parent is
3999 red, uncle is black. */
4000 if (x == x->parent->right)
4001 {
4002 x = x->parent;
4003 mem_rotate_left (x);
4004 }
4005
4006 x->parent->color = MEM_BLACK;
4007 x->parent->parent->color = MEM_RED;
4008 mem_rotate_right (x->parent->parent);
4009 }
4010 }
4011 else
4012 {
4013 /* This is the symmetrical case of above. */
4014 struct mem_node *y = x->parent->parent->left;
4015
4016 if (y->color == MEM_RED)
4017 {
4018 x->parent->color = MEM_BLACK;
4019 y->color = MEM_BLACK;
4020 x->parent->parent->color = MEM_RED;
4021 x = x->parent->parent;
4022 }
4023 else
4024 {
4025 if (x == x->parent->left)
4026 {
4027 x = x->parent;
4028 mem_rotate_right (x);
4029 }
4030
4031 x->parent->color = MEM_BLACK;
4032 x->parent->parent->color = MEM_RED;
4033 mem_rotate_left (x->parent->parent);
4034 }
4035 }
4036 }
4037
4038 /* The root may have been changed to red due to the algorithm. Set
4039 it to black so that property #5 is satisfied. */
4040 mem_root->color = MEM_BLACK;
4041 }
4042
4043
4044 /* (x) (y)
4045 / \ / \
4046 a (y) ===> (x) c
4047 / \ / \
4048 b c a b */
4049
4050 static void
4051 mem_rotate_left (struct mem_node *x)
4052 {
4053 struct mem_node *y;
4054
4055 /* Turn y's left sub-tree into x's right sub-tree. */
4056 y = x->right;
4057 x->right = y->left;
4058 if (y->left != MEM_NIL)
4059 y->left->parent = x;
4060
4061 /* Y's parent was x's parent. */
4062 if (y != MEM_NIL)
4063 y->parent = x->parent;
4064
4065 /* Get the parent to point to y instead of x. */
4066 if (x->parent)
4067 {
4068 if (x == x->parent->left)
4069 x->parent->left = y;
4070 else
4071 x->parent->right = y;
4072 }
4073 else
4074 mem_root = y;
4075
4076 /* Put x on y's left. */
4077 y->left = x;
4078 if (x != MEM_NIL)
4079 x->parent = y;
4080 }
4081
4082
4083 /* (x) (Y)
4084 / \ / \
4085 (y) c ===> a (x)
4086 / \ / \
4087 a b b c */
4088
4089 static void
4090 mem_rotate_right (struct mem_node *x)
4091 {
4092 struct mem_node *y = x->left;
4093
4094 x->left = y->right;
4095 if (y->right != MEM_NIL)
4096 y->right->parent = x;
4097
4098 if (y != MEM_NIL)
4099 y->parent = x->parent;
4100 if (x->parent)
4101 {
4102 if (x == x->parent->right)
4103 x->parent->right = y;
4104 else
4105 x->parent->left = y;
4106 }
4107 else
4108 mem_root = y;
4109
4110 y->right = x;
4111 if (x != MEM_NIL)
4112 x->parent = y;
4113 }
4114
4115
4116 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4117
4118 static void
4119 mem_delete (struct mem_node *z)
4120 {
4121 struct mem_node *x, *y;
4122
4123 if (!z || z == MEM_NIL)
4124 return;
4125
4126 if (z->left == MEM_NIL || z->right == MEM_NIL)
4127 y = z;
4128 else
4129 {
4130 y = z->right;
4131 while (y->left != MEM_NIL)
4132 y = y->left;
4133 }
4134
4135 if (y->left != MEM_NIL)
4136 x = y->left;
4137 else
4138 x = y->right;
4139
4140 x->parent = y->parent;
4141 if (y->parent)
4142 {
4143 if (y == y->parent->left)
4144 y->parent->left = x;
4145 else
4146 y->parent->right = x;
4147 }
4148 else
4149 mem_root = x;
4150
4151 if (y != z)
4152 {
4153 z->start = y->start;
4154 z->end = y->end;
4155 z->type = y->type;
4156 }
4157
4158 if (y->color == MEM_BLACK)
4159 mem_delete_fixup (x);
4160
4161 #ifdef GC_MALLOC_CHECK
4162 _free_internal (y);
4163 #else
4164 xfree (y);
4165 #endif
4166 }
4167
4168
4169 /* Re-establish the red-black properties of the tree, after a
4170 deletion. */
4171
4172 static void
4173 mem_delete_fixup (struct mem_node *x)
4174 {
4175 while (x != mem_root && x->color == MEM_BLACK)
4176 {
4177 if (x == x->parent->left)
4178 {
4179 struct mem_node *w = x->parent->right;
4180
4181 if (w->color == MEM_RED)
4182 {
4183 w->color = MEM_BLACK;
4184 x->parent->color = MEM_RED;
4185 mem_rotate_left (x->parent);
4186 w = x->parent->right;
4187 }
4188
4189 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4190 {
4191 w->color = MEM_RED;
4192 x = x->parent;
4193 }
4194 else
4195 {
4196 if (w->right->color == MEM_BLACK)
4197 {
4198 w->left->color = MEM_BLACK;
4199 w->color = MEM_RED;
4200 mem_rotate_right (w);
4201 w = x->parent->right;
4202 }
4203 w->color = x->parent->color;
4204 x->parent->color = MEM_BLACK;
4205 w->right->color = MEM_BLACK;
4206 mem_rotate_left (x->parent);
4207 x = mem_root;
4208 }
4209 }
4210 else
4211 {
4212 struct mem_node *w = x->parent->left;
4213
4214 if (w->color == MEM_RED)
4215 {
4216 w->color = MEM_BLACK;
4217 x->parent->color = MEM_RED;
4218 mem_rotate_right (x->parent);
4219 w = x->parent->left;
4220 }
4221
4222 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4223 {
4224 w->color = MEM_RED;
4225 x = x->parent;
4226 }
4227 else
4228 {
4229 if (w->left->color == MEM_BLACK)
4230 {
4231 w->right->color = MEM_BLACK;
4232 w->color = MEM_RED;
4233 mem_rotate_left (w);
4234 w = x->parent->left;
4235 }
4236
4237 w->color = x->parent->color;
4238 x->parent->color = MEM_BLACK;
4239 w->left->color = MEM_BLACK;
4240 mem_rotate_right (x->parent);
4241 x = mem_root;
4242 }
4243 }
4244 }
4245
4246 x->color = MEM_BLACK;
4247 }
4248
4249
4250 /* Value is non-zero if P is a pointer to a live Lisp string on
4251 the heap. M is a pointer to the mem_block for P. */
4252
4253 static inline int
4254 live_string_p (struct mem_node *m, void *p)
4255 {
4256 if (m->type == MEM_TYPE_STRING)
4257 {
4258 struct string_block *b = (struct string_block *) m->start;
4259 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4260
4261 /* P must point to the start of a Lisp_String structure, and it
4262 must not be on the free-list. */
4263 return (offset >= 0
4264 && offset % sizeof b->strings[0] == 0
4265 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4266 && ((struct Lisp_String *) p)->data != NULL);
4267 }
4268 else
4269 return 0;
4270 }
4271
4272
4273 /* Value is non-zero if P is a pointer to a live Lisp cons on
4274 the heap. M is a pointer to the mem_block for P. */
4275
4276 static inline int
4277 live_cons_p (struct mem_node *m, void *p)
4278 {
4279 if (m->type == MEM_TYPE_CONS)
4280 {
4281 struct cons_block *b = (struct cons_block *) m->start;
4282 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4283
4284 /* P must point to the start of a Lisp_Cons, not be
4285 one of the unused cells in the current cons block,
4286 and not be on the free-list. */
4287 return (offset >= 0
4288 && offset % sizeof b->conses[0] == 0
4289 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4290 && (b != cons_block
4291 || offset / sizeof b->conses[0] < cons_block_index)
4292 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4293 }
4294 else
4295 return 0;
4296 }
4297
4298
4299 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4300 the heap. M is a pointer to the mem_block for P. */
4301
4302 static inline int
4303 live_symbol_p (struct mem_node *m, void *p)
4304 {
4305 if (m->type == MEM_TYPE_SYMBOL)
4306 {
4307 struct symbol_block *b = (struct symbol_block *) m->start;
4308 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4309
4310 /* P must point to the start of a Lisp_Symbol, not be
4311 one of the unused cells in the current symbol block,
4312 and not be on the free-list. */
4313 return (offset >= 0
4314 && offset % sizeof b->symbols[0] == 0
4315 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4316 && (b != symbol_block
4317 || offset / sizeof b->symbols[0] < symbol_block_index)
4318 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4319 }
4320 else
4321 return 0;
4322 }
4323
4324
4325 /* Value is non-zero if P is a pointer to a live Lisp float on
4326 the heap. M is a pointer to the mem_block for P. */
4327
4328 static inline int
4329 live_float_p (struct mem_node *m, void *p)
4330 {
4331 if (m->type == MEM_TYPE_FLOAT)
4332 {
4333 struct float_block *b = (struct float_block *) m->start;
4334 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4335
4336 /* P must point to the start of a Lisp_Float and not be
4337 one of the unused cells in the current float block. */
4338 return (offset >= 0
4339 && offset % sizeof b->floats[0] == 0
4340 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4341 && (b != float_block
4342 || offset / sizeof b->floats[0] < float_block_index));
4343 }
4344 else
4345 return 0;
4346 }
4347
4348
4349 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4350 the heap. M is a pointer to the mem_block for P. */
4351
4352 static inline int
4353 live_misc_p (struct mem_node *m, void *p)
4354 {
4355 if (m->type == MEM_TYPE_MISC)
4356 {
4357 struct marker_block *b = (struct marker_block *) m->start;
4358 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4359
4360 /* P must point to the start of a Lisp_Misc, not be
4361 one of the unused cells in the current misc block,
4362 and not be on the free-list. */
4363 return (offset >= 0
4364 && offset % sizeof b->markers[0] == 0
4365 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4366 && (b != marker_block
4367 || offset / sizeof b->markers[0] < marker_block_index)
4368 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4369 }
4370 else
4371 return 0;
4372 }
4373
4374
4375 /* Value is non-zero if P is a pointer to a live vector-like object.
4376 M is a pointer to the mem_block for P. */
4377
4378 static inline int
4379 live_vector_p (struct mem_node *m, void *p)
4380 {
4381 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4382 {
4383 /* This memory node corresponds to a vector block. */
4384 struct vector_block *block = (struct vector_block *) m->start;
4385 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4386
4387 /* P is in the block's allocation range. Scan the block
4388 up to P and see whether P points to the start of some
4389 vector which is not on a free list. FIXME: check whether
4390 some allocation patterns (probably a lot of short vectors)
4391 may cause a substantial overhead of this loop. */
4392 while (VECTOR_IN_BLOCK (vector, block)
4393 && vector <= (struct Lisp_Vector *) p)
4394 {
4395 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4396 vector = ADVANCE (vector, (vector->header.size
4397 & PSEUDOVECTOR_SIZE_MASK));
4398 else if (vector == p)
4399 return 1;
4400 else
4401 vector = ADVANCE (vector, vector->header.next.nbytes);
4402 }
4403 }
4404 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4405 /* This memory node corresponds to a large vector. */
4406 return 1;
4407 return 0;
4408 }
4409
4410
4411 /* Value is non-zero if P is a pointer to a live buffer. M is a
4412 pointer to the mem_block for P. */
4413
4414 static inline int
4415 live_buffer_p (struct mem_node *m, void *p)
4416 {
4417 /* P must point to the start of the block, and the buffer
4418 must not have been killed. */
4419 return (m->type == MEM_TYPE_BUFFER
4420 && p == m->start
4421 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4422 }
4423
4424 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4425
4426 #if GC_MARK_STACK
4427
4428 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4429
4430 /* Array of objects that are kept alive because the C stack contains
4431 a pattern that looks like a reference to them . */
4432
4433 #define MAX_ZOMBIES 10
4434 static Lisp_Object zombies[MAX_ZOMBIES];
4435
4436 /* Number of zombie objects. */
4437
4438 static EMACS_INT nzombies;
4439
4440 /* Number of garbage collections. */
4441
4442 static EMACS_INT ngcs;
4443
4444 /* Average percentage of zombies per collection. */
4445
4446 static double avg_zombies;
4447
4448 /* Max. number of live and zombie objects. */
4449
4450 static EMACS_INT max_live, max_zombies;
4451
4452 /* Average number of live objects per GC. */
4453
4454 static double avg_live;
4455
4456 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4457 doc: /* Show information about live and zombie objects. */)
4458 (void)
4459 {
4460 Lisp_Object args[8], zombie_list = Qnil;
4461 EMACS_INT i;
4462 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4463 zombie_list = Fcons (zombies[i], zombie_list);
4464 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4465 args[1] = make_number (ngcs);
4466 args[2] = make_float (avg_live);
4467 args[3] = make_float (avg_zombies);
4468 args[4] = make_float (avg_zombies / avg_live / 100);
4469 args[5] = make_number (max_live);
4470 args[6] = make_number (max_zombies);
4471 args[7] = zombie_list;
4472 return Fmessage (8, args);
4473 }
4474
4475 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4476
4477
4478 /* Mark OBJ if we can prove it's a Lisp_Object. */
4479
4480 static inline void
4481 mark_maybe_object (Lisp_Object obj)
4482 {
4483 void *po;
4484 struct mem_node *m;
4485
4486 if (INTEGERP (obj))
4487 return;
4488
4489 po = (void *) XPNTR (obj);
4490 m = mem_find (po);
4491
4492 if (m != MEM_NIL)
4493 {
4494 int mark_p = 0;
4495
4496 switch (XTYPE (obj))
4497 {
4498 case Lisp_String:
4499 mark_p = (live_string_p (m, po)
4500 && !STRING_MARKED_P ((struct Lisp_String *) po));
4501 break;
4502
4503 case Lisp_Cons:
4504 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4505 break;
4506
4507 case Lisp_Symbol:
4508 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4509 break;
4510
4511 case Lisp_Float:
4512 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4513 break;
4514
4515 case Lisp_Vectorlike:
4516 /* Note: can't check BUFFERP before we know it's a
4517 buffer because checking that dereferences the pointer
4518 PO which might point anywhere. */
4519 if (live_vector_p (m, po))
4520 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4521 else if (live_buffer_p (m, po))
4522 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4523 break;
4524
4525 case Lisp_Misc:
4526 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4527 break;
4528
4529 default:
4530 break;
4531 }
4532
4533 if (mark_p)
4534 {
4535 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4536 if (nzombies < MAX_ZOMBIES)
4537 zombies[nzombies] = obj;
4538 ++nzombies;
4539 #endif
4540 mark_object (obj);
4541 }
4542 }
4543 }
4544
4545
4546 /* If P points to Lisp data, mark that as live if it isn't already
4547 marked. */
4548
4549 static inline void
4550 mark_maybe_pointer (void *p)
4551 {
4552 struct mem_node *m;
4553
4554 /* Quickly rule out some values which can't point to Lisp data.
4555 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4556 Otherwise, assume that Lisp data is aligned on even addresses. */
4557 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4558 return;
4559
4560 m = mem_find (p);
4561 if (m != MEM_NIL)
4562 {
4563 Lisp_Object obj = Qnil;
4564
4565 switch (m->type)
4566 {
4567 case MEM_TYPE_NON_LISP:
4568 /* Nothing to do; not a pointer to Lisp memory. */
4569 break;
4570
4571 case MEM_TYPE_BUFFER:
4572 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4573 XSETVECTOR (obj, p);
4574 break;
4575
4576 case MEM_TYPE_CONS:
4577 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4578 XSETCONS (obj, p);
4579 break;
4580
4581 case MEM_TYPE_STRING:
4582 if (live_string_p (m, p)
4583 && !STRING_MARKED_P ((struct Lisp_String *) p))
4584 XSETSTRING (obj, p);
4585 break;
4586
4587 case MEM_TYPE_MISC:
4588 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4589 XSETMISC (obj, p);
4590 break;
4591
4592 case MEM_TYPE_SYMBOL:
4593 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4594 XSETSYMBOL (obj, p);
4595 break;
4596
4597 case MEM_TYPE_FLOAT:
4598 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4599 XSETFLOAT (obj, p);
4600 break;
4601
4602 case MEM_TYPE_VECTORLIKE:
4603 case MEM_TYPE_VECTOR_BLOCK:
4604 if (live_vector_p (m, p))
4605 {
4606 Lisp_Object tem;
4607 XSETVECTOR (tem, p);
4608 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4609 obj = tem;
4610 }
4611 break;
4612
4613 default:
4614 abort ();
4615 }
4616
4617 if (!NILP (obj))
4618 mark_object (obj);
4619 }
4620 }
4621
4622
4623 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4624 a smaller alignment than GCC's __alignof__ and mark_memory might
4625 miss objects if __alignof__ were used. */
4626 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4627
4628 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4629 not suffice, which is the typical case. A host where a Lisp_Object is
4630 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4631 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4632 suffice to widen it to to a Lisp_Object and check it that way. */
4633 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4634 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4635 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4636 nor mark_maybe_object can follow the pointers. This should not occur on
4637 any practical porting target. */
4638 # error "MSB type bits straddle pointer-word boundaries"
4639 # endif
4640 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4641 pointer words that hold pointers ORed with type bits. */
4642 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4643 #else
4644 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4645 words that hold unmodified pointers. */
4646 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4647 #endif
4648
4649 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4650 or END+OFFSET..START. */
4651
4652 static void
4653 mark_memory (void *start, void *end)
4654 #if defined (__clang__) && defined (__has_feature)
4655 #if __has_feature(address_sanitizer)
4656 /* Do not allow -faddress-sanitizer to check this function, since it
4657 crosses the function stack boundary, and thus would yield many
4658 false positives. */
4659 __attribute__((no_address_safety_analysis))
4660 #endif
4661 #endif
4662 {
4663 void **pp;
4664 int i;
4665
4666 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4667 nzombies = 0;
4668 #endif
4669
4670 /* Make START the pointer to the start of the memory region,
4671 if it isn't already. */
4672 if (end < start)
4673 {
4674 void *tem = start;
4675 start = end;
4676 end = tem;
4677 }
4678
4679 /* Mark Lisp data pointed to. This is necessary because, in some
4680 situations, the C compiler optimizes Lisp objects away, so that
4681 only a pointer to them remains. Example:
4682
4683 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4684 ()
4685 {
4686 Lisp_Object obj = build_string ("test");
4687 struct Lisp_String *s = XSTRING (obj);
4688 Fgarbage_collect ();
4689 fprintf (stderr, "test `%s'\n", s->data);
4690 return Qnil;
4691 }
4692
4693 Here, `obj' isn't really used, and the compiler optimizes it
4694 away. The only reference to the life string is through the
4695 pointer `s'. */
4696
4697 for (pp = start; (void *) pp < end; pp++)
4698 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4699 {
4700 void *p = *(void **) ((char *) pp + i);
4701 mark_maybe_pointer (p);
4702 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4703 mark_maybe_object (XIL ((intptr_t) p));
4704 }
4705 }
4706
4707 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4708 the GCC system configuration. In gcc 3.2, the only systems for
4709 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4710 by others?) and ns32k-pc532-min. */
4711
4712 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4713
4714 static int setjmp_tested_p, longjmps_done;
4715
4716 #define SETJMP_WILL_LIKELY_WORK "\
4717 \n\
4718 Emacs garbage collector has been changed to use conservative stack\n\
4719 marking. Emacs has determined that the method it uses to do the\n\
4720 marking will likely work on your system, but this isn't sure.\n\
4721 \n\
4722 If you are a system-programmer, or can get the help of a local wizard\n\
4723 who is, please take a look at the function mark_stack in alloc.c, and\n\
4724 verify that the methods used are appropriate for your system.\n\
4725 \n\
4726 Please mail the result to <emacs-devel@gnu.org>.\n\
4727 "
4728
4729 #define SETJMP_WILL_NOT_WORK "\
4730 \n\
4731 Emacs garbage collector has been changed to use conservative stack\n\
4732 marking. Emacs has determined that the default method it uses to do the\n\
4733 marking will not work on your system. We will need a system-dependent\n\
4734 solution for your system.\n\
4735 \n\
4736 Please take a look at the function mark_stack in alloc.c, and\n\
4737 try to find a way to make it work on your system.\n\
4738 \n\
4739 Note that you may get false negatives, depending on the compiler.\n\
4740 In particular, you need to use -O with GCC for this test.\n\
4741 \n\
4742 Please mail the result to <emacs-devel@gnu.org>.\n\
4743 "
4744
4745
4746 /* Perform a quick check if it looks like setjmp saves registers in a
4747 jmp_buf. Print a message to stderr saying so. When this test
4748 succeeds, this is _not_ a proof that setjmp is sufficient for
4749 conservative stack marking. Only the sources or a disassembly
4750 can prove that. */
4751
4752 static void
4753 test_setjmp (void)
4754 {
4755 char buf[10];
4756 register int x;
4757 jmp_buf jbuf;
4758 int result = 0;
4759
4760 /* Arrange for X to be put in a register. */
4761 sprintf (buf, "1");
4762 x = strlen (buf);
4763 x = 2 * x - 1;
4764
4765 setjmp (jbuf);
4766 if (longjmps_done == 1)
4767 {
4768 /* Came here after the longjmp at the end of the function.
4769
4770 If x == 1, the longjmp has restored the register to its
4771 value before the setjmp, and we can hope that setjmp
4772 saves all such registers in the jmp_buf, although that
4773 isn't sure.
4774
4775 For other values of X, either something really strange is
4776 taking place, or the setjmp just didn't save the register. */
4777
4778 if (x == 1)
4779 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4780 else
4781 {
4782 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4783 exit (1);
4784 }
4785 }
4786
4787 ++longjmps_done;
4788 x = 2;
4789 if (longjmps_done == 1)
4790 longjmp (jbuf, 1);
4791 }
4792
4793 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4794
4795
4796 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4797
4798 /* Abort if anything GCPRO'd doesn't survive the GC. */
4799
4800 static void
4801 check_gcpros (void)
4802 {
4803 struct gcpro *p;
4804 ptrdiff_t i;
4805
4806 for (p = gcprolist; p; p = p->next)
4807 for (i = 0; i < p->nvars; ++i)
4808 if (!survives_gc_p (p->var[i]))
4809 /* FIXME: It's not necessarily a bug. It might just be that the
4810 GCPRO is unnecessary or should release the object sooner. */
4811 abort ();
4812 }
4813
4814 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4815
4816 static void
4817 dump_zombies (void)
4818 {
4819 int i;
4820
4821 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4822 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4823 {
4824 fprintf (stderr, " %d = ", i);
4825 debug_print (zombies[i]);
4826 }
4827 }
4828
4829 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4830
4831
4832 /* Mark live Lisp objects on the C stack.
4833
4834 There are several system-dependent problems to consider when
4835 porting this to new architectures:
4836
4837 Processor Registers
4838
4839 We have to mark Lisp objects in CPU registers that can hold local
4840 variables or are used to pass parameters.
4841
4842 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4843 something that either saves relevant registers on the stack, or
4844 calls mark_maybe_object passing it each register's contents.
4845
4846 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4847 implementation assumes that calling setjmp saves registers we need
4848 to see in a jmp_buf which itself lies on the stack. This doesn't
4849 have to be true! It must be verified for each system, possibly
4850 by taking a look at the source code of setjmp.
4851
4852 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4853 can use it as a machine independent method to store all registers
4854 to the stack. In this case the macros described in the previous
4855 two paragraphs are not used.
4856
4857 Stack Layout
4858
4859 Architectures differ in the way their processor stack is organized.
4860 For example, the stack might look like this
4861
4862 +----------------+
4863 | Lisp_Object | size = 4
4864 +----------------+
4865 | something else | size = 2
4866 +----------------+
4867 | Lisp_Object | size = 4
4868 +----------------+
4869 | ... |
4870
4871 In such a case, not every Lisp_Object will be aligned equally. To
4872 find all Lisp_Object on the stack it won't be sufficient to walk
4873 the stack in steps of 4 bytes. Instead, two passes will be
4874 necessary, one starting at the start of the stack, and a second
4875 pass starting at the start of the stack + 2. Likewise, if the
4876 minimal alignment of Lisp_Objects on the stack is 1, four passes
4877 would be necessary, each one starting with one byte more offset
4878 from the stack start. */
4879
4880 static void
4881 mark_stack (void)
4882 {
4883 void *end;
4884
4885 #ifdef HAVE___BUILTIN_UNWIND_INIT
4886 /* Force callee-saved registers and register windows onto the stack.
4887 This is the preferred method if available, obviating the need for
4888 machine dependent methods. */
4889 __builtin_unwind_init ();
4890 end = &end;
4891 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4892 #ifndef GC_SAVE_REGISTERS_ON_STACK
4893 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4894 union aligned_jmpbuf {
4895 Lisp_Object o;
4896 jmp_buf j;
4897 } j;
4898 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4899 #endif
4900 /* This trick flushes the register windows so that all the state of
4901 the process is contained in the stack. */
4902 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4903 needed on ia64 too. See mach_dep.c, where it also says inline
4904 assembler doesn't work with relevant proprietary compilers. */
4905 #ifdef __sparc__
4906 #if defined (__sparc64__) && defined (__FreeBSD__)
4907 /* FreeBSD does not have a ta 3 handler. */
4908 asm ("flushw");
4909 #else
4910 asm ("ta 3");
4911 #endif
4912 #endif
4913
4914 /* Save registers that we need to see on the stack. We need to see
4915 registers used to hold register variables and registers used to
4916 pass parameters. */
4917 #ifdef GC_SAVE_REGISTERS_ON_STACK
4918 GC_SAVE_REGISTERS_ON_STACK (end);
4919 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4920
4921 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4922 setjmp will definitely work, test it
4923 and print a message with the result
4924 of the test. */
4925 if (!setjmp_tested_p)
4926 {
4927 setjmp_tested_p = 1;
4928 test_setjmp ();
4929 }
4930 #endif /* GC_SETJMP_WORKS */
4931
4932 setjmp (j.j);
4933 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4934 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4935 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4936
4937 /* This assumes that the stack is a contiguous region in memory. If
4938 that's not the case, something has to be done here to iterate
4939 over the stack segments. */
4940 mark_memory (stack_base, end);
4941
4942 /* Allow for marking a secondary stack, like the register stack on the
4943 ia64. */
4944 #ifdef GC_MARK_SECONDARY_STACK
4945 GC_MARK_SECONDARY_STACK ();
4946 #endif
4947
4948 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4949 check_gcpros ();
4950 #endif
4951 }
4952
4953 #endif /* GC_MARK_STACK != 0 */
4954
4955
4956 /* Determine whether it is safe to access memory at address P. */
4957 static int
4958 valid_pointer_p (void *p)
4959 {
4960 #ifdef WINDOWSNT
4961 return w32_valid_pointer_p (p, 16);
4962 #else
4963 int fd[2];
4964
4965 /* Obviously, we cannot just access it (we would SEGV trying), so we
4966 trick the o/s to tell us whether p is a valid pointer.
4967 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4968 not validate p in that case. */
4969
4970 if (pipe (fd) == 0)
4971 {
4972 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4973 emacs_close (fd[1]);
4974 emacs_close (fd[0]);
4975 return valid;
4976 }
4977
4978 return -1;
4979 #endif
4980 }
4981
4982 /* Return 1 if OBJ is a valid lisp object.
4983 Return 0 if OBJ is NOT a valid lisp object.
4984 Return -1 if we cannot validate OBJ.
4985 This function can be quite slow,
4986 so it should only be used in code for manual debugging. */
4987
4988 int
4989 valid_lisp_object_p (Lisp_Object obj)
4990 {
4991 void *p;
4992 #if GC_MARK_STACK
4993 struct mem_node *m;
4994 #endif
4995
4996 if (INTEGERP (obj))
4997 return 1;
4998
4999 p = (void *) XPNTR (obj);
5000 if (PURE_POINTER_P (p))
5001 return 1;
5002
5003 #if !GC_MARK_STACK
5004 return valid_pointer_p (p);
5005 #else
5006
5007 m = mem_find (p);
5008
5009 if (m == MEM_NIL)
5010 {
5011 int valid = valid_pointer_p (p);
5012 if (valid <= 0)
5013 return valid;
5014
5015 if (SUBRP (obj))
5016 return 1;
5017
5018 return 0;
5019 }
5020
5021 switch (m->type)
5022 {
5023 case MEM_TYPE_NON_LISP:
5024 return 0;
5025
5026 case MEM_TYPE_BUFFER:
5027 return live_buffer_p (m, p);
5028
5029 case MEM_TYPE_CONS:
5030 return live_cons_p (m, p);
5031
5032 case MEM_TYPE_STRING:
5033 return live_string_p (m, p);
5034
5035 case MEM_TYPE_MISC:
5036 return live_misc_p (m, p);
5037
5038 case MEM_TYPE_SYMBOL:
5039 return live_symbol_p (m, p);
5040
5041 case MEM_TYPE_FLOAT:
5042 return live_float_p (m, p);
5043
5044 case MEM_TYPE_VECTORLIKE:
5045 case MEM_TYPE_VECTOR_BLOCK:
5046 return live_vector_p (m, p);
5047
5048 default:
5049 break;
5050 }
5051
5052 return 0;
5053 #endif
5054 }
5055
5056
5057
5058 \f
5059 /***********************************************************************
5060 Pure Storage Management
5061 ***********************************************************************/
5062
5063 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5064 pointer to it. TYPE is the Lisp type for which the memory is
5065 allocated. TYPE < 0 means it's not used for a Lisp object. */
5066
5067 static void *
5068 pure_alloc (size_t size, int type)
5069 {
5070 void *result;
5071 #if USE_LSB_TAG
5072 size_t alignment = (1 << GCTYPEBITS);
5073 #else
5074 size_t alignment = sizeof (EMACS_INT);
5075
5076 /* Give Lisp_Floats an extra alignment. */
5077 if (type == Lisp_Float)
5078 {
5079 #if defined __GNUC__ && __GNUC__ >= 2
5080 alignment = __alignof (struct Lisp_Float);
5081 #else
5082 alignment = sizeof (struct Lisp_Float);
5083 #endif
5084 }
5085 #endif
5086
5087 again:
5088 if (type >= 0)
5089 {
5090 /* Allocate space for a Lisp object from the beginning of the free
5091 space with taking account of alignment. */
5092 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5093 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5094 }
5095 else
5096 {
5097 /* Allocate space for a non-Lisp object from the end of the free
5098 space. */
5099 pure_bytes_used_non_lisp += size;
5100 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5101 }
5102 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5103
5104 if (pure_bytes_used <= pure_size)
5105 return result;
5106
5107 /* Don't allocate a large amount here,
5108 because it might get mmap'd and then its address
5109 might not be usable. */
5110 purebeg = xmalloc (10000);
5111 pure_size = 10000;
5112 pure_bytes_used_before_overflow += pure_bytes_used - size;
5113 pure_bytes_used = 0;
5114 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5115 goto again;
5116 }
5117
5118
5119 /* Print a warning if PURESIZE is too small. */
5120
5121 void
5122 check_pure_size (void)
5123 {
5124 if (pure_bytes_used_before_overflow)
5125 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5126 " bytes needed)"),
5127 pure_bytes_used + pure_bytes_used_before_overflow);
5128 }
5129
5130
5131 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5132 the non-Lisp data pool of the pure storage, and return its start
5133 address. Return NULL if not found. */
5134
5135 static char *
5136 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5137 {
5138 int i;
5139 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5140 const unsigned char *p;
5141 char *non_lisp_beg;
5142
5143 if (pure_bytes_used_non_lisp <= nbytes)
5144 return NULL;
5145
5146 /* Set up the Boyer-Moore table. */
5147 skip = nbytes + 1;
5148 for (i = 0; i < 256; i++)
5149 bm_skip[i] = skip;
5150
5151 p = (const unsigned char *) data;
5152 while (--skip > 0)
5153 bm_skip[*p++] = skip;
5154
5155 last_char_skip = bm_skip['\0'];
5156
5157 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5158 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5159
5160 /* See the comments in the function `boyer_moore' (search.c) for the
5161 use of `infinity'. */
5162 infinity = pure_bytes_used_non_lisp + 1;
5163 bm_skip['\0'] = infinity;
5164
5165 p = (const unsigned char *) non_lisp_beg + nbytes;
5166 start = 0;
5167 do
5168 {
5169 /* Check the last character (== '\0'). */
5170 do
5171 {
5172 start += bm_skip[*(p + start)];
5173 }
5174 while (start <= start_max);
5175
5176 if (start < infinity)
5177 /* Couldn't find the last character. */
5178 return NULL;
5179
5180 /* No less than `infinity' means we could find the last
5181 character at `p[start - infinity]'. */
5182 start -= infinity;
5183
5184 /* Check the remaining characters. */
5185 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5186 /* Found. */
5187 return non_lisp_beg + start;
5188
5189 start += last_char_skip;
5190 }
5191 while (start <= start_max);
5192
5193 return NULL;
5194 }
5195
5196
5197 /* Return a string allocated in pure space. DATA is a buffer holding
5198 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5199 non-zero means make the result string multibyte.
5200
5201 Must get an error if pure storage is full, since if it cannot hold
5202 a large string it may be able to hold conses that point to that
5203 string; then the string is not protected from gc. */
5204
5205 Lisp_Object
5206 make_pure_string (const char *data,
5207 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5208 {
5209 Lisp_Object string;
5210 struct Lisp_String *s;
5211
5212 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5213 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5214 if (s->data == NULL)
5215 {
5216 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5217 memcpy (s->data, data, nbytes);
5218 s->data[nbytes] = '\0';
5219 }
5220 s->size = nchars;
5221 s->size_byte = multibyte ? nbytes : -1;
5222 s->intervals = NULL_INTERVAL;
5223 XSETSTRING (string, s);
5224 return string;
5225 }
5226
5227 /* Return a string allocated in pure space. Do not
5228 allocate the string data, just point to DATA. */
5229
5230 Lisp_Object
5231 make_pure_c_string (const char *data, ptrdiff_t nchars)
5232 {
5233 Lisp_Object string;
5234 struct Lisp_String *s;
5235
5236 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5237 s->size = nchars;
5238 s->size_byte = -1;
5239 s->data = (unsigned char *) data;
5240 s->intervals = NULL_INTERVAL;
5241 XSETSTRING (string, s);
5242 return string;
5243 }
5244
5245 /* Return a cons allocated from pure space. Give it pure copies
5246 of CAR as car and CDR as cdr. */
5247
5248 Lisp_Object
5249 pure_cons (Lisp_Object car, Lisp_Object cdr)
5250 {
5251 register Lisp_Object new;
5252 struct Lisp_Cons *p;
5253
5254 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5255 XSETCONS (new, p);
5256 XSETCAR (new, Fpurecopy (car));
5257 XSETCDR (new, Fpurecopy (cdr));
5258 return new;
5259 }
5260
5261
5262 /* Value is a float object with value NUM allocated from pure space. */
5263
5264 static Lisp_Object
5265 make_pure_float (double num)
5266 {
5267 register Lisp_Object new;
5268 struct Lisp_Float *p;
5269
5270 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5271 XSETFLOAT (new, p);
5272 XFLOAT_INIT (new, num);
5273 return new;
5274 }
5275
5276
5277 /* Return a vector with room for LEN Lisp_Objects allocated from
5278 pure space. */
5279
5280 static Lisp_Object
5281 make_pure_vector (ptrdiff_t len)
5282 {
5283 Lisp_Object new;
5284 struct Lisp_Vector *p;
5285 size_t size = header_size + len * word_size;
5286
5287 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5288 XSETVECTOR (new, p);
5289 XVECTOR (new)->header.size = len;
5290 return new;
5291 }
5292
5293
5294 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5295 doc: /* Make a copy of object OBJ in pure storage.
5296 Recursively copies contents of vectors and cons cells.
5297 Does not copy symbols. Copies strings without text properties. */)
5298 (register Lisp_Object obj)
5299 {
5300 if (NILP (Vpurify_flag))
5301 return obj;
5302
5303 if (PURE_POINTER_P (XPNTR (obj)))
5304 return obj;
5305
5306 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5307 {
5308 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5309 if (!NILP (tmp))
5310 return tmp;
5311 }
5312
5313 if (CONSP (obj))
5314 obj = pure_cons (XCAR (obj), XCDR (obj));
5315 else if (FLOATP (obj))
5316 obj = make_pure_float (XFLOAT_DATA (obj));
5317 else if (STRINGP (obj))
5318 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5319 SBYTES (obj),
5320 STRING_MULTIBYTE (obj));
5321 else if (COMPILEDP (obj) || VECTORP (obj))
5322 {
5323 register struct Lisp_Vector *vec;
5324 register ptrdiff_t i;
5325 ptrdiff_t size;
5326
5327 size = ASIZE (obj);
5328 if (size & PSEUDOVECTOR_FLAG)
5329 size &= PSEUDOVECTOR_SIZE_MASK;
5330 vec = XVECTOR (make_pure_vector (size));
5331 for (i = 0; i < size; i++)
5332 vec->contents[i] = Fpurecopy (AREF (obj, i));
5333 if (COMPILEDP (obj))
5334 {
5335 XSETPVECTYPE (vec, PVEC_COMPILED);
5336 XSETCOMPILED (obj, vec);
5337 }
5338 else
5339 XSETVECTOR (obj, vec);
5340 }
5341 else if (MARKERP (obj))
5342 error ("Attempt to copy a marker to pure storage");
5343 else
5344 /* Not purified, don't hash-cons. */
5345 return obj;
5346
5347 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5348 Fputhash (obj, obj, Vpurify_flag);
5349
5350 return obj;
5351 }
5352
5353
5354 \f
5355 /***********************************************************************
5356 Protection from GC
5357 ***********************************************************************/
5358
5359 /* Put an entry in staticvec, pointing at the variable with address
5360 VARADDRESS. */
5361
5362 void
5363 staticpro (Lisp_Object *varaddress)
5364 {
5365 staticvec[staticidx++] = varaddress;
5366 if (staticidx >= NSTATICS)
5367 abort ();
5368 }
5369
5370 \f
5371 /***********************************************************************
5372 Protection from GC
5373 ***********************************************************************/
5374
5375 /* Temporarily prevent garbage collection. */
5376
5377 ptrdiff_t
5378 inhibit_garbage_collection (void)
5379 {
5380 ptrdiff_t count = SPECPDL_INDEX ();
5381
5382 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5383 return count;
5384 }
5385
5386 /* Used to avoid possible overflows when
5387 converting from C to Lisp integers. */
5388
5389 static inline Lisp_Object
5390 bounded_number (EMACS_INT number)
5391 {
5392 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5393 }
5394
5395 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5396 doc: /* Reclaim storage for Lisp objects no longer needed.
5397 Garbage collection happens automatically if you cons more than
5398 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5399 `garbage-collect' normally returns a list with info on amount of space in use,
5400 where each entry has the form (NAME SIZE USED FREE), where:
5401 - NAME is a symbol describing the kind of objects this entry represents,
5402 - SIZE is the number of bytes used by each one,
5403 - USED is the number of those objects that were found live in the heap,
5404 - FREE is the number of those objects that are not live but that Emacs
5405 keeps around for future allocations (maybe because it does not know how
5406 to return them to the OS).
5407 However, if there was overflow in pure space, `garbage-collect'
5408 returns nil, because real GC can't be done.
5409 See Info node `(elisp)Garbage Collection'. */)
5410 (void)
5411 {
5412 register struct specbinding *bind;
5413 register struct buffer *nextb;
5414 char stack_top_variable;
5415 ptrdiff_t i;
5416 int message_p;
5417 Lisp_Object total[11];
5418 ptrdiff_t count = SPECPDL_INDEX ();
5419 EMACS_TIME t1;
5420
5421 if (abort_on_gc)
5422 abort ();
5423
5424 /* Can't GC if pure storage overflowed because we can't determine
5425 if something is a pure object or not. */
5426 if (pure_bytes_used_before_overflow)
5427 return Qnil;
5428
5429 CHECK_CONS_LIST ();
5430
5431 /* Don't keep undo information around forever.
5432 Do this early on, so it is no problem if the user quits. */
5433 FOR_EACH_BUFFER (nextb)
5434 compact_buffer (nextb);
5435
5436 t1 = current_emacs_time ();
5437
5438 /* In case user calls debug_print during GC,
5439 don't let that cause a recursive GC. */
5440 consing_since_gc = 0;
5441
5442 /* Save what's currently displayed in the echo area. */
5443 message_p = push_message ();
5444 record_unwind_protect (pop_message_unwind, Qnil);
5445
5446 /* Save a copy of the contents of the stack, for debugging. */
5447 #if MAX_SAVE_STACK > 0
5448 if (NILP (Vpurify_flag))
5449 {
5450 char *stack;
5451 ptrdiff_t stack_size;
5452 if (&stack_top_variable < stack_bottom)
5453 {
5454 stack = &stack_top_variable;
5455 stack_size = stack_bottom - &stack_top_variable;
5456 }
5457 else
5458 {
5459 stack = stack_bottom;
5460 stack_size = &stack_top_variable - stack_bottom;
5461 }
5462 if (stack_size <= MAX_SAVE_STACK)
5463 {
5464 if (stack_copy_size < stack_size)
5465 {
5466 stack_copy = xrealloc (stack_copy, stack_size);
5467 stack_copy_size = stack_size;
5468 }
5469 memcpy (stack_copy, stack, stack_size);
5470 }
5471 }
5472 #endif /* MAX_SAVE_STACK > 0 */
5473
5474 if (garbage_collection_messages)
5475 message1_nolog ("Garbage collecting...");
5476
5477 BLOCK_INPUT;
5478
5479 shrink_regexp_cache ();
5480
5481 gc_in_progress = 1;
5482
5483 /* Mark all the special slots that serve as the roots of accessibility. */
5484
5485 for (i = 0; i < staticidx; i++)
5486 mark_object (*staticvec[i]);
5487
5488 for (bind = specpdl; bind != specpdl_ptr; bind++)
5489 {
5490 mark_object (bind->symbol);
5491 mark_object (bind->old_value);
5492 }
5493 mark_terminals ();
5494 mark_kboards ();
5495 mark_ttys ();
5496
5497 #ifdef USE_GTK
5498 {
5499 extern void xg_mark_data (void);
5500 xg_mark_data ();
5501 }
5502 #endif
5503
5504 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5505 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5506 mark_stack ();
5507 #else
5508 {
5509 register struct gcpro *tail;
5510 for (tail = gcprolist; tail; tail = tail->next)
5511 for (i = 0; i < tail->nvars; i++)
5512 mark_object (tail->var[i]);
5513 }
5514 mark_byte_stack ();
5515 {
5516 struct catchtag *catch;
5517 struct handler *handler;
5518
5519 for (catch = catchlist; catch; catch = catch->next)
5520 {
5521 mark_object (catch->tag);
5522 mark_object (catch->val);
5523 }
5524 for (handler = handlerlist; handler; handler = handler->next)
5525 {
5526 mark_object (handler->handler);
5527 mark_object (handler->var);
5528 }
5529 }
5530 mark_backtrace ();
5531 #endif
5532
5533 #ifdef HAVE_WINDOW_SYSTEM
5534 mark_fringe_data ();
5535 #endif
5536
5537 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5538 mark_stack ();
5539 #endif
5540
5541 /* Everything is now marked, except for the things that require special
5542 finalization, i.e. the undo_list.
5543 Look thru every buffer's undo list
5544 for elements that update markers that were not marked,
5545 and delete them. */
5546 FOR_EACH_BUFFER (nextb)
5547 {
5548 /* If a buffer's undo list is Qt, that means that undo is
5549 turned off in that buffer. Calling truncate_undo_list on
5550 Qt tends to return NULL, which effectively turns undo back on.
5551 So don't call truncate_undo_list if undo_list is Qt. */
5552 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5553 {
5554 Lisp_Object tail, prev;
5555 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5556 prev = Qnil;
5557 while (CONSP (tail))
5558 {
5559 if (CONSP (XCAR (tail))
5560 && MARKERP (XCAR (XCAR (tail)))
5561 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5562 {
5563 if (NILP (prev))
5564 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5565 else
5566 {
5567 tail = XCDR (tail);
5568 XSETCDR (prev, tail);
5569 }
5570 }
5571 else
5572 {
5573 prev = tail;
5574 tail = XCDR (tail);
5575 }
5576 }
5577 }
5578 /* Now that we have stripped the elements that need not be in the
5579 undo_list any more, we can finally mark the list. */
5580 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5581 }
5582
5583 gc_sweep ();
5584
5585 /* Clear the mark bits that we set in certain root slots. */
5586
5587 unmark_byte_stack ();
5588 VECTOR_UNMARK (&buffer_defaults);
5589 VECTOR_UNMARK (&buffer_local_symbols);
5590
5591 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5592 dump_zombies ();
5593 #endif
5594
5595 UNBLOCK_INPUT;
5596
5597 CHECK_CONS_LIST ();
5598
5599 gc_in_progress = 0;
5600
5601 consing_since_gc = 0;
5602 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5603 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5604
5605 gc_relative_threshold = 0;
5606 if (FLOATP (Vgc_cons_percentage))
5607 { /* Set gc_cons_combined_threshold. */
5608 double tot = 0;
5609
5610 tot += total_conses * sizeof (struct Lisp_Cons);
5611 tot += total_symbols * sizeof (struct Lisp_Symbol);
5612 tot += total_markers * sizeof (union Lisp_Misc);
5613 tot += total_string_bytes;
5614 tot += total_vector_slots * word_size;
5615 tot += total_floats * sizeof (struct Lisp_Float);
5616 tot += total_intervals * sizeof (struct interval);
5617 tot += total_strings * sizeof (struct Lisp_String);
5618
5619 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5620 if (0 < tot)
5621 {
5622 if (tot < TYPE_MAXIMUM (EMACS_INT))
5623 gc_relative_threshold = tot;
5624 else
5625 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5626 }
5627 }
5628
5629 if (garbage_collection_messages)
5630 {
5631 if (message_p || minibuf_level > 0)
5632 restore_message ();
5633 else
5634 message1_nolog ("Garbage collecting...done");
5635 }
5636
5637 unbind_to (count, Qnil);
5638
5639 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5640 bounded_number (total_conses),
5641 bounded_number (total_free_conses));
5642
5643 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5644 bounded_number (total_symbols),
5645 bounded_number (total_free_symbols));
5646
5647 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5648 bounded_number (total_markers),
5649 bounded_number (total_free_markers));
5650
5651 total[3] = list4 (Qstring, make_number (sizeof (struct Lisp_String)),
5652 bounded_number (total_strings),
5653 bounded_number (total_free_strings));
5654
5655 total[4] = list3 (Qstring_bytes, make_number (1),
5656 bounded_number (total_string_bytes));
5657
5658 total[5] = list3 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5659 bounded_number (total_vectors));
5660
5661 total[6] = list4 (Qvector_slots, make_number (word_size),
5662 bounded_number (total_vector_slots),
5663 bounded_number (total_free_vector_slots));
5664
5665 total[7] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
5666 bounded_number (total_floats),
5667 bounded_number (total_free_floats));
5668
5669 total[8] = list4 (Qinterval, make_number (sizeof (struct interval)),
5670 bounded_number (total_intervals),
5671 bounded_number (total_free_intervals));
5672
5673 total[9] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
5674 bounded_number (total_buffers));
5675
5676 total[10] = list4 (Qheap, make_number (1024),
5677 #ifdef DOUG_LEA_MALLOC
5678 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5679 bounded_number ((mallinfo ().fordblks + 1023) >> 10)
5680 #else
5681 Qnil, Qnil
5682 #endif
5683 );
5684
5685 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5686 {
5687 /* Compute average percentage of zombies. */
5688 double nlive = 0;
5689
5690 for (i = 0; i < 7; ++i)
5691 if (CONSP (total[i]))
5692 nlive += XFASTINT (XCAR (total[i]));
5693
5694 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5695 max_live = max (nlive, max_live);
5696 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5697 max_zombies = max (nzombies, max_zombies);
5698 ++ngcs;
5699 }
5700 #endif
5701
5702 if (!NILP (Vpost_gc_hook))
5703 {
5704 ptrdiff_t gc_count = inhibit_garbage_collection ();
5705 safe_run_hooks (Qpost_gc_hook);
5706 unbind_to (gc_count, Qnil);
5707 }
5708
5709 /* Accumulate statistics. */
5710 if (FLOATP (Vgc_elapsed))
5711 {
5712 EMACS_TIME t2 = current_emacs_time ();
5713 EMACS_TIME t3 = sub_emacs_time (t2, t1);
5714 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5715 + EMACS_TIME_TO_DOUBLE (t3));
5716 }
5717
5718 gcs_done++;
5719
5720 return Flist (sizeof total / sizeof *total, total);
5721 }
5722
5723
5724 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5725 only interesting objects referenced from glyphs are strings. */
5726
5727 static void
5728 mark_glyph_matrix (struct glyph_matrix *matrix)
5729 {
5730 struct glyph_row *row = matrix->rows;
5731 struct glyph_row *end = row + matrix->nrows;
5732
5733 for (; row < end; ++row)
5734 if (row->enabled_p)
5735 {
5736 int area;
5737 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5738 {
5739 struct glyph *glyph = row->glyphs[area];
5740 struct glyph *end_glyph = glyph + row->used[area];
5741
5742 for (; glyph < end_glyph; ++glyph)
5743 if (STRINGP (glyph->object)
5744 && !STRING_MARKED_P (XSTRING (glyph->object)))
5745 mark_object (glyph->object);
5746 }
5747 }
5748 }
5749
5750
5751 /* Mark Lisp faces in the face cache C. */
5752
5753 static void
5754 mark_face_cache (struct face_cache *c)
5755 {
5756 if (c)
5757 {
5758 int i, j;
5759 for (i = 0; i < c->used; ++i)
5760 {
5761 struct face *face = FACE_FROM_ID (c->f, i);
5762
5763 if (face)
5764 {
5765 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5766 mark_object (face->lface[j]);
5767 }
5768 }
5769 }
5770 }
5771
5772
5773 \f
5774 /* Mark reference to a Lisp_Object.
5775 If the object referred to has not been seen yet, recursively mark
5776 all the references contained in it. */
5777
5778 #define LAST_MARKED_SIZE 500
5779 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5780 static int last_marked_index;
5781
5782 /* For debugging--call abort when we cdr down this many
5783 links of a list, in mark_object. In debugging,
5784 the call to abort will hit a breakpoint.
5785 Normally this is zero and the check never goes off. */
5786 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5787
5788 static void
5789 mark_vectorlike (struct Lisp_Vector *ptr)
5790 {
5791 ptrdiff_t size = ptr->header.size;
5792 ptrdiff_t i;
5793
5794 eassert (!VECTOR_MARKED_P (ptr));
5795 VECTOR_MARK (ptr); /* Else mark it. */
5796 if (size & PSEUDOVECTOR_FLAG)
5797 size &= PSEUDOVECTOR_SIZE_MASK;
5798
5799 /* Note that this size is not the memory-footprint size, but only
5800 the number of Lisp_Object fields that we should trace.
5801 The distinction is used e.g. by Lisp_Process which places extra
5802 non-Lisp_Object fields at the end of the structure... */
5803 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5804 mark_object (ptr->contents[i]);
5805 }
5806
5807 /* Like mark_vectorlike but optimized for char-tables (and
5808 sub-char-tables) assuming that the contents are mostly integers or
5809 symbols. */
5810
5811 static void
5812 mark_char_table (struct Lisp_Vector *ptr)
5813 {
5814 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5815 int i;
5816
5817 eassert (!VECTOR_MARKED_P (ptr));
5818 VECTOR_MARK (ptr);
5819 for (i = 0; i < size; i++)
5820 {
5821 Lisp_Object val = ptr->contents[i];
5822
5823 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5824 continue;
5825 if (SUB_CHAR_TABLE_P (val))
5826 {
5827 if (! VECTOR_MARKED_P (XVECTOR (val)))
5828 mark_char_table (XVECTOR (val));
5829 }
5830 else
5831 mark_object (val);
5832 }
5833 }
5834
5835 /* Mark the chain of overlays starting at PTR. */
5836
5837 static void
5838 mark_overlay (struct Lisp_Overlay *ptr)
5839 {
5840 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5841 {
5842 ptr->gcmarkbit = 1;
5843 mark_object (ptr->start);
5844 mark_object (ptr->end);
5845 mark_object (ptr->plist);
5846 }
5847 }
5848
5849 /* Mark Lisp_Objects and special pointers in BUFFER. */
5850
5851 static void
5852 mark_buffer (struct buffer *buffer)
5853 {
5854 /* This is handled much like other pseudovectors... */
5855 mark_vectorlike ((struct Lisp_Vector *) buffer);
5856
5857 /* ...but there are some buffer-specific things. */
5858
5859 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5860
5861 /* For now, we just don't mark the undo_list. It's done later in
5862 a special way just before the sweep phase, and after stripping
5863 some of its elements that are not needed any more. */
5864
5865 mark_overlay (buffer->overlays_before);
5866 mark_overlay (buffer->overlays_after);
5867
5868 /* If this is an indirect buffer, mark its base buffer. */
5869 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5870 mark_buffer (buffer->base_buffer);
5871 }
5872
5873 /* Determine type of generic Lisp_Object and mark it accordingly. */
5874
5875 void
5876 mark_object (Lisp_Object arg)
5877 {
5878 register Lisp_Object obj = arg;
5879 #ifdef GC_CHECK_MARKED_OBJECTS
5880 void *po;
5881 struct mem_node *m;
5882 #endif
5883 ptrdiff_t cdr_count = 0;
5884
5885 loop:
5886
5887 if (PURE_POINTER_P (XPNTR (obj)))
5888 return;
5889
5890 last_marked[last_marked_index++] = obj;
5891 if (last_marked_index == LAST_MARKED_SIZE)
5892 last_marked_index = 0;
5893
5894 /* Perform some sanity checks on the objects marked here. Abort if
5895 we encounter an object we know is bogus. This increases GC time
5896 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5897 #ifdef GC_CHECK_MARKED_OBJECTS
5898
5899 po = (void *) XPNTR (obj);
5900
5901 /* Check that the object pointed to by PO is known to be a Lisp
5902 structure allocated from the heap. */
5903 #define CHECK_ALLOCATED() \
5904 do { \
5905 m = mem_find (po); \
5906 if (m == MEM_NIL) \
5907 abort (); \
5908 } while (0)
5909
5910 /* Check that the object pointed to by PO is live, using predicate
5911 function LIVEP. */
5912 #define CHECK_LIVE(LIVEP) \
5913 do { \
5914 if (!LIVEP (m, po)) \
5915 abort (); \
5916 } while (0)
5917
5918 /* Check both of the above conditions. */
5919 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5920 do { \
5921 CHECK_ALLOCATED (); \
5922 CHECK_LIVE (LIVEP); \
5923 } while (0) \
5924
5925 #else /* not GC_CHECK_MARKED_OBJECTS */
5926
5927 #define CHECK_LIVE(LIVEP) (void) 0
5928 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5929
5930 #endif /* not GC_CHECK_MARKED_OBJECTS */
5931
5932 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5933 {
5934 case Lisp_String:
5935 {
5936 register struct Lisp_String *ptr = XSTRING (obj);
5937 if (STRING_MARKED_P (ptr))
5938 break;
5939 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5940 MARK_STRING (ptr);
5941 MARK_INTERVAL_TREE (ptr->intervals);
5942 #ifdef GC_CHECK_STRING_BYTES
5943 /* Check that the string size recorded in the string is the
5944 same as the one recorded in the sdata structure. */
5945 CHECK_STRING_BYTES (ptr);
5946 #endif /* GC_CHECK_STRING_BYTES */
5947 }
5948 break;
5949
5950 case Lisp_Vectorlike:
5951 {
5952 register struct Lisp_Vector *ptr = XVECTOR (obj);
5953 register ptrdiff_t pvectype;
5954
5955 if (VECTOR_MARKED_P (ptr))
5956 break;
5957
5958 #ifdef GC_CHECK_MARKED_OBJECTS
5959 m = mem_find (po);
5960 if (m == MEM_NIL && !SUBRP (obj)
5961 && po != &buffer_defaults
5962 && po != &buffer_local_symbols)
5963 abort ();
5964 #endif /* GC_CHECK_MARKED_OBJECTS */
5965
5966 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5967 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5968 >> PSEUDOVECTOR_SIZE_BITS);
5969 else
5970 pvectype = 0;
5971
5972 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5973 CHECK_LIVE (live_vector_p);
5974
5975 switch (pvectype)
5976 {
5977 case PVEC_BUFFER:
5978 #ifdef GC_CHECK_MARKED_OBJECTS
5979 if (po != &buffer_defaults && po != &buffer_local_symbols)
5980 {
5981 struct buffer *b;
5982 FOR_EACH_BUFFER (b)
5983 if (b == po)
5984 break;
5985 if (b == NULL)
5986 abort ();
5987 }
5988 #endif /* GC_CHECK_MARKED_OBJECTS */
5989 mark_buffer ((struct buffer *) ptr);
5990 break;
5991
5992 case PVEC_COMPILED:
5993 { /* We could treat this just like a vector, but it is better
5994 to save the COMPILED_CONSTANTS element for last and avoid
5995 recursion there. */
5996 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5997 int i;
5998
5999 VECTOR_MARK (ptr);
6000 for (i = 0; i < size; i++)
6001 if (i != COMPILED_CONSTANTS)
6002 mark_object (ptr->contents[i]);
6003 if (size > COMPILED_CONSTANTS)
6004 {
6005 obj = ptr->contents[COMPILED_CONSTANTS];
6006 goto loop;
6007 }
6008 }
6009 break;
6010
6011 case PVEC_FRAME:
6012 {
6013 mark_vectorlike (ptr);
6014 mark_face_cache (((struct frame *) ptr)->face_cache);
6015 }
6016 break;
6017
6018 case PVEC_WINDOW:
6019 {
6020 struct window *w = (struct window *) ptr;
6021
6022 mark_vectorlike (ptr);
6023 /* Mark glyphs for leaf windows. Marking window
6024 matrices is sufficient because frame matrices
6025 use the same glyph memory. */
6026 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6027 {
6028 mark_glyph_matrix (w->current_matrix);
6029 mark_glyph_matrix (w->desired_matrix);
6030 }
6031 }
6032 break;
6033
6034 case PVEC_HASH_TABLE:
6035 {
6036 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6037
6038 mark_vectorlike (ptr);
6039 /* If hash table is not weak, mark all keys and values.
6040 For weak tables, mark only the vector. */
6041 if (NILP (h->weak))
6042 mark_object (h->key_and_value);
6043 else
6044 VECTOR_MARK (XVECTOR (h->key_and_value));
6045 }
6046 break;
6047
6048 case PVEC_CHAR_TABLE:
6049 mark_char_table (ptr);
6050 break;
6051
6052 case PVEC_BOOL_VECTOR:
6053 /* No Lisp_Objects to mark in a bool vector. */
6054 VECTOR_MARK (ptr);
6055 break;
6056
6057 case PVEC_SUBR:
6058 break;
6059
6060 case PVEC_FREE:
6061 abort ();
6062
6063 default:
6064 mark_vectorlike (ptr);
6065 }
6066 }
6067 break;
6068
6069 case Lisp_Symbol:
6070 {
6071 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6072 struct Lisp_Symbol *ptrx;
6073
6074 if (ptr->gcmarkbit)
6075 break;
6076 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6077 ptr->gcmarkbit = 1;
6078 mark_object (ptr->function);
6079 mark_object (ptr->plist);
6080 switch (ptr->redirect)
6081 {
6082 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6083 case SYMBOL_VARALIAS:
6084 {
6085 Lisp_Object tem;
6086 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6087 mark_object (tem);
6088 break;
6089 }
6090 case SYMBOL_LOCALIZED:
6091 {
6092 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6093 /* If the value is forwarded to a buffer or keyboard field,
6094 these are marked when we see the corresponding object.
6095 And if it's forwarded to a C variable, either it's not
6096 a Lisp_Object var, or it's staticpro'd already. */
6097 mark_object (blv->where);
6098 mark_object (blv->valcell);
6099 mark_object (blv->defcell);
6100 break;
6101 }
6102 case SYMBOL_FORWARDED:
6103 /* If the value is forwarded to a buffer or keyboard field,
6104 these are marked when we see the corresponding object.
6105 And if it's forwarded to a C variable, either it's not
6106 a Lisp_Object var, or it's staticpro'd already. */
6107 break;
6108 default: abort ();
6109 }
6110 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6111 MARK_STRING (XSTRING (ptr->xname));
6112 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6113
6114 ptr = ptr->next;
6115 if (ptr)
6116 {
6117 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6118 XSETSYMBOL (obj, ptrx);
6119 goto loop;
6120 }
6121 }
6122 break;
6123
6124 case Lisp_Misc:
6125 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6126
6127 if (XMISCANY (obj)->gcmarkbit)
6128 break;
6129
6130 switch (XMISCTYPE (obj))
6131 {
6132 case Lisp_Misc_Marker:
6133 /* DO NOT mark thru the marker's chain.
6134 The buffer's markers chain does not preserve markers from gc;
6135 instead, markers are removed from the chain when freed by gc. */
6136 XMISCANY (obj)->gcmarkbit = 1;
6137 break;
6138
6139 case Lisp_Misc_Save_Value:
6140 XMISCANY (obj)->gcmarkbit = 1;
6141 #if GC_MARK_STACK
6142 {
6143 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6144 /* If DOGC is set, POINTER is the address of a memory
6145 area containing INTEGER potential Lisp_Objects. */
6146 if (ptr->dogc)
6147 {
6148 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6149 ptrdiff_t nelt;
6150 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6151 mark_maybe_object (*p);
6152 }
6153 }
6154 #endif
6155 break;
6156
6157 case Lisp_Misc_Overlay:
6158 mark_overlay (XOVERLAY (obj));
6159 break;
6160
6161 default:
6162 abort ();
6163 }
6164 break;
6165
6166 case Lisp_Cons:
6167 {
6168 register struct Lisp_Cons *ptr = XCONS (obj);
6169 if (CONS_MARKED_P (ptr))
6170 break;
6171 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6172 CONS_MARK (ptr);
6173 /* If the cdr is nil, avoid recursion for the car. */
6174 if (EQ (ptr->u.cdr, Qnil))
6175 {
6176 obj = ptr->car;
6177 cdr_count = 0;
6178 goto loop;
6179 }
6180 mark_object (ptr->car);
6181 obj = ptr->u.cdr;
6182 cdr_count++;
6183 if (cdr_count == mark_object_loop_halt)
6184 abort ();
6185 goto loop;
6186 }
6187
6188 case Lisp_Float:
6189 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6190 FLOAT_MARK (XFLOAT (obj));
6191 break;
6192
6193 case_Lisp_Int:
6194 break;
6195
6196 default:
6197 abort ();
6198 }
6199
6200 #undef CHECK_LIVE
6201 #undef CHECK_ALLOCATED
6202 #undef CHECK_ALLOCATED_AND_LIVE
6203 }
6204 /* Mark the Lisp pointers in the terminal objects.
6205 Called by Fgarbage_collect. */
6206
6207 static void
6208 mark_terminals (void)
6209 {
6210 struct terminal *t;
6211 for (t = terminal_list; t; t = t->next_terminal)
6212 {
6213 eassert (t->name != NULL);
6214 #ifdef HAVE_WINDOW_SYSTEM
6215 /* If a terminal object is reachable from a stacpro'ed object,
6216 it might have been marked already. Make sure the image cache
6217 gets marked. */
6218 mark_image_cache (t->image_cache);
6219 #endif /* HAVE_WINDOW_SYSTEM */
6220 if (!VECTOR_MARKED_P (t))
6221 mark_vectorlike ((struct Lisp_Vector *)t);
6222 }
6223 }
6224
6225
6226
6227 /* Value is non-zero if OBJ will survive the current GC because it's
6228 either marked or does not need to be marked to survive. */
6229
6230 int
6231 survives_gc_p (Lisp_Object obj)
6232 {
6233 int survives_p;
6234
6235 switch (XTYPE (obj))
6236 {
6237 case_Lisp_Int:
6238 survives_p = 1;
6239 break;
6240
6241 case Lisp_Symbol:
6242 survives_p = XSYMBOL (obj)->gcmarkbit;
6243 break;
6244
6245 case Lisp_Misc:
6246 survives_p = XMISCANY (obj)->gcmarkbit;
6247 break;
6248
6249 case Lisp_String:
6250 survives_p = STRING_MARKED_P (XSTRING (obj));
6251 break;
6252
6253 case Lisp_Vectorlike:
6254 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6255 break;
6256
6257 case Lisp_Cons:
6258 survives_p = CONS_MARKED_P (XCONS (obj));
6259 break;
6260
6261 case Lisp_Float:
6262 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6263 break;
6264
6265 default:
6266 abort ();
6267 }
6268
6269 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6270 }
6271
6272
6273 \f
6274 /* Sweep: find all structures not marked, and free them. */
6275
6276 static void
6277 gc_sweep (void)
6278 {
6279 /* Remove or mark entries in weak hash tables.
6280 This must be done before any object is unmarked. */
6281 sweep_weak_hash_tables ();
6282
6283 sweep_strings ();
6284 #ifdef GC_CHECK_STRING_BYTES
6285 if (!noninteractive)
6286 check_string_bytes (1);
6287 #endif
6288
6289 /* Put all unmarked conses on free list */
6290 {
6291 register struct cons_block *cblk;
6292 struct cons_block **cprev = &cons_block;
6293 register int lim = cons_block_index;
6294 EMACS_INT num_free = 0, num_used = 0;
6295
6296 cons_free_list = 0;
6297
6298 for (cblk = cons_block; cblk; cblk = *cprev)
6299 {
6300 register int i = 0;
6301 int this_free = 0;
6302 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6303
6304 /* Scan the mark bits an int at a time. */
6305 for (i = 0; i < ilim; i++)
6306 {
6307 if (cblk->gcmarkbits[i] == -1)
6308 {
6309 /* Fast path - all cons cells for this int are marked. */
6310 cblk->gcmarkbits[i] = 0;
6311 num_used += BITS_PER_INT;
6312 }
6313 else
6314 {
6315 /* Some cons cells for this int are not marked.
6316 Find which ones, and free them. */
6317 int start, pos, stop;
6318
6319 start = i * BITS_PER_INT;
6320 stop = lim - start;
6321 if (stop > BITS_PER_INT)
6322 stop = BITS_PER_INT;
6323 stop += start;
6324
6325 for (pos = start; pos < stop; pos++)
6326 {
6327 if (!CONS_MARKED_P (&cblk->conses[pos]))
6328 {
6329 this_free++;
6330 cblk->conses[pos].u.chain = cons_free_list;
6331 cons_free_list = &cblk->conses[pos];
6332 #if GC_MARK_STACK
6333 cons_free_list->car = Vdead;
6334 #endif
6335 }
6336 else
6337 {
6338 num_used++;
6339 CONS_UNMARK (&cblk->conses[pos]);
6340 }
6341 }
6342 }
6343 }
6344
6345 lim = CONS_BLOCK_SIZE;
6346 /* If this block contains only free conses and we have already
6347 seen more than two blocks worth of free conses then deallocate
6348 this block. */
6349 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6350 {
6351 *cprev = cblk->next;
6352 /* Unhook from the free list. */
6353 cons_free_list = cblk->conses[0].u.chain;
6354 lisp_align_free (cblk);
6355 }
6356 else
6357 {
6358 num_free += this_free;
6359 cprev = &cblk->next;
6360 }
6361 }
6362 total_conses = num_used;
6363 total_free_conses = num_free;
6364 }
6365
6366 /* Put all unmarked floats on free list */
6367 {
6368 register struct float_block *fblk;
6369 struct float_block **fprev = &float_block;
6370 register int lim = float_block_index;
6371 EMACS_INT num_free = 0, num_used = 0;
6372
6373 float_free_list = 0;
6374
6375 for (fblk = float_block; fblk; fblk = *fprev)
6376 {
6377 register int i;
6378 int this_free = 0;
6379 for (i = 0; i < lim; i++)
6380 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6381 {
6382 this_free++;
6383 fblk->floats[i].u.chain = float_free_list;
6384 float_free_list = &fblk->floats[i];
6385 }
6386 else
6387 {
6388 num_used++;
6389 FLOAT_UNMARK (&fblk->floats[i]);
6390 }
6391 lim = FLOAT_BLOCK_SIZE;
6392 /* If this block contains only free floats and we have already
6393 seen more than two blocks worth of free floats then deallocate
6394 this block. */
6395 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6396 {
6397 *fprev = fblk->next;
6398 /* Unhook from the free list. */
6399 float_free_list = fblk->floats[0].u.chain;
6400 lisp_align_free (fblk);
6401 }
6402 else
6403 {
6404 num_free += this_free;
6405 fprev = &fblk->next;
6406 }
6407 }
6408 total_floats = num_used;
6409 total_free_floats = num_free;
6410 }
6411
6412 /* Put all unmarked intervals on free list */
6413 {
6414 register struct interval_block *iblk;
6415 struct interval_block **iprev = &interval_block;
6416 register int lim = interval_block_index;
6417 EMACS_INT num_free = 0, num_used = 0;
6418
6419 interval_free_list = 0;
6420
6421 for (iblk = interval_block; iblk; iblk = *iprev)
6422 {
6423 register int i;
6424 int this_free = 0;
6425
6426 for (i = 0; i < lim; i++)
6427 {
6428 if (!iblk->intervals[i].gcmarkbit)
6429 {
6430 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6431 interval_free_list = &iblk->intervals[i];
6432 this_free++;
6433 }
6434 else
6435 {
6436 num_used++;
6437 iblk->intervals[i].gcmarkbit = 0;
6438 }
6439 }
6440 lim = INTERVAL_BLOCK_SIZE;
6441 /* If this block contains only free intervals and we have already
6442 seen more than two blocks worth of free intervals then
6443 deallocate this block. */
6444 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6445 {
6446 *iprev = iblk->next;
6447 /* Unhook from the free list. */
6448 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6449 lisp_free (iblk);
6450 }
6451 else
6452 {
6453 num_free += this_free;
6454 iprev = &iblk->next;
6455 }
6456 }
6457 total_intervals = num_used;
6458 total_free_intervals = num_free;
6459 }
6460
6461 /* Put all unmarked symbols on free list */
6462 {
6463 register struct symbol_block *sblk;
6464 struct symbol_block **sprev = &symbol_block;
6465 register int lim = symbol_block_index;
6466 EMACS_INT num_free = 0, num_used = 0;
6467
6468 symbol_free_list = NULL;
6469
6470 for (sblk = symbol_block; sblk; sblk = *sprev)
6471 {
6472 int this_free = 0;
6473 union aligned_Lisp_Symbol *sym = sblk->symbols;
6474 union aligned_Lisp_Symbol *end = sym + lim;
6475
6476 for (; sym < end; ++sym)
6477 {
6478 /* Check if the symbol was created during loadup. In such a case
6479 it might be pointed to by pure bytecode which we don't trace,
6480 so we conservatively assume that it is live. */
6481 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6482
6483 if (!sym->s.gcmarkbit && !pure_p)
6484 {
6485 if (sym->s.redirect == SYMBOL_LOCALIZED)
6486 xfree (SYMBOL_BLV (&sym->s));
6487 sym->s.next = symbol_free_list;
6488 symbol_free_list = &sym->s;
6489 #if GC_MARK_STACK
6490 symbol_free_list->function = Vdead;
6491 #endif
6492 ++this_free;
6493 }
6494 else
6495 {
6496 ++num_used;
6497 if (!pure_p)
6498 UNMARK_STRING (XSTRING (sym->s.xname));
6499 sym->s.gcmarkbit = 0;
6500 }
6501 }
6502
6503 lim = SYMBOL_BLOCK_SIZE;
6504 /* If this block contains only free symbols and we have already
6505 seen more than two blocks worth of free symbols then deallocate
6506 this block. */
6507 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6508 {
6509 *sprev = sblk->next;
6510 /* Unhook from the free list. */
6511 symbol_free_list = sblk->symbols[0].s.next;
6512 lisp_free (sblk);
6513 }
6514 else
6515 {
6516 num_free += this_free;
6517 sprev = &sblk->next;
6518 }
6519 }
6520 total_symbols = num_used;
6521 total_free_symbols = num_free;
6522 }
6523
6524 /* Put all unmarked misc's on free list.
6525 For a marker, first unchain it from the buffer it points into. */
6526 {
6527 register struct marker_block *mblk;
6528 struct marker_block **mprev = &marker_block;
6529 register int lim = marker_block_index;
6530 EMACS_INT num_free = 0, num_used = 0;
6531
6532 marker_free_list = 0;
6533
6534 for (mblk = marker_block; mblk; mblk = *mprev)
6535 {
6536 register int i;
6537 int this_free = 0;
6538
6539 for (i = 0; i < lim; i++)
6540 {
6541 if (!mblk->markers[i].m.u_any.gcmarkbit)
6542 {
6543 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6544 unchain_marker (&mblk->markers[i].m.u_marker);
6545 /* Set the type of the freed object to Lisp_Misc_Free.
6546 We could leave the type alone, since nobody checks it,
6547 but this might catch bugs faster. */
6548 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6549 mblk->markers[i].m.u_free.chain = marker_free_list;
6550 marker_free_list = &mblk->markers[i].m;
6551 this_free++;
6552 }
6553 else
6554 {
6555 num_used++;
6556 mblk->markers[i].m.u_any.gcmarkbit = 0;
6557 }
6558 }
6559 lim = MARKER_BLOCK_SIZE;
6560 /* If this block contains only free markers and we have already
6561 seen more than two blocks worth of free markers then deallocate
6562 this block. */
6563 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6564 {
6565 *mprev = mblk->next;
6566 /* Unhook from the free list. */
6567 marker_free_list = mblk->markers[0].m.u_free.chain;
6568 lisp_free (mblk);
6569 }
6570 else
6571 {
6572 num_free += this_free;
6573 mprev = &mblk->next;
6574 }
6575 }
6576
6577 total_markers = num_used;
6578 total_free_markers = num_free;
6579 }
6580
6581 /* Free all unmarked buffers */
6582 {
6583 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6584
6585 total_buffers = 0;
6586 while (buffer)
6587 if (!VECTOR_MARKED_P (buffer))
6588 {
6589 if (prev)
6590 prev->header.next = buffer->header.next;
6591 else
6592 all_buffers = buffer->header.next.buffer;
6593 next = buffer->header.next.buffer;
6594 lisp_free (buffer);
6595 buffer = next;
6596 }
6597 else
6598 {
6599 VECTOR_UNMARK (buffer);
6600 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6601 total_buffers++;
6602 prev = buffer, buffer = buffer->header.next.buffer;
6603 }
6604 }
6605
6606 sweep_vectors ();
6607
6608 #ifdef GC_CHECK_STRING_BYTES
6609 if (!noninteractive)
6610 check_string_bytes (1);
6611 #endif
6612 }
6613
6614
6615
6616 \f
6617 /* Debugging aids. */
6618
6619 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6620 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6621 This may be helpful in debugging Emacs's memory usage.
6622 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6623 (void)
6624 {
6625 Lisp_Object end;
6626
6627 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6628
6629 return end;
6630 }
6631
6632 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6633 doc: /* Return a list of counters that measure how much consing there has been.
6634 Each of these counters increments for a certain kind of object.
6635 The counters wrap around from the largest positive integer to zero.
6636 Garbage collection does not decrease them.
6637 The elements of the value are as follows:
6638 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6639 All are in units of 1 = one object consed
6640 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6641 objects consed.
6642 MISCS include overlays, markers, and some internal types.
6643 Frames, windows, buffers, and subprocesses count as vectors
6644 (but the contents of a buffer's text do not count here). */)
6645 (void)
6646 {
6647 Lisp_Object consed[8];
6648
6649 consed[0] = bounded_number (cons_cells_consed);
6650 consed[1] = bounded_number (floats_consed);
6651 consed[2] = bounded_number (vector_cells_consed);
6652 consed[3] = bounded_number (symbols_consed);
6653 consed[4] = bounded_number (string_chars_consed);
6654 consed[5] = bounded_number (misc_objects_consed);
6655 consed[6] = bounded_number (intervals_consed);
6656 consed[7] = bounded_number (strings_consed);
6657
6658 return Flist (8, consed);
6659 }
6660
6661 /* Find at most FIND_MAX symbols which have OBJ as their value or
6662 function. This is used in gdbinit's `xwhichsymbols' command. */
6663
6664 Lisp_Object
6665 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6666 {
6667 struct symbol_block *sblk;
6668 ptrdiff_t gc_count = inhibit_garbage_collection ();
6669 Lisp_Object found = Qnil;
6670
6671 if (! DEADP (obj))
6672 {
6673 for (sblk = symbol_block; sblk; sblk = sblk->next)
6674 {
6675 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6676 int bn;
6677
6678 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6679 {
6680 struct Lisp_Symbol *sym = &aligned_sym->s;
6681 Lisp_Object val;
6682 Lisp_Object tem;
6683
6684 if (sblk == symbol_block && bn >= symbol_block_index)
6685 break;
6686
6687 XSETSYMBOL (tem, sym);
6688 val = find_symbol_value (tem);
6689 if (EQ (val, obj)
6690 || EQ (sym->function, obj)
6691 || (!NILP (sym->function)
6692 && COMPILEDP (sym->function)
6693 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6694 || (!NILP (val)
6695 && COMPILEDP (val)
6696 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6697 {
6698 found = Fcons (tem, found);
6699 if (--find_max == 0)
6700 goto out;
6701 }
6702 }
6703 }
6704 }
6705
6706 out:
6707 unbind_to (gc_count, Qnil);
6708 return found;
6709 }
6710
6711 #ifdef ENABLE_CHECKING
6712 int suppress_checking;
6713
6714 void
6715 die (const char *msg, const char *file, int line)
6716 {
6717 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6718 file, line, msg);
6719 abort ();
6720 }
6721 #endif
6722 \f
6723 /* Initialization */
6724
6725 void
6726 init_alloc_once (void)
6727 {
6728 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6729 purebeg = PUREBEG;
6730 pure_size = PURESIZE;
6731
6732 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6733 mem_init ();
6734 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6735 #endif
6736
6737 #ifdef DOUG_LEA_MALLOC
6738 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6739 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6740 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6741 #endif
6742 init_strings ();
6743 init_vectors ();
6744
6745 #ifdef REL_ALLOC
6746 malloc_hysteresis = 32;
6747 #else
6748 malloc_hysteresis = 0;
6749 #endif
6750
6751 refill_memory_reserve ();
6752 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6753 }
6754
6755 void
6756 init_alloc (void)
6757 {
6758 gcprolist = 0;
6759 byte_stack_list = 0;
6760 #if GC_MARK_STACK
6761 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6762 setjmp_tested_p = longjmps_done = 0;
6763 #endif
6764 #endif
6765 Vgc_elapsed = make_float (0.0);
6766 gcs_done = 0;
6767 }
6768
6769 void
6770 syms_of_alloc (void)
6771 {
6772 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6773 doc: /* Number of bytes of consing between garbage collections.
6774 Garbage collection can happen automatically once this many bytes have been
6775 allocated since the last garbage collection. All data types count.
6776
6777 Garbage collection happens automatically only when `eval' is called.
6778
6779 By binding this temporarily to a large number, you can effectively
6780 prevent garbage collection during a part of the program.
6781 See also `gc-cons-percentage'. */);
6782
6783 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6784 doc: /* Portion of the heap used for allocation.
6785 Garbage collection can happen automatically once this portion of the heap
6786 has been allocated since the last garbage collection.
6787 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6788 Vgc_cons_percentage = make_float (0.1);
6789
6790 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6791 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6792
6793 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6794 doc: /* Number of cons cells that have been consed so far. */);
6795
6796 DEFVAR_INT ("floats-consed", floats_consed,
6797 doc: /* Number of floats that have been consed so far. */);
6798
6799 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6800 doc: /* Number of vector cells that have been consed so far. */);
6801
6802 DEFVAR_INT ("symbols-consed", symbols_consed,
6803 doc: /* Number of symbols that have been consed so far. */);
6804
6805 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6806 doc: /* Number of string characters that have been consed so far. */);
6807
6808 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6809 doc: /* Number of miscellaneous objects that have been consed so far.
6810 These include markers and overlays, plus certain objects not visible
6811 to users. */);
6812
6813 DEFVAR_INT ("intervals-consed", intervals_consed,
6814 doc: /* Number of intervals that have been consed so far. */);
6815
6816 DEFVAR_INT ("strings-consed", strings_consed,
6817 doc: /* Number of strings that have been consed so far. */);
6818
6819 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6820 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6821 This means that certain objects should be allocated in shared (pure) space.
6822 It can also be set to a hash-table, in which case this table is used to
6823 do hash-consing of the objects allocated to pure space. */);
6824
6825 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6826 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6827 garbage_collection_messages = 0;
6828
6829 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6830 doc: /* Hook run after garbage collection has finished. */);
6831 Vpost_gc_hook = Qnil;
6832 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6833
6834 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6835 doc: /* Precomputed `signal' argument for memory-full error. */);
6836 /* We build this in advance because if we wait until we need it, we might
6837 not be able to allocate the memory to hold it. */
6838 Vmemory_signal_data
6839 = pure_cons (Qerror,
6840 pure_cons (build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6841
6842 DEFVAR_LISP ("memory-full", Vmemory_full,
6843 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6844 Vmemory_full = Qnil;
6845
6846 DEFSYM (Qstring_bytes, "string-bytes");
6847 DEFSYM (Qvector_slots, "vector-slots");
6848 DEFSYM (Qheap, "heap");
6849
6850 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6851 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6852
6853 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6854 doc: /* Accumulated time elapsed in garbage collections.
6855 The time is in seconds as a floating point value. */);
6856 DEFVAR_INT ("gcs-done", gcs_done,
6857 doc: /* Accumulated number of garbage collections done. */);
6858
6859 defsubr (&Scons);
6860 defsubr (&Slist);
6861 defsubr (&Svector);
6862 defsubr (&Smake_byte_code);
6863 defsubr (&Smake_list);
6864 defsubr (&Smake_vector);
6865 defsubr (&Smake_string);
6866 defsubr (&Smake_bool_vector);
6867 defsubr (&Smake_symbol);
6868 defsubr (&Smake_marker);
6869 defsubr (&Spurecopy);
6870 defsubr (&Sgarbage_collect);
6871 defsubr (&Smemory_limit);
6872 defsubr (&Smemory_use_counts);
6873
6874 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6875 defsubr (&Sgc_status);
6876 #endif
6877 }