* lisp.h (EMACS_INTPTR): Remove. All uses changed to intptr_t.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96 #ifdef HAVE_GTK_AND_PTHREAD
97
98 /* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
106 end up in an inconsistent state. So we have a mutex to prevent that (note
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
115 static pthread_mutex_t alloc_mutex;
116
117 #define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
121 BLOCK_INPUT; \
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
124 while (0)
125 #define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
130 UNBLOCK_INPUT; \
131 } \
132 while (0)
133
134 #else /* ! defined HAVE_GTK_AND_PTHREAD */
135
136 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
137 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
139 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
140 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
141
142 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
143 to a struct Lisp_String. */
144
145 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
146 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
147 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
148
149 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
150 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
151 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
152
153 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
154 Be careful during GC, because S->size contains the mark bit for
155 strings. */
156
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158
159 /* Global variables. */
160 struct emacs_globals globals;
161
162 /* Number of bytes of consing done since the last gc. */
163
164 int consing_since_gc;
165
166 /* Similar minimum, computed from Vgc_cons_percentage. */
167
168 EMACS_INT gc_relative_threshold;
169
170 /* Minimum number of bytes of consing since GC before next GC,
171 when memory is full. */
172
173 EMACS_INT memory_full_cons_threshold;
174
175 /* Nonzero during GC. */
176
177 int gc_in_progress;
178
179 /* Nonzero means abort if try to GC.
180 This is for code which is written on the assumption that
181 no GC will happen, so as to verify that assumption. */
182
183 int abort_on_gc;
184
185 /* Number of live and free conses etc. */
186
187 static int total_conses, total_markers, total_symbols, total_vector_size;
188 static int total_free_conses, total_free_markers, total_free_symbols;
189 static int total_free_floats, total_floats;
190
191 /* Points to memory space allocated as "spare", to be freed if we run
192 out of memory. We keep one large block, four cons-blocks, and
193 two string blocks. */
194
195 static char *spare_memory[7];
196
197 #ifndef SYSTEM_MALLOC
198 /* Amount of spare memory to keep in large reserve block. */
199
200 #define SPARE_MEMORY (1 << 14)
201 #endif
202
203 /* Number of extra blocks malloc should get when it needs more core. */
204
205 static int malloc_hysteresis;
206
207 /* Initialize it to a nonzero value to force it into data space
208 (rather than bss space). That way unexec will remap it into text
209 space (pure), on some systems. We have not implemented the
210 remapping on more recent systems because this is less important
211 nowadays than in the days of small memories and timesharing. */
212
213 #ifndef VIRT_ADDR_VARIES
214 static
215 #endif
216 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
217 #define PUREBEG (char *) pure
218
219 /* Pointer to the pure area, and its size. */
220
221 static char *purebeg;
222 static size_t pure_size;
223
224 /* Number of bytes of pure storage used before pure storage overflowed.
225 If this is non-zero, this implies that an overflow occurred. */
226
227 static size_t pure_bytes_used_before_overflow;
228
229 /* Value is non-zero if P points into pure space. */
230
231 #define PURE_POINTER_P(P) \
232 (((PNTR_COMPARISON_TYPE) (P) \
233 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
234 && ((PNTR_COMPARISON_TYPE) (P) \
235 >= (PNTR_COMPARISON_TYPE) purebeg))
236
237 /* Index in pure at which next pure Lisp object will be allocated.. */
238
239 static EMACS_INT pure_bytes_used_lisp;
240
241 /* Number of bytes allocated for non-Lisp objects in pure storage. */
242
243 static EMACS_INT pure_bytes_used_non_lisp;
244
245 /* If nonzero, this is a warning delivered by malloc and not yet
246 displayed. */
247
248 const char *pending_malloc_warning;
249
250 /* Maximum amount of C stack to save when a GC happens. */
251
252 #ifndef MAX_SAVE_STACK
253 #define MAX_SAVE_STACK 16000
254 #endif
255
256 /* Buffer in which we save a copy of the C stack at each GC. */
257
258 #if MAX_SAVE_STACK > 0
259 static char *stack_copy;
260 static size_t stack_copy_size;
261 #endif
262
263 /* Non-zero means ignore malloc warnings. Set during initialization.
264 Currently not used. */
265
266 static int ignore_warnings;
267
268 static Lisp_Object Qgc_cons_threshold;
269 Lisp_Object Qchar_table_extra_slots;
270
271 /* Hook run after GC has finished. */
272
273 static Lisp_Object Qpost_gc_hook;
274
275 static void mark_buffer (Lisp_Object);
276 static void mark_terminals (void);
277 static void gc_sweep (void);
278 static void mark_glyph_matrix (struct glyph_matrix *);
279 static void mark_face_cache (struct face_cache *);
280
281 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
282 static void refill_memory_reserve (void);
283 #endif
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
288 static void free_misc (Lisp_Object);
289
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294 enum mem_type
295 {
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE
308 };
309
310 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
311 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
312
313
314 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
315
316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317 #include <stdio.h> /* For fprintf. */
318 #endif
319
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
323 static Lisp_Object Vdead;
324
325 #ifdef GC_MALLOC_CHECK
326
327 enum mem_type allocated_mem_type;
328 static int dont_register_blocks;
329
330 #endif /* GC_MALLOC_CHECK */
331
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356 struct mem_node
357 {
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
370
371 /* Memory type. */
372 enum mem_type type;
373 };
374
375 /* Base address of stack. Set in main. */
376
377 Lisp_Object *stack_base;
378
379 /* Root of the tree describing allocated Lisp memory. */
380
381 static struct mem_node *mem_root;
382
383 /* Lowest and highest known address in the heap. */
384
385 static void *min_heap_address, *max_heap_address;
386
387 /* Sentinel node of the tree. */
388
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
391
392 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
393 static void lisp_free (POINTER_TYPE *);
394 static void mark_stack (void);
395 static int live_vector_p (struct mem_node *, void *);
396 static int live_buffer_p (struct mem_node *, void *);
397 static int live_string_p (struct mem_node *, void *);
398 static int live_cons_p (struct mem_node *, void *);
399 static int live_symbol_p (struct mem_node *, void *);
400 static int live_float_p (struct mem_node *, void *);
401 static int live_misc_p (struct mem_node *, void *);
402 static void mark_maybe_object (Lisp_Object);
403 static void mark_memory (void *, void *, int);
404 static void mem_init (void);
405 static struct mem_node *mem_insert (void *, void *, enum mem_type);
406 static void mem_insert_fixup (struct mem_node *);
407 static void mem_rotate_left (struct mem_node *);
408 static void mem_rotate_right (struct mem_node *);
409 static void mem_delete (struct mem_node *);
410 static void mem_delete_fixup (struct mem_node *);
411 static INLINE struct mem_node *mem_find (void *);
412
413
414 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
415 static void check_gcpros (void);
416 #endif
417
418 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
419
420 /* Recording what needs to be marked for gc. */
421
422 struct gcpro *gcprolist;
423
424 /* Addresses of staticpro'd variables. Initialize it to a nonzero
425 value; otherwise some compilers put it into BSS. */
426
427 #define NSTATICS 0x640
428 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
429
430 /* Index of next unused slot in staticvec. */
431
432 static int staticidx = 0;
433
434 static POINTER_TYPE *pure_alloc (size_t, int);
435
436
437 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
438 ALIGNMENT must be a power of 2. */
439
440 #define ALIGN(ptr, ALIGNMENT) \
441 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
442 & ~((ALIGNMENT) - 1)))
443
444
445 \f
446 /************************************************************************
447 Malloc
448 ************************************************************************/
449
450 /* Function malloc calls this if it finds we are near exhausting storage. */
451
452 void
453 malloc_warning (const char *str)
454 {
455 pending_malloc_warning = str;
456 }
457
458
459 /* Display an already-pending malloc warning. */
460
461 void
462 display_malloc_warning (void)
463 {
464 call3 (intern ("display-warning"),
465 intern ("alloc"),
466 build_string (pending_malloc_warning),
467 intern ("emergency"));
468 pending_malloc_warning = 0;
469 }
470 \f
471 /* Called if we can't allocate relocatable space for a buffer. */
472
473 void
474 buffer_memory_full (void)
475 {
476 /* If buffers use the relocating allocator, no need to free
477 spare_memory, because we may have plenty of malloc space left
478 that we could get, and if we don't, the malloc that fails will
479 itself cause spare_memory to be freed. If buffers don't use the
480 relocating allocator, treat this like any other failing
481 malloc. */
482
483 #ifndef REL_ALLOC
484 memory_full ();
485 #endif
486
487 /* This used to call error, but if we've run out of memory, we could
488 get infinite recursion trying to build the string. */
489 xsignal (Qnil, Vmemory_signal_data);
490 }
491
492
493 #ifdef XMALLOC_OVERRUN_CHECK
494
495 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
496 and a 16 byte trailer around each block.
497
498 The header consists of 12 fixed bytes + a 4 byte integer contaning the
499 original block size, while the trailer consists of 16 fixed bytes.
500
501 The header is used to detect whether this block has been allocated
502 through these functions -- as it seems that some low-level libc
503 functions may bypass the malloc hooks.
504 */
505
506
507 #define XMALLOC_OVERRUN_CHECK_SIZE 16
508
509 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
510 { 0x9a, 0x9b, 0xae, 0xaf,
511 0xbf, 0xbe, 0xce, 0xcf,
512 0xea, 0xeb, 0xec, 0xed };
513
514 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
515 { 0xaa, 0xab, 0xac, 0xad,
516 0xba, 0xbb, 0xbc, 0xbd,
517 0xca, 0xcb, 0xcc, 0xcd,
518 0xda, 0xdb, 0xdc, 0xdd };
519
520 /* Macros to insert and extract the block size in the header. */
521
522 #define XMALLOC_PUT_SIZE(ptr, size) \
523 (ptr[-1] = (size & 0xff), \
524 ptr[-2] = ((size >> 8) & 0xff), \
525 ptr[-3] = ((size >> 16) & 0xff), \
526 ptr[-4] = ((size >> 24) & 0xff))
527
528 #define XMALLOC_GET_SIZE(ptr) \
529 (size_t)((unsigned)(ptr[-1]) | \
530 ((unsigned)(ptr[-2]) << 8) | \
531 ((unsigned)(ptr[-3]) << 16) | \
532 ((unsigned)(ptr[-4]) << 24))
533
534
535 /* The call depth in overrun_check functions. For example, this might happen:
536 xmalloc()
537 overrun_check_malloc()
538 -> malloc -> (via hook)_-> emacs_blocked_malloc
539 -> overrun_check_malloc
540 call malloc (hooks are NULL, so real malloc is called).
541 malloc returns 10000.
542 add overhead, return 10016.
543 <- (back in overrun_check_malloc)
544 add overhead again, return 10032
545 xmalloc returns 10032.
546
547 (time passes).
548
549 xfree(10032)
550 overrun_check_free(10032)
551 decrease overhed
552 free(10016) <- crash, because 10000 is the original pointer. */
553
554 static int check_depth;
555
556 /* Like malloc, but wraps allocated block with header and trailer. */
557
558 static POINTER_TYPE *
559 overrun_check_malloc (size_t size)
560 {
561 register unsigned char *val;
562 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
563
564 val = (unsigned char *) malloc (size + overhead);
565 if (val && check_depth == 1)
566 {
567 memcpy (val, xmalloc_overrun_check_header,
568 XMALLOC_OVERRUN_CHECK_SIZE - 4);
569 val += XMALLOC_OVERRUN_CHECK_SIZE;
570 XMALLOC_PUT_SIZE(val, size);
571 memcpy (val + size, xmalloc_overrun_check_trailer,
572 XMALLOC_OVERRUN_CHECK_SIZE);
573 }
574 --check_depth;
575 return (POINTER_TYPE *)val;
576 }
577
578
579 /* Like realloc, but checks old block for overrun, and wraps new block
580 with header and trailer. */
581
582 static POINTER_TYPE *
583 overrun_check_realloc (POINTER_TYPE *block, size_t size)
584 {
585 register unsigned char *val = (unsigned char *) block;
586 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
587
588 if (val
589 && check_depth == 1
590 && memcmp (xmalloc_overrun_check_header,
591 val - XMALLOC_OVERRUN_CHECK_SIZE,
592 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
593 {
594 size_t osize = XMALLOC_GET_SIZE (val);
595 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
596 XMALLOC_OVERRUN_CHECK_SIZE))
597 abort ();
598 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
599 val -= XMALLOC_OVERRUN_CHECK_SIZE;
600 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
601 }
602
603 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
604
605 if (val && check_depth == 1)
606 {
607 memcpy (val, xmalloc_overrun_check_header,
608 XMALLOC_OVERRUN_CHECK_SIZE - 4);
609 val += XMALLOC_OVERRUN_CHECK_SIZE;
610 XMALLOC_PUT_SIZE(val, size);
611 memcpy (val + size, xmalloc_overrun_check_trailer,
612 XMALLOC_OVERRUN_CHECK_SIZE);
613 }
614 --check_depth;
615 return (POINTER_TYPE *)val;
616 }
617
618 /* Like free, but checks block for overrun. */
619
620 static void
621 overrun_check_free (POINTER_TYPE *block)
622 {
623 unsigned char *val = (unsigned char *) block;
624
625 ++check_depth;
626 if (val
627 && check_depth == 1
628 && memcmp (xmalloc_overrun_check_header,
629 val - XMALLOC_OVERRUN_CHECK_SIZE,
630 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
631 {
632 size_t osize = XMALLOC_GET_SIZE (val);
633 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
634 XMALLOC_OVERRUN_CHECK_SIZE))
635 abort ();
636 #ifdef XMALLOC_CLEAR_FREE_MEMORY
637 val -= XMALLOC_OVERRUN_CHECK_SIZE;
638 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
639 #else
640 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
641 val -= XMALLOC_OVERRUN_CHECK_SIZE;
642 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
643 #endif
644 }
645
646 free (val);
647 --check_depth;
648 }
649
650 #undef malloc
651 #undef realloc
652 #undef free
653 #define malloc overrun_check_malloc
654 #define realloc overrun_check_realloc
655 #define free overrun_check_free
656 #endif
657
658 #ifdef SYNC_INPUT
659 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
660 there's no need to block input around malloc. */
661 #define MALLOC_BLOCK_INPUT ((void)0)
662 #define MALLOC_UNBLOCK_INPUT ((void)0)
663 #else
664 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
665 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
666 #endif
667
668 /* Like malloc but check for no memory and block interrupt input.. */
669
670 POINTER_TYPE *
671 xmalloc (size_t size)
672 {
673 register POINTER_TYPE *val;
674
675 MALLOC_BLOCK_INPUT;
676 val = (POINTER_TYPE *) malloc (size);
677 MALLOC_UNBLOCK_INPUT;
678
679 if (!val && size)
680 memory_full ();
681 return val;
682 }
683
684
685 /* Like realloc but check for no memory and block interrupt input.. */
686
687 POINTER_TYPE *
688 xrealloc (POINTER_TYPE *block, size_t size)
689 {
690 register POINTER_TYPE *val;
691
692 MALLOC_BLOCK_INPUT;
693 /* We must call malloc explicitly when BLOCK is 0, since some
694 reallocs don't do this. */
695 if (! block)
696 val = (POINTER_TYPE *) malloc (size);
697 else
698 val = (POINTER_TYPE *) realloc (block, size);
699 MALLOC_UNBLOCK_INPUT;
700
701 if (!val && size) memory_full ();
702 return val;
703 }
704
705
706 /* Like free but block interrupt input. */
707
708 void
709 xfree (POINTER_TYPE *block)
710 {
711 if (!block)
712 return;
713 MALLOC_BLOCK_INPUT;
714 free (block);
715 MALLOC_UNBLOCK_INPUT;
716 /* We don't call refill_memory_reserve here
717 because that duplicates doing so in emacs_blocked_free
718 and the criterion should go there. */
719 }
720
721
722 /* Like strdup, but uses xmalloc. */
723
724 char *
725 xstrdup (const char *s)
726 {
727 size_t len = strlen (s) + 1;
728 char *p = (char *) xmalloc (len);
729 memcpy (p, s, len);
730 return p;
731 }
732
733
734 /* Unwind for SAFE_ALLOCA */
735
736 Lisp_Object
737 safe_alloca_unwind (Lisp_Object arg)
738 {
739 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
740
741 p->dogc = 0;
742 xfree (p->pointer);
743 p->pointer = 0;
744 free_misc (arg);
745 return Qnil;
746 }
747
748
749 /* Like malloc but used for allocating Lisp data. NBYTES is the
750 number of bytes to allocate, TYPE describes the intended use of the
751 allcated memory block (for strings, for conses, ...). */
752
753 #ifndef USE_LSB_TAG
754 static void *lisp_malloc_loser;
755 #endif
756
757 static POINTER_TYPE *
758 lisp_malloc (size_t nbytes, enum mem_type type)
759 {
760 register void *val;
761
762 MALLOC_BLOCK_INPUT;
763
764 #ifdef GC_MALLOC_CHECK
765 allocated_mem_type = type;
766 #endif
767
768 val = (void *) malloc (nbytes);
769
770 #ifndef USE_LSB_TAG
771 /* If the memory just allocated cannot be addressed thru a Lisp
772 object's pointer, and it needs to be,
773 that's equivalent to running out of memory. */
774 if (val && type != MEM_TYPE_NON_LISP)
775 {
776 Lisp_Object tem;
777 XSETCONS (tem, (char *) val + nbytes - 1);
778 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
779 {
780 lisp_malloc_loser = val;
781 free (val);
782 val = 0;
783 }
784 }
785 #endif
786
787 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
788 if (val && type != MEM_TYPE_NON_LISP)
789 mem_insert (val, (char *) val + nbytes, type);
790 #endif
791
792 MALLOC_UNBLOCK_INPUT;
793 if (!val && nbytes)
794 memory_full ();
795 return val;
796 }
797
798 /* Free BLOCK. This must be called to free memory allocated with a
799 call to lisp_malloc. */
800
801 static void
802 lisp_free (POINTER_TYPE *block)
803 {
804 MALLOC_BLOCK_INPUT;
805 free (block);
806 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
807 mem_delete (mem_find (block));
808 #endif
809 MALLOC_UNBLOCK_INPUT;
810 }
811
812 /* Allocation of aligned blocks of memory to store Lisp data. */
813 /* The entry point is lisp_align_malloc which returns blocks of at most */
814 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
815
816 /* Use posix_memalloc if the system has it and we're using the system's
817 malloc (because our gmalloc.c routines don't have posix_memalign although
818 its memalloc could be used). */
819 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
820 #define USE_POSIX_MEMALIGN 1
821 #endif
822
823 /* BLOCK_ALIGN has to be a power of 2. */
824 #define BLOCK_ALIGN (1 << 10)
825
826 /* Padding to leave at the end of a malloc'd block. This is to give
827 malloc a chance to minimize the amount of memory wasted to alignment.
828 It should be tuned to the particular malloc library used.
829 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
830 posix_memalign on the other hand would ideally prefer a value of 4
831 because otherwise, there's 1020 bytes wasted between each ablocks.
832 In Emacs, testing shows that those 1020 can most of the time be
833 efficiently used by malloc to place other objects, so a value of 0 can
834 still preferable unless you have a lot of aligned blocks and virtually
835 nothing else. */
836 #define BLOCK_PADDING 0
837 #define BLOCK_BYTES \
838 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
839
840 /* Internal data structures and constants. */
841
842 #define ABLOCKS_SIZE 16
843
844 /* An aligned block of memory. */
845 struct ablock
846 {
847 union
848 {
849 char payload[BLOCK_BYTES];
850 struct ablock *next_free;
851 } x;
852 /* `abase' is the aligned base of the ablocks. */
853 /* It is overloaded to hold the virtual `busy' field that counts
854 the number of used ablock in the parent ablocks.
855 The first ablock has the `busy' field, the others have the `abase'
856 field. To tell the difference, we assume that pointers will have
857 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
858 is used to tell whether the real base of the parent ablocks is `abase'
859 (if not, the word before the first ablock holds a pointer to the
860 real base). */
861 struct ablocks *abase;
862 /* The padding of all but the last ablock is unused. The padding of
863 the last ablock in an ablocks is not allocated. */
864 #if BLOCK_PADDING
865 char padding[BLOCK_PADDING];
866 #endif
867 };
868
869 /* A bunch of consecutive aligned blocks. */
870 struct ablocks
871 {
872 struct ablock blocks[ABLOCKS_SIZE];
873 };
874
875 /* Size of the block requested from malloc or memalign. */
876 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
877
878 #define ABLOCK_ABASE(block) \
879 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
880 ? (struct ablocks *)(block) \
881 : (block)->abase)
882
883 /* Virtual `busy' field. */
884 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
885
886 /* Pointer to the (not necessarily aligned) malloc block. */
887 #ifdef USE_POSIX_MEMALIGN
888 #define ABLOCKS_BASE(abase) (abase)
889 #else
890 #define ABLOCKS_BASE(abase) \
891 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
892 #endif
893
894 /* The list of free ablock. */
895 static struct ablock *free_ablock;
896
897 /* Allocate an aligned block of nbytes.
898 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
899 smaller or equal to BLOCK_BYTES. */
900 static POINTER_TYPE *
901 lisp_align_malloc (size_t nbytes, enum mem_type type)
902 {
903 void *base, *val;
904 struct ablocks *abase;
905
906 eassert (nbytes <= BLOCK_BYTES);
907
908 MALLOC_BLOCK_INPUT;
909
910 #ifdef GC_MALLOC_CHECK
911 allocated_mem_type = type;
912 #endif
913
914 if (!free_ablock)
915 {
916 int i;
917 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
918
919 #ifdef DOUG_LEA_MALLOC
920 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
921 because mapped region contents are not preserved in
922 a dumped Emacs. */
923 mallopt (M_MMAP_MAX, 0);
924 #endif
925
926 #ifdef USE_POSIX_MEMALIGN
927 {
928 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
929 if (err)
930 base = NULL;
931 abase = base;
932 }
933 #else
934 base = malloc (ABLOCKS_BYTES);
935 abase = ALIGN (base, BLOCK_ALIGN);
936 #endif
937
938 if (base == 0)
939 {
940 MALLOC_UNBLOCK_INPUT;
941 memory_full ();
942 }
943
944 aligned = (base == abase);
945 if (!aligned)
946 ((void**)abase)[-1] = base;
947
948 #ifdef DOUG_LEA_MALLOC
949 /* Back to a reasonable maximum of mmap'ed areas. */
950 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
951 #endif
952
953 #ifndef USE_LSB_TAG
954 /* If the memory just allocated cannot be addressed thru a Lisp
955 object's pointer, and it needs to be, that's equivalent to
956 running out of memory. */
957 if (type != MEM_TYPE_NON_LISP)
958 {
959 Lisp_Object tem;
960 char *end = (char *) base + ABLOCKS_BYTES - 1;
961 XSETCONS (tem, end);
962 if ((char *) XCONS (tem) != end)
963 {
964 lisp_malloc_loser = base;
965 free (base);
966 MALLOC_UNBLOCK_INPUT;
967 memory_full ();
968 }
969 }
970 #endif
971
972 /* Initialize the blocks and put them on the free list.
973 Is `base' was not properly aligned, we can't use the last block. */
974 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
975 {
976 abase->blocks[i].abase = abase;
977 abase->blocks[i].x.next_free = free_ablock;
978 free_ablock = &abase->blocks[i];
979 }
980 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
981
982 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
983 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
984 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
985 eassert (ABLOCKS_BASE (abase) == base);
986 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
987 }
988
989 abase = ABLOCK_ABASE (free_ablock);
990 ABLOCKS_BUSY (abase) =
991 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
992 val = free_ablock;
993 free_ablock = free_ablock->x.next_free;
994
995 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
996 if (val && type != MEM_TYPE_NON_LISP)
997 mem_insert (val, (char *) val + nbytes, type);
998 #endif
999
1000 MALLOC_UNBLOCK_INPUT;
1001 if (!val && nbytes)
1002 memory_full ();
1003
1004 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1005 return val;
1006 }
1007
1008 static void
1009 lisp_align_free (POINTER_TYPE *block)
1010 {
1011 struct ablock *ablock = block;
1012 struct ablocks *abase = ABLOCK_ABASE (ablock);
1013
1014 MALLOC_BLOCK_INPUT;
1015 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1016 mem_delete (mem_find (block));
1017 #endif
1018 /* Put on free list. */
1019 ablock->x.next_free = free_ablock;
1020 free_ablock = ablock;
1021 /* Update busy count. */
1022 ABLOCKS_BUSY (abase) =
1023 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1024
1025 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1026 { /* All the blocks are free. */
1027 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1028 struct ablock **tem = &free_ablock;
1029 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1030
1031 while (*tem)
1032 {
1033 if (*tem >= (struct ablock *) abase && *tem < atop)
1034 {
1035 i++;
1036 *tem = (*tem)->x.next_free;
1037 }
1038 else
1039 tem = &(*tem)->x.next_free;
1040 }
1041 eassert ((aligned & 1) == aligned);
1042 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1043 #ifdef USE_POSIX_MEMALIGN
1044 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1045 #endif
1046 free (ABLOCKS_BASE (abase));
1047 }
1048 MALLOC_UNBLOCK_INPUT;
1049 }
1050
1051 /* Return a new buffer structure allocated from the heap with
1052 a call to lisp_malloc. */
1053
1054 struct buffer *
1055 allocate_buffer (void)
1056 {
1057 struct buffer *b
1058 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1059 MEM_TYPE_BUFFER);
1060 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1061 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1062 / sizeof (EMACS_INT)));
1063 return b;
1064 }
1065
1066 \f
1067 #ifndef SYSTEM_MALLOC
1068
1069 /* Arranging to disable input signals while we're in malloc.
1070
1071 This only works with GNU malloc. To help out systems which can't
1072 use GNU malloc, all the calls to malloc, realloc, and free
1073 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1074 pair; unfortunately, we have no idea what C library functions
1075 might call malloc, so we can't really protect them unless you're
1076 using GNU malloc. Fortunately, most of the major operating systems
1077 can use GNU malloc. */
1078
1079 #ifndef SYNC_INPUT
1080 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1081 there's no need to block input around malloc. */
1082
1083 #ifndef DOUG_LEA_MALLOC
1084 extern void * (*__malloc_hook) (size_t, const void *);
1085 extern void * (*__realloc_hook) (void *, size_t, const void *);
1086 extern void (*__free_hook) (void *, const void *);
1087 /* Else declared in malloc.h, perhaps with an extra arg. */
1088 #endif /* DOUG_LEA_MALLOC */
1089 static void * (*old_malloc_hook) (size_t, const void *);
1090 static void * (*old_realloc_hook) (void *, size_t, const void*);
1091 static void (*old_free_hook) (void*, const void*);
1092
1093 #ifdef DOUG_LEA_MALLOC
1094 # define BYTES_USED (mallinfo ().uordblks)
1095 #else
1096 # define BYTES_USED _bytes_used
1097 #endif
1098
1099 static __malloc_size_t bytes_used_when_reconsidered;
1100
1101 /* Value of _bytes_used, when spare_memory was freed. */
1102
1103 static __malloc_size_t bytes_used_when_full;
1104
1105 /* This function is used as the hook for free to call. */
1106
1107 static void
1108 emacs_blocked_free (void *ptr, const void *ptr2)
1109 {
1110 BLOCK_INPUT_ALLOC;
1111
1112 #ifdef GC_MALLOC_CHECK
1113 if (ptr)
1114 {
1115 struct mem_node *m;
1116
1117 m = mem_find (ptr);
1118 if (m == MEM_NIL || m->start != ptr)
1119 {
1120 fprintf (stderr,
1121 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1122 abort ();
1123 }
1124 else
1125 {
1126 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1127 mem_delete (m);
1128 }
1129 }
1130 #endif /* GC_MALLOC_CHECK */
1131
1132 __free_hook = old_free_hook;
1133 free (ptr);
1134
1135 /* If we released our reserve (due to running out of memory),
1136 and we have a fair amount free once again,
1137 try to set aside another reserve in case we run out once more. */
1138 if (! NILP (Vmemory_full)
1139 /* Verify there is enough space that even with the malloc
1140 hysteresis this call won't run out again.
1141 The code here is correct as long as SPARE_MEMORY
1142 is substantially larger than the block size malloc uses. */
1143 && (bytes_used_when_full
1144 > ((bytes_used_when_reconsidered = BYTES_USED)
1145 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1146 refill_memory_reserve ();
1147
1148 __free_hook = emacs_blocked_free;
1149 UNBLOCK_INPUT_ALLOC;
1150 }
1151
1152
1153 /* This function is the malloc hook that Emacs uses. */
1154
1155 static void *
1156 emacs_blocked_malloc (size_t size, const void *ptr)
1157 {
1158 void *value;
1159
1160 BLOCK_INPUT_ALLOC;
1161 __malloc_hook = old_malloc_hook;
1162 #ifdef DOUG_LEA_MALLOC
1163 /* Segfaults on my system. --lorentey */
1164 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1165 #else
1166 __malloc_extra_blocks = malloc_hysteresis;
1167 #endif
1168
1169 value = (void *) malloc (size);
1170
1171 #ifdef GC_MALLOC_CHECK
1172 {
1173 struct mem_node *m = mem_find (value);
1174 if (m != MEM_NIL)
1175 {
1176 fprintf (stderr, "Malloc returned %p which is already in use\n",
1177 value);
1178 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1179 m->start, m->end, (char *) m->end - (char *) m->start,
1180 m->type);
1181 abort ();
1182 }
1183
1184 if (!dont_register_blocks)
1185 {
1186 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1187 allocated_mem_type = MEM_TYPE_NON_LISP;
1188 }
1189 }
1190 #endif /* GC_MALLOC_CHECK */
1191
1192 __malloc_hook = emacs_blocked_malloc;
1193 UNBLOCK_INPUT_ALLOC;
1194
1195 /* fprintf (stderr, "%p malloc\n", value); */
1196 return value;
1197 }
1198
1199
1200 /* This function is the realloc hook that Emacs uses. */
1201
1202 static void *
1203 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1204 {
1205 void *value;
1206
1207 BLOCK_INPUT_ALLOC;
1208 __realloc_hook = old_realloc_hook;
1209
1210 #ifdef GC_MALLOC_CHECK
1211 if (ptr)
1212 {
1213 struct mem_node *m = mem_find (ptr);
1214 if (m == MEM_NIL || m->start != ptr)
1215 {
1216 fprintf (stderr,
1217 "Realloc of %p which wasn't allocated with malloc\n",
1218 ptr);
1219 abort ();
1220 }
1221
1222 mem_delete (m);
1223 }
1224
1225 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1226
1227 /* Prevent malloc from registering blocks. */
1228 dont_register_blocks = 1;
1229 #endif /* GC_MALLOC_CHECK */
1230
1231 value = (void *) realloc (ptr, size);
1232
1233 #ifdef GC_MALLOC_CHECK
1234 dont_register_blocks = 0;
1235
1236 {
1237 struct mem_node *m = mem_find (value);
1238 if (m != MEM_NIL)
1239 {
1240 fprintf (stderr, "Realloc returns memory that is already in use\n");
1241 abort ();
1242 }
1243
1244 /* Can't handle zero size regions in the red-black tree. */
1245 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1246 }
1247
1248 /* fprintf (stderr, "%p <- realloc\n", value); */
1249 #endif /* GC_MALLOC_CHECK */
1250
1251 __realloc_hook = emacs_blocked_realloc;
1252 UNBLOCK_INPUT_ALLOC;
1253
1254 return value;
1255 }
1256
1257
1258 #ifdef HAVE_GTK_AND_PTHREAD
1259 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1260 normal malloc. Some thread implementations need this as they call
1261 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1262 calls malloc because it is the first call, and we have an endless loop. */
1263
1264 void
1265 reset_malloc_hooks ()
1266 {
1267 __free_hook = old_free_hook;
1268 __malloc_hook = old_malloc_hook;
1269 __realloc_hook = old_realloc_hook;
1270 }
1271 #endif /* HAVE_GTK_AND_PTHREAD */
1272
1273
1274 /* Called from main to set up malloc to use our hooks. */
1275
1276 void
1277 uninterrupt_malloc (void)
1278 {
1279 #ifdef HAVE_GTK_AND_PTHREAD
1280 #ifdef DOUG_LEA_MALLOC
1281 pthread_mutexattr_t attr;
1282
1283 /* GLIBC has a faster way to do this, but lets keep it portable.
1284 This is according to the Single UNIX Specification. */
1285 pthread_mutexattr_init (&attr);
1286 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1287 pthread_mutex_init (&alloc_mutex, &attr);
1288 #else /* !DOUG_LEA_MALLOC */
1289 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1290 and the bundled gmalloc.c doesn't require it. */
1291 pthread_mutex_init (&alloc_mutex, NULL);
1292 #endif /* !DOUG_LEA_MALLOC */
1293 #endif /* HAVE_GTK_AND_PTHREAD */
1294
1295 if (__free_hook != emacs_blocked_free)
1296 old_free_hook = __free_hook;
1297 __free_hook = emacs_blocked_free;
1298
1299 if (__malloc_hook != emacs_blocked_malloc)
1300 old_malloc_hook = __malloc_hook;
1301 __malloc_hook = emacs_blocked_malloc;
1302
1303 if (__realloc_hook != emacs_blocked_realloc)
1304 old_realloc_hook = __realloc_hook;
1305 __realloc_hook = emacs_blocked_realloc;
1306 }
1307
1308 #endif /* not SYNC_INPUT */
1309 #endif /* not SYSTEM_MALLOC */
1310
1311
1312 \f
1313 /***********************************************************************
1314 Interval Allocation
1315 ***********************************************************************/
1316
1317 /* Number of intervals allocated in an interval_block structure.
1318 The 1020 is 1024 minus malloc overhead. */
1319
1320 #define INTERVAL_BLOCK_SIZE \
1321 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1322
1323 /* Intervals are allocated in chunks in form of an interval_block
1324 structure. */
1325
1326 struct interval_block
1327 {
1328 /* Place `intervals' first, to preserve alignment. */
1329 struct interval intervals[INTERVAL_BLOCK_SIZE];
1330 struct interval_block *next;
1331 };
1332
1333 /* Current interval block. Its `next' pointer points to older
1334 blocks. */
1335
1336 static struct interval_block *interval_block;
1337
1338 /* Index in interval_block above of the next unused interval
1339 structure. */
1340
1341 static int interval_block_index;
1342
1343 /* Number of free and live intervals. */
1344
1345 static int total_free_intervals, total_intervals;
1346
1347 /* List of free intervals. */
1348
1349 static INTERVAL interval_free_list;
1350
1351 /* Total number of interval blocks now in use. */
1352
1353 static int n_interval_blocks;
1354
1355
1356 /* Initialize interval allocation. */
1357
1358 static void
1359 init_intervals (void)
1360 {
1361 interval_block = NULL;
1362 interval_block_index = INTERVAL_BLOCK_SIZE;
1363 interval_free_list = 0;
1364 n_interval_blocks = 0;
1365 }
1366
1367
1368 /* Return a new interval. */
1369
1370 INTERVAL
1371 make_interval (void)
1372 {
1373 INTERVAL val;
1374
1375 /* eassert (!handling_signal); */
1376
1377 MALLOC_BLOCK_INPUT;
1378
1379 if (interval_free_list)
1380 {
1381 val = interval_free_list;
1382 interval_free_list = INTERVAL_PARENT (interval_free_list);
1383 }
1384 else
1385 {
1386 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1387 {
1388 register struct interval_block *newi;
1389
1390 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1391 MEM_TYPE_NON_LISP);
1392
1393 newi->next = interval_block;
1394 interval_block = newi;
1395 interval_block_index = 0;
1396 n_interval_blocks++;
1397 }
1398 val = &interval_block->intervals[interval_block_index++];
1399 }
1400
1401 MALLOC_UNBLOCK_INPUT;
1402
1403 consing_since_gc += sizeof (struct interval);
1404 intervals_consed++;
1405 RESET_INTERVAL (val);
1406 val->gcmarkbit = 0;
1407 return val;
1408 }
1409
1410
1411 /* Mark Lisp objects in interval I. */
1412
1413 static void
1414 mark_interval (register INTERVAL i, Lisp_Object dummy)
1415 {
1416 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1417 i->gcmarkbit = 1;
1418 mark_object (i->plist);
1419 }
1420
1421
1422 /* Mark the interval tree rooted in TREE. Don't call this directly;
1423 use the macro MARK_INTERVAL_TREE instead. */
1424
1425 static void
1426 mark_interval_tree (register INTERVAL tree)
1427 {
1428 /* No need to test if this tree has been marked already; this
1429 function is always called through the MARK_INTERVAL_TREE macro,
1430 which takes care of that. */
1431
1432 traverse_intervals_noorder (tree, mark_interval, Qnil);
1433 }
1434
1435
1436 /* Mark the interval tree rooted in I. */
1437
1438 #define MARK_INTERVAL_TREE(i) \
1439 do { \
1440 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1441 mark_interval_tree (i); \
1442 } while (0)
1443
1444
1445 #define UNMARK_BALANCE_INTERVALS(i) \
1446 do { \
1447 if (! NULL_INTERVAL_P (i)) \
1448 (i) = balance_intervals (i); \
1449 } while (0)
1450
1451 \f
1452 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1453 can't create number objects in macros. */
1454 #ifndef make_number
1455 Lisp_Object
1456 make_number (EMACS_INT n)
1457 {
1458 Lisp_Object obj;
1459 obj.s.val = n;
1460 obj.s.type = Lisp_Int;
1461 return obj;
1462 }
1463 #endif
1464 \f
1465 /***********************************************************************
1466 String Allocation
1467 ***********************************************************************/
1468
1469 /* Lisp_Strings are allocated in string_block structures. When a new
1470 string_block is allocated, all the Lisp_Strings it contains are
1471 added to a free-list string_free_list. When a new Lisp_String is
1472 needed, it is taken from that list. During the sweep phase of GC,
1473 string_blocks that are entirely free are freed, except two which
1474 we keep.
1475
1476 String data is allocated from sblock structures. Strings larger
1477 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1478 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1479
1480 Sblocks consist internally of sdata structures, one for each
1481 Lisp_String. The sdata structure points to the Lisp_String it
1482 belongs to. The Lisp_String points back to the `u.data' member of
1483 its sdata structure.
1484
1485 When a Lisp_String is freed during GC, it is put back on
1486 string_free_list, and its `data' member and its sdata's `string'
1487 pointer is set to null. The size of the string is recorded in the
1488 `u.nbytes' member of the sdata. So, sdata structures that are no
1489 longer used, can be easily recognized, and it's easy to compact the
1490 sblocks of small strings which we do in compact_small_strings. */
1491
1492 /* Size in bytes of an sblock structure used for small strings. This
1493 is 8192 minus malloc overhead. */
1494
1495 #define SBLOCK_SIZE 8188
1496
1497 /* Strings larger than this are considered large strings. String data
1498 for large strings is allocated from individual sblocks. */
1499
1500 #define LARGE_STRING_BYTES 1024
1501
1502 /* Structure describing string memory sub-allocated from an sblock.
1503 This is where the contents of Lisp strings are stored. */
1504
1505 struct sdata
1506 {
1507 /* Back-pointer to the string this sdata belongs to. If null, this
1508 structure is free, and the NBYTES member of the union below
1509 contains the string's byte size (the same value that STRING_BYTES
1510 would return if STRING were non-null). If non-null, STRING_BYTES
1511 (STRING) is the size of the data, and DATA contains the string's
1512 contents. */
1513 struct Lisp_String *string;
1514
1515 #ifdef GC_CHECK_STRING_BYTES
1516
1517 EMACS_INT nbytes;
1518 unsigned char data[1];
1519
1520 #define SDATA_NBYTES(S) (S)->nbytes
1521 #define SDATA_DATA(S) (S)->data
1522 #define SDATA_SELECTOR(member) member
1523
1524 #else /* not GC_CHECK_STRING_BYTES */
1525
1526 union
1527 {
1528 /* When STRING is non-null. */
1529 unsigned char data[1];
1530
1531 /* When STRING is null. */
1532 EMACS_INT nbytes;
1533 } u;
1534
1535 #define SDATA_NBYTES(S) (S)->u.nbytes
1536 #define SDATA_DATA(S) (S)->u.data
1537 #define SDATA_SELECTOR(member) u.member
1538
1539 #endif /* not GC_CHECK_STRING_BYTES */
1540
1541 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1542 };
1543
1544
1545 /* Structure describing a block of memory which is sub-allocated to
1546 obtain string data memory for strings. Blocks for small strings
1547 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1548 as large as needed. */
1549
1550 struct sblock
1551 {
1552 /* Next in list. */
1553 struct sblock *next;
1554
1555 /* Pointer to the next free sdata block. This points past the end
1556 of the sblock if there isn't any space left in this block. */
1557 struct sdata *next_free;
1558
1559 /* Start of data. */
1560 struct sdata first_data;
1561 };
1562
1563 /* Number of Lisp strings in a string_block structure. The 1020 is
1564 1024 minus malloc overhead. */
1565
1566 #define STRING_BLOCK_SIZE \
1567 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1568
1569 /* Structure describing a block from which Lisp_String structures
1570 are allocated. */
1571
1572 struct string_block
1573 {
1574 /* Place `strings' first, to preserve alignment. */
1575 struct Lisp_String strings[STRING_BLOCK_SIZE];
1576 struct string_block *next;
1577 };
1578
1579 /* Head and tail of the list of sblock structures holding Lisp string
1580 data. We always allocate from current_sblock. The NEXT pointers
1581 in the sblock structures go from oldest_sblock to current_sblock. */
1582
1583 static struct sblock *oldest_sblock, *current_sblock;
1584
1585 /* List of sblocks for large strings. */
1586
1587 static struct sblock *large_sblocks;
1588
1589 /* List of string_block structures, and how many there are. */
1590
1591 static struct string_block *string_blocks;
1592 static int n_string_blocks;
1593
1594 /* Free-list of Lisp_Strings. */
1595
1596 static struct Lisp_String *string_free_list;
1597
1598 /* Number of live and free Lisp_Strings. */
1599
1600 static int total_strings, total_free_strings;
1601
1602 /* Number of bytes used by live strings. */
1603
1604 static EMACS_INT total_string_size;
1605
1606 /* Given a pointer to a Lisp_String S which is on the free-list
1607 string_free_list, return a pointer to its successor in the
1608 free-list. */
1609
1610 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1611
1612 /* Return a pointer to the sdata structure belonging to Lisp string S.
1613 S must be live, i.e. S->data must not be null. S->data is actually
1614 a pointer to the `u.data' member of its sdata structure; the
1615 structure starts at a constant offset in front of that. */
1616
1617 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1618
1619
1620 #ifdef GC_CHECK_STRING_OVERRUN
1621
1622 /* We check for overrun in string data blocks by appending a small
1623 "cookie" after each allocated string data block, and check for the
1624 presence of this cookie during GC. */
1625
1626 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1627 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1628 { '\xde', '\xad', '\xbe', '\xef' };
1629
1630 #else
1631 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1632 #endif
1633
1634 /* Value is the size of an sdata structure large enough to hold NBYTES
1635 bytes of string data. The value returned includes a terminating
1636 NUL byte, the size of the sdata structure, and padding. */
1637
1638 #ifdef GC_CHECK_STRING_BYTES
1639
1640 #define SDATA_SIZE(NBYTES) \
1641 ((SDATA_DATA_OFFSET \
1642 + (NBYTES) + 1 \
1643 + sizeof (EMACS_INT) - 1) \
1644 & ~(sizeof (EMACS_INT) - 1))
1645
1646 #else /* not GC_CHECK_STRING_BYTES */
1647
1648 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1649 less than the size of that member. The 'max' is not needed when
1650 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1651 alignment code reserves enough space. */
1652
1653 #define SDATA_SIZE(NBYTES) \
1654 ((SDATA_DATA_OFFSET \
1655 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1656 ? NBYTES \
1657 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1658 + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1661
1662 #endif /* not GC_CHECK_STRING_BYTES */
1663
1664 /* Extra bytes to allocate for each string. */
1665
1666 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1667
1668 /* Initialize string allocation. Called from init_alloc_once. */
1669
1670 static void
1671 init_strings (void)
1672 {
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1680 }
1681
1682
1683 #ifdef GC_CHECK_STRING_BYTES
1684
1685 static int check_string_bytes_count;
1686
1687 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1688
1689
1690 /* Like GC_STRING_BYTES, but with debugging check. */
1691
1692 EMACS_INT
1693 string_bytes (struct Lisp_String *s)
1694 {
1695 EMACS_INT nbytes =
1696 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1697
1698 if (!PURE_POINTER_P (s)
1699 && s->data
1700 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1701 abort ();
1702 return nbytes;
1703 }
1704
1705 /* Check validity of Lisp strings' string_bytes member in B. */
1706
1707 static void
1708 check_sblock (struct sblock *b)
1709 {
1710 struct sdata *from, *end, *from_end;
1711
1712 end = b->next_free;
1713
1714 for (from = &b->first_data; from < end; from = from_end)
1715 {
1716 /* Compute the next FROM here because copying below may
1717 overwrite data we need to compute it. */
1718 EMACS_INT nbytes;
1719
1720 /* Check that the string size recorded in the string is the
1721 same as the one recorded in the sdata structure. */
1722 if (from->string)
1723 CHECK_STRING_BYTES (from->string);
1724
1725 if (from->string)
1726 nbytes = GC_STRING_BYTES (from->string);
1727 else
1728 nbytes = SDATA_NBYTES (from);
1729
1730 nbytes = SDATA_SIZE (nbytes);
1731 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1732 }
1733 }
1734
1735
1736 /* Check validity of Lisp strings' string_bytes member. ALL_P
1737 non-zero means check all strings, otherwise check only most
1738 recently allocated strings. Used for hunting a bug. */
1739
1740 static void
1741 check_string_bytes (int all_p)
1742 {
1743 if (all_p)
1744 {
1745 struct sblock *b;
1746
1747 for (b = large_sblocks; b; b = b->next)
1748 {
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
1752 }
1753
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
1756 }
1757 else
1758 check_sblock (current_sblock);
1759 }
1760
1761 #endif /* GC_CHECK_STRING_BYTES */
1762
1763 #ifdef GC_CHECK_STRING_FREE_LIST
1764
1765 /* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1767
1768 static void
1769 check_string_free_list (void)
1770 {
1771 struct Lisp_String *s;
1772
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1776 {
1777 if ((uintptr_t) s < 1024)
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1780 }
1781 }
1782 #else
1783 #define check_string_free_list()
1784 #endif
1785
1786 /* Return a new Lisp_String. */
1787
1788 static struct Lisp_String *
1789 allocate_string (void)
1790 {
1791 struct Lisp_String *s;
1792
1793 /* eassert (!handling_signal); */
1794
1795 MALLOC_BLOCK_INPUT;
1796
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
1800 {
1801 struct string_block *b;
1802 int i;
1803
1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1805 memset (b, 0, sizeof *b);
1806 b->next = string_blocks;
1807 string_blocks = b;
1808 ++n_string_blocks;
1809
1810 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1811 {
1812 s = b->strings + i;
1813 NEXT_FREE_LISP_STRING (s) = string_free_list;
1814 string_free_list = s;
1815 }
1816
1817 total_free_strings += STRING_BLOCK_SIZE;
1818 }
1819
1820 check_string_free_list ();
1821
1822 /* Pop a Lisp_String off the free-list. */
1823 s = string_free_list;
1824 string_free_list = NEXT_FREE_LISP_STRING (s);
1825
1826 MALLOC_UNBLOCK_INPUT;
1827
1828 /* Probably not strictly necessary, but play it safe. */
1829 memset (s, 0, sizeof *s);
1830
1831 --total_free_strings;
1832 ++total_strings;
1833 ++strings_consed;
1834 consing_since_gc += sizeof *s;
1835
1836 #ifdef GC_CHECK_STRING_BYTES
1837 if (!noninteractive)
1838 {
1839 if (++check_string_bytes_count == 200)
1840 {
1841 check_string_bytes_count = 0;
1842 check_string_bytes (1);
1843 }
1844 else
1845 check_string_bytes (0);
1846 }
1847 #endif /* GC_CHECK_STRING_BYTES */
1848
1849 return s;
1850 }
1851
1852
1853 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1854 plus a NUL byte at the end. Allocate an sdata structure for S, and
1855 set S->data to its `u.data' member. Store a NUL byte at the end of
1856 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1857 S->data if it was initially non-null. */
1858
1859 void
1860 allocate_string_data (struct Lisp_String *s,
1861 EMACS_INT nchars, EMACS_INT nbytes)
1862 {
1863 struct sdata *data, *old_data;
1864 struct sblock *b;
1865 EMACS_INT needed, old_nbytes;
1866
1867 /* Determine the number of bytes needed to store NBYTES bytes
1868 of string data. */
1869 needed = SDATA_SIZE (nbytes);
1870 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1871 old_nbytes = GC_STRING_BYTES (s);
1872
1873 MALLOC_BLOCK_INPUT;
1874
1875 if (nbytes > LARGE_STRING_BYTES)
1876 {
1877 size_t size = offsetof (struct sblock, first_data) + needed;
1878
1879 #ifdef DOUG_LEA_MALLOC
1880 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1881 because mapped region contents are not preserved in
1882 a dumped Emacs.
1883
1884 In case you think of allowing it in a dumped Emacs at the
1885 cost of not being able to re-dump, there's another reason:
1886 mmap'ed data typically have an address towards the top of the
1887 address space, which won't fit into an EMACS_INT (at least on
1888 32-bit systems with the current tagging scheme). --fx */
1889 mallopt (M_MMAP_MAX, 0);
1890 #endif
1891
1892 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1893
1894 #ifdef DOUG_LEA_MALLOC
1895 /* Back to a reasonable maximum of mmap'ed areas. */
1896 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1897 #endif
1898
1899 b->next_free = &b->first_data;
1900 b->first_data.string = NULL;
1901 b->next = large_sblocks;
1902 large_sblocks = b;
1903 }
1904 else if (current_sblock == NULL
1905 || (((char *) current_sblock + SBLOCK_SIZE
1906 - (char *) current_sblock->next_free)
1907 < (needed + GC_STRING_EXTRA)))
1908 {
1909 /* Not enough room in the current sblock. */
1910 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1911 b->next_free = &b->first_data;
1912 b->first_data.string = NULL;
1913 b->next = NULL;
1914
1915 if (current_sblock)
1916 current_sblock->next = b;
1917 else
1918 oldest_sblock = b;
1919 current_sblock = b;
1920 }
1921 else
1922 b = current_sblock;
1923
1924 data = b->next_free;
1925 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1926
1927 MALLOC_UNBLOCK_INPUT;
1928
1929 data->string = s;
1930 s->data = SDATA_DATA (data);
1931 #ifdef GC_CHECK_STRING_BYTES
1932 SDATA_NBYTES (data) = nbytes;
1933 #endif
1934 s->size = nchars;
1935 s->size_byte = nbytes;
1936 s->data[nbytes] = '\0';
1937 #ifdef GC_CHECK_STRING_OVERRUN
1938 memcpy ((char *) data + needed, string_overrun_cookie,
1939 GC_STRING_OVERRUN_COOKIE_SIZE);
1940 #endif
1941
1942 /* If S had already data assigned, mark that as free by setting its
1943 string back-pointer to null, and recording the size of the data
1944 in it. */
1945 if (old_data)
1946 {
1947 SDATA_NBYTES (old_data) = old_nbytes;
1948 old_data->string = NULL;
1949 }
1950
1951 consing_since_gc += needed;
1952 }
1953
1954
1955 /* Sweep and compact strings. */
1956
1957 static void
1958 sweep_strings (void)
1959 {
1960 struct string_block *b, *next;
1961 struct string_block *live_blocks = NULL;
1962
1963 string_free_list = NULL;
1964 total_strings = total_free_strings = 0;
1965 total_string_size = 0;
1966
1967 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1968 for (b = string_blocks; b; b = next)
1969 {
1970 int i, nfree = 0;
1971 struct Lisp_String *free_list_before = string_free_list;
1972
1973 next = b->next;
1974
1975 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1976 {
1977 struct Lisp_String *s = b->strings + i;
1978
1979 if (s->data)
1980 {
1981 /* String was not on free-list before. */
1982 if (STRING_MARKED_P (s))
1983 {
1984 /* String is live; unmark it and its intervals. */
1985 UNMARK_STRING (s);
1986
1987 if (!NULL_INTERVAL_P (s->intervals))
1988 UNMARK_BALANCE_INTERVALS (s->intervals);
1989
1990 ++total_strings;
1991 total_string_size += STRING_BYTES (s);
1992 }
1993 else
1994 {
1995 /* String is dead. Put it on the free-list. */
1996 struct sdata *data = SDATA_OF_STRING (s);
1997
1998 /* Save the size of S in its sdata so that we know
1999 how large that is. Reset the sdata's string
2000 back-pointer so that we know it's free. */
2001 #ifdef GC_CHECK_STRING_BYTES
2002 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2003 abort ();
2004 #else
2005 data->u.nbytes = GC_STRING_BYTES (s);
2006 #endif
2007 data->string = NULL;
2008
2009 /* Reset the strings's `data' member so that we
2010 know it's free. */
2011 s->data = NULL;
2012
2013 /* Put the string on the free-list. */
2014 NEXT_FREE_LISP_STRING (s) = string_free_list;
2015 string_free_list = s;
2016 ++nfree;
2017 }
2018 }
2019 else
2020 {
2021 /* S was on the free-list before. Put it there again. */
2022 NEXT_FREE_LISP_STRING (s) = string_free_list;
2023 string_free_list = s;
2024 ++nfree;
2025 }
2026 }
2027
2028 /* Free blocks that contain free Lisp_Strings only, except
2029 the first two of them. */
2030 if (nfree == STRING_BLOCK_SIZE
2031 && total_free_strings > STRING_BLOCK_SIZE)
2032 {
2033 lisp_free (b);
2034 --n_string_blocks;
2035 string_free_list = free_list_before;
2036 }
2037 else
2038 {
2039 total_free_strings += nfree;
2040 b->next = live_blocks;
2041 live_blocks = b;
2042 }
2043 }
2044
2045 check_string_free_list ();
2046
2047 string_blocks = live_blocks;
2048 free_large_strings ();
2049 compact_small_strings ();
2050
2051 check_string_free_list ();
2052 }
2053
2054
2055 /* Free dead large strings. */
2056
2057 static void
2058 free_large_strings (void)
2059 {
2060 struct sblock *b, *next;
2061 struct sblock *live_blocks = NULL;
2062
2063 for (b = large_sblocks; b; b = next)
2064 {
2065 next = b->next;
2066
2067 if (b->first_data.string == NULL)
2068 lisp_free (b);
2069 else
2070 {
2071 b->next = live_blocks;
2072 live_blocks = b;
2073 }
2074 }
2075
2076 large_sblocks = live_blocks;
2077 }
2078
2079
2080 /* Compact data of small strings. Free sblocks that don't contain
2081 data of live strings after compaction. */
2082
2083 static void
2084 compact_small_strings (void)
2085 {
2086 struct sblock *b, *tb, *next;
2087 struct sdata *from, *to, *end, *tb_end;
2088 struct sdata *to_end, *from_end;
2089
2090 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2091 to, and TB_END is the end of TB. */
2092 tb = oldest_sblock;
2093 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2094 to = &tb->first_data;
2095
2096 /* Step through the blocks from the oldest to the youngest. We
2097 expect that old blocks will stabilize over time, so that less
2098 copying will happen this way. */
2099 for (b = oldest_sblock; b; b = b->next)
2100 {
2101 end = b->next_free;
2102 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2103
2104 for (from = &b->first_data; from < end; from = from_end)
2105 {
2106 /* Compute the next FROM here because copying below may
2107 overwrite data we need to compute it. */
2108 EMACS_INT nbytes;
2109
2110 #ifdef GC_CHECK_STRING_BYTES
2111 /* Check that the string size recorded in the string is the
2112 same as the one recorded in the sdata structure. */
2113 if (from->string
2114 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2115 abort ();
2116 #endif /* GC_CHECK_STRING_BYTES */
2117
2118 if (from->string)
2119 nbytes = GC_STRING_BYTES (from->string);
2120 else
2121 nbytes = SDATA_NBYTES (from);
2122
2123 if (nbytes > LARGE_STRING_BYTES)
2124 abort ();
2125
2126 nbytes = SDATA_SIZE (nbytes);
2127 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2128
2129 #ifdef GC_CHECK_STRING_OVERRUN
2130 if (memcmp (string_overrun_cookie,
2131 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2132 GC_STRING_OVERRUN_COOKIE_SIZE))
2133 abort ();
2134 #endif
2135
2136 /* FROM->string non-null means it's alive. Copy its data. */
2137 if (from->string)
2138 {
2139 /* If TB is full, proceed with the next sblock. */
2140 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2141 if (to_end > tb_end)
2142 {
2143 tb->next_free = to;
2144 tb = tb->next;
2145 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2146 to = &tb->first_data;
2147 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2148 }
2149
2150 /* Copy, and update the string's `data' pointer. */
2151 if (from != to)
2152 {
2153 xassert (tb != b || to < from);
2154 memmove (to, from, nbytes + GC_STRING_EXTRA);
2155 to->string->data = SDATA_DATA (to);
2156 }
2157
2158 /* Advance past the sdata we copied to. */
2159 to = to_end;
2160 }
2161 }
2162 }
2163
2164 /* The rest of the sblocks following TB don't contain live data, so
2165 we can free them. */
2166 for (b = tb->next; b; b = next)
2167 {
2168 next = b->next;
2169 lisp_free (b);
2170 }
2171
2172 tb->next_free = to;
2173 tb->next = NULL;
2174 current_sblock = tb;
2175 }
2176
2177
2178 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2179 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2180 LENGTH must be an integer.
2181 INIT must be an integer that represents a character. */)
2182 (Lisp_Object length, Lisp_Object init)
2183 {
2184 register Lisp_Object val;
2185 register unsigned char *p, *end;
2186 int c;
2187 EMACS_INT nbytes;
2188
2189 CHECK_NATNUM (length);
2190 CHECK_NUMBER (init);
2191
2192 c = XINT (init);
2193 if (ASCII_CHAR_P (c))
2194 {
2195 nbytes = XINT (length);
2196 val = make_uninit_string (nbytes);
2197 p = SDATA (val);
2198 end = p + SCHARS (val);
2199 while (p != end)
2200 *p++ = c;
2201 }
2202 else
2203 {
2204 unsigned char str[MAX_MULTIBYTE_LENGTH];
2205 int len = CHAR_STRING (c, str);
2206 EMACS_INT string_len = XINT (length);
2207
2208 if (string_len > MOST_POSITIVE_FIXNUM / len)
2209 error ("Maximum string size exceeded");
2210 nbytes = len * string_len;
2211 val = make_uninit_multibyte_string (string_len, nbytes);
2212 p = SDATA (val);
2213 end = p + nbytes;
2214 while (p != end)
2215 {
2216 memcpy (p, str, len);
2217 p += len;
2218 }
2219 }
2220
2221 *p = 0;
2222 return val;
2223 }
2224
2225
2226 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2227 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2228 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2229 (Lisp_Object length, Lisp_Object init)
2230 {
2231 register Lisp_Object val;
2232 struct Lisp_Bool_Vector *p;
2233 int real_init, i;
2234 EMACS_INT length_in_chars, length_in_elts;
2235 int bits_per_value;
2236
2237 CHECK_NATNUM (length);
2238
2239 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2240
2241 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2242 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2243 / BOOL_VECTOR_BITS_PER_CHAR);
2244
2245 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2246 slot `size' of the struct Lisp_Bool_Vector. */
2247 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2248
2249 /* No Lisp_Object to trace in there. */
2250 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2251
2252 p = XBOOL_VECTOR (val);
2253 p->size = XFASTINT (length);
2254
2255 real_init = (NILP (init) ? 0 : -1);
2256 for (i = 0; i < length_in_chars ; i++)
2257 p->data[i] = real_init;
2258
2259 /* Clear the extraneous bits in the last byte. */
2260 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2261 p->data[length_in_chars - 1]
2262 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2263
2264 return val;
2265 }
2266
2267
2268 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2269 of characters from the contents. This string may be unibyte or
2270 multibyte, depending on the contents. */
2271
2272 Lisp_Object
2273 make_string (const char *contents, EMACS_INT nbytes)
2274 {
2275 register Lisp_Object val;
2276 EMACS_INT nchars, multibyte_nbytes;
2277
2278 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2279 &nchars, &multibyte_nbytes);
2280 if (nbytes == nchars || nbytes != multibyte_nbytes)
2281 /* CONTENTS contains no multibyte sequences or contains an invalid
2282 multibyte sequence. We must make unibyte string. */
2283 val = make_unibyte_string (contents, nbytes);
2284 else
2285 val = make_multibyte_string (contents, nchars, nbytes);
2286 return val;
2287 }
2288
2289
2290 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2291
2292 Lisp_Object
2293 make_unibyte_string (const char *contents, EMACS_INT length)
2294 {
2295 register Lisp_Object val;
2296 val = make_uninit_string (length);
2297 memcpy (SDATA (val), contents, length);
2298 return val;
2299 }
2300
2301
2302 /* Make a multibyte string from NCHARS characters occupying NBYTES
2303 bytes at CONTENTS. */
2304
2305 Lisp_Object
2306 make_multibyte_string (const char *contents,
2307 EMACS_INT nchars, EMACS_INT nbytes)
2308 {
2309 register Lisp_Object val;
2310 val = make_uninit_multibyte_string (nchars, nbytes);
2311 memcpy (SDATA (val), contents, nbytes);
2312 return val;
2313 }
2314
2315
2316 /* Make a string from NCHARS characters occupying NBYTES bytes at
2317 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2318
2319 Lisp_Object
2320 make_string_from_bytes (const char *contents,
2321 EMACS_INT nchars, EMACS_INT nbytes)
2322 {
2323 register Lisp_Object val;
2324 val = make_uninit_multibyte_string (nchars, nbytes);
2325 memcpy (SDATA (val), contents, nbytes);
2326 if (SBYTES (val) == SCHARS (val))
2327 STRING_SET_UNIBYTE (val);
2328 return val;
2329 }
2330
2331
2332 /* Make a string from NCHARS characters occupying NBYTES bytes at
2333 CONTENTS. The argument MULTIBYTE controls whether to label the
2334 string as multibyte. If NCHARS is negative, it counts the number of
2335 characters by itself. */
2336
2337 Lisp_Object
2338 make_specified_string (const char *contents,
2339 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2340 {
2341 register Lisp_Object val;
2342
2343 if (nchars < 0)
2344 {
2345 if (multibyte)
2346 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2347 nbytes);
2348 else
2349 nchars = nbytes;
2350 }
2351 val = make_uninit_multibyte_string (nchars, nbytes);
2352 memcpy (SDATA (val), contents, nbytes);
2353 if (!multibyte)
2354 STRING_SET_UNIBYTE (val);
2355 return val;
2356 }
2357
2358
2359 /* Make a string from the data at STR, treating it as multibyte if the
2360 data warrants. */
2361
2362 Lisp_Object
2363 build_string (const char *str)
2364 {
2365 return make_string (str, strlen (str));
2366 }
2367
2368
2369 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2370 occupying LENGTH bytes. */
2371
2372 Lisp_Object
2373 make_uninit_string (EMACS_INT length)
2374 {
2375 Lisp_Object val;
2376
2377 if (!length)
2378 return empty_unibyte_string;
2379 val = make_uninit_multibyte_string (length, length);
2380 STRING_SET_UNIBYTE (val);
2381 return val;
2382 }
2383
2384
2385 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2386 which occupy NBYTES bytes. */
2387
2388 Lisp_Object
2389 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2390 {
2391 Lisp_Object string;
2392 struct Lisp_String *s;
2393
2394 if (nchars < 0)
2395 abort ();
2396 if (!nbytes)
2397 return empty_multibyte_string;
2398
2399 s = allocate_string ();
2400 allocate_string_data (s, nchars, nbytes);
2401 XSETSTRING (string, s);
2402 string_chars_consed += nbytes;
2403 return string;
2404 }
2405
2406
2407 \f
2408 /***********************************************************************
2409 Float Allocation
2410 ***********************************************************************/
2411
2412 /* We store float cells inside of float_blocks, allocating a new
2413 float_block with malloc whenever necessary. Float cells reclaimed
2414 by GC are put on a free list to be reallocated before allocating
2415 any new float cells from the latest float_block. */
2416
2417 #define FLOAT_BLOCK_SIZE \
2418 (((BLOCK_BYTES - sizeof (struct float_block *) \
2419 /* The compiler might add padding at the end. */ \
2420 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2421 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2422
2423 #define GETMARKBIT(block,n) \
2424 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2425 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2426 & 1)
2427
2428 #define SETMARKBIT(block,n) \
2429 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2431
2432 #define UNSETMARKBIT(block,n) \
2433 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2434 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2435
2436 #define FLOAT_BLOCK(fptr) \
2437 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2438
2439 #define FLOAT_INDEX(fptr) \
2440 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2441
2442 struct float_block
2443 {
2444 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2445 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2446 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2447 struct float_block *next;
2448 };
2449
2450 #define FLOAT_MARKED_P(fptr) \
2451 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2452
2453 #define FLOAT_MARK(fptr) \
2454 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2455
2456 #define FLOAT_UNMARK(fptr) \
2457 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458
2459 /* Current float_block. */
2460
2461 static struct float_block *float_block;
2462
2463 /* Index of first unused Lisp_Float in the current float_block. */
2464
2465 static int float_block_index;
2466
2467 /* Total number of float blocks now in use. */
2468
2469 static int n_float_blocks;
2470
2471 /* Free-list of Lisp_Floats. */
2472
2473 static struct Lisp_Float *float_free_list;
2474
2475
2476 /* Initialize float allocation. */
2477
2478 static void
2479 init_float (void)
2480 {
2481 float_block = NULL;
2482 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2483 float_free_list = 0;
2484 n_float_blocks = 0;
2485 }
2486
2487
2488 /* Return a new float object with value FLOAT_VALUE. */
2489
2490 Lisp_Object
2491 make_float (double float_value)
2492 {
2493 register Lisp_Object val;
2494
2495 /* eassert (!handling_signal); */
2496
2497 MALLOC_BLOCK_INPUT;
2498
2499 if (float_free_list)
2500 {
2501 /* We use the data field for chaining the free list
2502 so that we won't use the same field that has the mark bit. */
2503 XSETFLOAT (val, float_free_list);
2504 float_free_list = float_free_list->u.chain;
2505 }
2506 else
2507 {
2508 if (float_block_index == FLOAT_BLOCK_SIZE)
2509 {
2510 register struct float_block *new;
2511
2512 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2513 MEM_TYPE_FLOAT);
2514 new->next = float_block;
2515 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2516 float_block = new;
2517 float_block_index = 0;
2518 n_float_blocks++;
2519 }
2520 XSETFLOAT (val, &float_block->floats[float_block_index]);
2521 float_block_index++;
2522 }
2523
2524 MALLOC_UNBLOCK_INPUT;
2525
2526 XFLOAT_INIT (val, float_value);
2527 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2528 consing_since_gc += sizeof (struct Lisp_Float);
2529 floats_consed++;
2530 return val;
2531 }
2532
2533
2534 \f
2535 /***********************************************************************
2536 Cons Allocation
2537 ***********************************************************************/
2538
2539 /* We store cons cells inside of cons_blocks, allocating a new
2540 cons_block with malloc whenever necessary. Cons cells reclaimed by
2541 GC are put on a free list to be reallocated before allocating
2542 any new cons cells from the latest cons_block. */
2543
2544 #define CONS_BLOCK_SIZE \
2545 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2546 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2547
2548 #define CONS_BLOCK(fptr) \
2549 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2550
2551 #define CONS_INDEX(fptr) \
2552 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2553
2554 struct cons_block
2555 {
2556 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2557 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2558 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2559 struct cons_block *next;
2560 };
2561
2562 #define CONS_MARKED_P(fptr) \
2563 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2564
2565 #define CONS_MARK(fptr) \
2566 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2567
2568 #define CONS_UNMARK(fptr) \
2569 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570
2571 /* Current cons_block. */
2572
2573 static struct cons_block *cons_block;
2574
2575 /* Index of first unused Lisp_Cons in the current block. */
2576
2577 static int cons_block_index;
2578
2579 /* Free-list of Lisp_Cons structures. */
2580
2581 static struct Lisp_Cons *cons_free_list;
2582
2583 /* Total number of cons blocks now in use. */
2584
2585 static int n_cons_blocks;
2586
2587
2588 /* Initialize cons allocation. */
2589
2590 static void
2591 init_cons (void)
2592 {
2593 cons_block = NULL;
2594 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2595 cons_free_list = 0;
2596 n_cons_blocks = 0;
2597 }
2598
2599
2600 /* Explicitly free a cons cell by putting it on the free-list. */
2601
2602 void
2603 free_cons (struct Lisp_Cons *ptr)
2604 {
2605 ptr->u.chain = cons_free_list;
2606 #if GC_MARK_STACK
2607 ptr->car = Vdead;
2608 #endif
2609 cons_free_list = ptr;
2610 }
2611
2612 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2613 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2614 (Lisp_Object car, Lisp_Object cdr)
2615 {
2616 register Lisp_Object val;
2617
2618 /* eassert (!handling_signal); */
2619
2620 MALLOC_BLOCK_INPUT;
2621
2622 if (cons_free_list)
2623 {
2624 /* We use the cdr for chaining the free list
2625 so that we won't use the same field that has the mark bit. */
2626 XSETCONS (val, cons_free_list);
2627 cons_free_list = cons_free_list->u.chain;
2628 }
2629 else
2630 {
2631 if (cons_block_index == CONS_BLOCK_SIZE)
2632 {
2633 register struct cons_block *new;
2634 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2635 MEM_TYPE_CONS);
2636 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2637 new->next = cons_block;
2638 cons_block = new;
2639 cons_block_index = 0;
2640 n_cons_blocks++;
2641 }
2642 XSETCONS (val, &cons_block->conses[cons_block_index]);
2643 cons_block_index++;
2644 }
2645
2646 MALLOC_UNBLOCK_INPUT;
2647
2648 XSETCAR (val, car);
2649 XSETCDR (val, cdr);
2650 eassert (!CONS_MARKED_P (XCONS (val)));
2651 consing_since_gc += sizeof (struct Lisp_Cons);
2652 cons_cells_consed++;
2653 return val;
2654 }
2655
2656 #ifdef GC_CHECK_CONS_LIST
2657 /* Get an error now if there's any junk in the cons free list. */
2658 void
2659 check_cons_list (void)
2660 {
2661 struct Lisp_Cons *tail = cons_free_list;
2662
2663 while (tail)
2664 tail = tail->u.chain;
2665 }
2666 #endif
2667
2668 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2669
2670 Lisp_Object
2671 list1 (Lisp_Object arg1)
2672 {
2673 return Fcons (arg1, Qnil);
2674 }
2675
2676 Lisp_Object
2677 list2 (Lisp_Object arg1, Lisp_Object arg2)
2678 {
2679 return Fcons (arg1, Fcons (arg2, Qnil));
2680 }
2681
2682
2683 Lisp_Object
2684 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2685 {
2686 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2687 }
2688
2689
2690 Lisp_Object
2691 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2692 {
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2694 }
2695
2696
2697 Lisp_Object
2698 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2699 {
2700 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2701 Fcons (arg5, Qnil)))));
2702 }
2703
2704
2705 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2706 doc: /* Return a newly created list with specified arguments as elements.
2707 Any number of arguments, even zero arguments, are allowed.
2708 usage: (list &rest OBJECTS) */)
2709 (size_t nargs, register Lisp_Object *args)
2710 {
2711 register Lisp_Object val;
2712 val = Qnil;
2713
2714 while (nargs > 0)
2715 {
2716 nargs--;
2717 val = Fcons (args[nargs], val);
2718 }
2719 return val;
2720 }
2721
2722
2723 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2724 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2725 (register Lisp_Object length, Lisp_Object init)
2726 {
2727 register Lisp_Object val;
2728 register EMACS_INT size;
2729
2730 CHECK_NATNUM (length);
2731 size = XFASTINT (length);
2732
2733 val = Qnil;
2734 while (size > 0)
2735 {
2736 val = Fcons (init, val);
2737 --size;
2738
2739 if (size > 0)
2740 {
2741 val = Fcons (init, val);
2742 --size;
2743
2744 if (size > 0)
2745 {
2746 val = Fcons (init, val);
2747 --size;
2748
2749 if (size > 0)
2750 {
2751 val = Fcons (init, val);
2752 --size;
2753
2754 if (size > 0)
2755 {
2756 val = Fcons (init, val);
2757 --size;
2758 }
2759 }
2760 }
2761 }
2762
2763 QUIT;
2764 }
2765
2766 return val;
2767 }
2768
2769
2770 \f
2771 /***********************************************************************
2772 Vector Allocation
2773 ***********************************************************************/
2774
2775 /* Singly-linked list of all vectors. */
2776
2777 static struct Lisp_Vector *all_vectors;
2778
2779 /* Total number of vector-like objects now in use. */
2780
2781 static int n_vectors;
2782
2783
2784 /* Value is a pointer to a newly allocated Lisp_Vector structure
2785 with room for LEN Lisp_Objects. */
2786
2787 static struct Lisp_Vector *
2788 allocate_vectorlike (EMACS_INT len)
2789 {
2790 struct Lisp_Vector *p;
2791 size_t nbytes;
2792
2793 MALLOC_BLOCK_INPUT;
2794
2795 #ifdef DOUG_LEA_MALLOC
2796 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2797 because mapped region contents are not preserved in
2798 a dumped Emacs. */
2799 mallopt (M_MMAP_MAX, 0);
2800 #endif
2801
2802 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2803 /* eassert (!handling_signal); */
2804
2805 nbytes = (offsetof (struct Lisp_Vector, contents)
2806 + len * sizeof p->contents[0]);
2807 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2808
2809 #ifdef DOUG_LEA_MALLOC
2810 /* Back to a reasonable maximum of mmap'ed areas. */
2811 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2812 #endif
2813
2814 consing_since_gc += nbytes;
2815 vector_cells_consed += len;
2816
2817 p->header.next.vector = all_vectors;
2818 all_vectors = p;
2819
2820 MALLOC_UNBLOCK_INPUT;
2821
2822 ++n_vectors;
2823 return p;
2824 }
2825
2826
2827 /* Allocate a vector with NSLOTS slots. */
2828
2829 struct Lisp_Vector *
2830 allocate_vector (EMACS_INT nslots)
2831 {
2832 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2833 v->header.size = nslots;
2834 return v;
2835 }
2836
2837
2838 /* Allocate other vector-like structures. */
2839
2840 struct Lisp_Vector *
2841 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2842 {
2843 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2844 EMACS_INT i;
2845
2846 /* Only the first lisplen slots will be traced normally by the GC. */
2847 for (i = 0; i < lisplen; ++i)
2848 v->contents[i] = Qnil;
2849
2850 XSETPVECTYPESIZE (v, tag, lisplen);
2851 return v;
2852 }
2853
2854 struct Lisp_Hash_Table *
2855 allocate_hash_table (void)
2856 {
2857 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2858 }
2859
2860
2861 struct window *
2862 allocate_window (void)
2863 {
2864 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2865 }
2866
2867
2868 struct terminal *
2869 allocate_terminal (void)
2870 {
2871 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2872 next_terminal, PVEC_TERMINAL);
2873 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2874 memset (&t->next_terminal, 0,
2875 (char*) (t + 1) - (char*) &t->next_terminal);
2876
2877 return t;
2878 }
2879
2880 struct frame *
2881 allocate_frame (void)
2882 {
2883 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2884 face_cache, PVEC_FRAME);
2885 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2886 memset (&f->face_cache, 0,
2887 (char *) (f + 1) - (char *) &f->face_cache);
2888 return f;
2889 }
2890
2891
2892 struct Lisp_Process *
2893 allocate_process (void)
2894 {
2895 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2896 }
2897
2898
2899 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2900 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2901 See also the function `vector'. */)
2902 (register Lisp_Object length, Lisp_Object init)
2903 {
2904 Lisp_Object vector;
2905 register EMACS_INT sizei;
2906 register EMACS_INT i;
2907 register struct Lisp_Vector *p;
2908
2909 CHECK_NATNUM (length);
2910 sizei = XFASTINT (length);
2911
2912 p = allocate_vector (sizei);
2913 for (i = 0; i < sizei; i++)
2914 p->contents[i] = init;
2915
2916 XSETVECTOR (vector, p);
2917 return vector;
2918 }
2919
2920
2921 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2922 doc: /* Return a newly created vector with specified arguments as elements.
2923 Any number of arguments, even zero arguments, are allowed.
2924 usage: (vector &rest OBJECTS) */)
2925 (register size_t nargs, Lisp_Object *args)
2926 {
2927 register Lisp_Object len, val;
2928 register size_t i;
2929 register struct Lisp_Vector *p;
2930
2931 XSETFASTINT (len, nargs);
2932 val = Fmake_vector (len, Qnil);
2933 p = XVECTOR (val);
2934 for (i = 0; i < nargs; i++)
2935 p->contents[i] = args[i];
2936 return val;
2937 }
2938
2939
2940 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2941 doc: /* Create a byte-code object with specified arguments as elements.
2942 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2943 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2944 and (optional) INTERACTIVE-SPEC.
2945 The first four arguments are required; at most six have any
2946 significance.
2947 The ARGLIST can be either like the one of `lambda', in which case the arguments
2948 will be dynamically bound before executing the byte code, or it can be an
2949 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2950 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2951 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2952 argument to catch the left-over arguments. If such an integer is used, the
2953 arguments will not be dynamically bound but will be instead pushed on the
2954 stack before executing the byte-code.
2955 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2956 (register size_t nargs, Lisp_Object *args)
2957 {
2958 register Lisp_Object len, val;
2959 register size_t i;
2960 register struct Lisp_Vector *p;
2961
2962 XSETFASTINT (len, nargs);
2963 if (!NILP (Vpurify_flag))
2964 val = make_pure_vector ((EMACS_INT) nargs);
2965 else
2966 val = Fmake_vector (len, Qnil);
2967
2968 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2969 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2970 earlier because they produced a raw 8-bit string for byte-code
2971 and now such a byte-code string is loaded as multibyte while
2972 raw 8-bit characters converted to multibyte form. Thus, now we
2973 must convert them back to the original unibyte form. */
2974 args[1] = Fstring_as_unibyte (args[1]);
2975
2976 p = XVECTOR (val);
2977 for (i = 0; i < nargs; i++)
2978 {
2979 if (!NILP (Vpurify_flag))
2980 args[i] = Fpurecopy (args[i]);
2981 p->contents[i] = args[i];
2982 }
2983 XSETPVECTYPE (p, PVEC_COMPILED);
2984 XSETCOMPILED (val, p);
2985 return val;
2986 }
2987
2988
2989 \f
2990 /***********************************************************************
2991 Symbol Allocation
2992 ***********************************************************************/
2993
2994 /* Each symbol_block is just under 1020 bytes long, since malloc
2995 really allocates in units of powers of two and uses 4 bytes for its
2996 own overhead. */
2997
2998 #define SYMBOL_BLOCK_SIZE \
2999 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3000
3001 struct symbol_block
3002 {
3003 /* Place `symbols' first, to preserve alignment. */
3004 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3005 struct symbol_block *next;
3006 };
3007
3008 /* Current symbol block and index of first unused Lisp_Symbol
3009 structure in it. */
3010
3011 static struct symbol_block *symbol_block;
3012 static int symbol_block_index;
3013
3014 /* List of free symbols. */
3015
3016 static struct Lisp_Symbol *symbol_free_list;
3017
3018 /* Total number of symbol blocks now in use. */
3019
3020 static int n_symbol_blocks;
3021
3022
3023 /* Initialize symbol allocation. */
3024
3025 static void
3026 init_symbol (void)
3027 {
3028 symbol_block = NULL;
3029 symbol_block_index = SYMBOL_BLOCK_SIZE;
3030 symbol_free_list = 0;
3031 n_symbol_blocks = 0;
3032 }
3033
3034
3035 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3036 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3037 Its value and function definition are void, and its property list is nil. */)
3038 (Lisp_Object name)
3039 {
3040 register Lisp_Object val;
3041 register struct Lisp_Symbol *p;
3042
3043 CHECK_STRING (name);
3044
3045 /* eassert (!handling_signal); */
3046
3047 MALLOC_BLOCK_INPUT;
3048
3049 if (symbol_free_list)
3050 {
3051 XSETSYMBOL (val, symbol_free_list);
3052 symbol_free_list = symbol_free_list->next;
3053 }
3054 else
3055 {
3056 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3057 {
3058 struct symbol_block *new;
3059 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3060 MEM_TYPE_SYMBOL);
3061 new->next = symbol_block;
3062 symbol_block = new;
3063 symbol_block_index = 0;
3064 n_symbol_blocks++;
3065 }
3066 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3067 symbol_block_index++;
3068 }
3069
3070 MALLOC_UNBLOCK_INPUT;
3071
3072 p = XSYMBOL (val);
3073 p->xname = name;
3074 p->plist = Qnil;
3075 p->redirect = SYMBOL_PLAINVAL;
3076 SET_SYMBOL_VAL (p, Qunbound);
3077 p->function = Qunbound;
3078 p->next = NULL;
3079 p->gcmarkbit = 0;
3080 p->interned = SYMBOL_UNINTERNED;
3081 p->constant = 0;
3082 p->declared_special = 0;
3083 consing_since_gc += sizeof (struct Lisp_Symbol);
3084 symbols_consed++;
3085 return val;
3086 }
3087
3088
3089 \f
3090 /***********************************************************************
3091 Marker (Misc) Allocation
3092 ***********************************************************************/
3093
3094 /* Allocation of markers and other objects that share that structure.
3095 Works like allocation of conses. */
3096
3097 #define MARKER_BLOCK_SIZE \
3098 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3099
3100 struct marker_block
3101 {
3102 /* Place `markers' first, to preserve alignment. */
3103 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3104 struct marker_block *next;
3105 };
3106
3107 static struct marker_block *marker_block;
3108 static int marker_block_index;
3109
3110 static union Lisp_Misc *marker_free_list;
3111
3112 /* Total number of marker blocks now in use. */
3113
3114 static int n_marker_blocks;
3115
3116 static void
3117 init_marker (void)
3118 {
3119 marker_block = NULL;
3120 marker_block_index = MARKER_BLOCK_SIZE;
3121 marker_free_list = 0;
3122 n_marker_blocks = 0;
3123 }
3124
3125 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3126
3127 Lisp_Object
3128 allocate_misc (void)
3129 {
3130 Lisp_Object val;
3131
3132 /* eassert (!handling_signal); */
3133
3134 MALLOC_BLOCK_INPUT;
3135
3136 if (marker_free_list)
3137 {
3138 XSETMISC (val, marker_free_list);
3139 marker_free_list = marker_free_list->u_free.chain;
3140 }
3141 else
3142 {
3143 if (marker_block_index == MARKER_BLOCK_SIZE)
3144 {
3145 struct marker_block *new;
3146 new = (struct marker_block *) lisp_malloc (sizeof *new,
3147 MEM_TYPE_MISC);
3148 new->next = marker_block;
3149 marker_block = new;
3150 marker_block_index = 0;
3151 n_marker_blocks++;
3152 total_free_markers += MARKER_BLOCK_SIZE;
3153 }
3154 XSETMISC (val, &marker_block->markers[marker_block_index]);
3155 marker_block_index++;
3156 }
3157
3158 MALLOC_UNBLOCK_INPUT;
3159
3160 --total_free_markers;
3161 consing_since_gc += sizeof (union Lisp_Misc);
3162 misc_objects_consed++;
3163 XMISCANY (val)->gcmarkbit = 0;
3164 return val;
3165 }
3166
3167 /* Free a Lisp_Misc object */
3168
3169 static void
3170 free_misc (Lisp_Object misc)
3171 {
3172 XMISCTYPE (misc) = Lisp_Misc_Free;
3173 XMISC (misc)->u_free.chain = marker_free_list;
3174 marker_free_list = XMISC (misc);
3175
3176 total_free_markers++;
3177 }
3178
3179 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3180 INTEGER. This is used to package C values to call record_unwind_protect.
3181 The unwind function can get the C values back using XSAVE_VALUE. */
3182
3183 Lisp_Object
3184 make_save_value (void *pointer, int integer)
3185 {
3186 register Lisp_Object val;
3187 register struct Lisp_Save_Value *p;
3188
3189 val = allocate_misc ();
3190 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3191 p = XSAVE_VALUE (val);
3192 p->pointer = pointer;
3193 p->integer = integer;
3194 p->dogc = 0;
3195 return val;
3196 }
3197
3198 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3199 doc: /* Return a newly allocated marker which does not point at any place. */)
3200 (void)
3201 {
3202 register Lisp_Object val;
3203 register struct Lisp_Marker *p;
3204
3205 val = allocate_misc ();
3206 XMISCTYPE (val) = Lisp_Misc_Marker;
3207 p = XMARKER (val);
3208 p->buffer = 0;
3209 p->bytepos = 0;
3210 p->charpos = 0;
3211 p->next = NULL;
3212 p->insertion_type = 0;
3213 return val;
3214 }
3215
3216 /* Put MARKER back on the free list after using it temporarily. */
3217
3218 void
3219 free_marker (Lisp_Object marker)
3220 {
3221 unchain_marker (XMARKER (marker));
3222 free_misc (marker);
3223 }
3224
3225 \f
3226 /* Return a newly created vector or string with specified arguments as
3227 elements. If all the arguments are characters that can fit
3228 in a string of events, make a string; otherwise, make a vector.
3229
3230 Any number of arguments, even zero arguments, are allowed. */
3231
3232 Lisp_Object
3233 make_event_array (register int nargs, Lisp_Object *args)
3234 {
3235 int i;
3236
3237 for (i = 0; i < nargs; i++)
3238 /* The things that fit in a string
3239 are characters that are in 0...127,
3240 after discarding the meta bit and all the bits above it. */
3241 if (!INTEGERP (args[i])
3242 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3243 return Fvector (nargs, args);
3244
3245 /* Since the loop exited, we know that all the things in it are
3246 characters, so we can make a string. */
3247 {
3248 Lisp_Object result;
3249
3250 result = Fmake_string (make_number (nargs), make_number (0));
3251 for (i = 0; i < nargs; i++)
3252 {
3253 SSET (result, i, XINT (args[i]));
3254 /* Move the meta bit to the right place for a string char. */
3255 if (XINT (args[i]) & CHAR_META)
3256 SSET (result, i, SREF (result, i) | 0x80);
3257 }
3258
3259 return result;
3260 }
3261 }
3262
3263
3264 \f
3265 /************************************************************************
3266 Memory Full Handling
3267 ************************************************************************/
3268
3269
3270 /* Called if malloc returns zero. */
3271
3272 void
3273 memory_full (void)
3274 {
3275 int i;
3276
3277 Vmemory_full = Qt;
3278
3279 memory_full_cons_threshold = sizeof (struct cons_block);
3280
3281 /* The first time we get here, free the spare memory. */
3282 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3283 if (spare_memory[i])
3284 {
3285 if (i == 0)
3286 free (spare_memory[i]);
3287 else if (i >= 1 && i <= 4)
3288 lisp_align_free (spare_memory[i]);
3289 else
3290 lisp_free (spare_memory[i]);
3291 spare_memory[i] = 0;
3292 }
3293
3294 /* Record the space now used. When it decreases substantially,
3295 we can refill the memory reserve. */
3296 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3297 bytes_used_when_full = BYTES_USED;
3298 #endif
3299
3300 /* This used to call error, but if we've run out of memory, we could
3301 get infinite recursion trying to build the string. */
3302 xsignal (Qnil, Vmemory_signal_data);
3303 }
3304
3305 /* If we released our reserve (due to running out of memory),
3306 and we have a fair amount free once again,
3307 try to set aside another reserve in case we run out once more.
3308
3309 This is called when a relocatable block is freed in ralloc.c,
3310 and also directly from this file, in case we're not using ralloc.c. */
3311
3312 void
3313 refill_memory_reserve (void)
3314 {
3315 #ifndef SYSTEM_MALLOC
3316 if (spare_memory[0] == 0)
3317 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3318 if (spare_memory[1] == 0)
3319 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3320 MEM_TYPE_CONS);
3321 if (spare_memory[2] == 0)
3322 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3323 MEM_TYPE_CONS);
3324 if (spare_memory[3] == 0)
3325 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3326 MEM_TYPE_CONS);
3327 if (spare_memory[4] == 0)
3328 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3329 MEM_TYPE_CONS);
3330 if (spare_memory[5] == 0)
3331 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3332 MEM_TYPE_STRING);
3333 if (spare_memory[6] == 0)
3334 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3335 MEM_TYPE_STRING);
3336 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3337 Vmemory_full = Qnil;
3338 #endif
3339 }
3340 \f
3341 /************************************************************************
3342 C Stack Marking
3343 ************************************************************************/
3344
3345 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3346
3347 /* Conservative C stack marking requires a method to identify possibly
3348 live Lisp objects given a pointer value. We do this by keeping
3349 track of blocks of Lisp data that are allocated in a red-black tree
3350 (see also the comment of mem_node which is the type of nodes in
3351 that tree). Function lisp_malloc adds information for an allocated
3352 block to the red-black tree with calls to mem_insert, and function
3353 lisp_free removes it with mem_delete. Functions live_string_p etc
3354 call mem_find to lookup information about a given pointer in the
3355 tree, and use that to determine if the pointer points to a Lisp
3356 object or not. */
3357
3358 /* Initialize this part of alloc.c. */
3359
3360 static void
3361 mem_init (void)
3362 {
3363 mem_z.left = mem_z.right = MEM_NIL;
3364 mem_z.parent = NULL;
3365 mem_z.color = MEM_BLACK;
3366 mem_z.start = mem_z.end = NULL;
3367 mem_root = MEM_NIL;
3368 }
3369
3370
3371 /* Value is a pointer to the mem_node containing START. Value is
3372 MEM_NIL if there is no node in the tree containing START. */
3373
3374 static INLINE struct mem_node *
3375 mem_find (void *start)
3376 {
3377 struct mem_node *p;
3378
3379 if (start < min_heap_address || start > max_heap_address)
3380 return MEM_NIL;
3381
3382 /* Make the search always successful to speed up the loop below. */
3383 mem_z.start = start;
3384 mem_z.end = (char *) start + 1;
3385
3386 p = mem_root;
3387 while (start < p->start || start >= p->end)
3388 p = start < p->start ? p->left : p->right;
3389 return p;
3390 }
3391
3392
3393 /* Insert a new node into the tree for a block of memory with start
3394 address START, end address END, and type TYPE. Value is a
3395 pointer to the node that was inserted. */
3396
3397 static struct mem_node *
3398 mem_insert (void *start, void *end, enum mem_type type)
3399 {
3400 struct mem_node *c, *parent, *x;
3401
3402 if (min_heap_address == NULL || start < min_heap_address)
3403 min_heap_address = start;
3404 if (max_heap_address == NULL || end > max_heap_address)
3405 max_heap_address = end;
3406
3407 /* See where in the tree a node for START belongs. In this
3408 particular application, it shouldn't happen that a node is already
3409 present. For debugging purposes, let's check that. */
3410 c = mem_root;
3411 parent = NULL;
3412
3413 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3414
3415 while (c != MEM_NIL)
3416 {
3417 if (start >= c->start && start < c->end)
3418 abort ();
3419 parent = c;
3420 c = start < c->start ? c->left : c->right;
3421 }
3422
3423 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3424
3425 while (c != MEM_NIL)
3426 {
3427 parent = c;
3428 c = start < c->start ? c->left : c->right;
3429 }
3430
3431 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3432
3433 /* Create a new node. */
3434 #ifdef GC_MALLOC_CHECK
3435 x = (struct mem_node *) _malloc_internal (sizeof *x);
3436 if (x == NULL)
3437 abort ();
3438 #else
3439 x = (struct mem_node *) xmalloc (sizeof *x);
3440 #endif
3441 x->start = start;
3442 x->end = end;
3443 x->type = type;
3444 x->parent = parent;
3445 x->left = x->right = MEM_NIL;
3446 x->color = MEM_RED;
3447
3448 /* Insert it as child of PARENT or install it as root. */
3449 if (parent)
3450 {
3451 if (start < parent->start)
3452 parent->left = x;
3453 else
3454 parent->right = x;
3455 }
3456 else
3457 mem_root = x;
3458
3459 /* Re-establish red-black tree properties. */
3460 mem_insert_fixup (x);
3461
3462 return x;
3463 }
3464
3465
3466 /* Re-establish the red-black properties of the tree, and thereby
3467 balance the tree, after node X has been inserted; X is always red. */
3468
3469 static void
3470 mem_insert_fixup (struct mem_node *x)
3471 {
3472 while (x != mem_root && x->parent->color == MEM_RED)
3473 {
3474 /* X is red and its parent is red. This is a violation of
3475 red-black tree property #3. */
3476
3477 if (x->parent == x->parent->parent->left)
3478 {
3479 /* We're on the left side of our grandparent, and Y is our
3480 "uncle". */
3481 struct mem_node *y = x->parent->parent->right;
3482
3483 if (y->color == MEM_RED)
3484 {
3485 /* Uncle and parent are red but should be black because
3486 X is red. Change the colors accordingly and proceed
3487 with the grandparent. */
3488 x->parent->color = MEM_BLACK;
3489 y->color = MEM_BLACK;
3490 x->parent->parent->color = MEM_RED;
3491 x = x->parent->parent;
3492 }
3493 else
3494 {
3495 /* Parent and uncle have different colors; parent is
3496 red, uncle is black. */
3497 if (x == x->parent->right)
3498 {
3499 x = x->parent;
3500 mem_rotate_left (x);
3501 }
3502
3503 x->parent->color = MEM_BLACK;
3504 x->parent->parent->color = MEM_RED;
3505 mem_rotate_right (x->parent->parent);
3506 }
3507 }
3508 else
3509 {
3510 /* This is the symmetrical case of above. */
3511 struct mem_node *y = x->parent->parent->left;
3512
3513 if (y->color == MEM_RED)
3514 {
3515 x->parent->color = MEM_BLACK;
3516 y->color = MEM_BLACK;
3517 x->parent->parent->color = MEM_RED;
3518 x = x->parent->parent;
3519 }
3520 else
3521 {
3522 if (x == x->parent->left)
3523 {
3524 x = x->parent;
3525 mem_rotate_right (x);
3526 }
3527
3528 x->parent->color = MEM_BLACK;
3529 x->parent->parent->color = MEM_RED;
3530 mem_rotate_left (x->parent->parent);
3531 }
3532 }
3533 }
3534
3535 /* The root may have been changed to red due to the algorithm. Set
3536 it to black so that property #5 is satisfied. */
3537 mem_root->color = MEM_BLACK;
3538 }
3539
3540
3541 /* (x) (y)
3542 / \ / \
3543 a (y) ===> (x) c
3544 / \ / \
3545 b c a b */
3546
3547 static void
3548 mem_rotate_left (struct mem_node *x)
3549 {
3550 struct mem_node *y;
3551
3552 /* Turn y's left sub-tree into x's right sub-tree. */
3553 y = x->right;
3554 x->right = y->left;
3555 if (y->left != MEM_NIL)
3556 y->left->parent = x;
3557
3558 /* Y's parent was x's parent. */
3559 if (y != MEM_NIL)
3560 y->parent = x->parent;
3561
3562 /* Get the parent to point to y instead of x. */
3563 if (x->parent)
3564 {
3565 if (x == x->parent->left)
3566 x->parent->left = y;
3567 else
3568 x->parent->right = y;
3569 }
3570 else
3571 mem_root = y;
3572
3573 /* Put x on y's left. */
3574 y->left = x;
3575 if (x != MEM_NIL)
3576 x->parent = y;
3577 }
3578
3579
3580 /* (x) (Y)
3581 / \ / \
3582 (y) c ===> a (x)
3583 / \ / \
3584 a b b c */
3585
3586 static void
3587 mem_rotate_right (struct mem_node *x)
3588 {
3589 struct mem_node *y = x->left;
3590
3591 x->left = y->right;
3592 if (y->right != MEM_NIL)
3593 y->right->parent = x;
3594
3595 if (y != MEM_NIL)
3596 y->parent = x->parent;
3597 if (x->parent)
3598 {
3599 if (x == x->parent->right)
3600 x->parent->right = y;
3601 else
3602 x->parent->left = y;
3603 }
3604 else
3605 mem_root = y;
3606
3607 y->right = x;
3608 if (x != MEM_NIL)
3609 x->parent = y;
3610 }
3611
3612
3613 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3614
3615 static void
3616 mem_delete (struct mem_node *z)
3617 {
3618 struct mem_node *x, *y;
3619
3620 if (!z || z == MEM_NIL)
3621 return;
3622
3623 if (z->left == MEM_NIL || z->right == MEM_NIL)
3624 y = z;
3625 else
3626 {
3627 y = z->right;
3628 while (y->left != MEM_NIL)
3629 y = y->left;
3630 }
3631
3632 if (y->left != MEM_NIL)
3633 x = y->left;
3634 else
3635 x = y->right;
3636
3637 x->parent = y->parent;
3638 if (y->parent)
3639 {
3640 if (y == y->parent->left)
3641 y->parent->left = x;
3642 else
3643 y->parent->right = x;
3644 }
3645 else
3646 mem_root = x;
3647
3648 if (y != z)
3649 {
3650 z->start = y->start;
3651 z->end = y->end;
3652 z->type = y->type;
3653 }
3654
3655 if (y->color == MEM_BLACK)
3656 mem_delete_fixup (x);
3657
3658 #ifdef GC_MALLOC_CHECK
3659 _free_internal (y);
3660 #else
3661 xfree (y);
3662 #endif
3663 }
3664
3665
3666 /* Re-establish the red-black properties of the tree, after a
3667 deletion. */
3668
3669 static void
3670 mem_delete_fixup (struct mem_node *x)
3671 {
3672 while (x != mem_root && x->color == MEM_BLACK)
3673 {
3674 if (x == x->parent->left)
3675 {
3676 struct mem_node *w = x->parent->right;
3677
3678 if (w->color == MEM_RED)
3679 {
3680 w->color = MEM_BLACK;
3681 x->parent->color = MEM_RED;
3682 mem_rotate_left (x->parent);
3683 w = x->parent->right;
3684 }
3685
3686 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3687 {
3688 w->color = MEM_RED;
3689 x = x->parent;
3690 }
3691 else
3692 {
3693 if (w->right->color == MEM_BLACK)
3694 {
3695 w->left->color = MEM_BLACK;
3696 w->color = MEM_RED;
3697 mem_rotate_right (w);
3698 w = x->parent->right;
3699 }
3700 w->color = x->parent->color;
3701 x->parent->color = MEM_BLACK;
3702 w->right->color = MEM_BLACK;
3703 mem_rotate_left (x->parent);
3704 x = mem_root;
3705 }
3706 }
3707 else
3708 {
3709 struct mem_node *w = x->parent->left;
3710
3711 if (w->color == MEM_RED)
3712 {
3713 w->color = MEM_BLACK;
3714 x->parent->color = MEM_RED;
3715 mem_rotate_right (x->parent);
3716 w = x->parent->left;
3717 }
3718
3719 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3720 {
3721 w->color = MEM_RED;
3722 x = x->parent;
3723 }
3724 else
3725 {
3726 if (w->left->color == MEM_BLACK)
3727 {
3728 w->right->color = MEM_BLACK;
3729 w->color = MEM_RED;
3730 mem_rotate_left (w);
3731 w = x->parent->left;
3732 }
3733
3734 w->color = x->parent->color;
3735 x->parent->color = MEM_BLACK;
3736 w->left->color = MEM_BLACK;
3737 mem_rotate_right (x->parent);
3738 x = mem_root;
3739 }
3740 }
3741 }
3742
3743 x->color = MEM_BLACK;
3744 }
3745
3746
3747 /* Value is non-zero if P is a pointer to a live Lisp string on
3748 the heap. M is a pointer to the mem_block for P. */
3749
3750 static INLINE int
3751 live_string_p (struct mem_node *m, void *p)
3752 {
3753 if (m->type == MEM_TYPE_STRING)
3754 {
3755 struct string_block *b = (struct string_block *) m->start;
3756 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3757
3758 /* P must point to the start of a Lisp_String structure, and it
3759 must not be on the free-list. */
3760 return (offset >= 0
3761 && offset % sizeof b->strings[0] == 0
3762 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3763 && ((struct Lisp_String *) p)->data != NULL);
3764 }
3765 else
3766 return 0;
3767 }
3768
3769
3770 /* Value is non-zero if P is a pointer to a live Lisp cons on
3771 the heap. M is a pointer to the mem_block for P. */
3772
3773 static INLINE int
3774 live_cons_p (struct mem_node *m, void *p)
3775 {
3776 if (m->type == MEM_TYPE_CONS)
3777 {
3778 struct cons_block *b = (struct cons_block *) m->start;
3779 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3780
3781 /* P must point to the start of a Lisp_Cons, not be
3782 one of the unused cells in the current cons block,
3783 and not be on the free-list. */
3784 return (offset >= 0
3785 && offset % sizeof b->conses[0] == 0
3786 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3787 && (b != cons_block
3788 || offset / sizeof b->conses[0] < cons_block_index)
3789 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3790 }
3791 else
3792 return 0;
3793 }
3794
3795
3796 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3797 the heap. M is a pointer to the mem_block for P. */
3798
3799 static INLINE int
3800 live_symbol_p (struct mem_node *m, void *p)
3801 {
3802 if (m->type == MEM_TYPE_SYMBOL)
3803 {
3804 struct symbol_block *b = (struct symbol_block *) m->start;
3805 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3806
3807 /* P must point to the start of a Lisp_Symbol, not be
3808 one of the unused cells in the current symbol block,
3809 and not be on the free-list. */
3810 return (offset >= 0
3811 && offset % sizeof b->symbols[0] == 0
3812 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3813 && (b != symbol_block
3814 || offset / sizeof b->symbols[0] < symbol_block_index)
3815 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3816 }
3817 else
3818 return 0;
3819 }
3820
3821
3822 /* Value is non-zero if P is a pointer to a live Lisp float on
3823 the heap. M is a pointer to the mem_block for P. */
3824
3825 static INLINE int
3826 live_float_p (struct mem_node *m, void *p)
3827 {
3828 if (m->type == MEM_TYPE_FLOAT)
3829 {
3830 struct float_block *b = (struct float_block *) m->start;
3831 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3832
3833 /* P must point to the start of a Lisp_Float and not be
3834 one of the unused cells in the current float block. */
3835 return (offset >= 0
3836 && offset % sizeof b->floats[0] == 0
3837 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3838 && (b != float_block
3839 || offset / sizeof b->floats[0] < float_block_index));
3840 }
3841 else
3842 return 0;
3843 }
3844
3845
3846 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3847 the heap. M is a pointer to the mem_block for P. */
3848
3849 static INLINE int
3850 live_misc_p (struct mem_node *m, void *p)
3851 {
3852 if (m->type == MEM_TYPE_MISC)
3853 {
3854 struct marker_block *b = (struct marker_block *) m->start;
3855 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3856
3857 /* P must point to the start of a Lisp_Misc, not be
3858 one of the unused cells in the current misc block,
3859 and not be on the free-list. */
3860 return (offset >= 0
3861 && offset % sizeof b->markers[0] == 0
3862 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3863 && (b != marker_block
3864 || offset / sizeof b->markers[0] < marker_block_index)
3865 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3866 }
3867 else
3868 return 0;
3869 }
3870
3871
3872 /* Value is non-zero if P is a pointer to a live vector-like object.
3873 M is a pointer to the mem_block for P. */
3874
3875 static INLINE int
3876 live_vector_p (struct mem_node *m, void *p)
3877 {
3878 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3879 }
3880
3881
3882 /* Value is non-zero if P is a pointer to a live buffer. M is a
3883 pointer to the mem_block for P. */
3884
3885 static INLINE int
3886 live_buffer_p (struct mem_node *m, void *p)
3887 {
3888 /* P must point to the start of the block, and the buffer
3889 must not have been killed. */
3890 return (m->type == MEM_TYPE_BUFFER
3891 && p == m->start
3892 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3893 }
3894
3895 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3896
3897 #if GC_MARK_STACK
3898
3899 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3900
3901 /* Array of objects that are kept alive because the C stack contains
3902 a pattern that looks like a reference to them . */
3903
3904 #define MAX_ZOMBIES 10
3905 static Lisp_Object zombies[MAX_ZOMBIES];
3906
3907 /* Number of zombie objects. */
3908
3909 static int nzombies;
3910
3911 /* Number of garbage collections. */
3912
3913 static int ngcs;
3914
3915 /* Average percentage of zombies per collection. */
3916
3917 static double avg_zombies;
3918
3919 /* Max. number of live and zombie objects. */
3920
3921 static int max_live, max_zombies;
3922
3923 /* Average number of live objects per GC. */
3924
3925 static double avg_live;
3926
3927 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3928 doc: /* Show information about live and zombie objects. */)
3929 (void)
3930 {
3931 Lisp_Object args[8], zombie_list = Qnil;
3932 int i;
3933 for (i = 0; i < nzombies; i++)
3934 zombie_list = Fcons (zombies[i], zombie_list);
3935 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3936 args[1] = make_number (ngcs);
3937 args[2] = make_float (avg_live);
3938 args[3] = make_float (avg_zombies);
3939 args[4] = make_float (avg_zombies / avg_live / 100);
3940 args[5] = make_number (max_live);
3941 args[6] = make_number (max_zombies);
3942 args[7] = zombie_list;
3943 return Fmessage (8, args);
3944 }
3945
3946 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3947
3948
3949 /* Mark OBJ if we can prove it's a Lisp_Object. */
3950
3951 static INLINE void
3952 mark_maybe_object (Lisp_Object obj)
3953 {
3954 void *po;
3955 struct mem_node *m;
3956
3957 if (INTEGERP (obj))
3958 return;
3959
3960 po = (void *) XPNTR (obj);
3961 m = mem_find (po);
3962
3963 if (m != MEM_NIL)
3964 {
3965 int mark_p = 0;
3966
3967 switch (XTYPE (obj))
3968 {
3969 case Lisp_String:
3970 mark_p = (live_string_p (m, po)
3971 && !STRING_MARKED_P ((struct Lisp_String *) po));
3972 break;
3973
3974 case Lisp_Cons:
3975 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3976 break;
3977
3978 case Lisp_Symbol:
3979 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3980 break;
3981
3982 case Lisp_Float:
3983 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3984 break;
3985
3986 case Lisp_Vectorlike:
3987 /* Note: can't check BUFFERP before we know it's a
3988 buffer because checking that dereferences the pointer
3989 PO which might point anywhere. */
3990 if (live_vector_p (m, po))
3991 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3992 else if (live_buffer_p (m, po))
3993 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3994 break;
3995
3996 case Lisp_Misc:
3997 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3998 break;
3999
4000 default:
4001 break;
4002 }
4003
4004 if (mark_p)
4005 {
4006 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4007 if (nzombies < MAX_ZOMBIES)
4008 zombies[nzombies] = obj;
4009 ++nzombies;
4010 #endif
4011 mark_object (obj);
4012 }
4013 }
4014 }
4015
4016
4017 /* If P points to Lisp data, mark that as live if it isn't already
4018 marked. */
4019
4020 static INLINE void
4021 mark_maybe_pointer (void *p)
4022 {
4023 struct mem_node *m;
4024
4025 /* Quickly rule out some values which can't point to Lisp data. */
4026 if ((intptr_t) p %
4027 #ifdef USE_LSB_TAG
4028 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4029 #else
4030 2 /* We assume that Lisp data is aligned on even addresses. */
4031 #endif
4032 )
4033 return;
4034
4035 m = mem_find (p);
4036 if (m != MEM_NIL)
4037 {
4038 Lisp_Object obj = Qnil;
4039
4040 switch (m->type)
4041 {
4042 case MEM_TYPE_NON_LISP:
4043 /* Nothing to do; not a pointer to Lisp memory. */
4044 break;
4045
4046 case MEM_TYPE_BUFFER:
4047 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4048 XSETVECTOR (obj, p);
4049 break;
4050
4051 case MEM_TYPE_CONS:
4052 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4053 XSETCONS (obj, p);
4054 break;
4055
4056 case MEM_TYPE_STRING:
4057 if (live_string_p (m, p)
4058 && !STRING_MARKED_P ((struct Lisp_String *) p))
4059 XSETSTRING (obj, p);
4060 break;
4061
4062 case MEM_TYPE_MISC:
4063 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4064 XSETMISC (obj, p);
4065 break;
4066
4067 case MEM_TYPE_SYMBOL:
4068 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4069 XSETSYMBOL (obj, p);
4070 break;
4071
4072 case MEM_TYPE_FLOAT:
4073 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4074 XSETFLOAT (obj, p);
4075 break;
4076
4077 case MEM_TYPE_VECTORLIKE:
4078 if (live_vector_p (m, p))
4079 {
4080 Lisp_Object tem;
4081 XSETVECTOR (tem, p);
4082 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4083 obj = tem;
4084 }
4085 break;
4086
4087 default:
4088 abort ();
4089 }
4090
4091 if (!NILP (obj))
4092 mark_object (obj);
4093 }
4094 }
4095
4096
4097 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4098 or END+OFFSET..START. */
4099
4100 static void
4101 mark_memory (void *start, void *end, int offset)
4102 {
4103 Lisp_Object *p;
4104 void **pp;
4105
4106 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4107 nzombies = 0;
4108 #endif
4109
4110 /* Make START the pointer to the start of the memory region,
4111 if it isn't already. */
4112 if (end < start)
4113 {
4114 void *tem = start;
4115 start = end;
4116 end = tem;
4117 }
4118
4119 /* Mark Lisp_Objects. */
4120 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4121 mark_maybe_object (*p);
4122
4123 /* Mark Lisp data pointed to. This is necessary because, in some
4124 situations, the C compiler optimizes Lisp objects away, so that
4125 only a pointer to them remains. Example:
4126
4127 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4128 ()
4129 {
4130 Lisp_Object obj = build_string ("test");
4131 struct Lisp_String *s = XSTRING (obj);
4132 Fgarbage_collect ();
4133 fprintf (stderr, "test `%s'\n", s->data);
4134 return Qnil;
4135 }
4136
4137 Here, `obj' isn't really used, and the compiler optimizes it
4138 away. The only reference to the life string is through the
4139 pointer `s'. */
4140
4141 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4142 mark_maybe_pointer (*pp);
4143 }
4144
4145 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4146 the GCC system configuration. In gcc 3.2, the only systems for
4147 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4148 by others?) and ns32k-pc532-min. */
4149
4150 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4151
4152 static int setjmp_tested_p, longjmps_done;
4153
4154 #define SETJMP_WILL_LIKELY_WORK "\
4155 \n\
4156 Emacs garbage collector has been changed to use conservative stack\n\
4157 marking. Emacs has determined that the method it uses to do the\n\
4158 marking will likely work on your system, but this isn't sure.\n\
4159 \n\
4160 If you are a system-programmer, or can get the help of a local wizard\n\
4161 who is, please take a look at the function mark_stack in alloc.c, and\n\
4162 verify that the methods used are appropriate for your system.\n\
4163 \n\
4164 Please mail the result to <emacs-devel@gnu.org>.\n\
4165 "
4166
4167 #define SETJMP_WILL_NOT_WORK "\
4168 \n\
4169 Emacs garbage collector has been changed to use conservative stack\n\
4170 marking. Emacs has determined that the default method it uses to do the\n\
4171 marking will not work on your system. We will need a system-dependent\n\
4172 solution for your system.\n\
4173 \n\
4174 Please take a look at the function mark_stack in alloc.c, and\n\
4175 try to find a way to make it work on your system.\n\
4176 \n\
4177 Note that you may get false negatives, depending on the compiler.\n\
4178 In particular, you need to use -O with GCC for this test.\n\
4179 \n\
4180 Please mail the result to <emacs-devel@gnu.org>.\n\
4181 "
4182
4183
4184 /* Perform a quick check if it looks like setjmp saves registers in a
4185 jmp_buf. Print a message to stderr saying so. When this test
4186 succeeds, this is _not_ a proof that setjmp is sufficient for
4187 conservative stack marking. Only the sources or a disassembly
4188 can prove that. */
4189
4190 static void
4191 test_setjmp (void)
4192 {
4193 char buf[10];
4194 register int x;
4195 jmp_buf jbuf;
4196 int result = 0;
4197
4198 /* Arrange for X to be put in a register. */
4199 sprintf (buf, "1");
4200 x = strlen (buf);
4201 x = 2 * x - 1;
4202
4203 setjmp (jbuf);
4204 if (longjmps_done == 1)
4205 {
4206 /* Came here after the longjmp at the end of the function.
4207
4208 If x == 1, the longjmp has restored the register to its
4209 value before the setjmp, and we can hope that setjmp
4210 saves all such registers in the jmp_buf, although that
4211 isn't sure.
4212
4213 For other values of X, either something really strange is
4214 taking place, or the setjmp just didn't save the register. */
4215
4216 if (x == 1)
4217 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4218 else
4219 {
4220 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4221 exit (1);
4222 }
4223 }
4224
4225 ++longjmps_done;
4226 x = 2;
4227 if (longjmps_done == 1)
4228 longjmp (jbuf, 1);
4229 }
4230
4231 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4232
4233
4234 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4235
4236 /* Abort if anything GCPRO'd doesn't survive the GC. */
4237
4238 static void
4239 check_gcpros (void)
4240 {
4241 struct gcpro *p;
4242 size_t i;
4243
4244 for (p = gcprolist; p; p = p->next)
4245 for (i = 0; i < p->nvars; ++i)
4246 if (!survives_gc_p (p->var[i]))
4247 /* FIXME: It's not necessarily a bug. It might just be that the
4248 GCPRO is unnecessary or should release the object sooner. */
4249 abort ();
4250 }
4251
4252 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4253
4254 static void
4255 dump_zombies (void)
4256 {
4257 int i;
4258
4259 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4260 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4261 {
4262 fprintf (stderr, " %d = ", i);
4263 debug_print (zombies[i]);
4264 }
4265 }
4266
4267 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4268
4269
4270 /* Mark live Lisp objects on the C stack.
4271
4272 There are several system-dependent problems to consider when
4273 porting this to new architectures:
4274
4275 Processor Registers
4276
4277 We have to mark Lisp objects in CPU registers that can hold local
4278 variables or are used to pass parameters.
4279
4280 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4281 something that either saves relevant registers on the stack, or
4282 calls mark_maybe_object passing it each register's contents.
4283
4284 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4285 implementation assumes that calling setjmp saves registers we need
4286 to see in a jmp_buf which itself lies on the stack. This doesn't
4287 have to be true! It must be verified for each system, possibly
4288 by taking a look at the source code of setjmp.
4289
4290 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4291 can use it as a machine independent method to store all registers
4292 to the stack. In this case the macros described in the previous
4293 two paragraphs are not used.
4294
4295 Stack Layout
4296
4297 Architectures differ in the way their processor stack is organized.
4298 For example, the stack might look like this
4299
4300 +----------------+
4301 | Lisp_Object | size = 4
4302 +----------------+
4303 | something else | size = 2
4304 +----------------+
4305 | Lisp_Object | size = 4
4306 +----------------+
4307 | ... |
4308
4309 In such a case, not every Lisp_Object will be aligned equally. To
4310 find all Lisp_Object on the stack it won't be sufficient to walk
4311 the stack in steps of 4 bytes. Instead, two passes will be
4312 necessary, one starting at the start of the stack, and a second
4313 pass starting at the start of the stack + 2. Likewise, if the
4314 minimal alignment of Lisp_Objects on the stack is 1, four passes
4315 would be necessary, each one starting with one byte more offset
4316 from the stack start.
4317
4318 The current code assumes by default that Lisp_Objects are aligned
4319 equally on the stack. */
4320
4321 static void
4322 mark_stack (void)
4323 {
4324 int i;
4325 void *end;
4326
4327 #ifdef HAVE___BUILTIN_UNWIND_INIT
4328 /* Force callee-saved registers and register windows onto the stack.
4329 This is the preferred method if available, obviating the need for
4330 machine dependent methods. */
4331 __builtin_unwind_init ();
4332 end = &end;
4333 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4334 #ifndef GC_SAVE_REGISTERS_ON_STACK
4335 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4336 union aligned_jmpbuf {
4337 Lisp_Object o;
4338 jmp_buf j;
4339 } j;
4340 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4341 #endif
4342 /* This trick flushes the register windows so that all the state of
4343 the process is contained in the stack. */
4344 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4345 needed on ia64 too. See mach_dep.c, where it also says inline
4346 assembler doesn't work with relevant proprietary compilers. */
4347 #ifdef __sparc__
4348 #if defined (__sparc64__) && defined (__FreeBSD__)
4349 /* FreeBSD does not have a ta 3 handler. */
4350 asm ("flushw");
4351 #else
4352 asm ("ta 3");
4353 #endif
4354 #endif
4355
4356 /* Save registers that we need to see on the stack. We need to see
4357 registers used to hold register variables and registers used to
4358 pass parameters. */
4359 #ifdef GC_SAVE_REGISTERS_ON_STACK
4360 GC_SAVE_REGISTERS_ON_STACK (end);
4361 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4362
4363 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4364 setjmp will definitely work, test it
4365 and print a message with the result
4366 of the test. */
4367 if (!setjmp_tested_p)
4368 {
4369 setjmp_tested_p = 1;
4370 test_setjmp ();
4371 }
4372 #endif /* GC_SETJMP_WORKS */
4373
4374 setjmp (j.j);
4375 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4376 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4377 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4378
4379 /* This assumes that the stack is a contiguous region in memory. If
4380 that's not the case, something has to be done here to iterate
4381 over the stack segments. */
4382 #ifndef GC_LISP_OBJECT_ALIGNMENT
4383 #ifdef __GNUC__
4384 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4385 #else
4386 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4387 #endif
4388 #endif
4389 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4390 mark_memory (stack_base, end, i);
4391 /* Allow for marking a secondary stack, like the register stack on the
4392 ia64. */
4393 #ifdef GC_MARK_SECONDARY_STACK
4394 GC_MARK_SECONDARY_STACK ();
4395 #endif
4396
4397 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4398 check_gcpros ();
4399 #endif
4400 }
4401
4402 #endif /* GC_MARK_STACK != 0 */
4403
4404
4405 /* Determine whether it is safe to access memory at address P. */
4406 static int
4407 valid_pointer_p (void *p)
4408 {
4409 #ifdef WINDOWSNT
4410 return w32_valid_pointer_p (p, 16);
4411 #else
4412 int fd;
4413
4414 /* Obviously, we cannot just access it (we would SEGV trying), so we
4415 trick the o/s to tell us whether p is a valid pointer.
4416 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4417 not validate p in that case. */
4418
4419 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4420 {
4421 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4422 emacs_close (fd);
4423 unlink ("__Valid__Lisp__Object__");
4424 return valid;
4425 }
4426
4427 return -1;
4428 #endif
4429 }
4430
4431 /* Return 1 if OBJ is a valid lisp object.
4432 Return 0 if OBJ is NOT a valid lisp object.
4433 Return -1 if we cannot validate OBJ.
4434 This function can be quite slow,
4435 so it should only be used in code for manual debugging. */
4436
4437 int
4438 valid_lisp_object_p (Lisp_Object obj)
4439 {
4440 void *p;
4441 #if GC_MARK_STACK
4442 struct mem_node *m;
4443 #endif
4444
4445 if (INTEGERP (obj))
4446 return 1;
4447
4448 p = (void *) XPNTR (obj);
4449 if (PURE_POINTER_P (p))
4450 return 1;
4451
4452 #if !GC_MARK_STACK
4453 return valid_pointer_p (p);
4454 #else
4455
4456 m = mem_find (p);
4457
4458 if (m == MEM_NIL)
4459 {
4460 int valid = valid_pointer_p (p);
4461 if (valid <= 0)
4462 return valid;
4463
4464 if (SUBRP (obj))
4465 return 1;
4466
4467 return 0;
4468 }
4469
4470 switch (m->type)
4471 {
4472 case MEM_TYPE_NON_LISP:
4473 return 0;
4474
4475 case MEM_TYPE_BUFFER:
4476 return live_buffer_p (m, p);
4477
4478 case MEM_TYPE_CONS:
4479 return live_cons_p (m, p);
4480
4481 case MEM_TYPE_STRING:
4482 return live_string_p (m, p);
4483
4484 case MEM_TYPE_MISC:
4485 return live_misc_p (m, p);
4486
4487 case MEM_TYPE_SYMBOL:
4488 return live_symbol_p (m, p);
4489
4490 case MEM_TYPE_FLOAT:
4491 return live_float_p (m, p);
4492
4493 case MEM_TYPE_VECTORLIKE:
4494 return live_vector_p (m, p);
4495
4496 default:
4497 break;
4498 }
4499
4500 return 0;
4501 #endif
4502 }
4503
4504
4505
4506 \f
4507 /***********************************************************************
4508 Pure Storage Management
4509 ***********************************************************************/
4510
4511 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4512 pointer to it. TYPE is the Lisp type for which the memory is
4513 allocated. TYPE < 0 means it's not used for a Lisp object. */
4514
4515 static POINTER_TYPE *
4516 pure_alloc (size_t size, int type)
4517 {
4518 POINTER_TYPE *result;
4519 #ifdef USE_LSB_TAG
4520 size_t alignment = (1 << GCTYPEBITS);
4521 #else
4522 size_t alignment = sizeof (EMACS_INT);
4523
4524 /* Give Lisp_Floats an extra alignment. */
4525 if (type == Lisp_Float)
4526 {
4527 #if defined __GNUC__ && __GNUC__ >= 2
4528 alignment = __alignof (struct Lisp_Float);
4529 #else
4530 alignment = sizeof (struct Lisp_Float);
4531 #endif
4532 }
4533 #endif
4534
4535 again:
4536 if (type >= 0)
4537 {
4538 /* Allocate space for a Lisp object from the beginning of the free
4539 space with taking account of alignment. */
4540 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4541 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4542 }
4543 else
4544 {
4545 /* Allocate space for a non-Lisp object from the end of the free
4546 space. */
4547 pure_bytes_used_non_lisp += size;
4548 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4549 }
4550 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4551
4552 if (pure_bytes_used <= pure_size)
4553 return result;
4554
4555 /* Don't allocate a large amount here,
4556 because it might get mmap'd and then its address
4557 might not be usable. */
4558 purebeg = (char *) xmalloc (10000);
4559 pure_size = 10000;
4560 pure_bytes_used_before_overflow += pure_bytes_used - size;
4561 pure_bytes_used = 0;
4562 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4563 goto again;
4564 }
4565
4566
4567 /* Print a warning if PURESIZE is too small. */
4568
4569 void
4570 check_pure_size (void)
4571 {
4572 if (pure_bytes_used_before_overflow)
4573 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4574 " bytes needed)"),
4575 pure_bytes_used + pure_bytes_used_before_overflow);
4576 }
4577
4578
4579 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4580 the non-Lisp data pool of the pure storage, and return its start
4581 address. Return NULL if not found. */
4582
4583 static char *
4584 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4585 {
4586 int i;
4587 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4588 const unsigned char *p;
4589 char *non_lisp_beg;
4590
4591 if (pure_bytes_used_non_lisp < nbytes + 1)
4592 return NULL;
4593
4594 /* Set up the Boyer-Moore table. */
4595 skip = nbytes + 1;
4596 for (i = 0; i < 256; i++)
4597 bm_skip[i] = skip;
4598
4599 p = (const unsigned char *) data;
4600 while (--skip > 0)
4601 bm_skip[*p++] = skip;
4602
4603 last_char_skip = bm_skip['\0'];
4604
4605 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4606 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4607
4608 /* See the comments in the function `boyer_moore' (search.c) for the
4609 use of `infinity'. */
4610 infinity = pure_bytes_used_non_lisp + 1;
4611 bm_skip['\0'] = infinity;
4612
4613 p = (const unsigned char *) non_lisp_beg + nbytes;
4614 start = 0;
4615 do
4616 {
4617 /* Check the last character (== '\0'). */
4618 do
4619 {
4620 start += bm_skip[*(p + start)];
4621 }
4622 while (start <= start_max);
4623
4624 if (start < infinity)
4625 /* Couldn't find the last character. */
4626 return NULL;
4627
4628 /* No less than `infinity' means we could find the last
4629 character at `p[start - infinity]'. */
4630 start -= infinity;
4631
4632 /* Check the remaining characters. */
4633 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4634 /* Found. */
4635 return non_lisp_beg + start;
4636
4637 start += last_char_skip;
4638 }
4639 while (start <= start_max);
4640
4641 return NULL;
4642 }
4643
4644
4645 /* Return a string allocated in pure space. DATA is a buffer holding
4646 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4647 non-zero means make the result string multibyte.
4648
4649 Must get an error if pure storage is full, since if it cannot hold
4650 a large string it may be able to hold conses that point to that
4651 string; then the string is not protected from gc. */
4652
4653 Lisp_Object
4654 make_pure_string (const char *data,
4655 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4656 {
4657 Lisp_Object string;
4658 struct Lisp_String *s;
4659
4660 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4661 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4662 if (s->data == NULL)
4663 {
4664 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4665 memcpy (s->data, data, nbytes);
4666 s->data[nbytes] = '\0';
4667 }
4668 s->size = nchars;
4669 s->size_byte = multibyte ? nbytes : -1;
4670 s->intervals = NULL_INTERVAL;
4671 XSETSTRING (string, s);
4672 return string;
4673 }
4674
4675 /* Return a string a string allocated in pure space. Do not allocate
4676 the string data, just point to DATA. */
4677
4678 Lisp_Object
4679 make_pure_c_string (const char *data)
4680 {
4681 Lisp_Object string;
4682 struct Lisp_String *s;
4683 EMACS_INT nchars = strlen (data);
4684
4685 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4686 s->size = nchars;
4687 s->size_byte = -1;
4688 s->data = (unsigned char *) data;
4689 s->intervals = NULL_INTERVAL;
4690 XSETSTRING (string, s);
4691 return string;
4692 }
4693
4694 /* Return a cons allocated from pure space. Give it pure copies
4695 of CAR as car and CDR as cdr. */
4696
4697 Lisp_Object
4698 pure_cons (Lisp_Object car, Lisp_Object cdr)
4699 {
4700 register Lisp_Object new;
4701 struct Lisp_Cons *p;
4702
4703 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4704 XSETCONS (new, p);
4705 XSETCAR (new, Fpurecopy (car));
4706 XSETCDR (new, Fpurecopy (cdr));
4707 return new;
4708 }
4709
4710
4711 /* Value is a float object with value NUM allocated from pure space. */
4712
4713 static Lisp_Object
4714 make_pure_float (double num)
4715 {
4716 register Lisp_Object new;
4717 struct Lisp_Float *p;
4718
4719 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4720 XSETFLOAT (new, p);
4721 XFLOAT_INIT (new, num);
4722 return new;
4723 }
4724
4725
4726 /* Return a vector with room for LEN Lisp_Objects allocated from
4727 pure space. */
4728
4729 Lisp_Object
4730 make_pure_vector (EMACS_INT len)
4731 {
4732 Lisp_Object new;
4733 struct Lisp_Vector *p;
4734 size_t size = (offsetof (struct Lisp_Vector, contents)
4735 + len * sizeof (Lisp_Object));
4736
4737 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4738 XSETVECTOR (new, p);
4739 XVECTOR (new)->header.size = len;
4740 return new;
4741 }
4742
4743
4744 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4745 doc: /* Make a copy of object OBJ in pure storage.
4746 Recursively copies contents of vectors and cons cells.
4747 Does not copy symbols. Copies strings without text properties. */)
4748 (register Lisp_Object obj)
4749 {
4750 if (NILP (Vpurify_flag))
4751 return obj;
4752
4753 if (PURE_POINTER_P (XPNTR (obj)))
4754 return obj;
4755
4756 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4757 {
4758 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4759 if (!NILP (tmp))
4760 return tmp;
4761 }
4762
4763 if (CONSP (obj))
4764 obj = pure_cons (XCAR (obj), XCDR (obj));
4765 else if (FLOATP (obj))
4766 obj = make_pure_float (XFLOAT_DATA (obj));
4767 else if (STRINGP (obj))
4768 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4769 SBYTES (obj),
4770 STRING_MULTIBYTE (obj));
4771 else if (COMPILEDP (obj) || VECTORP (obj))
4772 {
4773 register struct Lisp_Vector *vec;
4774 register EMACS_INT i;
4775 EMACS_INT size;
4776
4777 size = ASIZE (obj);
4778 if (size & PSEUDOVECTOR_FLAG)
4779 size &= PSEUDOVECTOR_SIZE_MASK;
4780 vec = XVECTOR (make_pure_vector (size));
4781 for (i = 0; i < size; i++)
4782 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4783 if (COMPILEDP (obj))
4784 {
4785 XSETPVECTYPE (vec, PVEC_COMPILED);
4786 XSETCOMPILED (obj, vec);
4787 }
4788 else
4789 XSETVECTOR (obj, vec);
4790 }
4791 else if (MARKERP (obj))
4792 error ("Attempt to copy a marker to pure storage");
4793 else
4794 /* Not purified, don't hash-cons. */
4795 return obj;
4796
4797 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4798 Fputhash (obj, obj, Vpurify_flag);
4799
4800 return obj;
4801 }
4802
4803
4804 \f
4805 /***********************************************************************
4806 Protection from GC
4807 ***********************************************************************/
4808
4809 /* Put an entry in staticvec, pointing at the variable with address
4810 VARADDRESS. */
4811
4812 void
4813 staticpro (Lisp_Object *varaddress)
4814 {
4815 staticvec[staticidx++] = varaddress;
4816 if (staticidx >= NSTATICS)
4817 abort ();
4818 }
4819
4820 \f
4821 /***********************************************************************
4822 Protection from GC
4823 ***********************************************************************/
4824
4825 /* Temporarily prevent garbage collection. */
4826
4827 int
4828 inhibit_garbage_collection (void)
4829 {
4830 int count = SPECPDL_INDEX ();
4831 int nbits = min (VALBITS, BITS_PER_INT);
4832
4833 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4834 return count;
4835 }
4836
4837
4838 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4839 doc: /* Reclaim storage for Lisp objects no longer needed.
4840 Garbage collection happens automatically if you cons more than
4841 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4842 `garbage-collect' normally returns a list with info on amount of space in use:
4843 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4844 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4845 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4846 (USED-STRINGS . FREE-STRINGS))
4847 However, if there was overflow in pure space, `garbage-collect'
4848 returns nil, because real GC can't be done. */)
4849 (void)
4850 {
4851 register struct specbinding *bind;
4852 char stack_top_variable;
4853 register size_t i;
4854 int message_p;
4855 Lisp_Object total[8];
4856 int count = SPECPDL_INDEX ();
4857 EMACS_TIME t1, t2, t3;
4858
4859 if (abort_on_gc)
4860 abort ();
4861
4862 /* Can't GC if pure storage overflowed because we can't determine
4863 if something is a pure object or not. */
4864 if (pure_bytes_used_before_overflow)
4865 return Qnil;
4866
4867 CHECK_CONS_LIST ();
4868
4869 /* Don't keep undo information around forever.
4870 Do this early on, so it is no problem if the user quits. */
4871 {
4872 register struct buffer *nextb = all_buffers;
4873
4874 while (nextb)
4875 {
4876 /* If a buffer's undo list is Qt, that means that undo is
4877 turned off in that buffer. Calling truncate_undo_list on
4878 Qt tends to return NULL, which effectively turns undo back on.
4879 So don't call truncate_undo_list if undo_list is Qt. */
4880 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4881 truncate_undo_list (nextb);
4882
4883 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4884 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4885 && ! nextb->text->inhibit_shrinking)
4886 {
4887 /* If a buffer's gap size is more than 10% of the buffer
4888 size, or larger than 2000 bytes, then shrink it
4889 accordingly. Keep a minimum size of 20 bytes. */
4890 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4891
4892 if (nextb->text->gap_size > size)
4893 {
4894 struct buffer *save_current = current_buffer;
4895 current_buffer = nextb;
4896 make_gap (-(nextb->text->gap_size - size));
4897 current_buffer = save_current;
4898 }
4899 }
4900
4901 nextb = nextb->header.next.buffer;
4902 }
4903 }
4904
4905 EMACS_GET_TIME (t1);
4906
4907 /* In case user calls debug_print during GC,
4908 don't let that cause a recursive GC. */
4909 consing_since_gc = 0;
4910
4911 /* Save what's currently displayed in the echo area. */
4912 message_p = push_message ();
4913 record_unwind_protect (pop_message_unwind, Qnil);
4914
4915 /* Save a copy of the contents of the stack, for debugging. */
4916 #if MAX_SAVE_STACK > 0
4917 if (NILP (Vpurify_flag))
4918 {
4919 char *stack;
4920 size_t stack_size;
4921 if (&stack_top_variable < stack_bottom)
4922 {
4923 stack = &stack_top_variable;
4924 stack_size = stack_bottom - &stack_top_variable;
4925 }
4926 else
4927 {
4928 stack = stack_bottom;
4929 stack_size = &stack_top_variable - stack_bottom;
4930 }
4931 if (stack_size <= MAX_SAVE_STACK)
4932 {
4933 if (stack_copy_size < stack_size)
4934 {
4935 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4936 stack_copy_size = stack_size;
4937 }
4938 memcpy (stack_copy, stack, stack_size);
4939 }
4940 }
4941 #endif /* MAX_SAVE_STACK > 0 */
4942
4943 if (garbage_collection_messages)
4944 message1_nolog ("Garbage collecting...");
4945
4946 BLOCK_INPUT;
4947
4948 shrink_regexp_cache ();
4949
4950 gc_in_progress = 1;
4951
4952 /* clear_marks (); */
4953
4954 /* Mark all the special slots that serve as the roots of accessibility. */
4955
4956 for (i = 0; i < staticidx; i++)
4957 mark_object (*staticvec[i]);
4958
4959 for (bind = specpdl; bind != specpdl_ptr; bind++)
4960 {
4961 mark_object (bind->symbol);
4962 mark_object (bind->old_value);
4963 }
4964 mark_terminals ();
4965 mark_kboards ();
4966 mark_ttys ();
4967
4968 #ifdef USE_GTK
4969 {
4970 extern void xg_mark_data (void);
4971 xg_mark_data ();
4972 }
4973 #endif
4974
4975 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4976 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4977 mark_stack ();
4978 #else
4979 {
4980 register struct gcpro *tail;
4981 for (tail = gcprolist; tail; tail = tail->next)
4982 for (i = 0; i < tail->nvars; i++)
4983 mark_object (tail->var[i]);
4984 }
4985 mark_byte_stack ();
4986 {
4987 struct catchtag *catch;
4988 struct handler *handler;
4989
4990 for (catch = catchlist; catch; catch = catch->next)
4991 {
4992 mark_object (catch->tag);
4993 mark_object (catch->val);
4994 }
4995 for (handler = handlerlist; handler; handler = handler->next)
4996 {
4997 mark_object (handler->handler);
4998 mark_object (handler->var);
4999 }
5000 }
5001 mark_backtrace ();
5002 #endif
5003
5004 #ifdef HAVE_WINDOW_SYSTEM
5005 mark_fringe_data ();
5006 #endif
5007
5008 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5009 mark_stack ();
5010 #endif
5011
5012 /* Everything is now marked, except for the things that require special
5013 finalization, i.e. the undo_list.
5014 Look thru every buffer's undo list
5015 for elements that update markers that were not marked,
5016 and delete them. */
5017 {
5018 register struct buffer *nextb = all_buffers;
5019
5020 while (nextb)
5021 {
5022 /* If a buffer's undo list is Qt, that means that undo is
5023 turned off in that buffer. Calling truncate_undo_list on
5024 Qt tends to return NULL, which effectively turns undo back on.
5025 So don't call truncate_undo_list if undo_list is Qt. */
5026 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5027 {
5028 Lisp_Object tail, prev;
5029 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5030 prev = Qnil;
5031 while (CONSP (tail))
5032 {
5033 if (CONSP (XCAR (tail))
5034 && MARKERP (XCAR (XCAR (tail)))
5035 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5036 {
5037 if (NILP (prev))
5038 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5039 else
5040 {
5041 tail = XCDR (tail);
5042 XSETCDR (prev, tail);
5043 }
5044 }
5045 else
5046 {
5047 prev = tail;
5048 tail = XCDR (tail);
5049 }
5050 }
5051 }
5052 /* Now that we have stripped the elements that need not be in the
5053 undo_list any more, we can finally mark the list. */
5054 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5055
5056 nextb = nextb->header.next.buffer;
5057 }
5058 }
5059
5060 gc_sweep ();
5061
5062 /* Clear the mark bits that we set in certain root slots. */
5063
5064 unmark_byte_stack ();
5065 VECTOR_UNMARK (&buffer_defaults);
5066 VECTOR_UNMARK (&buffer_local_symbols);
5067
5068 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5069 dump_zombies ();
5070 #endif
5071
5072 UNBLOCK_INPUT;
5073
5074 CHECK_CONS_LIST ();
5075
5076 /* clear_marks (); */
5077 gc_in_progress = 0;
5078
5079 consing_since_gc = 0;
5080 if (gc_cons_threshold < 10000)
5081 gc_cons_threshold = 10000;
5082
5083 if (FLOATP (Vgc_cons_percentage))
5084 { /* Set gc_cons_combined_threshold. */
5085 EMACS_INT tot = 0;
5086
5087 tot += total_conses * sizeof (struct Lisp_Cons);
5088 tot += total_symbols * sizeof (struct Lisp_Symbol);
5089 tot += total_markers * sizeof (union Lisp_Misc);
5090 tot += total_string_size;
5091 tot += total_vector_size * sizeof (Lisp_Object);
5092 tot += total_floats * sizeof (struct Lisp_Float);
5093 tot += total_intervals * sizeof (struct interval);
5094 tot += total_strings * sizeof (struct Lisp_String);
5095
5096 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5097 }
5098 else
5099 gc_relative_threshold = 0;
5100
5101 if (garbage_collection_messages)
5102 {
5103 if (message_p || minibuf_level > 0)
5104 restore_message ();
5105 else
5106 message1_nolog ("Garbage collecting...done");
5107 }
5108
5109 unbind_to (count, Qnil);
5110
5111 total[0] = Fcons (make_number (total_conses),
5112 make_number (total_free_conses));
5113 total[1] = Fcons (make_number (total_symbols),
5114 make_number (total_free_symbols));
5115 total[2] = Fcons (make_number (total_markers),
5116 make_number (total_free_markers));
5117 total[3] = make_number (total_string_size);
5118 total[4] = make_number (total_vector_size);
5119 total[5] = Fcons (make_number (total_floats),
5120 make_number (total_free_floats));
5121 total[6] = Fcons (make_number (total_intervals),
5122 make_number (total_free_intervals));
5123 total[7] = Fcons (make_number (total_strings),
5124 make_number (total_free_strings));
5125
5126 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5127 {
5128 /* Compute average percentage of zombies. */
5129 double nlive = 0;
5130
5131 for (i = 0; i < 7; ++i)
5132 if (CONSP (total[i]))
5133 nlive += XFASTINT (XCAR (total[i]));
5134
5135 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5136 max_live = max (nlive, max_live);
5137 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5138 max_zombies = max (nzombies, max_zombies);
5139 ++ngcs;
5140 }
5141 #endif
5142
5143 if (!NILP (Vpost_gc_hook))
5144 {
5145 int gc_count = inhibit_garbage_collection ();
5146 safe_run_hooks (Qpost_gc_hook);
5147 unbind_to (gc_count, Qnil);
5148 }
5149
5150 /* Accumulate statistics. */
5151 EMACS_GET_TIME (t2);
5152 EMACS_SUB_TIME (t3, t2, t1);
5153 if (FLOATP (Vgc_elapsed))
5154 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5155 EMACS_SECS (t3) +
5156 EMACS_USECS (t3) * 1.0e-6);
5157 gcs_done++;
5158
5159 return Flist (sizeof total / sizeof *total, total);
5160 }
5161
5162
5163 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5164 only interesting objects referenced from glyphs are strings. */
5165
5166 static void
5167 mark_glyph_matrix (struct glyph_matrix *matrix)
5168 {
5169 struct glyph_row *row = matrix->rows;
5170 struct glyph_row *end = row + matrix->nrows;
5171
5172 for (; row < end; ++row)
5173 if (row->enabled_p)
5174 {
5175 int area;
5176 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5177 {
5178 struct glyph *glyph = row->glyphs[area];
5179 struct glyph *end_glyph = glyph + row->used[area];
5180
5181 for (; glyph < end_glyph; ++glyph)
5182 if (STRINGP (glyph->object)
5183 && !STRING_MARKED_P (XSTRING (glyph->object)))
5184 mark_object (glyph->object);
5185 }
5186 }
5187 }
5188
5189
5190 /* Mark Lisp faces in the face cache C. */
5191
5192 static void
5193 mark_face_cache (struct face_cache *c)
5194 {
5195 if (c)
5196 {
5197 int i, j;
5198 for (i = 0; i < c->used; ++i)
5199 {
5200 struct face *face = FACE_FROM_ID (c->f, i);
5201
5202 if (face)
5203 {
5204 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5205 mark_object (face->lface[j]);
5206 }
5207 }
5208 }
5209 }
5210
5211
5212 \f
5213 /* Mark reference to a Lisp_Object.
5214 If the object referred to has not been seen yet, recursively mark
5215 all the references contained in it. */
5216
5217 #define LAST_MARKED_SIZE 500
5218 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5219 static int last_marked_index;
5220
5221 /* For debugging--call abort when we cdr down this many
5222 links of a list, in mark_object. In debugging,
5223 the call to abort will hit a breakpoint.
5224 Normally this is zero and the check never goes off. */
5225 static size_t mark_object_loop_halt;
5226
5227 static void
5228 mark_vectorlike (struct Lisp_Vector *ptr)
5229 {
5230 register EMACS_UINT size = ptr->header.size;
5231 register EMACS_UINT i;
5232
5233 eassert (!VECTOR_MARKED_P (ptr));
5234 VECTOR_MARK (ptr); /* Else mark it */
5235 if (size & PSEUDOVECTOR_FLAG)
5236 size &= PSEUDOVECTOR_SIZE_MASK;
5237
5238 /* Note that this size is not the memory-footprint size, but only
5239 the number of Lisp_Object fields that we should trace.
5240 The distinction is used e.g. by Lisp_Process which places extra
5241 non-Lisp_Object fields at the end of the structure. */
5242 for (i = 0; i < size; i++) /* and then mark its elements */
5243 mark_object (ptr->contents[i]);
5244 }
5245
5246 /* Like mark_vectorlike but optimized for char-tables (and
5247 sub-char-tables) assuming that the contents are mostly integers or
5248 symbols. */
5249
5250 static void
5251 mark_char_table (struct Lisp_Vector *ptr)
5252 {
5253 register EMACS_UINT size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5254 register EMACS_UINT i;
5255
5256 eassert (!VECTOR_MARKED_P (ptr));
5257 VECTOR_MARK (ptr);
5258 for (i = 0; i < size; i++)
5259 {
5260 Lisp_Object val = ptr->contents[i];
5261
5262 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5263 continue;
5264 if (SUB_CHAR_TABLE_P (val))
5265 {
5266 if (! VECTOR_MARKED_P (XVECTOR (val)))
5267 mark_char_table (XVECTOR (val));
5268 }
5269 else
5270 mark_object (val);
5271 }
5272 }
5273
5274 void
5275 mark_object (Lisp_Object arg)
5276 {
5277 register Lisp_Object obj = arg;
5278 #ifdef GC_CHECK_MARKED_OBJECTS
5279 void *po;
5280 struct mem_node *m;
5281 #endif
5282 size_t cdr_count = 0;
5283
5284 loop:
5285
5286 if (PURE_POINTER_P (XPNTR (obj)))
5287 return;
5288
5289 last_marked[last_marked_index++] = obj;
5290 if (last_marked_index == LAST_MARKED_SIZE)
5291 last_marked_index = 0;
5292
5293 /* Perform some sanity checks on the objects marked here. Abort if
5294 we encounter an object we know is bogus. This increases GC time
5295 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5296 #ifdef GC_CHECK_MARKED_OBJECTS
5297
5298 po = (void *) XPNTR (obj);
5299
5300 /* Check that the object pointed to by PO is known to be a Lisp
5301 structure allocated from the heap. */
5302 #define CHECK_ALLOCATED() \
5303 do { \
5304 m = mem_find (po); \
5305 if (m == MEM_NIL) \
5306 abort (); \
5307 } while (0)
5308
5309 /* Check that the object pointed to by PO is live, using predicate
5310 function LIVEP. */
5311 #define CHECK_LIVE(LIVEP) \
5312 do { \
5313 if (!LIVEP (m, po)) \
5314 abort (); \
5315 } while (0)
5316
5317 /* Check both of the above conditions. */
5318 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5319 do { \
5320 CHECK_ALLOCATED (); \
5321 CHECK_LIVE (LIVEP); \
5322 } while (0) \
5323
5324 #else /* not GC_CHECK_MARKED_OBJECTS */
5325
5326 #define CHECK_LIVE(LIVEP) (void) 0
5327 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5328
5329 #endif /* not GC_CHECK_MARKED_OBJECTS */
5330
5331 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5332 {
5333 case Lisp_String:
5334 {
5335 register struct Lisp_String *ptr = XSTRING (obj);
5336 if (STRING_MARKED_P (ptr))
5337 break;
5338 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5339 MARK_INTERVAL_TREE (ptr->intervals);
5340 MARK_STRING (ptr);
5341 #ifdef GC_CHECK_STRING_BYTES
5342 /* Check that the string size recorded in the string is the
5343 same as the one recorded in the sdata structure. */
5344 CHECK_STRING_BYTES (ptr);
5345 #endif /* GC_CHECK_STRING_BYTES */
5346 }
5347 break;
5348
5349 case Lisp_Vectorlike:
5350 if (VECTOR_MARKED_P (XVECTOR (obj)))
5351 break;
5352 #ifdef GC_CHECK_MARKED_OBJECTS
5353 m = mem_find (po);
5354 if (m == MEM_NIL && !SUBRP (obj)
5355 && po != &buffer_defaults
5356 && po != &buffer_local_symbols)
5357 abort ();
5358 #endif /* GC_CHECK_MARKED_OBJECTS */
5359
5360 if (BUFFERP (obj))
5361 {
5362 #ifdef GC_CHECK_MARKED_OBJECTS
5363 if (po != &buffer_defaults && po != &buffer_local_symbols)
5364 {
5365 struct buffer *b;
5366 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5367 ;
5368 if (b == NULL)
5369 abort ();
5370 }
5371 #endif /* GC_CHECK_MARKED_OBJECTS */
5372 mark_buffer (obj);
5373 }
5374 else if (SUBRP (obj))
5375 break;
5376 else if (COMPILEDP (obj))
5377 /* We could treat this just like a vector, but it is better to
5378 save the COMPILED_CONSTANTS element for last and avoid
5379 recursion there. */
5380 {
5381 register struct Lisp_Vector *ptr = XVECTOR (obj);
5382 register EMACS_UINT size = ptr->header.size;
5383 register EMACS_UINT i;
5384
5385 CHECK_LIVE (live_vector_p);
5386 VECTOR_MARK (ptr); /* Else mark it */
5387 size &= PSEUDOVECTOR_SIZE_MASK;
5388 for (i = 0; i < size; i++) /* and then mark its elements */
5389 {
5390 if (i != COMPILED_CONSTANTS)
5391 mark_object (ptr->contents[i]);
5392 }
5393 obj = ptr->contents[COMPILED_CONSTANTS];
5394 goto loop;
5395 }
5396 else if (FRAMEP (obj))
5397 {
5398 register struct frame *ptr = XFRAME (obj);
5399 mark_vectorlike (XVECTOR (obj));
5400 mark_face_cache (ptr->face_cache);
5401 }
5402 else if (WINDOWP (obj))
5403 {
5404 register struct Lisp_Vector *ptr = XVECTOR (obj);
5405 struct window *w = XWINDOW (obj);
5406 mark_vectorlike (ptr);
5407 /* Mark glyphs for leaf windows. Marking window matrices is
5408 sufficient because frame matrices use the same glyph
5409 memory. */
5410 if (NILP (w->hchild)
5411 && NILP (w->vchild)
5412 && w->current_matrix)
5413 {
5414 mark_glyph_matrix (w->current_matrix);
5415 mark_glyph_matrix (w->desired_matrix);
5416 }
5417 }
5418 else if (HASH_TABLE_P (obj))
5419 {
5420 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5421 mark_vectorlike ((struct Lisp_Vector *)h);
5422 /* If hash table is not weak, mark all keys and values.
5423 For weak tables, mark only the vector. */
5424 if (NILP (h->weak))
5425 mark_object (h->key_and_value);
5426 else
5427 VECTOR_MARK (XVECTOR (h->key_and_value));
5428 }
5429 else if (CHAR_TABLE_P (obj))
5430 mark_char_table (XVECTOR (obj));
5431 else
5432 mark_vectorlike (XVECTOR (obj));
5433 break;
5434
5435 case Lisp_Symbol:
5436 {
5437 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5438 struct Lisp_Symbol *ptrx;
5439
5440 if (ptr->gcmarkbit)
5441 break;
5442 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5443 ptr->gcmarkbit = 1;
5444 mark_object (ptr->function);
5445 mark_object (ptr->plist);
5446 switch (ptr->redirect)
5447 {
5448 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5449 case SYMBOL_VARALIAS:
5450 {
5451 Lisp_Object tem;
5452 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5453 mark_object (tem);
5454 break;
5455 }
5456 case SYMBOL_LOCALIZED:
5457 {
5458 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5459 /* If the value is forwarded to a buffer or keyboard field,
5460 these are marked when we see the corresponding object.
5461 And if it's forwarded to a C variable, either it's not
5462 a Lisp_Object var, or it's staticpro'd already. */
5463 mark_object (blv->where);
5464 mark_object (blv->valcell);
5465 mark_object (blv->defcell);
5466 break;
5467 }
5468 case SYMBOL_FORWARDED:
5469 /* If the value is forwarded to a buffer or keyboard field,
5470 these are marked when we see the corresponding object.
5471 And if it's forwarded to a C variable, either it's not
5472 a Lisp_Object var, or it's staticpro'd already. */
5473 break;
5474 default: abort ();
5475 }
5476 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5477 MARK_STRING (XSTRING (ptr->xname));
5478 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5479
5480 ptr = ptr->next;
5481 if (ptr)
5482 {
5483 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5484 XSETSYMBOL (obj, ptrx);
5485 goto loop;
5486 }
5487 }
5488 break;
5489
5490 case Lisp_Misc:
5491 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5492 if (XMISCANY (obj)->gcmarkbit)
5493 break;
5494 XMISCANY (obj)->gcmarkbit = 1;
5495
5496 switch (XMISCTYPE (obj))
5497 {
5498
5499 case Lisp_Misc_Marker:
5500 /* DO NOT mark thru the marker's chain.
5501 The buffer's markers chain does not preserve markers from gc;
5502 instead, markers are removed from the chain when freed by gc. */
5503 break;
5504
5505 case Lisp_Misc_Save_Value:
5506 #if GC_MARK_STACK
5507 {
5508 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5509 /* If DOGC is set, POINTER is the address of a memory
5510 area containing INTEGER potential Lisp_Objects. */
5511 if (ptr->dogc)
5512 {
5513 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5514 int nelt;
5515 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5516 mark_maybe_object (*p);
5517 }
5518 }
5519 #endif
5520 break;
5521
5522 case Lisp_Misc_Overlay:
5523 {
5524 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5525 mark_object (ptr->start);
5526 mark_object (ptr->end);
5527 mark_object (ptr->plist);
5528 if (ptr->next)
5529 {
5530 XSETMISC (obj, ptr->next);
5531 goto loop;
5532 }
5533 }
5534 break;
5535
5536 default:
5537 abort ();
5538 }
5539 break;
5540
5541 case Lisp_Cons:
5542 {
5543 register struct Lisp_Cons *ptr = XCONS (obj);
5544 if (CONS_MARKED_P (ptr))
5545 break;
5546 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5547 CONS_MARK (ptr);
5548 /* If the cdr is nil, avoid recursion for the car. */
5549 if (EQ (ptr->u.cdr, Qnil))
5550 {
5551 obj = ptr->car;
5552 cdr_count = 0;
5553 goto loop;
5554 }
5555 mark_object (ptr->car);
5556 obj = ptr->u.cdr;
5557 cdr_count++;
5558 if (cdr_count == mark_object_loop_halt)
5559 abort ();
5560 goto loop;
5561 }
5562
5563 case Lisp_Float:
5564 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5565 FLOAT_MARK (XFLOAT (obj));
5566 break;
5567
5568 case_Lisp_Int:
5569 break;
5570
5571 default:
5572 abort ();
5573 }
5574
5575 #undef CHECK_LIVE
5576 #undef CHECK_ALLOCATED
5577 #undef CHECK_ALLOCATED_AND_LIVE
5578 }
5579
5580 /* Mark the pointers in a buffer structure. */
5581
5582 static void
5583 mark_buffer (Lisp_Object buf)
5584 {
5585 register struct buffer *buffer = XBUFFER (buf);
5586 register Lisp_Object *ptr, tmp;
5587 Lisp_Object base_buffer;
5588
5589 eassert (!VECTOR_MARKED_P (buffer));
5590 VECTOR_MARK (buffer);
5591
5592 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5593
5594 /* For now, we just don't mark the undo_list. It's done later in
5595 a special way just before the sweep phase, and after stripping
5596 some of its elements that are not needed any more. */
5597
5598 if (buffer->overlays_before)
5599 {
5600 XSETMISC (tmp, buffer->overlays_before);
5601 mark_object (tmp);
5602 }
5603 if (buffer->overlays_after)
5604 {
5605 XSETMISC (tmp, buffer->overlays_after);
5606 mark_object (tmp);
5607 }
5608
5609 /* buffer-local Lisp variables start at `undo_list',
5610 tho only the ones from `name' on are GC'd normally. */
5611 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5612 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5613 ptr++)
5614 mark_object (*ptr);
5615
5616 /* If this is an indirect buffer, mark its base buffer. */
5617 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5618 {
5619 XSETBUFFER (base_buffer, buffer->base_buffer);
5620 mark_buffer (base_buffer);
5621 }
5622 }
5623
5624 /* Mark the Lisp pointers in the terminal objects.
5625 Called by the Fgarbage_collector. */
5626
5627 static void
5628 mark_terminals (void)
5629 {
5630 struct terminal *t;
5631 for (t = terminal_list; t; t = t->next_terminal)
5632 {
5633 eassert (t->name != NULL);
5634 #ifdef HAVE_WINDOW_SYSTEM
5635 /* If a terminal object is reachable from a stacpro'ed object,
5636 it might have been marked already. Make sure the image cache
5637 gets marked. */
5638 mark_image_cache (t->image_cache);
5639 #endif /* HAVE_WINDOW_SYSTEM */
5640 if (!VECTOR_MARKED_P (t))
5641 mark_vectorlike ((struct Lisp_Vector *)t);
5642 }
5643 }
5644
5645
5646
5647 /* Value is non-zero if OBJ will survive the current GC because it's
5648 either marked or does not need to be marked to survive. */
5649
5650 int
5651 survives_gc_p (Lisp_Object obj)
5652 {
5653 int survives_p;
5654
5655 switch (XTYPE (obj))
5656 {
5657 case_Lisp_Int:
5658 survives_p = 1;
5659 break;
5660
5661 case Lisp_Symbol:
5662 survives_p = XSYMBOL (obj)->gcmarkbit;
5663 break;
5664
5665 case Lisp_Misc:
5666 survives_p = XMISCANY (obj)->gcmarkbit;
5667 break;
5668
5669 case Lisp_String:
5670 survives_p = STRING_MARKED_P (XSTRING (obj));
5671 break;
5672
5673 case Lisp_Vectorlike:
5674 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5675 break;
5676
5677 case Lisp_Cons:
5678 survives_p = CONS_MARKED_P (XCONS (obj));
5679 break;
5680
5681 case Lisp_Float:
5682 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5683 break;
5684
5685 default:
5686 abort ();
5687 }
5688
5689 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5690 }
5691
5692
5693 \f
5694 /* Sweep: find all structures not marked, and free them. */
5695
5696 static void
5697 gc_sweep (void)
5698 {
5699 /* Remove or mark entries in weak hash tables.
5700 This must be done before any object is unmarked. */
5701 sweep_weak_hash_tables ();
5702
5703 sweep_strings ();
5704 #ifdef GC_CHECK_STRING_BYTES
5705 if (!noninteractive)
5706 check_string_bytes (1);
5707 #endif
5708
5709 /* Put all unmarked conses on free list */
5710 {
5711 register struct cons_block *cblk;
5712 struct cons_block **cprev = &cons_block;
5713 register int lim = cons_block_index;
5714 register int num_free = 0, num_used = 0;
5715
5716 cons_free_list = 0;
5717
5718 for (cblk = cons_block; cblk; cblk = *cprev)
5719 {
5720 register int i = 0;
5721 int this_free = 0;
5722 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5723
5724 /* Scan the mark bits an int at a time. */
5725 for (i = 0; i <= ilim; i++)
5726 {
5727 if (cblk->gcmarkbits[i] == -1)
5728 {
5729 /* Fast path - all cons cells for this int are marked. */
5730 cblk->gcmarkbits[i] = 0;
5731 num_used += BITS_PER_INT;
5732 }
5733 else
5734 {
5735 /* Some cons cells for this int are not marked.
5736 Find which ones, and free them. */
5737 int start, pos, stop;
5738
5739 start = i * BITS_PER_INT;
5740 stop = lim - start;
5741 if (stop > BITS_PER_INT)
5742 stop = BITS_PER_INT;
5743 stop += start;
5744
5745 for (pos = start; pos < stop; pos++)
5746 {
5747 if (!CONS_MARKED_P (&cblk->conses[pos]))
5748 {
5749 this_free++;
5750 cblk->conses[pos].u.chain = cons_free_list;
5751 cons_free_list = &cblk->conses[pos];
5752 #if GC_MARK_STACK
5753 cons_free_list->car = Vdead;
5754 #endif
5755 }
5756 else
5757 {
5758 num_used++;
5759 CONS_UNMARK (&cblk->conses[pos]);
5760 }
5761 }
5762 }
5763 }
5764
5765 lim = CONS_BLOCK_SIZE;
5766 /* If this block contains only free conses and we have already
5767 seen more than two blocks worth of free conses then deallocate
5768 this block. */
5769 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5770 {
5771 *cprev = cblk->next;
5772 /* Unhook from the free list. */
5773 cons_free_list = cblk->conses[0].u.chain;
5774 lisp_align_free (cblk);
5775 n_cons_blocks--;
5776 }
5777 else
5778 {
5779 num_free += this_free;
5780 cprev = &cblk->next;
5781 }
5782 }
5783 total_conses = num_used;
5784 total_free_conses = num_free;
5785 }
5786
5787 /* Put all unmarked floats on free list */
5788 {
5789 register struct float_block *fblk;
5790 struct float_block **fprev = &float_block;
5791 register int lim = float_block_index;
5792 register int num_free = 0, num_used = 0;
5793
5794 float_free_list = 0;
5795
5796 for (fblk = float_block; fblk; fblk = *fprev)
5797 {
5798 register int i;
5799 int this_free = 0;
5800 for (i = 0; i < lim; i++)
5801 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5802 {
5803 this_free++;
5804 fblk->floats[i].u.chain = float_free_list;
5805 float_free_list = &fblk->floats[i];
5806 }
5807 else
5808 {
5809 num_used++;
5810 FLOAT_UNMARK (&fblk->floats[i]);
5811 }
5812 lim = FLOAT_BLOCK_SIZE;
5813 /* If this block contains only free floats and we have already
5814 seen more than two blocks worth of free floats then deallocate
5815 this block. */
5816 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5817 {
5818 *fprev = fblk->next;
5819 /* Unhook from the free list. */
5820 float_free_list = fblk->floats[0].u.chain;
5821 lisp_align_free (fblk);
5822 n_float_blocks--;
5823 }
5824 else
5825 {
5826 num_free += this_free;
5827 fprev = &fblk->next;
5828 }
5829 }
5830 total_floats = num_used;
5831 total_free_floats = num_free;
5832 }
5833
5834 /* Put all unmarked intervals on free list */
5835 {
5836 register struct interval_block *iblk;
5837 struct interval_block **iprev = &interval_block;
5838 register int lim = interval_block_index;
5839 register int num_free = 0, num_used = 0;
5840
5841 interval_free_list = 0;
5842
5843 for (iblk = interval_block; iblk; iblk = *iprev)
5844 {
5845 register int i;
5846 int this_free = 0;
5847
5848 for (i = 0; i < lim; i++)
5849 {
5850 if (!iblk->intervals[i].gcmarkbit)
5851 {
5852 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5853 interval_free_list = &iblk->intervals[i];
5854 this_free++;
5855 }
5856 else
5857 {
5858 num_used++;
5859 iblk->intervals[i].gcmarkbit = 0;
5860 }
5861 }
5862 lim = INTERVAL_BLOCK_SIZE;
5863 /* If this block contains only free intervals and we have already
5864 seen more than two blocks worth of free intervals then
5865 deallocate this block. */
5866 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5867 {
5868 *iprev = iblk->next;
5869 /* Unhook from the free list. */
5870 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5871 lisp_free (iblk);
5872 n_interval_blocks--;
5873 }
5874 else
5875 {
5876 num_free += this_free;
5877 iprev = &iblk->next;
5878 }
5879 }
5880 total_intervals = num_used;
5881 total_free_intervals = num_free;
5882 }
5883
5884 /* Put all unmarked symbols on free list */
5885 {
5886 register struct symbol_block *sblk;
5887 struct symbol_block **sprev = &symbol_block;
5888 register int lim = symbol_block_index;
5889 register int num_free = 0, num_used = 0;
5890
5891 symbol_free_list = NULL;
5892
5893 for (sblk = symbol_block; sblk; sblk = *sprev)
5894 {
5895 int this_free = 0;
5896 struct Lisp_Symbol *sym = sblk->symbols;
5897 struct Lisp_Symbol *end = sym + lim;
5898
5899 for (; sym < end; ++sym)
5900 {
5901 /* Check if the symbol was created during loadup. In such a case
5902 it might be pointed to by pure bytecode which we don't trace,
5903 so we conservatively assume that it is live. */
5904 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5905
5906 if (!sym->gcmarkbit && !pure_p)
5907 {
5908 if (sym->redirect == SYMBOL_LOCALIZED)
5909 xfree (SYMBOL_BLV (sym));
5910 sym->next = symbol_free_list;
5911 symbol_free_list = sym;
5912 #if GC_MARK_STACK
5913 symbol_free_list->function = Vdead;
5914 #endif
5915 ++this_free;
5916 }
5917 else
5918 {
5919 ++num_used;
5920 if (!pure_p)
5921 UNMARK_STRING (XSTRING (sym->xname));
5922 sym->gcmarkbit = 0;
5923 }
5924 }
5925
5926 lim = SYMBOL_BLOCK_SIZE;
5927 /* If this block contains only free symbols and we have already
5928 seen more than two blocks worth of free symbols then deallocate
5929 this block. */
5930 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5931 {
5932 *sprev = sblk->next;
5933 /* Unhook from the free list. */
5934 symbol_free_list = sblk->symbols[0].next;
5935 lisp_free (sblk);
5936 n_symbol_blocks--;
5937 }
5938 else
5939 {
5940 num_free += this_free;
5941 sprev = &sblk->next;
5942 }
5943 }
5944 total_symbols = num_used;
5945 total_free_symbols = num_free;
5946 }
5947
5948 /* Put all unmarked misc's on free list.
5949 For a marker, first unchain it from the buffer it points into. */
5950 {
5951 register struct marker_block *mblk;
5952 struct marker_block **mprev = &marker_block;
5953 register int lim = marker_block_index;
5954 register int num_free = 0, num_used = 0;
5955
5956 marker_free_list = 0;
5957
5958 for (mblk = marker_block; mblk; mblk = *mprev)
5959 {
5960 register int i;
5961 int this_free = 0;
5962
5963 for (i = 0; i < lim; i++)
5964 {
5965 if (!mblk->markers[i].u_any.gcmarkbit)
5966 {
5967 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5968 unchain_marker (&mblk->markers[i].u_marker);
5969 /* Set the type of the freed object to Lisp_Misc_Free.
5970 We could leave the type alone, since nobody checks it,
5971 but this might catch bugs faster. */
5972 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5973 mblk->markers[i].u_free.chain = marker_free_list;
5974 marker_free_list = &mblk->markers[i];
5975 this_free++;
5976 }
5977 else
5978 {
5979 num_used++;
5980 mblk->markers[i].u_any.gcmarkbit = 0;
5981 }
5982 }
5983 lim = MARKER_BLOCK_SIZE;
5984 /* If this block contains only free markers and we have already
5985 seen more than two blocks worth of free markers then deallocate
5986 this block. */
5987 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5988 {
5989 *mprev = mblk->next;
5990 /* Unhook from the free list. */
5991 marker_free_list = mblk->markers[0].u_free.chain;
5992 lisp_free (mblk);
5993 n_marker_blocks--;
5994 }
5995 else
5996 {
5997 num_free += this_free;
5998 mprev = &mblk->next;
5999 }
6000 }
6001
6002 total_markers = num_used;
6003 total_free_markers = num_free;
6004 }
6005
6006 /* Free all unmarked buffers */
6007 {
6008 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6009
6010 while (buffer)
6011 if (!VECTOR_MARKED_P (buffer))
6012 {
6013 if (prev)
6014 prev->header.next = buffer->header.next;
6015 else
6016 all_buffers = buffer->header.next.buffer;
6017 next = buffer->header.next.buffer;
6018 lisp_free (buffer);
6019 buffer = next;
6020 }
6021 else
6022 {
6023 VECTOR_UNMARK (buffer);
6024 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6025 prev = buffer, buffer = buffer->header.next.buffer;
6026 }
6027 }
6028
6029 /* Free all unmarked vectors */
6030 {
6031 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6032 total_vector_size = 0;
6033
6034 while (vector)
6035 if (!VECTOR_MARKED_P (vector))
6036 {
6037 if (prev)
6038 prev->header.next = vector->header.next;
6039 else
6040 all_vectors = vector->header.next.vector;
6041 next = vector->header.next.vector;
6042 lisp_free (vector);
6043 n_vectors--;
6044 vector = next;
6045
6046 }
6047 else
6048 {
6049 VECTOR_UNMARK (vector);
6050 if (vector->header.size & PSEUDOVECTOR_FLAG)
6051 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6052 else
6053 total_vector_size += vector->header.size;
6054 prev = vector, vector = vector->header.next.vector;
6055 }
6056 }
6057
6058 #ifdef GC_CHECK_STRING_BYTES
6059 if (!noninteractive)
6060 check_string_bytes (1);
6061 #endif
6062 }
6063
6064
6065
6066 \f
6067 /* Debugging aids. */
6068
6069 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6070 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6071 This may be helpful in debugging Emacs's memory usage.
6072 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6073 (void)
6074 {
6075 Lisp_Object end;
6076
6077 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6078
6079 return end;
6080 }
6081
6082 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6083 doc: /* Return a list of counters that measure how much consing there has been.
6084 Each of these counters increments for a certain kind of object.
6085 The counters wrap around from the largest positive integer to zero.
6086 Garbage collection does not decrease them.
6087 The elements of the value are as follows:
6088 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6089 All are in units of 1 = one object consed
6090 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6091 objects consed.
6092 MISCS include overlays, markers, and some internal types.
6093 Frames, windows, buffers, and subprocesses count as vectors
6094 (but the contents of a buffer's text do not count here). */)
6095 (void)
6096 {
6097 Lisp_Object consed[8];
6098
6099 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6100 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6101 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6102 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6103 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6104 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6105 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6106 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6107
6108 return Flist (8, consed);
6109 }
6110
6111 #ifdef ENABLE_CHECKING
6112 int suppress_checking;
6113
6114 void
6115 die (const char *msg, const char *file, int line)
6116 {
6117 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6118 file, line, msg);
6119 abort ();
6120 }
6121 #endif
6122 \f
6123 /* Initialization */
6124
6125 void
6126 init_alloc_once (void)
6127 {
6128 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6129 purebeg = PUREBEG;
6130 pure_size = PURESIZE;
6131 pure_bytes_used = 0;
6132 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6133 pure_bytes_used_before_overflow = 0;
6134
6135 /* Initialize the list of free aligned blocks. */
6136 free_ablock = NULL;
6137
6138 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6139 mem_init ();
6140 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6141 #endif
6142
6143 all_vectors = 0;
6144 ignore_warnings = 1;
6145 #ifdef DOUG_LEA_MALLOC
6146 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6147 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6148 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6149 #endif
6150 init_strings ();
6151 init_cons ();
6152 init_symbol ();
6153 init_marker ();
6154 init_float ();
6155 init_intervals ();
6156 init_weak_hash_tables ();
6157
6158 #ifdef REL_ALLOC
6159 malloc_hysteresis = 32;
6160 #else
6161 malloc_hysteresis = 0;
6162 #endif
6163
6164 refill_memory_reserve ();
6165
6166 ignore_warnings = 0;
6167 gcprolist = 0;
6168 byte_stack_list = 0;
6169 staticidx = 0;
6170 consing_since_gc = 0;
6171 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6172 gc_relative_threshold = 0;
6173 }
6174
6175 void
6176 init_alloc (void)
6177 {
6178 gcprolist = 0;
6179 byte_stack_list = 0;
6180 #if GC_MARK_STACK
6181 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6182 setjmp_tested_p = longjmps_done = 0;
6183 #endif
6184 #endif
6185 Vgc_elapsed = make_float (0.0);
6186 gcs_done = 0;
6187 }
6188
6189 void
6190 syms_of_alloc (void)
6191 {
6192 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6193 doc: /* *Number of bytes of consing between garbage collections.
6194 Garbage collection can happen automatically once this many bytes have been
6195 allocated since the last garbage collection. All data types count.
6196
6197 Garbage collection happens automatically only when `eval' is called.
6198
6199 By binding this temporarily to a large number, you can effectively
6200 prevent garbage collection during a part of the program.
6201 See also `gc-cons-percentage'. */);
6202
6203 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6204 doc: /* *Portion of the heap used for allocation.
6205 Garbage collection can happen automatically once this portion of the heap
6206 has been allocated since the last garbage collection.
6207 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6208 Vgc_cons_percentage = make_float (0.1);
6209
6210 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6211 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6212
6213 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6214 doc: /* Number of cons cells that have been consed so far. */);
6215
6216 DEFVAR_INT ("floats-consed", floats_consed,
6217 doc: /* Number of floats that have been consed so far. */);
6218
6219 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6220 doc: /* Number of vector cells that have been consed so far. */);
6221
6222 DEFVAR_INT ("symbols-consed", symbols_consed,
6223 doc: /* Number of symbols that have been consed so far. */);
6224
6225 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6226 doc: /* Number of string characters that have been consed so far. */);
6227
6228 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6229 doc: /* Number of miscellaneous objects that have been consed so far. */);
6230
6231 DEFVAR_INT ("intervals-consed", intervals_consed,
6232 doc: /* Number of intervals that have been consed so far. */);
6233
6234 DEFVAR_INT ("strings-consed", strings_consed,
6235 doc: /* Number of strings that have been consed so far. */);
6236
6237 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6238 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6239 This means that certain objects should be allocated in shared (pure) space.
6240 It can also be set to a hash-table, in which case this table is used to
6241 do hash-consing of the objects allocated to pure space. */);
6242
6243 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6244 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6245 garbage_collection_messages = 0;
6246
6247 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6248 doc: /* Hook run after garbage collection has finished. */);
6249 Vpost_gc_hook = Qnil;
6250 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6251 staticpro (&Qpost_gc_hook);
6252
6253 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6254 doc: /* Precomputed `signal' argument for memory-full error. */);
6255 /* We build this in advance because if we wait until we need it, we might
6256 not be able to allocate the memory to hold it. */
6257 Vmemory_signal_data
6258 = pure_cons (Qerror,
6259 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6260
6261 DEFVAR_LISP ("memory-full", Vmemory_full,
6262 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6263 Vmemory_full = Qnil;
6264
6265 staticpro (&Qgc_cons_threshold);
6266 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6267
6268 staticpro (&Qchar_table_extra_slots);
6269 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6270
6271 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6272 doc: /* Accumulated time elapsed in garbage collections.
6273 The time is in seconds as a floating point value. */);
6274 DEFVAR_INT ("gcs-done", gcs_done,
6275 doc: /* Accumulated number of garbage collections done. */);
6276
6277 defsubr (&Scons);
6278 defsubr (&Slist);
6279 defsubr (&Svector);
6280 defsubr (&Smake_byte_code);
6281 defsubr (&Smake_list);
6282 defsubr (&Smake_vector);
6283 defsubr (&Smake_string);
6284 defsubr (&Smake_bool_vector);
6285 defsubr (&Smake_symbol);
6286 defsubr (&Smake_marker);
6287 defsubr (&Spurecopy);
6288 defsubr (&Sgarbage_collect);
6289 defsubr (&Smemory_limit);
6290 defsubr (&Smemory_use_counts);
6291
6292 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6293 defsubr (&Sgc_status);
6294 #endif
6295 }