Fix bug #12196 with infloop when cache-long-line-scans is non-nil.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "character.h"
28 #include "buffer.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 char posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104
105 static _Noreturn void
106 matcher_overflow (void)
107 {
108 error ("Stack overflow in regexp matcher");
109 }
110
111 /* Compile a regexp and signal a Lisp error if anything goes wrong.
112 PATTERN is the pattern to compile.
113 CP is the place to put the result.
114 TRANSLATE is a translation table for ignoring case, or nil for none.
115 POSIX is nonzero if we want full backtracking (POSIX style)
116 for this pattern. 0 means backtrack only enough to get a valid match.
117
118 The behavior also depends on Vsearch_spaces_regexp. */
119
120 static void
121 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
122 {
123 char *val;
124 reg_syntax_t old;
125
126 cp->regexp = Qnil;
127 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
128 cp->posix = posix;
129 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
130 cp->buf.charset_unibyte = charset_unibyte;
131 if (STRINGP (Vsearch_spaces_regexp))
132 cp->whitespace_regexp = Vsearch_spaces_regexp;
133 else
134 cp->whitespace_regexp = Qnil;
135
136 /* rms: I think BLOCK_INPUT is not needed here any more,
137 because regex.c defines malloc to call xmalloc.
138 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
139 So let's turn it off. */
140 /* BLOCK_INPUT; */
141 old = re_set_syntax (RE_SYNTAX_EMACS
142 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
143
144 if (STRINGP (Vsearch_spaces_regexp))
145 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
146 else
147 re_set_whitespace_regexp (NULL);
148
149 val = (char *) re_compile_pattern (SSDATA (pattern),
150 SBYTES (pattern), &cp->buf);
151
152 /* If the compiled pattern hard codes some of the contents of the
153 syntax-table, it can only be reused with *this* syntax table. */
154 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
155
156 re_set_whitespace_regexp (NULL);
157
158 re_set_syntax (old);
159 /* UNBLOCK_INPUT; */
160 if (val)
161 xsignal1 (Qinvalid_regexp, build_string (val));
162
163 cp->regexp = Fcopy_sequence (pattern);
164 }
165
166 /* Shrink each compiled regexp buffer in the cache
167 to the size actually used right now.
168 This is called from garbage collection. */
169
170 void
171 shrink_regexp_cache (void)
172 {
173 struct regexp_cache *cp;
174
175 for (cp = searchbuf_head; cp != 0; cp = cp->next)
176 {
177 cp->buf.allocated = cp->buf.used;
178 cp->buf.buffer = xrealloc (cp->buf.buffer, cp->buf.used);
179 }
180 }
181
182 /* Clear the regexp cache w.r.t. a particular syntax table,
183 because it was changed.
184 There is no danger of memory leak here because re_compile_pattern
185 automagically manages the memory in each re_pattern_buffer struct,
186 based on its `allocated' and `buffer' values. */
187 void
188 clear_regexp_cache (void)
189 {
190 int i;
191
192 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
193 /* It's tempting to compare with the syntax-table we've actually changed,
194 but it's not sufficient because char-table inheritance means that
195 modifying one syntax-table can change others at the same time. */
196 if (!EQ (searchbufs[i].syntax_table, Qt))
197 searchbufs[i].regexp = Qnil;
198 }
199
200 /* Compile a regexp if necessary, but first check to see if there's one in
201 the cache.
202 PATTERN is the pattern to compile.
203 TRANSLATE is a translation table for ignoring case, or nil for none.
204 REGP is the structure that says where to store the "register"
205 values that will result from matching this pattern.
206 If it is 0, we should compile the pattern not to record any
207 subexpression bounds.
208 POSIX is nonzero if we want full backtracking (POSIX style)
209 for this pattern. 0 means backtrack only enough to get a valid match. */
210
211 struct re_pattern_buffer *
212 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
213 {
214 struct regexp_cache *cp, **cpp;
215
216 for (cpp = &searchbuf_head; ; cpp = &cp->next)
217 {
218 cp = *cpp;
219 /* Entries are initialized to nil, and may be set to nil by
220 compile_pattern_1 if the pattern isn't valid. Don't apply
221 string accessors in those cases. However, compile_pattern_1
222 is only applied to the cache entry we pick here to reuse. So
223 nil should never appear before a non-nil entry. */
224 if (NILP (cp->regexp))
225 goto compile_it;
226 if (SCHARS (cp->regexp) == SCHARS (pattern)
227 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
228 && !NILP (Fstring_equal (cp->regexp, pattern))
229 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
230 && cp->posix == posix
231 && (EQ (cp->syntax_table, Qt)
232 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
233 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
234 && cp->buf.charset_unibyte == charset_unibyte)
235 break;
236
237 /* If we're at the end of the cache, compile into the nil cell
238 we found, or the last (least recently used) cell with a
239 string value. */
240 if (cp->next == 0)
241 {
242 compile_it:
243 compile_pattern_1 (cp, pattern, translate, posix);
244 break;
245 }
246 }
247
248 /* When we get here, cp (aka *cpp) contains the compiled pattern,
249 either because we found it in the cache or because we just compiled it.
250 Move it to the front of the queue to mark it as most recently used. */
251 *cpp = cp->next;
252 cp->next = searchbuf_head;
253 searchbuf_head = cp;
254
255 /* Advise the searching functions about the space we have allocated
256 for register data. */
257 if (regp)
258 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
259
260 /* The compiled pattern can be used both for multibyte and unibyte
261 target. But, we have to tell which the pattern is used for. */
262 cp->buf.target_multibyte = multibyte;
263
264 return &cp->buf;
265 }
266
267 \f
268 static Lisp_Object
269 looking_at_1 (Lisp_Object string, int posix)
270 {
271 Lisp_Object val;
272 unsigned char *p1, *p2;
273 ptrdiff_t s1, s2;
274 register ptrdiff_t i;
275 struct re_pattern_buffer *bufp;
276
277 if (running_asynch_code)
278 save_search_regs ();
279
280 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
281 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
282 BVAR (current_buffer, case_eqv_table));
283
284 CHECK_STRING (string);
285 bufp = compile_pattern (string,
286 (NILP (Vinhibit_changing_match_data)
287 ? &search_regs : NULL),
288 (!NILP (BVAR (current_buffer, case_fold_search))
289 ? BVAR (current_buffer, case_canon_table) : Qnil),
290 posix,
291 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
292
293 immediate_quit = 1;
294 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
295
296 /* Get pointers and sizes of the two strings
297 that make up the visible portion of the buffer. */
298
299 p1 = BEGV_ADDR;
300 s1 = GPT_BYTE - BEGV_BYTE;
301 p2 = GAP_END_ADDR;
302 s2 = ZV_BYTE - GPT_BYTE;
303 if (s1 < 0)
304 {
305 p2 = p1;
306 s2 = ZV_BYTE - BEGV_BYTE;
307 s1 = 0;
308 }
309 if (s2 < 0)
310 {
311 s1 = ZV_BYTE - BEGV_BYTE;
312 s2 = 0;
313 }
314
315 re_match_object = Qnil;
316
317 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
318 PT_BYTE - BEGV_BYTE,
319 (NILP (Vinhibit_changing_match_data)
320 ? &search_regs : NULL),
321 ZV_BYTE - BEGV_BYTE);
322 immediate_quit = 0;
323
324 if (i == -2)
325 matcher_overflow ();
326
327 val = (0 <= i ? Qt : Qnil);
328 if (NILP (Vinhibit_changing_match_data) && i >= 0)
329 for (i = 0; i < search_regs.num_regs; i++)
330 if (search_regs.start[i] >= 0)
331 {
332 search_regs.start[i]
333 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
334 search_regs.end[i]
335 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
336 }
337
338 /* Set last_thing_searched only when match data is changed. */
339 if (NILP (Vinhibit_changing_match_data))
340 XSETBUFFER (last_thing_searched, current_buffer);
341
342 return val;
343 }
344
345 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
346 doc: /* Return t if text after point matches regular expression REGEXP.
347 This function modifies the match data that `match-beginning',
348 `match-end' and `match-data' access; save and restore the match
349 data if you want to preserve them. */)
350 (Lisp_Object regexp)
351 {
352 return looking_at_1 (regexp, 0);
353 }
354
355 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
356 doc: /* Return t if text after point matches regular expression REGEXP.
357 Find the longest match, in accord with Posix regular expression rules.
358 This function modifies the match data that `match-beginning',
359 `match-end' and `match-data' access; save and restore the match
360 data if you want to preserve them. */)
361 (Lisp_Object regexp)
362 {
363 return looking_at_1 (regexp, 1);
364 }
365 \f
366 static Lisp_Object
367 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
368 {
369 ptrdiff_t val;
370 struct re_pattern_buffer *bufp;
371 EMACS_INT pos;
372 ptrdiff_t pos_byte, i;
373
374 if (running_asynch_code)
375 save_search_regs ();
376
377 CHECK_STRING (regexp);
378 CHECK_STRING (string);
379
380 if (NILP (start))
381 pos = 0, pos_byte = 0;
382 else
383 {
384 ptrdiff_t len = SCHARS (string);
385
386 CHECK_NUMBER (start);
387 pos = XINT (start);
388 if (pos < 0 && -pos <= len)
389 pos = len + pos;
390 else if (0 > pos || pos > len)
391 args_out_of_range (string, start);
392 pos_byte = string_char_to_byte (string, pos);
393 }
394
395 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
396 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
397 BVAR (current_buffer, case_eqv_table));
398
399 bufp = compile_pattern (regexp,
400 (NILP (Vinhibit_changing_match_data)
401 ? &search_regs : NULL),
402 (!NILP (BVAR (current_buffer, case_fold_search))
403 ? BVAR (current_buffer, case_canon_table) : Qnil),
404 posix,
405 STRING_MULTIBYTE (string));
406 immediate_quit = 1;
407 re_match_object = string;
408
409 val = re_search (bufp, SSDATA (string),
410 SBYTES (string), pos_byte,
411 SBYTES (string) - pos_byte,
412 (NILP (Vinhibit_changing_match_data)
413 ? &search_regs : NULL));
414 immediate_quit = 0;
415
416 /* Set last_thing_searched only when match data is changed. */
417 if (NILP (Vinhibit_changing_match_data))
418 last_thing_searched = Qt;
419
420 if (val == -2)
421 matcher_overflow ();
422 if (val < 0) return Qnil;
423
424 if (NILP (Vinhibit_changing_match_data))
425 for (i = 0; i < search_regs.num_regs; i++)
426 if (search_regs.start[i] >= 0)
427 {
428 search_regs.start[i]
429 = string_byte_to_char (string, search_regs.start[i]);
430 search_regs.end[i]
431 = string_byte_to_char (string, search_regs.end[i]);
432 }
433
434 return make_number (string_byte_to_char (string, val));
435 }
436
437 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
438 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
439 Matching ignores case if `case-fold-search' is non-nil.
440 If third arg START is non-nil, start search at that index in STRING.
441 For index of first char beyond the match, do (match-end 0).
442 `match-end' and `match-beginning' also give indices of substrings
443 matched by parenthesis constructs in the pattern.
444
445 You can use the function `match-string' to extract the substrings
446 matched by the parenthesis constructions in REGEXP. */)
447 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
448 {
449 return string_match_1 (regexp, string, start, 0);
450 }
451
452 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
453 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
454 Find the longest match, in accord with Posix regular expression rules.
455 Case is ignored if `case-fold-search' is non-nil in the current buffer.
456 If third arg START is non-nil, start search at that index in STRING.
457 For index of first char beyond the match, do (match-end 0).
458 `match-end' and `match-beginning' also give indices of substrings
459 matched by parenthesis constructs in the pattern. */)
460 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
461 {
462 return string_match_1 (regexp, string, start, 1);
463 }
464
465 /* Match REGEXP against STRING, searching all of STRING,
466 and return the index of the match, or negative on failure.
467 This does not clobber the match data. */
468
469 ptrdiff_t
470 fast_string_match (Lisp_Object regexp, Lisp_Object string)
471 {
472 ptrdiff_t val;
473 struct re_pattern_buffer *bufp;
474
475 bufp = compile_pattern (regexp, 0, Qnil,
476 0, STRING_MULTIBYTE (string));
477 immediate_quit = 1;
478 re_match_object = string;
479
480 val = re_search (bufp, SSDATA (string),
481 SBYTES (string), 0,
482 SBYTES (string), 0);
483 immediate_quit = 0;
484 return val;
485 }
486
487 /* Match REGEXP against STRING, searching all of STRING ignoring case,
488 and return the index of the match, or negative on failure.
489 This does not clobber the match data.
490 We assume that STRING contains single-byte characters. */
491
492 ptrdiff_t
493 fast_c_string_match_ignore_case (Lisp_Object regexp,
494 const char *string, ptrdiff_t len)
495 {
496 ptrdiff_t val;
497 struct re_pattern_buffer *bufp;
498
499 regexp = string_make_unibyte (regexp);
500 re_match_object = Qt;
501 bufp = compile_pattern (regexp, 0,
502 Vascii_canon_table, 0,
503 0);
504 immediate_quit = 1;
505 val = re_search (bufp, string, len, 0, len, 0);
506 immediate_quit = 0;
507 return val;
508 }
509
510 /* Like fast_string_match but ignore case. */
511
512 ptrdiff_t
513 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
514 {
515 ptrdiff_t val;
516 struct re_pattern_buffer *bufp;
517
518 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
519 0, STRING_MULTIBYTE (string));
520 immediate_quit = 1;
521 re_match_object = string;
522
523 val = re_search (bufp, SSDATA (string),
524 SBYTES (string), 0,
525 SBYTES (string), 0);
526 immediate_quit = 0;
527 return val;
528 }
529 \f
530 /* Match REGEXP against the characters after POS to LIMIT, and return
531 the number of matched characters. If STRING is non-nil, match
532 against the characters in it. In that case, POS and LIMIT are
533 indices into the string. This function doesn't modify the match
534 data. */
535
536 ptrdiff_t
537 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
538 {
539 int multibyte;
540 struct re_pattern_buffer *buf;
541 unsigned char *p1, *p2;
542 ptrdiff_t s1, s2;
543 ptrdiff_t len;
544
545 if (STRINGP (string))
546 {
547 if (pos_byte < 0)
548 pos_byte = string_char_to_byte (string, pos);
549 if (limit_byte < 0)
550 limit_byte = string_char_to_byte (string, limit);
551 p1 = NULL;
552 s1 = 0;
553 p2 = SDATA (string);
554 s2 = SBYTES (string);
555 re_match_object = string;
556 multibyte = STRING_MULTIBYTE (string);
557 }
558 else
559 {
560 if (pos_byte < 0)
561 pos_byte = CHAR_TO_BYTE (pos);
562 if (limit_byte < 0)
563 limit_byte = CHAR_TO_BYTE (limit);
564 pos_byte -= BEGV_BYTE;
565 limit_byte -= BEGV_BYTE;
566 p1 = BEGV_ADDR;
567 s1 = GPT_BYTE - BEGV_BYTE;
568 p2 = GAP_END_ADDR;
569 s2 = ZV_BYTE - GPT_BYTE;
570 if (s1 < 0)
571 {
572 p2 = p1;
573 s2 = ZV_BYTE - BEGV_BYTE;
574 s1 = 0;
575 }
576 if (s2 < 0)
577 {
578 s1 = ZV_BYTE - BEGV_BYTE;
579 s2 = 0;
580 }
581 re_match_object = Qnil;
582 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
583 }
584
585 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
586 immediate_quit = 1;
587 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
588 pos_byte, NULL, limit_byte);
589 immediate_quit = 0;
590
591 return len;
592 }
593
594 \f
595 /* The newline cache: remembering which sections of text have no newlines. */
596
597 /* If the user has requested newline caching, make sure it's on.
598 Otherwise, make sure it's off.
599 This is our cheezy way of associating an action with the change of
600 state of a buffer-local variable. */
601 static void
602 newline_cache_on_off (struct buffer *buf)
603 {
604 if (NILP (BVAR (buf, cache_long_line_scans)))
605 {
606 /* It should be off. */
607 if (buf->newline_cache)
608 {
609 free_region_cache (buf->newline_cache);
610 buf->newline_cache = 0;
611 }
612 }
613 else
614 {
615 /* It should be on. */
616 if (buf->newline_cache == 0)
617 buf->newline_cache = new_region_cache ();
618 }
619 }
620
621 \f
622 /* Search for COUNT instances of the character TARGET between START and END.
623
624 If COUNT is positive, search forwards; END must be >= START.
625 If COUNT is negative, search backwards for the -COUNTth instance;
626 END must be <= START.
627 If COUNT is zero, do anything you please; run rogue, for all I care.
628
629 If END is zero, use BEGV or ZV instead, as appropriate for the
630 direction indicated by COUNT.
631
632 If we find COUNT instances, set *SHORTAGE to zero, and return the
633 position past the COUNTth match. Note that for reverse motion
634 this is not the same as the usual convention for Emacs motion commands.
635
636 If we don't find COUNT instances before reaching END, set *SHORTAGE
637 to the number of TARGETs left unfound, and return END.
638
639 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
640 except when inside redisplay. */
641
642 ptrdiff_t
643 scan_buffer (register int target, ptrdiff_t start, ptrdiff_t end,
644 ptrdiff_t count, ptrdiff_t *shortage, int allow_quit)
645 {
646 struct region_cache *newline_cache;
647 int direction;
648
649 if (count > 0)
650 {
651 direction = 1;
652 if (! end) end = ZV;
653 }
654 else
655 {
656 direction = -1;
657 if (! end) end = BEGV;
658 }
659
660 newline_cache_on_off (current_buffer);
661 newline_cache = current_buffer->newline_cache;
662
663 if (shortage != 0)
664 *shortage = 0;
665
666 immediate_quit = allow_quit;
667
668 if (count > 0)
669 while (start != end)
670 {
671 /* Our innermost scanning loop is very simple; it doesn't know
672 about gaps, buffer ends, or the newline cache. ceiling is
673 the position of the last character before the next such
674 obstacle --- the last character the dumb search loop should
675 examine. */
676 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end) - 1;
677 ptrdiff_t start_byte;
678 ptrdiff_t tem;
679
680 /* If we're looking for a newline, consult the newline cache
681 to see where we can avoid some scanning. */
682 if (target == '\n' && newline_cache)
683 {
684 ptrdiff_t next_change;
685 immediate_quit = 0;
686 while (region_cache_forward
687 (current_buffer, newline_cache, start, &next_change))
688 start = next_change;
689 immediate_quit = allow_quit;
690
691 start_byte = CHAR_TO_BYTE (start);
692
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
696
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (CHAR_TO_BYTE (next_change) - 1, ceiling_byte);
700 }
701 else
702 start_byte = CHAR_TO_BYTE (start);
703
704 /* The dumb loop can only scan text stored in contiguous
705 bytes. BUFFER_CEILING_OF returns the last character
706 position that is contiguous, so the ceiling is the
707 position after that. */
708 tem = BUFFER_CEILING_OF (start_byte);
709 ceiling_byte = min (tem, ceiling_byte);
710
711 {
712 /* The termination address of the dumb loop. */
713 register unsigned char *ceiling_addr
714 = BYTE_POS_ADDR (ceiling_byte) + 1;
715 register unsigned char *cursor
716 = BYTE_POS_ADDR (start_byte);
717 unsigned char *base = cursor;
718
719 while (cursor < ceiling_addr)
720 {
721 unsigned char *scan_start = cursor;
722
723 /* The dumb loop. */
724 while (*cursor != target && ++cursor < ceiling_addr)
725 ;
726
727 /* If we're looking for newlines, cache the fact that
728 the region from start to cursor is free of them. */
729 if (target == '\n' && newline_cache)
730 know_region_cache (current_buffer, newline_cache,
731 BYTE_TO_CHAR (start_byte + scan_start - base),
732 BYTE_TO_CHAR (start_byte + cursor - base));
733
734 /* Did we find the target character? */
735 if (cursor < ceiling_addr)
736 {
737 if (--count == 0)
738 {
739 immediate_quit = 0;
740 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
741 }
742 cursor++;
743 }
744 }
745
746 start = BYTE_TO_CHAR (start_byte + cursor - base);
747 }
748 }
749 else
750 while (start > end)
751 {
752 /* The last character to check before the next obstacle. */
753 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end);
754 ptrdiff_t start_byte;
755 ptrdiff_t tem;
756
757 /* Consult the newline cache, if appropriate. */
758 if (target == '\n' && newline_cache)
759 {
760 ptrdiff_t next_change;
761 immediate_quit = 0;
762 while (region_cache_backward
763 (current_buffer, newline_cache, start, &next_change))
764 start = next_change;
765 immediate_quit = allow_quit;
766
767 start_byte = CHAR_TO_BYTE (start);
768
769 /* Start should never be at or before end. */
770 if (start_byte <= ceiling_byte)
771 start_byte = ceiling_byte + 1;
772
773 /* Now the text before start is an unknown region, and
774 next_change is the position of the next known region. */
775 ceiling_byte = max (CHAR_TO_BYTE (next_change), ceiling_byte);
776 }
777 else
778 start_byte = CHAR_TO_BYTE (start);
779
780 /* Stop scanning before the gap. */
781 tem = BUFFER_FLOOR_OF (start_byte - 1);
782 ceiling_byte = max (tem, ceiling_byte);
783
784 {
785 /* The termination address of the dumb loop. */
786 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
787 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
788 unsigned char *base = cursor;
789
790 while (cursor >= ceiling_addr)
791 {
792 unsigned char *scan_start = cursor;
793
794 while (*cursor != target && --cursor >= ceiling_addr)
795 ;
796
797 /* If we're looking for newlines, cache the fact that
798 the region from after the cursor to start is free of them. */
799 if (target == '\n' && newline_cache)
800 know_region_cache (current_buffer, newline_cache,
801 BYTE_TO_CHAR (start_byte + cursor - base),
802 BYTE_TO_CHAR (start_byte + scan_start - base));
803
804 /* Did we find the target character? */
805 if (cursor >= ceiling_addr)
806 {
807 if (++count >= 0)
808 {
809 immediate_quit = 0;
810 return BYTE_TO_CHAR (start_byte + cursor - base);
811 }
812 cursor--;
813 }
814 }
815
816 start = BYTE_TO_CHAR (start_byte + cursor - base);
817 }
818 }
819
820 immediate_quit = 0;
821 if (shortage != 0)
822 *shortage = count * direction;
823 return start;
824 }
825 \f
826 /* Search for COUNT instances of a line boundary, which means either a
827 newline or (if selective display enabled) a carriage return.
828 Start at START. If COUNT is negative, search backwards.
829
830 We report the resulting position by calling TEMP_SET_PT_BOTH.
831
832 If we find COUNT instances. we position after (always after,
833 even if scanning backwards) the COUNTth match, and return 0.
834
835 If we don't find COUNT instances before reaching the end of the
836 buffer (or the beginning, if scanning backwards), we return
837 the number of line boundaries left unfound, and position at
838 the limit we bumped up against.
839
840 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
841 except in special cases. */
842
843 EMACS_INT
844 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
845 ptrdiff_t limit, ptrdiff_t limit_byte,
846 register EMACS_INT count, int allow_quit)
847 {
848 int direction = ((count > 0) ? 1 : -1);
849
850 register unsigned char *cursor;
851 unsigned char *base;
852
853 ptrdiff_t ceiling;
854 register unsigned char *ceiling_addr;
855
856 int old_immediate_quit = immediate_quit;
857
858 /* The code that follows is like scan_buffer
859 but checks for either newline or carriage return. */
860
861 if (allow_quit)
862 immediate_quit++;
863
864 start_byte = CHAR_TO_BYTE (start);
865
866 if (count > 0)
867 {
868 while (start_byte < limit_byte)
869 {
870 ceiling = BUFFER_CEILING_OF (start_byte);
871 ceiling = min (limit_byte - 1, ceiling);
872 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
873 base = (cursor = BYTE_POS_ADDR (start_byte));
874 while (1)
875 {
876 while (*cursor != '\n' && ++cursor != ceiling_addr)
877 ;
878
879 if (cursor != ceiling_addr)
880 {
881 if (--count == 0)
882 {
883 immediate_quit = old_immediate_quit;
884 start_byte = start_byte + cursor - base + 1;
885 start = BYTE_TO_CHAR (start_byte);
886 TEMP_SET_PT_BOTH (start, start_byte);
887 return 0;
888 }
889 else
890 if (++cursor == ceiling_addr)
891 break;
892 }
893 else
894 break;
895 }
896 start_byte += cursor - base;
897 }
898 }
899 else
900 {
901 while (start_byte > limit_byte)
902 {
903 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
904 ceiling = max (limit_byte, ceiling);
905 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
906 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
907 while (1)
908 {
909 while (--cursor != ceiling_addr && *cursor != '\n')
910 ;
911
912 if (cursor != ceiling_addr)
913 {
914 if (++count == 0)
915 {
916 immediate_quit = old_immediate_quit;
917 /* Return the position AFTER the match we found. */
918 start_byte = start_byte + cursor - base + 1;
919 start = BYTE_TO_CHAR (start_byte);
920 TEMP_SET_PT_BOTH (start, start_byte);
921 return 0;
922 }
923 }
924 else
925 break;
926 }
927 /* Here we add 1 to compensate for the last decrement
928 of CURSOR, which took it past the valid range. */
929 start_byte += cursor - base + 1;
930 }
931 }
932
933 TEMP_SET_PT_BOTH (limit, limit_byte);
934 immediate_quit = old_immediate_quit;
935
936 return count * direction;
937 }
938
939 ptrdiff_t
940 find_next_newline_no_quit (ptrdiff_t from, ptrdiff_t cnt)
941 {
942 return scan_buffer ('\n', from, 0, cnt, (ptrdiff_t *) 0, 0);
943 }
944
945 /* Like find_next_newline, but returns position before the newline,
946 not after, and only search up to TO. This isn't just
947 find_next_newline (...)-1, because you might hit TO. */
948
949 ptrdiff_t
950 find_before_next_newline (ptrdiff_t from, ptrdiff_t to, ptrdiff_t cnt)
951 {
952 ptrdiff_t shortage;
953 ptrdiff_t pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
954
955 if (shortage == 0)
956 pos--;
957
958 return pos;
959 }
960 \f
961 /* Subroutines of Lisp buffer search functions. */
962
963 static Lisp_Object
964 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
965 Lisp_Object count, int direction, int RE, int posix)
966 {
967 register EMACS_INT np;
968 EMACS_INT lim;
969 ptrdiff_t lim_byte;
970 EMACS_INT n = direction;
971
972 if (!NILP (count))
973 {
974 CHECK_NUMBER (count);
975 n *= XINT (count);
976 }
977
978 CHECK_STRING (string);
979 if (NILP (bound))
980 {
981 if (n > 0)
982 lim = ZV, lim_byte = ZV_BYTE;
983 else
984 lim = BEGV, lim_byte = BEGV_BYTE;
985 }
986 else
987 {
988 CHECK_NUMBER_COERCE_MARKER (bound);
989 lim = XINT (bound);
990 if (n > 0 ? lim < PT : lim > PT)
991 error ("Invalid search bound (wrong side of point)");
992 if (lim > ZV)
993 lim = ZV, lim_byte = ZV_BYTE;
994 else if (lim < BEGV)
995 lim = BEGV, lim_byte = BEGV_BYTE;
996 else
997 lim_byte = CHAR_TO_BYTE (lim);
998 }
999
1000 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
1001 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
1002 BVAR (current_buffer, case_eqv_table));
1003
1004 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
1005 (!NILP (BVAR (current_buffer, case_fold_search))
1006 ? BVAR (current_buffer, case_canon_table)
1007 : Qnil),
1008 (!NILP (BVAR (current_buffer, case_fold_search))
1009 ? BVAR (current_buffer, case_eqv_table)
1010 : Qnil),
1011 posix);
1012 if (np <= 0)
1013 {
1014 if (NILP (noerror))
1015 xsignal1 (Qsearch_failed, string);
1016
1017 if (!EQ (noerror, Qt))
1018 {
1019 if (lim < BEGV || lim > ZV)
1020 emacs_abort ();
1021 SET_PT_BOTH (lim, lim_byte);
1022 return Qnil;
1023 #if 0 /* This would be clean, but maybe programs depend on
1024 a value of nil here. */
1025 np = lim;
1026 #endif
1027 }
1028 else
1029 return Qnil;
1030 }
1031
1032 if (np < BEGV || np > ZV)
1033 emacs_abort ();
1034
1035 SET_PT (np);
1036
1037 return make_number (np);
1038 }
1039 \f
1040 /* Return 1 if REGEXP it matches just one constant string. */
1041
1042 static int
1043 trivial_regexp_p (Lisp_Object regexp)
1044 {
1045 ptrdiff_t len = SBYTES (regexp);
1046 unsigned char *s = SDATA (regexp);
1047 while (--len >= 0)
1048 {
1049 switch (*s++)
1050 {
1051 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1052 return 0;
1053 case '\\':
1054 if (--len < 0)
1055 return 0;
1056 switch (*s++)
1057 {
1058 case '|': case '(': case ')': case '`': case '\'': case 'b':
1059 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1060 case 'S': case '=': case '{': case '}': case '_':
1061 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1062 case '1': case '2': case '3': case '4': case '5':
1063 case '6': case '7': case '8': case '9':
1064 return 0;
1065 }
1066 }
1067 }
1068 return 1;
1069 }
1070
1071 /* Search for the n'th occurrence of STRING in the current buffer,
1072 starting at position POS and stopping at position LIM,
1073 treating STRING as a literal string if RE is false or as
1074 a regular expression if RE is true.
1075
1076 If N is positive, searching is forward and LIM must be greater than POS.
1077 If N is negative, searching is backward and LIM must be less than POS.
1078
1079 Returns -x if x occurrences remain to be found (x > 0),
1080 or else the position at the beginning of the Nth occurrence
1081 (if searching backward) or the end (if searching forward).
1082
1083 POSIX is nonzero if we want full backtracking (POSIX style)
1084 for this pattern. 0 means backtrack only enough to get a valid match. */
1085
1086 #define TRANSLATE(out, trt, d) \
1087 do \
1088 { \
1089 if (! NILP (trt)) \
1090 { \
1091 Lisp_Object temp; \
1092 temp = Faref (trt, make_number (d)); \
1093 if (INTEGERP (temp)) \
1094 out = XINT (temp); \
1095 else \
1096 out = d; \
1097 } \
1098 else \
1099 out = d; \
1100 } \
1101 while (0)
1102
1103 /* Only used in search_buffer, to record the end position of the match
1104 when searching regexps and SEARCH_REGS should not be changed
1105 (i.e. Vinhibit_changing_match_data is non-nil). */
1106 static struct re_registers search_regs_1;
1107
1108 static EMACS_INT
1109 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1110 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1111 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1112 {
1113 ptrdiff_t len = SCHARS (string);
1114 ptrdiff_t len_byte = SBYTES (string);
1115 register ptrdiff_t i;
1116
1117 if (running_asynch_code)
1118 save_search_regs ();
1119
1120 /* Searching 0 times means don't move. */
1121 /* Null string is found at starting position. */
1122 if (len == 0 || n == 0)
1123 {
1124 set_search_regs (pos_byte, 0);
1125 return pos;
1126 }
1127
1128 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1129 {
1130 unsigned char *p1, *p2;
1131 ptrdiff_t s1, s2;
1132 struct re_pattern_buffer *bufp;
1133
1134 bufp = compile_pattern (string,
1135 (NILP (Vinhibit_changing_match_data)
1136 ? &search_regs : &search_regs_1),
1137 trt, posix,
1138 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1139
1140 immediate_quit = 1; /* Quit immediately if user types ^G,
1141 because letting this function finish
1142 can take too long. */
1143 QUIT; /* Do a pending quit right away,
1144 to avoid paradoxical behavior */
1145 /* Get pointers and sizes of the two strings
1146 that make up the visible portion of the buffer. */
1147
1148 p1 = BEGV_ADDR;
1149 s1 = GPT_BYTE - BEGV_BYTE;
1150 p2 = GAP_END_ADDR;
1151 s2 = ZV_BYTE - GPT_BYTE;
1152 if (s1 < 0)
1153 {
1154 p2 = p1;
1155 s2 = ZV_BYTE - BEGV_BYTE;
1156 s1 = 0;
1157 }
1158 if (s2 < 0)
1159 {
1160 s1 = ZV_BYTE - BEGV_BYTE;
1161 s2 = 0;
1162 }
1163 re_match_object = Qnil;
1164
1165 while (n < 0)
1166 {
1167 ptrdiff_t val;
1168
1169 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1170 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1171 (NILP (Vinhibit_changing_match_data)
1172 ? &search_regs : &search_regs_1),
1173 /* Don't allow match past current point */
1174 pos_byte - BEGV_BYTE);
1175 if (val == -2)
1176 {
1177 matcher_overflow ();
1178 }
1179 if (val >= 0)
1180 {
1181 if (NILP (Vinhibit_changing_match_data))
1182 {
1183 pos_byte = search_regs.start[0] + BEGV_BYTE;
1184 for (i = 0; i < search_regs.num_regs; i++)
1185 if (search_regs.start[i] >= 0)
1186 {
1187 search_regs.start[i]
1188 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1189 search_regs.end[i]
1190 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1191 }
1192 XSETBUFFER (last_thing_searched, current_buffer);
1193 /* Set pos to the new position. */
1194 pos = search_regs.start[0];
1195 }
1196 else
1197 {
1198 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1199 /* Set pos to the new position. */
1200 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1201 }
1202 }
1203 else
1204 {
1205 immediate_quit = 0;
1206 return (n);
1207 }
1208 n++;
1209 }
1210 while (n > 0)
1211 {
1212 ptrdiff_t val;
1213
1214 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1215 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1216 (NILP (Vinhibit_changing_match_data)
1217 ? &search_regs : &search_regs_1),
1218 lim_byte - BEGV_BYTE);
1219 if (val == -2)
1220 {
1221 matcher_overflow ();
1222 }
1223 if (val >= 0)
1224 {
1225 if (NILP (Vinhibit_changing_match_data))
1226 {
1227 pos_byte = search_regs.end[0] + BEGV_BYTE;
1228 for (i = 0; i < search_regs.num_regs; i++)
1229 if (search_regs.start[i] >= 0)
1230 {
1231 search_regs.start[i]
1232 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1233 search_regs.end[i]
1234 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1235 }
1236 XSETBUFFER (last_thing_searched, current_buffer);
1237 pos = search_regs.end[0];
1238 }
1239 else
1240 {
1241 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1242 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1243 }
1244 }
1245 else
1246 {
1247 immediate_quit = 0;
1248 return (0 - n);
1249 }
1250 n--;
1251 }
1252 immediate_quit = 0;
1253 return (pos);
1254 }
1255 else /* non-RE case */
1256 {
1257 unsigned char *raw_pattern, *pat;
1258 ptrdiff_t raw_pattern_size;
1259 ptrdiff_t raw_pattern_size_byte;
1260 unsigned char *patbuf;
1261 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1262 unsigned char *base_pat;
1263 /* Set to positive if we find a non-ASCII char that need
1264 translation. Otherwise set to zero later. */
1265 int char_base = -1;
1266 int boyer_moore_ok = 1;
1267
1268 /* MULTIBYTE says whether the text to be searched is multibyte.
1269 We must convert PATTERN to match that, or we will not really
1270 find things right. */
1271
1272 if (multibyte == STRING_MULTIBYTE (string))
1273 {
1274 raw_pattern = SDATA (string);
1275 raw_pattern_size = SCHARS (string);
1276 raw_pattern_size_byte = SBYTES (string);
1277 }
1278 else if (multibyte)
1279 {
1280 raw_pattern_size = SCHARS (string);
1281 raw_pattern_size_byte
1282 = count_size_as_multibyte (SDATA (string),
1283 raw_pattern_size);
1284 raw_pattern = alloca (raw_pattern_size_byte + 1);
1285 copy_text (SDATA (string), raw_pattern,
1286 SCHARS (string), 0, 1);
1287 }
1288 else
1289 {
1290 /* Converting multibyte to single-byte.
1291
1292 ??? Perhaps this conversion should be done in a special way
1293 by subtracting nonascii-insert-offset from each non-ASCII char,
1294 so that only the multibyte chars which really correspond to
1295 the chosen single-byte character set can possibly match. */
1296 raw_pattern_size = SCHARS (string);
1297 raw_pattern_size_byte = SCHARS (string);
1298 raw_pattern = alloca (raw_pattern_size + 1);
1299 copy_text (SDATA (string), raw_pattern,
1300 SBYTES (string), 1, 0);
1301 }
1302
1303 /* Copy and optionally translate the pattern. */
1304 len = raw_pattern_size;
1305 len_byte = raw_pattern_size_byte;
1306 patbuf = alloca (len * MAX_MULTIBYTE_LENGTH);
1307 pat = patbuf;
1308 base_pat = raw_pattern;
1309 if (multibyte)
1310 {
1311 /* Fill patbuf by translated characters in STRING while
1312 checking if we can use boyer-moore search. If TRT is
1313 non-nil, we can use boyer-moore search only if TRT can be
1314 represented by the byte array of 256 elements. For that,
1315 all non-ASCII case-equivalents of all case-sensitive
1316 characters in STRING must belong to the same charset and
1317 row. */
1318
1319 while (--len >= 0)
1320 {
1321 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1322 int c, translated, inverse;
1323 int in_charlen, charlen;
1324
1325 /* If we got here and the RE flag is set, it's because we're
1326 dealing with a regexp known to be trivial, so the backslash
1327 just quotes the next character. */
1328 if (RE && *base_pat == '\\')
1329 {
1330 len--;
1331 raw_pattern_size--;
1332 len_byte--;
1333 base_pat++;
1334 }
1335
1336 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1337
1338 if (NILP (trt))
1339 {
1340 str = base_pat;
1341 charlen = in_charlen;
1342 }
1343 else
1344 {
1345 /* Translate the character. */
1346 TRANSLATE (translated, trt, c);
1347 charlen = CHAR_STRING (translated, str_base);
1348 str = str_base;
1349
1350 /* Check if C has any other case-equivalents. */
1351 TRANSLATE (inverse, inverse_trt, c);
1352 /* If so, check if we can use boyer-moore. */
1353 if (c != inverse && boyer_moore_ok)
1354 {
1355 /* Check if all equivalents belong to the same
1356 group of characters. Note that the check of C
1357 itself is done by the last iteration. */
1358 int this_char_base = -1;
1359
1360 while (boyer_moore_ok)
1361 {
1362 if (ASCII_BYTE_P (inverse))
1363 {
1364 if (this_char_base > 0)
1365 boyer_moore_ok = 0;
1366 else
1367 this_char_base = 0;
1368 }
1369 else if (CHAR_BYTE8_P (inverse))
1370 /* Boyer-moore search can't handle a
1371 translation of an eight-bit
1372 character. */
1373 boyer_moore_ok = 0;
1374 else if (this_char_base < 0)
1375 {
1376 this_char_base = inverse & ~0x3F;
1377 if (char_base < 0)
1378 char_base = this_char_base;
1379 else if (this_char_base != char_base)
1380 boyer_moore_ok = 0;
1381 }
1382 else if ((inverse & ~0x3F) != this_char_base)
1383 boyer_moore_ok = 0;
1384 if (c == inverse)
1385 break;
1386 TRANSLATE (inverse, inverse_trt, inverse);
1387 }
1388 }
1389 }
1390
1391 /* Store this character into the translated pattern. */
1392 memcpy (pat, str, charlen);
1393 pat += charlen;
1394 base_pat += in_charlen;
1395 len_byte -= in_charlen;
1396 }
1397
1398 /* If char_base is still negative we didn't find any translated
1399 non-ASCII characters. */
1400 if (char_base < 0)
1401 char_base = 0;
1402 }
1403 else
1404 {
1405 /* Unibyte buffer. */
1406 char_base = 0;
1407 while (--len >= 0)
1408 {
1409 int c, translated;
1410
1411 /* If we got here and the RE flag is set, it's because we're
1412 dealing with a regexp known to be trivial, so the backslash
1413 just quotes the next character. */
1414 if (RE && *base_pat == '\\')
1415 {
1416 len--;
1417 raw_pattern_size--;
1418 base_pat++;
1419 }
1420 c = *base_pat++;
1421 TRANSLATE (translated, trt, c);
1422 *pat++ = translated;
1423 }
1424 }
1425
1426 len_byte = pat - patbuf;
1427 pat = base_pat = patbuf;
1428
1429 if (boyer_moore_ok)
1430 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1431 pos_byte, lim_byte,
1432 char_base);
1433 else
1434 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1435 pos, pos_byte, lim, lim_byte);
1436 }
1437 }
1438 \f
1439 /* Do a simple string search N times for the string PAT,
1440 whose length is LEN/LEN_BYTE,
1441 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1442 TRT is the translation table.
1443
1444 Return the character position where the match is found.
1445 Otherwise, if M matches remained to be found, return -M.
1446
1447 This kind of search works regardless of what is in PAT and
1448 regardless of what is in TRT. It is used in cases where
1449 boyer_moore cannot work. */
1450
1451 static EMACS_INT
1452 simple_search (EMACS_INT n, unsigned char *pat,
1453 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1454 ptrdiff_t pos, ptrdiff_t pos_byte,
1455 ptrdiff_t lim, ptrdiff_t lim_byte)
1456 {
1457 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1458 int forward = n > 0;
1459 /* Number of buffer bytes matched. Note that this may be different
1460 from len_byte in a multibyte buffer. */
1461 ptrdiff_t match_byte = PTRDIFF_MIN;
1462
1463 if (lim > pos && multibyte)
1464 while (n > 0)
1465 {
1466 while (1)
1467 {
1468 /* Try matching at position POS. */
1469 ptrdiff_t this_pos = pos;
1470 ptrdiff_t this_pos_byte = pos_byte;
1471 ptrdiff_t this_len = len;
1472 unsigned char *p = pat;
1473 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1474 goto stop;
1475
1476 while (this_len > 0)
1477 {
1478 int charlen, buf_charlen;
1479 int pat_ch, buf_ch;
1480
1481 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1482 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1483 buf_charlen);
1484 TRANSLATE (buf_ch, trt, buf_ch);
1485
1486 if (buf_ch != pat_ch)
1487 break;
1488
1489 this_len--;
1490 p += charlen;
1491
1492 this_pos_byte += buf_charlen;
1493 this_pos++;
1494 }
1495
1496 if (this_len == 0)
1497 {
1498 match_byte = this_pos_byte - pos_byte;
1499 pos += len;
1500 pos_byte += match_byte;
1501 break;
1502 }
1503
1504 INC_BOTH (pos, pos_byte);
1505 }
1506
1507 n--;
1508 }
1509 else if (lim > pos)
1510 while (n > 0)
1511 {
1512 while (1)
1513 {
1514 /* Try matching at position POS. */
1515 ptrdiff_t this_pos = pos;
1516 ptrdiff_t this_len = len;
1517 unsigned char *p = pat;
1518
1519 if (pos + len > lim)
1520 goto stop;
1521
1522 while (this_len > 0)
1523 {
1524 int pat_ch = *p++;
1525 int buf_ch = FETCH_BYTE (this_pos);
1526 TRANSLATE (buf_ch, trt, buf_ch);
1527
1528 if (buf_ch != pat_ch)
1529 break;
1530
1531 this_len--;
1532 this_pos++;
1533 }
1534
1535 if (this_len == 0)
1536 {
1537 match_byte = len;
1538 pos += len;
1539 break;
1540 }
1541
1542 pos++;
1543 }
1544
1545 n--;
1546 }
1547 /* Backwards search. */
1548 else if (lim < pos && multibyte)
1549 while (n < 0)
1550 {
1551 while (1)
1552 {
1553 /* Try matching at position POS. */
1554 ptrdiff_t this_pos = pos;
1555 ptrdiff_t this_pos_byte = pos_byte;
1556 ptrdiff_t this_len = len;
1557 const unsigned char *p = pat + len_byte;
1558
1559 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1560 goto stop;
1561
1562 while (this_len > 0)
1563 {
1564 int pat_ch, buf_ch;
1565
1566 DEC_BOTH (this_pos, this_pos_byte);
1567 PREV_CHAR_BOUNDARY (p, pat);
1568 pat_ch = STRING_CHAR (p);
1569 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1570 TRANSLATE (buf_ch, trt, buf_ch);
1571
1572 if (buf_ch != pat_ch)
1573 break;
1574
1575 this_len--;
1576 }
1577
1578 if (this_len == 0)
1579 {
1580 match_byte = pos_byte - this_pos_byte;
1581 pos = this_pos;
1582 pos_byte = this_pos_byte;
1583 break;
1584 }
1585
1586 DEC_BOTH (pos, pos_byte);
1587 }
1588
1589 n++;
1590 }
1591 else if (lim < pos)
1592 while (n < 0)
1593 {
1594 while (1)
1595 {
1596 /* Try matching at position POS. */
1597 ptrdiff_t this_pos = pos - len;
1598 ptrdiff_t this_len = len;
1599 unsigned char *p = pat;
1600
1601 if (this_pos < lim)
1602 goto stop;
1603
1604 while (this_len > 0)
1605 {
1606 int pat_ch = *p++;
1607 int buf_ch = FETCH_BYTE (this_pos);
1608 TRANSLATE (buf_ch, trt, buf_ch);
1609
1610 if (buf_ch != pat_ch)
1611 break;
1612 this_len--;
1613 this_pos++;
1614 }
1615
1616 if (this_len == 0)
1617 {
1618 match_byte = len;
1619 pos -= len;
1620 break;
1621 }
1622
1623 pos--;
1624 }
1625
1626 n++;
1627 }
1628
1629 stop:
1630 if (n == 0)
1631 {
1632 eassert (match_byte != PTRDIFF_MIN);
1633 if (forward)
1634 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1635 else
1636 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1637
1638 return pos;
1639 }
1640 else if (n > 0)
1641 return -n;
1642 else
1643 return n;
1644 }
1645 \f
1646 /* Do Boyer-Moore search N times for the string BASE_PAT,
1647 whose length is LEN_BYTE,
1648 from buffer position POS_BYTE until LIM_BYTE.
1649 DIRECTION says which direction we search in.
1650 TRT and INVERSE_TRT are translation tables.
1651 Characters in PAT are already translated by TRT.
1652
1653 This kind of search works if all the characters in BASE_PAT that
1654 have nontrivial translation are the same aside from the last byte.
1655 This makes it possible to translate just the last byte of a
1656 character, and do so after just a simple test of the context.
1657 CHAR_BASE is nonzero if there is such a non-ASCII character.
1658
1659 If that criterion is not satisfied, do not call this function. */
1660
1661 static EMACS_INT
1662 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1663 ptrdiff_t len_byte,
1664 Lisp_Object trt, Lisp_Object inverse_trt,
1665 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1666 int char_base)
1667 {
1668 int direction = ((n > 0) ? 1 : -1);
1669 register ptrdiff_t dirlen;
1670 ptrdiff_t limit;
1671 int stride_for_teases = 0;
1672 int BM_tab[0400];
1673 register unsigned char *cursor, *p_limit;
1674 register ptrdiff_t i;
1675 register int j;
1676 unsigned char *pat, *pat_end;
1677 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1678
1679 unsigned char simple_translate[0400];
1680 /* These are set to the preceding bytes of a byte to be translated
1681 if char_base is nonzero. As the maximum byte length of a
1682 multibyte character is 5, we have to check at most four previous
1683 bytes. */
1684 int translate_prev_byte1 = 0;
1685 int translate_prev_byte2 = 0;
1686 int translate_prev_byte3 = 0;
1687
1688 /* The general approach is that we are going to maintain that we know
1689 the first (closest to the present position, in whatever direction
1690 we're searching) character that could possibly be the last
1691 (furthest from present position) character of a valid match. We
1692 advance the state of our knowledge by looking at that character
1693 and seeing whether it indeed matches the last character of the
1694 pattern. If it does, we take a closer look. If it does not, we
1695 move our pointer (to putative last characters) as far as is
1696 logically possible. This amount of movement, which I call a
1697 stride, will be the length of the pattern if the actual character
1698 appears nowhere in the pattern, otherwise it will be the distance
1699 from the last occurrence of that character to the end of the
1700 pattern. If the amount is zero we have a possible match. */
1701
1702 /* Here we make a "mickey mouse" BM table. The stride of the search
1703 is determined only by the last character of the putative match.
1704 If that character does not match, we will stride the proper
1705 distance to propose a match that superimposes it on the last
1706 instance of a character that matches it (per trt), or misses
1707 it entirely if there is none. */
1708
1709 dirlen = len_byte * direction;
1710
1711 /* Record position after the end of the pattern. */
1712 pat_end = base_pat + len_byte;
1713 /* BASE_PAT points to a character that we start scanning from.
1714 It is the first character in a forward search,
1715 the last character in a backward search. */
1716 if (direction < 0)
1717 base_pat = pat_end - 1;
1718
1719 /* A character that does not appear in the pattern induces a
1720 stride equal to the pattern length. */
1721 for (i = 0; i < 0400; i++)
1722 BM_tab[i] = dirlen;
1723
1724 /* We use this for translation, instead of TRT itself.
1725 We fill this in to handle the characters that actually
1726 occur in the pattern. Others don't matter anyway! */
1727 for (i = 0; i < 0400; i++)
1728 simple_translate[i] = i;
1729
1730 if (char_base)
1731 {
1732 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1733 byte following them are the target of translation. */
1734 unsigned char str[MAX_MULTIBYTE_LENGTH];
1735 int cblen = CHAR_STRING (char_base, str);
1736
1737 translate_prev_byte1 = str[cblen - 2];
1738 if (cblen > 2)
1739 {
1740 translate_prev_byte2 = str[cblen - 3];
1741 if (cblen > 3)
1742 translate_prev_byte3 = str[cblen - 4];
1743 }
1744 }
1745
1746 i = 0;
1747 while (i != dirlen)
1748 {
1749 unsigned char *ptr = base_pat + i;
1750 i += direction;
1751 if (! NILP (trt))
1752 {
1753 /* If the byte currently looking at is the last of a
1754 character to check case-equivalents, set CH to that
1755 character. An ASCII character and a non-ASCII character
1756 matching with CHAR_BASE are to be checked. */
1757 int ch = -1;
1758
1759 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1760 ch = *ptr;
1761 else if (char_base
1762 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1763 {
1764 unsigned char *charstart = ptr - 1;
1765
1766 while (! (CHAR_HEAD_P (*charstart)))
1767 charstart--;
1768 ch = STRING_CHAR (charstart);
1769 if (char_base != (ch & ~0x3F))
1770 ch = -1;
1771 }
1772
1773 if (ch >= 0200 && multibyte)
1774 j = (ch & 0x3F) | 0200;
1775 else
1776 j = *ptr;
1777
1778 if (i == dirlen)
1779 stride_for_teases = BM_tab[j];
1780
1781 BM_tab[j] = dirlen - i;
1782 /* A translation table is accompanied by its inverse -- see
1783 comment following downcase_table for details. */
1784 if (ch >= 0)
1785 {
1786 int starting_ch = ch;
1787 int starting_j = j;
1788
1789 while (1)
1790 {
1791 TRANSLATE (ch, inverse_trt, ch);
1792 if (ch >= 0200 && multibyte)
1793 j = (ch & 0x3F) | 0200;
1794 else
1795 j = ch;
1796
1797 /* For all the characters that map into CH,
1798 set up simple_translate to map the last byte
1799 into STARTING_J. */
1800 simple_translate[j] = starting_j;
1801 if (ch == starting_ch)
1802 break;
1803 BM_tab[j] = dirlen - i;
1804 }
1805 }
1806 }
1807 else
1808 {
1809 j = *ptr;
1810
1811 if (i == dirlen)
1812 stride_for_teases = BM_tab[j];
1813 BM_tab[j] = dirlen - i;
1814 }
1815 /* stride_for_teases tells how much to stride if we get a
1816 match on the far character but are subsequently
1817 disappointed, by recording what the stride would have been
1818 for that character if the last character had been
1819 different. */
1820 }
1821 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1822 /* loop invariant - POS_BYTE points at where last char (first
1823 char if reverse) of pattern would align in a possible match. */
1824 while (n != 0)
1825 {
1826 ptrdiff_t tail_end;
1827 unsigned char *tail_end_ptr;
1828
1829 /* It's been reported that some (broken) compiler thinks that
1830 Boolean expressions in an arithmetic context are unsigned.
1831 Using an explicit ?1:0 prevents this. */
1832 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1833 < 0)
1834 return (n * (0 - direction));
1835 /* First we do the part we can by pointers (maybe nothing) */
1836 QUIT;
1837 pat = base_pat;
1838 limit = pos_byte - dirlen + direction;
1839 if (direction > 0)
1840 {
1841 limit = BUFFER_CEILING_OF (limit);
1842 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1843 can take on without hitting edge of buffer or the gap. */
1844 limit = min (limit, pos_byte + 20000);
1845 limit = min (limit, lim_byte - 1);
1846 }
1847 else
1848 {
1849 limit = BUFFER_FLOOR_OF (limit);
1850 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1851 can take on without hitting edge of buffer or the gap. */
1852 limit = max (limit, pos_byte - 20000);
1853 limit = max (limit, lim_byte);
1854 }
1855 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1856 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1857
1858 if ((limit - pos_byte) * direction > 20)
1859 {
1860 unsigned char *p2;
1861
1862 p_limit = BYTE_POS_ADDR (limit);
1863 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1864 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1865 while (1) /* use one cursor setting as long as i can */
1866 {
1867 if (direction > 0) /* worth duplicating */
1868 {
1869 while (cursor <= p_limit)
1870 {
1871 if (BM_tab[*cursor] == 0)
1872 goto hit;
1873 cursor += BM_tab[*cursor];
1874 }
1875 }
1876 else
1877 {
1878 while (cursor >= p_limit)
1879 {
1880 if (BM_tab[*cursor] == 0)
1881 goto hit;
1882 cursor += BM_tab[*cursor];
1883 }
1884 }
1885 /* If you are here, cursor is beyond the end of the
1886 searched region. You fail to match within the
1887 permitted region and would otherwise try a character
1888 beyond that region. */
1889 break;
1890
1891 hit:
1892 i = dirlen - direction;
1893 if (! NILP (trt))
1894 {
1895 while ((i -= direction) + direction != 0)
1896 {
1897 int ch;
1898 cursor -= direction;
1899 /* Translate only the last byte of a character. */
1900 if (! multibyte
1901 || ((cursor == tail_end_ptr
1902 || CHAR_HEAD_P (cursor[1]))
1903 && (CHAR_HEAD_P (cursor[0])
1904 /* Check if this is the last byte of
1905 a translatable character. */
1906 || (translate_prev_byte1 == cursor[-1]
1907 && (CHAR_HEAD_P (translate_prev_byte1)
1908 || (translate_prev_byte2 == cursor[-2]
1909 && (CHAR_HEAD_P (translate_prev_byte2)
1910 || (translate_prev_byte3 == cursor[-3]))))))))
1911 ch = simple_translate[*cursor];
1912 else
1913 ch = *cursor;
1914 if (pat[i] != ch)
1915 break;
1916 }
1917 }
1918 else
1919 {
1920 while ((i -= direction) + direction != 0)
1921 {
1922 cursor -= direction;
1923 if (pat[i] != *cursor)
1924 break;
1925 }
1926 }
1927 cursor += dirlen - i - direction; /* fix cursor */
1928 if (i + direction == 0)
1929 {
1930 ptrdiff_t position, start, end;
1931
1932 cursor -= direction;
1933
1934 position = pos_byte + cursor - p2 + ((direction > 0)
1935 ? 1 - len_byte : 0);
1936 set_search_regs (position, len_byte);
1937
1938 if (NILP (Vinhibit_changing_match_data))
1939 {
1940 start = search_regs.start[0];
1941 end = search_regs.end[0];
1942 }
1943 else
1944 /* If Vinhibit_changing_match_data is non-nil,
1945 search_regs will not be changed. So let's
1946 compute start and end here. */
1947 {
1948 start = BYTE_TO_CHAR (position);
1949 end = BYTE_TO_CHAR (position + len_byte);
1950 }
1951
1952 if ((n -= direction) != 0)
1953 cursor += dirlen; /* to resume search */
1954 else
1955 return direction > 0 ? end : start;
1956 }
1957 else
1958 cursor += stride_for_teases; /* <sigh> we lose - */
1959 }
1960 pos_byte += cursor - p2;
1961 }
1962 else
1963 /* Now we'll pick up a clump that has to be done the hard
1964 way because it covers a discontinuity. */
1965 {
1966 limit = ((direction > 0)
1967 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1968 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1969 limit = ((direction > 0)
1970 ? min (limit + len_byte, lim_byte - 1)
1971 : max (limit - len_byte, lim_byte));
1972 /* LIMIT is now the last value POS_BYTE can have
1973 and still be valid for a possible match. */
1974 while (1)
1975 {
1976 /* This loop can be coded for space rather than
1977 speed because it will usually run only once.
1978 (the reach is at most len + 21, and typically
1979 does not exceed len). */
1980 while ((limit - pos_byte) * direction >= 0)
1981 {
1982 int ch = FETCH_BYTE (pos_byte);
1983 if (BM_tab[ch] == 0)
1984 goto hit2;
1985 pos_byte += BM_tab[ch];
1986 }
1987 break; /* ran off the end */
1988
1989 hit2:
1990 /* Found what might be a match. */
1991 i = dirlen - direction;
1992 while ((i -= direction) + direction != 0)
1993 {
1994 int ch;
1995 unsigned char *ptr;
1996 pos_byte -= direction;
1997 ptr = BYTE_POS_ADDR (pos_byte);
1998 /* Translate only the last byte of a character. */
1999 if (! multibyte
2000 || ((ptr == tail_end_ptr
2001 || CHAR_HEAD_P (ptr[1]))
2002 && (CHAR_HEAD_P (ptr[0])
2003 /* Check if this is the last byte of a
2004 translatable character. */
2005 || (translate_prev_byte1 == ptr[-1]
2006 && (CHAR_HEAD_P (translate_prev_byte1)
2007 || (translate_prev_byte2 == ptr[-2]
2008 && (CHAR_HEAD_P (translate_prev_byte2)
2009 || translate_prev_byte3 == ptr[-3])))))))
2010 ch = simple_translate[*ptr];
2011 else
2012 ch = *ptr;
2013 if (pat[i] != ch)
2014 break;
2015 }
2016 /* Above loop has moved POS_BYTE part or all the way
2017 back to the first pos (last pos if reverse).
2018 Set it once again at the last (first if reverse) char. */
2019 pos_byte += dirlen - i - direction;
2020 if (i + direction == 0)
2021 {
2022 ptrdiff_t position, start, end;
2023 pos_byte -= direction;
2024
2025 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2026 set_search_regs (position, len_byte);
2027
2028 if (NILP (Vinhibit_changing_match_data))
2029 {
2030 start = search_regs.start[0];
2031 end = search_regs.end[0];
2032 }
2033 else
2034 /* If Vinhibit_changing_match_data is non-nil,
2035 search_regs will not be changed. So let's
2036 compute start and end here. */
2037 {
2038 start = BYTE_TO_CHAR (position);
2039 end = BYTE_TO_CHAR (position + len_byte);
2040 }
2041
2042 if ((n -= direction) != 0)
2043 pos_byte += dirlen; /* to resume search */
2044 else
2045 return direction > 0 ? end : start;
2046 }
2047 else
2048 pos_byte += stride_for_teases;
2049 }
2050 }
2051 /* We have done one clump. Can we continue? */
2052 if ((lim_byte - pos_byte) * direction < 0)
2053 return ((0 - n) * direction);
2054 }
2055 return BYTE_TO_CHAR (pos_byte);
2056 }
2057
2058 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2059 for the overall match just found in the current buffer.
2060 Also clear out the match data for registers 1 and up. */
2061
2062 static void
2063 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2064 {
2065 ptrdiff_t i;
2066
2067 if (!NILP (Vinhibit_changing_match_data))
2068 return;
2069
2070 /* Make sure we have registers in which to store
2071 the match position. */
2072 if (search_regs.num_regs == 0)
2073 {
2074 search_regs.start = xmalloc (2 * sizeof (regoff_t));
2075 search_regs.end = xmalloc (2 * sizeof (regoff_t));
2076 search_regs.num_regs = 2;
2077 }
2078
2079 /* Clear out the other registers. */
2080 for (i = 1; i < search_regs.num_regs; i++)
2081 {
2082 search_regs.start[i] = -1;
2083 search_regs.end[i] = -1;
2084 }
2085
2086 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2087 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2088 XSETBUFFER (last_thing_searched, current_buffer);
2089 }
2090 \f
2091 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2092 "MSearch backward: ",
2093 doc: /* Search backward from point for STRING.
2094 Set point to the beginning of the occurrence found, and return point.
2095 An optional second argument bounds the search; it is a buffer position.
2096 The match found must not extend before that position.
2097 Optional third argument, if t, means if fail just return nil (no error).
2098 If not nil and not t, position at limit of search and return nil.
2099 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2100 successive occurrences. If COUNT is negative, search forward,
2101 instead of backward, for -COUNT occurrences.
2102
2103 Search case-sensitivity is determined by the value of the variable
2104 `case-fold-search', which see.
2105
2106 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2107 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2108 {
2109 return search_command (string, bound, noerror, count, -1, 0, 0);
2110 }
2111
2112 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2113 doc: /* Search forward from point for STRING.
2114 Set point to the end of the occurrence found, and return point.
2115 An optional second argument bounds the search; it is a buffer position.
2116 The match found must not extend after that position. A value of nil is
2117 equivalent to (point-max).
2118 Optional third argument, if t, means if fail just return nil (no error).
2119 If not nil and not t, move to limit of search and return nil.
2120 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2121 successive occurrences. If COUNT is negative, search backward,
2122 instead of forward, for -COUNT occurrences.
2123
2124 Search case-sensitivity is determined by the value of the variable
2125 `case-fold-search', which see.
2126
2127 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2128 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2129 {
2130 return search_command (string, bound, noerror, count, 1, 0, 0);
2131 }
2132
2133 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2134 "sRE search backward: ",
2135 doc: /* Search backward from point for match for regular expression REGEXP.
2136 Set point to the beginning of the match, and return point.
2137 The match found is the one starting last in the buffer
2138 and yet ending before the origin of the search.
2139 An optional second argument bounds the search; it is a buffer position.
2140 The match found must start at or after that position.
2141 Optional third argument, if t, means if fail just return nil (no error).
2142 If not nil and not t, move to limit of search and return nil.
2143 Optional fourth argument is repeat count--search for successive occurrences.
2144
2145 Search case-sensitivity is determined by the value of the variable
2146 `case-fold-search', which see.
2147
2148 See also the functions `match-beginning', `match-end', `match-string',
2149 and `replace-match'. */)
2150 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2151 {
2152 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2153 }
2154
2155 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2156 "sRE search: ",
2157 doc: /* Search forward from point for regular expression REGEXP.
2158 Set point to the end of the occurrence found, and return point.
2159 An optional second argument bounds the search; it is a buffer position.
2160 The match found must not extend after that position.
2161 Optional third argument, if t, means if fail just return nil (no error).
2162 If not nil and not t, move to limit of search and return nil.
2163 Optional fourth argument is repeat count--search for successive occurrences.
2164
2165 Search case-sensitivity is determined by the value of the variable
2166 `case-fold-search', which see.
2167
2168 See also the functions `match-beginning', `match-end', `match-string',
2169 and `replace-match'. */)
2170 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2171 {
2172 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2173 }
2174
2175 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2176 "sPosix search backward: ",
2177 doc: /* Search backward from point for match for regular expression REGEXP.
2178 Find the longest match in accord with Posix regular expression rules.
2179 Set point to the beginning of the match, and return point.
2180 The match found is the one starting last in the buffer
2181 and yet ending before the origin of the search.
2182 An optional second argument bounds the search; it is a buffer position.
2183 The match found must start at or after that position.
2184 Optional third argument, if t, means if fail just return nil (no error).
2185 If not nil and not t, move to limit of search and return nil.
2186 Optional fourth argument is repeat count--search for successive occurrences.
2187
2188 Search case-sensitivity is determined by the value of the variable
2189 `case-fold-search', which see.
2190
2191 See also the functions `match-beginning', `match-end', `match-string',
2192 and `replace-match'. */)
2193 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2194 {
2195 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2196 }
2197
2198 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2199 "sPosix search: ",
2200 doc: /* Search forward from point for regular expression REGEXP.
2201 Find the longest match in accord with Posix regular expression rules.
2202 Set point to the end of the occurrence found, and return point.
2203 An optional second argument bounds the search; it is a buffer position.
2204 The match found must not extend after that position.
2205 Optional third argument, if t, means if fail just return nil (no error).
2206 If not nil and not t, move to limit of search and return nil.
2207 Optional fourth argument is repeat count--search for successive occurrences.
2208
2209 Search case-sensitivity is determined by the value of the variable
2210 `case-fold-search', which see.
2211
2212 See also the functions `match-beginning', `match-end', `match-string',
2213 and `replace-match'. */)
2214 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2215 {
2216 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2217 }
2218 \f
2219 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2220 doc: /* Replace text matched by last search with NEWTEXT.
2221 Leave point at the end of the replacement text.
2222
2223 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2224 Otherwise maybe capitalize the whole text, or maybe just word initials,
2225 based on the replaced text.
2226 If the replaced text has only capital letters
2227 and has at least one multiletter word, convert NEWTEXT to all caps.
2228 Otherwise if all words are capitalized in the replaced text,
2229 capitalize each word in NEWTEXT.
2230
2231 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2232 Otherwise treat `\\' as special:
2233 `\\&' in NEWTEXT means substitute original matched text.
2234 `\\N' means substitute what matched the Nth `\\(...\\)'.
2235 If Nth parens didn't match, substitute nothing.
2236 `\\\\' means insert one `\\'.
2237 `\\?' is treated literally
2238 (for compatibility with `query-replace-regexp').
2239 Any other character following `\\' signals an error.
2240 Case conversion does not apply to these substitutions.
2241
2242 FIXEDCASE and LITERAL are optional arguments.
2243
2244 The optional fourth argument STRING can be a string to modify.
2245 This is meaningful when the previous match was done against STRING,
2246 using `string-match'. When used this way, `replace-match'
2247 creates and returns a new string made by copying STRING and replacing
2248 the part of STRING that was matched.
2249
2250 The optional fifth argument SUBEXP specifies a subexpression;
2251 it says to replace just that subexpression with NEWTEXT,
2252 rather than replacing the entire matched text.
2253 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2254 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2255 NEWTEXT in place of subexp N.
2256 This is useful only after a regular expression search or match,
2257 since only regular expressions have distinguished subexpressions. */)
2258 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2259 {
2260 enum { nochange, all_caps, cap_initial } case_action;
2261 register ptrdiff_t pos, pos_byte;
2262 int some_multiletter_word;
2263 int some_lowercase;
2264 int some_uppercase;
2265 int some_nonuppercase_initial;
2266 register int c, prevc;
2267 ptrdiff_t sub;
2268 ptrdiff_t opoint, newpoint;
2269
2270 CHECK_STRING (newtext);
2271
2272 if (! NILP (string))
2273 CHECK_STRING (string);
2274
2275 case_action = nochange; /* We tried an initialization */
2276 /* but some C compilers blew it */
2277
2278 if (search_regs.num_regs <= 0)
2279 error ("`replace-match' called before any match found");
2280
2281 if (NILP (subexp))
2282 sub = 0;
2283 else
2284 {
2285 CHECK_NUMBER (subexp);
2286 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2287 args_out_of_range (subexp, make_number (search_regs.num_regs));
2288 sub = XINT (subexp);
2289 }
2290
2291 if (NILP (string))
2292 {
2293 if (search_regs.start[sub] < BEGV
2294 || search_regs.start[sub] > search_regs.end[sub]
2295 || search_regs.end[sub] > ZV)
2296 args_out_of_range (make_number (search_regs.start[sub]),
2297 make_number (search_regs.end[sub]));
2298 }
2299 else
2300 {
2301 if (search_regs.start[sub] < 0
2302 || search_regs.start[sub] > search_regs.end[sub]
2303 || search_regs.end[sub] > SCHARS (string))
2304 args_out_of_range (make_number (search_regs.start[sub]),
2305 make_number (search_regs.end[sub]));
2306 }
2307
2308 if (NILP (fixedcase))
2309 {
2310 /* Decide how to casify by examining the matched text. */
2311 ptrdiff_t last;
2312
2313 pos = search_regs.start[sub];
2314 last = search_regs.end[sub];
2315
2316 if (NILP (string))
2317 pos_byte = CHAR_TO_BYTE (pos);
2318 else
2319 pos_byte = string_char_to_byte (string, pos);
2320
2321 prevc = '\n';
2322 case_action = all_caps;
2323
2324 /* some_multiletter_word is set nonzero if any original word
2325 is more than one letter long. */
2326 some_multiletter_word = 0;
2327 some_lowercase = 0;
2328 some_nonuppercase_initial = 0;
2329 some_uppercase = 0;
2330
2331 while (pos < last)
2332 {
2333 if (NILP (string))
2334 {
2335 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2336 INC_BOTH (pos, pos_byte);
2337 }
2338 else
2339 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2340
2341 if (lowercasep (c))
2342 {
2343 /* Cannot be all caps if any original char is lower case */
2344
2345 some_lowercase = 1;
2346 if (SYNTAX (prevc) != Sword)
2347 some_nonuppercase_initial = 1;
2348 else
2349 some_multiletter_word = 1;
2350 }
2351 else if (uppercasep (c))
2352 {
2353 some_uppercase = 1;
2354 if (SYNTAX (prevc) != Sword)
2355 ;
2356 else
2357 some_multiletter_word = 1;
2358 }
2359 else
2360 {
2361 /* If the initial is a caseless word constituent,
2362 treat that like a lowercase initial. */
2363 if (SYNTAX (prevc) != Sword)
2364 some_nonuppercase_initial = 1;
2365 }
2366
2367 prevc = c;
2368 }
2369
2370 /* Convert to all caps if the old text is all caps
2371 and has at least one multiletter word. */
2372 if (! some_lowercase && some_multiletter_word)
2373 case_action = all_caps;
2374 /* Capitalize each word, if the old text has all capitalized words. */
2375 else if (!some_nonuppercase_initial && some_multiletter_word)
2376 case_action = cap_initial;
2377 else if (!some_nonuppercase_initial && some_uppercase)
2378 /* Should x -> yz, operating on X, give Yz or YZ?
2379 We'll assume the latter. */
2380 case_action = all_caps;
2381 else
2382 case_action = nochange;
2383 }
2384
2385 /* Do replacement in a string. */
2386 if (!NILP (string))
2387 {
2388 Lisp_Object before, after;
2389
2390 before = Fsubstring (string, make_number (0),
2391 make_number (search_regs.start[sub]));
2392 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2393
2394 /* Substitute parts of the match into NEWTEXT
2395 if desired. */
2396 if (NILP (literal))
2397 {
2398 ptrdiff_t lastpos = 0;
2399 ptrdiff_t lastpos_byte = 0;
2400 /* We build up the substituted string in ACCUM. */
2401 Lisp_Object accum;
2402 Lisp_Object middle;
2403 ptrdiff_t length = SBYTES (newtext);
2404
2405 accum = Qnil;
2406
2407 for (pos_byte = 0, pos = 0; pos_byte < length;)
2408 {
2409 ptrdiff_t substart = -1;
2410 ptrdiff_t subend = 0;
2411 int delbackslash = 0;
2412
2413 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2414
2415 if (c == '\\')
2416 {
2417 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2418
2419 if (c == '&')
2420 {
2421 substart = search_regs.start[sub];
2422 subend = search_regs.end[sub];
2423 }
2424 else if (c >= '1' && c <= '9')
2425 {
2426 if (c - '0' < search_regs.num_regs
2427 && 0 <= search_regs.start[c - '0'])
2428 {
2429 substart = search_regs.start[c - '0'];
2430 subend = search_regs.end[c - '0'];
2431 }
2432 else
2433 {
2434 /* If that subexp did not match,
2435 replace \\N with nothing. */
2436 substart = 0;
2437 subend = 0;
2438 }
2439 }
2440 else if (c == '\\')
2441 delbackslash = 1;
2442 else if (c != '?')
2443 error ("Invalid use of `\\' in replacement text");
2444 }
2445 if (substart >= 0)
2446 {
2447 if (pos - 2 != lastpos)
2448 middle = substring_both (newtext, lastpos,
2449 lastpos_byte,
2450 pos - 2, pos_byte - 2);
2451 else
2452 middle = Qnil;
2453 accum = concat3 (accum, middle,
2454 Fsubstring (string,
2455 make_number (substart),
2456 make_number (subend)));
2457 lastpos = pos;
2458 lastpos_byte = pos_byte;
2459 }
2460 else if (delbackslash)
2461 {
2462 middle = substring_both (newtext, lastpos,
2463 lastpos_byte,
2464 pos - 1, pos_byte - 1);
2465
2466 accum = concat2 (accum, middle);
2467 lastpos = pos;
2468 lastpos_byte = pos_byte;
2469 }
2470 }
2471
2472 if (pos != lastpos)
2473 middle = substring_both (newtext, lastpos,
2474 lastpos_byte,
2475 pos, pos_byte);
2476 else
2477 middle = Qnil;
2478
2479 newtext = concat2 (accum, middle);
2480 }
2481
2482 /* Do case substitution in NEWTEXT if desired. */
2483 if (case_action == all_caps)
2484 newtext = Fupcase (newtext);
2485 else if (case_action == cap_initial)
2486 newtext = Fupcase_initials (newtext);
2487
2488 return concat3 (before, newtext, after);
2489 }
2490
2491 /* Record point, then move (quietly) to the start of the match. */
2492 if (PT >= search_regs.end[sub])
2493 opoint = PT - ZV;
2494 else if (PT > search_regs.start[sub])
2495 opoint = search_regs.end[sub] - ZV;
2496 else
2497 opoint = PT;
2498
2499 /* If we want non-literal replacement,
2500 perform substitution on the replacement string. */
2501 if (NILP (literal))
2502 {
2503 ptrdiff_t length = SBYTES (newtext);
2504 unsigned char *substed;
2505 ptrdiff_t substed_alloc_size, substed_len;
2506 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2507 int str_multibyte = STRING_MULTIBYTE (newtext);
2508 int really_changed = 0;
2509
2510 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2511 ? STRING_BYTES_BOUND
2512 : length * 2 + 100);
2513 substed = xmalloc (substed_alloc_size);
2514 substed_len = 0;
2515
2516 /* Go thru NEWTEXT, producing the actual text to insert in
2517 SUBSTED while adjusting multibyteness to that of the current
2518 buffer. */
2519
2520 for (pos_byte = 0, pos = 0; pos_byte < length;)
2521 {
2522 unsigned char str[MAX_MULTIBYTE_LENGTH];
2523 const unsigned char *add_stuff = NULL;
2524 ptrdiff_t add_len = 0;
2525 ptrdiff_t idx = -1;
2526
2527 if (str_multibyte)
2528 {
2529 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2530 if (!buf_multibyte)
2531 c = multibyte_char_to_unibyte (c);
2532 }
2533 else
2534 {
2535 /* Note that we don't have to increment POS. */
2536 c = SREF (newtext, pos_byte++);
2537 if (buf_multibyte)
2538 MAKE_CHAR_MULTIBYTE (c);
2539 }
2540
2541 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2542 or set IDX to a match index, which means put that part
2543 of the buffer text into SUBSTED. */
2544
2545 if (c == '\\')
2546 {
2547 really_changed = 1;
2548
2549 if (str_multibyte)
2550 {
2551 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2552 pos, pos_byte);
2553 if (!buf_multibyte && !ASCII_CHAR_P (c))
2554 c = multibyte_char_to_unibyte (c);
2555 }
2556 else
2557 {
2558 c = SREF (newtext, pos_byte++);
2559 if (buf_multibyte)
2560 MAKE_CHAR_MULTIBYTE (c);
2561 }
2562
2563 if (c == '&')
2564 idx = sub;
2565 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2566 {
2567 if (search_regs.start[c - '0'] >= 1)
2568 idx = c - '0';
2569 }
2570 else if (c == '\\')
2571 add_len = 1, add_stuff = (unsigned char *) "\\";
2572 else
2573 {
2574 xfree (substed);
2575 error ("Invalid use of `\\' in replacement text");
2576 }
2577 }
2578 else
2579 {
2580 add_len = CHAR_STRING (c, str);
2581 add_stuff = str;
2582 }
2583
2584 /* If we want to copy part of a previous match,
2585 set up ADD_STUFF and ADD_LEN to point to it. */
2586 if (idx >= 0)
2587 {
2588 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2589 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2590 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2591 move_gap (search_regs.start[idx]);
2592 add_stuff = BYTE_POS_ADDR (begbyte);
2593 }
2594
2595 /* Now the stuff we want to add to SUBSTED
2596 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2597
2598 /* Make sure SUBSTED is big enough. */
2599 if (substed_alloc_size - substed_len < add_len)
2600 substed =
2601 xpalloc (substed, &substed_alloc_size,
2602 add_len - (substed_alloc_size - substed_len),
2603 STRING_BYTES_BOUND, 1);
2604
2605 /* Now add to the end of SUBSTED. */
2606 if (add_stuff)
2607 {
2608 memcpy (substed + substed_len, add_stuff, add_len);
2609 substed_len += add_len;
2610 }
2611 }
2612
2613 if (really_changed)
2614 {
2615 if (buf_multibyte)
2616 {
2617 ptrdiff_t nchars =
2618 multibyte_chars_in_text (substed, substed_len);
2619
2620 newtext = make_multibyte_string ((char *) substed, nchars,
2621 substed_len);
2622 }
2623 else
2624 newtext = make_unibyte_string ((char *) substed, substed_len);
2625 }
2626 xfree (substed);
2627 }
2628
2629 /* Replace the old text with the new in the cleanest possible way. */
2630 replace_range (search_regs.start[sub], search_regs.end[sub],
2631 newtext, 1, 0, 1);
2632 newpoint = search_regs.start[sub] + SCHARS (newtext);
2633
2634 if (case_action == all_caps)
2635 Fupcase_region (make_number (search_regs.start[sub]),
2636 make_number (newpoint));
2637 else if (case_action == cap_initial)
2638 Fupcase_initials_region (make_number (search_regs.start[sub]),
2639 make_number (newpoint));
2640
2641 /* Adjust search data for this change. */
2642 {
2643 ptrdiff_t oldend = search_regs.end[sub];
2644 ptrdiff_t oldstart = search_regs.start[sub];
2645 ptrdiff_t change = newpoint - search_regs.end[sub];
2646 ptrdiff_t i;
2647
2648 for (i = 0; i < search_regs.num_regs; i++)
2649 {
2650 if (search_regs.start[i] >= oldend)
2651 search_regs.start[i] += change;
2652 else if (search_regs.start[i] > oldstart)
2653 search_regs.start[i] = oldstart;
2654 if (search_regs.end[i] >= oldend)
2655 search_regs.end[i] += change;
2656 else if (search_regs.end[i] > oldstart)
2657 search_regs.end[i] = oldstart;
2658 }
2659 }
2660
2661 /* Put point back where it was in the text. */
2662 if (opoint <= 0)
2663 TEMP_SET_PT (opoint + ZV);
2664 else
2665 TEMP_SET_PT (opoint);
2666
2667 /* Now move point "officially" to the start of the inserted replacement. */
2668 move_if_not_intangible (newpoint);
2669
2670 return Qnil;
2671 }
2672 \f
2673 static Lisp_Object
2674 match_limit (Lisp_Object num, int beginningp)
2675 {
2676 EMACS_INT n;
2677
2678 CHECK_NUMBER (num);
2679 n = XINT (num);
2680 if (n < 0)
2681 args_out_of_range (num, make_number (0));
2682 if (search_regs.num_regs <= 0)
2683 error ("No match data, because no search succeeded");
2684 if (n >= search_regs.num_regs
2685 || search_regs.start[n] < 0)
2686 return Qnil;
2687 return (make_number ((beginningp) ? search_regs.start[n]
2688 : search_regs.end[n]));
2689 }
2690
2691 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2692 doc: /* Return position of start of text matched by last search.
2693 SUBEXP, a number, specifies which parenthesized expression in the last
2694 regexp.
2695 Value is nil if SUBEXPth pair didn't match, or there were less than
2696 SUBEXP pairs.
2697 Zero means the entire text matched by the whole regexp or whole string. */)
2698 (Lisp_Object subexp)
2699 {
2700 return match_limit (subexp, 1);
2701 }
2702
2703 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2704 doc: /* Return position of end of text matched by last search.
2705 SUBEXP, a number, specifies which parenthesized expression in the last
2706 regexp.
2707 Value is nil if SUBEXPth pair didn't match, or there were less than
2708 SUBEXP pairs.
2709 Zero means the entire text matched by the whole regexp or whole string. */)
2710 (Lisp_Object subexp)
2711 {
2712 return match_limit (subexp, 0);
2713 }
2714
2715 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2716 doc: /* Return a list containing all info on what the last search matched.
2717 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2718 All the elements are markers or nil (nil if the Nth pair didn't match)
2719 if the last match was on a buffer; integers or nil if a string was matched.
2720 Use `set-match-data' to reinstate the data in this list.
2721
2722 If INTEGERS (the optional first argument) is non-nil, always use
2723 integers \(rather than markers) to represent buffer positions. In
2724 this case, and if the last match was in a buffer, the buffer will get
2725 stored as one additional element at the end of the list.
2726
2727 If REUSE is a list, reuse it as part of the value. If REUSE is long
2728 enough to hold all the values, and if INTEGERS is non-nil, no consing
2729 is done.
2730
2731 If optional third arg RESEAT is non-nil, any previous markers on the
2732 REUSE list will be modified to point to nowhere.
2733
2734 Return value is undefined if the last search failed. */)
2735 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2736 {
2737 Lisp_Object tail, prev;
2738 Lisp_Object *data;
2739 ptrdiff_t i, len;
2740
2741 if (!NILP (reseat))
2742 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2743 if (MARKERP (XCAR (tail)))
2744 {
2745 unchain_marker (XMARKER (XCAR (tail)));
2746 XSETCAR (tail, Qnil);
2747 }
2748
2749 if (NILP (last_thing_searched))
2750 return Qnil;
2751
2752 prev = Qnil;
2753
2754 data = alloca ((2 * search_regs.num_regs + 1) * sizeof *data);
2755
2756 len = 0;
2757 for (i = 0; i < search_regs.num_regs; i++)
2758 {
2759 ptrdiff_t start = search_regs.start[i];
2760 if (start >= 0)
2761 {
2762 if (EQ (last_thing_searched, Qt)
2763 || ! NILP (integers))
2764 {
2765 XSETFASTINT (data[2 * i], start);
2766 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2767 }
2768 else if (BUFFERP (last_thing_searched))
2769 {
2770 data[2 * i] = Fmake_marker ();
2771 Fset_marker (data[2 * i],
2772 make_number (start),
2773 last_thing_searched);
2774 data[2 * i + 1] = Fmake_marker ();
2775 Fset_marker (data[2 * i + 1],
2776 make_number (search_regs.end[i]),
2777 last_thing_searched);
2778 }
2779 else
2780 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2781 emacs_abort ();
2782
2783 len = 2 * i + 2;
2784 }
2785 else
2786 data[2 * i] = data[2 * i + 1] = Qnil;
2787 }
2788
2789 if (BUFFERP (last_thing_searched) && !NILP (integers))
2790 {
2791 data[len] = last_thing_searched;
2792 len++;
2793 }
2794
2795 /* If REUSE is not usable, cons up the values and return them. */
2796 if (! CONSP (reuse))
2797 return Flist (len, data);
2798
2799 /* If REUSE is a list, store as many value elements as will fit
2800 into the elements of REUSE. */
2801 for (i = 0, tail = reuse; CONSP (tail);
2802 i++, tail = XCDR (tail))
2803 {
2804 if (i < len)
2805 XSETCAR (tail, data[i]);
2806 else
2807 XSETCAR (tail, Qnil);
2808 prev = tail;
2809 }
2810
2811 /* If we couldn't fit all value elements into REUSE,
2812 cons up the rest of them and add them to the end of REUSE. */
2813 if (i < len)
2814 XSETCDR (prev, Flist (len - i, data + i));
2815
2816 return reuse;
2817 }
2818
2819 /* We used to have an internal use variant of `reseat' described as:
2820
2821 If RESEAT is `evaporate', put the markers back on the free list
2822 immediately. No other references to the markers must exist in this
2823 case, so it is used only internally on the unwind stack and
2824 save-match-data from Lisp.
2825
2826 But it was ill-conceived: those supposedly-internal markers get exposed via
2827 the undo-list, so freeing them here is unsafe. */
2828
2829 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2830 doc: /* Set internal data on last search match from elements of LIST.
2831 LIST should have been created by calling `match-data' previously.
2832
2833 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2834 (register Lisp_Object list, Lisp_Object reseat)
2835 {
2836 ptrdiff_t i;
2837 register Lisp_Object marker;
2838
2839 if (running_asynch_code)
2840 save_search_regs ();
2841
2842 CHECK_LIST (list);
2843
2844 /* Unless we find a marker with a buffer or an explicit buffer
2845 in LIST, assume that this match data came from a string. */
2846 last_thing_searched = Qt;
2847
2848 /* Allocate registers if they don't already exist. */
2849 {
2850 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2851
2852 if (length > search_regs.num_regs)
2853 {
2854 ptrdiff_t num_regs = search_regs.num_regs;
2855 if (PTRDIFF_MAX < length)
2856 memory_full (SIZE_MAX);
2857 search_regs.start =
2858 xpalloc (search_regs.start, &num_regs, length - num_regs,
2859 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2860 search_regs.end =
2861 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2862
2863 for (i = search_regs.num_regs; i < num_regs; i++)
2864 search_regs.start[i] = -1;
2865
2866 search_regs.num_regs = num_regs;
2867 }
2868
2869 for (i = 0; CONSP (list); i++)
2870 {
2871 marker = XCAR (list);
2872 if (BUFFERP (marker))
2873 {
2874 last_thing_searched = marker;
2875 break;
2876 }
2877 if (i >= length)
2878 break;
2879 if (NILP (marker))
2880 {
2881 search_regs.start[i] = -1;
2882 list = XCDR (list);
2883 }
2884 else
2885 {
2886 Lisp_Object from;
2887 Lisp_Object m;
2888
2889 m = marker;
2890 if (MARKERP (marker))
2891 {
2892 if (XMARKER (marker)->buffer == 0)
2893 XSETFASTINT (marker, 0);
2894 else
2895 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2896 }
2897
2898 CHECK_NUMBER_COERCE_MARKER (marker);
2899 from = marker;
2900
2901 if (!NILP (reseat) && MARKERP (m))
2902 {
2903 unchain_marker (XMARKER (m));
2904 XSETCAR (list, Qnil);
2905 }
2906
2907 if ((list = XCDR (list), !CONSP (list)))
2908 break;
2909
2910 m = marker = XCAR (list);
2911
2912 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2913 XSETFASTINT (marker, 0);
2914
2915 CHECK_NUMBER_COERCE_MARKER (marker);
2916 if ((XINT (from) < 0
2917 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2918 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2919 && (XINT (marker) < 0
2920 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2921 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2922 {
2923 search_regs.start[i] = XINT (from);
2924 search_regs.end[i] = XINT (marker);
2925 }
2926 else
2927 {
2928 search_regs.start[i] = -1;
2929 }
2930
2931 if (!NILP (reseat) && MARKERP (m))
2932 {
2933 unchain_marker (XMARKER (m));
2934 XSETCAR (list, Qnil);
2935 }
2936 }
2937 list = XCDR (list);
2938 }
2939
2940 for (; i < search_regs.num_regs; i++)
2941 search_regs.start[i] = -1;
2942 }
2943
2944 return Qnil;
2945 }
2946
2947 /* If non-zero the match data have been saved in saved_search_regs
2948 during the execution of a sentinel or filter. */
2949 static int search_regs_saved;
2950 static struct re_registers saved_search_regs;
2951 static Lisp_Object saved_last_thing_searched;
2952
2953 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2954 if asynchronous code (filter or sentinel) is running. */
2955 static void
2956 save_search_regs (void)
2957 {
2958 if (!search_regs_saved)
2959 {
2960 saved_search_regs.num_regs = search_regs.num_regs;
2961 saved_search_regs.start = search_regs.start;
2962 saved_search_regs.end = search_regs.end;
2963 saved_last_thing_searched = last_thing_searched;
2964 last_thing_searched = Qnil;
2965 search_regs.num_regs = 0;
2966 search_regs.start = 0;
2967 search_regs.end = 0;
2968
2969 search_regs_saved = 1;
2970 }
2971 }
2972
2973 /* Called upon exit from filters and sentinels. */
2974 void
2975 restore_search_regs (void)
2976 {
2977 if (search_regs_saved)
2978 {
2979 if (search_regs.num_regs > 0)
2980 {
2981 xfree (search_regs.start);
2982 xfree (search_regs.end);
2983 }
2984 search_regs.num_regs = saved_search_regs.num_regs;
2985 search_regs.start = saved_search_regs.start;
2986 search_regs.end = saved_search_regs.end;
2987 last_thing_searched = saved_last_thing_searched;
2988 saved_last_thing_searched = Qnil;
2989 search_regs_saved = 0;
2990 }
2991 }
2992
2993 static Lisp_Object
2994 unwind_set_match_data (Lisp_Object list)
2995 {
2996 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
2997 return Fset_match_data (list, Qt);
2998 }
2999
3000 /* Called to unwind protect the match data. */
3001 void
3002 record_unwind_save_match_data (void)
3003 {
3004 record_unwind_protect (unwind_set_match_data,
3005 Fmatch_data (Qnil, Qnil, Qnil));
3006 }
3007
3008 /* Quote a string to deactivate reg-expr chars */
3009
3010 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3011 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3012 (Lisp_Object string)
3013 {
3014 register char *in, *out, *end;
3015 register char *temp;
3016 int backslashes_added = 0;
3017
3018 CHECK_STRING (string);
3019
3020 temp = alloca (SBYTES (string) * 2);
3021
3022 /* Now copy the data into the new string, inserting escapes. */
3023
3024 in = SSDATA (string);
3025 end = in + SBYTES (string);
3026 out = temp;
3027
3028 for (; in != end; in++)
3029 {
3030 if (*in == '['
3031 || *in == '*' || *in == '.' || *in == '\\'
3032 || *in == '?' || *in == '+'
3033 || *in == '^' || *in == '$')
3034 *out++ = '\\', backslashes_added++;
3035 *out++ = *in;
3036 }
3037
3038 return make_specified_string (temp,
3039 SCHARS (string) + backslashes_added,
3040 out - temp,
3041 STRING_MULTIBYTE (string));
3042 }
3043 \f
3044 void
3045 syms_of_search (void)
3046 {
3047 register int i;
3048
3049 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3050 {
3051 searchbufs[i].buf.allocated = 100;
3052 searchbufs[i].buf.buffer = xmalloc (100);
3053 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3054 searchbufs[i].regexp = Qnil;
3055 searchbufs[i].whitespace_regexp = Qnil;
3056 searchbufs[i].syntax_table = Qnil;
3057 staticpro (&searchbufs[i].regexp);
3058 staticpro (&searchbufs[i].whitespace_regexp);
3059 staticpro (&searchbufs[i].syntax_table);
3060 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3061 }
3062 searchbuf_head = &searchbufs[0];
3063
3064 DEFSYM (Qsearch_failed, "search-failed");
3065 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3066
3067 Fput (Qsearch_failed, Qerror_conditions,
3068 listn (CONSTYPE_PURE, 2, Qsearch_failed, Qerror));
3069 Fput (Qsearch_failed, Qerror_message,
3070 build_pure_c_string ("Search failed"));
3071
3072 Fput (Qinvalid_regexp, Qerror_conditions,
3073 listn (CONSTYPE_PURE, 2, Qinvalid_regexp, Qerror));
3074 Fput (Qinvalid_regexp, Qerror_message,
3075 build_pure_c_string ("Invalid regexp"));
3076
3077 last_thing_searched = Qnil;
3078 staticpro (&last_thing_searched);
3079
3080 saved_last_thing_searched = Qnil;
3081 staticpro (&saved_last_thing_searched);
3082
3083 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3084 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3085 Some commands use this for user-specified regexps.
3086 Spaces that occur inside character classes or repetition operators
3087 or other such regexp constructs are not replaced with this.
3088 A value of nil (which is the normal value) means treat spaces literally. */);
3089 Vsearch_spaces_regexp = Qnil;
3090
3091 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3092 doc: /* Internal use only.
3093 If non-nil, the primitive searching and matching functions
3094 such as `looking-at', `string-match', `re-search-forward', etc.,
3095 do not set the match data. The proper way to use this variable
3096 is to bind it with `let' around a small expression. */);
3097 Vinhibit_changing_match_data = Qnil;
3098
3099 defsubr (&Slooking_at);
3100 defsubr (&Sposix_looking_at);
3101 defsubr (&Sstring_match);
3102 defsubr (&Sposix_string_match);
3103 defsubr (&Ssearch_forward);
3104 defsubr (&Ssearch_backward);
3105 defsubr (&Sre_search_forward);
3106 defsubr (&Sre_search_backward);
3107 defsubr (&Sposix_search_forward);
3108 defsubr (&Sposix_search_backward);
3109 defsubr (&Sreplace_match);
3110 defsubr (&Smatch_beginning);
3111 defsubr (&Smatch_end);
3112 defsubr (&Smatch_data);
3113 defsubr (&Sset_match_data);
3114 defsubr (&Sregexp_quote);
3115 }