Undefine setpgrp before setting it.
[bpt/emacs.git] / lispref / sequences.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999
4 @c Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../info/sequences
7 @node Sequences Arrays Vectors, Hash Tables, Lists, Top
8 @chapter Sequences, Arrays, and Vectors
9 @cindex sequence
10
11 Recall that the @dfn{sequence} type is the union of two other Lisp
12 types: lists and arrays. In other words, any list is a sequence, and
13 any array is a sequence. The common property that all sequences have is
14 that each is an ordered collection of elements.
15
16 An @dfn{array} is a single primitive object that has a slot for each
17 of its elements. All the elements are accessible in constant time, but
18 the length of an existing array cannot be changed. Strings, vectors,
19 char-tables and bool-vectors are the four types of arrays.
20
21 A list is a sequence of elements, but it is not a single primitive
22 object; it is made of cons cells, one cell per element. Finding the
23 @var{n}th element requires looking through @var{n} cons cells, so
24 elements farther from the beginning of the list take longer to access.
25 But it is possible to add elements to the list, or remove elements.
26
27 The following diagram shows the relationship between these types:
28
29 @example
30 @group
31 _____________________________________________
32 | |
33 | Sequence |
34 | ______ ________________________________ |
35 | | | | | |
36 | | List | | Array | |
37 | | | | ________ ________ | |
38 | |______| | | | | | | |
39 | | | Vector | | String | | |
40 | | |________| |________| | |
41 | | ____________ _____________ | |
42 | | | | | | | |
43 | | | Char-table | | Bool-vector | | |
44 | | |____________| |_____________| | |
45 | |________________________________| |
46 |_____________________________________________|
47 @end group
48 @end example
49
50 The elements of vectors and lists may be any Lisp objects. The
51 elements of strings are all characters.
52
53 @menu
54 * Sequence Functions:: Functions that accept any kind of sequence.
55 * Arrays:: Characteristics of arrays in Emacs Lisp.
56 * Array Functions:: Functions specifically for arrays.
57 * Vectors:: Special characteristics of Emacs Lisp vectors.
58 * Vector Functions:: Functions specifically for vectors.
59 * Char-Tables:: How to work with char-tables.
60 * Bool-Vectors:: How to work with bool-vectors.
61 @end menu
62
63 @node Sequence Functions
64 @section Sequences
65
66 In Emacs Lisp, a @dfn{sequence} is either a list or an array. The
67 common property of all sequences is that they are ordered collections of
68 elements. This section describes functions that accept any kind of
69 sequence.
70
71 @defun sequencep object
72 Returns @code{t} if @var{object} is a list, vector, or
73 string, @code{nil} otherwise.
74 @end defun
75
76 @defun length sequence
77 @cindex string length
78 @cindex list length
79 @cindex vector length
80 @cindex sequence length
81 This function returns the number of elements in @var{sequence}. If
82 @var{sequence} is a cons cell that is not a list (because the final
83 @sc{cdr} is not @code{nil}), a @code{wrong-type-argument} error is
84 signaled.
85
86 @xref{List Elements}, for the related function @code{safe-length}.
87
88 @example
89 @group
90 (length '(1 2 3))
91 @result{} 3
92 @end group
93 @group
94 (length ())
95 @result{} 0
96 @end group
97 @group
98 (length "foobar")
99 @result{} 6
100 @end group
101 @group
102 (length [1 2 3])
103 @result{} 3
104 @end group
105 @group
106 (length (make-bool-vector 5 nil))
107 @result{} 5
108 @end group
109 @end example
110 @end defun
111
112 @defun elt sequence index
113 @cindex elements of sequences
114 This function returns the element of @var{sequence} indexed by
115 @var{index}. Legitimate values of @var{index} are integers ranging from
116 0 up to one less than the length of @var{sequence}. If @var{sequence}
117 is a list, then out-of-range values of @var{index} return @code{nil};
118 otherwise, they trigger an @code{args-out-of-range} error.
119
120 @example
121 @group
122 (elt [1 2 3 4] 2)
123 @result{} 3
124 @end group
125 @group
126 (elt '(1 2 3 4) 2)
127 @result{} 3
128 @end group
129 @group
130 ;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
131 (string (elt "1234" 2))
132 @result{} "3"
133 @end group
134 @group
135 (elt [1 2 3 4] 4)
136 @error{} Args out of range: [1 2 3 4], 4
137 @end group
138 @group
139 (elt [1 2 3 4] -1)
140 @error{} Args out of range: [1 2 3 4], -1
141 @end group
142 @end example
143
144 This function generalizes @code{aref} (@pxref{Array Functions}) and
145 @code{nth} (@pxref{List Elements}).
146 @end defun
147
148 @defun copy-sequence sequence
149 @cindex copying sequences
150 Returns a copy of @var{sequence}. The copy is the same type of object
151 as the original sequence, and it has the same elements in the same order.
152
153 Storing a new element into the copy does not affect the original
154 @var{sequence}, and vice versa. However, the elements of the new
155 sequence are not copies; they are identical (@code{eq}) to the elements
156 of the original. Therefore, changes made within these elements, as
157 found via the copied sequence, are also visible in the original
158 sequence.
159
160 If the sequence is a string with text properties, the property list in
161 the copy is itself a copy, not shared with the original's property
162 list. However, the actual values of the properties are shared.
163 @xref{Text Properties}.
164
165 See also @code{append} in @ref{Building Lists}, @code{concat} in
166 @ref{Creating Strings}, and @code{vconcat} in @ref{Vectors}, for other
167 ways to copy sequences.
168
169 @example
170 @group
171 (setq bar '(1 2))
172 @result{} (1 2)
173 @end group
174 @group
175 (setq x (vector 'foo bar))
176 @result{} [foo (1 2)]
177 @end group
178 @group
179 (setq y (copy-sequence x))
180 @result{} [foo (1 2)]
181 @end group
182
183 @group
184 (eq x y)
185 @result{} nil
186 @end group
187 @group
188 (equal x y)
189 @result{} t
190 @end group
191 @group
192 (eq (elt x 1) (elt y 1))
193 @result{} t
194 @end group
195
196 @group
197 ;; @r{Replacing an element of one sequence.}
198 (aset x 0 'quux)
199 x @result{} [quux (1 2)]
200 y @result{} [foo (1 2)]
201 @end group
202
203 @group
204 ;; @r{Modifying the inside of a shared element.}
205 (setcar (aref x 1) 69)
206 x @result{} [quux (69 2)]
207 y @result{} [foo (69 2)]
208 @end group
209 @end example
210 @end defun
211
212 @node Arrays
213 @section Arrays
214 @cindex array
215
216 An @dfn{array} object has slots that hold a number of other Lisp
217 objects, called the elements of the array. Any element of an array may
218 be accessed in constant time. In contrast, an element of a list
219 requires access time that is proportional to the position of the element
220 in the list.
221
222 Emacs defines four types of array, all one-dimensional: @dfn{strings},
223 @dfn{vectors}, @dfn{bool-vectors} and @dfn{char-tables}. A vector is a
224 general array; its elements can be any Lisp objects. A string is a
225 specialized array; its elements must be characters. Each type of array
226 has its own read syntax.
227 @xref{String Type}, and @ref{Vector Type}.
228
229 All four kinds of array share these characteristics:
230
231 @itemize @bullet
232 @item
233 The first element of an array has index zero, the second element has
234 index 1, and so on. This is called @dfn{zero-origin} indexing. For
235 example, an array of four elements has indices 0, 1, 2, @w{and 3}.
236
237 @item
238 The length of the array is fixed once you create it; you cannot
239 change the length of an existing array.
240
241 @item
242 The array is a constant, for evaluation---in other words, it evaluates
243 to itself.
244
245 @item
246 The elements of an array may be referenced or changed with the functions
247 @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
248 @end itemize
249
250 When you create an array, other than a char-table, you must specify
251 its length. You cannot specify the length of a char-table, because that
252 is determined by the range of character codes.
253
254 In principle, if you want an array of text characters, you could use
255 either a string or a vector. In practice, we always choose strings for
256 such applications, for four reasons:
257
258 @itemize @bullet
259 @item
260 They occupy one-fourth the space of a vector of the same elements.
261
262 @item
263 Strings are printed in a way that shows the contents more clearly
264 as text.
265
266 @item
267 Strings can hold text properties. @xref{Text Properties}.
268
269 @item
270 Many of the specialized editing and I/O facilities of Emacs accept only
271 strings. For example, you cannot insert a vector of characters into a
272 buffer the way you can insert a string. @xref{Strings and Characters}.
273 @end itemize
274
275 By contrast, for an array of keyboard input characters (such as a key
276 sequence), a vector may be necessary, because many keyboard input
277 characters are outside the range that will fit in a string. @xref{Key
278 Sequence Input}.
279
280 @node Array Functions
281 @section Functions that Operate on Arrays
282
283 In this section, we describe the functions that accept all types of
284 arrays.
285
286 @defun arrayp object
287 This function returns @code{t} if @var{object} is an array (i.e., a
288 vector, a string, a bool-vector or a char-table).
289
290 @example
291 @group
292 (arrayp [a])
293 @result{} t
294 (arrayp "asdf")
295 @result{} t
296 (arrayp (syntax-table)) ;; @r{A char-table.}
297 @result{} t
298 @end group
299 @end example
300 @end defun
301
302 @defun aref array index
303 @cindex array elements
304 This function returns the @var{index}th element of @var{array}. The
305 first element is at index zero.
306
307 @example
308 @group
309 (setq primes [2 3 5 7 11 13])
310 @result{} [2 3 5 7 11 13]
311 (aref primes 4)
312 @result{} 11
313 @end group
314 @group
315 (aref "abcdefg" 1)
316 @result{} 98 ; @r{@samp{b} is @sc{ascii} code 98.}
317 @end group
318 @end example
319
320 See also the function @code{elt}, in @ref{Sequence Functions}.
321 @end defun
322
323 @defun aset array index object
324 This function sets the @var{index}th element of @var{array} to be
325 @var{object}. It returns @var{object}.
326
327 @example
328 @group
329 (setq w [foo bar baz])
330 @result{} [foo bar baz]
331 (aset w 0 'fu)
332 @result{} fu
333 w
334 @result{} [fu bar baz]
335 @end group
336
337 @group
338 (setq x "asdfasfd")
339 @result{} "asdfasfd"
340 (aset x 3 ?Z)
341 @result{} 90
342 x
343 @result{} "asdZasfd"
344 @end group
345 @end example
346
347 If @var{array} is a string and @var{object} is not a character, a
348 @code{wrong-type-argument} error results. If @var{array} is a string
349 and @var{object} is character, but @var{object} does not use the same
350 number of bytes as the character currently stored in @code{(aref
351 @var{object} @var{index})}, that is also an error. @xref{Splitting
352 Characters}.
353 @end defun
354
355 @defun fillarray array object
356 This function fills the array @var{array} with @var{object}, so that
357 each element of @var{array} is @var{object}. It returns @var{array}.
358
359 @example
360 @group
361 (setq a [a b c d e f g])
362 @result{} [a b c d e f g]
363 (fillarray a 0)
364 @result{} [0 0 0 0 0 0 0]
365 a
366 @result{} [0 0 0 0 0 0 0]
367 @end group
368 @group
369 (setq s "When in the course")
370 @result{} "When in the course"
371 (fillarray s ?-)
372 @result{} "------------------"
373 @end group
374 @end example
375
376 If @var{array} is a string and @var{object} is not a character, a
377 @code{wrong-type-argument} error results.
378 @end defun
379
380 The general sequence functions @code{copy-sequence} and @code{length}
381 are often useful for objects known to be arrays. @xref{Sequence Functions}.
382
383 @node Vectors
384 @section Vectors
385 @cindex vector
386
387 Arrays in Lisp, like arrays in most languages, are blocks of memory
388 whose elements can be accessed in constant time. A @dfn{vector} is a
389 general-purpose array of specified length; its elements can be any Lisp
390 objects. (By contrast, a string can hold only characters as elements.)
391 Vectors in Emacs are used for obarrays (vectors of symbols), and as part
392 of keymaps (vectors of commands). They are also used internally as part
393 of the representation of a byte-compiled function; if you print such a
394 function, you will see a vector in it.
395
396 In Emacs Lisp, the indices of the elements of a vector start from zero
397 and count up from there.
398
399 Vectors are printed with square brackets surrounding the elements.
400 Thus, a vector whose elements are the symbols @code{a}, @code{b} and
401 @code{a} is printed as @code{[a b a]}. You can write vectors in the
402 same way in Lisp input.
403
404 A vector, like a string or a number, is considered a constant for
405 evaluation: the result of evaluating it is the same vector. This does
406 not evaluate or even examine the elements of the vector.
407 @xref{Self-Evaluating Forms}.
408
409 Here are examples illustrating these principles:
410
411 @example
412 @group
413 (setq avector [1 two '(three) "four" [five]])
414 @result{} [1 two (quote (three)) "four" [five]]
415 (eval avector)
416 @result{} [1 two (quote (three)) "four" [five]]
417 (eq avector (eval avector))
418 @result{} t
419 @end group
420 @end example
421
422 @node Vector Functions
423 @section Functions for Vectors
424
425 Here are some functions that relate to vectors:
426
427 @defun vectorp object
428 This function returns @code{t} if @var{object} is a vector.
429
430 @example
431 @group
432 (vectorp [a])
433 @result{} t
434 (vectorp "asdf")
435 @result{} nil
436 @end group
437 @end example
438 @end defun
439
440 @defun vector &rest objects
441 This function creates and returns a vector whose elements are the
442 arguments, @var{objects}.
443
444 @example
445 @group
446 (vector 'foo 23 [bar baz] "rats")
447 @result{} [foo 23 [bar baz] "rats"]
448 (vector)
449 @result{} []
450 @end group
451 @end example
452 @end defun
453
454 @defun make-vector length object
455 This function returns a new vector consisting of @var{length} elements,
456 each initialized to @var{object}.
457
458 @example
459 @group
460 (setq sleepy (make-vector 9 'Z))
461 @result{} [Z Z Z Z Z Z Z Z Z]
462 @end group
463 @end example
464 @end defun
465
466 @defun vconcat &rest sequences
467 @cindex copying vectors
468 This function returns a new vector containing all the elements of the
469 @var{sequences}. The arguments @var{sequences} may be any kind of
470 arrays, including lists, vectors, or strings. If no @var{sequences} are
471 given, an empty vector is returned.
472
473 The value is a newly constructed vector that is not @code{eq} to any
474 existing vector.
475
476 @example
477 @group
478 (setq a (vconcat '(A B C) '(D E F)))
479 @result{} [A B C D E F]
480 (eq a (vconcat a))
481 @result{} nil
482 @end group
483 @group
484 (vconcat)
485 @result{} []
486 (vconcat [A B C] "aa" '(foo (6 7)))
487 @result{} [A B C 97 97 foo (6 7)]
488 @end group
489 @end example
490
491 The @code{vconcat} function also allows byte-code function objects as
492 arguments. This is a special feature to make it easy to access the entire
493 contents of a byte-code function object. @xref{Byte-Code Objects}.
494
495 The @code{vconcat} function also allows integers as arguments. It
496 converts them to strings of digits, making up the decimal print
497 representation of the integer, and then uses the strings instead of the
498 original integers. @strong{Don't use this feature; we plan to eliminate
499 it. If you already use this feature, change your programs now!} The
500 proper way to convert an integer to a decimal number in this way is with
501 @code{format} (@pxref{Formatting Strings}) or @code{number-to-string}
502 (@pxref{String Conversion}).
503
504 For other concatenation functions, see @code{mapconcat} in @ref{Mapping
505 Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
506 in @ref{Building Lists}.
507 @end defun
508
509 The @code{append} function provides a way to convert a vector into a
510 list with the same elements (@pxref{Building Lists}):
511
512 @example
513 @group
514 (setq avector [1 two (quote (three)) "four" [five]])
515 @result{} [1 two (quote (three)) "four" [five]]
516 (append avector nil)
517 @result{} (1 two (quote (three)) "four" [five])
518 @end group
519 @end example
520
521 @node Char-Tables
522 @section Char-Tables
523 @cindex char-tables
524 @cindex extra slots of char-table
525
526 A char-table is much like a vector, except that it is indexed by
527 character codes. Any valid character code, without modifiers, can be
528 used as an index in a char-table. You can access a char-table's
529 elements with @code{aref} and @code{aset}, as with any array. In
530 addition, a char-table can have @dfn{extra slots} to hold additional
531 data not associated with particular character codes. Char-tables are
532 constants when evaluated.
533
534 @cindex subtype of char-table
535 Each char-table has a @dfn{subtype} which is a symbol. The subtype
536 has two purposes: to distinguish char-tables meant for different uses,
537 and to control the number of extra slots. For example, display tables
538 are char-tables with @code{display-table} as the subtype, and syntax
539 tables are char-tables with @code{syntax-table} as the subtype. A valid
540 subtype must have a @code{char-table-extra-slots} property which is an
541 integer between 0 and 10. This integer specifies the number of
542 @dfn{extra slots} in the char-table.
543
544 @cindex parent of char-table
545 A char-table can have a @dfn{parent}. which is another char-table. If
546 it does, then whenever the char-table specifies @code{nil} for a
547 particular character @var{c}, it inherits the value specified in the
548 parent. In other words, @code{(aref @var{char-table} @var{c})} returns
549 the value from the parent of @var{char-table} if @var{char-table} itself
550 specifies @code{nil}.
551
552 @cindex default value of char-table
553 A char-table can also have a @dfn{default value}. If so, then
554 @code{(aref @var{char-table} @var{c})} returns the default value
555 whenever the char-table does not specify any other non-@code{nil} value.
556
557 @defun make-char-table subtype &optional init
558 Return a newly created char-table, with subtype @var{subtype}. Each
559 element is initialized to @var{init}, which defaults to @code{nil}. You
560 cannot alter the subtype of a char-table after the char-table is
561 created.
562
563 There is no argument to specify the length of the char-table, because
564 all char-tables have room for any valid character code as an index.
565 @end defun
566
567 @defun char-table-p object
568 This function returns @code{t} if @var{object} is a char-table,
569 otherwise @code{nil}.
570 @end defun
571
572 @defun char-table-subtype char-table
573 This function returns the subtype symbol of @var{char-table}.
574 @end defun
575
576 @defun set-char-table-default char-table new-default
577 This function sets the default value of @var{char-table} to
578 @var{new-default}.
579
580 There is no special function to access the default value of a char-table.
581 To do that, use @code{(char-table-range @var{char-table} nil)}.
582 @end defun
583
584 @defun char-table-parent char-table
585 This function returns the parent of @var{char-table}. The parent is
586 always either @code{nil} or another char-table.
587 @end defun
588
589 @defun set-char-table-parent char-table new-parent
590 This function sets the parent of @var{char-table} to @var{new-parent}.
591 @end defun
592
593 @defun char-table-extra-slot char-table n
594 This function returns the contents of extra slot @var{n} of
595 @var{char-table}. The number of extra slots in a char-table is
596 determined by its subtype.
597 @end defun
598
599 @defun set-char-table-extra-slot char-table n value
600 This function stores @var{value} in extra slot @var{n} of
601 @var{char-table}.
602 @end defun
603
604 A char-table can specify an element value for a single character code;
605 it can also specify a value for an entire character set.
606
607 @defun char-table-range char-table range
608 This returns the value specified in @var{char-table} for a range of
609 characters @var{range}. Here are the possibilities for @var{range}:
610
611 @table @asis
612 @item @code{nil}
613 Refers to the default value.
614
615 @item @var{char}
616 Refers to the element for character @var{char}
617 (supposing @var{char} is a valid character code).
618
619 @item @var{charset}
620 Refers to the value specified for the whole character set
621 @var{charset} (@pxref{Character Sets}).
622
623 @item @var{generic-char}
624 A generic character stands for a character set; specifying the generic
625 character as argument is equivalent to specifying the character set
626 name. @xref{Splitting Characters}, for a description of generic characters.
627 @end table
628 @end defun
629
630 @defun set-char-table-range char-table range value
631 This function sets the value in @var{char-table} for a range of
632 characters @var{range}. Here are the possibilities for @var{range}:
633
634 @table @asis
635 @item @code{nil}
636 Refers to the default value.
637
638 @item @code{t}
639 Refers to the whole range of character codes.
640
641 @item @var{char}
642 Refers to the element for character @var{char}
643 (supposing @var{char} is a valid character code).
644
645 @item @var{charset}
646 Refers to the value specified for the whole character set
647 @var{charset} (@pxref{Character Sets}).
648
649 @item @var{generic-char}
650 A generic character stands for a character set; specifying the generic
651 character as argument is equivalent to specifying the character set
652 name. @xref{Splitting Characters}, for a description of generic characters.
653 @end table
654 @end defun
655
656 @defun map-char-table function char-table
657 This function calls @var{function} for each element of @var{char-table}.
658 @var{function} is called with two arguments, a key and a value. The key
659 is a possible @var{range} argument for @code{char-table-range}---either
660 a valid character or a generic character---and the value is
661 @code{(char-table-range @var{char-table} @var{key})}.
662
663 Overall, the key-value pairs passed to @var{function} describe all the
664 values stored in @var{char-table}.
665
666 The return value is always @code{nil}; to make this function useful,
667 @var{function} should have side effects. For example,
668 here is how to examine each element of the syntax table:
669
670 @example
671 (let (accumulator)
672 (map-char-table
673 #'(lambda (key value)
674 (setq accumulator
675 (cons (list key value) accumulator)))
676 (syntax-table))
677 accumulator)
678 @result{}
679 ((475008 nil) (474880 nil) (474752 nil) (474624 nil)
680 ... (5 (3)) (4 (3)) (3 (3)) (2 (3)) (1 (3)) (0 (3)))
681 @end example
682 @end defun
683
684 @node Bool-Vectors
685 @section Bool-vectors
686 @cindex Bool-vectors
687
688 A bool-vector is much like a vector, except that it stores only the
689 values @code{t} and @code{nil}. If you try to store any non-@code{nil}
690 value into an element of the bool-vector, the effect is to store
691 @code{t} there. As with all arrays, bool-vector indices start from 0,
692 and the length cannot be changed once the bool-vector is created.
693 Bool-vectors are constants when evaluated.
694
695 There are two special functions for working with bool-vectors; aside
696 from that, you manipulate them with same functions used for other kinds
697 of arrays.
698
699 @defun make-bool-vector length initial
700 Return a new book-vector of @var{length} elements,
701 each one initialized to @var{initial}.
702 @end defun
703
704 @defun bool-vector-p object
705 This returns @code{t} if @var{object} is a bool-vector,
706 and @code{nil} otherwise.
707 @end defun
708