Add emacs native profiler.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #ifdef HAVE_MENUS
40 #if defined (HAVE_X_WINDOWS)
41 #include "xterm.h"
42 #endif
43 #endif /* HAVE_MENUS */
44
45 Lisp_Object Qstring_lessp;
46 static Lisp_Object Qprovide, Qrequire;
47 static Lisp_Object Qyes_or_no_p_history;
48 Lisp_Object Qcursor_in_echo_area;
49 static Lisp_Object Qwidget_type;
50 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
51
52 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
53
54 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
55
56 #ifndef HAVE_UNISTD_H
57 extern long time ();
58 #endif
59 \f
60 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
61 doc: /* Return the argument unchanged. */)
62 (Lisp_Object arg)
63 {
64 return arg;
65 }
66
67 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
68 doc: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
74 (Lisp_Object limit)
75 {
76 EMACS_INT val;
77 Lisp_Object lispy_val;
78
79 if (EQ (limit, Qt))
80 {
81 EMACS_TIME t = current_emacs_time ();
82 seed_random (getpid () ^ EMACS_SECS (t) ^ EMACS_NSECS (t));
83 }
84
85 if (NATNUMP (limit) && XFASTINT (limit) != 0)
86 {
87 /* Try to take our random number from the higher bits of VAL,
88 not the lower, since (says Gentzel) the low bits of `random'
89 are less random than the higher ones. We do this by using the
90 quotient rather than the remainder. At the high end of the RNG
91 it's possible to get a quotient larger than n; discarding
92 these values eliminates the bias that would otherwise appear
93 when using a large n. */
94 EMACS_INT denominator = (INTMASK + 1) / XFASTINT (limit);
95 do
96 val = get_random () / denominator;
97 while (val >= XFASTINT (limit));
98 }
99 else
100 val = get_random ();
101 XSETINT (lispy_val, val);
102 return lispy_val;
103 }
104 \f
105 /* Heuristic on how many iterations of a tight loop can be safely done
106 before it's time to do a QUIT. This must be a power of 2. */
107 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
108
109 /* Random data-structure functions */
110
111 DEFUN ("length", Flength, Slength, 1, 1, 0,
112 doc: /* Return the length of vector, list or string SEQUENCE.
113 A byte-code function object is also allowed.
114 If the string contains multibyte characters, this is not necessarily
115 the number of bytes in the string; it is the number of characters.
116 To get the number of bytes, use `string-bytes'. */)
117 (register Lisp_Object sequence)
118 {
119 register Lisp_Object val;
120
121 if (STRINGP (sequence))
122 XSETFASTINT (val, SCHARS (sequence));
123 else if (VECTORP (sequence))
124 XSETFASTINT (val, ASIZE (sequence));
125 else if (CHAR_TABLE_P (sequence))
126 XSETFASTINT (val, MAX_CHAR);
127 else if (BOOL_VECTOR_P (sequence))
128 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
129 else if (COMPILEDP (sequence))
130 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
131 else if (CONSP (sequence))
132 {
133 EMACS_INT i = 0;
134
135 do
136 {
137 ++i;
138 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
139 {
140 if (MOST_POSITIVE_FIXNUM < i)
141 error ("List too long");
142 QUIT;
143 }
144 sequence = XCDR (sequence);
145 }
146 while (CONSP (sequence));
147
148 CHECK_LIST_END (sequence, sequence);
149
150 val = make_number (i);
151 }
152 else if (NILP (sequence))
153 XSETFASTINT (val, 0);
154 else
155 wrong_type_argument (Qsequencep, sequence);
156
157 return val;
158 }
159
160 /* This does not check for quits. That is safe since it must terminate. */
161
162 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
163 doc: /* Return the length of a list, but avoid error or infinite loop.
164 This function never gets an error. If LIST is not really a list,
165 it returns 0. If LIST is circular, it returns a finite value
166 which is at least the number of distinct elements. */)
167 (Lisp_Object list)
168 {
169 Lisp_Object tail, halftail;
170 double hilen = 0;
171 uintmax_t lolen = 1;
172
173 if (! CONSP (list))
174 return make_number (0);
175
176 /* halftail is used to detect circular lists. */
177 for (tail = halftail = list; ; )
178 {
179 tail = XCDR (tail);
180 if (! CONSP (tail))
181 break;
182 if (EQ (tail, halftail))
183 break;
184 lolen++;
185 if ((lolen & 1) == 0)
186 {
187 halftail = XCDR (halftail);
188 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
189 {
190 QUIT;
191 if (lolen == 0)
192 hilen += UINTMAX_MAX + 1.0;
193 }
194 }
195 }
196
197 /* If the length does not fit into a fixnum, return a float.
198 On all known practical machines this returns an upper bound on
199 the true length. */
200 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
201 }
202
203 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
204 doc: /* Return the number of bytes in STRING.
205 If STRING is multibyte, this may be greater than the length of STRING. */)
206 (Lisp_Object string)
207 {
208 CHECK_STRING (string);
209 return make_number (SBYTES (string));
210 }
211
212 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
213 doc: /* Return t if two strings have identical contents.
214 Case is significant, but text properties are ignored.
215 Symbols are also allowed; their print names are used instead. */)
216 (register Lisp_Object s1, Lisp_Object s2)
217 {
218 if (SYMBOLP (s1))
219 s1 = SYMBOL_NAME (s1);
220 if (SYMBOLP (s2))
221 s2 = SYMBOL_NAME (s2);
222 CHECK_STRING (s1);
223 CHECK_STRING (s2);
224
225 if (SCHARS (s1) != SCHARS (s2)
226 || SBYTES (s1) != SBYTES (s2)
227 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
228 return Qnil;
229 return Qt;
230 }
231
232 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
233 doc: /* Compare the contents of two strings, converting to multibyte if needed.
234 In string STR1, skip the first START1 characters and stop at END1.
235 In string STR2, skip the first START2 characters and stop at END2.
236 END1 and END2 default to the full lengths of the respective strings.
237
238 Case is significant in this comparison if IGNORE-CASE is nil.
239 Unibyte strings are converted to multibyte for comparison.
240
241 The value is t if the strings (or specified portions) match.
242 If string STR1 is less, the value is a negative number N;
243 - 1 - N is the number of characters that match at the beginning.
244 If string STR1 is greater, the value is a positive number N;
245 N - 1 is the number of characters that match at the beginning. */)
246 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
247 {
248 register ptrdiff_t end1_char, end2_char;
249 register ptrdiff_t i1, i1_byte, i2, i2_byte;
250
251 CHECK_STRING (str1);
252 CHECK_STRING (str2);
253 if (NILP (start1))
254 start1 = make_number (0);
255 if (NILP (start2))
256 start2 = make_number (0);
257 CHECK_NATNUM (start1);
258 CHECK_NATNUM (start2);
259 if (! NILP (end1))
260 CHECK_NATNUM (end1);
261 if (! NILP (end2))
262 CHECK_NATNUM (end2);
263
264 end1_char = SCHARS (str1);
265 if (! NILP (end1) && end1_char > XINT (end1))
266 end1_char = XINT (end1);
267 if (end1_char < XINT (start1))
268 args_out_of_range (str1, start1);
269
270 end2_char = SCHARS (str2);
271 if (! NILP (end2) && end2_char > XINT (end2))
272 end2_char = XINT (end2);
273 if (end2_char < XINT (start2))
274 args_out_of_range (str2, start2);
275
276 i1 = XINT (start1);
277 i2 = XINT (start2);
278
279 i1_byte = string_char_to_byte (str1, i1);
280 i2_byte = string_char_to_byte (str2, i2);
281
282 while (i1 < end1_char && i2 < end2_char)
283 {
284 /* When we find a mismatch, we must compare the
285 characters, not just the bytes. */
286 int c1, c2;
287
288 if (STRING_MULTIBYTE (str1))
289 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
290 else
291 {
292 c1 = SREF (str1, i1++);
293 MAKE_CHAR_MULTIBYTE (c1);
294 }
295
296 if (STRING_MULTIBYTE (str2))
297 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
298 else
299 {
300 c2 = SREF (str2, i2++);
301 MAKE_CHAR_MULTIBYTE (c2);
302 }
303
304 if (c1 == c2)
305 continue;
306
307 if (! NILP (ignore_case))
308 {
309 Lisp_Object tem;
310
311 tem = Fupcase (make_number (c1));
312 c1 = XINT (tem);
313 tem = Fupcase (make_number (c2));
314 c2 = XINT (tem);
315 }
316
317 if (c1 == c2)
318 continue;
319
320 /* Note that I1 has already been incremented
321 past the character that we are comparing;
322 hence we don't add or subtract 1 here. */
323 if (c1 < c2)
324 return make_number (- i1 + XINT (start1));
325 else
326 return make_number (i1 - XINT (start1));
327 }
328
329 if (i1 < end1_char)
330 return make_number (i1 - XINT (start1) + 1);
331 if (i2 < end2_char)
332 return make_number (- i1 + XINT (start1) - 1);
333
334 return Qt;
335 }
336
337 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
338 doc: /* Return t if first arg string is less than second in lexicographic order.
339 Case is significant.
340 Symbols are also allowed; their print names are used instead. */)
341 (register Lisp_Object s1, Lisp_Object s2)
342 {
343 register ptrdiff_t end;
344 register ptrdiff_t i1, i1_byte, i2, i2_byte;
345
346 if (SYMBOLP (s1))
347 s1 = SYMBOL_NAME (s1);
348 if (SYMBOLP (s2))
349 s2 = SYMBOL_NAME (s2);
350 CHECK_STRING (s1);
351 CHECK_STRING (s2);
352
353 i1 = i1_byte = i2 = i2_byte = 0;
354
355 end = SCHARS (s1);
356 if (end > SCHARS (s2))
357 end = SCHARS (s2);
358
359 while (i1 < end)
360 {
361 /* When we find a mismatch, we must compare the
362 characters, not just the bytes. */
363 int c1, c2;
364
365 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
366 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
367
368 if (c1 != c2)
369 return c1 < c2 ? Qt : Qnil;
370 }
371 return i1 < SCHARS (s2) ? Qt : Qnil;
372 }
373 \f
374 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
375 enum Lisp_Type target_type, int last_special);
376
377 /* ARGSUSED */
378 Lisp_Object
379 concat2 (Lisp_Object s1, Lisp_Object s2)
380 {
381 Lisp_Object args[2];
382 args[0] = s1;
383 args[1] = s2;
384 return concat (2, args, Lisp_String, 0);
385 }
386
387 /* ARGSUSED */
388 Lisp_Object
389 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
390 {
391 Lisp_Object args[3];
392 args[0] = s1;
393 args[1] = s2;
394 args[2] = s3;
395 return concat (3, args, Lisp_String, 0);
396 }
397
398 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
399 doc: /* Concatenate all the arguments and make the result a list.
400 The result is a list whose elements are the elements of all the arguments.
401 Each argument may be a list, vector or string.
402 The last argument is not copied, just used as the tail of the new list.
403 usage: (append &rest SEQUENCES) */)
404 (ptrdiff_t nargs, Lisp_Object *args)
405 {
406 return concat (nargs, args, Lisp_Cons, 1);
407 }
408
409 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
410 doc: /* Concatenate all the arguments and make the result a string.
411 The result is a string whose elements are the elements of all the arguments.
412 Each argument may be a string or a list or vector of characters (integers).
413 usage: (concat &rest SEQUENCES) */)
414 (ptrdiff_t nargs, Lisp_Object *args)
415 {
416 return concat (nargs, args, Lisp_String, 0);
417 }
418
419 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
420 doc: /* Concatenate all the arguments and make the result a vector.
421 The result is a vector whose elements are the elements of all the arguments.
422 Each argument may be a list, vector or string.
423 usage: (vconcat &rest SEQUENCES) */)
424 (ptrdiff_t nargs, Lisp_Object *args)
425 {
426 return concat (nargs, args, Lisp_Vectorlike, 0);
427 }
428
429
430 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
431 doc: /* Return a copy of a list, vector, string or char-table.
432 The elements of a list or vector are not copied; they are shared
433 with the original. */)
434 (Lisp_Object arg)
435 {
436 if (NILP (arg)) return arg;
437
438 if (CHAR_TABLE_P (arg))
439 {
440 return copy_char_table (arg);
441 }
442
443 if (BOOL_VECTOR_P (arg))
444 {
445 Lisp_Object val;
446 ptrdiff_t size_in_chars
447 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
448 / BOOL_VECTOR_BITS_PER_CHAR);
449
450 val = Fmake_bool_vector (Flength (arg), Qnil);
451 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
452 size_in_chars);
453 return val;
454 }
455
456 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
457 wrong_type_argument (Qsequencep, arg);
458
459 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
460 }
461
462 /* This structure holds information of an argument of `concat' that is
463 a string and has text properties to be copied. */
464 struct textprop_rec
465 {
466 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
467 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
468 ptrdiff_t to; /* refer to VAL (the target string) */
469 };
470
471 static Lisp_Object
472 concat (ptrdiff_t nargs, Lisp_Object *args,
473 enum Lisp_Type target_type, int last_special)
474 {
475 Lisp_Object val;
476 register Lisp_Object tail;
477 register Lisp_Object this;
478 ptrdiff_t toindex;
479 ptrdiff_t toindex_byte = 0;
480 register EMACS_INT result_len;
481 register EMACS_INT result_len_byte;
482 ptrdiff_t argnum;
483 Lisp_Object last_tail;
484 Lisp_Object prev;
485 int some_multibyte;
486 /* When we make a multibyte string, we can't copy text properties
487 while concatenating each string because the length of resulting
488 string can't be decided until we finish the whole concatenation.
489 So, we record strings that have text properties to be copied
490 here, and copy the text properties after the concatenation. */
491 struct textprop_rec *textprops = NULL;
492 /* Number of elements in textprops. */
493 ptrdiff_t num_textprops = 0;
494 USE_SAFE_ALLOCA;
495
496 tail = Qnil;
497
498 /* In append, the last arg isn't treated like the others */
499 if (last_special && nargs > 0)
500 {
501 nargs--;
502 last_tail = args[nargs];
503 }
504 else
505 last_tail = Qnil;
506
507 /* Check each argument. */
508 for (argnum = 0; argnum < nargs; argnum++)
509 {
510 this = args[argnum];
511 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
512 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
513 wrong_type_argument (Qsequencep, this);
514 }
515
516 /* Compute total length in chars of arguments in RESULT_LEN.
517 If desired output is a string, also compute length in bytes
518 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
519 whether the result should be a multibyte string. */
520 result_len_byte = 0;
521 result_len = 0;
522 some_multibyte = 0;
523 for (argnum = 0; argnum < nargs; argnum++)
524 {
525 EMACS_INT len;
526 this = args[argnum];
527 len = XFASTINT (Flength (this));
528 if (target_type == Lisp_String)
529 {
530 /* We must count the number of bytes needed in the string
531 as well as the number of characters. */
532 ptrdiff_t i;
533 Lisp_Object ch;
534 int c;
535 ptrdiff_t this_len_byte;
536
537 if (VECTORP (this) || COMPILEDP (this))
538 for (i = 0; i < len; i++)
539 {
540 ch = AREF (this, i);
541 CHECK_CHARACTER (ch);
542 c = XFASTINT (ch);
543 this_len_byte = CHAR_BYTES (c);
544 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
545 string_overflow ();
546 result_len_byte += this_len_byte;
547 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
548 some_multibyte = 1;
549 }
550 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
551 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
552 else if (CONSP (this))
553 for (; CONSP (this); this = XCDR (this))
554 {
555 ch = XCAR (this);
556 CHECK_CHARACTER (ch);
557 c = XFASTINT (ch);
558 this_len_byte = CHAR_BYTES (c);
559 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
560 string_overflow ();
561 result_len_byte += this_len_byte;
562 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
563 some_multibyte = 1;
564 }
565 else if (STRINGP (this))
566 {
567 if (STRING_MULTIBYTE (this))
568 {
569 some_multibyte = 1;
570 this_len_byte = SBYTES (this);
571 }
572 else
573 this_len_byte = count_size_as_multibyte (SDATA (this),
574 SCHARS (this));
575 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
576 string_overflow ();
577 result_len_byte += this_len_byte;
578 }
579 }
580
581 result_len += len;
582 if (MOST_POSITIVE_FIXNUM < result_len)
583 memory_full (SIZE_MAX);
584 }
585
586 if (! some_multibyte)
587 result_len_byte = result_len;
588
589 /* Create the output object. */
590 if (target_type == Lisp_Cons)
591 val = Fmake_list (make_number (result_len), Qnil);
592 else if (target_type == Lisp_Vectorlike)
593 val = Fmake_vector (make_number (result_len), Qnil);
594 else if (some_multibyte)
595 val = make_uninit_multibyte_string (result_len, result_len_byte);
596 else
597 val = make_uninit_string (result_len);
598
599 /* In `append', if all but last arg are nil, return last arg. */
600 if (target_type == Lisp_Cons && EQ (val, Qnil))
601 return last_tail;
602
603 /* Copy the contents of the args into the result. */
604 if (CONSP (val))
605 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
606 else
607 toindex = 0, toindex_byte = 0;
608
609 prev = Qnil;
610 if (STRINGP (val))
611 SAFE_NALLOCA (textprops, 1, nargs);
612
613 for (argnum = 0; argnum < nargs; argnum++)
614 {
615 Lisp_Object thislen;
616 ptrdiff_t thisleni = 0;
617 register ptrdiff_t thisindex = 0;
618 register ptrdiff_t thisindex_byte = 0;
619
620 this = args[argnum];
621 if (!CONSP (this))
622 thislen = Flength (this), thisleni = XINT (thislen);
623
624 /* Between strings of the same kind, copy fast. */
625 if (STRINGP (this) && STRINGP (val)
626 && STRING_MULTIBYTE (this) == some_multibyte)
627 {
628 ptrdiff_t thislen_byte = SBYTES (this);
629
630 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
631 if (string_intervals (this))
632 {
633 textprops[num_textprops].argnum = argnum;
634 textprops[num_textprops].from = 0;
635 textprops[num_textprops++].to = toindex;
636 }
637 toindex_byte += thislen_byte;
638 toindex += thisleni;
639 }
640 /* Copy a single-byte string to a multibyte string. */
641 else if (STRINGP (this) && STRINGP (val))
642 {
643 if (string_intervals (this))
644 {
645 textprops[num_textprops].argnum = argnum;
646 textprops[num_textprops].from = 0;
647 textprops[num_textprops++].to = toindex;
648 }
649 toindex_byte += copy_text (SDATA (this),
650 SDATA (val) + toindex_byte,
651 SCHARS (this), 0, 1);
652 toindex += thisleni;
653 }
654 else
655 /* Copy element by element. */
656 while (1)
657 {
658 register Lisp_Object elt;
659
660 /* Fetch next element of `this' arg into `elt', or break if
661 `this' is exhausted. */
662 if (NILP (this)) break;
663 if (CONSP (this))
664 elt = XCAR (this), this = XCDR (this);
665 else if (thisindex >= thisleni)
666 break;
667 else if (STRINGP (this))
668 {
669 int c;
670 if (STRING_MULTIBYTE (this))
671 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
672 thisindex,
673 thisindex_byte);
674 else
675 {
676 c = SREF (this, thisindex); thisindex++;
677 if (some_multibyte && !ASCII_CHAR_P (c))
678 c = BYTE8_TO_CHAR (c);
679 }
680 XSETFASTINT (elt, c);
681 }
682 else if (BOOL_VECTOR_P (this))
683 {
684 int byte;
685 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
686 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
687 elt = Qt;
688 else
689 elt = Qnil;
690 thisindex++;
691 }
692 else
693 {
694 elt = AREF (this, thisindex);
695 thisindex++;
696 }
697
698 /* Store this element into the result. */
699 if (toindex < 0)
700 {
701 XSETCAR (tail, elt);
702 prev = tail;
703 tail = XCDR (tail);
704 }
705 else if (VECTORP (val))
706 {
707 ASET (val, toindex, elt);
708 toindex++;
709 }
710 else
711 {
712 int c;
713 CHECK_CHARACTER (elt);
714 c = XFASTINT (elt);
715 if (some_multibyte)
716 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
717 else
718 SSET (val, toindex_byte++, c);
719 toindex++;
720 }
721 }
722 }
723 if (!NILP (prev))
724 XSETCDR (prev, last_tail);
725
726 if (num_textprops > 0)
727 {
728 Lisp_Object props;
729 ptrdiff_t last_to_end = -1;
730
731 for (argnum = 0; argnum < num_textprops; argnum++)
732 {
733 this = args[textprops[argnum].argnum];
734 props = text_property_list (this,
735 make_number (0),
736 make_number (SCHARS (this)),
737 Qnil);
738 /* If successive arguments have properties, be sure that the
739 value of `composition' property be the copy. */
740 if (last_to_end == textprops[argnum].to)
741 make_composition_value_copy (props);
742 add_text_properties_from_list (val, props,
743 make_number (textprops[argnum].to));
744 last_to_end = textprops[argnum].to + SCHARS (this);
745 }
746 }
747
748 SAFE_FREE ();
749 return val;
750 }
751 \f
752 static Lisp_Object string_char_byte_cache_string;
753 static ptrdiff_t string_char_byte_cache_charpos;
754 static ptrdiff_t string_char_byte_cache_bytepos;
755
756 void
757 clear_string_char_byte_cache (void)
758 {
759 string_char_byte_cache_string = Qnil;
760 }
761
762 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
763
764 ptrdiff_t
765 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
766 {
767 ptrdiff_t i_byte;
768 ptrdiff_t best_below, best_below_byte;
769 ptrdiff_t best_above, best_above_byte;
770
771 best_below = best_below_byte = 0;
772 best_above = SCHARS (string);
773 best_above_byte = SBYTES (string);
774 if (best_above == best_above_byte)
775 return char_index;
776
777 if (EQ (string, string_char_byte_cache_string))
778 {
779 if (string_char_byte_cache_charpos < char_index)
780 {
781 best_below = string_char_byte_cache_charpos;
782 best_below_byte = string_char_byte_cache_bytepos;
783 }
784 else
785 {
786 best_above = string_char_byte_cache_charpos;
787 best_above_byte = string_char_byte_cache_bytepos;
788 }
789 }
790
791 if (char_index - best_below < best_above - char_index)
792 {
793 unsigned char *p = SDATA (string) + best_below_byte;
794
795 while (best_below < char_index)
796 {
797 p += BYTES_BY_CHAR_HEAD (*p);
798 best_below++;
799 }
800 i_byte = p - SDATA (string);
801 }
802 else
803 {
804 unsigned char *p = SDATA (string) + best_above_byte;
805
806 while (best_above > char_index)
807 {
808 p--;
809 while (!CHAR_HEAD_P (*p)) p--;
810 best_above--;
811 }
812 i_byte = p - SDATA (string);
813 }
814
815 string_char_byte_cache_bytepos = i_byte;
816 string_char_byte_cache_charpos = char_index;
817 string_char_byte_cache_string = string;
818
819 return i_byte;
820 }
821 \f
822 /* Return the character index corresponding to BYTE_INDEX in STRING. */
823
824 ptrdiff_t
825 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
826 {
827 ptrdiff_t i, i_byte;
828 ptrdiff_t best_below, best_below_byte;
829 ptrdiff_t best_above, best_above_byte;
830
831 best_below = best_below_byte = 0;
832 best_above = SCHARS (string);
833 best_above_byte = SBYTES (string);
834 if (best_above == best_above_byte)
835 return byte_index;
836
837 if (EQ (string, string_char_byte_cache_string))
838 {
839 if (string_char_byte_cache_bytepos < byte_index)
840 {
841 best_below = string_char_byte_cache_charpos;
842 best_below_byte = string_char_byte_cache_bytepos;
843 }
844 else
845 {
846 best_above = string_char_byte_cache_charpos;
847 best_above_byte = string_char_byte_cache_bytepos;
848 }
849 }
850
851 if (byte_index - best_below_byte < best_above_byte - byte_index)
852 {
853 unsigned char *p = SDATA (string) + best_below_byte;
854 unsigned char *pend = SDATA (string) + byte_index;
855
856 while (p < pend)
857 {
858 p += BYTES_BY_CHAR_HEAD (*p);
859 best_below++;
860 }
861 i = best_below;
862 i_byte = p - SDATA (string);
863 }
864 else
865 {
866 unsigned char *p = SDATA (string) + best_above_byte;
867 unsigned char *pbeg = SDATA (string) + byte_index;
868
869 while (p > pbeg)
870 {
871 p--;
872 while (!CHAR_HEAD_P (*p)) p--;
873 best_above--;
874 }
875 i = best_above;
876 i_byte = p - SDATA (string);
877 }
878
879 string_char_byte_cache_bytepos = i_byte;
880 string_char_byte_cache_charpos = i;
881 string_char_byte_cache_string = string;
882
883 return i;
884 }
885 \f
886 /* Convert STRING to a multibyte string. */
887
888 static Lisp_Object
889 string_make_multibyte (Lisp_Object string)
890 {
891 unsigned char *buf;
892 ptrdiff_t nbytes;
893 Lisp_Object ret;
894 USE_SAFE_ALLOCA;
895
896 if (STRING_MULTIBYTE (string))
897 return string;
898
899 nbytes = count_size_as_multibyte (SDATA (string),
900 SCHARS (string));
901 /* If all the chars are ASCII, they won't need any more bytes
902 once converted. In that case, we can return STRING itself. */
903 if (nbytes == SBYTES (string))
904 return string;
905
906 buf = SAFE_ALLOCA (nbytes);
907 copy_text (SDATA (string), buf, SBYTES (string),
908 0, 1);
909
910 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
911 SAFE_FREE ();
912
913 return ret;
914 }
915
916
917 /* Convert STRING (if unibyte) to a multibyte string without changing
918 the number of characters. Characters 0200 trough 0237 are
919 converted to eight-bit characters. */
920
921 Lisp_Object
922 string_to_multibyte (Lisp_Object string)
923 {
924 unsigned char *buf;
925 ptrdiff_t nbytes;
926 Lisp_Object ret;
927 USE_SAFE_ALLOCA;
928
929 if (STRING_MULTIBYTE (string))
930 return string;
931
932 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
933 /* If all the chars are ASCII, they won't need any more bytes once
934 converted. */
935 if (nbytes == SBYTES (string))
936 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
937
938 buf = SAFE_ALLOCA (nbytes);
939 memcpy (buf, SDATA (string), SBYTES (string));
940 str_to_multibyte (buf, nbytes, SBYTES (string));
941
942 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
943 SAFE_FREE ();
944
945 return ret;
946 }
947
948
949 /* Convert STRING to a single-byte string. */
950
951 Lisp_Object
952 string_make_unibyte (Lisp_Object string)
953 {
954 ptrdiff_t nchars;
955 unsigned char *buf;
956 Lisp_Object ret;
957 USE_SAFE_ALLOCA;
958
959 if (! STRING_MULTIBYTE (string))
960 return string;
961
962 nchars = SCHARS (string);
963
964 buf = SAFE_ALLOCA (nchars);
965 copy_text (SDATA (string), buf, SBYTES (string),
966 1, 0);
967
968 ret = make_unibyte_string ((char *) buf, nchars);
969 SAFE_FREE ();
970
971 return ret;
972 }
973
974 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
975 1, 1, 0,
976 doc: /* Return the multibyte equivalent of STRING.
977 If STRING is unibyte and contains non-ASCII characters, the function
978 `unibyte-char-to-multibyte' is used to convert each unibyte character
979 to a multibyte character. In this case, the returned string is a
980 newly created string with no text properties. If STRING is multibyte
981 or entirely ASCII, it is returned unchanged. In particular, when
982 STRING is unibyte and entirely ASCII, the returned string is unibyte.
983 \(When the characters are all ASCII, Emacs primitives will treat the
984 string the same way whether it is unibyte or multibyte.) */)
985 (Lisp_Object string)
986 {
987 CHECK_STRING (string);
988
989 return string_make_multibyte (string);
990 }
991
992 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
993 1, 1, 0,
994 doc: /* Return the unibyte equivalent of STRING.
995 Multibyte character codes are converted to unibyte according to
996 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
997 If the lookup in the translation table fails, this function takes just
998 the low 8 bits of each character. */)
999 (Lisp_Object string)
1000 {
1001 CHECK_STRING (string);
1002
1003 return string_make_unibyte (string);
1004 }
1005
1006 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1007 1, 1, 0,
1008 doc: /* Return a unibyte string with the same individual bytes as STRING.
1009 If STRING is unibyte, the result is STRING itself.
1010 Otherwise it is a newly created string, with no text properties.
1011 If STRING is multibyte and contains a character of charset
1012 `eight-bit', it is converted to the corresponding single byte. */)
1013 (Lisp_Object string)
1014 {
1015 CHECK_STRING (string);
1016
1017 if (STRING_MULTIBYTE (string))
1018 {
1019 ptrdiff_t bytes = SBYTES (string);
1020 unsigned char *str = xmalloc (bytes);
1021
1022 memcpy (str, SDATA (string), bytes);
1023 bytes = str_as_unibyte (str, bytes);
1024 string = make_unibyte_string ((char *) str, bytes);
1025 xfree (str);
1026 }
1027 return string;
1028 }
1029
1030 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1031 1, 1, 0,
1032 doc: /* Return a multibyte string with the same individual bytes as STRING.
1033 If STRING is multibyte, the result is STRING itself.
1034 Otherwise it is a newly created string, with no text properties.
1035
1036 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1037 part of a correct utf-8 sequence), it is converted to the corresponding
1038 multibyte character of charset `eight-bit'.
1039 See also `string-to-multibyte'.
1040
1041 Beware, this often doesn't really do what you think it does.
1042 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1043 If you're not sure, whether to use `string-as-multibyte' or
1044 `string-to-multibyte', use `string-to-multibyte'. */)
1045 (Lisp_Object string)
1046 {
1047 CHECK_STRING (string);
1048
1049 if (! STRING_MULTIBYTE (string))
1050 {
1051 Lisp_Object new_string;
1052 ptrdiff_t nchars, nbytes;
1053
1054 parse_str_as_multibyte (SDATA (string),
1055 SBYTES (string),
1056 &nchars, &nbytes);
1057 new_string = make_uninit_multibyte_string (nchars, nbytes);
1058 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1059 if (nbytes != SBYTES (string))
1060 str_as_multibyte (SDATA (new_string), nbytes,
1061 SBYTES (string), NULL);
1062 string = new_string;
1063 set_string_intervals (string, NULL);
1064 }
1065 return string;
1066 }
1067
1068 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1069 1, 1, 0,
1070 doc: /* Return a multibyte string with the same individual chars as STRING.
1071 If STRING is multibyte, the result is STRING itself.
1072 Otherwise it is a newly created string, with no text properties.
1073
1074 If STRING is unibyte and contains an 8-bit byte, it is converted to
1075 the corresponding multibyte character of charset `eight-bit'.
1076
1077 This differs from `string-as-multibyte' by converting each byte of a correct
1078 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1079 correct sequence. */)
1080 (Lisp_Object string)
1081 {
1082 CHECK_STRING (string);
1083
1084 return string_to_multibyte (string);
1085 }
1086
1087 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1088 1, 1, 0,
1089 doc: /* Return a unibyte string with the same individual chars as STRING.
1090 If STRING is unibyte, the result is STRING itself.
1091 Otherwise it is a newly created string, with no text properties,
1092 where each `eight-bit' character is converted to the corresponding byte.
1093 If STRING contains a non-ASCII, non-`eight-bit' character,
1094 an error is signaled. */)
1095 (Lisp_Object string)
1096 {
1097 CHECK_STRING (string);
1098
1099 if (STRING_MULTIBYTE (string))
1100 {
1101 ptrdiff_t chars = SCHARS (string);
1102 unsigned char *str = xmalloc (chars);
1103 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars, 0);
1104
1105 if (converted < chars)
1106 error ("Can't convert the %"pD"dth character to unibyte", converted);
1107 string = make_unibyte_string ((char *) str, chars);
1108 xfree (str);
1109 }
1110 return string;
1111 }
1112
1113 \f
1114 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1115 doc: /* Return a copy of ALIST.
1116 This is an alist which represents the same mapping from objects to objects,
1117 but does not share the alist structure with ALIST.
1118 The objects mapped (cars and cdrs of elements of the alist)
1119 are shared, however.
1120 Elements of ALIST that are not conses are also shared. */)
1121 (Lisp_Object alist)
1122 {
1123 register Lisp_Object tem;
1124
1125 CHECK_LIST (alist);
1126 if (NILP (alist))
1127 return alist;
1128 alist = concat (1, &alist, Lisp_Cons, 0);
1129 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1130 {
1131 register Lisp_Object car;
1132 car = XCAR (tem);
1133
1134 if (CONSP (car))
1135 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1136 }
1137 return alist;
1138 }
1139
1140 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1141 doc: /* Return a new string whose contents are a substring of STRING.
1142 The returned string consists of the characters between index FROM
1143 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1144 zero-indexed: 0 means the first character of STRING. Negative values
1145 are counted from the end of STRING. If TO is nil, the substring runs
1146 to the end of STRING.
1147
1148 The STRING argument may also be a vector. In that case, the return
1149 value is a new vector that contains the elements between index FROM
1150 \(inclusive) and index TO (exclusive) of that vector argument. */)
1151 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1152 {
1153 Lisp_Object res;
1154 ptrdiff_t size;
1155 EMACS_INT from_char, to_char;
1156
1157 CHECK_VECTOR_OR_STRING (string);
1158 CHECK_NUMBER (from);
1159
1160 if (STRINGP (string))
1161 size = SCHARS (string);
1162 else
1163 size = ASIZE (string);
1164
1165 if (NILP (to))
1166 to_char = size;
1167 else
1168 {
1169 CHECK_NUMBER (to);
1170
1171 to_char = XINT (to);
1172 if (to_char < 0)
1173 to_char += size;
1174 }
1175
1176 from_char = XINT (from);
1177 if (from_char < 0)
1178 from_char += size;
1179 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1180 args_out_of_range_3 (string, make_number (from_char),
1181 make_number (to_char));
1182
1183 if (STRINGP (string))
1184 {
1185 ptrdiff_t to_byte =
1186 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1187 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1188 res = make_specified_string (SSDATA (string) + from_byte,
1189 to_char - from_char, to_byte - from_byte,
1190 STRING_MULTIBYTE (string));
1191 copy_text_properties (make_number (from_char), make_number (to_char),
1192 string, make_number (0), res, Qnil);
1193 }
1194 else
1195 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1196
1197 return res;
1198 }
1199
1200
1201 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1202 doc: /* Return a substring of STRING, without text properties.
1203 It starts at index FROM and ends before TO.
1204 TO may be nil or omitted; then the substring runs to the end of STRING.
1205 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1206 If FROM or TO is negative, it counts from the end.
1207
1208 With one argument, just copy STRING without its properties. */)
1209 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1210 {
1211 ptrdiff_t size;
1212 EMACS_INT from_char, to_char;
1213 ptrdiff_t from_byte, to_byte;
1214
1215 CHECK_STRING (string);
1216
1217 size = SCHARS (string);
1218
1219 if (NILP (from))
1220 from_char = 0;
1221 else
1222 {
1223 CHECK_NUMBER (from);
1224 from_char = XINT (from);
1225 if (from_char < 0)
1226 from_char += size;
1227 }
1228
1229 if (NILP (to))
1230 to_char = size;
1231 else
1232 {
1233 CHECK_NUMBER (to);
1234 to_char = XINT (to);
1235 if (to_char < 0)
1236 to_char += size;
1237 }
1238
1239 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1240 args_out_of_range_3 (string, make_number (from_char),
1241 make_number (to_char));
1242
1243 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1244 to_byte =
1245 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1246 return make_specified_string (SSDATA (string) + from_byte,
1247 to_char - from_char, to_byte - from_byte,
1248 STRING_MULTIBYTE (string));
1249 }
1250
1251 /* Extract a substring of STRING, giving start and end positions
1252 both in characters and in bytes. */
1253
1254 Lisp_Object
1255 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1256 ptrdiff_t to, ptrdiff_t to_byte)
1257 {
1258 Lisp_Object res;
1259 ptrdiff_t size;
1260
1261 CHECK_VECTOR_OR_STRING (string);
1262
1263 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1264
1265 if (!(0 <= from && from <= to && to <= size))
1266 args_out_of_range_3 (string, make_number (from), make_number (to));
1267
1268 if (STRINGP (string))
1269 {
1270 res = make_specified_string (SSDATA (string) + from_byte,
1271 to - from, to_byte - from_byte,
1272 STRING_MULTIBYTE (string));
1273 copy_text_properties (make_number (from), make_number (to),
1274 string, make_number (0), res, Qnil);
1275 }
1276 else
1277 res = Fvector (to - from, aref_addr (string, from));
1278
1279 return res;
1280 }
1281 \f
1282 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1283 doc: /* Take cdr N times on LIST, return the result. */)
1284 (Lisp_Object n, Lisp_Object list)
1285 {
1286 EMACS_INT i, num;
1287 CHECK_NUMBER (n);
1288 num = XINT (n);
1289 for (i = 0; i < num && !NILP (list); i++)
1290 {
1291 QUIT;
1292 CHECK_LIST_CONS (list, list);
1293 list = XCDR (list);
1294 }
1295 return list;
1296 }
1297
1298 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1299 doc: /* Return the Nth element of LIST.
1300 N counts from zero. If LIST is not that long, nil is returned. */)
1301 (Lisp_Object n, Lisp_Object list)
1302 {
1303 return Fcar (Fnthcdr (n, list));
1304 }
1305
1306 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1307 doc: /* Return element of SEQUENCE at index N. */)
1308 (register Lisp_Object sequence, Lisp_Object n)
1309 {
1310 CHECK_NUMBER (n);
1311 if (CONSP (sequence) || NILP (sequence))
1312 return Fcar (Fnthcdr (n, sequence));
1313
1314 /* Faref signals a "not array" error, so check here. */
1315 CHECK_ARRAY (sequence, Qsequencep);
1316 return Faref (sequence, n);
1317 }
1318
1319 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1320 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1321 The value is actually the tail of LIST whose car is ELT. */)
1322 (register Lisp_Object elt, Lisp_Object list)
1323 {
1324 register Lisp_Object tail;
1325 for (tail = list; CONSP (tail); tail = XCDR (tail))
1326 {
1327 register Lisp_Object tem;
1328 CHECK_LIST_CONS (tail, list);
1329 tem = XCAR (tail);
1330 if (! NILP (Fequal (elt, tem)))
1331 return tail;
1332 QUIT;
1333 }
1334 return Qnil;
1335 }
1336
1337 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1338 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1339 The value is actually the tail of LIST whose car is ELT. */)
1340 (register Lisp_Object elt, Lisp_Object list)
1341 {
1342 while (1)
1343 {
1344 if (!CONSP (list) || EQ (XCAR (list), elt))
1345 break;
1346
1347 list = XCDR (list);
1348 if (!CONSP (list) || EQ (XCAR (list), elt))
1349 break;
1350
1351 list = XCDR (list);
1352 if (!CONSP (list) || EQ (XCAR (list), elt))
1353 break;
1354
1355 list = XCDR (list);
1356 QUIT;
1357 }
1358
1359 CHECK_LIST (list);
1360 return list;
1361 }
1362
1363 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1364 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1365 The value is actually the tail of LIST whose car is ELT. */)
1366 (register Lisp_Object elt, Lisp_Object list)
1367 {
1368 register Lisp_Object tail;
1369
1370 if (!FLOATP (elt))
1371 return Fmemq (elt, list);
1372
1373 for (tail = list; CONSP (tail); tail = XCDR (tail))
1374 {
1375 register Lisp_Object tem;
1376 CHECK_LIST_CONS (tail, list);
1377 tem = XCAR (tail);
1378 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1379 return tail;
1380 QUIT;
1381 }
1382 return Qnil;
1383 }
1384
1385 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1386 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1387 The value is actually the first element of LIST whose car is KEY.
1388 Elements of LIST that are not conses are ignored. */)
1389 (Lisp_Object key, Lisp_Object list)
1390 {
1391 while (1)
1392 {
1393 if (!CONSP (list)
1394 || (CONSP (XCAR (list))
1395 && EQ (XCAR (XCAR (list)), key)))
1396 break;
1397
1398 list = XCDR (list);
1399 if (!CONSP (list)
1400 || (CONSP (XCAR (list))
1401 && EQ (XCAR (XCAR (list)), key)))
1402 break;
1403
1404 list = XCDR (list);
1405 if (!CONSP (list)
1406 || (CONSP (XCAR (list))
1407 && EQ (XCAR (XCAR (list)), key)))
1408 break;
1409
1410 list = XCDR (list);
1411 QUIT;
1412 }
1413
1414 return CAR (list);
1415 }
1416
1417 /* Like Fassq but never report an error and do not allow quits.
1418 Use only on lists known never to be circular. */
1419
1420 Lisp_Object
1421 assq_no_quit (Lisp_Object key, Lisp_Object list)
1422 {
1423 while (CONSP (list)
1424 && (!CONSP (XCAR (list))
1425 || !EQ (XCAR (XCAR (list)), key)))
1426 list = XCDR (list);
1427
1428 return CAR_SAFE (list);
1429 }
1430
1431 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1432 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1433 The value is actually the first element of LIST whose car equals KEY. */)
1434 (Lisp_Object key, Lisp_Object list)
1435 {
1436 Lisp_Object car;
1437
1438 while (1)
1439 {
1440 if (!CONSP (list)
1441 || (CONSP (XCAR (list))
1442 && (car = XCAR (XCAR (list)),
1443 EQ (car, key) || !NILP (Fequal (car, key)))))
1444 break;
1445
1446 list = XCDR (list);
1447 if (!CONSP (list)
1448 || (CONSP (XCAR (list))
1449 && (car = XCAR (XCAR (list)),
1450 EQ (car, key) || !NILP (Fequal (car, key)))))
1451 break;
1452
1453 list = XCDR (list);
1454 if (!CONSP (list)
1455 || (CONSP (XCAR (list))
1456 && (car = XCAR (XCAR (list)),
1457 EQ (car, key) || !NILP (Fequal (car, key)))))
1458 break;
1459
1460 list = XCDR (list);
1461 QUIT;
1462 }
1463
1464 return CAR (list);
1465 }
1466
1467 /* Like Fassoc but never report an error and do not allow quits.
1468 Use only on lists known never to be circular. */
1469
1470 Lisp_Object
1471 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1472 {
1473 while (CONSP (list)
1474 && (!CONSP (XCAR (list))
1475 || (!EQ (XCAR (XCAR (list)), key)
1476 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1477 list = XCDR (list);
1478
1479 return CONSP (list) ? XCAR (list) : Qnil;
1480 }
1481
1482 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1483 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1484 The value is actually the first element of LIST whose cdr is KEY. */)
1485 (register Lisp_Object key, Lisp_Object list)
1486 {
1487 while (1)
1488 {
1489 if (!CONSP (list)
1490 || (CONSP (XCAR (list))
1491 && EQ (XCDR (XCAR (list)), key)))
1492 break;
1493
1494 list = XCDR (list);
1495 if (!CONSP (list)
1496 || (CONSP (XCAR (list))
1497 && EQ (XCDR (XCAR (list)), key)))
1498 break;
1499
1500 list = XCDR (list);
1501 if (!CONSP (list)
1502 || (CONSP (XCAR (list))
1503 && EQ (XCDR (XCAR (list)), key)))
1504 break;
1505
1506 list = XCDR (list);
1507 QUIT;
1508 }
1509
1510 return CAR (list);
1511 }
1512
1513 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1514 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1515 The value is actually the first element of LIST whose cdr equals KEY. */)
1516 (Lisp_Object key, Lisp_Object list)
1517 {
1518 Lisp_Object cdr;
1519
1520 while (1)
1521 {
1522 if (!CONSP (list)
1523 || (CONSP (XCAR (list))
1524 && (cdr = XCDR (XCAR (list)),
1525 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1526 break;
1527
1528 list = XCDR (list);
1529 if (!CONSP (list)
1530 || (CONSP (XCAR (list))
1531 && (cdr = XCDR (XCAR (list)),
1532 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1533 break;
1534
1535 list = XCDR (list);
1536 if (!CONSP (list)
1537 || (CONSP (XCAR (list))
1538 && (cdr = XCDR (XCAR (list)),
1539 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1540 break;
1541
1542 list = XCDR (list);
1543 QUIT;
1544 }
1545
1546 return CAR (list);
1547 }
1548 \f
1549 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1550 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1551 The modified LIST is returned. Comparison is done with `eq'.
1552 If the first member of LIST is ELT, there is no way to remove it by side effect;
1553 therefore, write `(setq foo (delq element foo))'
1554 to be sure of changing the value of `foo'. */)
1555 (register Lisp_Object elt, Lisp_Object list)
1556 {
1557 register Lisp_Object tail, prev;
1558 register Lisp_Object tem;
1559
1560 tail = list;
1561 prev = Qnil;
1562 while (!NILP (tail))
1563 {
1564 CHECK_LIST_CONS (tail, list);
1565 tem = XCAR (tail);
1566 if (EQ (elt, tem))
1567 {
1568 if (NILP (prev))
1569 list = XCDR (tail);
1570 else
1571 Fsetcdr (prev, XCDR (tail));
1572 }
1573 else
1574 prev = tail;
1575 tail = XCDR (tail);
1576 QUIT;
1577 }
1578 return list;
1579 }
1580
1581 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1582 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1583 SEQ must be a list, a vector, or a string.
1584 The modified SEQ is returned. Comparison is done with `equal'.
1585 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1586 is not a side effect; it is simply using a different sequence.
1587 Therefore, write `(setq foo (delete element foo))'
1588 to be sure of changing the value of `foo'. */)
1589 (Lisp_Object elt, Lisp_Object seq)
1590 {
1591 if (VECTORP (seq))
1592 {
1593 ptrdiff_t i, n;
1594
1595 for (i = n = 0; i < ASIZE (seq); ++i)
1596 if (NILP (Fequal (AREF (seq, i), elt)))
1597 ++n;
1598
1599 if (n != ASIZE (seq))
1600 {
1601 struct Lisp_Vector *p = allocate_vector (n);
1602
1603 for (i = n = 0; i < ASIZE (seq); ++i)
1604 if (NILP (Fequal (AREF (seq, i), elt)))
1605 p->contents[n++] = AREF (seq, i);
1606
1607 XSETVECTOR (seq, p);
1608 }
1609 }
1610 else if (STRINGP (seq))
1611 {
1612 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1613 int c;
1614
1615 for (i = nchars = nbytes = ibyte = 0;
1616 i < SCHARS (seq);
1617 ++i, ibyte += cbytes)
1618 {
1619 if (STRING_MULTIBYTE (seq))
1620 {
1621 c = STRING_CHAR (SDATA (seq) + ibyte);
1622 cbytes = CHAR_BYTES (c);
1623 }
1624 else
1625 {
1626 c = SREF (seq, i);
1627 cbytes = 1;
1628 }
1629
1630 if (!INTEGERP (elt) || c != XINT (elt))
1631 {
1632 ++nchars;
1633 nbytes += cbytes;
1634 }
1635 }
1636
1637 if (nchars != SCHARS (seq))
1638 {
1639 Lisp_Object tem;
1640
1641 tem = make_uninit_multibyte_string (nchars, nbytes);
1642 if (!STRING_MULTIBYTE (seq))
1643 STRING_SET_UNIBYTE (tem);
1644
1645 for (i = nchars = nbytes = ibyte = 0;
1646 i < SCHARS (seq);
1647 ++i, ibyte += cbytes)
1648 {
1649 if (STRING_MULTIBYTE (seq))
1650 {
1651 c = STRING_CHAR (SDATA (seq) + ibyte);
1652 cbytes = CHAR_BYTES (c);
1653 }
1654 else
1655 {
1656 c = SREF (seq, i);
1657 cbytes = 1;
1658 }
1659
1660 if (!INTEGERP (elt) || c != XINT (elt))
1661 {
1662 unsigned char *from = SDATA (seq) + ibyte;
1663 unsigned char *to = SDATA (tem) + nbytes;
1664 ptrdiff_t n;
1665
1666 ++nchars;
1667 nbytes += cbytes;
1668
1669 for (n = cbytes; n--; )
1670 *to++ = *from++;
1671 }
1672 }
1673
1674 seq = tem;
1675 }
1676 }
1677 else
1678 {
1679 Lisp_Object tail, prev;
1680
1681 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1682 {
1683 CHECK_LIST_CONS (tail, seq);
1684
1685 if (!NILP (Fequal (elt, XCAR (tail))))
1686 {
1687 if (NILP (prev))
1688 seq = XCDR (tail);
1689 else
1690 Fsetcdr (prev, XCDR (tail));
1691 }
1692 else
1693 prev = tail;
1694 QUIT;
1695 }
1696 }
1697
1698 return seq;
1699 }
1700
1701 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1702 doc: /* Reverse LIST by modifying cdr pointers.
1703 Return the reversed list. */)
1704 (Lisp_Object list)
1705 {
1706 register Lisp_Object prev, tail, next;
1707
1708 if (NILP (list)) return list;
1709 prev = Qnil;
1710 tail = list;
1711 while (!NILP (tail))
1712 {
1713 QUIT;
1714 CHECK_LIST_CONS (tail, list);
1715 next = XCDR (tail);
1716 Fsetcdr (tail, prev);
1717 prev = tail;
1718 tail = next;
1719 }
1720 return prev;
1721 }
1722
1723 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1724 doc: /* Reverse LIST, copying. Return the reversed list.
1725 See also the function `nreverse', which is used more often. */)
1726 (Lisp_Object list)
1727 {
1728 Lisp_Object new;
1729
1730 for (new = Qnil; CONSP (list); list = XCDR (list))
1731 {
1732 QUIT;
1733 new = Fcons (XCAR (list), new);
1734 }
1735 CHECK_LIST_END (list, list);
1736 return new;
1737 }
1738 \f
1739 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1740
1741 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1742 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1743 Returns the sorted list. LIST is modified by side effects.
1744 PREDICATE is called with two elements of LIST, and should return non-nil
1745 if the first element should sort before the second. */)
1746 (Lisp_Object list, Lisp_Object predicate)
1747 {
1748 Lisp_Object front, back;
1749 register Lisp_Object len, tem;
1750 struct gcpro gcpro1, gcpro2;
1751 EMACS_INT length;
1752
1753 front = list;
1754 len = Flength (list);
1755 length = XINT (len);
1756 if (length < 2)
1757 return list;
1758
1759 XSETINT (len, (length / 2) - 1);
1760 tem = Fnthcdr (len, list);
1761 back = Fcdr (tem);
1762 Fsetcdr (tem, Qnil);
1763
1764 GCPRO2 (front, back);
1765 front = Fsort (front, predicate);
1766 back = Fsort (back, predicate);
1767 UNGCPRO;
1768 return merge (front, back, predicate);
1769 }
1770
1771 Lisp_Object
1772 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1773 {
1774 Lisp_Object value;
1775 register Lisp_Object tail;
1776 Lisp_Object tem;
1777 register Lisp_Object l1, l2;
1778 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1779
1780 l1 = org_l1;
1781 l2 = org_l2;
1782 tail = Qnil;
1783 value = Qnil;
1784
1785 /* It is sufficient to protect org_l1 and org_l2.
1786 When l1 and l2 are updated, we copy the new values
1787 back into the org_ vars. */
1788 GCPRO4 (org_l1, org_l2, pred, value);
1789
1790 while (1)
1791 {
1792 if (NILP (l1))
1793 {
1794 UNGCPRO;
1795 if (NILP (tail))
1796 return l2;
1797 Fsetcdr (tail, l2);
1798 return value;
1799 }
1800 if (NILP (l2))
1801 {
1802 UNGCPRO;
1803 if (NILP (tail))
1804 return l1;
1805 Fsetcdr (tail, l1);
1806 return value;
1807 }
1808 tem = call2 (pred, Fcar (l2), Fcar (l1));
1809 if (NILP (tem))
1810 {
1811 tem = l1;
1812 l1 = Fcdr (l1);
1813 org_l1 = l1;
1814 }
1815 else
1816 {
1817 tem = l2;
1818 l2 = Fcdr (l2);
1819 org_l2 = l2;
1820 }
1821 if (NILP (tail))
1822 value = tem;
1823 else
1824 Fsetcdr (tail, tem);
1825 tail = tem;
1826 }
1827 }
1828
1829 \f
1830 /* This does not check for quits. That is safe since it must terminate. */
1831
1832 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1833 doc: /* Extract a value from a property list.
1834 PLIST is a property list, which is a list of the form
1835 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1836 corresponding to the given PROP, or nil if PROP is not one of the
1837 properties on the list. This function never signals an error. */)
1838 (Lisp_Object plist, Lisp_Object prop)
1839 {
1840 Lisp_Object tail, halftail;
1841
1842 /* halftail is used to detect circular lists. */
1843 tail = halftail = plist;
1844 while (CONSP (tail) && CONSP (XCDR (tail)))
1845 {
1846 if (EQ (prop, XCAR (tail)))
1847 return XCAR (XCDR (tail));
1848
1849 tail = XCDR (XCDR (tail));
1850 halftail = XCDR (halftail);
1851 if (EQ (tail, halftail))
1852 break;
1853
1854 #if 0 /* Unsafe version. */
1855 /* This function can be called asynchronously
1856 (setup_coding_system). Don't QUIT in that case. */
1857 if (!interrupt_input_blocked)
1858 QUIT;
1859 #endif
1860 }
1861
1862 return Qnil;
1863 }
1864
1865 DEFUN ("get", Fget, Sget, 2, 2, 0,
1866 doc: /* Return the value of SYMBOL's PROPNAME property.
1867 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1868 (Lisp_Object symbol, Lisp_Object propname)
1869 {
1870 CHECK_SYMBOL (symbol);
1871 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1872 }
1873
1874 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1875 doc: /* Change value in PLIST of PROP to VAL.
1876 PLIST is a property list, which is a list of the form
1877 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1878 If PROP is already a property on the list, its value is set to VAL,
1879 otherwise the new PROP VAL pair is added. The new plist is returned;
1880 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1881 The PLIST is modified by side effects. */)
1882 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1883 {
1884 register Lisp_Object tail, prev;
1885 Lisp_Object newcell;
1886 prev = Qnil;
1887 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1888 tail = XCDR (XCDR (tail)))
1889 {
1890 if (EQ (prop, XCAR (tail)))
1891 {
1892 Fsetcar (XCDR (tail), val);
1893 return plist;
1894 }
1895
1896 prev = tail;
1897 QUIT;
1898 }
1899 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1900 if (NILP (prev))
1901 return newcell;
1902 else
1903 Fsetcdr (XCDR (prev), newcell);
1904 return plist;
1905 }
1906
1907 DEFUN ("put", Fput, Sput, 3, 3, 0,
1908 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1909 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1910 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1911 {
1912 CHECK_SYMBOL (symbol);
1913 set_symbol_plist
1914 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1915 return value;
1916 }
1917 \f
1918 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1919 doc: /* Extract a value from a property list, comparing with `equal'.
1920 PLIST is a property list, which is a list of the form
1921 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1922 corresponding to the given PROP, or nil if PROP is not
1923 one of the properties on the list. */)
1924 (Lisp_Object plist, Lisp_Object prop)
1925 {
1926 Lisp_Object tail;
1927
1928 for (tail = plist;
1929 CONSP (tail) && CONSP (XCDR (tail));
1930 tail = XCDR (XCDR (tail)))
1931 {
1932 if (! NILP (Fequal (prop, XCAR (tail))))
1933 return XCAR (XCDR (tail));
1934
1935 QUIT;
1936 }
1937
1938 CHECK_LIST_END (tail, prop);
1939
1940 return Qnil;
1941 }
1942
1943 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1944 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1945 PLIST is a property list, which is a list of the form
1946 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1947 If PROP is already a property on the list, its value is set to VAL,
1948 otherwise the new PROP VAL pair is added. The new plist is returned;
1949 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1950 The PLIST is modified by side effects. */)
1951 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1952 {
1953 register Lisp_Object tail, prev;
1954 Lisp_Object newcell;
1955 prev = Qnil;
1956 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1957 tail = XCDR (XCDR (tail)))
1958 {
1959 if (! NILP (Fequal (prop, XCAR (tail))))
1960 {
1961 Fsetcar (XCDR (tail), val);
1962 return plist;
1963 }
1964
1965 prev = tail;
1966 QUIT;
1967 }
1968 newcell = Fcons (prop, Fcons (val, Qnil));
1969 if (NILP (prev))
1970 return newcell;
1971 else
1972 Fsetcdr (XCDR (prev), newcell);
1973 return plist;
1974 }
1975 \f
1976 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1977 doc: /* Return t if the two args are the same Lisp object.
1978 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1979 (Lisp_Object obj1, Lisp_Object obj2)
1980 {
1981 if (FLOATP (obj1))
1982 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1983 else
1984 return EQ (obj1, obj2) ? Qt : Qnil;
1985 }
1986
1987 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1988 doc: /* Return t if two Lisp objects have similar structure and contents.
1989 They must have the same data type.
1990 Conses are compared by comparing the cars and the cdrs.
1991 Vectors and strings are compared element by element.
1992 Numbers are compared by value, but integers cannot equal floats.
1993 (Use `=' if you want integers and floats to be able to be equal.)
1994 Symbols must match exactly. */)
1995 (register Lisp_Object o1, Lisp_Object o2)
1996 {
1997 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1998 }
1999
2000 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2001 doc: /* Return t if two Lisp objects have similar structure and contents.
2002 This is like `equal' except that it compares the text properties
2003 of strings. (`equal' ignores text properties.) */)
2004 (register Lisp_Object o1, Lisp_Object o2)
2005 {
2006 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2007 }
2008
2009 /* DEPTH is current depth of recursion. Signal an error if it
2010 gets too deep.
2011 PROPS, if non-nil, means compare string text properties too. */
2012
2013 static int
2014 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2015 {
2016 if (depth > 200)
2017 error ("Stack overflow in equal");
2018
2019 tail_recurse:
2020 QUIT;
2021 if (EQ (o1, o2))
2022 return 1;
2023 if (XTYPE (o1) != XTYPE (o2))
2024 return 0;
2025
2026 switch (XTYPE (o1))
2027 {
2028 case Lisp_Float:
2029 {
2030 double d1, d2;
2031
2032 d1 = extract_float (o1);
2033 d2 = extract_float (o2);
2034 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2035 though they are not =. */
2036 return d1 == d2 || (d1 != d1 && d2 != d2);
2037 }
2038
2039 case Lisp_Cons:
2040 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2041 return 0;
2042 o1 = XCDR (o1);
2043 o2 = XCDR (o2);
2044 goto tail_recurse;
2045
2046 case Lisp_Misc:
2047 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2048 return 0;
2049 if (OVERLAYP (o1))
2050 {
2051 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2052 depth + 1, props)
2053 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2054 depth + 1, props))
2055 return 0;
2056 o1 = XOVERLAY (o1)->plist;
2057 o2 = XOVERLAY (o2)->plist;
2058 goto tail_recurse;
2059 }
2060 if (MARKERP (o1))
2061 {
2062 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2063 && (XMARKER (o1)->buffer == 0
2064 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2065 }
2066 break;
2067
2068 case Lisp_Vectorlike:
2069 {
2070 register int i;
2071 ptrdiff_t size = ASIZE (o1);
2072 /* Pseudovectors have the type encoded in the size field, so this test
2073 actually checks that the objects have the same type as well as the
2074 same size. */
2075 if (ASIZE (o2) != size)
2076 return 0;
2077 /* Boolvectors are compared much like strings. */
2078 if (BOOL_VECTOR_P (o1))
2079 {
2080 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2081 return 0;
2082 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2083 ((XBOOL_VECTOR (o1)->size
2084 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2085 / BOOL_VECTOR_BITS_PER_CHAR)))
2086 return 0;
2087 return 1;
2088 }
2089 if (WINDOW_CONFIGURATIONP (o1))
2090 return compare_window_configurations (o1, o2, 0);
2091
2092 /* Aside from them, only true vectors, char-tables, compiled
2093 functions, and fonts (font-spec, font-entity, font-object)
2094 are sensible to compare, so eliminate the others now. */
2095 if (size & PSEUDOVECTOR_FLAG)
2096 {
2097 if (!(size & ((PVEC_COMPILED | PVEC_CHAR_TABLE
2098 | PVEC_SUB_CHAR_TABLE | PVEC_FONT)
2099 << PSEUDOVECTOR_SIZE_BITS)))
2100 return 0;
2101 size &= PSEUDOVECTOR_SIZE_MASK;
2102 }
2103 for (i = 0; i < size; i++)
2104 {
2105 Lisp_Object v1, v2;
2106 v1 = AREF (o1, i);
2107 v2 = AREF (o2, i);
2108 if (!internal_equal (v1, v2, depth + 1, props))
2109 return 0;
2110 }
2111 return 1;
2112 }
2113 break;
2114
2115 case Lisp_String:
2116 if (SCHARS (o1) != SCHARS (o2))
2117 return 0;
2118 if (SBYTES (o1) != SBYTES (o2))
2119 return 0;
2120 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2121 return 0;
2122 if (props && !compare_string_intervals (o1, o2))
2123 return 0;
2124 return 1;
2125
2126 default:
2127 break;
2128 }
2129
2130 return 0;
2131 }
2132 \f
2133
2134 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2135 doc: /* Store each element of ARRAY with ITEM.
2136 ARRAY is a vector, string, char-table, or bool-vector. */)
2137 (Lisp_Object array, Lisp_Object item)
2138 {
2139 register ptrdiff_t size, idx;
2140
2141 if (VECTORP (array))
2142 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2143 ASET (array, idx, item);
2144 else if (CHAR_TABLE_P (array))
2145 {
2146 int i;
2147
2148 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2149 set_char_table_contents (array, i, item);
2150 set_char_table_defalt (array, item);
2151 }
2152 else if (STRINGP (array))
2153 {
2154 register unsigned char *p = SDATA (array);
2155 int charval;
2156 CHECK_CHARACTER (item);
2157 charval = XFASTINT (item);
2158 size = SCHARS (array);
2159 if (STRING_MULTIBYTE (array))
2160 {
2161 unsigned char str[MAX_MULTIBYTE_LENGTH];
2162 int len = CHAR_STRING (charval, str);
2163 ptrdiff_t size_byte = SBYTES (array);
2164
2165 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2166 || SCHARS (array) * len != size_byte)
2167 error ("Attempt to change byte length of a string");
2168 for (idx = 0; idx < size_byte; idx++)
2169 *p++ = str[idx % len];
2170 }
2171 else
2172 for (idx = 0; idx < size; idx++)
2173 p[idx] = charval;
2174 }
2175 else if (BOOL_VECTOR_P (array))
2176 {
2177 register unsigned char *p = XBOOL_VECTOR (array)->data;
2178 size =
2179 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2180 / BOOL_VECTOR_BITS_PER_CHAR);
2181
2182 if (size)
2183 {
2184 memset (p, ! NILP (item) ? -1 : 0, size);
2185
2186 /* Clear any extraneous bits in the last byte. */
2187 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2188 }
2189 }
2190 else
2191 wrong_type_argument (Qarrayp, array);
2192 return array;
2193 }
2194
2195 DEFUN ("clear-string", Fclear_string, Sclear_string,
2196 1, 1, 0,
2197 doc: /* Clear the contents of STRING.
2198 This makes STRING unibyte and may change its length. */)
2199 (Lisp_Object string)
2200 {
2201 ptrdiff_t len;
2202 CHECK_STRING (string);
2203 len = SBYTES (string);
2204 memset (SDATA (string), 0, len);
2205 STRING_SET_CHARS (string, len);
2206 STRING_SET_UNIBYTE (string);
2207 return Qnil;
2208 }
2209 \f
2210 /* ARGSUSED */
2211 Lisp_Object
2212 nconc2 (Lisp_Object s1, Lisp_Object s2)
2213 {
2214 Lisp_Object args[2];
2215 args[0] = s1;
2216 args[1] = s2;
2217 return Fnconc (2, args);
2218 }
2219
2220 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2221 doc: /* Concatenate any number of lists by altering them.
2222 Only the last argument is not altered, and need not be a list.
2223 usage: (nconc &rest LISTS) */)
2224 (ptrdiff_t nargs, Lisp_Object *args)
2225 {
2226 ptrdiff_t argnum;
2227 register Lisp_Object tail, tem, val;
2228
2229 val = tail = Qnil;
2230
2231 for (argnum = 0; argnum < nargs; argnum++)
2232 {
2233 tem = args[argnum];
2234 if (NILP (tem)) continue;
2235
2236 if (NILP (val))
2237 val = tem;
2238
2239 if (argnum + 1 == nargs) break;
2240
2241 CHECK_LIST_CONS (tem, tem);
2242
2243 while (CONSP (tem))
2244 {
2245 tail = tem;
2246 tem = XCDR (tail);
2247 QUIT;
2248 }
2249
2250 tem = args[argnum + 1];
2251 Fsetcdr (tail, tem);
2252 if (NILP (tem))
2253 args[argnum + 1] = tail;
2254 }
2255
2256 return val;
2257 }
2258 \f
2259 /* This is the guts of all mapping functions.
2260 Apply FN to each element of SEQ, one by one,
2261 storing the results into elements of VALS, a C vector of Lisp_Objects.
2262 LENI is the length of VALS, which should also be the length of SEQ. */
2263
2264 static void
2265 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2266 {
2267 register Lisp_Object tail;
2268 Lisp_Object dummy;
2269 register EMACS_INT i;
2270 struct gcpro gcpro1, gcpro2, gcpro3;
2271
2272 if (vals)
2273 {
2274 /* Don't let vals contain any garbage when GC happens. */
2275 for (i = 0; i < leni; i++)
2276 vals[i] = Qnil;
2277
2278 GCPRO3 (dummy, fn, seq);
2279 gcpro1.var = vals;
2280 gcpro1.nvars = leni;
2281 }
2282 else
2283 GCPRO2 (fn, seq);
2284 /* We need not explicitly protect `tail' because it is used only on lists, and
2285 1) lists are not relocated and 2) the list is marked via `seq' so will not
2286 be freed */
2287
2288 if (VECTORP (seq) || COMPILEDP (seq))
2289 {
2290 for (i = 0; i < leni; i++)
2291 {
2292 dummy = call1 (fn, AREF (seq, i));
2293 if (vals)
2294 vals[i] = dummy;
2295 }
2296 }
2297 else if (BOOL_VECTOR_P (seq))
2298 {
2299 for (i = 0; i < leni; i++)
2300 {
2301 unsigned char byte;
2302 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2303 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2304 dummy = call1 (fn, dummy);
2305 if (vals)
2306 vals[i] = dummy;
2307 }
2308 }
2309 else if (STRINGP (seq))
2310 {
2311 ptrdiff_t i_byte;
2312
2313 for (i = 0, i_byte = 0; i < leni;)
2314 {
2315 int c;
2316 ptrdiff_t i_before = i;
2317
2318 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2319 XSETFASTINT (dummy, c);
2320 dummy = call1 (fn, dummy);
2321 if (vals)
2322 vals[i_before] = dummy;
2323 }
2324 }
2325 else /* Must be a list, since Flength did not get an error */
2326 {
2327 tail = seq;
2328 for (i = 0; i < leni && CONSP (tail); i++)
2329 {
2330 dummy = call1 (fn, XCAR (tail));
2331 if (vals)
2332 vals[i] = dummy;
2333 tail = XCDR (tail);
2334 }
2335 }
2336
2337 UNGCPRO;
2338 }
2339
2340 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2341 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2342 In between each pair of results, stick in SEPARATOR. Thus, " " as
2343 SEPARATOR results in spaces between the values returned by FUNCTION.
2344 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2345 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2346 {
2347 Lisp_Object len;
2348 register EMACS_INT leni;
2349 EMACS_INT nargs;
2350 ptrdiff_t i;
2351 register Lisp_Object *args;
2352 struct gcpro gcpro1;
2353 Lisp_Object ret;
2354 USE_SAFE_ALLOCA;
2355
2356 len = Flength (sequence);
2357 if (CHAR_TABLE_P (sequence))
2358 wrong_type_argument (Qlistp, sequence);
2359 leni = XINT (len);
2360 nargs = leni + leni - 1;
2361 if (nargs < 0) return empty_unibyte_string;
2362
2363 SAFE_ALLOCA_LISP (args, nargs);
2364
2365 GCPRO1 (separator);
2366 mapcar1 (leni, args, function, sequence);
2367 UNGCPRO;
2368
2369 for (i = leni - 1; i > 0; i--)
2370 args[i + i] = args[i];
2371
2372 for (i = 1; i < nargs; i += 2)
2373 args[i] = separator;
2374
2375 ret = Fconcat (nargs, args);
2376 SAFE_FREE ();
2377
2378 return ret;
2379 }
2380
2381 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2382 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2383 The result is a list just as long as SEQUENCE.
2384 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2385 (Lisp_Object function, Lisp_Object sequence)
2386 {
2387 register Lisp_Object len;
2388 register EMACS_INT leni;
2389 register Lisp_Object *args;
2390 Lisp_Object ret;
2391 USE_SAFE_ALLOCA;
2392
2393 len = Flength (sequence);
2394 if (CHAR_TABLE_P (sequence))
2395 wrong_type_argument (Qlistp, sequence);
2396 leni = XFASTINT (len);
2397
2398 SAFE_ALLOCA_LISP (args, leni);
2399
2400 mapcar1 (leni, args, function, sequence);
2401
2402 ret = Flist (leni, args);
2403 SAFE_FREE ();
2404
2405 return ret;
2406 }
2407
2408 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2409 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2410 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2411 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2412 (Lisp_Object function, Lisp_Object sequence)
2413 {
2414 register EMACS_INT leni;
2415
2416 leni = XFASTINT (Flength (sequence));
2417 if (CHAR_TABLE_P (sequence))
2418 wrong_type_argument (Qlistp, sequence);
2419 mapcar1 (leni, 0, function, sequence);
2420
2421 return sequence;
2422 }
2423 \f
2424 /* This is how C code calls `yes-or-no-p' and allows the user
2425 to redefined it.
2426
2427 Anything that calls this function must protect from GC! */
2428
2429 Lisp_Object
2430 do_yes_or_no_p (Lisp_Object prompt)
2431 {
2432 return call1 (intern ("yes-or-no-p"), prompt);
2433 }
2434
2435 /* Anything that calls this function must protect from GC! */
2436
2437 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2438 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2439 PROMPT is the string to display to ask the question. It should end in
2440 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2441
2442 The user must confirm the answer with RET, and can edit it until it
2443 has been confirmed.
2444
2445 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2446 is nil, and `use-dialog-box' is non-nil. */)
2447 (Lisp_Object prompt)
2448 {
2449 register Lisp_Object ans;
2450 Lisp_Object args[2];
2451 struct gcpro gcpro1;
2452
2453 CHECK_STRING (prompt);
2454
2455 #ifdef HAVE_MENUS
2456 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2457 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2458 && use_dialog_box
2459 && have_menus_p ())
2460 {
2461 Lisp_Object pane, menu, obj;
2462 redisplay_preserve_echo_area (4);
2463 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2464 Fcons (Fcons (build_string ("No"), Qnil),
2465 Qnil));
2466 GCPRO1 (pane);
2467 menu = Fcons (prompt, pane);
2468 obj = Fx_popup_dialog (Qt, menu, Qnil);
2469 UNGCPRO;
2470 return obj;
2471 }
2472 #endif /* HAVE_MENUS */
2473
2474 args[0] = prompt;
2475 args[1] = build_string ("(yes or no) ");
2476 prompt = Fconcat (2, args);
2477
2478 GCPRO1 (prompt);
2479
2480 while (1)
2481 {
2482 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2483 Qyes_or_no_p_history, Qnil,
2484 Qnil));
2485 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2486 {
2487 UNGCPRO;
2488 return Qt;
2489 }
2490 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2491 {
2492 UNGCPRO;
2493 return Qnil;
2494 }
2495
2496 Fding (Qnil);
2497 Fdiscard_input ();
2498 message ("Please answer yes or no.");
2499 Fsleep_for (make_number (2), Qnil);
2500 }
2501 }
2502 \f
2503 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2504 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2505
2506 Each of the three load averages is multiplied by 100, then converted
2507 to integer.
2508
2509 When USE-FLOATS is non-nil, floats will be used instead of integers.
2510 These floats are not multiplied by 100.
2511
2512 If the 5-minute or 15-minute load averages are not available, return a
2513 shortened list, containing only those averages which are available.
2514
2515 An error is thrown if the load average can't be obtained. In some
2516 cases making it work would require Emacs being installed setuid or
2517 setgid so that it can read kernel information, and that usually isn't
2518 advisable. */)
2519 (Lisp_Object use_floats)
2520 {
2521 double load_ave[3];
2522 int loads = getloadavg (load_ave, 3);
2523 Lisp_Object ret = Qnil;
2524
2525 if (loads < 0)
2526 error ("load-average not implemented for this operating system");
2527
2528 while (loads-- > 0)
2529 {
2530 Lisp_Object load = (NILP (use_floats)
2531 ? make_number (100.0 * load_ave[loads])
2532 : make_float (load_ave[loads]));
2533 ret = Fcons (load, ret);
2534 }
2535
2536 return ret;
2537 }
2538 \f
2539 static Lisp_Object Qsubfeatures;
2540
2541 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2542 doc: /* Return t if FEATURE is present in this Emacs.
2543
2544 Use this to conditionalize execution of lisp code based on the
2545 presence or absence of Emacs or environment extensions.
2546 Use `provide' to declare that a feature is available. This function
2547 looks at the value of the variable `features'. The optional argument
2548 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2549 (Lisp_Object feature, Lisp_Object subfeature)
2550 {
2551 register Lisp_Object tem;
2552 CHECK_SYMBOL (feature);
2553 tem = Fmemq (feature, Vfeatures);
2554 if (!NILP (tem) && !NILP (subfeature))
2555 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2556 return (NILP (tem)) ? Qnil : Qt;
2557 }
2558
2559 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2560 doc: /* Announce that FEATURE is a feature of the current Emacs.
2561 The optional argument SUBFEATURES should be a list of symbols listing
2562 particular subfeatures supported in this version of FEATURE. */)
2563 (Lisp_Object feature, Lisp_Object subfeatures)
2564 {
2565 register Lisp_Object tem;
2566 CHECK_SYMBOL (feature);
2567 CHECK_LIST (subfeatures);
2568 if (!NILP (Vautoload_queue))
2569 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2570 Vautoload_queue);
2571 tem = Fmemq (feature, Vfeatures);
2572 if (NILP (tem))
2573 Vfeatures = Fcons (feature, Vfeatures);
2574 if (!NILP (subfeatures))
2575 Fput (feature, Qsubfeatures, subfeatures);
2576 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2577
2578 /* Run any load-hooks for this file. */
2579 tem = Fassq (feature, Vafter_load_alist);
2580 if (CONSP (tem))
2581 Fprogn (XCDR (tem));
2582
2583 return feature;
2584 }
2585 \f
2586 /* `require' and its subroutines. */
2587
2588 /* List of features currently being require'd, innermost first. */
2589
2590 static Lisp_Object require_nesting_list;
2591
2592 static Lisp_Object
2593 require_unwind (Lisp_Object old_value)
2594 {
2595 return require_nesting_list = old_value;
2596 }
2597
2598 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2599 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2600 If FEATURE is not a member of the list `features', then the feature
2601 is not loaded; so load the file FILENAME.
2602 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2603 and `load' will try to load this name appended with the suffix `.elc' or
2604 `.el', in that order. The name without appended suffix will not be used.
2605 See `get-load-suffixes' for the complete list of suffixes.
2606 If the optional third argument NOERROR is non-nil,
2607 then return nil if the file is not found instead of signaling an error.
2608 Normally the return value is FEATURE.
2609 The normal messages at start and end of loading FILENAME are suppressed. */)
2610 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2611 {
2612 register Lisp_Object tem;
2613 struct gcpro gcpro1, gcpro2;
2614 int from_file = load_in_progress;
2615
2616 CHECK_SYMBOL (feature);
2617
2618 /* Record the presence of `require' in this file
2619 even if the feature specified is already loaded.
2620 But not more than once in any file,
2621 and not when we aren't loading or reading from a file. */
2622 if (!from_file)
2623 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2624 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2625 from_file = 1;
2626
2627 if (from_file)
2628 {
2629 tem = Fcons (Qrequire, feature);
2630 if (NILP (Fmember (tem, Vcurrent_load_list)))
2631 LOADHIST_ATTACH (tem);
2632 }
2633 tem = Fmemq (feature, Vfeatures);
2634
2635 if (NILP (tem))
2636 {
2637 ptrdiff_t count = SPECPDL_INDEX ();
2638 int nesting = 0;
2639
2640 /* This is to make sure that loadup.el gives a clear picture
2641 of what files are preloaded and when. */
2642 if (! NILP (Vpurify_flag))
2643 error ("(require %s) while preparing to dump",
2644 SDATA (SYMBOL_NAME (feature)));
2645
2646 /* A certain amount of recursive `require' is legitimate,
2647 but if we require the same feature recursively 3 times,
2648 signal an error. */
2649 tem = require_nesting_list;
2650 while (! NILP (tem))
2651 {
2652 if (! NILP (Fequal (feature, XCAR (tem))))
2653 nesting++;
2654 tem = XCDR (tem);
2655 }
2656 if (nesting > 3)
2657 error ("Recursive `require' for feature `%s'",
2658 SDATA (SYMBOL_NAME (feature)));
2659
2660 /* Update the list for any nested `require's that occur. */
2661 record_unwind_protect (require_unwind, require_nesting_list);
2662 require_nesting_list = Fcons (feature, require_nesting_list);
2663
2664 /* Value saved here is to be restored into Vautoload_queue */
2665 record_unwind_protect (un_autoload, Vautoload_queue);
2666 Vautoload_queue = Qt;
2667
2668 /* Load the file. */
2669 GCPRO2 (feature, filename);
2670 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2671 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2672 UNGCPRO;
2673
2674 /* If load failed entirely, return nil. */
2675 if (NILP (tem))
2676 return unbind_to (count, Qnil);
2677
2678 tem = Fmemq (feature, Vfeatures);
2679 if (NILP (tem))
2680 error ("Required feature `%s' was not provided",
2681 SDATA (SYMBOL_NAME (feature)));
2682
2683 /* Once loading finishes, don't undo it. */
2684 Vautoload_queue = Qt;
2685 feature = unbind_to (count, feature);
2686 }
2687
2688 return feature;
2689 }
2690 \f
2691 /* Primitives for work of the "widget" library.
2692 In an ideal world, this section would not have been necessary.
2693 However, lisp function calls being as slow as they are, it turns
2694 out that some functions in the widget library (wid-edit.el) are the
2695 bottleneck of Widget operation. Here is their translation to C,
2696 for the sole reason of efficiency. */
2697
2698 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2699 doc: /* Return non-nil if PLIST has the property PROP.
2700 PLIST is a property list, which is a list of the form
2701 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2702 Unlike `plist-get', this allows you to distinguish between a missing
2703 property and a property with the value nil.
2704 The value is actually the tail of PLIST whose car is PROP. */)
2705 (Lisp_Object plist, Lisp_Object prop)
2706 {
2707 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2708 {
2709 QUIT;
2710 plist = XCDR (plist);
2711 plist = CDR (plist);
2712 }
2713 return plist;
2714 }
2715
2716 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2717 doc: /* In WIDGET, set PROPERTY to VALUE.
2718 The value can later be retrieved with `widget-get'. */)
2719 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2720 {
2721 CHECK_CONS (widget);
2722 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2723 return value;
2724 }
2725
2726 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2727 doc: /* In WIDGET, get the value of PROPERTY.
2728 The value could either be specified when the widget was created, or
2729 later with `widget-put'. */)
2730 (Lisp_Object widget, Lisp_Object property)
2731 {
2732 Lisp_Object tmp;
2733
2734 while (1)
2735 {
2736 if (NILP (widget))
2737 return Qnil;
2738 CHECK_CONS (widget);
2739 tmp = Fplist_member (XCDR (widget), property);
2740 if (CONSP (tmp))
2741 {
2742 tmp = XCDR (tmp);
2743 return CAR (tmp);
2744 }
2745 tmp = XCAR (widget);
2746 if (NILP (tmp))
2747 return Qnil;
2748 widget = Fget (tmp, Qwidget_type);
2749 }
2750 }
2751
2752 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2753 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2754 ARGS are passed as extra arguments to the function.
2755 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2756 (ptrdiff_t nargs, Lisp_Object *args)
2757 {
2758 /* This function can GC. */
2759 Lisp_Object newargs[3];
2760 struct gcpro gcpro1, gcpro2;
2761 Lisp_Object result;
2762
2763 newargs[0] = Fwidget_get (args[0], args[1]);
2764 newargs[1] = args[0];
2765 newargs[2] = Flist (nargs - 2, args + 2);
2766 GCPRO2 (newargs[0], newargs[2]);
2767 result = Fapply (3, newargs);
2768 UNGCPRO;
2769 return result;
2770 }
2771
2772 #ifdef HAVE_LANGINFO_CODESET
2773 #include <langinfo.h>
2774 #endif
2775
2776 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2777 doc: /* Access locale data ITEM for the current C locale, if available.
2778 ITEM should be one of the following:
2779
2780 `codeset', returning the character set as a string (locale item CODESET);
2781
2782 `days', returning a 7-element vector of day names (locale items DAY_n);
2783
2784 `months', returning a 12-element vector of month names (locale items MON_n);
2785
2786 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2787 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2788
2789 If the system can't provide such information through a call to
2790 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2791
2792 See also Info node `(libc)Locales'.
2793
2794 The data read from the system are decoded using `locale-coding-system'. */)
2795 (Lisp_Object item)
2796 {
2797 char *str = NULL;
2798 #ifdef HAVE_LANGINFO_CODESET
2799 Lisp_Object val;
2800 if (EQ (item, Qcodeset))
2801 {
2802 str = nl_langinfo (CODESET);
2803 return build_string (str);
2804 }
2805 #ifdef DAY_1
2806 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2807 {
2808 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2809 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2810 int i;
2811 struct gcpro gcpro1;
2812 GCPRO1 (v);
2813 synchronize_system_time_locale ();
2814 for (i = 0; i < 7; i++)
2815 {
2816 str = nl_langinfo (days[i]);
2817 val = build_unibyte_string (str);
2818 /* Fixme: Is this coding system necessarily right, even if
2819 it is consistent with CODESET? If not, what to do? */
2820 Faset (v, make_number (i),
2821 code_convert_string_norecord (val, Vlocale_coding_system,
2822 0));
2823 }
2824 UNGCPRO;
2825 return v;
2826 }
2827 #endif /* DAY_1 */
2828 #ifdef MON_1
2829 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2830 {
2831 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2832 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2833 MON_8, MON_9, MON_10, MON_11, MON_12};
2834 int i;
2835 struct gcpro gcpro1;
2836 GCPRO1 (v);
2837 synchronize_system_time_locale ();
2838 for (i = 0; i < 12; i++)
2839 {
2840 str = nl_langinfo (months[i]);
2841 val = build_unibyte_string (str);
2842 Faset (v, make_number (i),
2843 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2844 }
2845 UNGCPRO;
2846 return v;
2847 }
2848 #endif /* MON_1 */
2849 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2850 but is in the locale files. This could be used by ps-print. */
2851 #ifdef PAPER_WIDTH
2852 else if (EQ (item, Qpaper))
2853 {
2854 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2855 make_number (nl_langinfo (PAPER_HEIGHT)));
2856 }
2857 #endif /* PAPER_WIDTH */
2858 #endif /* HAVE_LANGINFO_CODESET*/
2859 return Qnil;
2860 }
2861 \f
2862 /* base64 encode/decode functions (RFC 2045).
2863 Based on code from GNU recode. */
2864
2865 #define MIME_LINE_LENGTH 76
2866
2867 #define IS_ASCII(Character) \
2868 ((Character) < 128)
2869 #define IS_BASE64(Character) \
2870 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2871 #define IS_BASE64_IGNORABLE(Character) \
2872 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2873 || (Character) == '\f' || (Character) == '\r')
2874
2875 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2876 character or return retval if there are no characters left to
2877 process. */
2878 #define READ_QUADRUPLET_BYTE(retval) \
2879 do \
2880 { \
2881 if (i == length) \
2882 { \
2883 if (nchars_return) \
2884 *nchars_return = nchars; \
2885 return (retval); \
2886 } \
2887 c = from[i++]; \
2888 } \
2889 while (IS_BASE64_IGNORABLE (c))
2890
2891 /* Table of characters coding the 64 values. */
2892 static const char base64_value_to_char[64] =
2893 {
2894 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2895 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2896 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2897 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2898 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2899 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2900 '8', '9', '+', '/' /* 60-63 */
2901 };
2902
2903 /* Table of base64 values for first 128 characters. */
2904 static const short base64_char_to_value[128] =
2905 {
2906 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2907 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2908 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2909 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2910 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2911 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2912 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2913 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2914 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2915 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2916 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2917 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2918 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2919 };
2920
2921 /* The following diagram shows the logical steps by which three octets
2922 get transformed into four base64 characters.
2923
2924 .--------. .--------. .--------.
2925 |aaaaaabb| |bbbbcccc| |ccdddddd|
2926 `--------' `--------' `--------'
2927 6 2 4 4 2 6
2928 .--------+--------+--------+--------.
2929 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2930 `--------+--------+--------+--------'
2931
2932 .--------+--------+--------+--------.
2933 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2934 `--------+--------+--------+--------'
2935
2936 The octets are divided into 6 bit chunks, which are then encoded into
2937 base64 characters. */
2938
2939
2940 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, int, int);
2941 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, int,
2942 ptrdiff_t *);
2943
2944 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2945 2, 3, "r",
2946 doc: /* Base64-encode the region between BEG and END.
2947 Return the length of the encoded text.
2948 Optional third argument NO-LINE-BREAK means do not break long lines
2949 into shorter lines. */)
2950 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2951 {
2952 char *encoded;
2953 ptrdiff_t allength, length;
2954 ptrdiff_t ibeg, iend, encoded_length;
2955 ptrdiff_t old_pos = PT;
2956 USE_SAFE_ALLOCA;
2957
2958 validate_region (&beg, &end);
2959
2960 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2961 iend = CHAR_TO_BYTE (XFASTINT (end));
2962 move_gap_both (XFASTINT (beg), ibeg);
2963
2964 /* We need to allocate enough room for encoding the text.
2965 We need 33 1/3% more space, plus a newline every 76
2966 characters, and then we round up. */
2967 length = iend - ibeg;
2968 allength = length + length/3 + 1;
2969 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2970
2971 encoded = SAFE_ALLOCA (allength);
2972 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2973 encoded, length, NILP (no_line_break),
2974 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2975 if (encoded_length > allength)
2976 abort ();
2977
2978 if (encoded_length < 0)
2979 {
2980 /* The encoding wasn't possible. */
2981 SAFE_FREE ();
2982 error ("Multibyte character in data for base64 encoding");
2983 }
2984
2985 /* Now we have encoded the region, so we insert the new contents
2986 and delete the old. (Insert first in order to preserve markers.) */
2987 SET_PT_BOTH (XFASTINT (beg), ibeg);
2988 insert (encoded, encoded_length);
2989 SAFE_FREE ();
2990 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2991
2992 /* If point was outside of the region, restore it exactly; else just
2993 move to the beginning of the region. */
2994 if (old_pos >= XFASTINT (end))
2995 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2996 else if (old_pos > XFASTINT (beg))
2997 old_pos = XFASTINT (beg);
2998 SET_PT (old_pos);
2999
3000 /* We return the length of the encoded text. */
3001 return make_number (encoded_length);
3002 }
3003
3004 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3005 1, 2, 0,
3006 doc: /* Base64-encode STRING and return the result.
3007 Optional second argument NO-LINE-BREAK means do not break long lines
3008 into shorter lines. */)
3009 (Lisp_Object string, Lisp_Object no_line_break)
3010 {
3011 ptrdiff_t allength, length, encoded_length;
3012 char *encoded;
3013 Lisp_Object encoded_string;
3014 USE_SAFE_ALLOCA;
3015
3016 CHECK_STRING (string);
3017
3018 /* We need to allocate enough room for encoding the text.
3019 We need 33 1/3% more space, plus a newline every 76
3020 characters, and then we round up. */
3021 length = SBYTES (string);
3022 allength = length + length/3 + 1;
3023 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3024
3025 /* We need to allocate enough room for decoding the text. */
3026 encoded = SAFE_ALLOCA (allength);
3027
3028 encoded_length = base64_encode_1 (SSDATA (string),
3029 encoded, length, NILP (no_line_break),
3030 STRING_MULTIBYTE (string));
3031 if (encoded_length > allength)
3032 abort ();
3033
3034 if (encoded_length < 0)
3035 {
3036 /* The encoding wasn't possible. */
3037 SAFE_FREE ();
3038 error ("Multibyte character in data for base64 encoding");
3039 }
3040
3041 encoded_string = make_unibyte_string (encoded, encoded_length);
3042 SAFE_FREE ();
3043
3044 return encoded_string;
3045 }
3046
3047 static ptrdiff_t
3048 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3049 int line_break, int multibyte)
3050 {
3051 int counter = 0;
3052 ptrdiff_t i = 0;
3053 char *e = to;
3054 int c;
3055 unsigned int value;
3056 int bytes;
3057
3058 while (i < length)
3059 {
3060 if (multibyte)
3061 {
3062 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3063 if (CHAR_BYTE8_P (c))
3064 c = CHAR_TO_BYTE8 (c);
3065 else if (c >= 256)
3066 return -1;
3067 i += bytes;
3068 }
3069 else
3070 c = from[i++];
3071
3072 /* Wrap line every 76 characters. */
3073
3074 if (line_break)
3075 {
3076 if (counter < MIME_LINE_LENGTH / 4)
3077 counter++;
3078 else
3079 {
3080 *e++ = '\n';
3081 counter = 1;
3082 }
3083 }
3084
3085 /* Process first byte of a triplet. */
3086
3087 *e++ = base64_value_to_char[0x3f & c >> 2];
3088 value = (0x03 & c) << 4;
3089
3090 /* Process second byte of a triplet. */
3091
3092 if (i == length)
3093 {
3094 *e++ = base64_value_to_char[value];
3095 *e++ = '=';
3096 *e++ = '=';
3097 break;
3098 }
3099
3100 if (multibyte)
3101 {
3102 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3103 if (CHAR_BYTE8_P (c))
3104 c = CHAR_TO_BYTE8 (c);
3105 else if (c >= 256)
3106 return -1;
3107 i += bytes;
3108 }
3109 else
3110 c = from[i++];
3111
3112 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3113 value = (0x0f & c) << 2;
3114
3115 /* Process third byte of a triplet. */
3116
3117 if (i == length)
3118 {
3119 *e++ = base64_value_to_char[value];
3120 *e++ = '=';
3121 break;
3122 }
3123
3124 if (multibyte)
3125 {
3126 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3127 if (CHAR_BYTE8_P (c))
3128 c = CHAR_TO_BYTE8 (c);
3129 else if (c >= 256)
3130 return -1;
3131 i += bytes;
3132 }
3133 else
3134 c = from[i++];
3135
3136 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3137 *e++ = base64_value_to_char[0x3f & c];
3138 }
3139
3140 return e - to;
3141 }
3142
3143
3144 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3145 2, 2, "r",
3146 doc: /* Base64-decode the region between BEG and END.
3147 Return the length of the decoded text.
3148 If the region can't be decoded, signal an error and don't modify the buffer. */)
3149 (Lisp_Object beg, Lisp_Object end)
3150 {
3151 ptrdiff_t ibeg, iend, length, allength;
3152 char *decoded;
3153 ptrdiff_t old_pos = PT;
3154 ptrdiff_t decoded_length;
3155 ptrdiff_t inserted_chars;
3156 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3157 USE_SAFE_ALLOCA;
3158
3159 validate_region (&beg, &end);
3160
3161 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3162 iend = CHAR_TO_BYTE (XFASTINT (end));
3163
3164 length = iend - ibeg;
3165
3166 /* We need to allocate enough room for decoding the text. If we are
3167 working on a multibyte buffer, each decoded code may occupy at
3168 most two bytes. */
3169 allength = multibyte ? length * 2 : length;
3170 decoded = SAFE_ALLOCA (allength);
3171
3172 move_gap_both (XFASTINT (beg), ibeg);
3173 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3174 decoded, length,
3175 multibyte, &inserted_chars);
3176 if (decoded_length > allength)
3177 abort ();
3178
3179 if (decoded_length < 0)
3180 {
3181 /* The decoding wasn't possible. */
3182 SAFE_FREE ();
3183 error ("Invalid base64 data");
3184 }
3185
3186 /* Now we have decoded the region, so we insert the new contents
3187 and delete the old. (Insert first in order to preserve markers.) */
3188 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3189 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3190 SAFE_FREE ();
3191
3192 /* Delete the original text. */
3193 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3194 iend + decoded_length, 1);
3195
3196 /* If point was outside of the region, restore it exactly; else just
3197 move to the beginning of the region. */
3198 if (old_pos >= XFASTINT (end))
3199 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3200 else if (old_pos > XFASTINT (beg))
3201 old_pos = XFASTINT (beg);
3202 SET_PT (old_pos > ZV ? ZV : old_pos);
3203
3204 return make_number (inserted_chars);
3205 }
3206
3207 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3208 1, 1, 0,
3209 doc: /* Base64-decode STRING and return the result. */)
3210 (Lisp_Object string)
3211 {
3212 char *decoded;
3213 ptrdiff_t length, decoded_length;
3214 Lisp_Object decoded_string;
3215 USE_SAFE_ALLOCA;
3216
3217 CHECK_STRING (string);
3218
3219 length = SBYTES (string);
3220 /* We need to allocate enough room for decoding the text. */
3221 decoded = SAFE_ALLOCA (length);
3222
3223 /* The decoded result should be unibyte. */
3224 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3225 0, NULL);
3226 if (decoded_length > length)
3227 abort ();
3228 else if (decoded_length >= 0)
3229 decoded_string = make_unibyte_string (decoded, decoded_length);
3230 else
3231 decoded_string = Qnil;
3232
3233 SAFE_FREE ();
3234 if (!STRINGP (decoded_string))
3235 error ("Invalid base64 data");
3236
3237 return decoded_string;
3238 }
3239
3240 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3241 MULTIBYTE is nonzero, the decoded result should be in multibyte
3242 form. If NCHARS_RETURN is not NULL, store the number of produced
3243 characters in *NCHARS_RETURN. */
3244
3245 static ptrdiff_t
3246 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3247 int multibyte, ptrdiff_t *nchars_return)
3248 {
3249 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3250 char *e = to;
3251 unsigned char c;
3252 unsigned long value;
3253 ptrdiff_t nchars = 0;
3254
3255 while (1)
3256 {
3257 /* Process first byte of a quadruplet. */
3258
3259 READ_QUADRUPLET_BYTE (e-to);
3260
3261 if (!IS_BASE64 (c))
3262 return -1;
3263 value = base64_char_to_value[c] << 18;
3264
3265 /* Process second byte of a quadruplet. */
3266
3267 READ_QUADRUPLET_BYTE (-1);
3268
3269 if (!IS_BASE64 (c))
3270 return -1;
3271 value |= base64_char_to_value[c] << 12;
3272
3273 c = (unsigned char) (value >> 16);
3274 if (multibyte && c >= 128)
3275 e += BYTE8_STRING (c, e);
3276 else
3277 *e++ = c;
3278 nchars++;
3279
3280 /* Process third byte of a quadruplet. */
3281
3282 READ_QUADRUPLET_BYTE (-1);
3283
3284 if (c == '=')
3285 {
3286 READ_QUADRUPLET_BYTE (-1);
3287
3288 if (c != '=')
3289 return -1;
3290 continue;
3291 }
3292
3293 if (!IS_BASE64 (c))
3294 return -1;
3295 value |= base64_char_to_value[c] << 6;
3296
3297 c = (unsigned char) (0xff & value >> 8);
3298 if (multibyte && c >= 128)
3299 e += BYTE8_STRING (c, e);
3300 else
3301 *e++ = c;
3302 nchars++;
3303
3304 /* Process fourth byte of a quadruplet. */
3305
3306 READ_QUADRUPLET_BYTE (-1);
3307
3308 if (c == '=')
3309 continue;
3310
3311 if (!IS_BASE64 (c))
3312 return -1;
3313 value |= base64_char_to_value[c];
3314
3315 c = (unsigned char) (0xff & value);
3316 if (multibyte && c >= 128)
3317 e += BYTE8_STRING (c, e);
3318 else
3319 *e++ = c;
3320 nchars++;
3321 }
3322 }
3323
3324
3325 \f
3326 /***********************************************************************
3327 ***** *****
3328 ***** Hash Tables *****
3329 ***** *****
3330 ***********************************************************************/
3331
3332 /* Implemented by gerd@gnu.org. This hash table implementation was
3333 inspired by CMUCL hash tables. */
3334
3335 /* Ideas:
3336
3337 1. For small tables, association lists are probably faster than
3338 hash tables because they have lower overhead.
3339
3340 For uses of hash tables where the O(1) behavior of table
3341 operations is not a requirement, it might therefore be a good idea
3342 not to hash. Instead, we could just do a linear search in the
3343 key_and_value vector of the hash table. This could be done
3344 if a `:linear-search t' argument is given to make-hash-table. */
3345
3346
3347 /* The list of all weak hash tables. Don't staticpro this one. */
3348
3349 static struct Lisp_Hash_Table *weak_hash_tables;
3350
3351 /* Various symbols. */
3352
3353 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3354 Lisp_Object Qeq, Qeql, Qequal;
3355 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3356 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3357
3358 /* Function prototypes. */
3359
3360 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3361 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3362 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3363 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3364
3365
3366 \f
3367 /***********************************************************************
3368 Utilities
3369 ***********************************************************************/
3370
3371 /* If OBJ is a Lisp hash table, return a pointer to its struct
3372 Lisp_Hash_Table. Otherwise, signal an error. */
3373
3374 static struct Lisp_Hash_Table *
3375 check_hash_table (Lisp_Object obj)
3376 {
3377 CHECK_HASH_TABLE (obj);
3378 return XHASH_TABLE (obj);
3379 }
3380
3381
3382 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3383 number. A number is "almost" a prime number if it is not divisible
3384 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3385
3386 EMACS_INT
3387 next_almost_prime (EMACS_INT n)
3388 {
3389 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3390 for (n |= 1; ; n += 2)
3391 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3392 return n;
3393 }
3394
3395
3396 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3397 which USED[I] is non-zero. If found at index I in ARGS, set
3398 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3399 0. This function is used to extract a keyword/argument pair from
3400 a DEFUN parameter list. */
3401
3402 static ptrdiff_t
3403 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3404 {
3405 ptrdiff_t i;
3406
3407 for (i = 1; i < nargs; i++)
3408 if (!used[i - 1] && EQ (args[i - 1], key))
3409 {
3410 used[i - 1] = 1;
3411 used[i] = 1;
3412 return i;
3413 }
3414
3415 return 0;
3416 }
3417
3418
3419 /* Return a Lisp vector which has the same contents as VEC but has
3420 at least INCR_MIN more entries, where INCR_MIN is positive.
3421 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3422 than NITEMS_MAX. Entries in the resulting
3423 vector that are not copied from VEC are set to nil. */
3424
3425 Lisp_Object
3426 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3427 {
3428 struct Lisp_Vector *v;
3429 ptrdiff_t i, incr, incr_max, old_size, new_size;
3430 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3431 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3432 ? nitems_max : C_language_max);
3433 eassert (VECTORP (vec));
3434 eassert (0 < incr_min && -1 <= nitems_max);
3435 old_size = ASIZE (vec);
3436 incr_max = n_max - old_size;
3437 incr = max (incr_min, min (old_size >> 1, incr_max));
3438 if (incr_max < incr)
3439 memory_full (SIZE_MAX);
3440 new_size = old_size + incr;
3441 v = allocate_vector (new_size);
3442 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3443 for (i = old_size; i < new_size; ++i)
3444 v->contents[i] = Qnil;
3445 XSETVECTOR (vec, v);
3446 return vec;
3447 }
3448
3449
3450 /***********************************************************************
3451 Low-level Functions
3452 ***********************************************************************/
3453
3454 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3455 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3456 KEY2 are the same. */
3457
3458 static int
3459 cmpfn_eql (struct Lisp_Hash_Table *h,
3460 Lisp_Object key1, EMACS_UINT hash1,
3461 Lisp_Object key2, EMACS_UINT hash2)
3462 {
3463 return (FLOATP (key1)
3464 && FLOATP (key2)
3465 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3466 }
3467
3468
3469 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3470 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3471 KEY2 are the same. */
3472
3473 static int
3474 cmpfn_equal (struct Lisp_Hash_Table *h,
3475 Lisp_Object key1, EMACS_UINT hash1,
3476 Lisp_Object key2, EMACS_UINT hash2)
3477 {
3478 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3479 }
3480
3481
3482 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3483 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3484 if KEY1 and KEY2 are the same. */
3485
3486 static int
3487 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3488 Lisp_Object key1, EMACS_UINT hash1,
3489 Lisp_Object key2, EMACS_UINT hash2)
3490 {
3491 if (hash1 == hash2)
3492 {
3493 Lisp_Object args[3];
3494
3495 args[0] = h->user_cmp_function;
3496 args[1] = key1;
3497 args[2] = key2;
3498 return !NILP (Ffuncall (3, args));
3499 }
3500 else
3501 return 0;
3502 }
3503
3504
3505 /* Value is a hash code for KEY for use in hash table H which uses
3506 `eq' to compare keys. The hash code returned is guaranteed to fit
3507 in a Lisp integer. */
3508
3509 static EMACS_UINT
3510 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3511 {
3512 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3513 eassert ((hash & ~INTMASK) == 0);
3514 return hash;
3515 }
3516
3517
3518 /* Value is a hash code for KEY for use in hash table H which uses
3519 `eql' to compare keys. The hash code returned is guaranteed to fit
3520 in a Lisp integer. */
3521
3522 static EMACS_UINT
3523 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3524 {
3525 EMACS_UINT hash;
3526 if (FLOATP (key))
3527 hash = sxhash (key, 0);
3528 else
3529 hash = XUINT (key) ^ XTYPE (key);
3530 eassert ((hash & ~INTMASK) == 0);
3531 return hash;
3532 }
3533
3534
3535 /* Value is a hash code for KEY for use in hash table H which uses
3536 `equal' to compare keys. The hash code returned is guaranteed to fit
3537 in a Lisp integer. */
3538
3539 static EMACS_UINT
3540 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3541 {
3542 EMACS_UINT hash = sxhash (key, 0);
3543 eassert ((hash & ~INTMASK) == 0);
3544 return hash;
3545 }
3546
3547
3548 /* Value is a hash code for KEY for use in hash table H which uses as
3549 user-defined function to compare keys. The hash code returned is
3550 guaranteed to fit in a Lisp integer. */
3551
3552 static EMACS_UINT
3553 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3554 {
3555 Lisp_Object args[2], hash;
3556
3557 args[0] = h->user_hash_function;
3558 args[1] = key;
3559 hash = Ffuncall (2, args);
3560 if (!INTEGERP (hash))
3561 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3562 return XUINT (hash);
3563 }
3564
3565 /* An upper bound on the size of a hash table index. It must fit in
3566 ptrdiff_t and be a valid Emacs fixnum. */
3567 #define INDEX_SIZE_BOUND \
3568 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3569
3570 /* Create and initialize a new hash table.
3571
3572 TEST specifies the test the hash table will use to compare keys.
3573 It must be either one of the predefined tests `eq', `eql' or
3574 `equal' or a symbol denoting a user-defined test named TEST with
3575 test and hash functions USER_TEST and USER_HASH.
3576
3577 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3578
3579 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3580 new size when it becomes full is computed by adding REHASH_SIZE to
3581 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3582 table's new size is computed by multiplying its old size with
3583 REHASH_SIZE.
3584
3585 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3586 be resized when the ratio of (number of entries in the table) /
3587 (table size) is >= REHASH_THRESHOLD.
3588
3589 WEAK specifies the weakness of the table. If non-nil, it must be
3590 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3591
3592 Lisp_Object
3593 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3594 Lisp_Object rehash_threshold, Lisp_Object weak,
3595 Lisp_Object user_test, Lisp_Object user_hash)
3596 {
3597 struct Lisp_Hash_Table *h;
3598 Lisp_Object table;
3599 EMACS_INT index_size, sz;
3600 ptrdiff_t i;
3601 double index_float;
3602
3603 /* Preconditions. */
3604 eassert (SYMBOLP (test));
3605 eassert (INTEGERP (size) && XINT (size) >= 0);
3606 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3607 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3608 eassert (FLOATP (rehash_threshold)
3609 && 0 < XFLOAT_DATA (rehash_threshold)
3610 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3611
3612 if (XFASTINT (size) == 0)
3613 size = make_number (1);
3614
3615 sz = XFASTINT (size);
3616 index_float = sz / XFLOAT_DATA (rehash_threshold);
3617 index_size = (index_float < INDEX_SIZE_BOUND + 1
3618 ? next_almost_prime (index_float)
3619 : INDEX_SIZE_BOUND + 1);
3620 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3621 error ("Hash table too large");
3622
3623 /* Allocate a table and initialize it. */
3624 h = allocate_hash_table ();
3625
3626 /* Initialize hash table slots. */
3627 h->test = test;
3628 if (EQ (test, Qeql))
3629 {
3630 h->cmpfn = cmpfn_eql;
3631 h->hashfn = hashfn_eql;
3632 }
3633 else if (EQ (test, Qeq))
3634 {
3635 h->cmpfn = NULL;
3636 h->hashfn = hashfn_eq;
3637 }
3638 else if (EQ (test, Qequal))
3639 {
3640 h->cmpfn = cmpfn_equal;
3641 h->hashfn = hashfn_equal;
3642 }
3643 else
3644 {
3645 h->user_cmp_function = user_test;
3646 h->user_hash_function = user_hash;
3647 h->cmpfn = cmpfn_user_defined;
3648 h->hashfn = hashfn_user_defined;
3649 }
3650
3651 h->weak = weak;
3652 h->rehash_threshold = rehash_threshold;
3653 h->rehash_size = rehash_size;
3654 h->count = 0;
3655 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3656 h->hash = Fmake_vector (size, Qnil);
3657 h->next = Fmake_vector (size, Qnil);
3658 h->index = Fmake_vector (make_number (index_size), Qnil);
3659
3660 /* Set up the free list. */
3661 for (i = 0; i < sz - 1; ++i)
3662 set_hash_next_slot (h, i, make_number (i + 1));
3663 h->next_free = make_number (0);
3664
3665 XSET_HASH_TABLE (table, h);
3666 eassert (HASH_TABLE_P (table));
3667 eassert (XHASH_TABLE (table) == h);
3668
3669 /* Maybe add this hash table to the list of all weak hash tables. */
3670 if (NILP (h->weak))
3671 h->next_weak = NULL;
3672 else
3673 {
3674 h->next_weak = weak_hash_tables;
3675 weak_hash_tables = h;
3676 }
3677
3678 return table;
3679 }
3680
3681
3682 /* Return a copy of hash table H1. Keys and values are not copied,
3683 only the table itself is. */
3684
3685 static Lisp_Object
3686 copy_hash_table (struct Lisp_Hash_Table *h1)
3687 {
3688 Lisp_Object table;
3689 struct Lisp_Hash_Table *h2;
3690 struct Lisp_Vector *next;
3691
3692 h2 = allocate_hash_table ();
3693 next = h2->header.next.vector;
3694 memcpy (h2, h1, sizeof *h2);
3695 h2->header.next.vector = next;
3696 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3697 h2->hash = Fcopy_sequence (h1->hash);
3698 h2->next = Fcopy_sequence (h1->next);
3699 h2->index = Fcopy_sequence (h1->index);
3700 XSET_HASH_TABLE (table, h2);
3701
3702 /* Maybe add this hash table to the list of all weak hash tables. */
3703 if (!NILP (h2->weak))
3704 {
3705 h2->next_weak = weak_hash_tables;
3706 weak_hash_tables = h2;
3707 }
3708
3709 return table;
3710 }
3711
3712
3713 /* Resize hash table H if it's too full. If H cannot be resized
3714 because it's already too large, throw an error. */
3715
3716 static inline void
3717 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3718 {
3719 if (NILP (h->next_free))
3720 {
3721 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3722 EMACS_INT new_size, index_size, nsize;
3723 ptrdiff_t i;
3724 double index_float;
3725
3726 if (INTEGERP (h->rehash_size))
3727 new_size = old_size + XFASTINT (h->rehash_size);
3728 else
3729 {
3730 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3731 if (float_new_size < INDEX_SIZE_BOUND + 1)
3732 {
3733 new_size = float_new_size;
3734 if (new_size <= old_size)
3735 new_size = old_size + 1;
3736 }
3737 else
3738 new_size = INDEX_SIZE_BOUND + 1;
3739 }
3740 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3741 index_size = (index_float < INDEX_SIZE_BOUND + 1
3742 ? next_almost_prime (index_float)
3743 : INDEX_SIZE_BOUND + 1);
3744 nsize = max (index_size, 2 * new_size);
3745 if (INDEX_SIZE_BOUND < nsize)
3746 error ("Hash table too large to resize");
3747
3748 #ifdef ENABLE_CHECKING
3749 if (HASH_TABLE_P (Vpurify_flag)
3750 && XHASH_TABLE (Vpurify_flag) == h)
3751 {
3752 Lisp_Object args[2];
3753 args[0] = build_string ("Growing hash table to: %d");
3754 args[1] = make_number (new_size);
3755 Fmessage (2, args);
3756 }
3757 #endif
3758
3759 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3760 2 * (new_size - old_size), -1));
3761 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3762 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3763 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3764
3765 /* Update the free list. Do it so that new entries are added at
3766 the end of the free list. This makes some operations like
3767 maphash faster. */
3768 for (i = old_size; i < new_size - 1; ++i)
3769 set_hash_next_slot (h, i, make_number (i + 1));
3770
3771 if (!NILP (h->next_free))
3772 {
3773 Lisp_Object last, next;
3774
3775 last = h->next_free;
3776 while (next = HASH_NEXT (h, XFASTINT (last)),
3777 !NILP (next))
3778 last = next;
3779
3780 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3781 }
3782 else
3783 XSETFASTINT (h->next_free, old_size);
3784
3785 /* Rehash. */
3786 for (i = 0; i < old_size; ++i)
3787 if (!NILP (HASH_HASH (h, i)))
3788 {
3789 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3790 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3791 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3792 set_hash_index_slot (h, start_of_bucket, make_number (i));
3793 }
3794 }
3795 }
3796
3797
3798 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3799 the hash code of KEY. Value is the index of the entry in H
3800 matching KEY, or -1 if not found. */
3801
3802 ptrdiff_t
3803 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3804 {
3805 EMACS_UINT hash_code;
3806 ptrdiff_t start_of_bucket;
3807 Lisp_Object idx;
3808
3809 hash_code = h->hashfn (h, key);
3810 if (hash)
3811 *hash = hash_code;
3812
3813 start_of_bucket = hash_code % ASIZE (h->index);
3814 idx = HASH_INDEX (h, start_of_bucket);
3815
3816 /* We need not gcpro idx since it's either an integer or nil. */
3817 while (!NILP (idx))
3818 {
3819 ptrdiff_t i = XFASTINT (idx);
3820 if (EQ (key, HASH_KEY (h, i))
3821 || (h->cmpfn
3822 && h->cmpfn (h, key, hash_code,
3823 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3824 break;
3825 idx = HASH_NEXT (h, i);
3826 }
3827
3828 return NILP (idx) ? -1 : XFASTINT (idx);
3829 }
3830
3831
3832 /* Put an entry into hash table H that associates KEY with VALUE.
3833 HASH is a previously computed hash code of KEY.
3834 Value is the index of the entry in H matching KEY. */
3835
3836 ptrdiff_t
3837 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3838 EMACS_UINT hash)
3839 {
3840 ptrdiff_t start_of_bucket, i;
3841
3842 eassert ((hash & ~INTMASK) == 0);
3843
3844 /* Increment count after resizing because resizing may fail. */
3845 maybe_resize_hash_table (h);
3846 h->count++;
3847
3848 /* Store key/value in the key_and_value vector. */
3849 i = XFASTINT (h->next_free);
3850 h->next_free = HASH_NEXT (h, i);
3851 set_hash_key_slot (h, i, key);
3852 set_hash_value_slot (h, i, value);
3853
3854 /* Remember its hash code. */
3855 set_hash_hash_slot (h, i, make_number (hash));
3856
3857 /* Add new entry to its collision chain. */
3858 start_of_bucket = hash % ASIZE (h->index);
3859 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3860 set_hash_index_slot (h, start_of_bucket, make_number (i));
3861 return i;
3862 }
3863
3864
3865 /* Remove the entry matching KEY from hash table H, if there is one. */
3866
3867 static void
3868 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3869 {
3870 EMACS_UINT hash_code;
3871 ptrdiff_t start_of_bucket;
3872 Lisp_Object idx, prev;
3873
3874 hash_code = h->hashfn (h, key);
3875 start_of_bucket = hash_code % ASIZE (h->index);
3876 idx = HASH_INDEX (h, start_of_bucket);
3877 prev = Qnil;
3878
3879 /* We need not gcpro idx, prev since they're either integers or nil. */
3880 while (!NILP (idx))
3881 {
3882 ptrdiff_t i = XFASTINT (idx);
3883
3884 if (EQ (key, HASH_KEY (h, i))
3885 || (h->cmpfn
3886 && h->cmpfn (h, key, hash_code,
3887 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3888 {
3889 /* Take entry out of collision chain. */
3890 if (NILP (prev))
3891 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3892 else
3893 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3894
3895 /* Clear slots in key_and_value and add the slots to
3896 the free list. */
3897 set_hash_key_slot (h, i, Qnil);
3898 set_hash_value_slot (h, i, Qnil);
3899 set_hash_hash_slot (h, i, Qnil);
3900 set_hash_next_slot (h, i, h->next_free);
3901 h->next_free = make_number (i);
3902 h->count--;
3903 eassert (h->count >= 0);
3904 break;
3905 }
3906 else
3907 {
3908 prev = idx;
3909 idx = HASH_NEXT (h, i);
3910 }
3911 }
3912 }
3913
3914
3915 /* Clear hash table H. */
3916
3917 static void
3918 hash_clear (struct Lisp_Hash_Table *h)
3919 {
3920 if (h->count > 0)
3921 {
3922 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3923
3924 for (i = 0; i < size; ++i)
3925 {
3926 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3927 set_hash_key_slot (h, i, Qnil);
3928 set_hash_value_slot (h, i, Qnil);
3929 set_hash_hash_slot (h, i, Qnil);
3930 }
3931
3932 for (i = 0; i < ASIZE (h->index); ++i)
3933 ASET (h->index, i, Qnil);
3934
3935 h->next_free = make_number (0);
3936 h->count = 0;
3937 }
3938 }
3939
3940
3941 \f
3942 /************************************************************************
3943 Weak Hash Tables
3944 ************************************************************************/
3945
3946 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3947 entries from the table that don't survive the current GC.
3948 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3949 non-zero if anything was marked. */
3950
3951 static int
3952 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3953 {
3954 ptrdiff_t bucket, n;
3955 int marked;
3956
3957 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3958 marked = 0;
3959
3960 for (bucket = 0; bucket < n; ++bucket)
3961 {
3962 Lisp_Object idx, next, prev;
3963
3964 /* Follow collision chain, removing entries that
3965 don't survive this garbage collection. */
3966 prev = Qnil;
3967 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3968 {
3969 ptrdiff_t i = XFASTINT (idx);
3970 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3971 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3972 int remove_p;
3973
3974 if (EQ (h->weak, Qkey))
3975 remove_p = !key_known_to_survive_p;
3976 else if (EQ (h->weak, Qvalue))
3977 remove_p = !value_known_to_survive_p;
3978 else if (EQ (h->weak, Qkey_or_value))
3979 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3980 else if (EQ (h->weak, Qkey_and_value))
3981 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3982 else
3983 abort ();
3984
3985 next = HASH_NEXT (h, i);
3986
3987 if (remove_entries_p)
3988 {
3989 if (remove_p)
3990 {
3991 /* Take out of collision chain. */
3992 if (NILP (prev))
3993 set_hash_index_slot (h, bucket, next);
3994 else
3995 set_hash_next_slot (h, XFASTINT (prev), next);
3996
3997 /* Add to free list. */
3998 set_hash_next_slot (h, i, h->next_free);
3999 h->next_free = idx;
4000
4001 /* Clear key, value, and hash. */
4002 set_hash_key_slot (h, i, Qnil);
4003 set_hash_value_slot (h, i, Qnil);
4004 set_hash_hash_slot (h, i, Qnil);
4005
4006 h->count--;
4007 }
4008 else
4009 {
4010 prev = idx;
4011 }
4012 }
4013 else
4014 {
4015 if (!remove_p)
4016 {
4017 /* Make sure key and value survive. */
4018 if (!key_known_to_survive_p)
4019 {
4020 mark_object (HASH_KEY (h, i));
4021 marked = 1;
4022 }
4023
4024 if (!value_known_to_survive_p)
4025 {
4026 mark_object (HASH_VALUE (h, i));
4027 marked = 1;
4028 }
4029 }
4030 }
4031 }
4032 }
4033
4034 return marked;
4035 }
4036
4037 /* Remove elements from weak hash tables that don't survive the
4038 current garbage collection. Remove weak tables that don't survive
4039 from Vweak_hash_tables. Called from gc_sweep. */
4040
4041 void
4042 sweep_weak_hash_tables (void)
4043 {
4044 struct Lisp_Hash_Table *h, *used, *next;
4045 int marked;
4046
4047 /* Mark all keys and values that are in use. Keep on marking until
4048 there is no more change. This is necessary for cases like
4049 value-weak table A containing an entry X -> Y, where Y is used in a
4050 key-weak table B, Z -> Y. If B comes after A in the list of weak
4051 tables, X -> Y might be removed from A, although when looking at B
4052 one finds that it shouldn't. */
4053 do
4054 {
4055 marked = 0;
4056 for (h = weak_hash_tables; h; h = h->next_weak)
4057 {
4058 if (h->header.size & ARRAY_MARK_FLAG)
4059 marked |= sweep_weak_table (h, 0);
4060 }
4061 }
4062 while (marked);
4063
4064 /* Remove tables and entries that aren't used. */
4065 for (h = weak_hash_tables, used = NULL; h; h = next)
4066 {
4067 next = h->next_weak;
4068
4069 if (h->header.size & ARRAY_MARK_FLAG)
4070 {
4071 /* TABLE is marked as used. Sweep its contents. */
4072 if (h->count > 0)
4073 sweep_weak_table (h, 1);
4074
4075 /* Add table to the list of used weak hash tables. */
4076 h->next_weak = used;
4077 used = h;
4078 }
4079 }
4080
4081 weak_hash_tables = used;
4082 }
4083
4084
4085 \f
4086 /***********************************************************************
4087 Hash Code Computation
4088 ***********************************************************************/
4089
4090 /* Maximum depth up to which to dive into Lisp structures. */
4091
4092 #define SXHASH_MAX_DEPTH 3
4093
4094 /* Maximum length up to which to take list and vector elements into
4095 account. */
4096
4097 #define SXHASH_MAX_LEN 7
4098
4099 /* Hash X, returning a value that fits into a Lisp integer. */
4100 #define SXHASH_REDUCE(X) \
4101 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4102
4103 /* Return a hash for string PTR which has length LEN. The hash value
4104 can be any EMACS_UINT value. */
4105
4106 EMACS_UINT
4107 hash_string (char const *ptr, ptrdiff_t len)
4108 {
4109 char const *p = ptr;
4110 char const *end = p + len;
4111 unsigned char c;
4112 EMACS_UINT hash = 0;
4113
4114 while (p != end)
4115 {
4116 c = *p++;
4117 hash = SXHASH_COMBINE (hash, c);
4118 }
4119
4120 return hash;
4121 }
4122
4123 /* Return a hash for string PTR which has length LEN. The hash
4124 code returned is guaranteed to fit in a Lisp integer. */
4125
4126 static EMACS_UINT
4127 sxhash_string (char const *ptr, ptrdiff_t len)
4128 {
4129 EMACS_UINT hash = hash_string (ptr, len);
4130 return SXHASH_REDUCE (hash);
4131 }
4132
4133 /* Return a hash for the floating point value VAL. */
4134
4135 static EMACS_INT
4136 sxhash_float (double val)
4137 {
4138 EMACS_UINT hash = 0;
4139 enum {
4140 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4141 + (sizeof val % sizeof hash != 0))
4142 };
4143 union {
4144 double val;
4145 EMACS_UINT word[WORDS_PER_DOUBLE];
4146 } u;
4147 int i;
4148 u.val = val;
4149 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4150 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4151 hash = SXHASH_COMBINE (hash, u.word[i]);
4152 return SXHASH_REDUCE (hash);
4153 }
4154
4155 /* Return a hash for list LIST. DEPTH is the current depth in the
4156 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4157
4158 static EMACS_UINT
4159 sxhash_list (Lisp_Object list, int depth)
4160 {
4161 EMACS_UINT hash = 0;
4162 int i;
4163
4164 if (depth < SXHASH_MAX_DEPTH)
4165 for (i = 0;
4166 CONSP (list) && i < SXHASH_MAX_LEN;
4167 list = XCDR (list), ++i)
4168 {
4169 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4170 hash = SXHASH_COMBINE (hash, hash2);
4171 }
4172
4173 if (!NILP (list))
4174 {
4175 EMACS_UINT hash2 = sxhash (list, depth + 1);
4176 hash = SXHASH_COMBINE (hash, hash2);
4177 }
4178
4179 return SXHASH_REDUCE (hash);
4180 }
4181
4182
4183 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4184 the Lisp structure. */
4185
4186 static EMACS_UINT
4187 sxhash_vector (Lisp_Object vec, int depth)
4188 {
4189 EMACS_UINT hash = ASIZE (vec);
4190 int i, n;
4191
4192 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4193 for (i = 0; i < n; ++i)
4194 {
4195 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4196 hash = SXHASH_COMBINE (hash, hash2);
4197 }
4198
4199 return SXHASH_REDUCE (hash);
4200 }
4201
4202 /* Return a hash for bool-vector VECTOR. */
4203
4204 static EMACS_UINT
4205 sxhash_bool_vector (Lisp_Object vec)
4206 {
4207 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4208 int i, n;
4209
4210 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4211 for (i = 0; i < n; ++i)
4212 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4213
4214 return SXHASH_REDUCE (hash);
4215 }
4216
4217
4218 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4219 structure. Value is an unsigned integer clipped to INTMASK. */
4220
4221 EMACS_UINT
4222 sxhash (Lisp_Object obj, int depth)
4223 {
4224 EMACS_UINT hash;
4225
4226 if (depth > SXHASH_MAX_DEPTH)
4227 return 0;
4228
4229 switch (XTYPE (obj))
4230 {
4231 case_Lisp_Int:
4232 hash = XUINT (obj);
4233 break;
4234
4235 case Lisp_Misc:
4236 hash = XUINT (obj);
4237 break;
4238
4239 case Lisp_Symbol:
4240 obj = SYMBOL_NAME (obj);
4241 /* Fall through. */
4242
4243 case Lisp_String:
4244 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4245 break;
4246
4247 /* This can be everything from a vector to an overlay. */
4248 case Lisp_Vectorlike:
4249 if (VECTORP (obj))
4250 /* According to the CL HyperSpec, two arrays are equal only if
4251 they are `eq', except for strings and bit-vectors. In
4252 Emacs, this works differently. We have to compare element
4253 by element. */
4254 hash = sxhash_vector (obj, depth);
4255 else if (BOOL_VECTOR_P (obj))
4256 hash = sxhash_bool_vector (obj);
4257 else
4258 /* Others are `equal' if they are `eq', so let's take their
4259 address as hash. */
4260 hash = XUINT (obj);
4261 break;
4262
4263 case Lisp_Cons:
4264 hash = sxhash_list (obj, depth);
4265 break;
4266
4267 case Lisp_Float:
4268 hash = sxhash_float (XFLOAT_DATA (obj));
4269 break;
4270
4271 default:
4272 abort ();
4273 }
4274
4275 return hash;
4276 }
4277
4278
4279 \f
4280 /***********************************************************************
4281 Lisp Interface
4282 ***********************************************************************/
4283
4284
4285 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4286 doc: /* Compute a hash code for OBJ and return it as integer. */)
4287 (Lisp_Object obj)
4288 {
4289 EMACS_UINT hash = sxhash (obj, 0);
4290 return make_number (hash);
4291 }
4292
4293
4294 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4295 doc: /* Create and return a new hash table.
4296
4297 Arguments are specified as keyword/argument pairs. The following
4298 arguments are defined:
4299
4300 :test TEST -- TEST must be a symbol that specifies how to compare
4301 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4302 `equal'. User-supplied test and hash functions can be specified via
4303 `define-hash-table-test'.
4304
4305 :size SIZE -- A hint as to how many elements will be put in the table.
4306 Default is 65.
4307
4308 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4309 fills up. If REHASH-SIZE is an integer, increase the size by that
4310 amount. If it is a float, it must be > 1.0, and the new size is the
4311 old size multiplied by that factor. Default is 1.5.
4312
4313 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4314 Resize the hash table when the ratio (number of entries / table size)
4315 is greater than or equal to THRESHOLD. Default is 0.8.
4316
4317 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4318 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4319 returned is a weak table. Key/value pairs are removed from a weak
4320 hash table when there are no non-weak references pointing to their
4321 key, value, one of key or value, or both key and value, depending on
4322 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4323 is nil.
4324
4325 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4326 (ptrdiff_t nargs, Lisp_Object *args)
4327 {
4328 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4329 Lisp_Object user_test, user_hash;
4330 char *used;
4331 ptrdiff_t i;
4332
4333 /* The vector `used' is used to keep track of arguments that
4334 have been consumed. */
4335 used = alloca (nargs * sizeof *used);
4336 memset (used, 0, nargs * sizeof *used);
4337
4338 /* See if there's a `:test TEST' among the arguments. */
4339 i = get_key_arg (QCtest, nargs, args, used);
4340 test = i ? args[i] : Qeql;
4341 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4342 {
4343 /* See if it is a user-defined test. */
4344 Lisp_Object prop;
4345
4346 prop = Fget (test, Qhash_table_test);
4347 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4348 signal_error ("Invalid hash table test", test);
4349 user_test = XCAR (prop);
4350 user_hash = XCAR (XCDR (prop));
4351 }
4352 else
4353 user_test = user_hash = Qnil;
4354
4355 /* See if there's a `:size SIZE' argument. */
4356 i = get_key_arg (QCsize, nargs, args, used);
4357 size = i ? args[i] : Qnil;
4358 if (NILP (size))
4359 size = make_number (DEFAULT_HASH_SIZE);
4360 else if (!INTEGERP (size) || XINT (size) < 0)
4361 signal_error ("Invalid hash table size", size);
4362
4363 /* Look for `:rehash-size SIZE'. */
4364 i = get_key_arg (QCrehash_size, nargs, args, used);
4365 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4366 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4367 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4368 signal_error ("Invalid hash table rehash size", rehash_size);
4369
4370 /* Look for `:rehash-threshold THRESHOLD'. */
4371 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4372 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4373 if (! (FLOATP (rehash_threshold)
4374 && 0 < XFLOAT_DATA (rehash_threshold)
4375 && XFLOAT_DATA (rehash_threshold) <= 1))
4376 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4377
4378 /* Look for `:weakness WEAK'. */
4379 i = get_key_arg (QCweakness, nargs, args, used);
4380 weak = i ? args[i] : Qnil;
4381 if (EQ (weak, Qt))
4382 weak = Qkey_and_value;
4383 if (!NILP (weak)
4384 && !EQ (weak, Qkey)
4385 && !EQ (weak, Qvalue)
4386 && !EQ (weak, Qkey_or_value)
4387 && !EQ (weak, Qkey_and_value))
4388 signal_error ("Invalid hash table weakness", weak);
4389
4390 /* Now, all args should have been used up, or there's a problem. */
4391 for (i = 0; i < nargs; ++i)
4392 if (!used[i])
4393 signal_error ("Invalid argument list", args[i]);
4394
4395 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4396 user_test, user_hash);
4397 }
4398
4399
4400 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4401 doc: /* Return a copy of hash table TABLE. */)
4402 (Lisp_Object table)
4403 {
4404 return copy_hash_table (check_hash_table (table));
4405 }
4406
4407
4408 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4409 doc: /* Return the number of elements in TABLE. */)
4410 (Lisp_Object table)
4411 {
4412 return make_number (check_hash_table (table)->count);
4413 }
4414
4415
4416 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4417 Shash_table_rehash_size, 1, 1, 0,
4418 doc: /* Return the current rehash size of TABLE. */)
4419 (Lisp_Object table)
4420 {
4421 return check_hash_table (table)->rehash_size;
4422 }
4423
4424
4425 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4426 Shash_table_rehash_threshold, 1, 1, 0,
4427 doc: /* Return the current rehash threshold of TABLE. */)
4428 (Lisp_Object table)
4429 {
4430 return check_hash_table (table)->rehash_threshold;
4431 }
4432
4433
4434 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4435 doc: /* Return the size of TABLE.
4436 The size can be used as an argument to `make-hash-table' to create
4437 a hash table than can hold as many elements as TABLE holds
4438 without need for resizing. */)
4439 (Lisp_Object table)
4440 {
4441 struct Lisp_Hash_Table *h = check_hash_table (table);
4442 return make_number (HASH_TABLE_SIZE (h));
4443 }
4444
4445
4446 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4447 doc: /* Return the test TABLE uses. */)
4448 (Lisp_Object table)
4449 {
4450 return check_hash_table (table)->test;
4451 }
4452
4453
4454 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4455 1, 1, 0,
4456 doc: /* Return the weakness of TABLE. */)
4457 (Lisp_Object table)
4458 {
4459 return check_hash_table (table)->weak;
4460 }
4461
4462
4463 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4464 doc: /* Return t if OBJ is a Lisp hash table object. */)
4465 (Lisp_Object obj)
4466 {
4467 return HASH_TABLE_P (obj) ? Qt : Qnil;
4468 }
4469
4470
4471 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4472 doc: /* Clear hash table TABLE and return it. */)
4473 (Lisp_Object table)
4474 {
4475 hash_clear (check_hash_table (table));
4476 /* Be compatible with XEmacs. */
4477 return table;
4478 }
4479
4480
4481 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4482 doc: /* Look up KEY in TABLE and return its associated value.
4483 If KEY is not found, return DFLT which defaults to nil. */)
4484 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4485 {
4486 struct Lisp_Hash_Table *h = check_hash_table (table);
4487 ptrdiff_t i = hash_lookup (h, key, NULL);
4488 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4489 }
4490
4491
4492 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4493 doc: /* Associate KEY with VALUE in hash table TABLE.
4494 If KEY is already present in table, replace its current value with
4495 VALUE. In any case, return VALUE. */)
4496 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4497 {
4498 struct Lisp_Hash_Table *h = check_hash_table (table);
4499 ptrdiff_t i;
4500 EMACS_UINT hash;
4501
4502 i = hash_lookup (h, key, &hash);
4503 if (i >= 0)
4504 set_hash_value_slot (h, i, value);
4505 else
4506 hash_put (h, key, value, hash);
4507
4508 return value;
4509 }
4510
4511
4512 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4513 doc: /* Remove KEY from TABLE. */)
4514 (Lisp_Object key, Lisp_Object table)
4515 {
4516 struct Lisp_Hash_Table *h = check_hash_table (table);
4517 hash_remove_from_table (h, key);
4518 return Qnil;
4519 }
4520
4521
4522 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4523 doc: /* Call FUNCTION for all entries in hash table TABLE.
4524 FUNCTION is called with two arguments, KEY and VALUE. */)
4525 (Lisp_Object function, Lisp_Object table)
4526 {
4527 struct Lisp_Hash_Table *h = check_hash_table (table);
4528 Lisp_Object args[3];
4529 ptrdiff_t i;
4530
4531 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4532 if (!NILP (HASH_HASH (h, i)))
4533 {
4534 args[0] = function;
4535 args[1] = HASH_KEY (h, i);
4536 args[2] = HASH_VALUE (h, i);
4537 Ffuncall (3, args);
4538 }
4539
4540 return Qnil;
4541 }
4542
4543
4544 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4545 Sdefine_hash_table_test, 3, 3, 0,
4546 doc: /* Define a new hash table test with name NAME, a symbol.
4547
4548 In hash tables created with NAME specified as test, use TEST to
4549 compare keys, and HASH for computing hash codes of keys.
4550
4551 TEST must be a function taking two arguments and returning non-nil if
4552 both arguments are the same. HASH must be a function taking one
4553 argument and return an integer that is the hash code of the argument.
4554 Hash code computation should use the whole value range of integers,
4555 including negative integers. */)
4556 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4557 {
4558 return Fput (name, Qhash_table_test, list2 (test, hash));
4559 }
4560
4561
4562 \f
4563 /************************************************************************
4564 MD5, SHA-1, and SHA-2
4565 ************************************************************************/
4566
4567 #include "md5.h"
4568 #include "sha1.h"
4569 #include "sha256.h"
4570 #include "sha512.h"
4571
4572 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4573
4574 static Lisp_Object
4575 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4576 {
4577 int i;
4578 ptrdiff_t size;
4579 EMACS_INT start_char = 0, end_char = 0;
4580 ptrdiff_t start_byte, end_byte;
4581 register EMACS_INT b, e;
4582 register struct buffer *bp;
4583 EMACS_INT temp;
4584 int digest_size;
4585 void *(*hash_func) (const char *, size_t, void *);
4586 Lisp_Object digest;
4587
4588 CHECK_SYMBOL (algorithm);
4589
4590 if (STRINGP (object))
4591 {
4592 if (NILP (coding_system))
4593 {
4594 /* Decide the coding-system to encode the data with. */
4595
4596 if (STRING_MULTIBYTE (object))
4597 /* use default, we can't guess correct value */
4598 coding_system = preferred_coding_system ();
4599 else
4600 coding_system = Qraw_text;
4601 }
4602
4603 if (NILP (Fcoding_system_p (coding_system)))
4604 {
4605 /* Invalid coding system. */
4606
4607 if (!NILP (noerror))
4608 coding_system = Qraw_text;
4609 else
4610 xsignal1 (Qcoding_system_error, coding_system);
4611 }
4612
4613 if (STRING_MULTIBYTE (object))
4614 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4615
4616 size = SCHARS (object);
4617
4618 if (!NILP (start))
4619 {
4620 CHECK_NUMBER (start);
4621
4622 start_char = XINT (start);
4623
4624 if (start_char < 0)
4625 start_char += size;
4626 }
4627
4628 if (NILP (end))
4629 end_char = size;
4630 else
4631 {
4632 CHECK_NUMBER (end);
4633
4634 end_char = XINT (end);
4635
4636 if (end_char < 0)
4637 end_char += size;
4638 }
4639
4640 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4641 args_out_of_range_3 (object, make_number (start_char),
4642 make_number (end_char));
4643
4644 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4645 end_byte =
4646 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4647 }
4648 else
4649 {
4650 struct buffer *prev = current_buffer;
4651
4652 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4653
4654 CHECK_BUFFER (object);
4655
4656 bp = XBUFFER (object);
4657 if (bp != current_buffer)
4658 set_buffer_internal (bp);
4659
4660 if (NILP (start))
4661 b = BEGV;
4662 else
4663 {
4664 CHECK_NUMBER_COERCE_MARKER (start);
4665 b = XINT (start);
4666 }
4667
4668 if (NILP (end))
4669 e = ZV;
4670 else
4671 {
4672 CHECK_NUMBER_COERCE_MARKER (end);
4673 e = XINT (end);
4674 }
4675
4676 if (b > e)
4677 temp = b, b = e, e = temp;
4678
4679 if (!(BEGV <= b && e <= ZV))
4680 args_out_of_range (start, end);
4681
4682 if (NILP (coding_system))
4683 {
4684 /* Decide the coding-system to encode the data with.
4685 See fileio.c:Fwrite-region */
4686
4687 if (!NILP (Vcoding_system_for_write))
4688 coding_system = Vcoding_system_for_write;
4689 else
4690 {
4691 int force_raw_text = 0;
4692
4693 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4694 if (NILP (coding_system)
4695 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4696 {
4697 coding_system = Qnil;
4698 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4699 force_raw_text = 1;
4700 }
4701
4702 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4703 {
4704 /* Check file-coding-system-alist. */
4705 Lisp_Object args[4], val;
4706
4707 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4708 args[3] = Fbuffer_file_name (object);
4709 val = Ffind_operation_coding_system (4, args);
4710 if (CONSP (val) && !NILP (XCDR (val)))
4711 coding_system = XCDR (val);
4712 }
4713
4714 if (NILP (coding_system)
4715 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4716 {
4717 /* If we still have not decided a coding system, use the
4718 default value of buffer-file-coding-system. */
4719 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4720 }
4721
4722 if (!force_raw_text
4723 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4724 /* Confirm that VAL can surely encode the current region. */
4725 coding_system = call4 (Vselect_safe_coding_system_function,
4726 make_number (b), make_number (e),
4727 coding_system, Qnil);
4728
4729 if (force_raw_text)
4730 coding_system = Qraw_text;
4731 }
4732
4733 if (NILP (Fcoding_system_p (coding_system)))
4734 {
4735 /* Invalid coding system. */
4736
4737 if (!NILP (noerror))
4738 coding_system = Qraw_text;
4739 else
4740 xsignal1 (Qcoding_system_error, coding_system);
4741 }
4742 }
4743
4744 object = make_buffer_string (b, e, 0);
4745 if (prev != current_buffer)
4746 set_buffer_internal (prev);
4747 /* Discard the unwind protect for recovering the current
4748 buffer. */
4749 specpdl_ptr--;
4750
4751 if (STRING_MULTIBYTE (object))
4752 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4753 start_byte = 0;
4754 end_byte = SBYTES (object);
4755 }
4756
4757 if (EQ (algorithm, Qmd5))
4758 {
4759 digest_size = MD5_DIGEST_SIZE;
4760 hash_func = md5_buffer;
4761 }
4762 else if (EQ (algorithm, Qsha1))
4763 {
4764 digest_size = SHA1_DIGEST_SIZE;
4765 hash_func = sha1_buffer;
4766 }
4767 else if (EQ (algorithm, Qsha224))
4768 {
4769 digest_size = SHA224_DIGEST_SIZE;
4770 hash_func = sha224_buffer;
4771 }
4772 else if (EQ (algorithm, Qsha256))
4773 {
4774 digest_size = SHA256_DIGEST_SIZE;
4775 hash_func = sha256_buffer;
4776 }
4777 else if (EQ (algorithm, Qsha384))
4778 {
4779 digest_size = SHA384_DIGEST_SIZE;
4780 hash_func = sha384_buffer;
4781 }
4782 else if (EQ (algorithm, Qsha512))
4783 {
4784 digest_size = SHA512_DIGEST_SIZE;
4785 hash_func = sha512_buffer;
4786 }
4787 else
4788 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4789
4790 /* allocate 2 x digest_size so that it can be re-used to hold the
4791 hexified value */
4792 digest = make_uninit_string (digest_size * 2);
4793
4794 hash_func (SSDATA (object) + start_byte,
4795 end_byte - start_byte,
4796 SSDATA (digest));
4797
4798 if (NILP (binary))
4799 {
4800 unsigned char *p = SDATA (digest);
4801 for (i = digest_size - 1; i >= 0; i--)
4802 {
4803 static char const hexdigit[16] = "0123456789abcdef";
4804 int p_i = p[i];
4805 p[2 * i] = hexdigit[p_i >> 4];
4806 p[2 * i + 1] = hexdigit[p_i & 0xf];
4807 }
4808 return digest;
4809 }
4810 else
4811 return make_unibyte_string (SSDATA (digest), digest_size);
4812 }
4813
4814 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4815 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4816
4817 A message digest is a cryptographic checksum of a document, and the
4818 algorithm to calculate it is defined in RFC 1321.
4819
4820 The two optional arguments START and END are character positions
4821 specifying for which part of OBJECT the message digest should be
4822 computed. If nil or omitted, the digest is computed for the whole
4823 OBJECT.
4824
4825 The MD5 message digest is computed from the result of encoding the
4826 text in a coding system, not directly from the internal Emacs form of
4827 the text. The optional fourth argument CODING-SYSTEM specifies which
4828 coding system to encode the text with. It should be the same coding
4829 system that you used or will use when actually writing the text into a
4830 file.
4831
4832 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4833 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4834 system would be chosen by default for writing this text into a file.
4835
4836 If OBJECT is a string, the most preferred coding system (see the
4837 command `prefer-coding-system') is used.
4838
4839 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4840 guesswork fails. Normally, an error is signaled in such case. */)
4841 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4842 {
4843 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4844 }
4845
4846 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4847 doc: /* Return the secure hash of OBJECT, a buffer or string.
4848 ALGORITHM is a symbol specifying the hash to use:
4849 md5, sha1, sha224, sha256, sha384 or sha512.
4850
4851 The two optional arguments START and END are positions specifying for
4852 which part of OBJECT to compute the hash. If nil or omitted, uses the
4853 whole OBJECT.
4854
4855 If BINARY is non-nil, returns a string in binary form. */)
4856 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4857 {
4858 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4859 }
4860 \f
4861 void
4862 syms_of_fns (void)
4863 {
4864 DEFSYM (Qmd5, "md5");
4865 DEFSYM (Qsha1, "sha1");
4866 DEFSYM (Qsha224, "sha224");
4867 DEFSYM (Qsha256, "sha256");
4868 DEFSYM (Qsha384, "sha384");
4869 DEFSYM (Qsha512, "sha512");
4870
4871 /* Hash table stuff. */
4872 DEFSYM (Qhash_table_p, "hash-table-p");
4873 DEFSYM (Qeq, "eq");
4874 DEFSYM (Qeql, "eql");
4875 DEFSYM (Qequal, "equal");
4876 DEFSYM (QCtest, ":test");
4877 DEFSYM (QCsize, ":size");
4878 DEFSYM (QCrehash_size, ":rehash-size");
4879 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4880 DEFSYM (QCweakness, ":weakness");
4881 DEFSYM (Qkey, "key");
4882 DEFSYM (Qvalue, "value");
4883 DEFSYM (Qhash_table_test, "hash-table-test");
4884 DEFSYM (Qkey_or_value, "key-or-value");
4885 DEFSYM (Qkey_and_value, "key-and-value");
4886
4887 defsubr (&Ssxhash);
4888 defsubr (&Smake_hash_table);
4889 defsubr (&Scopy_hash_table);
4890 defsubr (&Shash_table_count);
4891 defsubr (&Shash_table_rehash_size);
4892 defsubr (&Shash_table_rehash_threshold);
4893 defsubr (&Shash_table_size);
4894 defsubr (&Shash_table_test);
4895 defsubr (&Shash_table_weakness);
4896 defsubr (&Shash_table_p);
4897 defsubr (&Sclrhash);
4898 defsubr (&Sgethash);
4899 defsubr (&Sputhash);
4900 defsubr (&Sremhash);
4901 defsubr (&Smaphash);
4902 defsubr (&Sdefine_hash_table_test);
4903
4904 DEFSYM (Qstring_lessp, "string-lessp");
4905 DEFSYM (Qprovide, "provide");
4906 DEFSYM (Qrequire, "require");
4907 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4908 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4909 DEFSYM (Qwidget_type, "widget-type");
4910
4911 staticpro (&string_char_byte_cache_string);
4912 string_char_byte_cache_string = Qnil;
4913
4914 require_nesting_list = Qnil;
4915 staticpro (&require_nesting_list);
4916
4917 Fset (Qyes_or_no_p_history, Qnil);
4918
4919 DEFVAR_LISP ("features", Vfeatures,
4920 doc: /* A list of symbols which are the features of the executing Emacs.
4921 Used by `featurep' and `require', and altered by `provide'. */);
4922 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4923 DEFSYM (Qsubfeatures, "subfeatures");
4924
4925 #ifdef HAVE_LANGINFO_CODESET
4926 DEFSYM (Qcodeset, "codeset");
4927 DEFSYM (Qdays, "days");
4928 DEFSYM (Qmonths, "months");
4929 DEFSYM (Qpaper, "paper");
4930 #endif /* HAVE_LANGINFO_CODESET */
4931
4932 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4933 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4934 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4935 invoked by mouse clicks and mouse menu items.
4936
4937 On some platforms, file selection dialogs are also enabled if this is
4938 non-nil. */);
4939 use_dialog_box = 1;
4940
4941 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4942 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4943 This applies to commands from menus and tool bar buttons even when
4944 they are initiated from the keyboard. If `use-dialog-box' is nil,
4945 that disables the use of a file dialog, regardless of the value of
4946 this variable. */);
4947 use_file_dialog = 1;
4948
4949 defsubr (&Sidentity);
4950 defsubr (&Srandom);
4951 defsubr (&Slength);
4952 defsubr (&Ssafe_length);
4953 defsubr (&Sstring_bytes);
4954 defsubr (&Sstring_equal);
4955 defsubr (&Scompare_strings);
4956 defsubr (&Sstring_lessp);
4957 defsubr (&Sappend);
4958 defsubr (&Sconcat);
4959 defsubr (&Svconcat);
4960 defsubr (&Scopy_sequence);
4961 defsubr (&Sstring_make_multibyte);
4962 defsubr (&Sstring_make_unibyte);
4963 defsubr (&Sstring_as_multibyte);
4964 defsubr (&Sstring_as_unibyte);
4965 defsubr (&Sstring_to_multibyte);
4966 defsubr (&Sstring_to_unibyte);
4967 defsubr (&Scopy_alist);
4968 defsubr (&Ssubstring);
4969 defsubr (&Ssubstring_no_properties);
4970 defsubr (&Snthcdr);
4971 defsubr (&Snth);
4972 defsubr (&Selt);
4973 defsubr (&Smember);
4974 defsubr (&Smemq);
4975 defsubr (&Smemql);
4976 defsubr (&Sassq);
4977 defsubr (&Sassoc);
4978 defsubr (&Srassq);
4979 defsubr (&Srassoc);
4980 defsubr (&Sdelq);
4981 defsubr (&Sdelete);
4982 defsubr (&Snreverse);
4983 defsubr (&Sreverse);
4984 defsubr (&Ssort);
4985 defsubr (&Splist_get);
4986 defsubr (&Sget);
4987 defsubr (&Splist_put);
4988 defsubr (&Sput);
4989 defsubr (&Slax_plist_get);
4990 defsubr (&Slax_plist_put);
4991 defsubr (&Seql);
4992 defsubr (&Sequal);
4993 defsubr (&Sequal_including_properties);
4994 defsubr (&Sfillarray);
4995 defsubr (&Sclear_string);
4996 defsubr (&Snconc);
4997 defsubr (&Smapcar);
4998 defsubr (&Smapc);
4999 defsubr (&Smapconcat);
5000 defsubr (&Syes_or_no_p);
5001 defsubr (&Sload_average);
5002 defsubr (&Sfeaturep);
5003 defsubr (&Srequire);
5004 defsubr (&Sprovide);
5005 defsubr (&Splist_member);
5006 defsubr (&Swidget_put);
5007 defsubr (&Swidget_get);
5008 defsubr (&Swidget_apply);
5009 defsubr (&Sbase64_encode_region);
5010 defsubr (&Sbase64_decode_region);
5011 defsubr (&Sbase64_encode_string);
5012 defsubr (&Sbase64_decode_string);
5013 defsubr (&Smd5);
5014 defsubr (&Ssecure_hash);
5015 defsubr (&Slocale_info);
5016 }