Replace pEd with more-general pI, and fix some printf arg casts.
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, etc).
2 Copyright (C) 2001-2011 Free Software Foundation, Inc.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
7 Copyright (C) 2003
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
10
11 This file is part of GNU Emacs.
12
13 GNU Emacs is free software: you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation, either version 3 of the License, or
16 (at your option) any later version.
17
18 GNU Emacs is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
25
26 /*** TABLE OF CONTENTS ***
27
28 0. General comments
29 1. Preamble
30 2. Emacs' internal format (emacs-utf-8) handlers
31 3. UTF-8 handlers
32 4. UTF-16 handlers
33 5. Charset-base coding systems handlers
34 6. emacs-mule (old Emacs' internal format) handlers
35 7. ISO2022 handlers
36 8. Shift-JIS and BIG5 handlers
37 9. CCL handlers
38 10. C library functions
39 11. Emacs Lisp library functions
40 12. Postamble
41
42 */
43
44 /*** 0. General comments ***
45
46
47 CODING SYSTEM
48
49 A coding system is an object for an encoding mechanism that contains
50 information about how to convert byte sequences to character
51 sequences and vice versa. When we say "decode", it means converting
52 a byte sequence of a specific coding system into a character
53 sequence that is represented by Emacs' internal coding system
54 `emacs-utf-8', and when we say "encode", it means converting a
55 character sequence of emacs-utf-8 to a byte sequence of a specific
56 coding system.
57
58 In Emacs Lisp, a coding system is represented by a Lisp symbol. In
59 C level, a coding system is represented by a vector of attributes
60 stored in the hash table Vcharset_hash_table. The conversion from
61 coding system symbol to attributes vector is done by looking up
62 Vcharset_hash_table by the symbol.
63
64 Coding systems are classified into the following types depending on
65 the encoding mechanism. Here's a brief description of the types.
66
67 o UTF-8
68
69 o UTF-16
70
71 o Charset-base coding system
72
73 A coding system defined by one or more (coded) character sets.
74 Decoding and encoding are done by a code converter defined for each
75 character set.
76
77 o Old Emacs internal format (emacs-mule)
78
79 The coding system adopted by old versions of Emacs (20 and 21).
80
81 o ISO2022-base coding system
82
83 The most famous coding system for multiple character sets. X's
84 Compound Text, various EUCs (Extended Unix Code), and coding systems
85 used in the Internet communication such as ISO-2022-JP are all
86 variants of ISO2022.
87
88 o SJIS (or Shift-JIS or MS-Kanji-Code)
89
90 A coding system to encode character sets: ASCII, JISX0201, and
91 JISX0208. Widely used for PC's in Japan. Details are described in
92 section 8.
93
94 o BIG5
95
96 A coding system to encode character sets: ASCII and Big5. Widely
97 used for Chinese (mainly in Taiwan and Hong Kong). Details are
98 described in section 8. In this file, when we write "big5" (all
99 lowercase), we mean the coding system, and when we write "Big5"
100 (capitalized), we mean the character set.
101
102 o CCL
103
104 If a user wants to decode/encode text encoded in a coding system
105 not listed above, he can supply a decoder and an encoder for it in
106 CCL (Code Conversion Language) programs. Emacs executes the CCL
107 program while decoding/encoding.
108
109 o Raw-text
110
111 A coding system for text containing raw eight-bit data. Emacs
112 treats each byte of source text as a character (except for
113 end-of-line conversion).
114
115 o No-conversion
116
117 Like raw text, but don't do end-of-line conversion.
118
119
120 END-OF-LINE FORMAT
121
122 How text end-of-line is encoded depends on operating system. For
123 instance, Unix's format is just one byte of LF (line-feed) code,
124 whereas DOS's format is two-byte sequence of `carriage-return' and
125 `line-feed' codes. MacOS's format is usually one byte of
126 `carriage-return'.
127
128 Since text character encoding and end-of-line encoding are
129 independent, any coding system described above can take any format
130 of end-of-line (except for no-conversion).
131
132 STRUCT CODING_SYSTEM
133
134 Before using a coding system for code conversion (i.e. decoding and
135 encoding), we setup a structure of type `struct coding_system'.
136 This structure keeps various information about a specific code
137 conversion (e.g. the location of source and destination data).
138
139 */
140
141 /* COMMON MACROS */
142
143
144 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
145
146 These functions check if a byte sequence specified as a source in
147 CODING conforms to the format of XXX, and update the members of
148 DETECT_INFO.
149
150 Return 1 if the byte sequence conforms to XXX, otherwise return 0.
151
152 Below is the template of these functions. */
153
154 #if 0
155 static int
156 detect_coding_XXX (struct coding_system *coding,
157 struct coding_detection_info *detect_info)
158 {
159 const unsigned char *src = coding->source;
160 const unsigned char *src_end = coding->source + coding->src_bytes;
161 int multibytep = coding->src_multibyte;
162 EMACS_INT consumed_chars = 0;
163 int found = 0;
164 ...;
165
166 while (1)
167 {
168 /* Get one byte from the source. If the source is exhausted, jump
169 to no_more_source:. */
170 ONE_MORE_BYTE (c);
171
172 if (! __C_conforms_to_XXX___ (c))
173 break;
174 if (! __C_strongly_suggests_XXX__ (c))
175 found = CATEGORY_MASK_XXX;
176 }
177 /* The byte sequence is invalid for XXX. */
178 detect_info->rejected |= CATEGORY_MASK_XXX;
179 return 0;
180
181 no_more_source:
182 /* The source exhausted successfully. */
183 detect_info->found |= found;
184 return 1;
185 }
186 #endif
187
188 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
189
190 These functions decode a byte sequence specified as a source by
191 CODING. The resulting multibyte text goes to a place pointed to by
192 CODING->charbuf, the length of which should not exceed
193 CODING->charbuf_size;
194
195 These functions set the information of original and decoded texts in
196 CODING->consumed, CODING->consumed_char, and CODING->charbuf_used.
197 They also set CODING->result to one of CODING_RESULT_XXX indicating
198 how the decoding is finished.
199
200 Below is the template of these functions. */
201
202 #if 0
203 static void
204 decode_coding_XXXX (struct coding_system *coding)
205 {
206 const unsigned char *src = coding->source + coding->consumed;
207 const unsigned char *src_end = coding->source + coding->src_bytes;
208 /* SRC_BASE remembers the start position in source in each loop.
209 The loop will be exited when there's not enough source code, or
210 when there's no room in CHARBUF for a decoded character. */
211 const unsigned char *src_base;
212 /* A buffer to produce decoded characters. */
213 int *charbuf = coding->charbuf + coding->charbuf_used;
214 int *charbuf_end = coding->charbuf + coding->charbuf_size;
215 int multibytep = coding->src_multibyte;
216
217 while (1)
218 {
219 src_base = src;
220 if (charbuf < charbuf_end)
221 /* No more room to produce a decoded character. */
222 break;
223 ONE_MORE_BYTE (c);
224 /* Decode it. */
225 }
226
227 no_more_source:
228 if (src_base < src_end
229 && coding->mode & CODING_MODE_LAST_BLOCK)
230 /* If the source ends by partial bytes to construct a character,
231 treat them as eight-bit raw data. */
232 while (src_base < src_end && charbuf < charbuf_end)
233 *charbuf++ = *src_base++;
234 /* Remember how many bytes and characters we consumed. If the
235 source is multibyte, the bytes and chars are not identical. */
236 coding->consumed = coding->consumed_char = src_base - coding->source;
237 /* Remember how many characters we produced. */
238 coding->charbuf_used = charbuf - coding->charbuf;
239 }
240 #endif
241
242 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
243
244 These functions encode SRC_BYTES length text at SOURCE of Emacs'
245 internal multibyte format by CODING. The resulting byte sequence
246 goes to a place pointed to by DESTINATION, the length of which
247 should not exceed DST_BYTES.
248
249 These functions set the information of original and encoded texts in
250 the members produced, produced_char, consumed, and consumed_char of
251 the structure *CODING. They also set the member result to one of
252 CODING_RESULT_XXX indicating how the encoding finished.
253
254 DST_BYTES zero means that source area and destination area are
255 overlapped, which means that we can produce a encoded text until it
256 reaches at the head of not-yet-encoded source text.
257
258 Below is a template of these functions. */
259 #if 0
260 static void
261 encode_coding_XXX (struct coding_system *coding)
262 {
263 int multibytep = coding->dst_multibyte;
264 int *charbuf = coding->charbuf;
265 int *charbuf_end = charbuf->charbuf + coding->charbuf_used;
266 unsigned char *dst = coding->destination + coding->produced;
267 unsigned char *dst_end = coding->destination + coding->dst_bytes;
268 unsigned char *adjusted_dst_end = dst_end - _MAX_BYTES_PRODUCED_IN_LOOP_;
269 EMACS_INT produced_chars = 0;
270
271 for (; charbuf < charbuf_end && dst < adjusted_dst_end; charbuf++)
272 {
273 int c = *charbuf;
274 /* Encode C into DST, and increment DST. */
275 }
276 label_no_more_destination:
277 /* How many chars and bytes we produced. */
278 coding->produced_char += produced_chars;
279 coding->produced = dst - coding->destination;
280 }
281 #endif
282
283 \f
284 /*** 1. Preamble ***/
285
286 #include <config.h>
287 #include <stdio.h>
288 #include <setjmp.h>
289
290 #include "lisp.h"
291 #include "buffer.h"
292 #include "character.h"
293 #include "charset.h"
294 #include "ccl.h"
295 #include "composite.h"
296 #include "coding.h"
297 #include "window.h"
298 #include "frame.h"
299 #include "termhooks.h"
300
301 Lisp_Object Vcoding_system_hash_table;
302
303 static Lisp_Object Qcoding_system, Qeol_type;
304 static Lisp_Object Qcoding_aliases;
305 Lisp_Object Qunix, Qdos;
306 Lisp_Object Qbuffer_file_coding_system;
307 static Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
308 static Lisp_Object Qdefault_char;
309 Lisp_Object Qno_conversion, Qundecided;
310 Lisp_Object Qcharset, Qutf_8;
311 static Lisp_Object Qiso_2022;
312 static Lisp_Object Qutf_16, Qshift_jis, Qbig5;
313 static Lisp_Object Qbig, Qlittle;
314 static Lisp_Object Qcoding_system_history;
315 static Lisp_Object Qvalid_codes;
316 static Lisp_Object QCcategory, QCmnemonic, QCdefault_char;
317 static Lisp_Object QCdecode_translation_table, QCencode_translation_table;
318 static Lisp_Object QCpost_read_conversion, QCpre_write_conversion;
319 static Lisp_Object QCascii_compatible_p;
320
321 Lisp_Object Qcall_process, Qcall_process_region;
322 Lisp_Object Qstart_process, Qopen_network_stream;
323 static Lisp_Object Qtarget_idx;
324
325 static Lisp_Object Qinsufficient_source, Qinconsistent_eol, Qinvalid_source;
326 static Lisp_Object Qinterrupted, Qinsufficient_memory;
327
328 /* If a symbol has this property, evaluate the value to define the
329 symbol as a coding system. */
330 static Lisp_Object Qcoding_system_define_form;
331
332 /* Format of end-of-line decided by system. This is Qunix on
333 Unix and Mac, Qdos on DOS/Windows.
334 This has an effect only for external encoding (i.e. for output to
335 file and process), not for in-buffer or Lisp string encoding. */
336 static Lisp_Object system_eol_type;
337
338 #ifdef emacs
339
340 Lisp_Object Qcoding_system_p, Qcoding_system_error;
341
342 /* Coding system emacs-mule and raw-text are for converting only
343 end-of-line format. */
344 Lisp_Object Qemacs_mule, Qraw_text;
345 Lisp_Object Qutf_8_emacs;
346
347 /* Coding-systems are handed between Emacs Lisp programs and C internal
348 routines by the following three variables. */
349 /* Coding system to be used to encode text for terminal display when
350 terminal coding system is nil. */
351 struct coding_system safe_terminal_coding;
352
353 #endif /* emacs */
354
355 Lisp_Object Qtranslation_table;
356 Lisp_Object Qtranslation_table_id;
357 static Lisp_Object Qtranslation_table_for_decode;
358 static Lisp_Object Qtranslation_table_for_encode;
359
360 /* Two special coding systems. */
361 static Lisp_Object Vsjis_coding_system;
362 static Lisp_Object Vbig5_coding_system;
363
364 /* ISO2022 section */
365
366 #define CODING_ISO_INITIAL(coding, reg) \
367 (XINT (AREF (AREF (CODING_ID_ATTRS ((coding)->id), \
368 coding_attr_iso_initial), \
369 reg)))
370
371
372 #define CODING_ISO_REQUEST(coding, charset_id) \
373 (((charset_id) <= (coding)->max_charset_id \
374 ? ((coding)->safe_charsets[charset_id] != 255 \
375 ? (coding)->safe_charsets[charset_id] \
376 : -1) \
377 : -1))
378
379
380 #define CODING_ISO_FLAGS(coding) \
381 ((coding)->spec.iso_2022.flags)
382 #define CODING_ISO_DESIGNATION(coding, reg) \
383 ((coding)->spec.iso_2022.current_designation[reg])
384 #define CODING_ISO_INVOCATION(coding, plane) \
385 ((coding)->spec.iso_2022.current_invocation[plane])
386 #define CODING_ISO_SINGLE_SHIFTING(coding) \
387 ((coding)->spec.iso_2022.single_shifting)
388 #define CODING_ISO_BOL(coding) \
389 ((coding)->spec.iso_2022.bol)
390 #define CODING_ISO_INVOKED_CHARSET(coding, plane) \
391 CODING_ISO_DESIGNATION ((coding), CODING_ISO_INVOCATION ((coding), (plane)))
392 #define CODING_ISO_CMP_STATUS(coding) \
393 (&(coding)->spec.iso_2022.cmp_status)
394 #define CODING_ISO_EXTSEGMENT_LEN(coding) \
395 ((coding)->spec.iso_2022.ctext_extended_segment_len)
396 #define CODING_ISO_EMBEDDED_UTF_8(coding) \
397 ((coding)->spec.iso_2022.embedded_utf_8)
398
399 /* Control characters of ISO2022. */
400 /* code */ /* function */
401 #define ISO_CODE_SO 0x0E /* shift-out */
402 #define ISO_CODE_SI 0x0F /* shift-in */
403 #define ISO_CODE_SS2_7 0x19 /* single-shift-2 for 7-bit code */
404 #define ISO_CODE_ESC 0x1B /* escape */
405 #define ISO_CODE_SS2 0x8E /* single-shift-2 */
406 #define ISO_CODE_SS3 0x8F /* single-shift-3 */
407 #define ISO_CODE_CSI 0x9B /* control-sequence-introducer */
408
409 /* All code (1-byte) of ISO2022 is classified into one of the
410 followings. */
411 enum iso_code_class_type
412 {
413 ISO_control_0, /* Control codes in the range
414 0x00..0x1F and 0x7F, except for the
415 following 5 codes. */
416 ISO_shift_out, /* ISO_CODE_SO (0x0E) */
417 ISO_shift_in, /* ISO_CODE_SI (0x0F) */
418 ISO_single_shift_2_7, /* ISO_CODE_SS2_7 (0x19) */
419 ISO_escape, /* ISO_CODE_SO (0x1B) */
420 ISO_control_1, /* Control codes in the range
421 0x80..0x9F, except for the
422 following 3 codes. */
423 ISO_single_shift_2, /* ISO_CODE_SS2 (0x8E) */
424 ISO_single_shift_3, /* ISO_CODE_SS3 (0x8F) */
425 ISO_control_sequence_introducer, /* ISO_CODE_CSI (0x9B) */
426 ISO_0x20_or_0x7F, /* Codes of the values 0x20 or 0x7F. */
427 ISO_graphic_plane_0, /* Graphic codes in the range 0x21..0x7E. */
428 ISO_0xA0_or_0xFF, /* Codes of the values 0xA0 or 0xFF. */
429 ISO_graphic_plane_1 /* Graphic codes in the range 0xA1..0xFE. */
430 };
431
432 /** The macros CODING_ISO_FLAG_XXX defines a flag bit of the
433 `iso-flags' attribute of an iso2022 coding system. */
434
435 /* If set, produce long-form designation sequence (e.g. ESC $ ( A)
436 instead of the correct short-form sequence (e.g. ESC $ A). */
437 #define CODING_ISO_FLAG_LONG_FORM 0x0001
438
439 /* If set, reset graphic planes and registers at end-of-line to the
440 initial state. */
441 #define CODING_ISO_FLAG_RESET_AT_EOL 0x0002
442
443 /* If set, reset graphic planes and registers before any control
444 characters to the initial state. */
445 #define CODING_ISO_FLAG_RESET_AT_CNTL 0x0004
446
447 /* If set, encode by 7-bit environment. */
448 #define CODING_ISO_FLAG_SEVEN_BITS 0x0008
449
450 /* If set, use locking-shift function. */
451 #define CODING_ISO_FLAG_LOCKING_SHIFT 0x0010
452
453 /* If set, use single-shift function. Overwrite
454 CODING_ISO_FLAG_LOCKING_SHIFT. */
455 #define CODING_ISO_FLAG_SINGLE_SHIFT 0x0020
456
457 /* If set, use designation escape sequence. */
458 #define CODING_ISO_FLAG_DESIGNATION 0x0040
459
460 /* If set, produce revision number sequence. */
461 #define CODING_ISO_FLAG_REVISION 0x0080
462
463 /* If set, produce ISO6429's direction specifying sequence. */
464 #define CODING_ISO_FLAG_DIRECTION 0x0100
465
466 /* If set, assume designation states are reset at beginning of line on
467 output. */
468 #define CODING_ISO_FLAG_INIT_AT_BOL 0x0200
469
470 /* If set, designation sequence should be placed at beginning of line
471 on output. */
472 #define CODING_ISO_FLAG_DESIGNATE_AT_BOL 0x0400
473
474 /* If set, do not encode unsafe characters on output. */
475 #define CODING_ISO_FLAG_SAFE 0x0800
476
477 /* If set, extra latin codes (128..159) are accepted as a valid code
478 on input. */
479 #define CODING_ISO_FLAG_LATIN_EXTRA 0x1000
480
481 #define CODING_ISO_FLAG_COMPOSITION 0x2000
482
483 /* #define CODING_ISO_FLAG_EUC_TW_SHIFT 0x4000 */
484
485 #define CODING_ISO_FLAG_USE_ROMAN 0x8000
486
487 #define CODING_ISO_FLAG_USE_OLDJIS 0x10000
488
489 #define CODING_ISO_FLAG_FULL_SUPPORT 0x100000
490
491 /* A character to be produced on output if encoding of the original
492 character is prohibited by CODING_ISO_FLAG_SAFE. */
493 #define CODING_INHIBIT_CHARACTER_SUBSTITUTION '?'
494
495 /* UTF-8 section */
496 #define CODING_UTF_8_BOM(coding) \
497 ((coding)->spec.utf_8_bom)
498
499 /* UTF-16 section */
500 #define CODING_UTF_16_BOM(coding) \
501 ((coding)->spec.utf_16.bom)
502
503 #define CODING_UTF_16_ENDIAN(coding) \
504 ((coding)->spec.utf_16.endian)
505
506 #define CODING_UTF_16_SURROGATE(coding) \
507 ((coding)->spec.utf_16.surrogate)
508
509
510 /* CCL section */
511 #define CODING_CCL_DECODER(coding) \
512 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_decoder)
513 #define CODING_CCL_ENCODER(coding) \
514 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_encoder)
515 #define CODING_CCL_VALIDS(coding) \
516 (SDATA (AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_valids)))
517
518 /* Index for each coding category in `coding_categories' */
519
520 enum coding_category
521 {
522 coding_category_iso_7,
523 coding_category_iso_7_tight,
524 coding_category_iso_8_1,
525 coding_category_iso_8_2,
526 coding_category_iso_7_else,
527 coding_category_iso_8_else,
528 coding_category_utf_8_auto,
529 coding_category_utf_8_nosig,
530 coding_category_utf_8_sig,
531 coding_category_utf_16_auto,
532 coding_category_utf_16_be,
533 coding_category_utf_16_le,
534 coding_category_utf_16_be_nosig,
535 coding_category_utf_16_le_nosig,
536 coding_category_charset,
537 coding_category_sjis,
538 coding_category_big5,
539 coding_category_ccl,
540 coding_category_emacs_mule,
541 /* All above are targets of code detection. */
542 coding_category_raw_text,
543 coding_category_undecided,
544 coding_category_max
545 };
546
547 /* Definitions of flag bits used in detect_coding_XXXX. */
548 #define CATEGORY_MASK_ISO_7 (1 << coding_category_iso_7)
549 #define CATEGORY_MASK_ISO_7_TIGHT (1 << coding_category_iso_7_tight)
550 #define CATEGORY_MASK_ISO_8_1 (1 << coding_category_iso_8_1)
551 #define CATEGORY_MASK_ISO_8_2 (1 << coding_category_iso_8_2)
552 #define CATEGORY_MASK_ISO_7_ELSE (1 << coding_category_iso_7_else)
553 #define CATEGORY_MASK_ISO_8_ELSE (1 << coding_category_iso_8_else)
554 #define CATEGORY_MASK_UTF_8_AUTO (1 << coding_category_utf_8_auto)
555 #define CATEGORY_MASK_UTF_8_NOSIG (1 << coding_category_utf_8_nosig)
556 #define CATEGORY_MASK_UTF_8_SIG (1 << coding_category_utf_8_sig)
557 #define CATEGORY_MASK_UTF_16_AUTO (1 << coding_category_utf_16_auto)
558 #define CATEGORY_MASK_UTF_16_BE (1 << coding_category_utf_16_be)
559 #define CATEGORY_MASK_UTF_16_LE (1 << coding_category_utf_16_le)
560 #define CATEGORY_MASK_UTF_16_BE_NOSIG (1 << coding_category_utf_16_be_nosig)
561 #define CATEGORY_MASK_UTF_16_LE_NOSIG (1 << coding_category_utf_16_le_nosig)
562 #define CATEGORY_MASK_CHARSET (1 << coding_category_charset)
563 #define CATEGORY_MASK_SJIS (1 << coding_category_sjis)
564 #define CATEGORY_MASK_BIG5 (1 << coding_category_big5)
565 #define CATEGORY_MASK_CCL (1 << coding_category_ccl)
566 #define CATEGORY_MASK_EMACS_MULE (1 << coding_category_emacs_mule)
567 #define CATEGORY_MASK_RAW_TEXT (1 << coding_category_raw_text)
568
569 /* This value is returned if detect_coding_mask () find nothing other
570 than ASCII characters. */
571 #define CATEGORY_MASK_ANY \
572 (CATEGORY_MASK_ISO_7 \
573 | CATEGORY_MASK_ISO_7_TIGHT \
574 | CATEGORY_MASK_ISO_8_1 \
575 | CATEGORY_MASK_ISO_8_2 \
576 | CATEGORY_MASK_ISO_7_ELSE \
577 | CATEGORY_MASK_ISO_8_ELSE \
578 | CATEGORY_MASK_UTF_8_AUTO \
579 | CATEGORY_MASK_UTF_8_NOSIG \
580 | CATEGORY_MASK_UTF_8_SIG \
581 | CATEGORY_MASK_UTF_16_AUTO \
582 | CATEGORY_MASK_UTF_16_BE \
583 | CATEGORY_MASK_UTF_16_LE \
584 | CATEGORY_MASK_UTF_16_BE_NOSIG \
585 | CATEGORY_MASK_UTF_16_LE_NOSIG \
586 | CATEGORY_MASK_CHARSET \
587 | CATEGORY_MASK_SJIS \
588 | CATEGORY_MASK_BIG5 \
589 | CATEGORY_MASK_CCL \
590 | CATEGORY_MASK_EMACS_MULE)
591
592
593 #define CATEGORY_MASK_ISO_7BIT \
594 (CATEGORY_MASK_ISO_7 | CATEGORY_MASK_ISO_7_TIGHT)
595
596 #define CATEGORY_MASK_ISO_8BIT \
597 (CATEGORY_MASK_ISO_8_1 | CATEGORY_MASK_ISO_8_2)
598
599 #define CATEGORY_MASK_ISO_ELSE \
600 (CATEGORY_MASK_ISO_7_ELSE | CATEGORY_MASK_ISO_8_ELSE)
601
602 #define CATEGORY_MASK_ISO_ESCAPE \
603 (CATEGORY_MASK_ISO_7 \
604 | CATEGORY_MASK_ISO_7_TIGHT \
605 | CATEGORY_MASK_ISO_7_ELSE \
606 | CATEGORY_MASK_ISO_8_ELSE)
607
608 #define CATEGORY_MASK_ISO \
609 ( CATEGORY_MASK_ISO_7BIT \
610 | CATEGORY_MASK_ISO_8BIT \
611 | CATEGORY_MASK_ISO_ELSE)
612
613 #define CATEGORY_MASK_UTF_16 \
614 (CATEGORY_MASK_UTF_16_AUTO \
615 | CATEGORY_MASK_UTF_16_BE \
616 | CATEGORY_MASK_UTF_16_LE \
617 | CATEGORY_MASK_UTF_16_BE_NOSIG \
618 | CATEGORY_MASK_UTF_16_LE_NOSIG)
619
620 #define CATEGORY_MASK_UTF_8 \
621 (CATEGORY_MASK_UTF_8_AUTO \
622 | CATEGORY_MASK_UTF_8_NOSIG \
623 | CATEGORY_MASK_UTF_8_SIG)
624
625 /* Table of coding categories (Lisp symbols). This variable is for
626 internal use only. */
627 static Lisp_Object Vcoding_category_table;
628
629 /* Table of coding-categories ordered by priority. */
630 static enum coding_category coding_priorities[coding_category_max];
631
632 /* Nth element is a coding context for the coding system bound to the
633 Nth coding category. */
634 static struct coding_system coding_categories[coding_category_max];
635
636 /*** Commonly used macros and functions ***/
637
638 #ifndef min
639 #define min(a, b) ((a) < (b) ? (a) : (b))
640 #endif
641 #ifndef max
642 #define max(a, b) ((a) > (b) ? (a) : (b))
643 #endif
644
645 #define CODING_GET_INFO(coding, attrs, charset_list) \
646 do { \
647 (attrs) = CODING_ID_ATTRS ((coding)->id); \
648 (charset_list) = CODING_ATTR_CHARSET_LIST (attrs); \
649 } while (0)
650
651
652 /* Safely get one byte from the source text pointed by SRC which ends
653 at SRC_END, and set C to that byte. If there are not enough bytes
654 in the source, it jumps to `no_more_source'. If multibytep is
655 nonzero, and a multibyte character is found at SRC, set C to the
656 negative value of the character code. The caller should declare
657 and set these variables appropriately in advance:
658 src, src_end, multibytep */
659
660 #define ONE_MORE_BYTE(c) \
661 do { \
662 if (src == src_end) \
663 { \
664 if (src_base < src) \
665 record_conversion_result \
666 (coding, CODING_RESULT_INSUFFICIENT_SRC); \
667 goto no_more_source; \
668 } \
669 c = *src++; \
670 if (multibytep && (c & 0x80)) \
671 { \
672 if ((c & 0xFE) == 0xC0) \
673 c = ((c & 1) << 6) | *src++; \
674 else \
675 { \
676 src--; \
677 c = - string_char (src, &src, NULL); \
678 record_conversion_result \
679 (coding, CODING_RESULT_INVALID_SRC); \
680 } \
681 } \
682 consumed_chars++; \
683 } while (0)
684
685 /* Safely get two bytes from the source text pointed by SRC which ends
686 at SRC_END, and set C1 and C2 to those bytes while skipping the
687 heading multibyte characters. If there are not enough bytes in the
688 source, it jumps to `no_more_source'. If multibytep is nonzero and
689 a multibyte character is found for C2, set C2 to the negative value
690 of the character code. The caller should declare and set these
691 variables appropriately in advance:
692 src, src_end, multibytep
693 It is intended that this macro is used in detect_coding_utf_16. */
694
695 #define TWO_MORE_BYTES(c1, c2) \
696 do { \
697 do { \
698 if (src == src_end) \
699 goto no_more_source; \
700 c1 = *src++; \
701 if (multibytep && (c1 & 0x80)) \
702 { \
703 if ((c1 & 0xFE) == 0xC0) \
704 c1 = ((c1 & 1) << 6) | *src++; \
705 else \
706 { \
707 src += BYTES_BY_CHAR_HEAD (c1) - 1; \
708 c1 = -1; \
709 } \
710 } \
711 } while (c1 < 0); \
712 if (src == src_end) \
713 goto no_more_source; \
714 c2 = *src++; \
715 if (multibytep && (c2 & 0x80)) \
716 { \
717 if ((c2 & 0xFE) == 0xC0) \
718 c2 = ((c2 & 1) << 6) | *src++; \
719 else \
720 c2 = -1; \
721 } \
722 } while (0)
723
724
725 /* Store a byte C in the place pointed by DST and increment DST to the
726 next free point, and increment PRODUCED_CHARS. The caller should
727 assure that C is 0..127, and declare and set the variable `dst'
728 appropriately in advance.
729 */
730
731
732 #define EMIT_ONE_ASCII_BYTE(c) \
733 do { \
734 produced_chars++; \
735 *dst++ = (c); \
736 } while (0)
737
738
739 /* Like EMIT_ONE_ASCII_BYTE but store two bytes; C1 and C2. */
740
741 #define EMIT_TWO_ASCII_BYTES(c1, c2) \
742 do { \
743 produced_chars += 2; \
744 *dst++ = (c1), *dst++ = (c2); \
745 } while (0)
746
747
748 /* Store a byte C in the place pointed by DST and increment DST to the
749 next free point, and increment PRODUCED_CHARS. If MULTIBYTEP is
750 nonzero, store in an appropriate multibyte from. The caller should
751 declare and set the variables `dst' and `multibytep' appropriately
752 in advance. */
753
754 #define EMIT_ONE_BYTE(c) \
755 do { \
756 produced_chars++; \
757 if (multibytep) \
758 { \
759 unsigned ch = (c); \
760 if (ch >= 0x80) \
761 ch = BYTE8_TO_CHAR (ch); \
762 CHAR_STRING_ADVANCE (ch, dst); \
763 } \
764 else \
765 *dst++ = (c); \
766 } while (0)
767
768
769 /* Like EMIT_ONE_BYTE, but emit two bytes; C1 and C2. */
770
771 #define EMIT_TWO_BYTES(c1, c2) \
772 do { \
773 produced_chars += 2; \
774 if (multibytep) \
775 { \
776 unsigned ch; \
777 \
778 ch = (c1); \
779 if (ch >= 0x80) \
780 ch = BYTE8_TO_CHAR (ch); \
781 CHAR_STRING_ADVANCE (ch, dst); \
782 ch = (c2); \
783 if (ch >= 0x80) \
784 ch = BYTE8_TO_CHAR (ch); \
785 CHAR_STRING_ADVANCE (ch, dst); \
786 } \
787 else \
788 { \
789 *dst++ = (c1); \
790 *dst++ = (c2); \
791 } \
792 } while (0)
793
794
795 #define EMIT_THREE_BYTES(c1, c2, c3) \
796 do { \
797 EMIT_ONE_BYTE (c1); \
798 EMIT_TWO_BYTES (c2, c3); \
799 } while (0)
800
801
802 #define EMIT_FOUR_BYTES(c1, c2, c3, c4) \
803 do { \
804 EMIT_TWO_BYTES (c1, c2); \
805 EMIT_TWO_BYTES (c3, c4); \
806 } while (0)
807
808
809 /* Prototypes for static functions. */
810 static void record_conversion_result (struct coding_system *coding,
811 enum coding_result_code result);
812 static int detect_coding_utf_8 (struct coding_system *,
813 struct coding_detection_info *info);
814 static void decode_coding_utf_8 (struct coding_system *);
815 static int encode_coding_utf_8 (struct coding_system *);
816
817 static int detect_coding_utf_16 (struct coding_system *,
818 struct coding_detection_info *info);
819 static void decode_coding_utf_16 (struct coding_system *);
820 static int encode_coding_utf_16 (struct coding_system *);
821
822 static int detect_coding_iso_2022 (struct coding_system *,
823 struct coding_detection_info *info);
824 static void decode_coding_iso_2022 (struct coding_system *);
825 static int encode_coding_iso_2022 (struct coding_system *);
826
827 static int detect_coding_emacs_mule (struct coding_system *,
828 struct coding_detection_info *info);
829 static void decode_coding_emacs_mule (struct coding_system *);
830 static int encode_coding_emacs_mule (struct coding_system *);
831
832 static int detect_coding_sjis (struct coding_system *,
833 struct coding_detection_info *info);
834 static void decode_coding_sjis (struct coding_system *);
835 static int encode_coding_sjis (struct coding_system *);
836
837 static int detect_coding_big5 (struct coding_system *,
838 struct coding_detection_info *info);
839 static void decode_coding_big5 (struct coding_system *);
840 static int encode_coding_big5 (struct coding_system *);
841
842 static int detect_coding_ccl (struct coding_system *,
843 struct coding_detection_info *info);
844 static void decode_coding_ccl (struct coding_system *);
845 static int encode_coding_ccl (struct coding_system *);
846
847 static void decode_coding_raw_text (struct coding_system *);
848 static int encode_coding_raw_text (struct coding_system *);
849
850 static void coding_set_source (struct coding_system *);
851 static void coding_set_destination (struct coding_system *);
852 static void coding_alloc_by_realloc (struct coding_system *, EMACS_INT);
853 static void coding_alloc_by_making_gap (struct coding_system *,
854 EMACS_INT, EMACS_INT);
855 static unsigned char *alloc_destination (struct coding_system *,
856 EMACS_INT, unsigned char *);
857 static void setup_iso_safe_charsets (Lisp_Object);
858 static unsigned char *encode_designation_at_bol (struct coding_system *,
859 int *, unsigned char *);
860 static int detect_eol (const unsigned char *,
861 EMACS_INT, enum coding_category);
862 static Lisp_Object adjust_coding_eol_type (struct coding_system *, int);
863 static void decode_eol (struct coding_system *);
864 static Lisp_Object get_translation_table (Lisp_Object, int, int *);
865 static Lisp_Object get_translation (Lisp_Object, int *, int *);
866 static int produce_chars (struct coding_system *, Lisp_Object, int);
867 static INLINE void produce_charset (struct coding_system *, int *,
868 EMACS_INT);
869 static void produce_annotation (struct coding_system *, EMACS_INT);
870 static int decode_coding (struct coding_system *);
871 static INLINE int *handle_composition_annotation (EMACS_INT, EMACS_INT,
872 struct coding_system *,
873 int *, EMACS_INT *);
874 static INLINE int *handle_charset_annotation (EMACS_INT, EMACS_INT,
875 struct coding_system *,
876 int *, EMACS_INT *);
877 static void consume_chars (struct coding_system *, Lisp_Object, int);
878 static int encode_coding (struct coding_system *);
879 static Lisp_Object make_conversion_work_buffer (int);
880 static Lisp_Object code_conversion_restore (Lisp_Object);
881 static INLINE int char_encodable_p (int, Lisp_Object);
882 static Lisp_Object make_subsidiaries (Lisp_Object);
883
884 static void
885 record_conversion_result (struct coding_system *coding,
886 enum coding_result_code result)
887 {
888 coding->result = result;
889 switch (result)
890 {
891 case CODING_RESULT_INSUFFICIENT_SRC:
892 Vlast_code_conversion_error = Qinsufficient_source;
893 break;
894 case CODING_RESULT_INCONSISTENT_EOL:
895 Vlast_code_conversion_error = Qinconsistent_eol;
896 break;
897 case CODING_RESULT_INVALID_SRC:
898 Vlast_code_conversion_error = Qinvalid_source;
899 break;
900 case CODING_RESULT_INTERRUPT:
901 Vlast_code_conversion_error = Qinterrupted;
902 break;
903 case CODING_RESULT_INSUFFICIENT_MEM:
904 Vlast_code_conversion_error = Qinsufficient_memory;
905 break;
906 case CODING_RESULT_INSUFFICIENT_DST:
907 /* Don't record this error in Vlast_code_conversion_error
908 because it happens just temporarily and is resolved when the
909 whole conversion is finished. */
910 break;
911 case CODING_RESULT_SUCCESS:
912 break;
913 default:
914 Vlast_code_conversion_error = intern ("Unknown error");
915 }
916 }
917
918 /* This wrapper macro is used to preserve validity of pointers into
919 buffer text across calls to decode_char, which could cause
920 relocation of buffers if it loads a charset map, because loading a
921 charset map allocates large structures. */
922 #define CODING_DECODE_CHAR(coding, src, src_base, src_end, charset, code, c) \
923 do { \
924 charset_map_loaded = 0; \
925 c = DECODE_CHAR (charset, code); \
926 if (charset_map_loaded) \
927 { \
928 const unsigned char *orig = coding->source; \
929 EMACS_INT offset; \
930 \
931 coding_set_source (coding); \
932 offset = coding->source - orig; \
933 src += offset; \
934 src_base += offset; \
935 src_end += offset; \
936 } \
937 } while (0)
938
939
940 /* If there are at least BYTES length of room at dst, allocate memory
941 for coding->destination and update dst and dst_end. We don't have
942 to take care of coding->source which will be relocated. It is
943 handled by calling coding_set_source in encode_coding. */
944
945 #define ASSURE_DESTINATION(bytes) \
946 do { \
947 if (dst + (bytes) >= dst_end) \
948 { \
949 EMACS_INT more_bytes = charbuf_end - charbuf + (bytes); \
950 \
951 dst = alloc_destination (coding, more_bytes, dst); \
952 dst_end = coding->destination + coding->dst_bytes; \
953 } \
954 } while (0)
955
956
957 /* Store multibyte form of the character C in P, and advance P to the
958 end of the multibyte form. This is like CHAR_STRING_ADVANCE but it
959 never calls MAYBE_UNIFY_CHAR. */
960
961 #define CHAR_STRING_ADVANCE_NO_UNIFY(c, p) \
962 do { \
963 if ((c) <= MAX_1_BYTE_CHAR) \
964 *(p)++ = (c); \
965 else if ((c) <= MAX_2_BYTE_CHAR) \
966 *(p)++ = (0xC0 | ((c) >> 6)), \
967 *(p)++ = (0x80 | ((c) & 0x3F)); \
968 else if ((c) <= MAX_3_BYTE_CHAR) \
969 *(p)++ = (0xE0 | ((c) >> 12)), \
970 *(p)++ = (0x80 | (((c) >> 6) & 0x3F)), \
971 *(p)++ = (0x80 | ((c) & 0x3F)); \
972 else if ((c) <= MAX_4_BYTE_CHAR) \
973 *(p)++ = (0xF0 | (c >> 18)), \
974 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
975 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
976 *(p)++ = (0x80 | (c & 0x3F)); \
977 else if ((c) <= MAX_5_BYTE_CHAR) \
978 *(p)++ = 0xF8, \
979 *(p)++ = (0x80 | ((c >> 18) & 0x0F)), \
980 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
981 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
982 *(p)++ = (0x80 | (c & 0x3F)); \
983 else \
984 (p) += BYTE8_STRING ((c) - 0x3FFF80, p); \
985 } while (0)
986
987
988 /* Return the character code of character whose multibyte form is at
989 P, and advance P to the end of the multibyte form. This is like
990 STRING_CHAR_ADVANCE, but it never calls MAYBE_UNIFY_CHAR. */
991
992 #define STRING_CHAR_ADVANCE_NO_UNIFY(p) \
993 (!((p)[0] & 0x80) \
994 ? *(p)++ \
995 : ! ((p)[0] & 0x20) \
996 ? ((p) += 2, \
997 ((((p)[-2] & 0x1F) << 6) \
998 | ((p)[-1] & 0x3F) \
999 | ((unsigned char) ((p)[-2]) < 0xC2 ? 0x3FFF80 : 0))) \
1000 : ! ((p)[0] & 0x10) \
1001 ? ((p) += 3, \
1002 ((((p)[-3] & 0x0F) << 12) \
1003 | (((p)[-2] & 0x3F) << 6) \
1004 | ((p)[-1] & 0x3F))) \
1005 : ! ((p)[0] & 0x08) \
1006 ? ((p) += 4, \
1007 ((((p)[-4] & 0xF) << 18) \
1008 | (((p)[-3] & 0x3F) << 12) \
1009 | (((p)[-2] & 0x3F) << 6) \
1010 | ((p)[-1] & 0x3F))) \
1011 : ((p) += 5, \
1012 ((((p)[-4] & 0x3F) << 18) \
1013 | (((p)[-3] & 0x3F) << 12) \
1014 | (((p)[-2] & 0x3F) << 6) \
1015 | ((p)[-1] & 0x3F))))
1016
1017
1018 static void
1019 coding_set_source (struct coding_system *coding)
1020 {
1021 if (BUFFERP (coding->src_object))
1022 {
1023 struct buffer *buf = XBUFFER (coding->src_object);
1024
1025 if (coding->src_pos < 0)
1026 coding->source = BUF_GAP_END_ADDR (buf) + coding->src_pos_byte;
1027 else
1028 coding->source = BUF_BYTE_ADDRESS (buf, coding->src_pos_byte);
1029 }
1030 else if (STRINGP (coding->src_object))
1031 {
1032 coding->source = SDATA (coding->src_object) + coding->src_pos_byte;
1033 }
1034 else
1035 {
1036 /* Otherwise, the source is C string and is never relocated
1037 automatically. Thus we don't have to update anything. */
1038 }
1039 }
1040
1041 static void
1042 coding_set_destination (struct coding_system *coding)
1043 {
1044 if (BUFFERP (coding->dst_object))
1045 {
1046 if (coding->src_pos < 0)
1047 {
1048 coding->destination = BEG_ADDR + coding->dst_pos_byte - BEG_BYTE;
1049 coding->dst_bytes = (GAP_END_ADDR
1050 - (coding->src_bytes - coding->consumed)
1051 - coding->destination);
1052 }
1053 else
1054 {
1055 /* We are sure that coding->dst_pos_byte is before the gap
1056 of the buffer. */
1057 coding->destination = (BUF_BEG_ADDR (XBUFFER (coding->dst_object))
1058 + coding->dst_pos_byte - BEG_BYTE);
1059 coding->dst_bytes = (BUF_GAP_END_ADDR (XBUFFER (coding->dst_object))
1060 - coding->destination);
1061 }
1062 }
1063 else
1064 {
1065 /* Otherwise, the destination is C string and is never relocated
1066 automatically. Thus we don't have to update anything. */
1067 }
1068 }
1069
1070
1071 static void
1072 coding_alloc_by_realloc (struct coding_system *coding, EMACS_INT bytes)
1073 {
1074 coding->destination = (unsigned char *) xrealloc (coding->destination,
1075 coding->dst_bytes + bytes);
1076 coding->dst_bytes += bytes;
1077 }
1078
1079 static void
1080 coding_alloc_by_making_gap (struct coding_system *coding,
1081 EMACS_INT gap_head_used, EMACS_INT bytes)
1082 {
1083 if (EQ (coding->src_object, coding->dst_object))
1084 {
1085 /* The gap may contain the produced data at the head and not-yet
1086 consumed data at the tail. To preserve those data, we at
1087 first make the gap size to zero, then increase the gap
1088 size. */
1089 EMACS_INT add = GAP_SIZE;
1090
1091 GPT += gap_head_used, GPT_BYTE += gap_head_used;
1092 GAP_SIZE = 0; ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
1093 make_gap (bytes);
1094 GAP_SIZE += add; ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
1095 GPT -= gap_head_used, GPT_BYTE -= gap_head_used;
1096 }
1097 else
1098 {
1099 Lisp_Object this_buffer;
1100
1101 this_buffer = Fcurrent_buffer ();
1102 set_buffer_internal (XBUFFER (coding->dst_object));
1103 make_gap (bytes);
1104 set_buffer_internal (XBUFFER (this_buffer));
1105 }
1106 }
1107
1108
1109 static unsigned char *
1110 alloc_destination (struct coding_system *coding, EMACS_INT nbytes,
1111 unsigned char *dst)
1112 {
1113 EMACS_INT offset = dst - coding->destination;
1114
1115 if (BUFFERP (coding->dst_object))
1116 {
1117 struct buffer *buf = XBUFFER (coding->dst_object);
1118
1119 coding_alloc_by_making_gap (coding, dst - BUF_GPT_ADDR (buf), nbytes);
1120 }
1121 else
1122 coding_alloc_by_realloc (coding, nbytes);
1123 coding_set_destination (coding);
1124 dst = coding->destination + offset;
1125 return dst;
1126 }
1127
1128 /** Macros for annotations. */
1129
1130 /* An annotation data is stored in the array coding->charbuf in this
1131 format:
1132 [ -LENGTH ANNOTATION_MASK NCHARS ... ]
1133 LENGTH is the number of elements in the annotation.
1134 ANNOTATION_MASK is one of CODING_ANNOTATE_XXX_MASK.
1135 NCHARS is the number of characters in the text annotated.
1136
1137 The format of the following elements depend on ANNOTATION_MASK.
1138
1139 In the case of CODING_ANNOTATE_COMPOSITION_MASK, these elements
1140 follows:
1141 ... NBYTES METHOD [ COMPOSITION-COMPONENTS ... ]
1142
1143 NBYTES is the number of bytes specified in the header part of
1144 old-style emacs-mule encoding, or 0 for the other kind of
1145 composition.
1146
1147 METHOD is one of enum composition_method.
1148
1149 Optional COMPOSITION-COMPONENTS are characters and composition
1150 rules.
1151
1152 In the case of CODING_ANNOTATE_CHARSET_MASK, one element CHARSET-ID
1153 follows.
1154
1155 If ANNOTATION_MASK is 0, this annotation is just a space holder to
1156 recover from an invalid annotation, and should be skipped by
1157 produce_annotation. */
1158
1159 /* Maximum length of the header of annotation data. */
1160 #define MAX_ANNOTATION_LENGTH 5
1161
1162 #define ADD_ANNOTATION_DATA(buf, len, mask, nchars) \
1163 do { \
1164 *(buf)++ = -(len); \
1165 *(buf)++ = (mask); \
1166 *(buf)++ = (nchars); \
1167 coding->annotated = 1; \
1168 } while (0);
1169
1170 #define ADD_COMPOSITION_DATA(buf, nchars, nbytes, method) \
1171 do { \
1172 ADD_ANNOTATION_DATA (buf, 5, CODING_ANNOTATE_COMPOSITION_MASK, nchars); \
1173 *buf++ = nbytes; \
1174 *buf++ = method; \
1175 } while (0)
1176
1177
1178 #define ADD_CHARSET_DATA(buf, nchars, id) \
1179 do { \
1180 ADD_ANNOTATION_DATA (buf, 4, CODING_ANNOTATE_CHARSET_MASK, nchars); \
1181 *buf++ = id; \
1182 } while (0)
1183
1184 \f
1185 /*** 2. Emacs' internal format (emacs-utf-8) ***/
1186
1187
1188
1189 \f
1190 /*** 3. UTF-8 ***/
1191
1192 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1193 Check if a text is encoded in UTF-8. If it is, return 1, else
1194 return 0. */
1195
1196 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
1197 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
1198 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
1199 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
1200 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
1201 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
1202
1203 #define UTF_8_BOM_1 0xEF
1204 #define UTF_8_BOM_2 0xBB
1205 #define UTF_8_BOM_3 0xBF
1206
1207 static int
1208 detect_coding_utf_8 (struct coding_system *coding,
1209 struct coding_detection_info *detect_info)
1210 {
1211 const unsigned char *src = coding->source, *src_base;
1212 const unsigned char *src_end = coding->source + coding->src_bytes;
1213 int multibytep = coding->src_multibyte;
1214 EMACS_INT consumed_chars = 0;
1215 int bom_found = 0;
1216 int found = 0;
1217
1218 detect_info->checked |= CATEGORY_MASK_UTF_8;
1219 /* A coding system of this category is always ASCII compatible. */
1220 src += coding->head_ascii;
1221
1222 while (1)
1223 {
1224 int c, c1, c2, c3, c4;
1225
1226 src_base = src;
1227 ONE_MORE_BYTE (c);
1228 if (c < 0 || UTF_8_1_OCTET_P (c))
1229 continue;
1230 ONE_MORE_BYTE (c1);
1231 if (c1 < 0 || ! UTF_8_EXTRA_OCTET_P (c1))
1232 break;
1233 if (UTF_8_2_OCTET_LEADING_P (c))
1234 {
1235 found = 1;
1236 continue;
1237 }
1238 ONE_MORE_BYTE (c2);
1239 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1240 break;
1241 if (UTF_8_3_OCTET_LEADING_P (c))
1242 {
1243 found = 1;
1244 if (src_base == coding->source
1245 && c == UTF_8_BOM_1 && c1 == UTF_8_BOM_2 && c2 == UTF_8_BOM_3)
1246 bom_found = 1;
1247 continue;
1248 }
1249 ONE_MORE_BYTE (c3);
1250 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1251 break;
1252 if (UTF_8_4_OCTET_LEADING_P (c))
1253 {
1254 found = 1;
1255 continue;
1256 }
1257 ONE_MORE_BYTE (c4);
1258 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1259 break;
1260 if (UTF_8_5_OCTET_LEADING_P (c))
1261 {
1262 found = 1;
1263 continue;
1264 }
1265 break;
1266 }
1267 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1268 return 0;
1269
1270 no_more_source:
1271 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1272 {
1273 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1274 return 0;
1275 }
1276 if (bom_found)
1277 {
1278 /* The first character 0xFFFE doesn't necessarily mean a BOM. */
1279 detect_info->found |= CATEGORY_MASK_UTF_8_SIG | CATEGORY_MASK_UTF_8_NOSIG;
1280 }
1281 else
1282 {
1283 detect_info->rejected |= CATEGORY_MASK_UTF_8_SIG;
1284 if (found)
1285 detect_info->found |= CATEGORY_MASK_UTF_8_NOSIG;
1286 }
1287 return 1;
1288 }
1289
1290
1291 static void
1292 decode_coding_utf_8 (struct coding_system *coding)
1293 {
1294 const unsigned char *src = coding->source + coding->consumed;
1295 const unsigned char *src_end = coding->source + coding->src_bytes;
1296 const unsigned char *src_base;
1297 int *charbuf = coding->charbuf + coding->charbuf_used;
1298 int *charbuf_end = coding->charbuf + coding->charbuf_size;
1299 EMACS_INT consumed_chars = 0, consumed_chars_base = 0;
1300 int multibytep = coding->src_multibyte;
1301 enum utf_bom_type bom = CODING_UTF_8_BOM (coding);
1302 int eol_dos =
1303 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1304 int byte_after_cr = -1;
1305
1306 if (bom != utf_without_bom)
1307 {
1308 int c1, c2, c3;
1309
1310 src_base = src;
1311 ONE_MORE_BYTE (c1);
1312 if (! UTF_8_3_OCTET_LEADING_P (c1))
1313 src = src_base;
1314 else
1315 {
1316 ONE_MORE_BYTE (c2);
1317 if (! UTF_8_EXTRA_OCTET_P (c2))
1318 src = src_base;
1319 else
1320 {
1321 ONE_MORE_BYTE (c3);
1322 if (! UTF_8_EXTRA_OCTET_P (c3))
1323 src = src_base;
1324 else
1325 {
1326 if ((c1 != UTF_8_BOM_1)
1327 || (c2 != UTF_8_BOM_2) || (c3 != UTF_8_BOM_3))
1328 src = src_base;
1329 else
1330 CODING_UTF_8_BOM (coding) = utf_without_bom;
1331 }
1332 }
1333 }
1334 }
1335 CODING_UTF_8_BOM (coding) = utf_without_bom;
1336
1337 while (1)
1338 {
1339 int c, c1, c2, c3, c4, c5;
1340
1341 src_base = src;
1342 consumed_chars_base = consumed_chars;
1343
1344 if (charbuf >= charbuf_end)
1345 {
1346 if (byte_after_cr >= 0)
1347 src_base--;
1348 break;
1349 }
1350
1351 if (byte_after_cr >= 0)
1352 c1 = byte_after_cr, byte_after_cr = -1;
1353 else
1354 ONE_MORE_BYTE (c1);
1355 if (c1 < 0)
1356 {
1357 c = - c1;
1358 }
1359 else if (UTF_8_1_OCTET_P (c1))
1360 {
1361 if (eol_dos && c1 == '\r')
1362 ONE_MORE_BYTE (byte_after_cr);
1363 c = c1;
1364 }
1365 else
1366 {
1367 ONE_MORE_BYTE (c2);
1368 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1369 goto invalid_code;
1370 if (UTF_8_2_OCTET_LEADING_P (c1))
1371 {
1372 c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
1373 /* Reject overlong sequences here and below. Encoders
1374 producing them are incorrect, they can be misleading,
1375 and they mess up read/write invariance. */
1376 if (c < 128)
1377 goto invalid_code;
1378 }
1379 else
1380 {
1381 ONE_MORE_BYTE (c3);
1382 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1383 goto invalid_code;
1384 if (UTF_8_3_OCTET_LEADING_P (c1))
1385 {
1386 c = (((c1 & 0xF) << 12)
1387 | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
1388 if (c < 0x800
1389 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
1390 goto invalid_code;
1391 }
1392 else
1393 {
1394 ONE_MORE_BYTE (c4);
1395 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1396 goto invalid_code;
1397 if (UTF_8_4_OCTET_LEADING_P (c1))
1398 {
1399 c = (((c1 & 0x7) << 18) | ((c2 & 0x3F) << 12)
1400 | ((c3 & 0x3F) << 6) | (c4 & 0x3F));
1401 if (c < 0x10000)
1402 goto invalid_code;
1403 }
1404 else
1405 {
1406 ONE_MORE_BYTE (c5);
1407 if (c5 < 0 || ! UTF_8_EXTRA_OCTET_P (c5))
1408 goto invalid_code;
1409 if (UTF_8_5_OCTET_LEADING_P (c1))
1410 {
1411 c = (((c1 & 0x3) << 24) | ((c2 & 0x3F) << 18)
1412 | ((c3 & 0x3F) << 12) | ((c4 & 0x3F) << 6)
1413 | (c5 & 0x3F));
1414 if ((c > MAX_CHAR) || (c < 0x200000))
1415 goto invalid_code;
1416 }
1417 else
1418 goto invalid_code;
1419 }
1420 }
1421 }
1422 }
1423
1424 *charbuf++ = c;
1425 continue;
1426
1427 invalid_code:
1428 src = src_base;
1429 consumed_chars = consumed_chars_base;
1430 ONE_MORE_BYTE (c);
1431 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
1432 coding->errors++;
1433 }
1434
1435 no_more_source:
1436 coding->consumed_char += consumed_chars_base;
1437 coding->consumed = src_base - coding->source;
1438 coding->charbuf_used = charbuf - coding->charbuf;
1439 }
1440
1441
1442 static int
1443 encode_coding_utf_8 (struct coding_system *coding)
1444 {
1445 int multibytep = coding->dst_multibyte;
1446 int *charbuf = coding->charbuf;
1447 int *charbuf_end = charbuf + coding->charbuf_used;
1448 unsigned char *dst = coding->destination + coding->produced;
1449 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1450 EMACS_INT produced_chars = 0;
1451 int c;
1452
1453 if (CODING_UTF_8_BOM (coding) == utf_with_bom)
1454 {
1455 ASSURE_DESTINATION (3);
1456 EMIT_THREE_BYTES (UTF_8_BOM_1, UTF_8_BOM_2, UTF_8_BOM_3);
1457 CODING_UTF_8_BOM (coding) = utf_without_bom;
1458 }
1459
1460 if (multibytep)
1461 {
1462 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
1463
1464 while (charbuf < charbuf_end)
1465 {
1466 unsigned char str[MAX_MULTIBYTE_LENGTH], *p, *pend = str;
1467
1468 ASSURE_DESTINATION (safe_room);
1469 c = *charbuf++;
1470 if (CHAR_BYTE8_P (c))
1471 {
1472 c = CHAR_TO_BYTE8 (c);
1473 EMIT_ONE_BYTE (c);
1474 }
1475 else
1476 {
1477 CHAR_STRING_ADVANCE_NO_UNIFY (c, pend);
1478 for (p = str; p < pend; p++)
1479 EMIT_ONE_BYTE (*p);
1480 }
1481 }
1482 }
1483 else
1484 {
1485 int safe_room = MAX_MULTIBYTE_LENGTH;
1486
1487 while (charbuf < charbuf_end)
1488 {
1489 ASSURE_DESTINATION (safe_room);
1490 c = *charbuf++;
1491 if (CHAR_BYTE8_P (c))
1492 *dst++ = CHAR_TO_BYTE8 (c);
1493 else
1494 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
1495 produced_chars++;
1496 }
1497 }
1498 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1499 coding->produced_char += produced_chars;
1500 coding->produced = dst - coding->destination;
1501 return 0;
1502 }
1503
1504
1505 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1506 Check if a text is encoded in one of UTF-16 based coding systems.
1507 If it is, return 1, else return 0. */
1508
1509 #define UTF_16_HIGH_SURROGATE_P(val) \
1510 (((val) & 0xFC00) == 0xD800)
1511
1512 #define UTF_16_LOW_SURROGATE_P(val) \
1513 (((val) & 0xFC00) == 0xDC00)
1514
1515
1516 static int
1517 detect_coding_utf_16 (struct coding_system *coding,
1518 struct coding_detection_info *detect_info)
1519 {
1520 const unsigned char *src = coding->source;
1521 const unsigned char *src_end = coding->source + coding->src_bytes;
1522 int multibytep = coding->src_multibyte;
1523 int c1, c2;
1524
1525 detect_info->checked |= CATEGORY_MASK_UTF_16;
1526 if (coding->mode & CODING_MODE_LAST_BLOCK
1527 && (coding->src_chars & 1))
1528 {
1529 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1530 return 0;
1531 }
1532
1533 TWO_MORE_BYTES (c1, c2);
1534 if ((c1 == 0xFF) && (c2 == 0xFE))
1535 {
1536 detect_info->found |= (CATEGORY_MASK_UTF_16_LE
1537 | CATEGORY_MASK_UTF_16_AUTO);
1538 detect_info->rejected |= (CATEGORY_MASK_UTF_16_BE
1539 | CATEGORY_MASK_UTF_16_BE_NOSIG
1540 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1541 }
1542 else if ((c1 == 0xFE) && (c2 == 0xFF))
1543 {
1544 detect_info->found |= (CATEGORY_MASK_UTF_16_BE
1545 | CATEGORY_MASK_UTF_16_AUTO);
1546 detect_info->rejected |= (CATEGORY_MASK_UTF_16_LE
1547 | CATEGORY_MASK_UTF_16_BE_NOSIG
1548 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1549 }
1550 else if (c2 < 0)
1551 {
1552 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1553 return 0;
1554 }
1555 else
1556 {
1557 /* We check the dispersion of Eth and Oth bytes where E is even and
1558 O is odd. If both are high, we assume binary data.*/
1559 unsigned char e[256], o[256];
1560 unsigned e_num = 1, o_num = 1;
1561
1562 memset (e, 0, 256);
1563 memset (o, 0, 256);
1564 e[c1] = 1;
1565 o[c2] = 1;
1566
1567 detect_info->rejected |= (CATEGORY_MASK_UTF_16_AUTO
1568 |CATEGORY_MASK_UTF_16_BE
1569 | CATEGORY_MASK_UTF_16_LE);
1570
1571 while ((detect_info->rejected & CATEGORY_MASK_UTF_16)
1572 != CATEGORY_MASK_UTF_16)
1573 {
1574 TWO_MORE_BYTES (c1, c2);
1575 if (c2 < 0)
1576 break;
1577 if (! e[c1])
1578 {
1579 e[c1] = 1;
1580 e_num++;
1581 if (e_num >= 128)
1582 detect_info->rejected |= CATEGORY_MASK_UTF_16_BE_NOSIG;
1583 }
1584 if (! o[c2])
1585 {
1586 o[c2] = 1;
1587 o_num++;
1588 if (o_num >= 128)
1589 detect_info->rejected |= CATEGORY_MASK_UTF_16_LE_NOSIG;
1590 }
1591 }
1592 return 0;
1593 }
1594
1595 no_more_source:
1596 return 1;
1597 }
1598
1599 static void
1600 decode_coding_utf_16 (struct coding_system *coding)
1601 {
1602 const unsigned char *src = coding->source + coding->consumed;
1603 const unsigned char *src_end = coding->source + coding->src_bytes;
1604 const unsigned char *src_base;
1605 int *charbuf = coding->charbuf + coding->charbuf_used;
1606 /* We may produces at most 3 chars in one loop. */
1607 int *charbuf_end = coding->charbuf + coding->charbuf_size - 2;
1608 EMACS_INT consumed_chars = 0, consumed_chars_base = 0;
1609 int multibytep = coding->src_multibyte;
1610 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1611 enum utf_16_endian_type endian = CODING_UTF_16_ENDIAN (coding);
1612 int surrogate = CODING_UTF_16_SURROGATE (coding);
1613 int eol_dos =
1614 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1615 int byte_after_cr1 = -1, byte_after_cr2 = -1;
1616
1617 if (bom == utf_with_bom)
1618 {
1619 int c, c1, c2;
1620
1621 src_base = src;
1622 ONE_MORE_BYTE (c1);
1623 ONE_MORE_BYTE (c2);
1624 c = (c1 << 8) | c2;
1625
1626 if (endian == utf_16_big_endian
1627 ? c != 0xFEFF : c != 0xFFFE)
1628 {
1629 /* The first two bytes are not BOM. Treat them as bytes
1630 for a normal character. */
1631 src = src_base;
1632 coding->errors++;
1633 }
1634 CODING_UTF_16_BOM (coding) = utf_without_bom;
1635 }
1636 else if (bom == utf_detect_bom)
1637 {
1638 /* We have already tried to detect BOM and failed in
1639 detect_coding. */
1640 CODING_UTF_16_BOM (coding) = utf_without_bom;
1641 }
1642
1643 while (1)
1644 {
1645 int c, c1, c2;
1646
1647 src_base = src;
1648 consumed_chars_base = consumed_chars;
1649
1650 if (charbuf >= charbuf_end)
1651 {
1652 if (byte_after_cr1 >= 0)
1653 src_base -= 2;
1654 break;
1655 }
1656
1657 if (byte_after_cr1 >= 0)
1658 c1 = byte_after_cr1, byte_after_cr1 = -1;
1659 else
1660 ONE_MORE_BYTE (c1);
1661 if (c1 < 0)
1662 {
1663 *charbuf++ = -c1;
1664 continue;
1665 }
1666 if (byte_after_cr2 >= 0)
1667 c2 = byte_after_cr2, byte_after_cr2 = -1;
1668 else
1669 ONE_MORE_BYTE (c2);
1670 if (c2 < 0)
1671 {
1672 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
1673 *charbuf++ = -c2;
1674 continue;
1675 }
1676 c = (endian == utf_16_big_endian
1677 ? ((c1 << 8) | c2) : ((c2 << 8) | c1));
1678
1679 if (surrogate)
1680 {
1681 if (! UTF_16_LOW_SURROGATE_P (c))
1682 {
1683 if (endian == utf_16_big_endian)
1684 c1 = surrogate >> 8, c2 = surrogate & 0xFF;
1685 else
1686 c1 = surrogate & 0xFF, c2 = surrogate >> 8;
1687 *charbuf++ = c1;
1688 *charbuf++ = c2;
1689 coding->errors++;
1690 if (UTF_16_HIGH_SURROGATE_P (c))
1691 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1692 else
1693 *charbuf++ = c;
1694 }
1695 else
1696 {
1697 c = ((surrogate - 0xD800) << 10) | (c - 0xDC00);
1698 CODING_UTF_16_SURROGATE (coding) = surrogate = 0;
1699 *charbuf++ = 0x10000 + c;
1700 }
1701 }
1702 else
1703 {
1704 if (UTF_16_HIGH_SURROGATE_P (c))
1705 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1706 else
1707 {
1708 if (eol_dos && c == '\r')
1709 {
1710 ONE_MORE_BYTE (byte_after_cr1);
1711 ONE_MORE_BYTE (byte_after_cr2);
1712 }
1713 *charbuf++ = c;
1714 }
1715 }
1716 }
1717
1718 no_more_source:
1719 coding->consumed_char += consumed_chars_base;
1720 coding->consumed = src_base - coding->source;
1721 coding->charbuf_used = charbuf - coding->charbuf;
1722 }
1723
1724 static int
1725 encode_coding_utf_16 (struct coding_system *coding)
1726 {
1727 int multibytep = coding->dst_multibyte;
1728 int *charbuf = coding->charbuf;
1729 int *charbuf_end = charbuf + coding->charbuf_used;
1730 unsigned char *dst = coding->destination + coding->produced;
1731 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1732 int safe_room = 8;
1733 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1734 int big_endian = CODING_UTF_16_ENDIAN (coding) == utf_16_big_endian;
1735 EMACS_INT produced_chars = 0;
1736 int c;
1737
1738 if (bom != utf_without_bom)
1739 {
1740 ASSURE_DESTINATION (safe_room);
1741 if (big_endian)
1742 EMIT_TWO_BYTES (0xFE, 0xFF);
1743 else
1744 EMIT_TWO_BYTES (0xFF, 0xFE);
1745 CODING_UTF_16_BOM (coding) = utf_without_bom;
1746 }
1747
1748 while (charbuf < charbuf_end)
1749 {
1750 ASSURE_DESTINATION (safe_room);
1751 c = *charbuf++;
1752 if (c > MAX_UNICODE_CHAR)
1753 c = coding->default_char;
1754
1755 if (c < 0x10000)
1756 {
1757 if (big_endian)
1758 EMIT_TWO_BYTES (c >> 8, c & 0xFF);
1759 else
1760 EMIT_TWO_BYTES (c & 0xFF, c >> 8);
1761 }
1762 else
1763 {
1764 int c1, c2;
1765
1766 c -= 0x10000;
1767 c1 = (c >> 10) + 0xD800;
1768 c2 = (c & 0x3FF) + 0xDC00;
1769 if (big_endian)
1770 EMIT_FOUR_BYTES (c1 >> 8, c1 & 0xFF, c2 >> 8, c2 & 0xFF);
1771 else
1772 EMIT_FOUR_BYTES (c1 & 0xFF, c1 >> 8, c2 & 0xFF, c2 >> 8);
1773 }
1774 }
1775 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1776 coding->produced = dst - coding->destination;
1777 coding->produced_char += produced_chars;
1778 return 0;
1779 }
1780
1781 \f
1782 /*** 6. Old Emacs' internal format (emacs-mule) ***/
1783
1784 /* Emacs' internal format for representation of multiple character
1785 sets is a kind of multi-byte encoding, i.e. characters are
1786 represented by variable-length sequences of one-byte codes.
1787
1788 ASCII characters and control characters (e.g. `tab', `newline') are
1789 represented by one-byte sequences which are their ASCII codes, in
1790 the range 0x00 through 0x7F.
1791
1792 8-bit characters of the range 0x80..0x9F are represented by
1793 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
1794 code + 0x20).
1795
1796 8-bit characters of the range 0xA0..0xFF are represented by
1797 one-byte sequences which are their 8-bit code.
1798
1799 The other characters are represented by a sequence of `base
1800 leading-code', optional `extended leading-code', and one or two
1801 `position-code's. The length of the sequence is determined by the
1802 base leading-code. Leading-code takes the range 0x81 through 0x9D,
1803 whereas extended leading-code and position-code take the range 0xA0
1804 through 0xFF. See `charset.h' for more details about leading-code
1805 and position-code.
1806
1807 --- CODE RANGE of Emacs' internal format ---
1808 character set range
1809 ------------- -----
1810 ascii 0x00..0x7F
1811 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
1812 eight-bit-graphic 0xA0..0xBF
1813 ELSE 0x81..0x9D + [0xA0..0xFF]+
1814 ---------------------------------------------
1815
1816 As this is the internal character representation, the format is
1817 usually not used externally (i.e. in a file or in a data sent to a
1818 process). But, it is possible to have a text externally in this
1819 format (i.e. by encoding by the coding system `emacs-mule').
1820
1821 In that case, a sequence of one-byte codes has a slightly different
1822 form.
1823
1824 At first, all characters in eight-bit-control are represented by
1825 one-byte sequences which are their 8-bit code.
1826
1827 Next, character composition data are represented by the byte
1828 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
1829 where,
1830 METHOD is 0xF2 plus one of composition method (enum
1831 composition_method),
1832
1833 BYTES is 0xA0 plus a byte length of this composition data,
1834
1835 CHARS is 0xA0 plus a number of characters composed by this
1836 data,
1837
1838 COMPONENTs are characters of multibyte form or composition
1839 rules encoded by two-byte of ASCII codes.
1840
1841 In addition, for backward compatibility, the following formats are
1842 also recognized as composition data on decoding.
1843
1844 0x80 MSEQ ...
1845 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
1846
1847 Here,
1848 MSEQ is a multibyte form but in these special format:
1849 ASCII: 0xA0 ASCII_CODE+0x80,
1850 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
1851 RULE is a one byte code of the range 0xA0..0xF0 that
1852 represents a composition rule.
1853 */
1854
1855 char emacs_mule_bytes[256];
1856
1857
1858 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1859 Check if a text is encoded in `emacs-mule'. If it is, return 1,
1860 else return 0. */
1861
1862 static int
1863 detect_coding_emacs_mule (struct coding_system *coding,
1864 struct coding_detection_info *detect_info)
1865 {
1866 const unsigned char *src = coding->source, *src_base;
1867 const unsigned char *src_end = coding->source + coding->src_bytes;
1868 int multibytep = coding->src_multibyte;
1869 EMACS_INT consumed_chars = 0;
1870 int c;
1871 int found = 0;
1872
1873 detect_info->checked |= CATEGORY_MASK_EMACS_MULE;
1874 /* A coding system of this category is always ASCII compatible. */
1875 src += coding->head_ascii;
1876
1877 while (1)
1878 {
1879 src_base = src;
1880 ONE_MORE_BYTE (c);
1881 if (c < 0)
1882 continue;
1883 if (c == 0x80)
1884 {
1885 /* Perhaps the start of composite character. We simply skip
1886 it because analyzing it is too heavy for detecting. But,
1887 at least, we check that the composite character
1888 constitutes of more than 4 bytes. */
1889 const unsigned char *src_start;
1890
1891 repeat:
1892 src_start = src;
1893 do
1894 {
1895 ONE_MORE_BYTE (c);
1896 }
1897 while (c >= 0xA0);
1898
1899 if (src - src_start <= 4)
1900 break;
1901 found = CATEGORY_MASK_EMACS_MULE;
1902 if (c == 0x80)
1903 goto repeat;
1904 }
1905
1906 if (c < 0x80)
1907 {
1908 if (c < 0x20
1909 && (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
1910 break;
1911 }
1912 else
1913 {
1914 int more_bytes = emacs_mule_bytes[c] - 1;
1915
1916 while (more_bytes > 0)
1917 {
1918 ONE_MORE_BYTE (c);
1919 if (c < 0xA0)
1920 {
1921 src--; /* Unread the last byte. */
1922 break;
1923 }
1924 more_bytes--;
1925 }
1926 if (more_bytes != 0)
1927 break;
1928 found = CATEGORY_MASK_EMACS_MULE;
1929 }
1930 }
1931 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
1932 return 0;
1933
1934 no_more_source:
1935 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1936 {
1937 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
1938 return 0;
1939 }
1940 detect_info->found |= found;
1941 return 1;
1942 }
1943
1944
1945 /* Parse emacs-mule multibyte sequence at SRC and return the decoded
1946 character. If CMP_STATUS indicates that we must expect MSEQ or
1947 RULE described above, decode it and return the negative value of
1948 the decoded character or rule. If an invalid byte is found, return
1949 -1. If SRC is too short, return -2. */
1950
1951 static int
1952 emacs_mule_char (struct coding_system *coding, const unsigned char *src,
1953 int *nbytes, int *nchars, int *id,
1954 struct composition_status *cmp_status)
1955 {
1956 const unsigned char *src_end = coding->source + coding->src_bytes;
1957 const unsigned char *src_base = src;
1958 int multibytep = coding->src_multibyte;
1959 int charset_ID;
1960 unsigned code;
1961 int c;
1962 int consumed_chars = 0;
1963 int mseq_found = 0;
1964
1965 ONE_MORE_BYTE (c);
1966 if (c < 0)
1967 {
1968 c = -c;
1969 charset_ID = emacs_mule_charset[0];
1970 }
1971 else
1972 {
1973 if (c >= 0xA0)
1974 {
1975 if (cmp_status->state != COMPOSING_NO
1976 && cmp_status->old_form)
1977 {
1978 if (cmp_status->state == COMPOSING_CHAR)
1979 {
1980 if (c == 0xA0)
1981 {
1982 ONE_MORE_BYTE (c);
1983 c -= 0x80;
1984 if (c < 0)
1985 goto invalid_code;
1986 }
1987 else
1988 c -= 0x20;
1989 mseq_found = 1;
1990 }
1991 else
1992 {
1993 *nbytes = src - src_base;
1994 *nchars = consumed_chars;
1995 return -c;
1996 }
1997 }
1998 else
1999 goto invalid_code;
2000 }
2001
2002 switch (emacs_mule_bytes[c])
2003 {
2004 case 2:
2005 if ((charset_ID = emacs_mule_charset[c]) < 0)
2006 goto invalid_code;
2007 ONE_MORE_BYTE (c);
2008 if (c < 0xA0)
2009 goto invalid_code;
2010 code = c & 0x7F;
2011 break;
2012
2013 case 3:
2014 if (c == EMACS_MULE_LEADING_CODE_PRIVATE_11
2015 || c == EMACS_MULE_LEADING_CODE_PRIVATE_12)
2016 {
2017 ONE_MORE_BYTE (c);
2018 if (c < 0xA0 || (charset_ID = emacs_mule_charset[c]) < 0)
2019 goto invalid_code;
2020 ONE_MORE_BYTE (c);
2021 if (c < 0xA0)
2022 goto invalid_code;
2023 code = c & 0x7F;
2024 }
2025 else
2026 {
2027 if ((charset_ID = emacs_mule_charset[c]) < 0)
2028 goto invalid_code;
2029 ONE_MORE_BYTE (c);
2030 if (c < 0xA0)
2031 goto invalid_code;
2032 code = (c & 0x7F) << 8;
2033 ONE_MORE_BYTE (c);
2034 if (c < 0xA0)
2035 goto invalid_code;
2036 code |= c & 0x7F;
2037 }
2038 break;
2039
2040 case 4:
2041 ONE_MORE_BYTE (c);
2042 if (c < 0 || (charset_ID = emacs_mule_charset[c]) < 0)
2043 goto invalid_code;
2044 ONE_MORE_BYTE (c);
2045 if (c < 0xA0)
2046 goto invalid_code;
2047 code = (c & 0x7F) << 8;
2048 ONE_MORE_BYTE (c);
2049 if (c < 0xA0)
2050 goto invalid_code;
2051 code |= c & 0x7F;
2052 break;
2053
2054 case 1:
2055 code = c;
2056 charset_ID = ASCII_BYTE_P (code) ? charset_ascii : charset_eight_bit;
2057 break;
2058
2059 default:
2060 abort ();
2061 }
2062 CODING_DECODE_CHAR (coding, src, src_base, src_end,
2063 CHARSET_FROM_ID (charset_ID), code, c);
2064 if (c < 0)
2065 goto invalid_code;
2066 }
2067 *nbytes = src - src_base;
2068 *nchars = consumed_chars;
2069 if (id)
2070 *id = charset_ID;
2071 return (mseq_found ? -c : c);
2072
2073 no_more_source:
2074 return -2;
2075
2076 invalid_code:
2077 return -1;
2078 }
2079
2080
2081 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2082
2083 /* Handle these composition sequence ('|': the end of header elements,
2084 BYTES and CHARS >= 0xA0):
2085
2086 (1) relative composition: 0x80 0xF2 BYTES CHARS | CHAR ...
2087 (2) altchar composition: 0x80 0xF4 BYTES CHARS | ALT ... ALT CHAR ...
2088 (3) alt&rule composition: 0x80 0xF5 BYTES CHARS | ALT RULE ... ALT CHAR ...
2089
2090 and these old form:
2091
2092 (4) relative composition: 0x80 | MSEQ ... MSEQ
2093 (5) rulebase composition: 0x80 0xFF | MSEQ MRULE ... MSEQ
2094
2095 When the starter 0x80 and the following header elements are found,
2096 this annotation header is produced.
2097
2098 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS NBYTES METHOD ]
2099
2100 NCHARS is CHARS - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2101 NBYTES is BYTES - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2102
2103 Then, upon reading the following elements, these codes are produced
2104 until the composition end is found:
2105
2106 (1) CHAR ... CHAR
2107 (2) ALT ... ALT CHAR ... CHAR
2108 (3) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT CHAR ... CHAR
2109 (4) CHAR ... CHAR
2110 (5) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
2111
2112 When the composition end is found, LENGTH and NCHARS in the
2113 annotation header is updated as below:
2114
2115 (1) LENGTH: unchanged, NCHARS: unchanged
2116 (2) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2117 (3) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2118 (4) LENGTH: unchanged, NCHARS: number of CHARs
2119 (5) LENGTH: unchanged, NCHARS: number of CHARs
2120
2121 If an error is found while composing, the annotation header is
2122 changed to the original composition header (plus filler -1s) as
2123 below:
2124
2125 (1),(2),(3) [ 0x80 0xF2+METHOD BYTES CHARS -1 ]
2126 (5) [ 0x80 0xFF -1 -1- -1 ]
2127
2128 and the sequence [ -2 DECODED-RULE ] is changed to the original
2129 byte sequence as below:
2130 o the original byte sequence is B: [ B -1 ]
2131 o the original byte sequence is B1 B2: [ B1 B2 ]
2132
2133 Most of the routines are implemented by macros because many
2134 variables and labels in the caller decode_coding_emacs_mule must be
2135 accessible, and they are usually called just once (thus doesn't
2136 increase the size of compiled object). */
2137
2138 /* Decode a composition rule represented by C as a component of
2139 composition sequence of Emacs 20 style. Set RULE to the decoded
2140 rule. */
2141
2142 #define DECODE_EMACS_MULE_COMPOSITION_RULE_20(c, rule) \
2143 do { \
2144 int gref, nref; \
2145 \
2146 c -= 0xA0; \
2147 if (c < 0 || c >= 81) \
2148 goto invalid_code; \
2149 gref = c / 9, nref = c % 9; \
2150 if (gref == 4) gref = 10; \
2151 if (nref == 4) nref = 10; \
2152 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2153 } while (0)
2154
2155
2156 /* Decode a composition rule represented by C and the following byte
2157 at SRC as a component of composition sequence of Emacs 21 style.
2158 Set RULE to the decoded rule. */
2159
2160 #define DECODE_EMACS_MULE_COMPOSITION_RULE_21(c, rule) \
2161 do { \
2162 int gref, nref; \
2163 \
2164 gref = c - 0x20; \
2165 if (gref < 0 || gref >= 81) \
2166 goto invalid_code; \
2167 ONE_MORE_BYTE (c); \
2168 nref = c - 0x20; \
2169 if (nref < 0 || nref >= 81) \
2170 goto invalid_code; \
2171 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2172 } while (0)
2173
2174
2175 /* Start of Emacs 21 style format. The first three bytes at SRC are
2176 (METHOD - 0xF2), (BYTES - 0xA0), (CHARS - 0xA0), where BYTES is the
2177 byte length of this composition information, CHARS is the number of
2178 characters composed by this composition. */
2179
2180 #define DECODE_EMACS_MULE_21_COMPOSITION() \
2181 do { \
2182 enum composition_method method = c - 0xF2; \
2183 int nbytes, nchars; \
2184 \
2185 ONE_MORE_BYTE (c); \
2186 if (c < 0) \
2187 goto invalid_code; \
2188 nbytes = c - 0xA0; \
2189 if (nbytes < 3 || (method == COMPOSITION_RELATIVE && nbytes != 4)) \
2190 goto invalid_code; \
2191 ONE_MORE_BYTE (c); \
2192 nchars = c - 0xA0; \
2193 if (nchars <= 0 || nchars >= MAX_COMPOSITION_COMPONENTS) \
2194 goto invalid_code; \
2195 cmp_status->old_form = 0; \
2196 cmp_status->method = method; \
2197 if (method == COMPOSITION_RELATIVE) \
2198 cmp_status->state = COMPOSING_CHAR; \
2199 else \
2200 cmp_status->state = COMPOSING_COMPONENT_CHAR; \
2201 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2202 cmp_status->nchars = nchars; \
2203 cmp_status->ncomps = nbytes - 4; \
2204 ADD_COMPOSITION_DATA (charbuf, nchars, nbytes, method); \
2205 } while (0)
2206
2207
2208 /* Start of Emacs 20 style format for relative composition. */
2209
2210 #define DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION() \
2211 do { \
2212 cmp_status->old_form = 1; \
2213 cmp_status->method = COMPOSITION_RELATIVE; \
2214 cmp_status->state = COMPOSING_CHAR; \
2215 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2216 cmp_status->nchars = cmp_status->ncomps = 0; \
2217 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2218 } while (0)
2219
2220
2221 /* Start of Emacs 20 style format for rule-base composition. */
2222
2223 #define DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION() \
2224 do { \
2225 cmp_status->old_form = 1; \
2226 cmp_status->method = COMPOSITION_WITH_RULE; \
2227 cmp_status->state = COMPOSING_CHAR; \
2228 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2229 cmp_status->nchars = cmp_status->ncomps = 0; \
2230 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2231 } while (0)
2232
2233
2234 #define DECODE_EMACS_MULE_COMPOSITION_START() \
2235 do { \
2236 const unsigned char *current_src = src; \
2237 \
2238 ONE_MORE_BYTE (c); \
2239 if (c < 0) \
2240 goto invalid_code; \
2241 if (c - 0xF2 >= COMPOSITION_RELATIVE \
2242 && c - 0xF2 <= COMPOSITION_WITH_RULE_ALTCHARS) \
2243 DECODE_EMACS_MULE_21_COMPOSITION (); \
2244 else if (c < 0xA0) \
2245 goto invalid_code; \
2246 else if (c < 0xC0) \
2247 { \
2248 DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION (); \
2249 /* Re-read C as a composition component. */ \
2250 src = current_src; \
2251 } \
2252 else if (c == 0xFF) \
2253 DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION (); \
2254 else \
2255 goto invalid_code; \
2256 } while (0)
2257
2258 #define EMACS_MULE_COMPOSITION_END() \
2259 do { \
2260 int idx = - cmp_status->length; \
2261 \
2262 if (cmp_status->old_form) \
2263 charbuf[idx + 2] = cmp_status->nchars; \
2264 else if (cmp_status->method > COMPOSITION_RELATIVE) \
2265 charbuf[idx] = charbuf[idx + 2] - cmp_status->length; \
2266 cmp_status->state = COMPOSING_NO; \
2267 } while (0)
2268
2269
2270 static int
2271 emacs_mule_finish_composition (int *charbuf,
2272 struct composition_status *cmp_status)
2273 {
2274 int idx = - cmp_status->length;
2275 int new_chars;
2276
2277 if (cmp_status->old_form && cmp_status->nchars > 0)
2278 {
2279 charbuf[idx + 2] = cmp_status->nchars;
2280 new_chars = 0;
2281 if (cmp_status->method == COMPOSITION_WITH_RULE
2282 && cmp_status->state == COMPOSING_CHAR)
2283 {
2284 /* The last rule was invalid. */
2285 int rule = charbuf[-1] + 0xA0;
2286
2287 charbuf[-2] = BYTE8_TO_CHAR (rule);
2288 charbuf[-1] = -1;
2289 new_chars = 1;
2290 }
2291 }
2292 else
2293 {
2294 charbuf[idx++] = BYTE8_TO_CHAR (0x80);
2295
2296 if (cmp_status->method == COMPOSITION_WITH_RULE)
2297 {
2298 charbuf[idx++] = BYTE8_TO_CHAR (0xFF);
2299 charbuf[idx++] = -3;
2300 charbuf[idx++] = 0;
2301 new_chars = 1;
2302 }
2303 else
2304 {
2305 int nchars = charbuf[idx + 1] + 0xA0;
2306 int nbytes = charbuf[idx + 2] + 0xA0;
2307
2308 charbuf[idx++] = BYTE8_TO_CHAR (0xF2 + cmp_status->method);
2309 charbuf[idx++] = BYTE8_TO_CHAR (nbytes);
2310 charbuf[idx++] = BYTE8_TO_CHAR (nchars);
2311 charbuf[idx++] = -1;
2312 new_chars = 4;
2313 }
2314 }
2315 cmp_status->state = COMPOSING_NO;
2316 return new_chars;
2317 }
2318
2319 #define EMACS_MULE_MAYBE_FINISH_COMPOSITION() \
2320 do { \
2321 if (cmp_status->state != COMPOSING_NO) \
2322 char_offset += emacs_mule_finish_composition (charbuf, cmp_status); \
2323 } while (0)
2324
2325
2326 static void
2327 decode_coding_emacs_mule (struct coding_system *coding)
2328 {
2329 const unsigned char *src = coding->source + coding->consumed;
2330 const unsigned char *src_end = coding->source + coding->src_bytes;
2331 const unsigned char *src_base;
2332 int *charbuf = coding->charbuf + coding->charbuf_used;
2333 /* We may produce two annotations (charset and composition) in one
2334 loop and one more charset annotation at the end. */
2335 int *charbuf_end
2336 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
2337 EMACS_INT consumed_chars = 0, consumed_chars_base;
2338 int multibytep = coding->src_multibyte;
2339 EMACS_INT char_offset = coding->produced_char;
2340 EMACS_INT last_offset = char_offset;
2341 int last_id = charset_ascii;
2342 int eol_dos =
2343 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
2344 int byte_after_cr = -1;
2345 struct composition_status *cmp_status = &coding->spec.emacs_mule.cmp_status;
2346
2347 if (cmp_status->state != COMPOSING_NO)
2348 {
2349 int i;
2350
2351 for (i = 0; i < cmp_status->length; i++)
2352 *charbuf++ = cmp_status->carryover[i];
2353 coding->annotated = 1;
2354 }
2355
2356 while (1)
2357 {
2358 int c, id IF_LINT (= 0);
2359
2360 src_base = src;
2361 consumed_chars_base = consumed_chars;
2362
2363 if (charbuf >= charbuf_end)
2364 {
2365 if (byte_after_cr >= 0)
2366 src_base--;
2367 break;
2368 }
2369
2370 if (byte_after_cr >= 0)
2371 c = byte_after_cr, byte_after_cr = -1;
2372 else
2373 ONE_MORE_BYTE (c);
2374
2375 if (c < 0 || c == 0x80)
2376 {
2377 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2378 if (c < 0)
2379 {
2380 *charbuf++ = -c;
2381 char_offset++;
2382 }
2383 else
2384 DECODE_EMACS_MULE_COMPOSITION_START ();
2385 continue;
2386 }
2387
2388 if (c < 0x80)
2389 {
2390 if (eol_dos && c == '\r')
2391 ONE_MORE_BYTE (byte_after_cr);
2392 id = charset_ascii;
2393 if (cmp_status->state != COMPOSING_NO)
2394 {
2395 if (cmp_status->old_form)
2396 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2397 else if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2398 cmp_status->ncomps--;
2399 }
2400 }
2401 else
2402 {
2403 int nchars IF_LINT (= 0), nbytes IF_LINT (= 0);
2404 /* emacs_mule_char can load a charset map from a file, which
2405 allocates a large structure and might cause buffer text
2406 to be relocated as result. Thus, we need to remember the
2407 original pointer to buffer text, and fix up all related
2408 pointers after the call. */
2409 const unsigned char *orig = coding->source;
2410 EMACS_INT offset;
2411
2412 c = emacs_mule_char (coding, src_base, &nbytes, &nchars, &id,
2413 cmp_status);
2414 offset = coding->source - orig;
2415 if (offset)
2416 {
2417 src += offset;
2418 src_base += offset;
2419 src_end += offset;
2420 }
2421 if (c < 0)
2422 {
2423 if (c == -1)
2424 goto invalid_code;
2425 if (c == -2)
2426 break;
2427 }
2428 src = src_base + nbytes;
2429 consumed_chars = consumed_chars_base + nchars;
2430 if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2431 cmp_status->ncomps -= nchars;
2432 }
2433
2434 /* Now if C >= 0, we found a normally encoded character, if C <
2435 0, we found an old-style composition component character or
2436 rule. */
2437
2438 if (cmp_status->state == COMPOSING_NO)
2439 {
2440 if (last_id != id)
2441 {
2442 if (last_id != charset_ascii)
2443 ADD_CHARSET_DATA (charbuf, char_offset - last_offset,
2444 last_id);
2445 last_id = id;
2446 last_offset = char_offset;
2447 }
2448 *charbuf++ = c;
2449 char_offset++;
2450 }
2451 else if (cmp_status->state == COMPOSING_CHAR)
2452 {
2453 if (cmp_status->old_form)
2454 {
2455 if (c >= 0)
2456 {
2457 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2458 *charbuf++ = c;
2459 char_offset++;
2460 }
2461 else
2462 {
2463 *charbuf++ = -c;
2464 cmp_status->nchars++;
2465 cmp_status->length++;
2466 if (cmp_status->nchars == MAX_COMPOSITION_COMPONENTS)
2467 EMACS_MULE_COMPOSITION_END ();
2468 else if (cmp_status->method == COMPOSITION_WITH_RULE)
2469 cmp_status->state = COMPOSING_RULE;
2470 }
2471 }
2472 else
2473 {
2474 *charbuf++ = c;
2475 cmp_status->length++;
2476 cmp_status->nchars--;
2477 if (cmp_status->nchars == 0)
2478 EMACS_MULE_COMPOSITION_END ();
2479 }
2480 }
2481 else if (cmp_status->state == COMPOSING_RULE)
2482 {
2483 int rule;
2484
2485 if (c >= 0)
2486 {
2487 EMACS_MULE_COMPOSITION_END ();
2488 *charbuf++ = c;
2489 char_offset++;
2490 }
2491 else
2492 {
2493 c = -c;
2494 DECODE_EMACS_MULE_COMPOSITION_RULE_20 (c, rule);
2495 if (rule < 0)
2496 goto invalid_code;
2497 *charbuf++ = -2;
2498 *charbuf++ = rule;
2499 cmp_status->length += 2;
2500 cmp_status->state = COMPOSING_CHAR;
2501 }
2502 }
2503 else if (cmp_status->state == COMPOSING_COMPONENT_CHAR)
2504 {
2505 *charbuf++ = c;
2506 cmp_status->length++;
2507 if (cmp_status->ncomps == 0)
2508 cmp_status->state = COMPOSING_CHAR;
2509 else if (cmp_status->ncomps > 0)
2510 {
2511 if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS)
2512 cmp_status->state = COMPOSING_COMPONENT_RULE;
2513 }
2514 else
2515 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2516 }
2517 else /* COMPOSING_COMPONENT_RULE */
2518 {
2519 int rule;
2520
2521 DECODE_EMACS_MULE_COMPOSITION_RULE_21 (c, rule);
2522 if (rule < 0)
2523 goto invalid_code;
2524 *charbuf++ = -2;
2525 *charbuf++ = rule;
2526 cmp_status->length += 2;
2527 cmp_status->ncomps--;
2528 if (cmp_status->ncomps > 0)
2529 cmp_status->state = COMPOSING_COMPONENT_CHAR;
2530 else
2531 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2532 }
2533 continue;
2534
2535 invalid_code:
2536 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2537 src = src_base;
2538 consumed_chars = consumed_chars_base;
2539 ONE_MORE_BYTE (c);
2540 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
2541 char_offset++;
2542 coding->errors++;
2543 }
2544
2545 no_more_source:
2546 if (cmp_status->state != COMPOSING_NO)
2547 {
2548 if (coding->mode & CODING_MODE_LAST_BLOCK)
2549 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2550 else
2551 {
2552 int i;
2553
2554 charbuf -= cmp_status->length;
2555 for (i = 0; i < cmp_status->length; i++)
2556 cmp_status->carryover[i] = charbuf[i];
2557 }
2558 }
2559 if (last_id != charset_ascii)
2560 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
2561 coding->consumed_char += consumed_chars_base;
2562 coding->consumed = src_base - coding->source;
2563 coding->charbuf_used = charbuf - coding->charbuf;
2564 }
2565
2566
2567 #define EMACS_MULE_LEADING_CODES(id, codes) \
2568 do { \
2569 if (id < 0xA0) \
2570 codes[0] = id, codes[1] = 0; \
2571 else if (id < 0xE0) \
2572 codes[0] = 0x9A, codes[1] = id; \
2573 else if (id < 0xF0) \
2574 codes[0] = 0x9B, codes[1] = id; \
2575 else if (id < 0xF5) \
2576 codes[0] = 0x9C, codes[1] = id; \
2577 else \
2578 codes[0] = 0x9D, codes[1] = id; \
2579 } while (0);
2580
2581
2582 static int
2583 encode_coding_emacs_mule (struct coding_system *coding)
2584 {
2585 int multibytep = coding->dst_multibyte;
2586 int *charbuf = coding->charbuf;
2587 int *charbuf_end = charbuf + coding->charbuf_used;
2588 unsigned char *dst = coding->destination + coding->produced;
2589 unsigned char *dst_end = coding->destination + coding->dst_bytes;
2590 int safe_room = 8;
2591 EMACS_INT produced_chars = 0;
2592 Lisp_Object attrs, charset_list;
2593 int c;
2594 int preferred_charset_id = -1;
2595
2596 CODING_GET_INFO (coding, attrs, charset_list);
2597 if (! EQ (charset_list, Vemacs_mule_charset_list))
2598 {
2599 CODING_ATTR_CHARSET_LIST (attrs)
2600 = charset_list = Vemacs_mule_charset_list;
2601 }
2602
2603 while (charbuf < charbuf_end)
2604 {
2605 ASSURE_DESTINATION (safe_room);
2606 c = *charbuf++;
2607
2608 if (c < 0)
2609 {
2610 /* Handle an annotation. */
2611 switch (*charbuf)
2612 {
2613 case CODING_ANNOTATE_COMPOSITION_MASK:
2614 /* Not yet implemented. */
2615 break;
2616 case CODING_ANNOTATE_CHARSET_MASK:
2617 preferred_charset_id = charbuf[3];
2618 if (preferred_charset_id >= 0
2619 && NILP (Fmemq (make_number (preferred_charset_id),
2620 charset_list)))
2621 preferred_charset_id = -1;
2622 break;
2623 default:
2624 abort ();
2625 }
2626 charbuf += -c - 1;
2627 continue;
2628 }
2629
2630 if (ASCII_CHAR_P (c))
2631 EMIT_ONE_ASCII_BYTE (c);
2632 else if (CHAR_BYTE8_P (c))
2633 {
2634 c = CHAR_TO_BYTE8 (c);
2635 EMIT_ONE_BYTE (c);
2636 }
2637 else
2638 {
2639 struct charset *charset;
2640 unsigned code;
2641 int dimension;
2642 int emacs_mule_id;
2643 unsigned char leading_codes[2];
2644
2645 if (preferred_charset_id >= 0)
2646 {
2647 charset = CHARSET_FROM_ID (preferred_charset_id);
2648 if (CHAR_CHARSET_P (c, charset))
2649 code = ENCODE_CHAR (charset, c);
2650 else
2651 charset = char_charset (c, charset_list, &code);
2652 }
2653 else
2654 charset = char_charset (c, charset_list, &code);
2655 if (! charset)
2656 {
2657 c = coding->default_char;
2658 if (ASCII_CHAR_P (c))
2659 {
2660 EMIT_ONE_ASCII_BYTE (c);
2661 continue;
2662 }
2663 charset = char_charset (c, charset_list, &code);
2664 }
2665 dimension = CHARSET_DIMENSION (charset);
2666 emacs_mule_id = CHARSET_EMACS_MULE_ID (charset);
2667 EMACS_MULE_LEADING_CODES (emacs_mule_id, leading_codes);
2668 EMIT_ONE_BYTE (leading_codes[0]);
2669 if (leading_codes[1])
2670 EMIT_ONE_BYTE (leading_codes[1]);
2671 if (dimension == 1)
2672 EMIT_ONE_BYTE (code | 0x80);
2673 else
2674 {
2675 code |= 0x8080;
2676 EMIT_ONE_BYTE (code >> 8);
2677 EMIT_ONE_BYTE (code & 0xFF);
2678 }
2679 }
2680 }
2681 record_conversion_result (coding, CODING_RESULT_SUCCESS);
2682 coding->produced_char += produced_chars;
2683 coding->produced = dst - coding->destination;
2684 return 0;
2685 }
2686
2687 \f
2688 /*** 7. ISO2022 handlers ***/
2689
2690 /* The following note describes the coding system ISO2022 briefly.
2691 Since the intention of this note is to help understand the
2692 functions in this file, some parts are NOT ACCURATE or are OVERLY
2693 SIMPLIFIED. For thorough understanding, please refer to the
2694 original document of ISO2022. This is equivalent to the standard
2695 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
2696
2697 ISO2022 provides many mechanisms to encode several character sets
2698 in 7-bit and 8-bit environments. For 7-bit environments, all text
2699 is encoded using bytes less than 128. This may make the encoded
2700 text a little bit longer, but the text passes more easily through
2701 several types of gateway, some of which strip off the MSB (Most
2702 Significant Bit).
2703
2704 There are two kinds of character sets: control character sets and
2705 graphic character sets. The former contain control characters such
2706 as `newline' and `escape' to provide control functions (control
2707 functions are also provided by escape sequences). The latter
2708 contain graphic characters such as 'A' and '-'. Emacs recognizes
2709 two control character sets and many graphic character sets.
2710
2711 Graphic character sets are classified into one of the following
2712 four classes, according to the number of bytes (DIMENSION) and
2713 number of characters in one dimension (CHARS) of the set:
2714 - DIMENSION1_CHARS94
2715 - DIMENSION1_CHARS96
2716 - DIMENSION2_CHARS94
2717 - DIMENSION2_CHARS96
2718
2719 In addition, each character set is assigned an identification tag,
2720 unique for each set, called the "final character" (denoted as <F>
2721 hereafter). The <F> of each character set is decided by ECMA(*)
2722 when it is registered in ISO. The code range of <F> is 0x30..0x7F
2723 (0x30..0x3F are for private use only).
2724
2725 Note (*): ECMA = European Computer Manufacturers Association
2726
2727 Here are examples of graphic character sets [NAME(<F>)]:
2728 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
2729 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
2730 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
2731 o DIMENSION2_CHARS96 -- none for the moment
2732
2733 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
2734 C0 [0x00..0x1F] -- control character plane 0
2735 GL [0x20..0x7F] -- graphic character plane 0
2736 C1 [0x80..0x9F] -- control character plane 1
2737 GR [0xA0..0xFF] -- graphic character plane 1
2738
2739 A control character set is directly designated and invoked to C0 or
2740 C1 by an escape sequence. The most common case is that:
2741 - ISO646's control character set is designated/invoked to C0, and
2742 - ISO6429's control character set is designated/invoked to C1,
2743 and usually these designations/invocations are omitted in encoded
2744 text. In a 7-bit environment, only C0 can be used, and a control
2745 character for C1 is encoded by an appropriate escape sequence to
2746 fit into the environment. All control characters for C1 are
2747 defined to have corresponding escape sequences.
2748
2749 A graphic character set is at first designated to one of four
2750 graphic registers (G0 through G3), then these graphic registers are
2751 invoked to GL or GR. These designations and invocations can be
2752 done independently. The most common case is that G0 is invoked to
2753 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
2754 these invocations and designations are omitted in encoded text.
2755 In a 7-bit environment, only GL can be used.
2756
2757 When a graphic character set of CHARS94 is invoked to GL, codes
2758 0x20 and 0x7F of the GL area work as control characters SPACE and
2759 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
2760 be used.
2761
2762 There are two ways of invocation: locking-shift and single-shift.
2763 With locking-shift, the invocation lasts until the next different
2764 invocation, whereas with single-shift, the invocation affects the
2765 following character only and doesn't affect the locking-shift
2766 state. Invocations are done by the following control characters or
2767 escape sequences:
2768
2769 ----------------------------------------------------------------------
2770 abbrev function cntrl escape seq description
2771 ----------------------------------------------------------------------
2772 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
2773 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
2774 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
2775 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
2776 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
2777 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
2778 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
2779 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
2780 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
2781 ----------------------------------------------------------------------
2782 (*) These are not used by any known coding system.
2783
2784 Control characters for these functions are defined by macros
2785 ISO_CODE_XXX in `coding.h'.
2786
2787 Designations are done by the following escape sequences:
2788 ----------------------------------------------------------------------
2789 escape sequence description
2790 ----------------------------------------------------------------------
2791 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
2792 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
2793 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
2794 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
2795 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
2796 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
2797 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
2798 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
2799 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
2800 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
2801 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
2802 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
2803 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
2804 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
2805 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
2806 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
2807 ----------------------------------------------------------------------
2808
2809 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
2810 of dimension 1, chars 94, and final character <F>, etc...
2811
2812 Note (*): Although these designations are not allowed in ISO2022,
2813 Emacs accepts them on decoding, and produces them on encoding
2814 CHARS96 character sets in a coding system which is characterized as
2815 7-bit environment, non-locking-shift, and non-single-shift.
2816
2817 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
2818 '(' must be omitted. We refer to this as "short-form" hereafter.
2819
2820 Now you may notice that there are a lot of ways of encoding the
2821 same multilingual text in ISO2022. Actually, there exist many
2822 coding systems such as Compound Text (used in X11's inter client
2823 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
2824 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
2825 localized platforms), and all of these are variants of ISO2022.
2826
2827 In addition to the above, Emacs handles two more kinds of escape
2828 sequences: ISO6429's direction specification and Emacs' private
2829 sequence for specifying character composition.
2830
2831 ISO6429's direction specification takes the following form:
2832 o CSI ']' -- end of the current direction
2833 o CSI '0' ']' -- end of the current direction
2834 o CSI '1' ']' -- start of left-to-right text
2835 o CSI '2' ']' -- start of right-to-left text
2836 The control character CSI (0x9B: control sequence introducer) is
2837 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
2838
2839 Character composition specification takes the following form:
2840 o ESC '0' -- start relative composition
2841 o ESC '1' -- end composition
2842 o ESC '2' -- start rule-base composition (*)
2843 o ESC '3' -- start relative composition with alternate chars (**)
2844 o ESC '4' -- start rule-base composition with alternate chars (**)
2845 Since these are not standard escape sequences of any ISO standard,
2846 the use of them with these meanings is restricted to Emacs only.
2847
2848 (*) This form is used only in Emacs 20.7 and older versions,
2849 but newer versions can safely decode it.
2850 (**) This form is used only in Emacs 21.1 and newer versions,
2851 and older versions can't decode it.
2852
2853 Here's a list of example usages of these composition escape
2854 sequences (categorized by `enum composition_method').
2855
2856 COMPOSITION_RELATIVE:
2857 ESC 0 CHAR [ CHAR ] ESC 1
2858 COMPOSITION_WITH_RULE:
2859 ESC 2 CHAR [ RULE CHAR ] ESC 1
2860 COMPOSITION_WITH_ALTCHARS:
2861 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
2862 COMPOSITION_WITH_RULE_ALTCHARS:
2863 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
2864
2865 static enum iso_code_class_type iso_code_class[256];
2866
2867 #define SAFE_CHARSET_P(coding, id) \
2868 ((id) <= (coding)->max_charset_id \
2869 && (coding)->safe_charsets[id] != 255)
2870
2871 static void
2872 setup_iso_safe_charsets (Lisp_Object attrs)
2873 {
2874 Lisp_Object charset_list, safe_charsets;
2875 Lisp_Object request;
2876 Lisp_Object reg_usage;
2877 Lisp_Object tail;
2878 int reg94, reg96;
2879 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
2880 int max_charset_id;
2881
2882 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
2883 if ((flags & CODING_ISO_FLAG_FULL_SUPPORT)
2884 && ! EQ (charset_list, Viso_2022_charset_list))
2885 {
2886 CODING_ATTR_CHARSET_LIST (attrs)
2887 = charset_list = Viso_2022_charset_list;
2888 ASET (attrs, coding_attr_safe_charsets, Qnil);
2889 }
2890
2891 if (STRINGP (AREF (attrs, coding_attr_safe_charsets)))
2892 return;
2893
2894 max_charset_id = 0;
2895 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
2896 {
2897 int id = XINT (XCAR (tail));
2898 if (max_charset_id < id)
2899 max_charset_id = id;
2900 }
2901
2902 safe_charsets = make_uninit_string (max_charset_id + 1);
2903 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
2904 request = AREF (attrs, coding_attr_iso_request);
2905 reg_usage = AREF (attrs, coding_attr_iso_usage);
2906 reg94 = XINT (XCAR (reg_usage));
2907 reg96 = XINT (XCDR (reg_usage));
2908
2909 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
2910 {
2911 Lisp_Object id;
2912 Lisp_Object reg;
2913 struct charset *charset;
2914
2915 id = XCAR (tail);
2916 charset = CHARSET_FROM_ID (XINT (id));
2917 reg = Fcdr (Fassq (id, request));
2918 if (! NILP (reg))
2919 SSET (safe_charsets, XINT (id), XINT (reg));
2920 else if (charset->iso_chars_96)
2921 {
2922 if (reg96 < 4)
2923 SSET (safe_charsets, XINT (id), reg96);
2924 }
2925 else
2926 {
2927 if (reg94 < 4)
2928 SSET (safe_charsets, XINT (id), reg94);
2929 }
2930 }
2931 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
2932 }
2933
2934
2935 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2936 Check if a text is encoded in one of ISO-2022 based coding systems.
2937 If it is, return 1, else return 0. */
2938
2939 static int
2940 detect_coding_iso_2022 (struct coding_system *coding,
2941 struct coding_detection_info *detect_info)
2942 {
2943 const unsigned char *src = coding->source, *src_base = src;
2944 const unsigned char *src_end = coding->source + coding->src_bytes;
2945 int multibytep = coding->src_multibyte;
2946 int single_shifting = 0;
2947 int id;
2948 int c, c1;
2949 EMACS_INT consumed_chars = 0;
2950 int i;
2951 int rejected = 0;
2952 int found = 0;
2953 int composition_count = -1;
2954
2955 detect_info->checked |= CATEGORY_MASK_ISO;
2956
2957 for (i = coding_category_iso_7; i <= coding_category_iso_8_else; i++)
2958 {
2959 struct coding_system *this = &(coding_categories[i]);
2960 Lisp_Object attrs, val;
2961
2962 if (this->id < 0)
2963 continue;
2964 attrs = CODING_ID_ATTRS (this->id);
2965 if (CODING_ISO_FLAGS (this) & CODING_ISO_FLAG_FULL_SUPPORT
2966 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Viso_2022_charset_list))
2967 setup_iso_safe_charsets (attrs);
2968 val = CODING_ATTR_SAFE_CHARSETS (attrs);
2969 this->max_charset_id = SCHARS (val) - 1;
2970 this->safe_charsets = SDATA (val);
2971 }
2972
2973 /* A coding system of this category is always ASCII compatible. */
2974 src += coding->head_ascii;
2975
2976 while (rejected != CATEGORY_MASK_ISO)
2977 {
2978 src_base = src;
2979 ONE_MORE_BYTE (c);
2980 switch (c)
2981 {
2982 case ISO_CODE_ESC:
2983 if (inhibit_iso_escape_detection)
2984 break;
2985 single_shifting = 0;
2986 ONE_MORE_BYTE (c);
2987 if (c == 'N' || c == 'O')
2988 {
2989 /* ESC <Fe> for SS2 or SS3. */
2990 single_shifting = 1;
2991 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
2992 }
2993 else if (c == '1')
2994 {
2995 /* End of composition. */
2996 if (composition_count < 0
2997 || composition_count > MAX_COMPOSITION_COMPONENTS)
2998 /* Invalid */
2999 break;
3000 composition_count = -1;
3001 found |= CATEGORY_MASK_ISO;
3002 }
3003 else if (c >= '0' && c <= '4')
3004 {
3005 /* ESC <Fp> for start/end composition. */
3006 composition_count = 0;
3007 }
3008 else
3009 {
3010 if (c >= '(' && c <= '/')
3011 {
3012 /* Designation sequence for a charset of dimension 1. */
3013 ONE_MORE_BYTE (c1);
3014 if (c1 < ' ' || c1 >= 0x80
3015 || (id = iso_charset_table[0][c >= ','][c1]) < 0)
3016 /* Invalid designation sequence. Just ignore. */
3017 break;
3018 }
3019 else if (c == '$')
3020 {
3021 /* Designation sequence for a charset of dimension 2. */
3022 ONE_MORE_BYTE (c);
3023 if (c >= '@' && c <= 'B')
3024 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
3025 id = iso_charset_table[1][0][c];
3026 else if (c >= '(' && c <= '/')
3027 {
3028 ONE_MORE_BYTE (c1);
3029 if (c1 < ' ' || c1 >= 0x80
3030 || (id = iso_charset_table[1][c >= ','][c1]) < 0)
3031 /* Invalid designation sequence. Just ignore. */
3032 break;
3033 }
3034 else
3035 /* Invalid designation sequence. Just ignore it. */
3036 break;
3037 }
3038 else
3039 {
3040 /* Invalid escape sequence. Just ignore it. */
3041 break;
3042 }
3043
3044 /* We found a valid designation sequence for CHARSET. */
3045 rejected |= CATEGORY_MASK_ISO_8BIT;
3046 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7],
3047 id))
3048 found |= CATEGORY_MASK_ISO_7;
3049 else
3050 rejected |= CATEGORY_MASK_ISO_7;
3051 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_tight],
3052 id))
3053 found |= CATEGORY_MASK_ISO_7_TIGHT;
3054 else
3055 rejected |= CATEGORY_MASK_ISO_7_TIGHT;
3056 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_else],
3057 id))
3058 found |= CATEGORY_MASK_ISO_7_ELSE;
3059 else
3060 rejected |= CATEGORY_MASK_ISO_7_ELSE;
3061 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_8_else],
3062 id))
3063 found |= CATEGORY_MASK_ISO_8_ELSE;
3064 else
3065 rejected |= CATEGORY_MASK_ISO_8_ELSE;
3066 }
3067 break;
3068
3069 case ISO_CODE_SO:
3070 case ISO_CODE_SI:
3071 /* Locking shift out/in. */
3072 if (inhibit_iso_escape_detection)
3073 break;
3074 single_shifting = 0;
3075 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3076 break;
3077
3078 case ISO_CODE_CSI:
3079 /* Control sequence introducer. */
3080 single_shifting = 0;
3081 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3082 found |= CATEGORY_MASK_ISO_8_ELSE;
3083 goto check_extra_latin;
3084
3085 case ISO_CODE_SS2:
3086 case ISO_CODE_SS3:
3087 /* Single shift. */
3088 if (inhibit_iso_escape_detection)
3089 break;
3090 single_shifting = 0;
3091 rejected |= CATEGORY_MASK_ISO_7BIT;
3092 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3093 & CODING_ISO_FLAG_SINGLE_SHIFT)
3094 {
3095 found |= CATEGORY_MASK_ISO_8_1;
3096 single_shifting = 1;
3097 }
3098 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_2])
3099 & CODING_ISO_FLAG_SINGLE_SHIFT)
3100 {
3101 found |= CATEGORY_MASK_ISO_8_2;
3102 single_shifting = 1;
3103 }
3104 if (single_shifting)
3105 break;
3106 check_extra_latin:
3107 if (! VECTORP (Vlatin_extra_code_table)
3108 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3109 {
3110 rejected = CATEGORY_MASK_ISO;
3111 break;
3112 }
3113 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3114 & CODING_ISO_FLAG_LATIN_EXTRA)
3115 found |= CATEGORY_MASK_ISO_8_1;
3116 else
3117 rejected |= CATEGORY_MASK_ISO_8_1;
3118 rejected |= CATEGORY_MASK_ISO_8_2;
3119 break;
3120
3121 default:
3122 if (c < 0)
3123 continue;
3124 if (c < 0x80)
3125 {
3126 if (composition_count >= 0)
3127 composition_count++;
3128 single_shifting = 0;
3129 break;
3130 }
3131 if (c >= 0xA0)
3132 {
3133 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3134 found |= CATEGORY_MASK_ISO_8_1;
3135 /* Check the length of succeeding codes of the range
3136 0xA0..0FF. If the byte length is even, we include
3137 CATEGORY_MASK_ISO_8_2 in `found'. We can check this
3138 only when we are not single shifting. */
3139 if (! single_shifting
3140 && ! (rejected & CATEGORY_MASK_ISO_8_2))
3141 {
3142 int len = 1;
3143 while (src < src_end)
3144 {
3145 src_base = src;
3146 ONE_MORE_BYTE (c);
3147 if (c < 0xA0)
3148 {
3149 src = src_base;
3150 break;
3151 }
3152 len++;
3153 }
3154
3155 if (len & 1 && src < src_end)
3156 {
3157 rejected |= CATEGORY_MASK_ISO_8_2;
3158 if (composition_count >= 0)
3159 composition_count += len;
3160 }
3161 else
3162 {
3163 found |= CATEGORY_MASK_ISO_8_2;
3164 if (composition_count >= 0)
3165 composition_count += len / 2;
3166 }
3167 }
3168 break;
3169 }
3170 }
3171 }
3172 detect_info->rejected |= CATEGORY_MASK_ISO;
3173 return 0;
3174
3175 no_more_source:
3176 detect_info->rejected |= rejected;
3177 detect_info->found |= (found & ~rejected);
3178 return 1;
3179 }
3180
3181
3182 /* Set designation state into CODING. Set CHARS_96 to -1 if the
3183 escape sequence should be kept. */
3184 #define DECODE_DESIGNATION(reg, dim, chars_96, final) \
3185 do { \
3186 int id, prev; \
3187 \
3188 if (final < '0' || final >= 128 \
3189 || ((id = ISO_CHARSET_TABLE (dim, chars_96, final)) < 0) \
3190 || !SAFE_CHARSET_P (coding, id)) \
3191 { \
3192 CODING_ISO_DESIGNATION (coding, reg) = -2; \
3193 chars_96 = -1; \
3194 break; \
3195 } \
3196 prev = CODING_ISO_DESIGNATION (coding, reg); \
3197 if (id == charset_jisx0201_roman) \
3198 { \
3199 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
3200 id = charset_ascii; \
3201 } \
3202 else if (id == charset_jisx0208_1978) \
3203 { \
3204 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
3205 id = charset_jisx0208; \
3206 } \
3207 CODING_ISO_DESIGNATION (coding, reg) = id; \
3208 /* If there was an invalid designation to REG previously, and this \
3209 designation is ASCII to REG, we should keep this designation \
3210 sequence. */ \
3211 if (prev == -2 && id == charset_ascii) \
3212 chars_96 = -1; \
3213 } while (0)
3214
3215
3216 /* Handle these composition sequence (ALT: alternate char):
3217
3218 (1) relative composition: ESC 0 CHAR ... ESC 1
3219 (2) rulebase composition: ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3220 (3) altchar composition: ESC 3 ALT ... ALT ESC 0 CHAR ... ESC 1
3221 (4) alt&rule composition: ESC 4 ALT RULE ... ALT ESC 0 CHAR ... ESC 1
3222
3223 When the start sequence (ESC 0/2/3/4) is found, this annotation
3224 header is produced.
3225
3226 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) 0 METHOD ]
3227
3228 Then, upon reading CHAR or RULE (one or two bytes), these codes are
3229 produced until the end sequence (ESC 1) is found:
3230
3231 (1) CHAR ... CHAR
3232 (2) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
3233 (3) ALT ... ALT -1 -1 CHAR ... CHAR
3234 (4) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT -1 -1 CHAR ... CHAR
3235
3236 When the end sequence (ESC 1) is found, LENGTH and NCHARS in the
3237 annotation header is updated as below:
3238
3239 (1) LENGTH: unchanged, NCHARS: number of CHARs
3240 (2) LENGTH: unchanged, NCHARS: number of CHARs
3241 (3) LENGTH: += number of ALTs + 2, NCHARS: number of CHARs
3242 (4) LENGTH: += number of ALTs * 3, NCHARS: number of CHARs
3243
3244 If an error is found while composing, the annotation header is
3245 changed to:
3246
3247 [ ESC '0'/'2'/'3'/'4' -2 0 ]
3248
3249 and the sequence [ -2 DECODED-RULE ] is changed to the original
3250 byte sequence as below:
3251 o the original byte sequence is B: [ B -1 ]
3252 o the original byte sequence is B1 B2: [ B1 B2 ]
3253 and the sequence [ -1 -1 ] is changed to the original byte
3254 sequence:
3255 [ ESC '0' ]
3256 */
3257
3258 /* Decode a composition rule C1 and maybe one more byte from the
3259 source, and set RULE to the encoded composition rule. If the rule
3260 is invalid, goto invalid_code. */
3261
3262 #define DECODE_COMPOSITION_RULE(rule) \
3263 do { \
3264 rule = c1 - 32; \
3265 if (rule < 0) \
3266 goto invalid_code; \
3267 if (rule < 81) /* old format (before ver.21) */ \
3268 { \
3269 int gref = (rule) / 9; \
3270 int nref = (rule) % 9; \
3271 if (gref == 4) gref = 10; \
3272 if (nref == 4) nref = 10; \
3273 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
3274 } \
3275 else /* new format (after ver.21) */ \
3276 { \
3277 int b; \
3278 \
3279 ONE_MORE_BYTE (b); \
3280 if (! COMPOSITION_ENCODE_RULE_VALID (rule - 81, b - 32)) \
3281 goto invalid_code; \
3282 rule = COMPOSITION_ENCODE_RULE (rule - 81, b - 32); \
3283 rule += 0x100; /* Distinguish it from the old format. */ \
3284 } \
3285 } while (0)
3286
3287 #define ENCODE_COMPOSITION_RULE(rule) \
3288 do { \
3289 int gref = (rule % 0x100) / 12, nref = (rule % 0x100) % 12; \
3290 \
3291 if (rule < 0x100) /* old format */ \
3292 { \
3293 if (gref == 10) gref = 4; \
3294 if (nref == 10) nref = 4; \
3295 charbuf[idx] = 32 + gref * 9 + nref; \
3296 charbuf[idx + 1] = -1; \
3297 new_chars++; \
3298 } \
3299 else /* new format */ \
3300 { \
3301 charbuf[idx] = 32 + 81 + gref; \
3302 charbuf[idx + 1] = 32 + nref; \
3303 new_chars += 2; \
3304 } \
3305 } while (0)
3306
3307 /* Finish the current composition as invalid. */
3308
3309 static int finish_composition (int *, struct composition_status *);
3310
3311 static int
3312 finish_composition (int *charbuf, struct composition_status *cmp_status)
3313 {
3314 int idx = - cmp_status->length;
3315 int new_chars;
3316
3317 /* Recover the original ESC sequence */
3318 charbuf[idx++] = ISO_CODE_ESC;
3319 charbuf[idx++] = (cmp_status->method == COMPOSITION_RELATIVE ? '0'
3320 : cmp_status->method == COMPOSITION_WITH_RULE ? '2'
3321 : cmp_status->method == COMPOSITION_WITH_ALTCHARS ? '3'
3322 /* cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS */
3323 : '4');
3324 charbuf[idx++] = -2;
3325 charbuf[idx++] = 0;
3326 charbuf[idx++] = -1;
3327 new_chars = cmp_status->nchars;
3328 if (cmp_status->method >= COMPOSITION_WITH_RULE)
3329 for (; idx < 0; idx++)
3330 {
3331 int elt = charbuf[idx];
3332
3333 if (elt == -2)
3334 {
3335 ENCODE_COMPOSITION_RULE (charbuf[idx + 1]);
3336 idx++;
3337 }
3338 else if (elt == -1)
3339 {
3340 charbuf[idx++] = ISO_CODE_ESC;
3341 charbuf[idx] = '0';
3342 new_chars += 2;
3343 }
3344 }
3345 cmp_status->state = COMPOSING_NO;
3346 return new_chars;
3347 }
3348
3349 /* If characters are under composition, finish the composition. */
3350 #define MAYBE_FINISH_COMPOSITION() \
3351 do { \
3352 if (cmp_status->state != COMPOSING_NO) \
3353 char_offset += finish_composition (charbuf, cmp_status); \
3354 } while (0)
3355
3356 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
3357
3358 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
3359 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3360 ESC 3 : altchar composition : ESC 3 CHAR ... ESC 0 CHAR ... ESC 1
3361 ESC 4 : alt&rule composition : ESC 4 CHAR RULE ... CHAR ESC 0 CHAR ... ESC 1
3362
3363 Produce this annotation sequence now:
3364
3365 [ -LENGTH(==-4) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) METHOD ]
3366 */
3367
3368 #define DECODE_COMPOSITION_START(c1) \
3369 do { \
3370 if (c1 == '0' \
3371 && ((cmp_status->state == COMPOSING_COMPONENT_CHAR \
3372 && cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3373 || (cmp_status->state == COMPOSING_COMPONENT_RULE \
3374 && cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS))) \
3375 { \
3376 *charbuf++ = -1; \
3377 *charbuf++= -1; \
3378 cmp_status->state = COMPOSING_CHAR; \
3379 cmp_status->length += 2; \
3380 } \
3381 else \
3382 { \
3383 MAYBE_FINISH_COMPOSITION (); \
3384 cmp_status->method = (c1 == '0' ? COMPOSITION_RELATIVE \
3385 : c1 == '2' ? COMPOSITION_WITH_RULE \
3386 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
3387 : COMPOSITION_WITH_RULE_ALTCHARS); \
3388 cmp_status->state \
3389 = (c1 <= '2' ? COMPOSING_CHAR : COMPOSING_COMPONENT_CHAR); \
3390 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
3391 cmp_status->length = MAX_ANNOTATION_LENGTH; \
3392 cmp_status->nchars = cmp_status->ncomps = 0; \
3393 coding->annotated = 1; \
3394 } \
3395 } while (0)
3396
3397
3398 /* Handle composition end sequence ESC 1. */
3399
3400 #define DECODE_COMPOSITION_END() \
3401 do { \
3402 if (cmp_status->nchars == 0 \
3403 || ((cmp_status->state == COMPOSING_CHAR) \
3404 == (cmp_status->method == COMPOSITION_WITH_RULE))) \
3405 { \
3406 MAYBE_FINISH_COMPOSITION (); \
3407 goto invalid_code; \
3408 } \
3409 if (cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3410 charbuf[- cmp_status->length] -= cmp_status->ncomps + 2; \
3411 else if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS) \
3412 charbuf[- cmp_status->length] -= cmp_status->ncomps * 3; \
3413 charbuf[- cmp_status->length + 2] = cmp_status->nchars; \
3414 char_offset += cmp_status->nchars; \
3415 cmp_status->state = COMPOSING_NO; \
3416 } while (0)
3417
3418 /* Store a composition rule RULE in charbuf, and update cmp_status. */
3419
3420 #define STORE_COMPOSITION_RULE(rule) \
3421 do { \
3422 *charbuf++ = -2; \
3423 *charbuf++ = rule; \
3424 cmp_status->length += 2; \
3425 cmp_status->state--; \
3426 } while (0)
3427
3428 /* Store a composed char or a component char C in charbuf, and update
3429 cmp_status. */
3430
3431 #define STORE_COMPOSITION_CHAR(c) \
3432 do { \
3433 *charbuf++ = (c); \
3434 cmp_status->length++; \
3435 if (cmp_status->state == COMPOSING_CHAR) \
3436 cmp_status->nchars++; \
3437 else \
3438 cmp_status->ncomps++; \
3439 if (cmp_status->method == COMPOSITION_WITH_RULE \
3440 || (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS \
3441 && cmp_status->state == COMPOSING_COMPONENT_CHAR)) \
3442 cmp_status->state++; \
3443 } while (0)
3444
3445
3446 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3447
3448 static void
3449 decode_coding_iso_2022 (struct coding_system *coding)
3450 {
3451 const unsigned char *src = coding->source + coding->consumed;
3452 const unsigned char *src_end = coding->source + coding->src_bytes;
3453 const unsigned char *src_base;
3454 int *charbuf = coding->charbuf + coding->charbuf_used;
3455 /* We may produce two annotations (charset and composition) in one
3456 loop and one more charset annotation at the end. */
3457 int *charbuf_end
3458 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
3459 EMACS_INT consumed_chars = 0, consumed_chars_base;
3460 int multibytep = coding->src_multibyte;
3461 /* Charsets invoked to graphic plane 0 and 1 respectively. */
3462 int charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3463 int charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3464 int charset_id_2, charset_id_3;
3465 struct charset *charset;
3466 int c;
3467 struct composition_status *cmp_status = CODING_ISO_CMP_STATUS (coding);
3468 Lisp_Object attrs = CODING_ID_ATTRS (coding->id);
3469 EMACS_INT char_offset = coding->produced_char;
3470 EMACS_INT last_offset = char_offset;
3471 int last_id = charset_ascii;
3472 int eol_dos =
3473 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
3474 int byte_after_cr = -1;
3475 int i;
3476
3477 setup_iso_safe_charsets (attrs);
3478 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
3479
3480 if (cmp_status->state != COMPOSING_NO)
3481 {
3482 for (i = 0; i < cmp_status->length; i++)
3483 *charbuf++ = cmp_status->carryover[i];
3484 coding->annotated = 1;
3485 }
3486
3487 while (1)
3488 {
3489 int c1, c2, c3;
3490
3491 src_base = src;
3492 consumed_chars_base = consumed_chars;
3493
3494 if (charbuf >= charbuf_end)
3495 {
3496 if (byte_after_cr >= 0)
3497 src_base--;
3498 break;
3499 }
3500
3501 if (byte_after_cr >= 0)
3502 c1 = byte_after_cr, byte_after_cr = -1;
3503 else
3504 ONE_MORE_BYTE (c1);
3505 if (c1 < 0)
3506 goto invalid_code;
3507
3508 if (CODING_ISO_EXTSEGMENT_LEN (coding) > 0)
3509 {
3510 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3511 char_offset++;
3512 CODING_ISO_EXTSEGMENT_LEN (coding)--;
3513 continue;
3514 }
3515
3516 if (CODING_ISO_EMBEDDED_UTF_8 (coding))
3517 {
3518 if (c1 == ISO_CODE_ESC)
3519 {
3520 if (src + 1 >= src_end)
3521 goto no_more_source;
3522 *charbuf++ = ISO_CODE_ESC;
3523 char_offset++;
3524 if (src[0] == '%' && src[1] == '@')
3525 {
3526 src += 2;
3527 consumed_chars += 2;
3528 char_offset += 2;
3529 /* We are sure charbuf can contain two more chars. */
3530 *charbuf++ = '%';
3531 *charbuf++ = '@';
3532 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
3533 }
3534 }
3535 else
3536 {
3537 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3538 char_offset++;
3539 }
3540 continue;
3541 }
3542
3543 if ((cmp_status->state == COMPOSING_RULE
3544 || cmp_status->state == COMPOSING_COMPONENT_RULE)
3545 && c1 != ISO_CODE_ESC)
3546 {
3547 int rule;
3548
3549 DECODE_COMPOSITION_RULE (rule);
3550 STORE_COMPOSITION_RULE (rule);
3551 continue;
3552 }
3553
3554 /* We produce at most one character. */
3555 switch (iso_code_class [c1])
3556 {
3557 case ISO_0x20_or_0x7F:
3558 if (charset_id_0 < 0
3559 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_0)))
3560 /* This is SPACE or DEL. */
3561 charset = CHARSET_FROM_ID (charset_ascii);
3562 else
3563 charset = CHARSET_FROM_ID (charset_id_0);
3564 break;
3565
3566 case ISO_graphic_plane_0:
3567 if (charset_id_0 < 0)
3568 charset = CHARSET_FROM_ID (charset_ascii);
3569 else
3570 charset = CHARSET_FROM_ID (charset_id_0);
3571 break;
3572
3573 case ISO_0xA0_or_0xFF:
3574 if (charset_id_1 < 0
3575 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_1))
3576 || CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3577 goto invalid_code;
3578 /* This is a graphic character, we fall down ... */
3579
3580 case ISO_graphic_plane_1:
3581 if (charset_id_1 < 0)
3582 goto invalid_code;
3583 charset = CHARSET_FROM_ID (charset_id_1);
3584 break;
3585
3586 case ISO_control_0:
3587 if (eol_dos && c1 == '\r')
3588 ONE_MORE_BYTE (byte_after_cr);
3589 MAYBE_FINISH_COMPOSITION ();
3590 charset = CHARSET_FROM_ID (charset_ascii);
3591 break;
3592
3593 case ISO_control_1:
3594 goto invalid_code;
3595
3596 case ISO_shift_out:
3597 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3598 || CODING_ISO_DESIGNATION (coding, 1) < 0)
3599 goto invalid_code;
3600 CODING_ISO_INVOCATION (coding, 0) = 1;
3601 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3602 continue;
3603
3604 case ISO_shift_in:
3605 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT))
3606 goto invalid_code;
3607 CODING_ISO_INVOCATION (coding, 0) = 0;
3608 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3609 continue;
3610
3611 case ISO_single_shift_2_7:
3612 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS))
3613 goto invalid_code;
3614 case ISO_single_shift_2:
3615 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3616 goto invalid_code;
3617 /* SS2 is handled as an escape sequence of ESC 'N' */
3618 c1 = 'N';
3619 goto label_escape_sequence;
3620
3621 case ISO_single_shift_3:
3622 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3623 goto invalid_code;
3624 /* SS2 is handled as an escape sequence of ESC 'O' */
3625 c1 = 'O';
3626 goto label_escape_sequence;
3627
3628 case ISO_control_sequence_introducer:
3629 /* CSI is handled as an escape sequence of ESC '[' ... */
3630 c1 = '[';
3631 goto label_escape_sequence;
3632
3633 case ISO_escape:
3634 ONE_MORE_BYTE (c1);
3635 label_escape_sequence:
3636 /* Escape sequences handled here are invocation,
3637 designation, direction specification, and character
3638 composition specification. */
3639 switch (c1)
3640 {
3641 case '&': /* revision of following character set */
3642 ONE_MORE_BYTE (c1);
3643 if (!(c1 >= '@' && c1 <= '~'))
3644 goto invalid_code;
3645 ONE_MORE_BYTE (c1);
3646 if (c1 != ISO_CODE_ESC)
3647 goto invalid_code;
3648 ONE_MORE_BYTE (c1);
3649 goto label_escape_sequence;
3650
3651 case '$': /* designation of 2-byte character set */
3652 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3653 goto invalid_code;
3654 {
3655 int reg, chars96;
3656
3657 ONE_MORE_BYTE (c1);
3658 if (c1 >= '@' && c1 <= 'B')
3659 { /* designation of JISX0208.1978, GB2312.1980,
3660 or JISX0208.1980 */
3661 reg = 0, chars96 = 0;
3662 }
3663 else if (c1 >= 0x28 && c1 <= 0x2B)
3664 { /* designation of DIMENSION2_CHARS94 character set */
3665 reg = c1 - 0x28, chars96 = 0;
3666 ONE_MORE_BYTE (c1);
3667 }
3668 else if (c1 >= 0x2C && c1 <= 0x2F)
3669 { /* designation of DIMENSION2_CHARS96 character set */
3670 reg = c1 - 0x2C, chars96 = 1;
3671 ONE_MORE_BYTE (c1);
3672 }
3673 else
3674 goto invalid_code;
3675 DECODE_DESIGNATION (reg, 2, chars96, c1);
3676 /* We must update these variables now. */
3677 if (reg == 0)
3678 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3679 else if (reg == 1)
3680 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3681 if (chars96 < 0)
3682 goto invalid_code;
3683 }
3684 continue;
3685
3686 case 'n': /* invocation of locking-shift-2 */
3687 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3688 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3689 goto invalid_code;
3690 CODING_ISO_INVOCATION (coding, 0) = 2;
3691 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3692 continue;
3693
3694 case 'o': /* invocation of locking-shift-3 */
3695 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3696 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3697 goto invalid_code;
3698 CODING_ISO_INVOCATION (coding, 0) = 3;
3699 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3700 continue;
3701
3702 case 'N': /* invocation of single-shift-2 */
3703 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3704 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3705 goto invalid_code;
3706 charset_id_2 = CODING_ISO_DESIGNATION (coding, 2);
3707 if (charset_id_2 < 0)
3708 charset = CHARSET_FROM_ID (charset_ascii);
3709 else
3710 charset = CHARSET_FROM_ID (charset_id_2);
3711 ONE_MORE_BYTE (c1);
3712 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3713 goto invalid_code;
3714 break;
3715
3716 case 'O': /* invocation of single-shift-3 */
3717 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3718 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3719 goto invalid_code;
3720 charset_id_3 = CODING_ISO_DESIGNATION (coding, 3);
3721 if (charset_id_3 < 0)
3722 charset = CHARSET_FROM_ID (charset_ascii);
3723 else
3724 charset = CHARSET_FROM_ID (charset_id_3);
3725 ONE_MORE_BYTE (c1);
3726 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3727 goto invalid_code;
3728 break;
3729
3730 case '0': case '2': case '3': case '4': /* start composition */
3731 if (! (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK))
3732 goto invalid_code;
3733 if (last_id != charset_ascii)
3734 {
3735 ADD_CHARSET_DATA (charbuf, char_offset- last_offset, last_id);
3736 last_id = charset_ascii;
3737 last_offset = char_offset;
3738 }
3739 DECODE_COMPOSITION_START (c1);
3740 continue;
3741
3742 case '1': /* end composition */
3743 if (cmp_status->state == COMPOSING_NO)
3744 goto invalid_code;
3745 DECODE_COMPOSITION_END ();
3746 continue;
3747
3748 case '[': /* specification of direction */
3749 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DIRECTION))
3750 goto invalid_code;
3751 /* For the moment, nested direction is not supported.
3752 So, `coding->mode & CODING_MODE_DIRECTION' zero means
3753 left-to-right, and nonzero means right-to-left. */
3754 ONE_MORE_BYTE (c1);
3755 switch (c1)
3756 {
3757 case ']': /* end of the current direction */
3758 coding->mode &= ~CODING_MODE_DIRECTION;
3759
3760 case '0': /* end of the current direction */
3761 case '1': /* start of left-to-right direction */
3762 ONE_MORE_BYTE (c1);
3763 if (c1 == ']')
3764 coding->mode &= ~CODING_MODE_DIRECTION;
3765 else
3766 goto invalid_code;
3767 break;
3768
3769 case '2': /* start of right-to-left direction */
3770 ONE_MORE_BYTE (c1);
3771 if (c1 == ']')
3772 coding->mode |= CODING_MODE_DIRECTION;
3773 else
3774 goto invalid_code;
3775 break;
3776
3777 default:
3778 goto invalid_code;
3779 }
3780 continue;
3781
3782 case '%':
3783 ONE_MORE_BYTE (c1);
3784 if (c1 == '/')
3785 {
3786 /* CTEXT extended segment:
3787 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
3788 We keep these bytes as is for the moment.
3789 They may be decoded by post-read-conversion. */
3790 int dim, M, L;
3791 int size;
3792
3793 ONE_MORE_BYTE (dim);
3794 if (dim < '0' || dim > '4')
3795 goto invalid_code;
3796 ONE_MORE_BYTE (M);
3797 if (M < 128)
3798 goto invalid_code;
3799 ONE_MORE_BYTE (L);
3800 if (L < 128)
3801 goto invalid_code;
3802 size = ((M - 128) * 128) + (L - 128);
3803 if (charbuf + 6 > charbuf_end)
3804 goto break_loop;
3805 *charbuf++ = ISO_CODE_ESC;
3806 *charbuf++ = '%';
3807 *charbuf++ = '/';
3808 *charbuf++ = dim;
3809 *charbuf++ = BYTE8_TO_CHAR (M);
3810 *charbuf++ = BYTE8_TO_CHAR (L);
3811 CODING_ISO_EXTSEGMENT_LEN (coding) = size;
3812 }
3813 else if (c1 == 'G')
3814 {
3815 /* XFree86 extension for embedding UTF-8 in CTEXT:
3816 ESC % G --UTF-8-BYTES-- ESC % @
3817 We keep these bytes as is for the moment.
3818 They may be decoded by post-read-conversion. */
3819 if (charbuf + 3 > charbuf_end)
3820 goto break_loop;
3821 *charbuf++ = ISO_CODE_ESC;
3822 *charbuf++ = '%';
3823 *charbuf++ = 'G';
3824 CODING_ISO_EMBEDDED_UTF_8 (coding) = 1;
3825 }
3826 else
3827 goto invalid_code;
3828 continue;
3829 break;
3830
3831 default:
3832 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3833 goto invalid_code;
3834 {
3835 int reg, chars96;
3836
3837 if (c1 >= 0x28 && c1 <= 0x2B)
3838 { /* designation of DIMENSION1_CHARS94 character set */
3839 reg = c1 - 0x28, chars96 = 0;
3840 ONE_MORE_BYTE (c1);
3841 }
3842 else if (c1 >= 0x2C && c1 <= 0x2F)
3843 { /* designation of DIMENSION1_CHARS96 character set */
3844 reg = c1 - 0x2C, chars96 = 1;
3845 ONE_MORE_BYTE (c1);
3846 }
3847 else
3848 goto invalid_code;
3849 DECODE_DESIGNATION (reg, 1, chars96, c1);
3850 /* We must update these variables now. */
3851 if (reg == 0)
3852 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3853 else if (reg == 1)
3854 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3855 if (chars96 < 0)
3856 goto invalid_code;
3857 }
3858 continue;
3859 }
3860 break;
3861
3862 default:
3863 abort ();
3864 }
3865
3866 if (cmp_status->state == COMPOSING_NO
3867 && charset->id != charset_ascii
3868 && last_id != charset->id)
3869 {
3870 if (last_id != charset_ascii)
3871 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3872 last_id = charset->id;
3873 last_offset = char_offset;
3874 }
3875
3876 /* Now we know CHARSET and 1st position code C1 of a character.
3877 Produce a decoded character while getting 2nd and 3rd
3878 position codes C2, C3 if necessary. */
3879 if (CHARSET_DIMENSION (charset) > 1)
3880 {
3881 ONE_MORE_BYTE (c2);
3882 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0)
3883 || ((c1 & 0x80) != (c2 & 0x80)))
3884 /* C2 is not in a valid range. */
3885 goto invalid_code;
3886 if (CHARSET_DIMENSION (charset) == 2)
3887 c1 = (c1 << 8) | c2;
3888 else
3889 {
3890 ONE_MORE_BYTE (c3);
3891 if (c3 < 0x20 || (c3 >= 0x80 && c3 < 0xA0)
3892 || ((c1 & 0x80) != (c3 & 0x80)))
3893 /* C3 is not in a valid range. */
3894 goto invalid_code;
3895 c1 = (c1 << 16) | (c2 << 8) | c2;
3896 }
3897 }
3898 c1 &= 0x7F7F7F;
3899 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c1, c);
3900 if (c < 0)
3901 {
3902 MAYBE_FINISH_COMPOSITION ();
3903 for (; src_base < src; src_base++, char_offset++)
3904 {
3905 if (ASCII_BYTE_P (*src_base))
3906 *charbuf++ = *src_base;
3907 else
3908 *charbuf++ = BYTE8_TO_CHAR (*src_base);
3909 }
3910 }
3911 else if (cmp_status->state == COMPOSING_NO)
3912 {
3913 *charbuf++ = c;
3914 char_offset++;
3915 }
3916 else if ((cmp_status->state == COMPOSING_CHAR
3917 ? cmp_status->nchars
3918 : cmp_status->ncomps)
3919 >= MAX_COMPOSITION_COMPONENTS)
3920 {
3921 /* Too long composition. */
3922 MAYBE_FINISH_COMPOSITION ();
3923 *charbuf++ = c;
3924 char_offset++;
3925 }
3926 else
3927 STORE_COMPOSITION_CHAR (c);
3928 continue;
3929
3930 invalid_code:
3931 MAYBE_FINISH_COMPOSITION ();
3932 src = src_base;
3933 consumed_chars = consumed_chars_base;
3934 ONE_MORE_BYTE (c);
3935 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
3936 char_offset++;
3937 coding->errors++;
3938 continue;
3939
3940 break_loop:
3941 break;
3942 }
3943
3944 no_more_source:
3945 if (cmp_status->state != COMPOSING_NO)
3946 {
3947 if (coding->mode & CODING_MODE_LAST_BLOCK)
3948 MAYBE_FINISH_COMPOSITION ();
3949 else
3950 {
3951 charbuf -= cmp_status->length;
3952 for (i = 0; i < cmp_status->length; i++)
3953 cmp_status->carryover[i] = charbuf[i];
3954 }
3955 }
3956 else if (last_id != charset_ascii)
3957 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3958 coding->consumed_char += consumed_chars_base;
3959 coding->consumed = src_base - coding->source;
3960 coding->charbuf_used = charbuf - coding->charbuf;
3961 }
3962
3963
3964 /* ISO2022 encoding stuff. */
3965
3966 /*
3967 It is not enough to say just "ISO2022" on encoding, we have to
3968 specify more details. In Emacs, each coding system of ISO2022
3969 variant has the following specifications:
3970 1. Initial designation to G0 thru G3.
3971 2. Allows short-form designation?
3972 3. ASCII should be designated to G0 before control characters?
3973 4. ASCII should be designated to G0 at end of line?
3974 5. 7-bit environment or 8-bit environment?
3975 6. Use locking-shift?
3976 7. Use Single-shift?
3977 And the following two are only for Japanese:
3978 8. Use ASCII in place of JIS0201-1976-Roman?
3979 9. Use JISX0208-1983 in place of JISX0208-1978?
3980 These specifications are encoded in CODING_ISO_FLAGS (coding) as flag bits
3981 defined by macros CODING_ISO_FLAG_XXX. See `coding.h' for more
3982 details.
3983 */
3984
3985 /* Produce codes (escape sequence) for designating CHARSET to graphic
3986 register REG at DST, and increment DST. If <final-char> of CHARSET is
3987 '@', 'A', or 'B' and the coding system CODING allows, produce
3988 designation sequence of short-form. */
3989
3990 #define ENCODE_DESIGNATION(charset, reg, coding) \
3991 do { \
3992 unsigned char final_char = CHARSET_ISO_FINAL (charset); \
3993 const char *intermediate_char_94 = "()*+"; \
3994 const char *intermediate_char_96 = ",-./"; \
3995 int revision = -1; \
3996 \
3997 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_REVISION) \
3998 revision = CHARSET_ISO_REVISION (charset); \
3999 \
4000 if (revision >= 0) \
4001 { \
4002 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '&'); \
4003 EMIT_ONE_BYTE ('@' + revision); \
4004 } \
4005 EMIT_ONE_ASCII_BYTE (ISO_CODE_ESC); \
4006 if (CHARSET_DIMENSION (charset) == 1) \
4007 { \
4008 int b; \
4009 if (! CHARSET_ISO_CHARS_96 (charset)) \
4010 b = intermediate_char_94[reg]; \
4011 else \
4012 b = intermediate_char_96[reg]; \
4013 EMIT_ONE_ASCII_BYTE (b); \
4014 } \
4015 else \
4016 { \
4017 EMIT_ONE_ASCII_BYTE ('$'); \
4018 if (! CHARSET_ISO_CHARS_96 (charset)) \
4019 { \
4020 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LONG_FORM \
4021 || reg != 0 \
4022 || final_char < '@' || final_char > 'B') \
4023 EMIT_ONE_ASCII_BYTE (intermediate_char_94[reg]); \
4024 } \
4025 else \
4026 EMIT_ONE_ASCII_BYTE (intermediate_char_96[reg]); \
4027 } \
4028 EMIT_ONE_ASCII_BYTE (final_char); \
4029 \
4030 CODING_ISO_DESIGNATION (coding, reg) = CHARSET_ID (charset); \
4031 } while (0)
4032
4033
4034 /* The following two macros produce codes (control character or escape
4035 sequence) for ISO2022 single-shift functions (single-shift-2 and
4036 single-shift-3). */
4037
4038 #define ENCODE_SINGLE_SHIFT_2 \
4039 do { \
4040 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4041 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'N'); \
4042 else \
4043 EMIT_ONE_BYTE (ISO_CODE_SS2); \
4044 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4045 } while (0)
4046
4047
4048 #define ENCODE_SINGLE_SHIFT_3 \
4049 do { \
4050 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4051 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'O'); \
4052 else \
4053 EMIT_ONE_BYTE (ISO_CODE_SS3); \
4054 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4055 } while (0)
4056
4057
4058 /* The following four macros produce codes (control character or
4059 escape sequence) for ISO2022 locking-shift functions (shift-in,
4060 shift-out, locking-shift-2, and locking-shift-3). */
4061
4062 #define ENCODE_SHIFT_IN \
4063 do { \
4064 EMIT_ONE_ASCII_BYTE (ISO_CODE_SI); \
4065 CODING_ISO_INVOCATION (coding, 0) = 0; \
4066 } while (0)
4067
4068
4069 #define ENCODE_SHIFT_OUT \
4070 do { \
4071 EMIT_ONE_ASCII_BYTE (ISO_CODE_SO); \
4072 CODING_ISO_INVOCATION (coding, 0) = 1; \
4073 } while (0)
4074
4075
4076 #define ENCODE_LOCKING_SHIFT_2 \
4077 do { \
4078 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4079 CODING_ISO_INVOCATION (coding, 0) = 2; \
4080 } while (0)
4081
4082
4083 #define ENCODE_LOCKING_SHIFT_3 \
4084 do { \
4085 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4086 CODING_ISO_INVOCATION (coding, 0) = 3; \
4087 } while (0)
4088
4089
4090 /* Produce codes for a DIMENSION1 character whose character set is
4091 CHARSET and whose position-code is C1. Designation and invocation
4092 sequences are also produced in advance if necessary. */
4093
4094 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
4095 do { \
4096 int id = CHARSET_ID (charset); \
4097 \
4098 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
4099 && id == charset_ascii) \
4100 { \
4101 id = charset_jisx0201_roman; \
4102 charset = CHARSET_FROM_ID (id); \
4103 } \
4104 \
4105 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4106 { \
4107 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4108 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4109 else \
4110 EMIT_ONE_BYTE (c1 | 0x80); \
4111 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4112 break; \
4113 } \
4114 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4115 { \
4116 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4117 break; \
4118 } \
4119 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4120 { \
4121 EMIT_ONE_BYTE (c1 | 0x80); \
4122 break; \
4123 } \
4124 else \
4125 /* Since CHARSET is not yet invoked to any graphic planes, we \
4126 must invoke it, or, at first, designate it to some graphic \
4127 register. Then repeat the loop to actually produce the \
4128 character. */ \
4129 dst = encode_invocation_designation (charset, coding, dst, \
4130 &produced_chars); \
4131 } while (1)
4132
4133
4134 /* Produce codes for a DIMENSION2 character whose character set is
4135 CHARSET and whose position-codes are C1 and C2. Designation and
4136 invocation codes are also produced in advance if necessary. */
4137
4138 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
4139 do { \
4140 int id = CHARSET_ID (charset); \
4141 \
4142 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
4143 && id == charset_jisx0208) \
4144 { \
4145 id = charset_jisx0208_1978; \
4146 charset = CHARSET_FROM_ID (id); \
4147 } \
4148 \
4149 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4150 { \
4151 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4152 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4153 else \
4154 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4155 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4156 break; \
4157 } \
4158 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4159 { \
4160 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4161 break; \
4162 } \
4163 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4164 { \
4165 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4166 break; \
4167 } \
4168 else \
4169 /* Since CHARSET is not yet invoked to any graphic planes, we \
4170 must invoke it, or, at first, designate it to some graphic \
4171 register. Then repeat the loop to actually produce the \
4172 character. */ \
4173 dst = encode_invocation_designation (charset, coding, dst, \
4174 &produced_chars); \
4175 } while (1)
4176
4177
4178 #define ENCODE_ISO_CHARACTER(charset, c) \
4179 do { \
4180 int code = ENCODE_CHAR ((charset), (c)); \
4181 \
4182 if (CHARSET_DIMENSION (charset) == 1) \
4183 ENCODE_ISO_CHARACTER_DIMENSION1 ((charset), code); \
4184 else \
4185 ENCODE_ISO_CHARACTER_DIMENSION2 ((charset), code >> 8, code & 0xFF); \
4186 } while (0)
4187
4188
4189 /* Produce designation and invocation codes at a place pointed by DST
4190 to use CHARSET. The element `spec.iso_2022' of *CODING is updated.
4191 Return new DST. */
4192
4193 static unsigned char *
4194 encode_invocation_designation (struct charset *charset,
4195 struct coding_system *coding,
4196 unsigned char *dst, EMACS_INT *p_nchars)
4197 {
4198 int multibytep = coding->dst_multibyte;
4199 EMACS_INT produced_chars = *p_nchars;
4200 int reg; /* graphic register number */
4201 int id = CHARSET_ID (charset);
4202
4203 /* At first, check designations. */
4204 for (reg = 0; reg < 4; reg++)
4205 if (id == CODING_ISO_DESIGNATION (coding, reg))
4206 break;
4207
4208 if (reg >= 4)
4209 {
4210 /* CHARSET is not yet designated to any graphic registers. */
4211 /* At first check the requested designation. */
4212 reg = CODING_ISO_REQUEST (coding, id);
4213 if (reg < 0)
4214 /* Since CHARSET requests no special designation, designate it
4215 to graphic register 0. */
4216 reg = 0;
4217
4218 ENCODE_DESIGNATION (charset, reg, coding);
4219 }
4220
4221 if (CODING_ISO_INVOCATION (coding, 0) != reg
4222 && CODING_ISO_INVOCATION (coding, 1) != reg)
4223 {
4224 /* Since the graphic register REG is not invoked to any graphic
4225 planes, invoke it to graphic plane 0. */
4226 switch (reg)
4227 {
4228 case 0: /* graphic register 0 */
4229 ENCODE_SHIFT_IN;
4230 break;
4231
4232 case 1: /* graphic register 1 */
4233 ENCODE_SHIFT_OUT;
4234 break;
4235
4236 case 2: /* graphic register 2 */
4237 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4238 ENCODE_SINGLE_SHIFT_2;
4239 else
4240 ENCODE_LOCKING_SHIFT_2;
4241 break;
4242
4243 case 3: /* graphic register 3 */
4244 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4245 ENCODE_SINGLE_SHIFT_3;
4246 else
4247 ENCODE_LOCKING_SHIFT_3;
4248 break;
4249 }
4250 }
4251
4252 *p_nchars = produced_chars;
4253 return dst;
4254 }
4255
4256
4257 /* Produce codes for designation and invocation to reset the graphic
4258 planes and registers to initial state. */
4259 #define ENCODE_RESET_PLANE_AND_REGISTER() \
4260 do { \
4261 int reg; \
4262 struct charset *charset; \
4263 \
4264 if (CODING_ISO_INVOCATION (coding, 0) != 0) \
4265 ENCODE_SHIFT_IN; \
4266 for (reg = 0; reg < 4; reg++) \
4267 if (CODING_ISO_INITIAL (coding, reg) >= 0 \
4268 && (CODING_ISO_DESIGNATION (coding, reg) \
4269 != CODING_ISO_INITIAL (coding, reg))) \
4270 { \
4271 charset = CHARSET_FROM_ID (CODING_ISO_INITIAL (coding, reg)); \
4272 ENCODE_DESIGNATION (charset, reg, coding); \
4273 } \
4274 } while (0)
4275
4276
4277 /* Produce designation sequences of charsets in the line started from
4278 SRC to a place pointed by DST, and return updated DST.
4279
4280 If the current block ends before any end-of-line, we may fail to
4281 find all the necessary designations. */
4282
4283 static unsigned char *
4284 encode_designation_at_bol (struct coding_system *coding, int *charbuf,
4285 unsigned char *dst)
4286 {
4287 struct charset *charset;
4288 /* Table of charsets to be designated to each graphic register. */
4289 int r[4];
4290 int c, found = 0, reg;
4291 EMACS_INT produced_chars = 0;
4292 int multibytep = coding->dst_multibyte;
4293 Lisp_Object attrs;
4294 Lisp_Object charset_list;
4295
4296 attrs = CODING_ID_ATTRS (coding->id);
4297 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4298 if (EQ (charset_list, Qiso_2022))
4299 charset_list = Viso_2022_charset_list;
4300
4301 for (reg = 0; reg < 4; reg++)
4302 r[reg] = -1;
4303
4304 while (found < 4)
4305 {
4306 int id;
4307
4308 c = *charbuf++;
4309 if (c == '\n')
4310 break;
4311 charset = char_charset (c, charset_list, NULL);
4312 id = CHARSET_ID (charset);
4313 reg = CODING_ISO_REQUEST (coding, id);
4314 if (reg >= 0 && r[reg] < 0)
4315 {
4316 found++;
4317 r[reg] = id;
4318 }
4319 }
4320
4321 if (found)
4322 {
4323 for (reg = 0; reg < 4; reg++)
4324 if (r[reg] >= 0
4325 && CODING_ISO_DESIGNATION (coding, reg) != r[reg])
4326 ENCODE_DESIGNATION (CHARSET_FROM_ID (r[reg]), reg, coding);
4327 }
4328
4329 return dst;
4330 }
4331
4332 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
4333
4334 static int
4335 encode_coding_iso_2022 (struct coding_system *coding)
4336 {
4337 int multibytep = coding->dst_multibyte;
4338 int *charbuf = coding->charbuf;
4339 int *charbuf_end = charbuf + coding->charbuf_used;
4340 unsigned char *dst = coding->destination + coding->produced;
4341 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4342 int safe_room = 16;
4343 int bol_designation
4344 = (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL
4345 && CODING_ISO_BOL (coding));
4346 EMACS_INT produced_chars = 0;
4347 Lisp_Object attrs, eol_type, charset_list;
4348 int ascii_compatible;
4349 int c;
4350 int preferred_charset_id = -1;
4351
4352 CODING_GET_INFO (coding, attrs, charset_list);
4353 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
4354 if (VECTORP (eol_type))
4355 eol_type = Qunix;
4356
4357 setup_iso_safe_charsets (attrs);
4358 /* Charset list may have been changed. */
4359 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4360 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
4361
4362 ascii_compatible
4363 = (! NILP (CODING_ATTR_ASCII_COMPAT (attrs))
4364 && ! (CODING_ISO_FLAGS (coding) & (CODING_ISO_FLAG_DESIGNATION
4365 | CODING_ISO_FLAG_LOCKING_SHIFT)));
4366
4367 while (charbuf < charbuf_end)
4368 {
4369 ASSURE_DESTINATION (safe_room);
4370
4371 if (bol_designation)
4372 {
4373 unsigned char *dst_prev = dst;
4374
4375 /* We have to produce designation sequences if any now. */
4376 dst = encode_designation_at_bol (coding, charbuf, dst);
4377 bol_designation = 0;
4378 /* We are sure that designation sequences are all ASCII bytes. */
4379 produced_chars += dst - dst_prev;
4380 }
4381
4382 c = *charbuf++;
4383
4384 if (c < 0)
4385 {
4386 /* Handle an annotation. */
4387 switch (*charbuf)
4388 {
4389 case CODING_ANNOTATE_COMPOSITION_MASK:
4390 /* Not yet implemented. */
4391 break;
4392 case CODING_ANNOTATE_CHARSET_MASK:
4393 preferred_charset_id = charbuf[2];
4394 if (preferred_charset_id >= 0
4395 && NILP (Fmemq (make_number (preferred_charset_id),
4396 charset_list)))
4397 preferred_charset_id = -1;
4398 break;
4399 default:
4400 abort ();
4401 }
4402 charbuf += -c - 1;
4403 continue;
4404 }
4405
4406 /* Now encode the character C. */
4407 if (c < 0x20 || c == 0x7F)
4408 {
4409 if (c == '\n'
4410 || (c == '\r' && EQ (eol_type, Qmac)))
4411 {
4412 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4413 ENCODE_RESET_PLANE_AND_REGISTER ();
4414 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_INIT_AT_BOL)
4415 {
4416 int i;
4417
4418 for (i = 0; i < 4; i++)
4419 CODING_ISO_DESIGNATION (coding, i)
4420 = CODING_ISO_INITIAL (coding, i);
4421 }
4422 bol_designation
4423 = CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL;
4424 }
4425 else if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_CNTL)
4426 ENCODE_RESET_PLANE_AND_REGISTER ();
4427 EMIT_ONE_ASCII_BYTE (c);
4428 }
4429 else if (ASCII_CHAR_P (c))
4430 {
4431 if (ascii_compatible)
4432 EMIT_ONE_ASCII_BYTE (c);
4433 else
4434 {
4435 struct charset *charset = CHARSET_FROM_ID (charset_ascii);
4436 ENCODE_ISO_CHARACTER (charset, c);
4437 }
4438 }
4439 else if (CHAR_BYTE8_P (c))
4440 {
4441 c = CHAR_TO_BYTE8 (c);
4442 EMIT_ONE_BYTE (c);
4443 }
4444 else
4445 {
4446 struct charset *charset;
4447
4448 if (preferred_charset_id >= 0)
4449 {
4450 charset = CHARSET_FROM_ID (preferred_charset_id);
4451 if (! CHAR_CHARSET_P (c, charset))
4452 charset = char_charset (c, charset_list, NULL);
4453 }
4454 else
4455 charset = char_charset (c, charset_list, NULL);
4456 if (!charset)
4457 {
4458 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4459 {
4460 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4461 charset = CHARSET_FROM_ID (charset_ascii);
4462 }
4463 else
4464 {
4465 c = coding->default_char;
4466 charset = char_charset (c, charset_list, NULL);
4467 }
4468 }
4469 ENCODE_ISO_CHARACTER (charset, c);
4470 }
4471 }
4472
4473 if (coding->mode & CODING_MODE_LAST_BLOCK
4474 && CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4475 {
4476 ASSURE_DESTINATION (safe_room);
4477 ENCODE_RESET_PLANE_AND_REGISTER ();
4478 }
4479 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4480 CODING_ISO_BOL (coding) = bol_designation;
4481 coding->produced_char += produced_chars;
4482 coding->produced = dst - coding->destination;
4483 return 0;
4484 }
4485
4486 \f
4487 /*** 8,9. SJIS and BIG5 handlers ***/
4488
4489 /* Although SJIS and BIG5 are not ISO's coding system, they are used
4490 quite widely. So, for the moment, Emacs supports them in the bare
4491 C code. But, in the future, they may be supported only by CCL. */
4492
4493 /* SJIS is a coding system encoding three character sets: ASCII, right
4494 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
4495 as is. A character of charset katakana-jisx0201 is encoded by
4496 "position-code + 0x80". A character of charset japanese-jisx0208
4497 is encoded in 2-byte but two position-codes are divided and shifted
4498 so that it fit in the range below.
4499
4500 --- CODE RANGE of SJIS ---
4501 (character set) (range)
4502 ASCII 0x00 .. 0x7F
4503 KATAKANA-JISX0201 0xA0 .. 0xDF
4504 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
4505 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
4506 -------------------------------
4507
4508 */
4509
4510 /* BIG5 is a coding system encoding two character sets: ASCII and
4511 Big5. An ASCII character is encoded as is. Big5 is a two-byte
4512 character set and is encoded in two-byte.
4513
4514 --- CODE RANGE of BIG5 ---
4515 (character set) (range)
4516 ASCII 0x00 .. 0x7F
4517 Big5 (1st byte) 0xA1 .. 0xFE
4518 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
4519 --------------------------
4520
4521 */
4522
4523 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4524 Check if a text is encoded in SJIS. If it is, return
4525 CATEGORY_MASK_SJIS, else return 0. */
4526
4527 static int
4528 detect_coding_sjis (struct coding_system *coding,
4529 struct coding_detection_info *detect_info)
4530 {
4531 const unsigned char *src = coding->source, *src_base;
4532 const unsigned char *src_end = coding->source + coding->src_bytes;
4533 int multibytep = coding->src_multibyte;
4534 EMACS_INT consumed_chars = 0;
4535 int found = 0;
4536 int c;
4537 Lisp_Object attrs, charset_list;
4538 int max_first_byte_of_2_byte_code;
4539
4540 CODING_GET_INFO (coding, attrs, charset_list);
4541 max_first_byte_of_2_byte_code
4542 = (XINT (Flength (charset_list)) > 3 ? 0xFC : 0xEF);
4543
4544 detect_info->checked |= CATEGORY_MASK_SJIS;
4545 /* A coding system of this category is always ASCII compatible. */
4546 src += coding->head_ascii;
4547
4548 while (1)
4549 {
4550 src_base = src;
4551 ONE_MORE_BYTE (c);
4552 if (c < 0x80)
4553 continue;
4554 if ((c >= 0x81 && c <= 0x9F)
4555 || (c >= 0xE0 && c <= max_first_byte_of_2_byte_code))
4556 {
4557 ONE_MORE_BYTE (c);
4558 if (c < 0x40 || c == 0x7F || c > 0xFC)
4559 break;
4560 found = CATEGORY_MASK_SJIS;
4561 }
4562 else if (c >= 0xA0 && c < 0xE0)
4563 found = CATEGORY_MASK_SJIS;
4564 else
4565 break;
4566 }
4567 detect_info->rejected |= CATEGORY_MASK_SJIS;
4568 return 0;
4569
4570 no_more_source:
4571 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4572 {
4573 detect_info->rejected |= CATEGORY_MASK_SJIS;
4574 return 0;
4575 }
4576 detect_info->found |= found;
4577 return 1;
4578 }
4579
4580 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4581 Check if a text is encoded in BIG5. If it is, return
4582 CATEGORY_MASK_BIG5, else return 0. */
4583
4584 static int
4585 detect_coding_big5 (struct coding_system *coding,
4586 struct coding_detection_info *detect_info)
4587 {
4588 const unsigned char *src = coding->source, *src_base;
4589 const unsigned char *src_end = coding->source + coding->src_bytes;
4590 int multibytep = coding->src_multibyte;
4591 EMACS_INT consumed_chars = 0;
4592 int found = 0;
4593 int c;
4594
4595 detect_info->checked |= CATEGORY_MASK_BIG5;
4596 /* A coding system of this category is always ASCII compatible. */
4597 src += coding->head_ascii;
4598
4599 while (1)
4600 {
4601 src_base = src;
4602 ONE_MORE_BYTE (c);
4603 if (c < 0x80)
4604 continue;
4605 if (c >= 0xA1)
4606 {
4607 ONE_MORE_BYTE (c);
4608 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
4609 return 0;
4610 found = CATEGORY_MASK_BIG5;
4611 }
4612 else
4613 break;
4614 }
4615 detect_info->rejected |= CATEGORY_MASK_BIG5;
4616 return 0;
4617
4618 no_more_source:
4619 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4620 {
4621 detect_info->rejected |= CATEGORY_MASK_BIG5;
4622 return 0;
4623 }
4624 detect_info->found |= found;
4625 return 1;
4626 }
4627
4628 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
4629 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
4630
4631 static void
4632 decode_coding_sjis (struct coding_system *coding)
4633 {
4634 const unsigned char *src = coding->source + coding->consumed;
4635 const unsigned char *src_end = coding->source + coding->src_bytes;
4636 const unsigned char *src_base;
4637 int *charbuf = coding->charbuf + coding->charbuf_used;
4638 /* We may produce one charset annotation in one loop and one more at
4639 the end. */
4640 int *charbuf_end
4641 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4642 EMACS_INT consumed_chars = 0, consumed_chars_base;
4643 int multibytep = coding->src_multibyte;
4644 struct charset *charset_roman, *charset_kanji, *charset_kana;
4645 struct charset *charset_kanji2;
4646 Lisp_Object attrs, charset_list, val;
4647 EMACS_INT char_offset = coding->produced_char;
4648 EMACS_INT last_offset = char_offset;
4649 int last_id = charset_ascii;
4650 int eol_dos =
4651 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4652 int byte_after_cr = -1;
4653
4654 CODING_GET_INFO (coding, attrs, charset_list);
4655
4656 val = charset_list;
4657 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4658 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4659 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4660 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4661
4662 while (1)
4663 {
4664 int c, c1;
4665 struct charset *charset;
4666
4667 src_base = src;
4668 consumed_chars_base = consumed_chars;
4669
4670 if (charbuf >= charbuf_end)
4671 {
4672 if (byte_after_cr >= 0)
4673 src_base--;
4674 break;
4675 }
4676
4677 if (byte_after_cr >= 0)
4678 c = byte_after_cr, byte_after_cr = -1;
4679 else
4680 ONE_MORE_BYTE (c);
4681 if (c < 0)
4682 goto invalid_code;
4683 if (c < 0x80)
4684 {
4685 if (eol_dos && c == '\r')
4686 ONE_MORE_BYTE (byte_after_cr);
4687 charset = charset_roman;
4688 }
4689 else if (c == 0x80 || c == 0xA0)
4690 goto invalid_code;
4691 else if (c >= 0xA1 && c <= 0xDF)
4692 {
4693 /* SJIS -> JISX0201-Kana */
4694 c &= 0x7F;
4695 charset = charset_kana;
4696 }
4697 else if (c <= 0xEF)
4698 {
4699 /* SJIS -> JISX0208 */
4700 ONE_MORE_BYTE (c1);
4701 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4702 goto invalid_code;
4703 c = (c << 8) | c1;
4704 SJIS_TO_JIS (c);
4705 charset = charset_kanji;
4706 }
4707 else if (c <= 0xFC && charset_kanji2)
4708 {
4709 /* SJIS -> JISX0213-2 */
4710 ONE_MORE_BYTE (c1);
4711 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4712 goto invalid_code;
4713 c = (c << 8) | c1;
4714 SJIS_TO_JIS2 (c);
4715 charset = charset_kanji2;
4716 }
4717 else
4718 goto invalid_code;
4719 if (charset->id != charset_ascii
4720 && last_id != charset->id)
4721 {
4722 if (last_id != charset_ascii)
4723 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4724 last_id = charset->id;
4725 last_offset = char_offset;
4726 }
4727 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4728 *charbuf++ = c;
4729 char_offset++;
4730 continue;
4731
4732 invalid_code:
4733 src = src_base;
4734 consumed_chars = consumed_chars_base;
4735 ONE_MORE_BYTE (c);
4736 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4737 char_offset++;
4738 coding->errors++;
4739 }
4740
4741 no_more_source:
4742 if (last_id != charset_ascii)
4743 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4744 coding->consumed_char += consumed_chars_base;
4745 coding->consumed = src_base - coding->source;
4746 coding->charbuf_used = charbuf - coding->charbuf;
4747 }
4748
4749 static void
4750 decode_coding_big5 (struct coding_system *coding)
4751 {
4752 const unsigned char *src = coding->source + coding->consumed;
4753 const unsigned char *src_end = coding->source + coding->src_bytes;
4754 const unsigned char *src_base;
4755 int *charbuf = coding->charbuf + coding->charbuf_used;
4756 /* We may produce one charset annotation in one loop and one more at
4757 the end. */
4758 int *charbuf_end
4759 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4760 EMACS_INT consumed_chars = 0, consumed_chars_base;
4761 int multibytep = coding->src_multibyte;
4762 struct charset *charset_roman, *charset_big5;
4763 Lisp_Object attrs, charset_list, val;
4764 EMACS_INT char_offset = coding->produced_char;
4765 EMACS_INT last_offset = char_offset;
4766 int last_id = charset_ascii;
4767 int eol_dos =
4768 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4769 int byte_after_cr = -1;
4770
4771 CODING_GET_INFO (coding, attrs, charset_list);
4772 val = charset_list;
4773 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4774 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4775
4776 while (1)
4777 {
4778 int c, c1;
4779 struct charset *charset;
4780
4781 src_base = src;
4782 consumed_chars_base = consumed_chars;
4783
4784 if (charbuf >= charbuf_end)
4785 {
4786 if (byte_after_cr >= 0)
4787 src_base--;
4788 break;
4789 }
4790
4791 if (byte_after_cr >= 0)
4792 c = byte_after_cr, byte_after_cr = -1;
4793 else
4794 ONE_MORE_BYTE (c);
4795
4796 if (c < 0)
4797 goto invalid_code;
4798 if (c < 0x80)
4799 {
4800 if (eol_dos && c == '\r')
4801 ONE_MORE_BYTE (byte_after_cr);
4802 charset = charset_roman;
4803 }
4804 else
4805 {
4806 /* BIG5 -> Big5 */
4807 if (c < 0xA1 || c > 0xFE)
4808 goto invalid_code;
4809 ONE_MORE_BYTE (c1);
4810 if (c1 < 0x40 || (c1 > 0x7E && c1 < 0xA1) || c1 > 0xFE)
4811 goto invalid_code;
4812 c = c << 8 | c1;
4813 charset = charset_big5;
4814 }
4815 if (charset->id != charset_ascii
4816 && last_id != charset->id)
4817 {
4818 if (last_id != charset_ascii)
4819 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4820 last_id = charset->id;
4821 last_offset = char_offset;
4822 }
4823 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4824 *charbuf++ = c;
4825 char_offset++;
4826 continue;
4827
4828 invalid_code:
4829 src = src_base;
4830 consumed_chars = consumed_chars_base;
4831 ONE_MORE_BYTE (c);
4832 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4833 char_offset++;
4834 coding->errors++;
4835 }
4836
4837 no_more_source:
4838 if (last_id != charset_ascii)
4839 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4840 coding->consumed_char += consumed_chars_base;
4841 coding->consumed = src_base - coding->source;
4842 coding->charbuf_used = charbuf - coding->charbuf;
4843 }
4844
4845 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
4846 This function can encode charsets `ascii', `katakana-jisx0201',
4847 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
4848 are sure that all these charsets are registered as official charset
4849 (i.e. do not have extended leading-codes). Characters of other
4850 charsets are produced without any encoding. If SJIS_P is 1, encode
4851 SJIS text, else encode BIG5 text. */
4852
4853 static int
4854 encode_coding_sjis (struct coding_system *coding)
4855 {
4856 int multibytep = coding->dst_multibyte;
4857 int *charbuf = coding->charbuf;
4858 int *charbuf_end = charbuf + coding->charbuf_used;
4859 unsigned char *dst = coding->destination + coding->produced;
4860 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4861 int safe_room = 4;
4862 EMACS_INT produced_chars = 0;
4863 Lisp_Object attrs, charset_list, val;
4864 int ascii_compatible;
4865 struct charset *charset_kanji, *charset_kana;
4866 struct charset *charset_kanji2;
4867 int c;
4868
4869 CODING_GET_INFO (coding, attrs, charset_list);
4870 val = XCDR (charset_list);
4871 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4872 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4873 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4874
4875 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4876
4877 while (charbuf < charbuf_end)
4878 {
4879 ASSURE_DESTINATION (safe_room);
4880 c = *charbuf++;
4881 /* Now encode the character C. */
4882 if (ASCII_CHAR_P (c) && ascii_compatible)
4883 EMIT_ONE_ASCII_BYTE (c);
4884 else if (CHAR_BYTE8_P (c))
4885 {
4886 c = CHAR_TO_BYTE8 (c);
4887 EMIT_ONE_BYTE (c);
4888 }
4889 else
4890 {
4891 unsigned code;
4892 struct charset *charset = char_charset (c, charset_list, &code);
4893
4894 if (!charset)
4895 {
4896 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4897 {
4898 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4899 charset = CHARSET_FROM_ID (charset_ascii);
4900 }
4901 else
4902 {
4903 c = coding->default_char;
4904 charset = char_charset (c, charset_list, &code);
4905 }
4906 }
4907 if (code == CHARSET_INVALID_CODE (charset))
4908 abort ();
4909 if (charset == charset_kanji)
4910 {
4911 int c1, c2;
4912 JIS_TO_SJIS (code);
4913 c1 = code >> 8, c2 = code & 0xFF;
4914 EMIT_TWO_BYTES (c1, c2);
4915 }
4916 else if (charset == charset_kana)
4917 EMIT_ONE_BYTE (code | 0x80);
4918 else if (charset_kanji2 && charset == charset_kanji2)
4919 {
4920 int c1, c2;
4921
4922 c1 = code >> 8;
4923 if (c1 == 0x21 || (c1 >= 0x23 && c1 <= 0x25)
4924 || c1 == 0x28
4925 || (c1 >= 0x2C && c1 <= 0x2F) || c1 >= 0x6E)
4926 {
4927 JIS_TO_SJIS2 (code);
4928 c1 = code >> 8, c2 = code & 0xFF;
4929 EMIT_TWO_BYTES (c1, c2);
4930 }
4931 else
4932 EMIT_ONE_ASCII_BYTE (code & 0x7F);
4933 }
4934 else
4935 EMIT_ONE_ASCII_BYTE (code & 0x7F);
4936 }
4937 }
4938 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4939 coding->produced_char += produced_chars;
4940 coding->produced = dst - coding->destination;
4941 return 0;
4942 }
4943
4944 static int
4945 encode_coding_big5 (struct coding_system *coding)
4946 {
4947 int multibytep = coding->dst_multibyte;
4948 int *charbuf = coding->charbuf;
4949 int *charbuf_end = charbuf + coding->charbuf_used;
4950 unsigned char *dst = coding->destination + coding->produced;
4951 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4952 int safe_room = 4;
4953 EMACS_INT produced_chars = 0;
4954 Lisp_Object attrs, charset_list, val;
4955 int ascii_compatible;
4956 struct charset *charset_big5;
4957 int c;
4958
4959 CODING_GET_INFO (coding, attrs, charset_list);
4960 val = XCDR (charset_list);
4961 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4962 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4963
4964 while (charbuf < charbuf_end)
4965 {
4966 ASSURE_DESTINATION (safe_room);
4967 c = *charbuf++;
4968 /* Now encode the character C. */
4969 if (ASCII_CHAR_P (c) && ascii_compatible)
4970 EMIT_ONE_ASCII_BYTE (c);
4971 else if (CHAR_BYTE8_P (c))
4972 {
4973 c = CHAR_TO_BYTE8 (c);
4974 EMIT_ONE_BYTE (c);
4975 }
4976 else
4977 {
4978 unsigned code;
4979 struct charset *charset = char_charset (c, charset_list, &code);
4980
4981 if (! charset)
4982 {
4983 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4984 {
4985 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4986 charset = CHARSET_FROM_ID (charset_ascii);
4987 }
4988 else
4989 {
4990 c = coding->default_char;
4991 charset = char_charset (c, charset_list, &code);
4992 }
4993 }
4994 if (code == CHARSET_INVALID_CODE (charset))
4995 abort ();
4996 if (charset == charset_big5)
4997 {
4998 int c1, c2;
4999
5000 c1 = code >> 8, c2 = code & 0xFF;
5001 EMIT_TWO_BYTES (c1, c2);
5002 }
5003 else
5004 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5005 }
5006 }
5007 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5008 coding->produced_char += produced_chars;
5009 coding->produced = dst - coding->destination;
5010 return 0;
5011 }
5012
5013 \f
5014 /*** 10. CCL handlers ***/
5015
5016 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5017 Check if a text is encoded in a coding system of which
5018 encoder/decoder are written in CCL program. If it is, return
5019 CATEGORY_MASK_CCL, else return 0. */
5020
5021 static int
5022 detect_coding_ccl (struct coding_system *coding,
5023 struct coding_detection_info *detect_info)
5024 {
5025 const unsigned char *src = coding->source, *src_base;
5026 const unsigned char *src_end = coding->source + coding->src_bytes;
5027 int multibytep = coding->src_multibyte;
5028 EMACS_INT consumed_chars = 0;
5029 int found = 0;
5030 unsigned char *valids;
5031 EMACS_INT head_ascii = coding->head_ascii;
5032 Lisp_Object attrs;
5033
5034 detect_info->checked |= CATEGORY_MASK_CCL;
5035
5036 coding = &coding_categories[coding_category_ccl];
5037 valids = CODING_CCL_VALIDS (coding);
5038 attrs = CODING_ID_ATTRS (coding->id);
5039 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5040 src += head_ascii;
5041
5042 while (1)
5043 {
5044 int c;
5045
5046 src_base = src;
5047 ONE_MORE_BYTE (c);
5048 if (c < 0 || ! valids[c])
5049 break;
5050 if ((valids[c] > 1))
5051 found = CATEGORY_MASK_CCL;
5052 }
5053 detect_info->rejected |= CATEGORY_MASK_CCL;
5054 return 0;
5055
5056 no_more_source:
5057 detect_info->found |= found;
5058 return 1;
5059 }
5060
5061 static void
5062 decode_coding_ccl (struct coding_system *coding)
5063 {
5064 const unsigned char *src = coding->source + coding->consumed;
5065 const unsigned char *src_end = coding->source + coding->src_bytes;
5066 int *charbuf = coding->charbuf + coding->charbuf_used;
5067 int *charbuf_end = coding->charbuf + coding->charbuf_size;
5068 EMACS_INT consumed_chars = 0;
5069 int multibytep = coding->src_multibyte;
5070 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5071 int source_charbuf[1024];
5072 int source_byteidx[1025];
5073 Lisp_Object attrs, charset_list;
5074
5075 CODING_GET_INFO (coding, attrs, charset_list);
5076
5077 while (1)
5078 {
5079 const unsigned char *p = src;
5080 int i = 0;
5081
5082 if (multibytep)
5083 {
5084 while (i < 1024 && p < src_end)
5085 {
5086 source_byteidx[i] = p - src;
5087 source_charbuf[i++] = STRING_CHAR_ADVANCE (p);
5088 }
5089 source_byteidx[i] = p - src;
5090 }
5091 else
5092 while (i < 1024 && p < src_end)
5093 source_charbuf[i++] = *p++;
5094
5095 if (p == src_end && coding->mode & CODING_MODE_LAST_BLOCK)
5096 ccl->last_block = 1;
5097 ccl_driver (ccl, source_charbuf, charbuf, i, charbuf_end - charbuf,
5098 charset_list);
5099 charbuf += ccl->produced;
5100 if (multibytep)
5101 src += source_byteidx[ccl->consumed];
5102 else
5103 src += ccl->consumed;
5104 consumed_chars += ccl->consumed;
5105 if (p == src_end || ccl->status != CCL_STAT_SUSPEND_BY_SRC)
5106 break;
5107 }
5108
5109 switch (ccl->status)
5110 {
5111 case CCL_STAT_SUSPEND_BY_SRC:
5112 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5113 break;
5114 case CCL_STAT_SUSPEND_BY_DST:
5115 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5116 break;
5117 case CCL_STAT_QUIT:
5118 case CCL_STAT_INVALID_CMD:
5119 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5120 break;
5121 default:
5122 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5123 break;
5124 }
5125 coding->consumed_char += consumed_chars;
5126 coding->consumed = src - coding->source;
5127 coding->charbuf_used = charbuf - coding->charbuf;
5128 }
5129
5130 static int
5131 encode_coding_ccl (struct coding_system *coding)
5132 {
5133 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5134 int multibytep = coding->dst_multibyte;
5135 int *charbuf = coding->charbuf;
5136 int *charbuf_end = charbuf + coding->charbuf_used;
5137 unsigned char *dst = coding->destination + coding->produced;
5138 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5139 int destination_charbuf[1024];
5140 EMACS_INT produced_chars = 0;
5141 int i;
5142 Lisp_Object attrs, charset_list;
5143
5144 CODING_GET_INFO (coding, attrs, charset_list);
5145 if (coding->consumed_char == coding->src_chars
5146 && coding->mode & CODING_MODE_LAST_BLOCK)
5147 ccl->last_block = 1;
5148
5149 while (charbuf < charbuf_end)
5150 {
5151 ccl_driver (ccl, charbuf, destination_charbuf,
5152 charbuf_end - charbuf, 1024, charset_list);
5153 if (multibytep)
5154 {
5155 ASSURE_DESTINATION (ccl->produced * 2);
5156 for (i = 0; i < ccl->produced; i++)
5157 EMIT_ONE_BYTE (destination_charbuf[i] & 0xFF);
5158 }
5159 else
5160 {
5161 ASSURE_DESTINATION (ccl->produced);
5162 for (i = 0; i < ccl->produced; i++)
5163 *dst++ = destination_charbuf[i] & 0xFF;
5164 produced_chars += ccl->produced;
5165 }
5166 charbuf += ccl->consumed;
5167 if (ccl->status == CCL_STAT_QUIT
5168 || ccl->status == CCL_STAT_INVALID_CMD)
5169 break;
5170 }
5171
5172 switch (ccl->status)
5173 {
5174 case CCL_STAT_SUSPEND_BY_SRC:
5175 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5176 break;
5177 case CCL_STAT_SUSPEND_BY_DST:
5178 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5179 break;
5180 case CCL_STAT_QUIT:
5181 case CCL_STAT_INVALID_CMD:
5182 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5183 break;
5184 default:
5185 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5186 break;
5187 }
5188
5189 coding->produced_char += produced_chars;
5190 coding->produced = dst - coding->destination;
5191 return 0;
5192 }
5193
5194
5195 \f
5196 /*** 10, 11. no-conversion handlers ***/
5197
5198 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
5199
5200 static void
5201 decode_coding_raw_text (struct coding_system *coding)
5202 {
5203 int eol_dos =
5204 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5205
5206 coding->chars_at_source = 1;
5207 coding->consumed_char = coding->src_chars;
5208 coding->consumed = coding->src_bytes;
5209 if (eol_dos && coding->source[coding->src_bytes - 1] == '\r')
5210 {
5211 coding->consumed_char--;
5212 coding->consumed--;
5213 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5214 }
5215 else
5216 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5217 }
5218
5219 static int
5220 encode_coding_raw_text (struct coding_system *coding)
5221 {
5222 int multibytep = coding->dst_multibyte;
5223 int *charbuf = coding->charbuf;
5224 int *charbuf_end = coding->charbuf + coding->charbuf_used;
5225 unsigned char *dst = coding->destination + coding->produced;
5226 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5227 EMACS_INT produced_chars = 0;
5228 int c;
5229
5230 if (multibytep)
5231 {
5232 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
5233
5234 if (coding->src_multibyte)
5235 while (charbuf < charbuf_end)
5236 {
5237 ASSURE_DESTINATION (safe_room);
5238 c = *charbuf++;
5239 if (ASCII_CHAR_P (c))
5240 EMIT_ONE_ASCII_BYTE (c);
5241 else if (CHAR_BYTE8_P (c))
5242 {
5243 c = CHAR_TO_BYTE8 (c);
5244 EMIT_ONE_BYTE (c);
5245 }
5246 else
5247 {
5248 unsigned char str[MAX_MULTIBYTE_LENGTH], *p0 = str, *p1 = str;
5249
5250 CHAR_STRING_ADVANCE (c, p1);
5251 do
5252 {
5253 EMIT_ONE_BYTE (*p0);
5254 p0++;
5255 }
5256 while (p0 < p1);
5257 }
5258 }
5259 else
5260 while (charbuf < charbuf_end)
5261 {
5262 ASSURE_DESTINATION (safe_room);
5263 c = *charbuf++;
5264 EMIT_ONE_BYTE (c);
5265 }
5266 }
5267 else
5268 {
5269 if (coding->src_multibyte)
5270 {
5271 int safe_room = MAX_MULTIBYTE_LENGTH;
5272
5273 while (charbuf < charbuf_end)
5274 {
5275 ASSURE_DESTINATION (safe_room);
5276 c = *charbuf++;
5277 if (ASCII_CHAR_P (c))
5278 *dst++ = c;
5279 else if (CHAR_BYTE8_P (c))
5280 *dst++ = CHAR_TO_BYTE8 (c);
5281 else
5282 CHAR_STRING_ADVANCE (c, dst);
5283 }
5284 }
5285 else
5286 {
5287 ASSURE_DESTINATION (charbuf_end - charbuf);
5288 while (charbuf < charbuf_end && dst < dst_end)
5289 *dst++ = *charbuf++;
5290 }
5291 produced_chars = dst - (coding->destination + coding->produced);
5292 }
5293 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5294 coding->produced_char += produced_chars;
5295 coding->produced = dst - coding->destination;
5296 return 0;
5297 }
5298
5299 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5300 Check if a text is encoded in a charset-based coding system. If it
5301 is, return 1, else return 0. */
5302
5303 static int
5304 detect_coding_charset (struct coding_system *coding,
5305 struct coding_detection_info *detect_info)
5306 {
5307 const unsigned char *src = coding->source, *src_base;
5308 const unsigned char *src_end = coding->source + coding->src_bytes;
5309 int multibytep = coding->src_multibyte;
5310 EMACS_INT consumed_chars = 0;
5311 Lisp_Object attrs, valids, name;
5312 int found = 0;
5313 EMACS_INT head_ascii = coding->head_ascii;
5314 int check_latin_extra = 0;
5315
5316 detect_info->checked |= CATEGORY_MASK_CHARSET;
5317
5318 coding = &coding_categories[coding_category_charset];
5319 attrs = CODING_ID_ATTRS (coding->id);
5320 valids = AREF (attrs, coding_attr_charset_valids);
5321 name = CODING_ID_NAME (coding->id);
5322 if (strncmp (SSDATA (SYMBOL_NAME (name)),
5323 "iso-8859-", sizeof ("iso-8859-") - 1) == 0
5324 || strncmp (SSDATA (SYMBOL_NAME (name)),
5325 "iso-latin-", sizeof ("iso-latin-") - 1) == 0)
5326 check_latin_extra = 1;
5327
5328 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5329 src += head_ascii;
5330
5331 while (1)
5332 {
5333 int c;
5334 Lisp_Object val;
5335 struct charset *charset;
5336 int dim, idx;
5337
5338 src_base = src;
5339 ONE_MORE_BYTE (c);
5340 if (c < 0)
5341 continue;
5342 val = AREF (valids, c);
5343 if (NILP (val))
5344 break;
5345 if (c >= 0x80)
5346 {
5347 if (c < 0xA0
5348 && check_latin_extra
5349 && (!VECTORP (Vlatin_extra_code_table)
5350 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])))
5351 break;
5352 found = CATEGORY_MASK_CHARSET;
5353 }
5354 if (INTEGERP (val))
5355 {
5356 charset = CHARSET_FROM_ID (XFASTINT (val));
5357 dim = CHARSET_DIMENSION (charset);
5358 for (idx = 1; idx < dim; idx++)
5359 {
5360 if (src == src_end)
5361 goto too_short;
5362 ONE_MORE_BYTE (c);
5363 if (c < charset->code_space[(dim - 1 - idx) * 2]
5364 || c > charset->code_space[(dim - 1 - idx) * 2 + 1])
5365 break;
5366 }
5367 if (idx < dim)
5368 break;
5369 }
5370 else
5371 {
5372 idx = 1;
5373 for (; CONSP (val); val = XCDR (val))
5374 {
5375 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5376 dim = CHARSET_DIMENSION (charset);
5377 while (idx < dim)
5378 {
5379 if (src == src_end)
5380 goto too_short;
5381 ONE_MORE_BYTE (c);
5382 if (c < charset->code_space[(dim - 1 - idx) * 4]
5383 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5384 break;
5385 idx++;
5386 }
5387 if (idx == dim)
5388 {
5389 val = Qnil;
5390 break;
5391 }
5392 }
5393 if (CONSP (val))
5394 break;
5395 }
5396 }
5397 too_short:
5398 detect_info->rejected |= CATEGORY_MASK_CHARSET;
5399 return 0;
5400
5401 no_more_source:
5402 detect_info->found |= found;
5403 return 1;
5404 }
5405
5406 static void
5407 decode_coding_charset (struct coding_system *coding)
5408 {
5409 const unsigned char *src = coding->source + coding->consumed;
5410 const unsigned char *src_end = coding->source + coding->src_bytes;
5411 const unsigned char *src_base;
5412 int *charbuf = coding->charbuf + coding->charbuf_used;
5413 /* We may produce one charset annotation in one loop and one more at
5414 the end. */
5415 int *charbuf_end
5416 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
5417 EMACS_INT consumed_chars = 0, consumed_chars_base;
5418 int multibytep = coding->src_multibyte;
5419 Lisp_Object attrs = CODING_ID_ATTRS (coding->id);
5420 Lisp_Object valids;
5421 EMACS_INT char_offset = coding->produced_char;
5422 EMACS_INT last_offset = char_offset;
5423 int last_id = charset_ascii;
5424 int eol_dos =
5425 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5426 int byte_after_cr = -1;
5427
5428 valids = AREF (attrs, coding_attr_charset_valids);
5429
5430 while (1)
5431 {
5432 int c;
5433 Lisp_Object val;
5434 struct charset *charset;
5435 int dim;
5436 int len = 1;
5437 unsigned code;
5438
5439 src_base = src;
5440 consumed_chars_base = consumed_chars;
5441
5442 if (charbuf >= charbuf_end)
5443 {
5444 if (byte_after_cr >= 0)
5445 src_base--;
5446 break;
5447 }
5448
5449 if (byte_after_cr >= 0)
5450 {
5451 c = byte_after_cr;
5452 byte_after_cr = -1;
5453 }
5454 else
5455 {
5456 ONE_MORE_BYTE (c);
5457 if (eol_dos && c == '\r')
5458 ONE_MORE_BYTE (byte_after_cr);
5459 }
5460 if (c < 0)
5461 goto invalid_code;
5462 code = c;
5463
5464 val = AREF (valids, c);
5465 if (! INTEGERP (val) && ! CONSP (val))
5466 goto invalid_code;
5467 if (INTEGERP (val))
5468 {
5469 charset = CHARSET_FROM_ID (XFASTINT (val));
5470 dim = CHARSET_DIMENSION (charset);
5471 while (len < dim)
5472 {
5473 ONE_MORE_BYTE (c);
5474 code = (code << 8) | c;
5475 len++;
5476 }
5477 CODING_DECODE_CHAR (coding, src, src_base, src_end,
5478 charset, code, c);
5479 }
5480 else
5481 {
5482 /* VAL is a list of charset IDs. It is assured that the
5483 list is sorted by charset dimensions (smaller one
5484 comes first). */
5485 while (CONSP (val))
5486 {
5487 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5488 dim = CHARSET_DIMENSION (charset);
5489 while (len < dim)
5490 {
5491 ONE_MORE_BYTE (c);
5492 code = (code << 8) | c;
5493 len++;
5494 }
5495 CODING_DECODE_CHAR (coding, src, src_base,
5496 src_end, charset, code, c);
5497 if (c >= 0)
5498 break;
5499 val = XCDR (val);
5500 }
5501 }
5502 if (c < 0)
5503 goto invalid_code;
5504 if (charset->id != charset_ascii
5505 && last_id != charset->id)
5506 {
5507 if (last_id != charset_ascii)
5508 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5509 last_id = charset->id;
5510 last_offset = char_offset;
5511 }
5512
5513 *charbuf++ = c;
5514 char_offset++;
5515 continue;
5516
5517 invalid_code:
5518 src = src_base;
5519 consumed_chars = consumed_chars_base;
5520 ONE_MORE_BYTE (c);
5521 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
5522 char_offset++;
5523 coding->errors++;
5524 }
5525
5526 no_more_source:
5527 if (last_id != charset_ascii)
5528 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5529 coding->consumed_char += consumed_chars_base;
5530 coding->consumed = src_base - coding->source;
5531 coding->charbuf_used = charbuf - coding->charbuf;
5532 }
5533
5534 static int
5535 encode_coding_charset (struct coding_system *coding)
5536 {
5537 int multibytep = coding->dst_multibyte;
5538 int *charbuf = coding->charbuf;
5539 int *charbuf_end = charbuf + coding->charbuf_used;
5540 unsigned char *dst = coding->destination + coding->produced;
5541 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5542 int safe_room = MAX_MULTIBYTE_LENGTH;
5543 EMACS_INT produced_chars = 0;
5544 Lisp_Object attrs, charset_list;
5545 int ascii_compatible;
5546 int c;
5547
5548 CODING_GET_INFO (coding, attrs, charset_list);
5549 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5550
5551 while (charbuf < charbuf_end)
5552 {
5553 struct charset *charset;
5554 unsigned code;
5555
5556 ASSURE_DESTINATION (safe_room);
5557 c = *charbuf++;
5558 if (ascii_compatible && ASCII_CHAR_P (c))
5559 EMIT_ONE_ASCII_BYTE (c);
5560 else if (CHAR_BYTE8_P (c))
5561 {
5562 c = CHAR_TO_BYTE8 (c);
5563 EMIT_ONE_BYTE (c);
5564 }
5565 else
5566 {
5567 charset = char_charset (c, charset_list, &code);
5568 if (charset)
5569 {
5570 if (CHARSET_DIMENSION (charset) == 1)
5571 EMIT_ONE_BYTE (code);
5572 else if (CHARSET_DIMENSION (charset) == 2)
5573 EMIT_TWO_BYTES (code >> 8, code & 0xFF);
5574 else if (CHARSET_DIMENSION (charset) == 3)
5575 EMIT_THREE_BYTES (code >> 16, (code >> 8) & 0xFF, code & 0xFF);
5576 else
5577 EMIT_FOUR_BYTES (code >> 24, (code >> 16) & 0xFF,
5578 (code >> 8) & 0xFF, code & 0xFF);
5579 }
5580 else
5581 {
5582 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5583 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5584 else
5585 c = coding->default_char;
5586 EMIT_ONE_BYTE (c);
5587 }
5588 }
5589 }
5590
5591 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5592 coding->produced_char += produced_chars;
5593 coding->produced = dst - coding->destination;
5594 return 0;
5595 }
5596
5597 \f
5598 /*** 7. C library functions ***/
5599
5600 /* Setup coding context CODING from information about CODING_SYSTEM.
5601 If CODING_SYSTEM is nil, `no-conversion' is assumed. If
5602 CODING_SYSTEM is invalid, signal an error. */
5603
5604 void
5605 setup_coding_system (Lisp_Object coding_system, struct coding_system *coding)
5606 {
5607 Lisp_Object attrs;
5608 Lisp_Object eol_type;
5609 Lisp_Object coding_type;
5610 Lisp_Object val;
5611
5612 if (NILP (coding_system))
5613 coding_system = Qundecided;
5614
5615 CHECK_CODING_SYSTEM_GET_ID (coding_system, coding->id);
5616
5617 attrs = CODING_ID_ATTRS (coding->id);
5618 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
5619
5620 coding->mode = 0;
5621 coding->head_ascii = -1;
5622 if (VECTORP (eol_type))
5623 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5624 | CODING_REQUIRE_DETECTION_MASK);
5625 else if (! EQ (eol_type, Qunix))
5626 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5627 | CODING_REQUIRE_ENCODING_MASK);
5628 else
5629 coding->common_flags = 0;
5630 if (! NILP (CODING_ATTR_POST_READ (attrs)))
5631 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5632 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
5633 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5634 if (! NILP (CODING_ATTR_FOR_UNIBYTE (attrs)))
5635 coding->common_flags |= CODING_FOR_UNIBYTE_MASK;
5636
5637 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5638 coding->max_charset_id = SCHARS (val) - 1;
5639 coding->safe_charsets = SDATA (val);
5640 coding->default_char = XINT (CODING_ATTR_DEFAULT_CHAR (attrs));
5641 coding->carryover_bytes = 0;
5642
5643 coding_type = CODING_ATTR_TYPE (attrs);
5644 if (EQ (coding_type, Qundecided))
5645 {
5646 coding->detector = NULL;
5647 coding->decoder = decode_coding_raw_text;
5648 coding->encoder = encode_coding_raw_text;
5649 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5650 }
5651 else if (EQ (coding_type, Qiso_2022))
5652 {
5653 int i;
5654 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5655
5656 /* Invoke graphic register 0 to plane 0. */
5657 CODING_ISO_INVOCATION (coding, 0) = 0;
5658 /* Invoke graphic register 1 to plane 1 if we can use 8-bit. */
5659 CODING_ISO_INVOCATION (coding, 1)
5660 = (flags & CODING_ISO_FLAG_SEVEN_BITS ? -1 : 1);
5661 /* Setup the initial status of designation. */
5662 for (i = 0; i < 4; i++)
5663 CODING_ISO_DESIGNATION (coding, i) = CODING_ISO_INITIAL (coding, i);
5664 /* Not single shifting initially. */
5665 CODING_ISO_SINGLE_SHIFTING (coding) = 0;
5666 /* Beginning of buffer should also be regarded as bol. */
5667 CODING_ISO_BOL (coding) = 1;
5668 coding->detector = detect_coding_iso_2022;
5669 coding->decoder = decode_coding_iso_2022;
5670 coding->encoder = encode_coding_iso_2022;
5671 if (flags & CODING_ISO_FLAG_SAFE)
5672 coding->mode |= CODING_MODE_SAFE_ENCODING;
5673 coding->common_flags
5674 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5675 | CODING_REQUIRE_FLUSHING_MASK);
5676 if (flags & CODING_ISO_FLAG_COMPOSITION)
5677 coding->common_flags |= CODING_ANNOTATE_COMPOSITION_MASK;
5678 if (flags & CODING_ISO_FLAG_DESIGNATION)
5679 coding->common_flags |= CODING_ANNOTATE_CHARSET_MASK;
5680 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5681 {
5682 setup_iso_safe_charsets (attrs);
5683 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5684 coding->max_charset_id = SCHARS (val) - 1;
5685 coding->safe_charsets = SDATA (val);
5686 }
5687 CODING_ISO_FLAGS (coding) = flags;
5688 CODING_ISO_CMP_STATUS (coding)->state = COMPOSING_NO;
5689 CODING_ISO_CMP_STATUS (coding)->method = COMPOSITION_NO;
5690 CODING_ISO_EXTSEGMENT_LEN (coding) = 0;
5691 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
5692 }
5693 else if (EQ (coding_type, Qcharset))
5694 {
5695 coding->detector = detect_coding_charset;
5696 coding->decoder = decode_coding_charset;
5697 coding->encoder = encode_coding_charset;
5698 coding->common_flags
5699 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5700 }
5701 else if (EQ (coding_type, Qutf_8))
5702 {
5703 val = AREF (attrs, coding_attr_utf_bom);
5704 CODING_UTF_8_BOM (coding) = (CONSP (val) ? utf_detect_bom
5705 : EQ (val, Qt) ? utf_with_bom
5706 : utf_without_bom);
5707 coding->detector = detect_coding_utf_8;
5708 coding->decoder = decode_coding_utf_8;
5709 coding->encoder = encode_coding_utf_8;
5710 coding->common_flags
5711 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5712 if (CODING_UTF_8_BOM (coding) == utf_detect_bom)
5713 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5714 }
5715 else if (EQ (coding_type, Qutf_16))
5716 {
5717 val = AREF (attrs, coding_attr_utf_bom);
5718 CODING_UTF_16_BOM (coding) = (CONSP (val) ? utf_detect_bom
5719 : EQ (val, Qt) ? utf_with_bom
5720 : utf_without_bom);
5721 val = AREF (attrs, coding_attr_utf_16_endian);
5722 CODING_UTF_16_ENDIAN (coding) = (EQ (val, Qbig) ? utf_16_big_endian
5723 : utf_16_little_endian);
5724 CODING_UTF_16_SURROGATE (coding) = 0;
5725 coding->detector = detect_coding_utf_16;
5726 coding->decoder = decode_coding_utf_16;
5727 coding->encoder = encode_coding_utf_16;
5728 coding->common_flags
5729 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5730 if (CODING_UTF_16_BOM (coding) == utf_detect_bom)
5731 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5732 }
5733 else if (EQ (coding_type, Qccl))
5734 {
5735 coding->detector = detect_coding_ccl;
5736 coding->decoder = decode_coding_ccl;
5737 coding->encoder = encode_coding_ccl;
5738 coding->common_flags
5739 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5740 | CODING_REQUIRE_FLUSHING_MASK);
5741 }
5742 else if (EQ (coding_type, Qemacs_mule))
5743 {
5744 coding->detector = detect_coding_emacs_mule;
5745 coding->decoder = decode_coding_emacs_mule;
5746 coding->encoder = encode_coding_emacs_mule;
5747 coding->common_flags
5748 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5749 coding->spec.emacs_mule.full_support = 1;
5750 if (! NILP (AREF (attrs, coding_attr_emacs_mule_full))
5751 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Vemacs_mule_charset_list))
5752 {
5753 Lisp_Object tail, safe_charsets;
5754 int max_charset_id = 0;
5755
5756 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5757 tail = XCDR (tail))
5758 if (max_charset_id < XFASTINT (XCAR (tail)))
5759 max_charset_id = XFASTINT (XCAR (tail));
5760 safe_charsets = make_uninit_string (max_charset_id + 1);
5761 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
5762 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5763 tail = XCDR (tail))
5764 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
5765 coding->max_charset_id = max_charset_id;
5766 coding->safe_charsets = SDATA (safe_charsets);
5767 coding->spec.emacs_mule.full_support = 1;
5768 }
5769 coding->spec.emacs_mule.cmp_status.state = COMPOSING_NO;
5770 coding->spec.emacs_mule.cmp_status.method = COMPOSITION_NO;
5771 }
5772 else if (EQ (coding_type, Qshift_jis))
5773 {
5774 coding->detector = detect_coding_sjis;
5775 coding->decoder = decode_coding_sjis;
5776 coding->encoder = encode_coding_sjis;
5777 coding->common_flags
5778 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5779 }
5780 else if (EQ (coding_type, Qbig5))
5781 {
5782 coding->detector = detect_coding_big5;
5783 coding->decoder = decode_coding_big5;
5784 coding->encoder = encode_coding_big5;
5785 coding->common_flags
5786 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5787 }
5788 else /* EQ (coding_type, Qraw_text) */
5789 {
5790 coding->detector = NULL;
5791 coding->decoder = decode_coding_raw_text;
5792 coding->encoder = encode_coding_raw_text;
5793 if (! EQ (eol_type, Qunix))
5794 {
5795 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5796 if (! VECTORP (eol_type))
5797 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5798 }
5799
5800 }
5801
5802 return;
5803 }
5804
5805 /* Return a list of charsets supported by CODING. */
5806
5807 Lisp_Object
5808 coding_charset_list (struct coding_system *coding)
5809 {
5810 Lisp_Object attrs, charset_list;
5811
5812 CODING_GET_INFO (coding, attrs, charset_list);
5813 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5814 {
5815 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5816
5817 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5818 charset_list = Viso_2022_charset_list;
5819 }
5820 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5821 {
5822 charset_list = Vemacs_mule_charset_list;
5823 }
5824 return charset_list;
5825 }
5826
5827
5828 /* Return a list of charsets supported by CODING-SYSTEM. */
5829
5830 Lisp_Object
5831 coding_system_charset_list (Lisp_Object coding_system)
5832 {
5833 int id;
5834 Lisp_Object attrs, charset_list;
5835
5836 CHECK_CODING_SYSTEM_GET_ID (coding_system, id);
5837 attrs = CODING_ID_ATTRS (id);
5838
5839 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5840 {
5841 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5842
5843 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5844 charset_list = Viso_2022_charset_list;
5845 else
5846 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5847 }
5848 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5849 {
5850 charset_list = Vemacs_mule_charset_list;
5851 }
5852 else
5853 {
5854 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5855 }
5856 return charset_list;
5857 }
5858
5859
5860 /* Return raw-text or one of its subsidiaries that has the same
5861 eol_type as CODING-SYSTEM. */
5862
5863 Lisp_Object
5864 raw_text_coding_system (Lisp_Object coding_system)
5865 {
5866 Lisp_Object spec, attrs;
5867 Lisp_Object eol_type, raw_text_eol_type;
5868
5869 if (NILP (coding_system))
5870 return Qraw_text;
5871 spec = CODING_SYSTEM_SPEC (coding_system);
5872 attrs = AREF (spec, 0);
5873
5874 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
5875 return coding_system;
5876
5877 eol_type = AREF (spec, 2);
5878 if (VECTORP (eol_type))
5879 return Qraw_text;
5880 spec = CODING_SYSTEM_SPEC (Qraw_text);
5881 raw_text_eol_type = AREF (spec, 2);
5882 return (EQ (eol_type, Qunix) ? AREF (raw_text_eol_type, 0)
5883 : EQ (eol_type, Qdos) ? AREF (raw_text_eol_type, 1)
5884 : AREF (raw_text_eol_type, 2));
5885 }
5886
5887
5888 /* If CODING_SYSTEM doesn't specify end-of-line format, return one of
5889 the subsidiary that has the same eol-spec as PARENT (if it is not
5890 nil and specifies end-of-line format) or the system's setting
5891 (system_eol_type). */
5892
5893 Lisp_Object
5894 coding_inherit_eol_type (Lisp_Object coding_system, Lisp_Object parent)
5895 {
5896 Lisp_Object spec, eol_type;
5897
5898 if (NILP (coding_system))
5899 coding_system = Qraw_text;
5900 spec = CODING_SYSTEM_SPEC (coding_system);
5901 eol_type = AREF (spec, 2);
5902 if (VECTORP (eol_type))
5903 {
5904 Lisp_Object parent_eol_type;
5905
5906 if (! NILP (parent))
5907 {
5908 Lisp_Object parent_spec;
5909
5910 parent_spec = CODING_SYSTEM_SPEC (parent);
5911 parent_eol_type = AREF (parent_spec, 2);
5912 if (VECTORP (parent_eol_type))
5913 parent_eol_type = system_eol_type;
5914 }
5915 else
5916 parent_eol_type = system_eol_type;
5917 if (EQ (parent_eol_type, Qunix))
5918 coding_system = AREF (eol_type, 0);
5919 else if (EQ (parent_eol_type, Qdos))
5920 coding_system = AREF (eol_type, 1);
5921 else if (EQ (parent_eol_type, Qmac))
5922 coding_system = AREF (eol_type, 2);
5923 }
5924 return coding_system;
5925 }
5926
5927
5928 /* Check if text-conversion and eol-conversion of CODING_SYSTEM are
5929 decided for writing to a process. If not, complement them, and
5930 return a new coding system. */
5931
5932 Lisp_Object
5933 complement_process_encoding_system (Lisp_Object coding_system)
5934 {
5935 Lisp_Object coding_base = Qnil, eol_base = Qnil;
5936 Lisp_Object spec, attrs;
5937 int i;
5938
5939 for (i = 0; i < 3; i++)
5940 {
5941 if (i == 1)
5942 coding_system = CDR_SAFE (Vdefault_process_coding_system);
5943 else if (i == 2)
5944 coding_system = preferred_coding_system ();
5945 spec = CODING_SYSTEM_SPEC (coding_system);
5946 if (NILP (spec))
5947 continue;
5948 attrs = AREF (spec, 0);
5949 if (NILP (coding_base) && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
5950 coding_base = CODING_ATTR_BASE_NAME (attrs);
5951 if (NILP (eol_base) && ! VECTORP (AREF (spec, 2)))
5952 eol_base = coding_system;
5953 if (! NILP (coding_base) && ! NILP (eol_base))
5954 break;
5955 }
5956
5957 if (i > 0)
5958 /* The original CODING_SYSTEM didn't specify text-conversion or
5959 eol-conversion. Be sure that we return a fully complemented
5960 coding system. */
5961 coding_system = coding_inherit_eol_type (coding_base, eol_base);
5962 return coding_system;
5963 }
5964
5965
5966 /* Emacs has a mechanism to automatically detect a coding system if it
5967 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
5968 it's impossible to distinguish some coding systems accurately
5969 because they use the same range of codes. So, at first, coding
5970 systems are categorized into 7, those are:
5971
5972 o coding-category-emacs-mule
5973
5974 The category for a coding system which has the same code range
5975 as Emacs' internal format. Assigned the coding-system (Lisp
5976 symbol) `emacs-mule' by default.
5977
5978 o coding-category-sjis
5979
5980 The category for a coding system which has the same code range
5981 as SJIS. Assigned the coding-system (Lisp
5982 symbol) `japanese-shift-jis' by default.
5983
5984 o coding-category-iso-7
5985
5986 The category for a coding system which has the same code range
5987 as ISO2022 of 7-bit environment. This doesn't use any locking
5988 shift and single shift functions. This can encode/decode all
5989 charsets. Assigned the coding-system (Lisp symbol)
5990 `iso-2022-7bit' by default.
5991
5992 o coding-category-iso-7-tight
5993
5994 Same as coding-category-iso-7 except that this can
5995 encode/decode only the specified charsets.
5996
5997 o coding-category-iso-8-1
5998
5999 The category for a coding system which has the same code range
6000 as ISO2022 of 8-bit environment and graphic plane 1 used only
6001 for DIMENSION1 charset. This doesn't use any locking shift
6002 and single shift functions. Assigned the coding-system (Lisp
6003 symbol) `iso-latin-1' by default.
6004
6005 o coding-category-iso-8-2
6006
6007 The category for a coding system which has the same code range
6008 as ISO2022 of 8-bit environment and graphic plane 1 used only
6009 for DIMENSION2 charset. This doesn't use any locking shift
6010 and single shift functions. Assigned the coding-system (Lisp
6011 symbol) `japanese-iso-8bit' by default.
6012
6013 o coding-category-iso-7-else
6014
6015 The category for a coding system which has the same code range
6016 as ISO2022 of 7-bit environment but uses locking shift or
6017 single shift functions. Assigned the coding-system (Lisp
6018 symbol) `iso-2022-7bit-lock' by default.
6019
6020 o coding-category-iso-8-else
6021
6022 The category for a coding system which has the same code range
6023 as ISO2022 of 8-bit environment but uses locking shift or
6024 single shift functions. Assigned the coding-system (Lisp
6025 symbol) `iso-2022-8bit-ss2' by default.
6026
6027 o coding-category-big5
6028
6029 The category for a coding system which has the same code range
6030 as BIG5. Assigned the coding-system (Lisp symbol)
6031 `cn-big5' by default.
6032
6033 o coding-category-utf-8
6034
6035 The category for a coding system which has the same code range
6036 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
6037 symbol) `utf-8' by default.
6038
6039 o coding-category-utf-16-be
6040
6041 The category for a coding system in which a text has an
6042 Unicode signature (cf. Unicode Standard) in the order of BIG
6043 endian at the head. Assigned the coding-system (Lisp symbol)
6044 `utf-16-be' by default.
6045
6046 o coding-category-utf-16-le
6047
6048 The category for a coding system in which a text has an
6049 Unicode signature (cf. Unicode Standard) in the order of
6050 LITTLE endian at the head. Assigned the coding-system (Lisp
6051 symbol) `utf-16-le' by default.
6052
6053 o coding-category-ccl
6054
6055 The category for a coding system of which encoder/decoder is
6056 written in CCL programs. The default value is nil, i.e., no
6057 coding system is assigned.
6058
6059 o coding-category-binary
6060
6061 The category for a coding system not categorized in any of the
6062 above. Assigned the coding-system (Lisp symbol)
6063 `no-conversion' by default.
6064
6065 Each of them is a Lisp symbol and the value is an actual
6066 `coding-system's (this is also a Lisp symbol) assigned by a user.
6067 What Emacs does actually is to detect a category of coding system.
6068 Then, it uses a `coding-system' assigned to it. If Emacs can't
6069 decide only one possible category, it selects a category of the
6070 highest priority. Priorities of categories are also specified by a
6071 user in a Lisp variable `coding-category-list'.
6072
6073 */
6074
6075 #define EOL_SEEN_NONE 0
6076 #define EOL_SEEN_LF 1
6077 #define EOL_SEEN_CR 2
6078 #define EOL_SEEN_CRLF 4
6079
6080 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
6081 SOURCE is encoded. If CATEGORY is one of
6082 coding_category_utf_16_XXXX, assume that CR and LF are encoded by
6083 two-byte, else they are encoded by one-byte.
6084
6085 Return one of EOL_SEEN_XXX. */
6086
6087 #define MAX_EOL_CHECK_COUNT 3
6088
6089 static int
6090 detect_eol (const unsigned char *source, EMACS_INT src_bytes,
6091 enum coding_category category)
6092 {
6093 const unsigned char *src = source, *src_end = src + src_bytes;
6094 unsigned char c;
6095 int total = 0;
6096 int eol_seen = EOL_SEEN_NONE;
6097
6098 if ((1 << category) & CATEGORY_MASK_UTF_16)
6099 {
6100 int msb, lsb;
6101
6102 msb = category == (coding_category_utf_16_le
6103 | coding_category_utf_16_le_nosig);
6104 lsb = 1 - msb;
6105
6106 while (src + 1 < src_end)
6107 {
6108 c = src[lsb];
6109 if (src[msb] == 0 && (c == '\n' || c == '\r'))
6110 {
6111 int this_eol;
6112
6113 if (c == '\n')
6114 this_eol = EOL_SEEN_LF;
6115 else if (src + 3 >= src_end
6116 || src[msb + 2] != 0
6117 || src[lsb + 2] != '\n')
6118 this_eol = EOL_SEEN_CR;
6119 else
6120 {
6121 this_eol = EOL_SEEN_CRLF;
6122 src += 2;
6123 }
6124
6125 if (eol_seen == EOL_SEEN_NONE)
6126 /* This is the first end-of-line. */
6127 eol_seen = this_eol;
6128 else if (eol_seen != this_eol)
6129 {
6130 /* The found type is different from what found before.
6131 Allow for stray ^M characters in DOS EOL files. */
6132 if ((eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF)
6133 || (eol_seen == EOL_SEEN_CRLF
6134 && this_eol == EOL_SEEN_CR))
6135 eol_seen = EOL_SEEN_CRLF;
6136 else
6137 {
6138 eol_seen = EOL_SEEN_LF;
6139 break;
6140 }
6141 }
6142 if (++total == MAX_EOL_CHECK_COUNT)
6143 break;
6144 }
6145 src += 2;
6146 }
6147 }
6148 else
6149 while (src < src_end)
6150 {
6151 c = *src++;
6152 if (c == '\n' || c == '\r')
6153 {
6154 int this_eol;
6155
6156 if (c == '\n')
6157 this_eol = EOL_SEEN_LF;
6158 else if (src >= src_end || *src != '\n')
6159 this_eol = EOL_SEEN_CR;
6160 else
6161 this_eol = EOL_SEEN_CRLF, src++;
6162
6163 if (eol_seen == EOL_SEEN_NONE)
6164 /* This is the first end-of-line. */
6165 eol_seen = this_eol;
6166 else if (eol_seen != this_eol)
6167 {
6168 /* The found type is different from what found before.
6169 Allow for stray ^M characters in DOS EOL files. */
6170 if ((eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF)
6171 || (eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR))
6172 eol_seen = EOL_SEEN_CRLF;
6173 else
6174 {
6175 eol_seen = EOL_SEEN_LF;
6176 break;
6177 }
6178 }
6179 if (++total == MAX_EOL_CHECK_COUNT)
6180 break;
6181 }
6182 }
6183 return eol_seen;
6184 }
6185
6186
6187 static Lisp_Object
6188 adjust_coding_eol_type (struct coding_system *coding, int eol_seen)
6189 {
6190 Lisp_Object eol_type;
6191
6192 eol_type = CODING_ID_EOL_TYPE (coding->id);
6193 if (eol_seen & EOL_SEEN_LF)
6194 {
6195 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 0));
6196 eol_type = Qunix;
6197 }
6198 else if (eol_seen & EOL_SEEN_CRLF)
6199 {
6200 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 1));
6201 eol_type = Qdos;
6202 }
6203 else if (eol_seen & EOL_SEEN_CR)
6204 {
6205 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 2));
6206 eol_type = Qmac;
6207 }
6208 return eol_type;
6209 }
6210
6211 /* Detect how a text specified in CODING is encoded. If a coding
6212 system is detected, update fields of CODING by the detected coding
6213 system. */
6214
6215 static void
6216 detect_coding (struct coding_system *coding)
6217 {
6218 const unsigned char *src, *src_end;
6219 int saved_mode = coding->mode;
6220
6221 coding->consumed = coding->consumed_char = 0;
6222 coding->produced = coding->produced_char = 0;
6223 coding_set_source (coding);
6224
6225 src_end = coding->source + coding->src_bytes;
6226 coding->head_ascii = 0;
6227
6228 /* If we have not yet decided the text encoding type, detect it
6229 now. */
6230 if (EQ (CODING_ATTR_TYPE (CODING_ID_ATTRS (coding->id)), Qundecided))
6231 {
6232 int c, i;
6233 struct coding_detection_info detect_info;
6234 int null_byte_found = 0, eight_bit_found = 0;
6235
6236 detect_info.checked = detect_info.found = detect_info.rejected = 0;
6237 for (src = coding->source; src < src_end; src++)
6238 {
6239 c = *src;
6240 if (c & 0x80)
6241 {
6242 eight_bit_found = 1;
6243 if (null_byte_found)
6244 break;
6245 }
6246 else if (c < 0x20)
6247 {
6248 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
6249 && ! inhibit_iso_escape_detection
6250 && ! detect_info.checked)
6251 {
6252 if (detect_coding_iso_2022 (coding, &detect_info))
6253 {
6254 /* We have scanned the whole data. */
6255 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
6256 {
6257 /* We didn't find an 8-bit code. We may
6258 have found a null-byte, but it's very
6259 rare that a binary file conforms to
6260 ISO-2022. */
6261 src = src_end;
6262 coding->head_ascii = src - coding->source;
6263 }
6264 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
6265 break;
6266 }
6267 }
6268 else if (! c && !inhibit_null_byte_detection)
6269 {
6270 null_byte_found = 1;
6271 if (eight_bit_found)
6272 break;
6273 }
6274 if (! eight_bit_found)
6275 coding->head_ascii++;
6276 }
6277 else if (! eight_bit_found)
6278 coding->head_ascii++;
6279 }
6280
6281 if (null_byte_found || eight_bit_found
6282 || coding->head_ascii < coding->src_bytes
6283 || detect_info.found)
6284 {
6285 enum coding_category category;
6286 struct coding_system *this;
6287
6288 if (coding->head_ascii == coding->src_bytes)
6289 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
6290 for (i = 0; i < coding_category_raw_text; i++)
6291 {
6292 category = coding_priorities[i];
6293 this = coding_categories + category;
6294 if (detect_info.found & (1 << category))
6295 break;
6296 }
6297 else
6298 {
6299 if (null_byte_found)
6300 {
6301 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
6302 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
6303 }
6304 for (i = 0; i < coding_category_raw_text; i++)
6305 {
6306 category = coding_priorities[i];
6307 this = coding_categories + category;
6308 if (this->id < 0)
6309 {
6310 /* No coding system of this category is defined. */
6311 detect_info.rejected |= (1 << category);
6312 }
6313 else if (category >= coding_category_raw_text)
6314 continue;
6315 else if (detect_info.checked & (1 << category))
6316 {
6317 if (detect_info.found & (1 << category))
6318 break;
6319 }
6320 else if ((*(this->detector)) (coding, &detect_info)
6321 && detect_info.found & (1 << category))
6322 {
6323 if (category == coding_category_utf_16_auto)
6324 {
6325 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6326 category = coding_category_utf_16_le;
6327 else
6328 category = coding_category_utf_16_be;
6329 }
6330 break;
6331 }
6332 }
6333 }
6334
6335 if (i < coding_category_raw_text)
6336 setup_coding_system (CODING_ID_NAME (this->id), coding);
6337 else if (null_byte_found)
6338 setup_coding_system (Qno_conversion, coding);
6339 else if ((detect_info.rejected & CATEGORY_MASK_ANY)
6340 == CATEGORY_MASK_ANY)
6341 setup_coding_system (Qraw_text, coding);
6342 else if (detect_info.rejected)
6343 for (i = 0; i < coding_category_raw_text; i++)
6344 if (! (detect_info.rejected & (1 << coding_priorities[i])))
6345 {
6346 this = coding_categories + coding_priorities[i];
6347 setup_coding_system (CODING_ID_NAME (this->id), coding);
6348 break;
6349 }
6350 }
6351 }
6352 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6353 == coding_category_utf_8_auto)
6354 {
6355 Lisp_Object coding_systems;
6356 struct coding_detection_info detect_info;
6357
6358 coding_systems
6359 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6360 detect_info.found = detect_info.rejected = 0;
6361 coding->head_ascii = 0;
6362 if (CONSP (coding_systems)
6363 && detect_coding_utf_8 (coding, &detect_info))
6364 {
6365 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6366 setup_coding_system (XCAR (coding_systems), coding);
6367 else
6368 setup_coding_system (XCDR (coding_systems), coding);
6369 }
6370 }
6371 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6372 == coding_category_utf_16_auto)
6373 {
6374 Lisp_Object coding_systems;
6375 struct coding_detection_info detect_info;
6376
6377 coding_systems
6378 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6379 detect_info.found = detect_info.rejected = 0;
6380 coding->head_ascii = 0;
6381 if (CONSP (coding_systems)
6382 && detect_coding_utf_16 (coding, &detect_info))
6383 {
6384 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6385 setup_coding_system (XCAR (coding_systems), coding);
6386 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6387 setup_coding_system (XCDR (coding_systems), coding);
6388 }
6389 }
6390 coding->mode = saved_mode;
6391 }
6392
6393
6394 static void
6395 decode_eol (struct coding_system *coding)
6396 {
6397 Lisp_Object eol_type;
6398 unsigned char *p, *pbeg, *pend;
6399
6400 eol_type = CODING_ID_EOL_TYPE (coding->id);
6401 if (EQ (eol_type, Qunix) || inhibit_eol_conversion)
6402 return;
6403
6404 if (NILP (coding->dst_object))
6405 pbeg = coding->destination;
6406 else
6407 pbeg = BYTE_POS_ADDR (coding->dst_pos_byte);
6408 pend = pbeg + coding->produced;
6409
6410 if (VECTORP (eol_type))
6411 {
6412 int eol_seen = EOL_SEEN_NONE;
6413
6414 for (p = pbeg; p < pend; p++)
6415 {
6416 if (*p == '\n')
6417 eol_seen |= EOL_SEEN_LF;
6418 else if (*p == '\r')
6419 {
6420 if (p + 1 < pend && *(p + 1) == '\n')
6421 {
6422 eol_seen |= EOL_SEEN_CRLF;
6423 p++;
6424 }
6425 else
6426 eol_seen |= EOL_SEEN_CR;
6427 }
6428 }
6429 /* Handle DOS-style EOLs in a file with stray ^M characters. */
6430 if ((eol_seen & EOL_SEEN_CRLF) != 0
6431 && (eol_seen & EOL_SEEN_CR) != 0
6432 && (eol_seen & EOL_SEEN_LF) == 0)
6433 eol_seen = EOL_SEEN_CRLF;
6434 else if (eol_seen != EOL_SEEN_NONE
6435 && eol_seen != EOL_SEEN_LF
6436 && eol_seen != EOL_SEEN_CRLF
6437 && eol_seen != EOL_SEEN_CR)
6438 eol_seen = EOL_SEEN_LF;
6439 if (eol_seen != EOL_SEEN_NONE)
6440 eol_type = adjust_coding_eol_type (coding, eol_seen);
6441 }
6442
6443 if (EQ (eol_type, Qmac))
6444 {
6445 for (p = pbeg; p < pend; p++)
6446 if (*p == '\r')
6447 *p = '\n';
6448 }
6449 else if (EQ (eol_type, Qdos))
6450 {
6451 EMACS_INT n = 0;
6452
6453 if (NILP (coding->dst_object))
6454 {
6455 /* Start deleting '\r' from the tail to minimize the memory
6456 movement. */
6457 for (p = pend - 2; p >= pbeg; p--)
6458 if (*p == '\r')
6459 {
6460 memmove (p, p + 1, pend-- - p - 1);
6461 n++;
6462 }
6463 }
6464 else
6465 {
6466 EMACS_INT pos_byte = coding->dst_pos_byte;
6467 EMACS_INT pos = coding->dst_pos;
6468 EMACS_INT pos_end = pos + coding->produced_char - 1;
6469
6470 while (pos < pos_end)
6471 {
6472 p = BYTE_POS_ADDR (pos_byte);
6473 if (*p == '\r' && p[1] == '\n')
6474 {
6475 del_range_2 (pos, pos_byte, pos + 1, pos_byte + 1, 0);
6476 n++;
6477 pos_end--;
6478 }
6479 pos++;
6480 if (coding->dst_multibyte)
6481 pos_byte += BYTES_BY_CHAR_HEAD (*p);
6482 else
6483 pos_byte++;
6484 }
6485 }
6486 coding->produced -= n;
6487 coding->produced_char -= n;
6488 }
6489 }
6490
6491
6492 /* Return a translation table (or list of them) from coding system
6493 attribute vector ATTRS for encoding (ENCODEP is nonzero) or
6494 decoding (ENCODEP is zero). */
6495
6496 static Lisp_Object
6497 get_translation_table (Lisp_Object attrs, int encodep, int *max_lookup)
6498 {
6499 Lisp_Object standard, translation_table;
6500 Lisp_Object val;
6501
6502 if (NILP (Venable_character_translation))
6503 {
6504 if (max_lookup)
6505 *max_lookup = 0;
6506 return Qnil;
6507 }
6508 if (encodep)
6509 translation_table = CODING_ATTR_ENCODE_TBL (attrs),
6510 standard = Vstandard_translation_table_for_encode;
6511 else
6512 translation_table = CODING_ATTR_DECODE_TBL (attrs),
6513 standard = Vstandard_translation_table_for_decode;
6514 if (NILP (translation_table))
6515 translation_table = standard;
6516 else
6517 {
6518 if (SYMBOLP (translation_table))
6519 translation_table = Fget (translation_table, Qtranslation_table);
6520 else if (CONSP (translation_table))
6521 {
6522 translation_table = Fcopy_sequence (translation_table);
6523 for (val = translation_table; CONSP (val); val = XCDR (val))
6524 if (SYMBOLP (XCAR (val)))
6525 XSETCAR (val, Fget (XCAR (val), Qtranslation_table));
6526 }
6527 if (CHAR_TABLE_P (standard))
6528 {
6529 if (CONSP (translation_table))
6530 translation_table = nconc2 (translation_table,
6531 Fcons (standard, Qnil));
6532 else
6533 translation_table = Fcons (translation_table,
6534 Fcons (standard, Qnil));
6535 }
6536 }
6537
6538 if (max_lookup)
6539 {
6540 *max_lookup = 1;
6541 if (CHAR_TABLE_P (translation_table)
6542 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (translation_table)) > 1)
6543 {
6544 val = XCHAR_TABLE (translation_table)->extras[1];
6545 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6546 *max_lookup = XFASTINT (val);
6547 }
6548 else if (CONSP (translation_table))
6549 {
6550 Lisp_Object tail;
6551
6552 for (tail = translation_table; CONSP (tail); tail = XCDR (tail))
6553 if (CHAR_TABLE_P (XCAR (tail))
6554 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (XCAR (tail))) > 1)
6555 {
6556 Lisp_Object tailval = XCHAR_TABLE (XCAR (tail))->extras[1];
6557 if (NATNUMP (tailval) && *max_lookup < XFASTINT (tailval))
6558 *max_lookup = XFASTINT (tailval);
6559 }
6560 }
6561 }
6562 return translation_table;
6563 }
6564
6565 #define LOOKUP_TRANSLATION_TABLE(table, c, trans) \
6566 do { \
6567 trans = Qnil; \
6568 if (CHAR_TABLE_P (table)) \
6569 { \
6570 trans = CHAR_TABLE_REF (table, c); \
6571 if (CHARACTERP (trans)) \
6572 c = XFASTINT (trans), trans = Qnil; \
6573 } \
6574 else if (CONSP (table)) \
6575 { \
6576 Lisp_Object tail; \
6577 \
6578 for (tail = table; CONSP (tail); tail = XCDR (tail)) \
6579 if (CHAR_TABLE_P (XCAR (tail))) \
6580 { \
6581 trans = CHAR_TABLE_REF (XCAR (tail), c); \
6582 if (CHARACTERP (trans)) \
6583 c = XFASTINT (trans), trans = Qnil; \
6584 else if (! NILP (trans)) \
6585 break; \
6586 } \
6587 } \
6588 } while (0)
6589
6590
6591 /* Return a translation of character(s) at BUF according to TRANS.
6592 TRANS is TO-CHAR or ((FROM . TO) ...) where
6593 FROM = [FROM-CHAR ...], TO is TO-CHAR or [TO-CHAR ...].
6594 The return value is TO-CHAR or ([FROM-CHAR ...] . TO) if a
6595 translation is found, and Qnil if not found..
6596 If BUF is too short to lookup characters in FROM, return Qt. */
6597
6598 static Lisp_Object
6599 get_translation (Lisp_Object trans, int *buf, int *buf_end)
6600 {
6601
6602 if (INTEGERP (trans))
6603 return trans;
6604 for (; CONSP (trans); trans = XCDR (trans))
6605 {
6606 Lisp_Object val = XCAR (trans);
6607 Lisp_Object from = XCAR (val);
6608 int len = ASIZE (from);
6609 int i;
6610
6611 for (i = 0; i < len; i++)
6612 {
6613 if (buf + i == buf_end)
6614 return Qt;
6615 if (XINT (AREF (from, i)) != buf[i])
6616 break;
6617 }
6618 if (i == len)
6619 return val;
6620 }
6621 return Qnil;
6622 }
6623
6624
6625 static int
6626 produce_chars (struct coding_system *coding, Lisp_Object translation_table,
6627 int last_block)
6628 {
6629 unsigned char *dst = coding->destination + coding->produced;
6630 unsigned char *dst_end = coding->destination + coding->dst_bytes;
6631 EMACS_INT produced;
6632 EMACS_INT produced_chars = 0;
6633 int carryover = 0;
6634
6635 if (! coding->chars_at_source)
6636 {
6637 /* Source characters are in coding->charbuf. */
6638 int *buf = coding->charbuf;
6639 int *buf_end = buf + coding->charbuf_used;
6640
6641 if (EQ (coding->src_object, coding->dst_object))
6642 {
6643 coding_set_source (coding);
6644 dst_end = ((unsigned char *) coding->source) + coding->consumed;
6645 }
6646
6647 while (buf < buf_end)
6648 {
6649 int c = *buf, i;
6650
6651 if (c >= 0)
6652 {
6653 EMACS_INT from_nchars = 1, to_nchars = 1;
6654 Lisp_Object trans = Qnil;
6655
6656 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
6657 if (! NILP (trans))
6658 {
6659 trans = get_translation (trans, buf, buf_end);
6660 if (INTEGERP (trans))
6661 c = XINT (trans);
6662 else if (CONSP (trans))
6663 {
6664 from_nchars = ASIZE (XCAR (trans));
6665 trans = XCDR (trans);
6666 if (INTEGERP (trans))
6667 c = XINT (trans);
6668 else
6669 {
6670 to_nchars = ASIZE (trans);
6671 c = XINT (AREF (trans, 0));
6672 }
6673 }
6674 else if (EQ (trans, Qt) && ! last_block)
6675 break;
6676 }
6677
6678 if (dst + MAX_MULTIBYTE_LENGTH * to_nchars > dst_end)
6679 {
6680 dst = alloc_destination (coding,
6681 buf_end - buf
6682 + MAX_MULTIBYTE_LENGTH * to_nchars,
6683 dst);
6684 if (EQ (coding->src_object, coding->dst_object))
6685 {
6686 coding_set_source (coding);
6687 dst_end = (((unsigned char *) coding->source)
6688 + coding->consumed);
6689 }
6690 else
6691 dst_end = coding->destination + coding->dst_bytes;
6692 }
6693
6694 for (i = 0; i < to_nchars; i++)
6695 {
6696 if (i > 0)
6697 c = XINT (AREF (trans, i));
6698 if (coding->dst_multibyte
6699 || ! CHAR_BYTE8_P (c))
6700 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
6701 else
6702 *dst++ = CHAR_TO_BYTE8 (c);
6703 }
6704 produced_chars += to_nchars;
6705 buf += from_nchars;
6706 }
6707 else
6708 /* This is an annotation datum. (-C) is the length. */
6709 buf += -c;
6710 }
6711 carryover = buf_end - buf;
6712 }
6713 else
6714 {
6715 /* Source characters are at coding->source. */
6716 const unsigned char *src = coding->source;
6717 const unsigned char *src_end = src + coding->consumed;
6718
6719 if (EQ (coding->dst_object, coding->src_object))
6720 dst_end = (unsigned char *) src;
6721 if (coding->src_multibyte != coding->dst_multibyte)
6722 {
6723 if (coding->src_multibyte)
6724 {
6725 int multibytep = 1;
6726 EMACS_INT consumed_chars = 0;
6727
6728 while (1)
6729 {
6730 const unsigned char *src_base = src;
6731 int c;
6732
6733 ONE_MORE_BYTE (c);
6734 if (dst == dst_end)
6735 {
6736 if (EQ (coding->src_object, coding->dst_object))
6737 dst_end = (unsigned char *) src;
6738 if (dst == dst_end)
6739 {
6740 EMACS_INT offset = src - coding->source;
6741
6742 dst = alloc_destination (coding, src_end - src + 1,
6743 dst);
6744 dst_end = coding->destination + coding->dst_bytes;
6745 coding_set_source (coding);
6746 src = coding->source + offset;
6747 src_end = coding->source + coding->src_bytes;
6748 if (EQ (coding->src_object, coding->dst_object))
6749 dst_end = (unsigned char *) src;
6750 }
6751 }
6752 *dst++ = c;
6753 produced_chars++;
6754 }
6755 no_more_source:
6756 ;
6757 }
6758 else
6759 while (src < src_end)
6760 {
6761 int multibytep = 1;
6762 int c = *src++;
6763
6764 if (dst >= dst_end - 1)
6765 {
6766 if (EQ (coding->src_object, coding->dst_object))
6767 dst_end = (unsigned char *) src;
6768 if (dst >= dst_end - 1)
6769 {
6770 EMACS_INT offset = src - coding->source;
6771 EMACS_INT more_bytes;
6772
6773 if (EQ (coding->src_object, coding->dst_object))
6774 more_bytes = ((src_end - src) / 2) + 2;
6775 else
6776 more_bytes = src_end - src + 2;
6777 dst = alloc_destination (coding, more_bytes, dst);
6778 dst_end = coding->destination + coding->dst_bytes;
6779 coding_set_source (coding);
6780 src = coding->source + offset;
6781 src_end = coding->source + coding->src_bytes;
6782 if (EQ (coding->src_object, coding->dst_object))
6783 dst_end = (unsigned char *) src;
6784 }
6785 }
6786 EMIT_ONE_BYTE (c);
6787 }
6788 }
6789 else
6790 {
6791 if (!EQ (coding->src_object, coding->dst_object))
6792 {
6793 EMACS_INT require = coding->src_bytes - coding->dst_bytes;
6794
6795 if (require > 0)
6796 {
6797 EMACS_INT offset = src - coding->source;
6798
6799 dst = alloc_destination (coding, require, dst);
6800 coding_set_source (coding);
6801 src = coding->source + offset;
6802 src_end = coding->source + coding->src_bytes;
6803 }
6804 }
6805 produced_chars = coding->consumed_char;
6806 while (src < src_end)
6807 *dst++ = *src++;
6808 }
6809 }
6810
6811 produced = dst - (coding->destination + coding->produced);
6812 if (BUFFERP (coding->dst_object) && produced_chars > 0)
6813 insert_from_gap (produced_chars, produced);
6814 coding->produced += produced;
6815 coding->produced_char += produced_chars;
6816 return carryover;
6817 }
6818
6819 /* Compose text in CODING->object according to the annotation data at
6820 CHARBUF. CHARBUF is an array:
6821 [ -LENGTH ANNOTATION_MASK NCHARS NBYTES METHOD [ COMPONENTS... ] ]
6822 */
6823
6824 static INLINE void
6825 produce_composition (struct coding_system *coding, int *charbuf, EMACS_INT pos)
6826 {
6827 int len;
6828 EMACS_INT to;
6829 enum composition_method method;
6830 Lisp_Object components;
6831
6832 len = -charbuf[0] - MAX_ANNOTATION_LENGTH;
6833 to = pos + charbuf[2];
6834 method = (enum composition_method) (charbuf[4]);
6835
6836 if (method == COMPOSITION_RELATIVE)
6837 components = Qnil;
6838 else
6839 {
6840 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
6841 int i, j;
6842
6843 if (method == COMPOSITION_WITH_RULE)
6844 len = charbuf[2] * 3 - 2;
6845 charbuf += MAX_ANNOTATION_LENGTH;
6846 /* charbuf = [ CHRA ... CHAR] or [ CHAR -2 RULE ... CHAR ] */
6847 for (i = j = 0; i < len && charbuf[i] != -1; i++, j++)
6848 {
6849 if (charbuf[i] >= 0)
6850 args[j] = make_number (charbuf[i]);
6851 else
6852 {
6853 i++;
6854 args[j] = make_number (charbuf[i] % 0x100);
6855 }
6856 }
6857 components = (i == j ? Fstring (j, args) : Fvector (j, args));
6858 }
6859 compose_text (pos, to, components, Qnil, coding->dst_object);
6860 }
6861
6862
6863 /* Put `charset' property on text in CODING->object according to
6864 the annotation data at CHARBUF. CHARBUF is an array:
6865 [ -LENGTH ANNOTATION_MASK NCHARS CHARSET-ID ]
6866 */
6867
6868 static INLINE void
6869 produce_charset (struct coding_system *coding, int *charbuf, EMACS_INT pos)
6870 {
6871 EMACS_INT from = pos - charbuf[2];
6872 struct charset *charset = CHARSET_FROM_ID (charbuf[3]);
6873
6874 Fput_text_property (make_number (from), make_number (pos),
6875 Qcharset, CHARSET_NAME (charset),
6876 coding->dst_object);
6877 }
6878
6879
6880 #define CHARBUF_SIZE 0x4000
6881
6882 #define ALLOC_CONVERSION_WORK_AREA(coding) \
6883 do { \
6884 int size = CHARBUF_SIZE; \
6885 \
6886 coding->charbuf = NULL; \
6887 while (size > 1024) \
6888 { \
6889 coding->charbuf = (int *) alloca (sizeof (int) * size); \
6890 if (coding->charbuf) \
6891 break; \
6892 size >>= 1; \
6893 } \
6894 if (! coding->charbuf) \
6895 { \
6896 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_MEM); \
6897 return coding->result; \
6898 } \
6899 coding->charbuf_size = size; \
6900 } while (0)
6901
6902
6903 static void
6904 produce_annotation (struct coding_system *coding, EMACS_INT pos)
6905 {
6906 int *charbuf = coding->charbuf;
6907 int *charbuf_end = charbuf + coding->charbuf_used;
6908
6909 if (NILP (coding->dst_object))
6910 return;
6911
6912 while (charbuf < charbuf_end)
6913 {
6914 if (*charbuf >= 0)
6915 pos++, charbuf++;
6916 else
6917 {
6918 int len = -*charbuf;
6919
6920 if (len > 2)
6921 switch (charbuf[1])
6922 {
6923 case CODING_ANNOTATE_COMPOSITION_MASK:
6924 produce_composition (coding, charbuf, pos);
6925 break;
6926 case CODING_ANNOTATE_CHARSET_MASK:
6927 produce_charset (coding, charbuf, pos);
6928 break;
6929 }
6930 charbuf += len;
6931 }
6932 }
6933 }
6934
6935 /* Decode the data at CODING->src_object into CODING->dst_object.
6936 CODING->src_object is a buffer, a string, or nil.
6937 CODING->dst_object is a buffer.
6938
6939 If CODING->src_object is a buffer, it must be the current buffer.
6940 In this case, if CODING->src_pos is positive, it is a position of
6941 the source text in the buffer, otherwise, the source text is in the
6942 gap area of the buffer, and CODING->src_pos specifies the offset of
6943 the text from GPT (which must be the same as PT). If this is the
6944 same buffer as CODING->dst_object, CODING->src_pos must be
6945 negative.
6946
6947 If CODING->src_object is a string, CODING->src_pos is an index to
6948 that string.
6949
6950 If CODING->src_object is nil, CODING->source must already point to
6951 the non-relocatable memory area. In this case, CODING->src_pos is
6952 an offset from CODING->source.
6953
6954 The decoded data is inserted at the current point of the buffer
6955 CODING->dst_object.
6956 */
6957
6958 static int
6959 decode_coding (struct coding_system *coding)
6960 {
6961 Lisp_Object attrs;
6962 Lisp_Object undo_list;
6963 Lisp_Object translation_table;
6964 struct ccl_spec cclspec;
6965 int carryover;
6966 int i;
6967
6968 if (BUFFERP (coding->src_object)
6969 && coding->src_pos > 0
6970 && coding->src_pos < GPT
6971 && coding->src_pos + coding->src_chars > GPT)
6972 move_gap_both (coding->src_pos, coding->src_pos_byte);
6973
6974 undo_list = Qt;
6975 if (BUFFERP (coding->dst_object))
6976 {
6977 if (current_buffer != XBUFFER (coding->dst_object))
6978 set_buffer_internal (XBUFFER (coding->dst_object));
6979 if (GPT != PT)
6980 move_gap_both (PT, PT_BYTE);
6981 undo_list = BVAR (current_buffer, undo_list);
6982 BVAR (current_buffer, undo_list) = Qt;
6983 }
6984
6985 coding->consumed = coding->consumed_char = 0;
6986 coding->produced = coding->produced_char = 0;
6987 coding->chars_at_source = 0;
6988 record_conversion_result (coding, CODING_RESULT_SUCCESS);
6989 coding->errors = 0;
6990
6991 ALLOC_CONVERSION_WORK_AREA (coding);
6992
6993 attrs = CODING_ID_ATTRS (coding->id);
6994 translation_table = get_translation_table (attrs, 0, NULL);
6995
6996 carryover = 0;
6997 if (coding->decoder == decode_coding_ccl)
6998 {
6999 coding->spec.ccl = &cclspec;
7000 setup_ccl_program (&cclspec.ccl, CODING_CCL_DECODER (coding));
7001 }
7002 do
7003 {
7004 EMACS_INT pos = coding->dst_pos + coding->produced_char;
7005
7006 coding_set_source (coding);
7007 coding->annotated = 0;
7008 coding->charbuf_used = carryover;
7009 (*(coding->decoder)) (coding);
7010 coding_set_destination (coding);
7011 carryover = produce_chars (coding, translation_table, 0);
7012 if (coding->annotated)
7013 produce_annotation (coding, pos);
7014 for (i = 0; i < carryover; i++)
7015 coding->charbuf[i]
7016 = coding->charbuf[coding->charbuf_used - carryover + i];
7017 }
7018 while (coding->result == CODING_RESULT_INSUFFICIENT_DST
7019 || (coding->consumed < coding->src_bytes
7020 && (coding->result == CODING_RESULT_SUCCESS
7021 || coding->result == CODING_RESULT_INVALID_SRC)));
7022
7023 if (carryover > 0)
7024 {
7025 coding_set_destination (coding);
7026 coding->charbuf_used = carryover;
7027 produce_chars (coding, translation_table, 1);
7028 }
7029
7030 coding->carryover_bytes = 0;
7031 if (coding->consumed < coding->src_bytes)
7032 {
7033 int nbytes = coding->src_bytes - coding->consumed;
7034 const unsigned char *src;
7035
7036 coding_set_source (coding);
7037 coding_set_destination (coding);
7038 src = coding->source + coding->consumed;
7039
7040 if (coding->mode & CODING_MODE_LAST_BLOCK)
7041 {
7042 /* Flush out unprocessed data as binary chars. We are sure
7043 that the number of data is less than the size of
7044 coding->charbuf. */
7045 coding->charbuf_used = 0;
7046 coding->chars_at_source = 0;
7047
7048 while (nbytes-- > 0)
7049 {
7050 int c = *src++;
7051
7052 if (c & 0x80)
7053 c = BYTE8_TO_CHAR (c);
7054 coding->charbuf[coding->charbuf_used++] = c;
7055 }
7056 produce_chars (coding, Qnil, 1);
7057 }
7058 else
7059 {
7060 /* Record unprocessed bytes in coding->carryover. We are
7061 sure that the number of data is less than the size of
7062 coding->carryover. */
7063 unsigned char *p = coding->carryover;
7064
7065 if (nbytes > sizeof coding->carryover)
7066 nbytes = sizeof coding->carryover;
7067 coding->carryover_bytes = nbytes;
7068 while (nbytes-- > 0)
7069 *p++ = *src++;
7070 }
7071 coding->consumed = coding->src_bytes;
7072 }
7073
7074 if (! EQ (CODING_ID_EOL_TYPE (coding->id), Qunix)
7075 && !inhibit_eol_conversion)
7076 decode_eol (coding);
7077 if (BUFFERP (coding->dst_object))
7078 {
7079 BVAR (current_buffer, undo_list) = undo_list;
7080 record_insert (coding->dst_pos, coding->produced_char);
7081 }
7082 return coding->result;
7083 }
7084
7085
7086 /* Extract an annotation datum from a composition starting at POS and
7087 ending before LIMIT of CODING->src_object (buffer or string), store
7088 the data in BUF, set *STOP to a starting position of the next
7089 composition (if any) or to LIMIT, and return the address of the
7090 next element of BUF.
7091
7092 If such an annotation is not found, set *STOP to a starting
7093 position of a composition after POS (if any) or to LIMIT, and
7094 return BUF. */
7095
7096 static INLINE int *
7097 handle_composition_annotation (EMACS_INT pos, EMACS_INT limit,
7098 struct coding_system *coding, int *buf,
7099 EMACS_INT *stop)
7100 {
7101 EMACS_INT start, end;
7102 Lisp_Object prop;
7103
7104 if (! find_composition (pos, limit, &start, &end, &prop, coding->src_object)
7105 || end > limit)
7106 *stop = limit;
7107 else if (start > pos)
7108 *stop = start;
7109 else
7110 {
7111 if (start == pos)
7112 {
7113 /* We found a composition. Store the corresponding
7114 annotation data in BUF. */
7115 int *head = buf;
7116 enum composition_method method = COMPOSITION_METHOD (prop);
7117 int nchars = COMPOSITION_LENGTH (prop);
7118
7119 ADD_COMPOSITION_DATA (buf, nchars, 0, method);
7120 if (method != COMPOSITION_RELATIVE)
7121 {
7122 Lisp_Object components;
7123 int len, i, i_byte;
7124
7125 components = COMPOSITION_COMPONENTS (prop);
7126 if (VECTORP (components))
7127 {
7128 len = XVECTOR (components)->size;
7129 for (i = 0; i < len; i++)
7130 *buf++ = XINT (AREF (components, i));
7131 }
7132 else if (STRINGP (components))
7133 {
7134 len = SCHARS (components);
7135 i = i_byte = 0;
7136 while (i < len)
7137 {
7138 FETCH_STRING_CHAR_ADVANCE (*buf, components, i, i_byte);
7139 buf++;
7140 }
7141 }
7142 else if (INTEGERP (components))
7143 {
7144 len = 1;
7145 *buf++ = XINT (components);
7146 }
7147 else if (CONSP (components))
7148 {
7149 for (len = 0; CONSP (components);
7150 len++, components = XCDR (components))
7151 *buf++ = XINT (XCAR (components));
7152 }
7153 else
7154 abort ();
7155 *head -= len;
7156 }
7157 }
7158
7159 if (find_composition (end, limit, &start, &end, &prop,
7160 coding->src_object)
7161 && end <= limit)
7162 *stop = start;
7163 else
7164 *stop = limit;
7165 }
7166 return buf;
7167 }
7168
7169
7170 /* Extract an annotation datum from a text property `charset' at POS of
7171 CODING->src_object (buffer of string), store the data in BUF, set
7172 *STOP to the position where the value of `charset' property changes
7173 (limiting by LIMIT), and return the address of the next element of
7174 BUF.
7175
7176 If the property value is nil, set *STOP to the position where the
7177 property value is non-nil (limiting by LIMIT), and return BUF. */
7178
7179 static INLINE int *
7180 handle_charset_annotation (EMACS_INT pos, EMACS_INT limit,
7181 struct coding_system *coding, int *buf,
7182 EMACS_INT *stop)
7183 {
7184 Lisp_Object val, next;
7185 int id;
7186
7187 val = Fget_text_property (make_number (pos), Qcharset, coding->src_object);
7188 if (! NILP (val) && CHARSETP (val))
7189 id = XINT (CHARSET_SYMBOL_ID (val));
7190 else
7191 id = -1;
7192 ADD_CHARSET_DATA (buf, 0, id);
7193 next = Fnext_single_property_change (make_number (pos), Qcharset,
7194 coding->src_object,
7195 make_number (limit));
7196 *stop = XINT (next);
7197 return buf;
7198 }
7199
7200
7201 static void
7202 consume_chars (struct coding_system *coding, Lisp_Object translation_table,
7203 int max_lookup)
7204 {
7205 int *buf = coding->charbuf;
7206 int *buf_end = coding->charbuf + coding->charbuf_size;
7207 const unsigned char *src = coding->source + coding->consumed;
7208 const unsigned char *src_end = coding->source + coding->src_bytes;
7209 EMACS_INT pos = coding->src_pos + coding->consumed_char;
7210 EMACS_INT end_pos = coding->src_pos + coding->src_chars;
7211 int multibytep = coding->src_multibyte;
7212 Lisp_Object eol_type;
7213 int c;
7214 EMACS_INT stop, stop_composition, stop_charset;
7215 int *lookup_buf = NULL;
7216
7217 if (! NILP (translation_table))
7218 lookup_buf = alloca (sizeof (int) * max_lookup);
7219
7220 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
7221 if (VECTORP (eol_type))
7222 eol_type = Qunix;
7223
7224 /* Note: composition handling is not yet implemented. */
7225 coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
7226
7227 if (NILP (coding->src_object))
7228 stop = stop_composition = stop_charset = end_pos;
7229 else
7230 {
7231 if (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK)
7232 stop = stop_composition = pos;
7233 else
7234 stop = stop_composition = end_pos;
7235 if (coding->common_flags & CODING_ANNOTATE_CHARSET_MASK)
7236 stop = stop_charset = pos;
7237 else
7238 stop_charset = end_pos;
7239 }
7240
7241 /* Compensate for CRLF and conversion. */
7242 buf_end -= 1 + MAX_ANNOTATION_LENGTH;
7243 while (buf < buf_end)
7244 {
7245 Lisp_Object trans;
7246
7247 if (pos == stop)
7248 {
7249 if (pos == end_pos)
7250 break;
7251 if (pos == stop_composition)
7252 buf = handle_composition_annotation (pos, end_pos, coding,
7253 buf, &stop_composition);
7254 if (pos == stop_charset)
7255 buf = handle_charset_annotation (pos, end_pos, coding,
7256 buf, &stop_charset);
7257 stop = (stop_composition < stop_charset
7258 ? stop_composition : stop_charset);
7259 }
7260
7261 if (! multibytep)
7262 {
7263 EMACS_INT bytes;
7264
7265 if (coding->encoder == encode_coding_raw_text
7266 || coding->encoder == encode_coding_ccl)
7267 c = *src++, pos++;
7268 else if ((bytes = MULTIBYTE_LENGTH (src, src_end)) > 0)
7269 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos += bytes;
7270 else
7271 c = BYTE8_TO_CHAR (*src), src++, pos++;
7272 }
7273 else
7274 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos++;
7275 if ((c == '\r') && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
7276 c = '\n';
7277 if (! EQ (eol_type, Qunix))
7278 {
7279 if (c == '\n')
7280 {
7281 if (EQ (eol_type, Qdos))
7282 *buf++ = '\r';
7283 else
7284 c = '\r';
7285 }
7286 }
7287
7288 trans = Qnil;
7289 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7290 if (NILP (trans))
7291 *buf++ = c;
7292 else
7293 {
7294 int from_nchars = 1, to_nchars = 1;
7295 int *lookup_buf_end;
7296 const unsigned char *p = src;
7297 int i;
7298
7299 lookup_buf[0] = c;
7300 for (i = 1; i < max_lookup && p < src_end; i++)
7301 lookup_buf[i] = STRING_CHAR_ADVANCE (p);
7302 lookup_buf_end = lookup_buf + i;
7303 trans = get_translation (trans, lookup_buf, lookup_buf_end);
7304 if (INTEGERP (trans))
7305 c = XINT (trans);
7306 else if (CONSP (trans))
7307 {
7308 from_nchars = ASIZE (XCAR (trans));
7309 trans = XCDR (trans);
7310 if (INTEGERP (trans))
7311 c = XINT (trans);
7312 else
7313 {
7314 to_nchars = ASIZE (trans);
7315 if (buf + to_nchars > buf_end)
7316 break;
7317 c = XINT (AREF (trans, 0));
7318 }
7319 }
7320 else
7321 break;
7322 *buf++ = c;
7323 for (i = 1; i < to_nchars; i++)
7324 *buf++ = XINT (AREF (trans, i));
7325 for (i = 1; i < from_nchars; i++, pos++)
7326 src += MULTIBYTE_LENGTH_NO_CHECK (src);
7327 }
7328 }
7329
7330 coding->consumed = src - coding->source;
7331 coding->consumed_char = pos - coding->src_pos;
7332 coding->charbuf_used = buf - coding->charbuf;
7333 coding->chars_at_source = 0;
7334 }
7335
7336
7337 /* Encode the text at CODING->src_object into CODING->dst_object.
7338 CODING->src_object is a buffer or a string.
7339 CODING->dst_object is a buffer or nil.
7340
7341 If CODING->src_object is a buffer, it must be the current buffer.
7342 In this case, if CODING->src_pos is positive, it is a position of
7343 the source text in the buffer, otherwise. the source text is in the
7344 gap area of the buffer, and coding->src_pos specifies the offset of
7345 the text from GPT (which must be the same as PT). If this is the
7346 same buffer as CODING->dst_object, CODING->src_pos must be
7347 negative and CODING should not have `pre-write-conversion'.
7348
7349 If CODING->src_object is a string, CODING should not have
7350 `pre-write-conversion'.
7351
7352 If CODING->dst_object is a buffer, the encoded data is inserted at
7353 the current point of that buffer.
7354
7355 If CODING->dst_object is nil, the encoded data is placed at the
7356 memory area specified by CODING->destination. */
7357
7358 static int
7359 encode_coding (struct coding_system *coding)
7360 {
7361 Lisp_Object attrs;
7362 Lisp_Object translation_table;
7363 int max_lookup;
7364 struct ccl_spec cclspec;
7365
7366 attrs = CODING_ID_ATTRS (coding->id);
7367 if (coding->encoder == encode_coding_raw_text)
7368 translation_table = Qnil, max_lookup = 0;
7369 else
7370 translation_table = get_translation_table (attrs, 1, &max_lookup);
7371
7372 if (BUFFERP (coding->dst_object))
7373 {
7374 set_buffer_internal (XBUFFER (coding->dst_object));
7375 coding->dst_multibyte
7376 = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
7377 }
7378
7379 coding->consumed = coding->consumed_char = 0;
7380 coding->produced = coding->produced_char = 0;
7381 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7382 coding->errors = 0;
7383
7384 ALLOC_CONVERSION_WORK_AREA (coding);
7385
7386 if (coding->encoder == encode_coding_ccl)
7387 {
7388 coding->spec.ccl = &cclspec;
7389 setup_ccl_program (&cclspec.ccl, CODING_CCL_ENCODER (coding));
7390 }
7391 do {
7392 coding_set_source (coding);
7393 consume_chars (coding, translation_table, max_lookup);
7394 coding_set_destination (coding);
7395 (*(coding->encoder)) (coding);
7396 } while (coding->consumed_char < coding->src_chars);
7397
7398 if (BUFFERP (coding->dst_object) && coding->produced_char > 0)
7399 insert_from_gap (coding->produced_char, coding->produced);
7400
7401 return (coding->result);
7402 }
7403
7404
7405 /* Name (or base name) of work buffer for code conversion. */
7406 static Lisp_Object Vcode_conversion_workbuf_name;
7407
7408 /* A working buffer used by the top level conversion. Once it is
7409 created, it is never destroyed. It has the name
7410 Vcode_conversion_workbuf_name. The other working buffers are
7411 destroyed after the use is finished, and their names are modified
7412 versions of Vcode_conversion_workbuf_name. */
7413 static Lisp_Object Vcode_conversion_reused_workbuf;
7414
7415 /* 1 iff Vcode_conversion_reused_workbuf is already in use. */
7416 static int reused_workbuf_in_use;
7417
7418
7419 /* Return a working buffer of code conversion. MULTIBYTE specifies the
7420 multibyteness of returning buffer. */
7421
7422 static Lisp_Object
7423 make_conversion_work_buffer (int multibyte)
7424 {
7425 Lisp_Object name, workbuf;
7426 struct buffer *current;
7427
7428 if (reused_workbuf_in_use++)
7429 {
7430 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
7431 workbuf = Fget_buffer_create (name);
7432 }
7433 else
7434 {
7435 if (NILP (Fbuffer_live_p (Vcode_conversion_reused_workbuf)))
7436 Vcode_conversion_reused_workbuf
7437 = Fget_buffer_create (Vcode_conversion_workbuf_name);
7438 workbuf = Vcode_conversion_reused_workbuf;
7439 }
7440 current = current_buffer;
7441 set_buffer_internal (XBUFFER (workbuf));
7442 /* We can't allow modification hooks to run in the work buffer. For
7443 instance, directory_files_internal assumes that file decoding
7444 doesn't compile new regexps. */
7445 Fset (Fmake_local_variable (Qinhibit_modification_hooks), Qt);
7446 Ferase_buffer ();
7447 BVAR (current_buffer, undo_list) = Qt;
7448 BVAR (current_buffer, enable_multibyte_characters) = multibyte ? Qt : Qnil;
7449 set_buffer_internal (current);
7450 return workbuf;
7451 }
7452
7453
7454 static Lisp_Object
7455 code_conversion_restore (Lisp_Object arg)
7456 {
7457 Lisp_Object current, workbuf;
7458 struct gcpro gcpro1;
7459
7460 GCPRO1 (arg);
7461 current = XCAR (arg);
7462 workbuf = XCDR (arg);
7463 if (! NILP (workbuf))
7464 {
7465 if (EQ (workbuf, Vcode_conversion_reused_workbuf))
7466 reused_workbuf_in_use = 0;
7467 else if (! NILP (Fbuffer_live_p (workbuf)))
7468 Fkill_buffer (workbuf);
7469 }
7470 set_buffer_internal (XBUFFER (current));
7471 UNGCPRO;
7472 return Qnil;
7473 }
7474
7475 Lisp_Object
7476 code_conversion_save (int with_work_buf, int multibyte)
7477 {
7478 Lisp_Object workbuf = Qnil;
7479
7480 if (with_work_buf)
7481 workbuf = make_conversion_work_buffer (multibyte);
7482 record_unwind_protect (code_conversion_restore,
7483 Fcons (Fcurrent_buffer (), workbuf));
7484 return workbuf;
7485 }
7486
7487 int
7488 decode_coding_gap (struct coding_system *coding,
7489 EMACS_INT chars, EMACS_INT bytes)
7490 {
7491 int count = SPECPDL_INDEX ();
7492 Lisp_Object attrs;
7493
7494 code_conversion_save (0, 0);
7495
7496 coding->src_object = Fcurrent_buffer ();
7497 coding->src_chars = chars;
7498 coding->src_bytes = bytes;
7499 coding->src_pos = -chars;
7500 coding->src_pos_byte = -bytes;
7501 coding->src_multibyte = chars < bytes;
7502 coding->dst_object = coding->src_object;
7503 coding->dst_pos = PT;
7504 coding->dst_pos_byte = PT_BYTE;
7505 coding->dst_multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
7506
7507 if (CODING_REQUIRE_DETECTION (coding))
7508 detect_coding (coding);
7509
7510 coding->mode |= CODING_MODE_LAST_BLOCK;
7511 current_buffer->text->inhibit_shrinking = 1;
7512 decode_coding (coding);
7513 current_buffer->text->inhibit_shrinking = 0;
7514
7515 attrs = CODING_ID_ATTRS (coding->id);
7516 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7517 {
7518 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7519 Lisp_Object val;
7520
7521 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7522 val = call1 (CODING_ATTR_POST_READ (attrs),
7523 make_number (coding->produced_char));
7524 CHECK_NATNUM (val);
7525 coding->produced_char += Z - prev_Z;
7526 coding->produced += Z_BYTE - prev_Z_BYTE;
7527 }
7528
7529 unbind_to (count, Qnil);
7530 return coding->result;
7531 }
7532
7533
7534 /* Decode the text in the range FROM/FROM_BYTE and TO/TO_BYTE in
7535 SRC_OBJECT into DST_OBJECT by coding context CODING.
7536
7537 SRC_OBJECT is a buffer, a string, or Qnil.
7538
7539 If it is a buffer, the text is at point of the buffer. FROM and TO
7540 are positions in the buffer.
7541
7542 If it is a string, the text is at the beginning of the string.
7543 FROM and TO are indices to the string.
7544
7545 If it is nil, the text is at coding->source. FROM and TO are
7546 indices to coding->source.
7547
7548 DST_OBJECT is a buffer, Qt, or Qnil.
7549
7550 If it is a buffer, the decoded text is inserted at point of the
7551 buffer. If the buffer is the same as SRC_OBJECT, the source text
7552 is deleted.
7553
7554 If it is Qt, a string is made from the decoded text, and
7555 set in CODING->dst_object.
7556
7557 If it is Qnil, the decoded text is stored at CODING->destination.
7558 The caller must allocate CODING->dst_bytes bytes at
7559 CODING->destination by xmalloc. If the decoded text is longer than
7560 CODING->dst_bytes, CODING->destination is relocated by xrealloc.
7561 */
7562
7563 void
7564 decode_coding_object (struct coding_system *coding,
7565 Lisp_Object src_object,
7566 EMACS_INT from, EMACS_INT from_byte,
7567 EMACS_INT to, EMACS_INT to_byte,
7568 Lisp_Object dst_object)
7569 {
7570 int count = SPECPDL_INDEX ();
7571 unsigned char *destination IF_LINT (= NULL);
7572 EMACS_INT dst_bytes IF_LINT (= 0);
7573 EMACS_INT chars = to - from;
7574 EMACS_INT bytes = to_byte - from_byte;
7575 Lisp_Object attrs;
7576 int saved_pt = -1, saved_pt_byte IF_LINT (= 0);
7577 int need_marker_adjustment = 0;
7578 Lisp_Object old_deactivate_mark;
7579
7580 old_deactivate_mark = Vdeactivate_mark;
7581
7582 if (NILP (dst_object))
7583 {
7584 destination = coding->destination;
7585 dst_bytes = coding->dst_bytes;
7586 }
7587
7588 coding->src_object = src_object;
7589 coding->src_chars = chars;
7590 coding->src_bytes = bytes;
7591 coding->src_multibyte = chars < bytes;
7592
7593 if (STRINGP (src_object))
7594 {
7595 coding->src_pos = from;
7596 coding->src_pos_byte = from_byte;
7597 }
7598 else if (BUFFERP (src_object))
7599 {
7600 set_buffer_internal (XBUFFER (src_object));
7601 if (from != GPT)
7602 move_gap_both (from, from_byte);
7603 if (EQ (src_object, dst_object))
7604 {
7605 struct Lisp_Marker *tail;
7606
7607 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7608 {
7609 tail->need_adjustment
7610 = tail->charpos == (tail->insertion_type ? from : to);
7611 need_marker_adjustment |= tail->need_adjustment;
7612 }
7613 saved_pt = PT, saved_pt_byte = PT_BYTE;
7614 TEMP_SET_PT_BOTH (from, from_byte);
7615 current_buffer->text->inhibit_shrinking = 1;
7616 del_range_both (from, from_byte, to, to_byte, 1);
7617 coding->src_pos = -chars;
7618 coding->src_pos_byte = -bytes;
7619 }
7620 else
7621 {
7622 coding->src_pos = from;
7623 coding->src_pos_byte = from_byte;
7624 }
7625 }
7626
7627 if (CODING_REQUIRE_DETECTION (coding))
7628 detect_coding (coding);
7629 attrs = CODING_ID_ATTRS (coding->id);
7630
7631 if (EQ (dst_object, Qt)
7632 || (! NILP (CODING_ATTR_POST_READ (attrs))
7633 && NILP (dst_object)))
7634 {
7635 coding->dst_multibyte = !CODING_FOR_UNIBYTE (coding);
7636 coding->dst_object = code_conversion_save (1, coding->dst_multibyte);
7637 coding->dst_pos = BEG;
7638 coding->dst_pos_byte = BEG_BYTE;
7639 }
7640 else if (BUFFERP (dst_object))
7641 {
7642 code_conversion_save (0, 0);
7643 coding->dst_object = dst_object;
7644 coding->dst_pos = BUF_PT (XBUFFER (dst_object));
7645 coding->dst_pos_byte = BUF_PT_BYTE (XBUFFER (dst_object));
7646 coding->dst_multibyte
7647 = ! NILP (BVAR (XBUFFER (dst_object), enable_multibyte_characters));
7648 }
7649 else
7650 {
7651 code_conversion_save (0, 0);
7652 coding->dst_object = Qnil;
7653 /* Most callers presume this will return a multibyte result, and they
7654 won't use `binary' or `raw-text' anyway, so let's not worry about
7655 CODING_FOR_UNIBYTE. */
7656 coding->dst_multibyte = 1;
7657 }
7658
7659 decode_coding (coding);
7660
7661 if (BUFFERP (coding->dst_object))
7662 set_buffer_internal (XBUFFER (coding->dst_object));
7663
7664 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7665 {
7666 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7667 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7668 Lisp_Object val;
7669
7670 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7671 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7672 old_deactivate_mark);
7673 val = safe_call1 (CODING_ATTR_POST_READ (attrs),
7674 make_number (coding->produced_char));
7675 UNGCPRO;
7676 CHECK_NATNUM (val);
7677 coding->produced_char += Z - prev_Z;
7678 coding->produced += Z_BYTE - prev_Z_BYTE;
7679 }
7680
7681 if (EQ (dst_object, Qt))
7682 {
7683 coding->dst_object = Fbuffer_string ();
7684 }
7685 else if (NILP (dst_object) && BUFFERP (coding->dst_object))
7686 {
7687 set_buffer_internal (XBUFFER (coding->dst_object));
7688 if (dst_bytes < coding->produced)
7689 {
7690 destination = xrealloc (destination, coding->produced);
7691 if (! destination)
7692 {
7693 record_conversion_result (coding,
7694 CODING_RESULT_INSUFFICIENT_MEM);
7695 unbind_to (count, Qnil);
7696 return;
7697 }
7698 if (BEGV < GPT && GPT < BEGV + coding->produced_char)
7699 move_gap_both (BEGV, BEGV_BYTE);
7700 memcpy (destination, BEGV_ADDR, coding->produced);
7701 coding->destination = destination;
7702 }
7703 }
7704
7705 if (saved_pt >= 0)
7706 {
7707 /* This is the case of:
7708 (BUFFERP (src_object) && EQ (src_object, dst_object))
7709 As we have moved PT while replacing the original buffer
7710 contents, we must recover it now. */
7711 set_buffer_internal (XBUFFER (src_object));
7712 current_buffer->text->inhibit_shrinking = 0;
7713 if (saved_pt < from)
7714 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
7715 else if (saved_pt < from + chars)
7716 TEMP_SET_PT_BOTH (from, from_byte);
7717 else if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
7718 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
7719 saved_pt_byte + (coding->produced - bytes));
7720 else
7721 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
7722 saved_pt_byte + (coding->produced - bytes));
7723
7724 if (need_marker_adjustment)
7725 {
7726 struct Lisp_Marker *tail;
7727
7728 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7729 if (tail->need_adjustment)
7730 {
7731 tail->need_adjustment = 0;
7732 if (tail->insertion_type)
7733 {
7734 tail->bytepos = from_byte;
7735 tail->charpos = from;
7736 }
7737 else
7738 {
7739 tail->bytepos = from_byte + coding->produced;
7740 tail->charpos
7741 = (NILP (BVAR (current_buffer, enable_multibyte_characters))
7742 ? tail->bytepos : from + coding->produced_char);
7743 }
7744 }
7745 }
7746 }
7747
7748 Vdeactivate_mark = old_deactivate_mark;
7749 unbind_to (count, coding->dst_object);
7750 }
7751
7752
7753 void
7754 encode_coding_object (struct coding_system *coding,
7755 Lisp_Object src_object,
7756 EMACS_INT from, EMACS_INT from_byte,
7757 EMACS_INT to, EMACS_INT to_byte,
7758 Lisp_Object dst_object)
7759 {
7760 int count = SPECPDL_INDEX ();
7761 EMACS_INT chars = to - from;
7762 EMACS_INT bytes = to_byte - from_byte;
7763 Lisp_Object attrs;
7764 int saved_pt = -1, saved_pt_byte IF_LINT (= 0);
7765 int need_marker_adjustment = 0;
7766 int kill_src_buffer = 0;
7767 Lisp_Object old_deactivate_mark;
7768
7769 old_deactivate_mark = Vdeactivate_mark;
7770
7771 coding->src_object = src_object;
7772 coding->src_chars = chars;
7773 coding->src_bytes = bytes;
7774 coding->src_multibyte = chars < bytes;
7775
7776 attrs = CODING_ID_ATTRS (coding->id);
7777
7778 if (EQ (src_object, dst_object))
7779 {
7780 struct Lisp_Marker *tail;
7781
7782 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7783 {
7784 tail->need_adjustment
7785 = tail->charpos == (tail->insertion_type ? from : to);
7786 need_marker_adjustment |= tail->need_adjustment;
7787 }
7788 }
7789
7790 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
7791 {
7792 coding->src_object = code_conversion_save (1, coding->src_multibyte);
7793 set_buffer_internal (XBUFFER (coding->src_object));
7794 if (STRINGP (src_object))
7795 insert_from_string (src_object, from, from_byte, chars, bytes, 0);
7796 else if (BUFFERP (src_object))
7797 insert_from_buffer (XBUFFER (src_object), from, chars, 0);
7798 else
7799 insert_1_both ((char *) coding->source + from, chars, bytes, 0, 0, 0);
7800
7801 if (EQ (src_object, dst_object))
7802 {
7803 set_buffer_internal (XBUFFER (src_object));
7804 saved_pt = PT, saved_pt_byte = PT_BYTE;
7805 del_range_both (from, from_byte, to, to_byte, 1);
7806 set_buffer_internal (XBUFFER (coding->src_object));
7807 }
7808
7809 {
7810 Lisp_Object args[3];
7811 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7812
7813 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7814 old_deactivate_mark);
7815 args[0] = CODING_ATTR_PRE_WRITE (attrs);
7816 args[1] = make_number (BEG);
7817 args[2] = make_number (Z);
7818 safe_call (3, args);
7819 UNGCPRO;
7820 }
7821 if (XBUFFER (coding->src_object) != current_buffer)
7822 kill_src_buffer = 1;
7823 coding->src_object = Fcurrent_buffer ();
7824 if (BEG != GPT)
7825 move_gap_both (BEG, BEG_BYTE);
7826 coding->src_chars = Z - BEG;
7827 coding->src_bytes = Z_BYTE - BEG_BYTE;
7828 coding->src_pos = BEG;
7829 coding->src_pos_byte = BEG_BYTE;
7830 coding->src_multibyte = Z < Z_BYTE;
7831 }
7832 else if (STRINGP (src_object))
7833 {
7834 code_conversion_save (0, 0);
7835 coding->src_pos = from;
7836 coding->src_pos_byte = from_byte;
7837 }
7838 else if (BUFFERP (src_object))
7839 {
7840 code_conversion_save (0, 0);
7841 set_buffer_internal (XBUFFER (src_object));
7842 if (EQ (src_object, dst_object))
7843 {
7844 saved_pt = PT, saved_pt_byte = PT_BYTE;
7845 coding->src_object = del_range_1 (from, to, 1, 1);
7846 coding->src_pos = 0;
7847 coding->src_pos_byte = 0;
7848 }
7849 else
7850 {
7851 if (from < GPT && to >= GPT)
7852 move_gap_both (from, from_byte);
7853 coding->src_pos = from;
7854 coding->src_pos_byte = from_byte;
7855 }
7856 }
7857 else
7858 code_conversion_save (0, 0);
7859
7860 if (BUFFERP (dst_object))
7861 {
7862 coding->dst_object = dst_object;
7863 if (EQ (src_object, dst_object))
7864 {
7865 coding->dst_pos = from;
7866 coding->dst_pos_byte = from_byte;
7867 }
7868 else
7869 {
7870 struct buffer *current = current_buffer;
7871
7872 set_buffer_temp (XBUFFER (dst_object));
7873 coding->dst_pos = PT;
7874 coding->dst_pos_byte = PT_BYTE;
7875 move_gap_both (coding->dst_pos, coding->dst_pos_byte);
7876 set_buffer_temp (current);
7877 }
7878 coding->dst_multibyte
7879 = ! NILP (BVAR (XBUFFER (dst_object), enable_multibyte_characters));
7880 }
7881 else if (EQ (dst_object, Qt))
7882 {
7883 coding->dst_object = Qnil;
7884 coding->dst_bytes = coding->src_chars;
7885 if (coding->dst_bytes == 0)
7886 coding->dst_bytes = 1;
7887 coding->destination = (unsigned char *) xmalloc (coding->dst_bytes);
7888 coding->dst_multibyte = 0;
7889 }
7890 else
7891 {
7892 coding->dst_object = Qnil;
7893 coding->dst_multibyte = 0;
7894 }
7895
7896 encode_coding (coding);
7897
7898 if (EQ (dst_object, Qt))
7899 {
7900 if (BUFFERP (coding->dst_object))
7901 coding->dst_object = Fbuffer_string ();
7902 else
7903 {
7904 coding->dst_object
7905 = make_unibyte_string ((char *) coding->destination,
7906 coding->produced);
7907 xfree (coding->destination);
7908 }
7909 }
7910
7911 if (saved_pt >= 0)
7912 {
7913 /* This is the case of:
7914 (BUFFERP (src_object) && EQ (src_object, dst_object))
7915 As we have moved PT while replacing the original buffer
7916 contents, we must recover it now. */
7917 set_buffer_internal (XBUFFER (src_object));
7918 if (saved_pt < from)
7919 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
7920 else if (saved_pt < from + chars)
7921 TEMP_SET_PT_BOTH (from, from_byte);
7922 else if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
7923 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
7924 saved_pt_byte + (coding->produced - bytes));
7925 else
7926 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
7927 saved_pt_byte + (coding->produced - bytes));
7928
7929 if (need_marker_adjustment)
7930 {
7931 struct Lisp_Marker *tail;
7932
7933 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7934 if (tail->need_adjustment)
7935 {
7936 tail->need_adjustment = 0;
7937 if (tail->insertion_type)
7938 {
7939 tail->bytepos = from_byte;
7940 tail->charpos = from;
7941 }
7942 else
7943 {
7944 tail->bytepos = from_byte + coding->produced;
7945 tail->charpos
7946 = (NILP (BVAR (current_buffer, enable_multibyte_characters))
7947 ? tail->bytepos : from + coding->produced_char);
7948 }
7949 }
7950 }
7951 }
7952
7953 if (kill_src_buffer)
7954 Fkill_buffer (coding->src_object);
7955
7956 Vdeactivate_mark = old_deactivate_mark;
7957 unbind_to (count, Qnil);
7958 }
7959
7960
7961 Lisp_Object
7962 preferred_coding_system (void)
7963 {
7964 int id = coding_categories[coding_priorities[0]].id;
7965
7966 return CODING_ID_NAME (id);
7967 }
7968
7969 \f
7970 #ifdef emacs
7971 /*** 8. Emacs Lisp library functions ***/
7972
7973 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
7974 doc: /* Return t if OBJECT is nil or a coding-system.
7975 See the documentation of `define-coding-system' for information
7976 about coding-system objects. */)
7977 (Lisp_Object object)
7978 {
7979 if (NILP (object)
7980 || CODING_SYSTEM_ID (object) >= 0)
7981 return Qt;
7982 if (! SYMBOLP (object)
7983 || NILP (Fget (object, Qcoding_system_define_form)))
7984 return Qnil;
7985 return Qt;
7986 }
7987
7988 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
7989 Sread_non_nil_coding_system, 1, 1, 0,
7990 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
7991 (Lisp_Object prompt)
7992 {
7993 Lisp_Object val;
7994 do
7995 {
7996 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
7997 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
7998 }
7999 while (SCHARS (val) == 0);
8000 return (Fintern (val, Qnil));
8001 }
8002
8003 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
8004 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
8005 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.
8006 Ignores case when completing coding systems (all Emacs coding systems
8007 are lower-case). */)
8008 (Lisp_Object prompt, Lisp_Object default_coding_system)
8009 {
8010 Lisp_Object val;
8011 int count = SPECPDL_INDEX ();
8012
8013 if (SYMBOLP (default_coding_system))
8014 default_coding_system = SYMBOL_NAME (default_coding_system);
8015 specbind (Qcompletion_ignore_case, Qt);
8016 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8017 Qt, Qnil, Qcoding_system_history,
8018 default_coding_system, Qnil);
8019 unbind_to (count, Qnil);
8020 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
8021 }
8022
8023 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
8024 1, 1, 0,
8025 doc: /* Check validity of CODING-SYSTEM.
8026 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
8027 It is valid if it is nil or a symbol defined as a coding system by the
8028 function `define-coding-system'. */)
8029 (Lisp_Object coding_system)
8030 {
8031 Lisp_Object define_form;
8032
8033 define_form = Fget (coding_system, Qcoding_system_define_form);
8034 if (! NILP (define_form))
8035 {
8036 Fput (coding_system, Qcoding_system_define_form, Qnil);
8037 safe_eval (define_form);
8038 }
8039 if (!NILP (Fcoding_system_p (coding_system)))
8040 return coding_system;
8041 xsignal1 (Qcoding_system_error, coding_system);
8042 }
8043
8044 \f
8045 /* Detect how the bytes at SRC of length SRC_BYTES are encoded. If
8046 HIGHEST is nonzero, return the coding system of the highest
8047 priority among the detected coding systems. Otherwise return a
8048 list of detected coding systems sorted by their priorities. If
8049 MULTIBYTEP is nonzero, it is assumed that the bytes are in correct
8050 multibyte form but contains only ASCII and eight-bit chars.
8051 Otherwise, the bytes are raw bytes.
8052
8053 CODING-SYSTEM controls the detection as below:
8054
8055 If it is nil, detect both text-format and eol-format. If the
8056 text-format part of CODING-SYSTEM is already specified
8057 (e.g. `iso-latin-1'), detect only eol-format. If the eol-format
8058 part of CODING-SYSTEM is already specified (e.g. `undecided-unix'),
8059 detect only text-format. */
8060
8061 Lisp_Object
8062 detect_coding_system (const unsigned char *src,
8063 EMACS_INT src_chars, EMACS_INT src_bytes,
8064 int highest, int multibytep,
8065 Lisp_Object coding_system)
8066 {
8067 const unsigned char *src_end = src + src_bytes;
8068 Lisp_Object attrs, eol_type;
8069 Lisp_Object val = Qnil;
8070 struct coding_system coding;
8071 int id;
8072 struct coding_detection_info detect_info;
8073 enum coding_category base_category;
8074 int null_byte_found = 0, eight_bit_found = 0;
8075
8076 if (NILP (coding_system))
8077 coding_system = Qundecided;
8078 setup_coding_system (coding_system, &coding);
8079 attrs = CODING_ID_ATTRS (coding.id);
8080 eol_type = CODING_ID_EOL_TYPE (coding.id);
8081 coding_system = CODING_ATTR_BASE_NAME (attrs);
8082
8083 coding.source = src;
8084 coding.src_chars = src_chars;
8085 coding.src_bytes = src_bytes;
8086 coding.src_multibyte = multibytep;
8087 coding.consumed = 0;
8088 coding.mode |= CODING_MODE_LAST_BLOCK;
8089 coding.head_ascii = 0;
8090
8091 detect_info.checked = detect_info.found = detect_info.rejected = 0;
8092
8093 /* At first, detect text-format if necessary. */
8094 base_category = XINT (CODING_ATTR_CATEGORY (attrs));
8095 if (base_category == coding_category_undecided)
8096 {
8097 enum coding_category category IF_LINT (= 0);
8098 struct coding_system *this IF_LINT (= NULL);
8099 int c, i;
8100
8101 /* Skip all ASCII bytes except for a few ISO2022 controls. */
8102 for (; src < src_end; src++)
8103 {
8104 c = *src;
8105 if (c & 0x80)
8106 {
8107 eight_bit_found = 1;
8108 if (null_byte_found)
8109 break;
8110 }
8111 else if (c < 0x20)
8112 {
8113 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
8114 && ! inhibit_iso_escape_detection
8115 && ! detect_info.checked)
8116 {
8117 if (detect_coding_iso_2022 (&coding, &detect_info))
8118 {
8119 /* We have scanned the whole data. */
8120 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
8121 {
8122 /* We didn't find an 8-bit code. We may
8123 have found a null-byte, but it's very
8124 rare that a binary file confirm to
8125 ISO-2022. */
8126 src = src_end;
8127 coding.head_ascii = src - coding.source;
8128 }
8129 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
8130 break;
8131 }
8132 }
8133 else if (! c && !inhibit_null_byte_detection)
8134 {
8135 null_byte_found = 1;
8136 if (eight_bit_found)
8137 break;
8138 }
8139 if (! eight_bit_found)
8140 coding.head_ascii++;
8141 }
8142 else if (! eight_bit_found)
8143 coding.head_ascii++;
8144 }
8145
8146 if (null_byte_found || eight_bit_found
8147 || coding.head_ascii < coding.src_bytes
8148 || detect_info.found)
8149 {
8150 if (coding.head_ascii == coding.src_bytes)
8151 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
8152 for (i = 0; i < coding_category_raw_text; i++)
8153 {
8154 category = coding_priorities[i];
8155 this = coding_categories + category;
8156 if (detect_info.found & (1 << category))
8157 break;
8158 }
8159 else
8160 {
8161 if (null_byte_found)
8162 {
8163 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
8164 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
8165 }
8166 for (i = 0; i < coding_category_raw_text; i++)
8167 {
8168 category = coding_priorities[i];
8169 this = coding_categories + category;
8170
8171 if (this->id < 0)
8172 {
8173 /* No coding system of this category is defined. */
8174 detect_info.rejected |= (1 << category);
8175 }
8176 else if (category >= coding_category_raw_text)
8177 continue;
8178 else if (detect_info.checked & (1 << category))
8179 {
8180 if (highest
8181 && (detect_info.found & (1 << category)))
8182 break;
8183 }
8184 else if ((*(this->detector)) (&coding, &detect_info)
8185 && highest
8186 && (detect_info.found & (1 << category)))
8187 {
8188 if (category == coding_category_utf_16_auto)
8189 {
8190 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8191 category = coding_category_utf_16_le;
8192 else
8193 category = coding_category_utf_16_be;
8194 }
8195 break;
8196 }
8197 }
8198 }
8199 }
8200
8201 if ((detect_info.rejected & CATEGORY_MASK_ANY) == CATEGORY_MASK_ANY
8202 || null_byte_found)
8203 {
8204 detect_info.found = CATEGORY_MASK_RAW_TEXT;
8205 id = CODING_SYSTEM_ID (Qno_conversion);
8206 val = Fcons (make_number (id), Qnil);
8207 }
8208 else if (! detect_info.rejected && ! detect_info.found)
8209 {
8210 detect_info.found = CATEGORY_MASK_ANY;
8211 id = coding_categories[coding_category_undecided].id;
8212 val = Fcons (make_number (id), Qnil);
8213 }
8214 else if (highest)
8215 {
8216 if (detect_info.found)
8217 {
8218 detect_info.found = 1 << category;
8219 val = Fcons (make_number (this->id), Qnil);
8220 }
8221 else
8222 for (i = 0; i < coding_category_raw_text; i++)
8223 if (! (detect_info.rejected & (1 << coding_priorities[i])))
8224 {
8225 detect_info.found = 1 << coding_priorities[i];
8226 id = coding_categories[coding_priorities[i]].id;
8227 val = Fcons (make_number (id), Qnil);
8228 break;
8229 }
8230 }
8231 else
8232 {
8233 int mask = detect_info.rejected | detect_info.found;
8234 int found = 0;
8235
8236 for (i = coding_category_raw_text - 1; i >= 0; i--)
8237 {
8238 category = coding_priorities[i];
8239 if (! (mask & (1 << category)))
8240 {
8241 found |= 1 << category;
8242 id = coding_categories[category].id;
8243 if (id >= 0)
8244 val = Fcons (make_number (id), val);
8245 }
8246 }
8247 for (i = coding_category_raw_text - 1; i >= 0; i--)
8248 {
8249 category = coding_priorities[i];
8250 if (detect_info.found & (1 << category))
8251 {
8252 id = coding_categories[category].id;
8253 val = Fcons (make_number (id), val);
8254 }
8255 }
8256 detect_info.found |= found;
8257 }
8258 }
8259 else if (base_category == coding_category_utf_8_auto)
8260 {
8261 if (detect_coding_utf_8 (&coding, &detect_info))
8262 {
8263 struct coding_system *this;
8264
8265 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
8266 this = coding_categories + coding_category_utf_8_sig;
8267 else
8268 this = coding_categories + coding_category_utf_8_nosig;
8269 val = Fcons (make_number (this->id), Qnil);
8270 }
8271 }
8272 else if (base_category == coding_category_utf_16_auto)
8273 {
8274 if (detect_coding_utf_16 (&coding, &detect_info))
8275 {
8276 struct coding_system *this;
8277
8278 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8279 this = coding_categories + coding_category_utf_16_le;
8280 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
8281 this = coding_categories + coding_category_utf_16_be;
8282 else if (detect_info.rejected & CATEGORY_MASK_UTF_16_LE_NOSIG)
8283 this = coding_categories + coding_category_utf_16_be_nosig;
8284 else
8285 this = coding_categories + coding_category_utf_16_le_nosig;
8286 val = Fcons (make_number (this->id), Qnil);
8287 }
8288 }
8289 else
8290 {
8291 detect_info.found = 1 << XINT (CODING_ATTR_CATEGORY (attrs));
8292 val = Fcons (make_number (coding.id), Qnil);
8293 }
8294
8295 /* Then, detect eol-format if necessary. */
8296 {
8297 int normal_eol = -1, utf_16_be_eol = -1, utf_16_le_eol = -1;
8298 Lisp_Object tail;
8299
8300 if (VECTORP (eol_type))
8301 {
8302 if (detect_info.found & ~CATEGORY_MASK_UTF_16)
8303 {
8304 if (null_byte_found)
8305 normal_eol = EOL_SEEN_LF;
8306 else
8307 normal_eol = detect_eol (coding.source, src_bytes,
8308 coding_category_raw_text);
8309 }
8310 if (detect_info.found & (CATEGORY_MASK_UTF_16_BE
8311 | CATEGORY_MASK_UTF_16_BE_NOSIG))
8312 utf_16_be_eol = detect_eol (coding.source, src_bytes,
8313 coding_category_utf_16_be);
8314 if (detect_info.found & (CATEGORY_MASK_UTF_16_LE
8315 | CATEGORY_MASK_UTF_16_LE_NOSIG))
8316 utf_16_le_eol = detect_eol (coding.source, src_bytes,
8317 coding_category_utf_16_le);
8318 }
8319 else
8320 {
8321 if (EQ (eol_type, Qunix))
8322 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_LF;
8323 else if (EQ (eol_type, Qdos))
8324 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CRLF;
8325 else
8326 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CR;
8327 }
8328
8329 for (tail = val; CONSP (tail); tail = XCDR (tail))
8330 {
8331 enum coding_category category;
8332 int this_eol;
8333
8334 id = XINT (XCAR (tail));
8335 attrs = CODING_ID_ATTRS (id);
8336 category = XINT (CODING_ATTR_CATEGORY (attrs));
8337 eol_type = CODING_ID_EOL_TYPE (id);
8338 if (VECTORP (eol_type))
8339 {
8340 if (category == coding_category_utf_16_be
8341 || category == coding_category_utf_16_be_nosig)
8342 this_eol = utf_16_be_eol;
8343 else if (category == coding_category_utf_16_le
8344 || category == coding_category_utf_16_le_nosig)
8345 this_eol = utf_16_le_eol;
8346 else
8347 this_eol = normal_eol;
8348
8349 if (this_eol == EOL_SEEN_LF)
8350 XSETCAR (tail, AREF (eol_type, 0));
8351 else if (this_eol == EOL_SEEN_CRLF)
8352 XSETCAR (tail, AREF (eol_type, 1));
8353 else if (this_eol == EOL_SEEN_CR)
8354 XSETCAR (tail, AREF (eol_type, 2));
8355 else
8356 XSETCAR (tail, CODING_ID_NAME (id));
8357 }
8358 else
8359 XSETCAR (tail, CODING_ID_NAME (id));
8360 }
8361 }
8362
8363 return (highest ? (CONSP (val) ? XCAR (val) : Qnil) : val);
8364 }
8365
8366
8367 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
8368 2, 3, 0,
8369 doc: /* Detect coding system of the text in the region between START and END.
8370 Return a list of possible coding systems ordered by priority.
8371 The coding systems to try and their priorities follows what
8372 the function `coding-system-priority-list' (which see) returns.
8373
8374 If only ASCII characters are found (except for such ISO-2022 control
8375 characters as ESC), it returns a list of single element `undecided'
8376 or its subsidiary coding system according to a detected end-of-line
8377 format.
8378
8379 If optional argument HIGHEST is non-nil, return the coding system of
8380 highest priority. */)
8381 (Lisp_Object start, Lisp_Object end, Lisp_Object highest)
8382 {
8383 int from, to;
8384 int from_byte, to_byte;
8385
8386 CHECK_NUMBER_COERCE_MARKER (start);
8387 CHECK_NUMBER_COERCE_MARKER (end);
8388
8389 validate_region (&start, &end);
8390 from = XINT (start), to = XINT (end);
8391 from_byte = CHAR_TO_BYTE (from);
8392 to_byte = CHAR_TO_BYTE (to);
8393
8394 if (from < GPT && to >= GPT)
8395 move_gap_both (to, to_byte);
8396
8397 return detect_coding_system (BYTE_POS_ADDR (from_byte),
8398 to - from, to_byte - from_byte,
8399 !NILP (highest),
8400 !NILP (BVAR (current_buffer
8401 , enable_multibyte_characters)),
8402 Qnil);
8403 }
8404
8405 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
8406 1, 2, 0,
8407 doc: /* Detect coding system of the text in STRING.
8408 Return a list of possible coding systems ordered by priority.
8409 The coding systems to try and their priorities follows what
8410 the function `coding-system-priority-list' (which see) returns.
8411
8412 If only ASCII characters are found (except for such ISO-2022 control
8413 characters as ESC), it returns a list of single element `undecided'
8414 or its subsidiary coding system according to a detected end-of-line
8415 format.
8416
8417 If optional argument HIGHEST is non-nil, return the coding system of
8418 highest priority. */)
8419 (Lisp_Object string, Lisp_Object highest)
8420 {
8421 CHECK_STRING (string);
8422
8423 return detect_coding_system (SDATA (string),
8424 SCHARS (string), SBYTES (string),
8425 !NILP (highest), STRING_MULTIBYTE (string),
8426 Qnil);
8427 }
8428
8429
8430 static INLINE int
8431 char_encodable_p (int c, Lisp_Object attrs)
8432 {
8433 Lisp_Object tail;
8434 struct charset *charset;
8435 Lisp_Object translation_table;
8436
8437 translation_table = CODING_ATTR_TRANS_TBL (attrs);
8438 if (! NILP (translation_table))
8439 c = translate_char (translation_table, c);
8440 for (tail = CODING_ATTR_CHARSET_LIST (attrs);
8441 CONSP (tail); tail = XCDR (tail))
8442 {
8443 charset = CHARSET_FROM_ID (XINT (XCAR (tail)));
8444 if (CHAR_CHARSET_P (c, charset))
8445 break;
8446 }
8447 return (! NILP (tail));
8448 }
8449
8450
8451 /* Return a list of coding systems that safely encode the text between
8452 START and END. If EXCLUDE is non-nil, it is a list of coding
8453 systems not to check. The returned list doesn't contain any such
8454 coding systems. In any case, if the text contains only ASCII or is
8455 unibyte, return t. */
8456
8457 DEFUN ("find-coding-systems-region-internal",
8458 Ffind_coding_systems_region_internal,
8459 Sfind_coding_systems_region_internal, 2, 3, 0,
8460 doc: /* Internal use only. */)
8461 (Lisp_Object start, Lisp_Object end, Lisp_Object exclude)
8462 {
8463 Lisp_Object coding_attrs_list, safe_codings;
8464 EMACS_INT start_byte, end_byte;
8465 const unsigned char *p, *pbeg, *pend;
8466 int c;
8467 Lisp_Object tail, elt, work_table;
8468
8469 if (STRINGP (start))
8470 {
8471 if (!STRING_MULTIBYTE (start)
8472 || SCHARS (start) == SBYTES (start))
8473 return Qt;
8474 start_byte = 0;
8475 end_byte = SBYTES (start);
8476 }
8477 else
8478 {
8479 CHECK_NUMBER_COERCE_MARKER (start);
8480 CHECK_NUMBER_COERCE_MARKER (end);
8481 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8482 args_out_of_range (start, end);
8483 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
8484 return Qt;
8485 start_byte = CHAR_TO_BYTE (XINT (start));
8486 end_byte = CHAR_TO_BYTE (XINT (end));
8487 if (XINT (end) - XINT (start) == end_byte - start_byte)
8488 return Qt;
8489
8490 if (XINT (start) < GPT && XINT (end) > GPT)
8491 {
8492 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8493 move_gap_both (XINT (start), start_byte);
8494 else
8495 move_gap_both (XINT (end), end_byte);
8496 }
8497 }
8498
8499 coding_attrs_list = Qnil;
8500 for (tail = Vcoding_system_list; CONSP (tail); tail = XCDR (tail))
8501 if (NILP (exclude)
8502 || NILP (Fmemq (XCAR (tail), exclude)))
8503 {
8504 Lisp_Object attrs;
8505
8506 attrs = AREF (CODING_SYSTEM_SPEC (XCAR (tail)), 0);
8507 if (EQ (XCAR (tail), CODING_ATTR_BASE_NAME (attrs))
8508 && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
8509 {
8510 ASET (attrs, coding_attr_trans_tbl,
8511 get_translation_table (attrs, 1, NULL));
8512 coding_attrs_list = Fcons (attrs, coding_attrs_list);
8513 }
8514 }
8515
8516 if (STRINGP (start))
8517 p = pbeg = SDATA (start);
8518 else
8519 p = pbeg = BYTE_POS_ADDR (start_byte);
8520 pend = p + (end_byte - start_byte);
8521
8522 while (p < pend && ASCII_BYTE_P (*p)) p++;
8523 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8524
8525 work_table = Fmake_char_table (Qnil, Qnil);
8526 while (p < pend)
8527 {
8528 if (ASCII_BYTE_P (*p))
8529 p++;
8530 else
8531 {
8532 c = STRING_CHAR_ADVANCE (p);
8533 if (!NILP (char_table_ref (work_table, c)))
8534 /* This character was already checked. Ignore it. */
8535 continue;
8536
8537 charset_map_loaded = 0;
8538 for (tail = coding_attrs_list; CONSP (tail);)
8539 {
8540 elt = XCAR (tail);
8541 if (NILP (elt))
8542 tail = XCDR (tail);
8543 else if (char_encodable_p (c, elt))
8544 tail = XCDR (tail);
8545 else if (CONSP (XCDR (tail)))
8546 {
8547 XSETCAR (tail, XCAR (XCDR (tail)));
8548 XSETCDR (tail, XCDR (XCDR (tail)));
8549 }
8550 else
8551 {
8552 XSETCAR (tail, Qnil);
8553 tail = XCDR (tail);
8554 }
8555 }
8556 if (charset_map_loaded)
8557 {
8558 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8559
8560 if (STRINGP (start))
8561 pbeg = SDATA (start);
8562 else
8563 pbeg = BYTE_POS_ADDR (start_byte);
8564 p = pbeg + p_offset;
8565 pend = pbeg + pend_offset;
8566 }
8567 char_table_set (work_table, c, Qt);
8568 }
8569 }
8570
8571 safe_codings = list2 (Qraw_text, Qno_conversion);
8572 for (tail = coding_attrs_list; CONSP (tail); tail = XCDR (tail))
8573 if (! NILP (XCAR (tail)))
8574 safe_codings = Fcons (CODING_ATTR_BASE_NAME (XCAR (tail)), safe_codings);
8575
8576 return safe_codings;
8577 }
8578
8579
8580 DEFUN ("unencodable-char-position", Funencodable_char_position,
8581 Sunencodable_char_position, 3, 5, 0,
8582 doc: /*
8583 Return position of first un-encodable character in a region.
8584 START and END specify the region and CODING-SYSTEM specifies the
8585 encoding to check. Return nil if CODING-SYSTEM does encode the region.
8586
8587 If optional 4th argument COUNT is non-nil, it specifies at most how
8588 many un-encodable characters to search. In this case, the value is a
8589 list of positions.
8590
8591 If optional 5th argument STRING is non-nil, it is a string to search
8592 for un-encodable characters. In that case, START and END are indexes
8593 to the string. */)
8594 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object count, Lisp_Object string)
8595 {
8596 int n;
8597 struct coding_system coding;
8598 Lisp_Object attrs, charset_list, translation_table;
8599 Lisp_Object positions;
8600 int from, to;
8601 const unsigned char *p, *stop, *pend;
8602 int ascii_compatible;
8603
8604 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
8605 attrs = CODING_ID_ATTRS (coding.id);
8606 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
8607 return Qnil;
8608 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
8609 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
8610 translation_table = get_translation_table (attrs, 1, NULL);
8611
8612 if (NILP (string))
8613 {
8614 validate_region (&start, &end);
8615 from = XINT (start);
8616 to = XINT (end);
8617 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
8618 || (ascii_compatible
8619 && (to - from) == (CHAR_TO_BYTE (to) - (CHAR_TO_BYTE (from)))))
8620 return Qnil;
8621 p = CHAR_POS_ADDR (from);
8622 pend = CHAR_POS_ADDR (to);
8623 if (from < GPT && to >= GPT)
8624 stop = GPT_ADDR;
8625 else
8626 stop = pend;
8627 }
8628 else
8629 {
8630 CHECK_STRING (string);
8631 CHECK_NATNUM (start);
8632 CHECK_NATNUM (end);
8633 from = XINT (start);
8634 to = XINT (end);
8635 if (from > to
8636 || to > SCHARS (string))
8637 args_out_of_range_3 (string, start, end);
8638 if (! STRING_MULTIBYTE (string))
8639 return Qnil;
8640 p = SDATA (string) + string_char_to_byte (string, from);
8641 stop = pend = SDATA (string) + string_char_to_byte (string, to);
8642 if (ascii_compatible && (to - from) == (pend - p))
8643 return Qnil;
8644 }
8645
8646 if (NILP (count))
8647 n = 1;
8648 else
8649 {
8650 CHECK_NATNUM (count);
8651 n = XINT (count);
8652 }
8653
8654 positions = Qnil;
8655 while (1)
8656 {
8657 int c;
8658
8659 if (ascii_compatible)
8660 while (p < stop && ASCII_BYTE_P (*p))
8661 p++, from++;
8662 if (p >= stop)
8663 {
8664 if (p >= pend)
8665 break;
8666 stop = pend;
8667 p = GAP_END_ADDR;
8668 }
8669
8670 c = STRING_CHAR_ADVANCE (p);
8671 if (! (ASCII_CHAR_P (c) && ascii_compatible)
8672 && ! char_charset (translate_char (translation_table, c),
8673 charset_list, NULL))
8674 {
8675 positions = Fcons (make_number (from), positions);
8676 n--;
8677 if (n == 0)
8678 break;
8679 }
8680
8681 from++;
8682 }
8683
8684 return (NILP (count) ? Fcar (positions) : Fnreverse (positions));
8685 }
8686
8687
8688 DEFUN ("check-coding-systems-region", Fcheck_coding_systems_region,
8689 Scheck_coding_systems_region, 3, 3, 0,
8690 doc: /* Check if the region is encodable by coding systems.
8691
8692 START and END are buffer positions specifying the region.
8693 CODING-SYSTEM-LIST is a list of coding systems to check.
8694
8695 The value is an alist ((CODING-SYSTEM POS0 POS1 ...) ...), where
8696 CODING-SYSTEM is a member of CODING-SYSTEM-LIST and can't encode the
8697 whole region, POS0, POS1, ... are buffer positions where non-encodable
8698 characters are found.
8699
8700 If all coding systems in CODING-SYSTEM-LIST can encode the region, the
8701 value is nil.
8702
8703 START may be a string. In that case, check if the string is
8704 encodable, and the value contains indices to the string instead of
8705 buffer positions. END is ignored.
8706
8707 If the current buffer (or START if it is a string) is unibyte, the value
8708 is nil. */)
8709 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system_list)
8710 {
8711 Lisp_Object list;
8712 EMACS_INT start_byte, end_byte;
8713 int pos;
8714 const unsigned char *p, *pbeg, *pend;
8715 int c;
8716 Lisp_Object tail, elt, attrs;
8717
8718 if (STRINGP (start))
8719 {
8720 if (!STRING_MULTIBYTE (start)
8721 || SCHARS (start) == SBYTES (start))
8722 return Qnil;
8723 start_byte = 0;
8724 end_byte = SBYTES (start);
8725 pos = 0;
8726 }
8727 else
8728 {
8729 CHECK_NUMBER_COERCE_MARKER (start);
8730 CHECK_NUMBER_COERCE_MARKER (end);
8731 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8732 args_out_of_range (start, end);
8733 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
8734 return Qnil;
8735 start_byte = CHAR_TO_BYTE (XINT (start));
8736 end_byte = CHAR_TO_BYTE (XINT (end));
8737 if (XINT (end) - XINT (start) == end_byte - start_byte)
8738 return Qnil;
8739
8740 if (XINT (start) < GPT && XINT (end) > GPT)
8741 {
8742 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8743 move_gap_both (XINT (start), start_byte);
8744 else
8745 move_gap_both (XINT (end), end_byte);
8746 }
8747 pos = XINT (start);
8748 }
8749
8750 list = Qnil;
8751 for (tail = coding_system_list; CONSP (tail); tail = XCDR (tail))
8752 {
8753 elt = XCAR (tail);
8754 attrs = AREF (CODING_SYSTEM_SPEC (elt), 0);
8755 ASET (attrs, coding_attr_trans_tbl,
8756 get_translation_table (attrs, 1, NULL));
8757 list = Fcons (Fcons (elt, Fcons (attrs, Qnil)), list);
8758 }
8759
8760 if (STRINGP (start))
8761 p = pbeg = SDATA (start);
8762 else
8763 p = pbeg = BYTE_POS_ADDR (start_byte);
8764 pend = p + (end_byte - start_byte);
8765
8766 while (p < pend && ASCII_BYTE_P (*p)) p++, pos++;
8767 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8768
8769 while (p < pend)
8770 {
8771 if (ASCII_BYTE_P (*p))
8772 p++;
8773 else
8774 {
8775 c = STRING_CHAR_ADVANCE (p);
8776
8777 charset_map_loaded = 0;
8778 for (tail = list; CONSP (tail); tail = XCDR (tail))
8779 {
8780 elt = XCDR (XCAR (tail));
8781 if (! char_encodable_p (c, XCAR (elt)))
8782 XSETCDR (elt, Fcons (make_number (pos), XCDR (elt)));
8783 }
8784 if (charset_map_loaded)
8785 {
8786 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8787
8788 if (STRINGP (start))
8789 pbeg = SDATA (start);
8790 else
8791 pbeg = BYTE_POS_ADDR (start_byte);
8792 p = pbeg + p_offset;
8793 pend = pbeg + pend_offset;
8794 }
8795 }
8796 pos++;
8797 }
8798
8799 tail = list;
8800 list = Qnil;
8801 for (; CONSP (tail); tail = XCDR (tail))
8802 {
8803 elt = XCAR (tail);
8804 if (CONSP (XCDR (XCDR (elt))))
8805 list = Fcons (Fcons (XCAR (elt), Fnreverse (XCDR (XCDR (elt)))),
8806 list);
8807 }
8808
8809 return list;
8810 }
8811
8812
8813 static Lisp_Object
8814 code_convert_region (Lisp_Object start, Lisp_Object end,
8815 Lisp_Object coding_system, Lisp_Object dst_object,
8816 int encodep, int norecord)
8817 {
8818 struct coding_system coding;
8819 EMACS_INT from, from_byte, to, to_byte;
8820 Lisp_Object src_object;
8821
8822 CHECK_NUMBER_COERCE_MARKER (start);
8823 CHECK_NUMBER_COERCE_MARKER (end);
8824 if (NILP (coding_system))
8825 coding_system = Qno_conversion;
8826 else
8827 CHECK_CODING_SYSTEM (coding_system);
8828 src_object = Fcurrent_buffer ();
8829 if (NILP (dst_object))
8830 dst_object = src_object;
8831 else if (! EQ (dst_object, Qt))
8832 CHECK_BUFFER (dst_object);
8833
8834 validate_region (&start, &end);
8835 from = XFASTINT (start);
8836 from_byte = CHAR_TO_BYTE (from);
8837 to = XFASTINT (end);
8838 to_byte = CHAR_TO_BYTE (to);
8839
8840 setup_coding_system (coding_system, &coding);
8841 coding.mode |= CODING_MODE_LAST_BLOCK;
8842
8843 if (encodep)
8844 encode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
8845 dst_object);
8846 else
8847 decode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
8848 dst_object);
8849 if (! norecord)
8850 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
8851
8852 return (BUFFERP (dst_object)
8853 ? make_number (coding.produced_char)
8854 : coding.dst_object);
8855 }
8856
8857
8858 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
8859 3, 4, "r\nzCoding system: ",
8860 doc: /* Decode the current region from the specified coding system.
8861 When called from a program, takes four arguments:
8862 START, END, CODING-SYSTEM, and DESTINATION.
8863 START and END are buffer positions.
8864
8865 Optional 4th arguments DESTINATION specifies where the decoded text goes.
8866 If nil, the region between START and END is replaced by the decoded text.
8867 If buffer, the decoded text is inserted in that buffer after point (point
8868 does not move).
8869 In those cases, the length of the decoded text is returned.
8870 If DESTINATION is t, the decoded text is returned.
8871
8872 This function sets `last-coding-system-used' to the precise coding system
8873 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
8874 not fully specified.) */)
8875 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
8876 {
8877 return code_convert_region (start, end, coding_system, destination, 0, 0);
8878 }
8879
8880 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
8881 3, 4, "r\nzCoding system: ",
8882 doc: /* Encode the current region by specified coding system.
8883 When called from a program, takes four arguments:
8884 START, END, CODING-SYSTEM and DESTINATION.
8885 START and END are buffer positions.
8886
8887 Optional 4th arguments DESTINATION specifies where the encoded text goes.
8888 If nil, the region between START and END is replace by the encoded text.
8889 If buffer, the encoded text is inserted in that buffer after point (point
8890 does not move).
8891 In those cases, the length of the encoded text is returned.
8892 If DESTINATION is t, the encoded text is returned.
8893
8894 This function sets `last-coding-system-used' to the precise coding system
8895 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
8896 not fully specified.) */)
8897 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
8898 {
8899 return code_convert_region (start, end, coding_system, destination, 1, 0);
8900 }
8901
8902 Lisp_Object
8903 code_convert_string (Lisp_Object string, Lisp_Object coding_system,
8904 Lisp_Object dst_object, int encodep, int nocopy, int norecord)
8905 {
8906 struct coding_system coding;
8907 EMACS_INT chars, bytes;
8908
8909 CHECK_STRING (string);
8910 if (NILP (coding_system))
8911 {
8912 if (! norecord)
8913 Vlast_coding_system_used = Qno_conversion;
8914 if (NILP (dst_object))
8915 return (nocopy ? Fcopy_sequence (string) : string);
8916 }
8917
8918 if (NILP (coding_system))
8919 coding_system = Qno_conversion;
8920 else
8921 CHECK_CODING_SYSTEM (coding_system);
8922 if (NILP (dst_object))
8923 dst_object = Qt;
8924 else if (! EQ (dst_object, Qt))
8925 CHECK_BUFFER (dst_object);
8926
8927 setup_coding_system (coding_system, &coding);
8928 coding.mode |= CODING_MODE_LAST_BLOCK;
8929 chars = SCHARS (string);
8930 bytes = SBYTES (string);
8931 if (encodep)
8932 encode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
8933 else
8934 decode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
8935 if (! norecord)
8936 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
8937
8938 return (BUFFERP (dst_object)
8939 ? make_number (coding.produced_char)
8940 : coding.dst_object);
8941 }
8942
8943
8944 /* Encode or decode STRING according to CODING_SYSTEM.
8945 Do not set Vlast_coding_system_used.
8946
8947 This function is called only from macros DECODE_FILE and
8948 ENCODE_FILE, thus we ignore character composition. */
8949
8950 Lisp_Object
8951 code_convert_string_norecord (Lisp_Object string, Lisp_Object coding_system,
8952 int encodep)
8953 {
8954 return code_convert_string (string, coding_system, Qt, encodep, 0, 1);
8955 }
8956
8957
8958 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
8959 2, 4, 0,
8960 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
8961
8962 Optional third arg NOCOPY non-nil means it is OK to return STRING itself
8963 if the decoding operation is trivial.
8964
8965 Optional fourth arg BUFFER non-nil means that the decoded text is
8966 inserted in that buffer after point (point does not move). In this
8967 case, the return value is the length of the decoded text.
8968
8969 This function sets `last-coding-system-used' to the precise coding system
8970 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
8971 not fully specified.) */)
8972 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
8973 {
8974 return code_convert_string (string, coding_system, buffer,
8975 0, ! NILP (nocopy), 0);
8976 }
8977
8978 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
8979 2, 4, 0,
8980 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
8981
8982 Optional third arg NOCOPY non-nil means it is OK to return STRING
8983 itself if the encoding operation is trivial.
8984
8985 Optional fourth arg BUFFER non-nil means that the encoded text is
8986 inserted in that buffer after point (point does not move). In this
8987 case, the return value is the length of the encoded text.
8988
8989 This function sets `last-coding-system-used' to the precise coding system
8990 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
8991 not fully specified.) */)
8992 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
8993 {
8994 return code_convert_string (string, coding_system, buffer,
8995 1, ! NILP (nocopy), 1);
8996 }
8997
8998 \f
8999 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
9000 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
9001 Return the corresponding character. */)
9002 (Lisp_Object code)
9003 {
9004 Lisp_Object spec, attrs, val;
9005 struct charset *charset_roman, *charset_kanji, *charset_kana, *charset;
9006 EMACS_INT ch;
9007 int c;
9008
9009 CHECK_NATNUM (code);
9010 ch = XFASTINT (code);
9011 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9012 attrs = AREF (spec, 0);
9013
9014 if (ASCII_BYTE_P (ch)
9015 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9016 return code;
9017
9018 val = CODING_ATTR_CHARSET_LIST (attrs);
9019 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9020 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9021 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val)));
9022
9023 if (ch <= 0x7F)
9024 {
9025 c = ch;
9026 charset = charset_roman;
9027 }
9028 else if (ch >= 0xA0 && ch < 0xDF)
9029 {
9030 c = ch - 0x80;
9031 charset = charset_kana;
9032 }
9033 else
9034 {
9035 EMACS_INT c1 = ch >> 8;
9036 int c2 = ch & 0xFF;
9037
9038 if (c1 < 0x81 || (c1 > 0x9F && c1 < 0xE0) || c1 > 0xEF
9039 || c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
9040 error ("Invalid code: %"pI"d", ch);
9041 c = ch;
9042 SJIS_TO_JIS (c);
9043 charset = charset_kanji;
9044 }
9045 c = DECODE_CHAR (charset, c);
9046 if (c < 0)
9047 error ("Invalid code: %"pI"d", ch);
9048 return make_number (c);
9049 }
9050
9051
9052 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
9053 doc: /* Encode a Japanese character CH to shift_jis encoding.
9054 Return the corresponding code in SJIS. */)
9055 (Lisp_Object ch)
9056 {
9057 Lisp_Object spec, attrs, charset_list;
9058 int c;
9059 struct charset *charset;
9060 unsigned code;
9061
9062 CHECK_CHARACTER (ch);
9063 c = XFASTINT (ch);
9064 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9065 attrs = AREF (spec, 0);
9066
9067 if (ASCII_CHAR_P (c)
9068 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9069 return ch;
9070
9071 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9072 charset = char_charset (c, charset_list, &code);
9073 if (code == CHARSET_INVALID_CODE (charset))
9074 error ("Can't encode by shift_jis encoding: %d", c);
9075 JIS_TO_SJIS (code);
9076
9077 return make_number (code);
9078 }
9079
9080 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
9081 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
9082 Return the corresponding character. */)
9083 (Lisp_Object code)
9084 {
9085 Lisp_Object spec, attrs, val;
9086 struct charset *charset_roman, *charset_big5, *charset;
9087 EMACS_INT ch;
9088 int c;
9089
9090 CHECK_NATNUM (code);
9091 ch = XFASTINT (code);
9092 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9093 attrs = AREF (spec, 0);
9094
9095 if (ASCII_BYTE_P (ch)
9096 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9097 return code;
9098
9099 val = CODING_ATTR_CHARSET_LIST (attrs);
9100 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9101 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
9102
9103 if (ch <= 0x7F)
9104 {
9105 c = ch;
9106 charset = charset_roman;
9107 }
9108 else
9109 {
9110 EMACS_INT b1 = ch >> 8;
9111 int b2 = ch & 0x7F;
9112 if (b1 < 0xA1 || b1 > 0xFE
9113 || b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE)
9114 error ("Invalid code: %"pI"d", ch);
9115 c = ch;
9116 charset = charset_big5;
9117 }
9118 c = DECODE_CHAR (charset, c);
9119 if (c < 0)
9120 error ("Invalid code: %"pI"d", ch);
9121 return make_number (c);
9122 }
9123
9124 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
9125 doc: /* Encode the Big5 character CH to BIG5 coding system.
9126 Return the corresponding character code in Big5. */)
9127 (Lisp_Object ch)
9128 {
9129 Lisp_Object spec, attrs, charset_list;
9130 struct charset *charset;
9131 int c;
9132 unsigned code;
9133
9134 CHECK_CHARACTER (ch);
9135 c = XFASTINT (ch);
9136 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9137 attrs = AREF (spec, 0);
9138 if (ASCII_CHAR_P (c)
9139 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9140 return ch;
9141
9142 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9143 charset = char_charset (c, charset_list, &code);
9144 if (code == CHARSET_INVALID_CODE (charset))
9145 error ("Can't encode by Big5 encoding: %d", c);
9146
9147 return make_number (code);
9148 }
9149
9150 \f
9151 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
9152 Sset_terminal_coding_system_internal, 1, 2, 0,
9153 doc: /* Internal use only. */)
9154 (Lisp_Object coding_system, Lisp_Object terminal)
9155 {
9156 struct terminal *term = get_terminal (terminal, 1);
9157 struct coding_system *terminal_coding = TERMINAL_TERMINAL_CODING (term);
9158 CHECK_SYMBOL (coding_system);
9159 setup_coding_system (Fcheck_coding_system (coding_system), terminal_coding);
9160 /* We had better not send unsafe characters to terminal. */
9161 terminal_coding->mode |= CODING_MODE_SAFE_ENCODING;
9162 /* Character composition should be disabled. */
9163 terminal_coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9164 terminal_coding->src_multibyte = 1;
9165 terminal_coding->dst_multibyte = 0;
9166 if (terminal_coding->common_flags & CODING_REQUIRE_ENCODING_MASK)
9167 term->charset_list = coding_charset_list (terminal_coding);
9168 else
9169 term->charset_list = Fcons (make_number (charset_ascii), Qnil);
9170 return Qnil;
9171 }
9172
9173 DEFUN ("set-safe-terminal-coding-system-internal",
9174 Fset_safe_terminal_coding_system_internal,
9175 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
9176 doc: /* Internal use only. */)
9177 (Lisp_Object coding_system)
9178 {
9179 CHECK_SYMBOL (coding_system);
9180 setup_coding_system (Fcheck_coding_system (coding_system),
9181 &safe_terminal_coding);
9182 /* Character composition should be disabled. */
9183 safe_terminal_coding.common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9184 safe_terminal_coding.src_multibyte = 1;
9185 safe_terminal_coding.dst_multibyte = 0;
9186 return Qnil;
9187 }
9188
9189 DEFUN ("terminal-coding-system", Fterminal_coding_system,
9190 Sterminal_coding_system, 0, 1, 0,
9191 doc: /* Return coding system specified for terminal output on the given terminal.
9192 TERMINAL may be a terminal object, a frame, or nil for the selected
9193 frame's terminal device. */)
9194 (Lisp_Object terminal)
9195 {
9196 struct coding_system *terminal_coding
9197 = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9198 Lisp_Object coding_system = CODING_ID_NAME (terminal_coding->id);
9199
9200 /* For backward compatibility, return nil if it is `undecided'. */
9201 return (! EQ (coding_system, Qundecided) ? coding_system : Qnil);
9202 }
9203
9204 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
9205 Sset_keyboard_coding_system_internal, 1, 2, 0,
9206 doc: /* Internal use only. */)
9207 (Lisp_Object coding_system, Lisp_Object terminal)
9208 {
9209 struct terminal *t = get_terminal (terminal, 1);
9210 CHECK_SYMBOL (coding_system);
9211 if (NILP (coding_system))
9212 coding_system = Qno_conversion;
9213 else
9214 Fcheck_coding_system (coding_system);
9215 setup_coding_system (coding_system, TERMINAL_KEYBOARD_CODING (t));
9216 /* Character composition should be disabled. */
9217 TERMINAL_KEYBOARD_CODING (t)->common_flags
9218 &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9219 return Qnil;
9220 }
9221
9222 DEFUN ("keyboard-coding-system",
9223 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 1, 0,
9224 doc: /* Return coding system specified for decoding keyboard input. */)
9225 (Lisp_Object terminal)
9226 {
9227 return CODING_ID_NAME (TERMINAL_KEYBOARD_CODING
9228 (get_terminal (terminal, 1))->id);
9229 }
9230
9231 \f
9232 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
9233 Sfind_operation_coding_system, 1, MANY, 0,
9234 doc: /* Choose a coding system for an operation based on the target name.
9235 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
9236 DECODING-SYSTEM is the coding system to use for decoding
9237 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
9238 for encoding (in case OPERATION does encoding).
9239
9240 The first argument OPERATION specifies an I/O primitive:
9241 For file I/O, `insert-file-contents' or `write-region'.
9242 For process I/O, `call-process', `call-process-region', or `start-process'.
9243 For network I/O, `open-network-stream'.
9244
9245 The remaining arguments should be the same arguments that were passed
9246 to the primitive. Depending on which primitive, one of those arguments
9247 is selected as the TARGET. For example, if OPERATION does file I/O,
9248 whichever argument specifies the file name is TARGET.
9249
9250 TARGET has a meaning which depends on OPERATION:
9251 For file I/O, TARGET is a file name (except for the special case below).
9252 For process I/O, TARGET is a process name.
9253 For network I/O, TARGET is a service name or a port number.
9254
9255 This function looks up what is specified for TARGET in
9256 `file-coding-system-alist', `process-coding-system-alist',
9257 or `network-coding-system-alist' depending on OPERATION.
9258 They may specify a coding system, a cons of coding systems,
9259 or a function symbol to call.
9260 In the last case, we call the function with one argument,
9261 which is a list of all the arguments given to this function.
9262 If the function can't decide a coding system, it can return
9263 `undecided' so that the normal code-detection is performed.
9264
9265 If OPERATION is `insert-file-contents', the argument corresponding to
9266 TARGET may be a cons (FILENAME . BUFFER). In that case, FILENAME is a
9267 file name to look up, and BUFFER is a buffer that contains the file's
9268 contents (not yet decoded). If `file-coding-system-alist' specifies a
9269 function to call for FILENAME, that function should examine the
9270 contents of BUFFER instead of reading the file.
9271
9272 usage: (find-operation-coding-system OPERATION ARGUMENTS...) */)
9273 (size_t nargs, Lisp_Object *args)
9274 {
9275 Lisp_Object operation, target_idx, target, val;
9276 register Lisp_Object chain;
9277
9278 if (nargs < 2)
9279 error ("Too few arguments");
9280 operation = args[0];
9281 if (!SYMBOLP (operation)
9282 || !NATNUMP (target_idx = Fget (operation, Qtarget_idx)))
9283 error ("Invalid first argument");
9284 if (nargs < 1 + XFASTINT (target_idx))
9285 error ("Too few arguments for operation: %s",
9286 SDATA (SYMBOL_NAME (operation)));
9287 target = args[XFASTINT (target_idx) + 1];
9288 if (!(STRINGP (target)
9289 || (EQ (operation, Qinsert_file_contents) && CONSP (target)
9290 && STRINGP (XCAR (target)) && BUFFERP (XCDR (target)))
9291 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
9292 error ("Invalid %"pI"dth argument", XFASTINT (target_idx) + 1);
9293 if (CONSP (target))
9294 target = XCAR (target);
9295
9296 chain = ((EQ (operation, Qinsert_file_contents)
9297 || EQ (operation, Qwrite_region))
9298 ? Vfile_coding_system_alist
9299 : (EQ (operation, Qopen_network_stream)
9300 ? Vnetwork_coding_system_alist
9301 : Vprocess_coding_system_alist));
9302 if (NILP (chain))
9303 return Qnil;
9304
9305 for (; CONSP (chain); chain = XCDR (chain))
9306 {
9307 Lisp_Object elt;
9308
9309 elt = XCAR (chain);
9310 if (CONSP (elt)
9311 && ((STRINGP (target)
9312 && STRINGP (XCAR (elt))
9313 && fast_string_match (XCAR (elt), target) >= 0)
9314 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
9315 {
9316 val = XCDR (elt);
9317 /* Here, if VAL is both a valid coding system and a valid
9318 function symbol, we return VAL as a coding system. */
9319 if (CONSP (val))
9320 return val;
9321 if (! SYMBOLP (val))
9322 return Qnil;
9323 if (! NILP (Fcoding_system_p (val)))
9324 return Fcons (val, val);
9325 if (! NILP (Ffboundp (val)))
9326 {
9327 /* We use call1 rather than safe_call1
9328 so as to get bug reports about functions called here
9329 which don't handle the current interface. */
9330 val = call1 (val, Flist (nargs, args));
9331 if (CONSP (val))
9332 return val;
9333 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
9334 return Fcons (val, val);
9335 }
9336 return Qnil;
9337 }
9338 }
9339 return Qnil;
9340 }
9341
9342 DEFUN ("set-coding-system-priority", Fset_coding_system_priority,
9343 Sset_coding_system_priority, 0, MANY, 0,
9344 doc: /* Assign higher priority to the coding systems given as arguments.
9345 If multiple coding systems belong to the same category,
9346 all but the first one are ignored.
9347
9348 usage: (set-coding-system-priority &rest coding-systems) */)
9349 (size_t nargs, Lisp_Object *args)
9350 {
9351 size_t i, j;
9352 int changed[coding_category_max];
9353 enum coding_category priorities[coding_category_max];
9354
9355 memset (changed, 0, sizeof changed);
9356
9357 for (i = j = 0; i < nargs; i++)
9358 {
9359 enum coding_category category;
9360 Lisp_Object spec, attrs;
9361
9362 CHECK_CODING_SYSTEM_GET_SPEC (args[i], spec);
9363 attrs = AREF (spec, 0);
9364 category = XINT (CODING_ATTR_CATEGORY (attrs));
9365 if (changed[category])
9366 /* Ignore this coding system because a coding system of the
9367 same category already had a higher priority. */
9368 continue;
9369 changed[category] = 1;
9370 priorities[j++] = category;
9371 if (coding_categories[category].id >= 0
9372 && ! EQ (args[i], CODING_ID_NAME (coding_categories[category].id)))
9373 setup_coding_system (args[i], &coding_categories[category]);
9374 Fset (AREF (Vcoding_category_table, category), args[i]);
9375 }
9376
9377 /* Now we have decided top J priorities. Reflect the order of the
9378 original priorities to the remaining priorities. */
9379
9380 for (i = j, j = 0; i < coding_category_max; i++, j++)
9381 {
9382 while (j < coding_category_max
9383 && changed[coding_priorities[j]])
9384 j++;
9385 if (j == coding_category_max)
9386 abort ();
9387 priorities[i] = coding_priorities[j];
9388 }
9389
9390 memcpy (coding_priorities, priorities, sizeof priorities);
9391
9392 /* Update `coding-category-list'. */
9393 Vcoding_category_list = Qnil;
9394 for (i = coding_category_max; i-- > 0; )
9395 Vcoding_category_list
9396 = Fcons (AREF (Vcoding_category_table, priorities[i]),
9397 Vcoding_category_list);
9398
9399 return Qnil;
9400 }
9401
9402 DEFUN ("coding-system-priority-list", Fcoding_system_priority_list,
9403 Scoding_system_priority_list, 0, 1, 0,
9404 doc: /* Return a list of coding systems ordered by their priorities.
9405 The list contains a subset of coding systems; i.e. coding systems
9406 assigned to each coding category (see `coding-category-list').
9407
9408 HIGHESTP non-nil means just return the highest priority one. */)
9409 (Lisp_Object highestp)
9410 {
9411 int i;
9412 Lisp_Object val;
9413
9414 for (i = 0, val = Qnil; i < coding_category_max; i++)
9415 {
9416 enum coding_category category = coding_priorities[i];
9417 int id = coding_categories[category].id;
9418 Lisp_Object attrs;
9419
9420 if (id < 0)
9421 continue;
9422 attrs = CODING_ID_ATTRS (id);
9423 if (! NILP (highestp))
9424 return CODING_ATTR_BASE_NAME (attrs);
9425 val = Fcons (CODING_ATTR_BASE_NAME (attrs), val);
9426 }
9427 return Fnreverse (val);
9428 }
9429
9430 static const char *const suffixes[] = { "-unix", "-dos", "-mac" };
9431
9432 static Lisp_Object
9433 make_subsidiaries (Lisp_Object base)
9434 {
9435 Lisp_Object subsidiaries;
9436 int base_name_len = SBYTES (SYMBOL_NAME (base));
9437 char *buf = (char *) alloca (base_name_len + 6);
9438 int i;
9439
9440 memcpy (buf, SDATA (SYMBOL_NAME (base)), base_name_len);
9441 subsidiaries = Fmake_vector (make_number (3), Qnil);
9442 for (i = 0; i < 3; i++)
9443 {
9444 memcpy (buf + base_name_len, suffixes[i], strlen (suffixes[i]) + 1);
9445 ASET (subsidiaries, i, intern (buf));
9446 }
9447 return subsidiaries;
9448 }
9449
9450
9451 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
9452 Sdefine_coding_system_internal, coding_arg_max, MANY, 0,
9453 doc: /* For internal use only.
9454 usage: (define-coding-system-internal ...) */)
9455 (size_t nargs, Lisp_Object *args)
9456 {
9457 Lisp_Object name;
9458 Lisp_Object spec_vec; /* [ ATTRS ALIASE EOL_TYPE ] */
9459 Lisp_Object attrs; /* Vector of attributes. */
9460 Lisp_Object eol_type;
9461 Lisp_Object aliases;
9462 Lisp_Object coding_type, charset_list, safe_charsets;
9463 enum coding_category category;
9464 Lisp_Object tail, val;
9465 int max_charset_id = 0;
9466 int i;
9467
9468 if (nargs < coding_arg_max)
9469 goto short_args;
9470
9471 attrs = Fmake_vector (make_number (coding_attr_last_index), Qnil);
9472
9473 name = args[coding_arg_name];
9474 CHECK_SYMBOL (name);
9475 CODING_ATTR_BASE_NAME (attrs) = name;
9476
9477 val = args[coding_arg_mnemonic];
9478 if (! STRINGP (val))
9479 CHECK_CHARACTER (val);
9480 CODING_ATTR_MNEMONIC (attrs) = val;
9481
9482 coding_type = args[coding_arg_coding_type];
9483 CHECK_SYMBOL (coding_type);
9484 CODING_ATTR_TYPE (attrs) = coding_type;
9485
9486 charset_list = args[coding_arg_charset_list];
9487 if (SYMBOLP (charset_list))
9488 {
9489 if (EQ (charset_list, Qiso_2022))
9490 {
9491 if (! EQ (coding_type, Qiso_2022))
9492 error ("Invalid charset-list");
9493 charset_list = Viso_2022_charset_list;
9494 }
9495 else if (EQ (charset_list, Qemacs_mule))
9496 {
9497 if (! EQ (coding_type, Qemacs_mule))
9498 error ("Invalid charset-list");
9499 charset_list = Vemacs_mule_charset_list;
9500 }
9501 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9502 if (max_charset_id < XFASTINT (XCAR (tail)))
9503 max_charset_id = XFASTINT (XCAR (tail));
9504 }
9505 else
9506 {
9507 charset_list = Fcopy_sequence (charset_list);
9508 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9509 {
9510 struct charset *charset;
9511
9512 val = XCAR (tail);
9513 CHECK_CHARSET_GET_CHARSET (val, charset);
9514 if (EQ (coding_type, Qiso_2022)
9515 ? CHARSET_ISO_FINAL (charset) < 0
9516 : EQ (coding_type, Qemacs_mule)
9517 ? CHARSET_EMACS_MULE_ID (charset) < 0
9518 : 0)
9519 error ("Can't handle charset `%s'",
9520 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9521
9522 XSETCAR (tail, make_number (charset->id));
9523 if (max_charset_id < charset->id)
9524 max_charset_id = charset->id;
9525 }
9526 }
9527 CODING_ATTR_CHARSET_LIST (attrs) = charset_list;
9528
9529 safe_charsets = make_uninit_string (max_charset_id + 1);
9530 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
9531 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9532 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
9533 CODING_ATTR_SAFE_CHARSETS (attrs) = safe_charsets;
9534
9535 CODING_ATTR_ASCII_COMPAT (attrs) = args[coding_arg_ascii_compatible_p];
9536
9537 val = args[coding_arg_decode_translation_table];
9538 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9539 CHECK_SYMBOL (val);
9540 CODING_ATTR_DECODE_TBL (attrs) = val;
9541
9542 val = args[coding_arg_encode_translation_table];
9543 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9544 CHECK_SYMBOL (val);
9545 CODING_ATTR_ENCODE_TBL (attrs) = val;
9546
9547 val = args[coding_arg_post_read_conversion];
9548 CHECK_SYMBOL (val);
9549 CODING_ATTR_POST_READ (attrs) = val;
9550
9551 val = args[coding_arg_pre_write_conversion];
9552 CHECK_SYMBOL (val);
9553 CODING_ATTR_PRE_WRITE (attrs) = val;
9554
9555 val = args[coding_arg_default_char];
9556 if (NILP (val))
9557 CODING_ATTR_DEFAULT_CHAR (attrs) = make_number (' ');
9558 else
9559 {
9560 CHECK_CHARACTER (val);
9561 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
9562 }
9563
9564 val = args[coding_arg_for_unibyte];
9565 CODING_ATTR_FOR_UNIBYTE (attrs) = NILP (val) ? Qnil : Qt;
9566
9567 val = args[coding_arg_plist];
9568 CHECK_LIST (val);
9569 CODING_ATTR_PLIST (attrs) = val;
9570
9571 if (EQ (coding_type, Qcharset))
9572 {
9573 /* Generate a lisp vector of 256 elements. Each element is nil,
9574 integer, or a list of charset IDs.
9575
9576 If Nth element is nil, the byte code N is invalid in this
9577 coding system.
9578
9579 If Nth element is a number NUM, N is the first byte of a
9580 charset whose ID is NUM.
9581
9582 If Nth element is a list of charset IDs, N is the first byte
9583 of one of them. The list is sorted by dimensions of the
9584 charsets. A charset of smaller dimension comes first. */
9585 val = Fmake_vector (make_number (256), Qnil);
9586
9587 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9588 {
9589 struct charset *charset = CHARSET_FROM_ID (XFASTINT (XCAR (tail)));
9590 int dim = CHARSET_DIMENSION (charset);
9591 int idx = (dim - 1) * 4;
9592
9593 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9594 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9595
9596 for (i = charset->code_space[idx];
9597 i <= charset->code_space[idx + 1]; i++)
9598 {
9599 Lisp_Object tmp, tmp2;
9600 int dim2;
9601
9602 tmp = AREF (val, i);
9603 if (NILP (tmp))
9604 tmp = XCAR (tail);
9605 else if (NUMBERP (tmp))
9606 {
9607 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (tmp)));
9608 if (dim < dim2)
9609 tmp = Fcons (XCAR (tail), Fcons (tmp, Qnil));
9610 else
9611 tmp = Fcons (tmp, Fcons (XCAR (tail), Qnil));
9612 }
9613 else
9614 {
9615 for (tmp2 = tmp; CONSP (tmp2); tmp2 = XCDR (tmp2))
9616 {
9617 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (XCAR (tmp2))));
9618 if (dim < dim2)
9619 break;
9620 }
9621 if (NILP (tmp2))
9622 tmp = nconc2 (tmp, Fcons (XCAR (tail), Qnil));
9623 else
9624 {
9625 XSETCDR (tmp2, Fcons (XCAR (tmp2), XCDR (tmp2)));
9626 XSETCAR (tmp2, XCAR (tail));
9627 }
9628 }
9629 ASET (val, i, tmp);
9630 }
9631 }
9632 ASET (attrs, coding_attr_charset_valids, val);
9633 category = coding_category_charset;
9634 }
9635 else if (EQ (coding_type, Qccl))
9636 {
9637 Lisp_Object valids;
9638
9639 if (nargs < coding_arg_ccl_max)
9640 goto short_args;
9641
9642 val = args[coding_arg_ccl_decoder];
9643 CHECK_CCL_PROGRAM (val);
9644 if (VECTORP (val))
9645 val = Fcopy_sequence (val);
9646 ASET (attrs, coding_attr_ccl_decoder, val);
9647
9648 val = args[coding_arg_ccl_encoder];
9649 CHECK_CCL_PROGRAM (val);
9650 if (VECTORP (val))
9651 val = Fcopy_sequence (val);
9652 ASET (attrs, coding_attr_ccl_encoder, val);
9653
9654 val = args[coding_arg_ccl_valids];
9655 valids = Fmake_string (make_number (256), make_number (0));
9656 for (tail = val; !NILP (tail); tail = Fcdr (tail))
9657 {
9658 int from, to;
9659
9660 val = Fcar (tail);
9661 if (INTEGERP (val))
9662 {
9663 from = to = XINT (val);
9664 if (from < 0 || from > 255)
9665 args_out_of_range_3 (val, make_number (0), make_number (255));
9666 }
9667 else
9668 {
9669 CHECK_CONS (val);
9670 CHECK_NATNUM_CAR (val);
9671 CHECK_NATNUM_CDR (val);
9672 from = XINT (XCAR (val));
9673 if (from > 255)
9674 args_out_of_range_3 (XCAR (val),
9675 make_number (0), make_number (255));
9676 to = XINT (XCDR (val));
9677 if (to < from || to > 255)
9678 args_out_of_range_3 (XCDR (val),
9679 XCAR (val), make_number (255));
9680 }
9681 for (i = from; i <= to; i++)
9682 SSET (valids, i, 1);
9683 }
9684 ASET (attrs, coding_attr_ccl_valids, valids);
9685
9686 category = coding_category_ccl;
9687 }
9688 else if (EQ (coding_type, Qutf_16))
9689 {
9690 Lisp_Object bom, endian;
9691
9692 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9693
9694 if (nargs < coding_arg_utf16_max)
9695 goto short_args;
9696
9697 bom = args[coding_arg_utf16_bom];
9698 if (! NILP (bom) && ! EQ (bom, Qt))
9699 {
9700 CHECK_CONS (bom);
9701 val = XCAR (bom);
9702 CHECK_CODING_SYSTEM (val);
9703 val = XCDR (bom);
9704 CHECK_CODING_SYSTEM (val);
9705 }
9706 ASET (attrs, coding_attr_utf_bom, bom);
9707
9708 endian = args[coding_arg_utf16_endian];
9709 CHECK_SYMBOL (endian);
9710 if (NILP (endian))
9711 endian = Qbig;
9712 else if (! EQ (endian, Qbig) && ! EQ (endian, Qlittle))
9713 error ("Invalid endian: %s", SDATA (SYMBOL_NAME (endian)));
9714 ASET (attrs, coding_attr_utf_16_endian, endian);
9715
9716 category = (CONSP (bom)
9717 ? coding_category_utf_16_auto
9718 : NILP (bom)
9719 ? (EQ (endian, Qbig)
9720 ? coding_category_utf_16_be_nosig
9721 : coding_category_utf_16_le_nosig)
9722 : (EQ (endian, Qbig)
9723 ? coding_category_utf_16_be
9724 : coding_category_utf_16_le));
9725 }
9726 else if (EQ (coding_type, Qiso_2022))
9727 {
9728 Lisp_Object initial, reg_usage, request, flags;
9729
9730 if (nargs < coding_arg_iso2022_max)
9731 goto short_args;
9732
9733 initial = Fcopy_sequence (args[coding_arg_iso2022_initial]);
9734 CHECK_VECTOR (initial);
9735 for (i = 0; i < 4; i++)
9736 {
9737 val = Faref (initial, make_number (i));
9738 if (! NILP (val))
9739 {
9740 struct charset *charset;
9741
9742 CHECK_CHARSET_GET_CHARSET (val, charset);
9743 ASET (initial, i, make_number (CHARSET_ID (charset)));
9744 if (i == 0 && CHARSET_ASCII_COMPATIBLE_P (charset))
9745 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9746 }
9747 else
9748 ASET (initial, i, make_number (-1));
9749 }
9750
9751 reg_usage = args[coding_arg_iso2022_reg_usage];
9752 CHECK_CONS (reg_usage);
9753 CHECK_NUMBER_CAR (reg_usage);
9754 CHECK_NUMBER_CDR (reg_usage);
9755
9756 request = Fcopy_sequence (args[coding_arg_iso2022_request]);
9757 for (tail = request; ! NILP (tail); tail = Fcdr (tail))
9758 {
9759 int id;
9760 Lisp_Object tmp1;
9761
9762 val = Fcar (tail);
9763 CHECK_CONS (val);
9764 tmp1 = XCAR (val);
9765 CHECK_CHARSET_GET_ID (tmp1, id);
9766 CHECK_NATNUM_CDR (val);
9767 if (XINT (XCDR (val)) >= 4)
9768 error ("Invalid graphic register number: %"pI"d", XINT (XCDR (val)));
9769 XSETCAR (val, make_number (id));
9770 }
9771
9772 flags = args[coding_arg_iso2022_flags];
9773 CHECK_NATNUM (flags);
9774 i = XINT (flags);
9775 if (EQ (args[coding_arg_charset_list], Qiso_2022))
9776 flags = make_number (i | CODING_ISO_FLAG_FULL_SUPPORT);
9777
9778 ASET (attrs, coding_attr_iso_initial, initial);
9779 ASET (attrs, coding_attr_iso_usage, reg_usage);
9780 ASET (attrs, coding_attr_iso_request, request);
9781 ASET (attrs, coding_attr_iso_flags, flags);
9782 setup_iso_safe_charsets (attrs);
9783
9784 if (i & CODING_ISO_FLAG_SEVEN_BITS)
9785 category = ((i & (CODING_ISO_FLAG_LOCKING_SHIFT
9786 | CODING_ISO_FLAG_SINGLE_SHIFT))
9787 ? coding_category_iso_7_else
9788 : EQ (args[coding_arg_charset_list], Qiso_2022)
9789 ? coding_category_iso_7
9790 : coding_category_iso_7_tight);
9791 else
9792 {
9793 int id = XINT (AREF (initial, 1));
9794
9795 category = (((i & CODING_ISO_FLAG_LOCKING_SHIFT)
9796 || EQ (args[coding_arg_charset_list], Qiso_2022)
9797 || id < 0)
9798 ? coding_category_iso_8_else
9799 : (CHARSET_DIMENSION (CHARSET_FROM_ID (id)) == 1)
9800 ? coding_category_iso_8_1
9801 : coding_category_iso_8_2);
9802 }
9803 if (category != coding_category_iso_8_1
9804 && category != coding_category_iso_8_2)
9805 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9806 }
9807 else if (EQ (coding_type, Qemacs_mule))
9808 {
9809 if (EQ (args[coding_arg_charset_list], Qemacs_mule))
9810 ASET (attrs, coding_attr_emacs_mule_full, Qt);
9811 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9812 category = coding_category_emacs_mule;
9813 }
9814 else if (EQ (coding_type, Qshift_jis))
9815 {
9816
9817 struct charset *charset;
9818
9819 if (XINT (Flength (charset_list)) != 3
9820 && XINT (Flength (charset_list)) != 4)
9821 error ("There should be three or four charsets");
9822
9823 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9824 if (CHARSET_DIMENSION (charset) != 1)
9825 error ("Dimension of charset %s is not one",
9826 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9827 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9828 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9829
9830 charset_list = XCDR (charset_list);
9831 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9832 if (CHARSET_DIMENSION (charset) != 1)
9833 error ("Dimension of charset %s is not one",
9834 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9835
9836 charset_list = XCDR (charset_list);
9837 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9838 if (CHARSET_DIMENSION (charset) != 2)
9839 error ("Dimension of charset %s is not two",
9840 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9841
9842 charset_list = XCDR (charset_list);
9843 if (! NILP (charset_list))
9844 {
9845 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9846 if (CHARSET_DIMENSION (charset) != 2)
9847 error ("Dimension of charset %s is not two",
9848 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9849 }
9850
9851 category = coding_category_sjis;
9852 Vsjis_coding_system = name;
9853 }
9854 else if (EQ (coding_type, Qbig5))
9855 {
9856 struct charset *charset;
9857
9858 if (XINT (Flength (charset_list)) != 2)
9859 error ("There should be just two charsets");
9860
9861 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9862 if (CHARSET_DIMENSION (charset) != 1)
9863 error ("Dimension of charset %s is not one",
9864 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9865 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9866 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9867
9868 charset_list = XCDR (charset_list);
9869 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9870 if (CHARSET_DIMENSION (charset) != 2)
9871 error ("Dimension of charset %s is not two",
9872 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9873
9874 category = coding_category_big5;
9875 Vbig5_coding_system = name;
9876 }
9877 else if (EQ (coding_type, Qraw_text))
9878 {
9879 category = coding_category_raw_text;
9880 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9881 }
9882 else if (EQ (coding_type, Qutf_8))
9883 {
9884 Lisp_Object bom;
9885
9886 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9887
9888 if (nargs < coding_arg_utf8_max)
9889 goto short_args;
9890
9891 bom = args[coding_arg_utf8_bom];
9892 if (! NILP (bom) && ! EQ (bom, Qt))
9893 {
9894 CHECK_CONS (bom);
9895 val = XCAR (bom);
9896 CHECK_CODING_SYSTEM (val);
9897 val = XCDR (bom);
9898 CHECK_CODING_SYSTEM (val);
9899 }
9900 ASET (attrs, coding_attr_utf_bom, bom);
9901
9902 category = (CONSP (bom) ? coding_category_utf_8_auto
9903 : NILP (bom) ? coding_category_utf_8_nosig
9904 : coding_category_utf_8_sig);
9905 }
9906 else if (EQ (coding_type, Qundecided))
9907 category = coding_category_undecided;
9908 else
9909 error ("Invalid coding system type: %s",
9910 SDATA (SYMBOL_NAME (coding_type)));
9911
9912 CODING_ATTR_CATEGORY (attrs) = make_number (category);
9913 CODING_ATTR_PLIST (attrs)
9914 = Fcons (QCcategory, Fcons (AREF (Vcoding_category_table, category),
9915 CODING_ATTR_PLIST (attrs)));
9916 CODING_ATTR_PLIST (attrs)
9917 = Fcons (QCascii_compatible_p,
9918 Fcons (CODING_ATTR_ASCII_COMPAT (attrs),
9919 CODING_ATTR_PLIST (attrs)));
9920
9921 eol_type = args[coding_arg_eol_type];
9922 if (! NILP (eol_type)
9923 && ! EQ (eol_type, Qunix)
9924 && ! EQ (eol_type, Qdos)
9925 && ! EQ (eol_type, Qmac))
9926 error ("Invalid eol-type");
9927
9928 aliases = Fcons (name, Qnil);
9929
9930 if (NILP (eol_type))
9931 {
9932 eol_type = make_subsidiaries (name);
9933 for (i = 0; i < 3; i++)
9934 {
9935 Lisp_Object this_spec, this_name, this_aliases, this_eol_type;
9936
9937 this_name = AREF (eol_type, i);
9938 this_aliases = Fcons (this_name, Qnil);
9939 this_eol_type = (i == 0 ? Qunix : i == 1 ? Qdos : Qmac);
9940 this_spec = Fmake_vector (make_number (3), attrs);
9941 ASET (this_spec, 1, this_aliases);
9942 ASET (this_spec, 2, this_eol_type);
9943 Fputhash (this_name, this_spec, Vcoding_system_hash_table);
9944 Vcoding_system_list = Fcons (this_name, Vcoding_system_list);
9945 val = Fassoc (Fsymbol_name (this_name), Vcoding_system_alist);
9946 if (NILP (val))
9947 Vcoding_system_alist
9948 = Fcons (Fcons (Fsymbol_name (this_name), Qnil),
9949 Vcoding_system_alist);
9950 }
9951 }
9952
9953 spec_vec = Fmake_vector (make_number (3), attrs);
9954 ASET (spec_vec, 1, aliases);
9955 ASET (spec_vec, 2, eol_type);
9956
9957 Fputhash (name, spec_vec, Vcoding_system_hash_table);
9958 Vcoding_system_list = Fcons (name, Vcoding_system_list);
9959 val = Fassoc (Fsymbol_name (name), Vcoding_system_alist);
9960 if (NILP (val))
9961 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (name), Qnil),
9962 Vcoding_system_alist);
9963
9964 {
9965 int id = coding_categories[category].id;
9966
9967 if (id < 0 || EQ (name, CODING_ID_NAME (id)))
9968 setup_coding_system (name, &coding_categories[category]);
9969 }
9970
9971 return Qnil;
9972
9973 short_args:
9974 return Fsignal (Qwrong_number_of_arguments,
9975 Fcons (intern ("define-coding-system-internal"),
9976 make_number (nargs)));
9977 }
9978
9979
9980 DEFUN ("coding-system-put", Fcoding_system_put, Scoding_system_put,
9981 3, 3, 0,
9982 doc: /* Change value in CODING-SYSTEM's property list PROP to VAL. */)
9983 (Lisp_Object coding_system, Lisp_Object prop, Lisp_Object val)
9984 {
9985 Lisp_Object spec, attrs;
9986
9987 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
9988 attrs = AREF (spec, 0);
9989 if (EQ (prop, QCmnemonic))
9990 {
9991 if (! STRINGP (val))
9992 CHECK_CHARACTER (val);
9993 CODING_ATTR_MNEMONIC (attrs) = val;
9994 }
9995 else if (EQ (prop, QCdefault_char))
9996 {
9997 if (NILP (val))
9998 val = make_number (' ');
9999 else
10000 CHECK_CHARACTER (val);
10001 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
10002 }
10003 else if (EQ (prop, QCdecode_translation_table))
10004 {
10005 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10006 CHECK_SYMBOL (val);
10007 CODING_ATTR_DECODE_TBL (attrs) = val;
10008 }
10009 else if (EQ (prop, QCencode_translation_table))
10010 {
10011 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10012 CHECK_SYMBOL (val);
10013 CODING_ATTR_ENCODE_TBL (attrs) = val;
10014 }
10015 else if (EQ (prop, QCpost_read_conversion))
10016 {
10017 CHECK_SYMBOL (val);
10018 CODING_ATTR_POST_READ (attrs) = val;
10019 }
10020 else if (EQ (prop, QCpre_write_conversion))
10021 {
10022 CHECK_SYMBOL (val);
10023 CODING_ATTR_PRE_WRITE (attrs) = val;
10024 }
10025 else if (EQ (prop, QCascii_compatible_p))
10026 {
10027 CODING_ATTR_ASCII_COMPAT (attrs) = val;
10028 }
10029
10030 CODING_ATTR_PLIST (attrs)
10031 = Fplist_put (CODING_ATTR_PLIST (attrs), prop, val);
10032 return val;
10033 }
10034
10035
10036 DEFUN ("define-coding-system-alias", Fdefine_coding_system_alias,
10037 Sdefine_coding_system_alias, 2, 2, 0,
10038 doc: /* Define ALIAS as an alias for CODING-SYSTEM. */)
10039 (Lisp_Object alias, Lisp_Object coding_system)
10040 {
10041 Lisp_Object spec, aliases, eol_type, val;
10042
10043 CHECK_SYMBOL (alias);
10044 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10045 aliases = AREF (spec, 1);
10046 /* ALIASES should be a list of length more than zero, and the first
10047 element is a base coding system. Append ALIAS at the tail of the
10048 list. */
10049 while (!NILP (XCDR (aliases)))
10050 aliases = XCDR (aliases);
10051 XSETCDR (aliases, Fcons (alias, Qnil));
10052
10053 eol_type = AREF (spec, 2);
10054 if (VECTORP (eol_type))
10055 {
10056 Lisp_Object subsidiaries;
10057 int i;
10058
10059 subsidiaries = make_subsidiaries (alias);
10060 for (i = 0; i < 3; i++)
10061 Fdefine_coding_system_alias (AREF (subsidiaries, i),
10062 AREF (eol_type, i));
10063 }
10064
10065 Fputhash (alias, spec, Vcoding_system_hash_table);
10066 Vcoding_system_list = Fcons (alias, Vcoding_system_list);
10067 val = Fassoc (Fsymbol_name (alias), Vcoding_system_alist);
10068 if (NILP (val))
10069 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (alias), Qnil),
10070 Vcoding_system_alist);
10071
10072 return Qnil;
10073 }
10074
10075 DEFUN ("coding-system-base", Fcoding_system_base, Scoding_system_base,
10076 1, 1, 0,
10077 doc: /* Return the base of CODING-SYSTEM.
10078 Any alias or subsidiary coding system is not a base coding system. */)
10079 (Lisp_Object coding_system)
10080 {
10081 Lisp_Object spec, attrs;
10082
10083 if (NILP (coding_system))
10084 return (Qno_conversion);
10085 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10086 attrs = AREF (spec, 0);
10087 return CODING_ATTR_BASE_NAME (attrs);
10088 }
10089
10090 DEFUN ("coding-system-plist", Fcoding_system_plist, Scoding_system_plist,
10091 1, 1, 0,
10092 doc: "Return the property list of CODING-SYSTEM.")
10093 (Lisp_Object coding_system)
10094 {
10095 Lisp_Object spec, attrs;
10096
10097 if (NILP (coding_system))
10098 coding_system = Qno_conversion;
10099 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10100 attrs = AREF (spec, 0);
10101 return CODING_ATTR_PLIST (attrs);
10102 }
10103
10104
10105 DEFUN ("coding-system-aliases", Fcoding_system_aliases, Scoding_system_aliases,
10106 1, 1, 0,
10107 doc: /* Return the list of aliases of CODING-SYSTEM. */)
10108 (Lisp_Object coding_system)
10109 {
10110 Lisp_Object spec;
10111
10112 if (NILP (coding_system))
10113 coding_system = Qno_conversion;
10114 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10115 return AREF (spec, 1);
10116 }
10117
10118 DEFUN ("coding-system-eol-type", Fcoding_system_eol_type,
10119 Scoding_system_eol_type, 1, 1, 0,
10120 doc: /* Return eol-type of CODING-SYSTEM.
10121 An eol-type is an integer 0, 1, 2, or a vector of coding systems.
10122
10123 Integer values 0, 1, and 2 indicate a format of end-of-line; LF, CRLF,
10124 and CR respectively.
10125
10126 A vector value indicates that a format of end-of-line should be
10127 detected automatically. Nth element of the vector is the subsidiary
10128 coding system whose eol-type is N. */)
10129 (Lisp_Object coding_system)
10130 {
10131 Lisp_Object spec, eol_type;
10132 int n;
10133
10134 if (NILP (coding_system))
10135 coding_system = Qno_conversion;
10136 if (! CODING_SYSTEM_P (coding_system))
10137 return Qnil;
10138 spec = CODING_SYSTEM_SPEC (coding_system);
10139 eol_type = AREF (spec, 2);
10140 if (VECTORP (eol_type))
10141 return Fcopy_sequence (eol_type);
10142 n = EQ (eol_type, Qunix) ? 0 : EQ (eol_type, Qdos) ? 1 : 2;
10143 return make_number (n);
10144 }
10145
10146 #endif /* emacs */
10147
10148 \f
10149 /*** 9. Post-amble ***/
10150
10151 void
10152 init_coding_once (void)
10153 {
10154 int i;
10155
10156 for (i = 0; i < coding_category_max; i++)
10157 {
10158 coding_categories[i].id = -1;
10159 coding_priorities[i] = i;
10160 }
10161
10162 /* ISO2022 specific initialize routine. */
10163 for (i = 0; i < 0x20; i++)
10164 iso_code_class[i] = ISO_control_0;
10165 for (i = 0x21; i < 0x7F; i++)
10166 iso_code_class[i] = ISO_graphic_plane_0;
10167 for (i = 0x80; i < 0xA0; i++)
10168 iso_code_class[i] = ISO_control_1;
10169 for (i = 0xA1; i < 0xFF; i++)
10170 iso_code_class[i] = ISO_graphic_plane_1;
10171 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
10172 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
10173 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
10174 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
10175 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
10176 iso_code_class[ISO_CODE_ESC] = ISO_escape;
10177 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
10178 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
10179 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
10180
10181 for (i = 0; i < 256; i++)
10182 {
10183 emacs_mule_bytes[i] = 1;
10184 }
10185 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_11] = 3;
10186 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_12] = 3;
10187 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_21] = 4;
10188 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_22] = 4;
10189 }
10190
10191 #ifdef emacs
10192
10193 void
10194 syms_of_coding (void)
10195 {
10196 staticpro (&Vcoding_system_hash_table);
10197 {
10198 Lisp_Object args[2];
10199 args[0] = QCtest;
10200 args[1] = Qeq;
10201 Vcoding_system_hash_table = Fmake_hash_table (2, args);
10202 }
10203
10204 staticpro (&Vsjis_coding_system);
10205 Vsjis_coding_system = Qnil;
10206
10207 staticpro (&Vbig5_coding_system);
10208 Vbig5_coding_system = Qnil;
10209
10210 staticpro (&Vcode_conversion_reused_workbuf);
10211 Vcode_conversion_reused_workbuf = Qnil;
10212
10213 staticpro (&Vcode_conversion_workbuf_name);
10214 Vcode_conversion_workbuf_name = make_pure_c_string (" *code-conversion-work*");
10215
10216 reused_workbuf_in_use = 0;
10217
10218 DEFSYM (Qcharset, "charset");
10219 DEFSYM (Qtarget_idx, "target-idx");
10220 DEFSYM (Qcoding_system_history, "coding-system-history");
10221 Fset (Qcoding_system_history, Qnil);
10222
10223 /* Target FILENAME is the first argument. */
10224 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
10225 /* Target FILENAME is the third argument. */
10226 Fput (Qwrite_region, Qtarget_idx, make_number (2));
10227
10228 DEFSYM (Qcall_process, "call-process");
10229 /* Target PROGRAM is the first argument. */
10230 Fput (Qcall_process, Qtarget_idx, make_number (0));
10231
10232 DEFSYM (Qcall_process_region, "call-process-region");
10233 /* Target PROGRAM is the third argument. */
10234 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
10235
10236 DEFSYM (Qstart_process, "start-process");
10237 /* Target PROGRAM is the third argument. */
10238 Fput (Qstart_process, Qtarget_idx, make_number (2));
10239
10240 DEFSYM (Qopen_network_stream, "open-network-stream");
10241 /* Target SERVICE is the fourth argument. */
10242 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
10243
10244 DEFSYM (Qcoding_system, "coding-system");
10245 DEFSYM (Qcoding_aliases, "coding-aliases");
10246
10247 DEFSYM (Qeol_type, "eol-type");
10248 DEFSYM (Qunix, "unix");
10249 DEFSYM (Qdos, "dos");
10250
10251 DEFSYM (Qbuffer_file_coding_system, "buffer-file-coding-system");
10252 DEFSYM (Qpost_read_conversion, "post-read-conversion");
10253 DEFSYM (Qpre_write_conversion, "pre-write-conversion");
10254 DEFSYM (Qdefault_char, "default-char");
10255 DEFSYM (Qundecided, "undecided");
10256 DEFSYM (Qno_conversion, "no-conversion");
10257 DEFSYM (Qraw_text, "raw-text");
10258
10259 DEFSYM (Qiso_2022, "iso-2022");
10260
10261 DEFSYM (Qutf_8, "utf-8");
10262 DEFSYM (Qutf_8_emacs, "utf-8-emacs");
10263
10264 DEFSYM (Qutf_16, "utf-16");
10265 DEFSYM (Qbig, "big");
10266 DEFSYM (Qlittle, "little");
10267
10268 DEFSYM (Qshift_jis, "shift-jis");
10269 DEFSYM (Qbig5, "big5");
10270
10271 DEFSYM (Qcoding_system_p, "coding-system-p");
10272
10273 DEFSYM (Qcoding_system_error, "coding-system-error");
10274 Fput (Qcoding_system_error, Qerror_conditions,
10275 pure_cons (Qcoding_system_error, pure_cons (Qerror, Qnil)));
10276 Fput (Qcoding_system_error, Qerror_message,
10277 make_pure_c_string ("Invalid coding system"));
10278
10279 /* Intern this now in case it isn't already done.
10280 Setting this variable twice is harmless.
10281 But don't staticpro it here--that is done in alloc.c. */
10282 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
10283
10284 DEFSYM (Qtranslation_table, "translation-table");
10285 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
10286 DEFSYM (Qtranslation_table_id, "translation-table-id");
10287 DEFSYM (Qtranslation_table_for_decode, "translation-table-for-decode");
10288 DEFSYM (Qtranslation_table_for_encode, "translation-table-for-encode");
10289
10290 DEFSYM (Qvalid_codes, "valid-codes");
10291
10292 DEFSYM (Qemacs_mule, "emacs-mule");
10293
10294 DEFSYM (QCcategory, ":category");
10295 DEFSYM (QCmnemonic, ":mnemonic");
10296 DEFSYM (QCdefault_char, ":default-char");
10297 DEFSYM (QCdecode_translation_table, ":decode-translation-table");
10298 DEFSYM (QCencode_translation_table, ":encode-translation-table");
10299 DEFSYM (QCpost_read_conversion, ":post-read-conversion");
10300 DEFSYM (QCpre_write_conversion, ":pre-write-conversion");
10301 DEFSYM (QCascii_compatible_p, ":ascii-compatible-p");
10302
10303 Vcoding_category_table
10304 = Fmake_vector (make_number (coding_category_max), Qnil);
10305 staticpro (&Vcoding_category_table);
10306 /* Followings are target of code detection. */
10307 ASET (Vcoding_category_table, coding_category_iso_7,
10308 intern_c_string ("coding-category-iso-7"));
10309 ASET (Vcoding_category_table, coding_category_iso_7_tight,
10310 intern_c_string ("coding-category-iso-7-tight"));
10311 ASET (Vcoding_category_table, coding_category_iso_8_1,
10312 intern_c_string ("coding-category-iso-8-1"));
10313 ASET (Vcoding_category_table, coding_category_iso_8_2,
10314 intern_c_string ("coding-category-iso-8-2"));
10315 ASET (Vcoding_category_table, coding_category_iso_7_else,
10316 intern_c_string ("coding-category-iso-7-else"));
10317 ASET (Vcoding_category_table, coding_category_iso_8_else,
10318 intern_c_string ("coding-category-iso-8-else"));
10319 ASET (Vcoding_category_table, coding_category_utf_8_auto,
10320 intern_c_string ("coding-category-utf-8-auto"));
10321 ASET (Vcoding_category_table, coding_category_utf_8_nosig,
10322 intern_c_string ("coding-category-utf-8"));
10323 ASET (Vcoding_category_table, coding_category_utf_8_sig,
10324 intern_c_string ("coding-category-utf-8-sig"));
10325 ASET (Vcoding_category_table, coding_category_utf_16_be,
10326 intern_c_string ("coding-category-utf-16-be"));
10327 ASET (Vcoding_category_table, coding_category_utf_16_auto,
10328 intern_c_string ("coding-category-utf-16-auto"));
10329 ASET (Vcoding_category_table, coding_category_utf_16_le,
10330 intern_c_string ("coding-category-utf-16-le"));
10331 ASET (Vcoding_category_table, coding_category_utf_16_be_nosig,
10332 intern_c_string ("coding-category-utf-16-be-nosig"));
10333 ASET (Vcoding_category_table, coding_category_utf_16_le_nosig,
10334 intern_c_string ("coding-category-utf-16-le-nosig"));
10335 ASET (Vcoding_category_table, coding_category_charset,
10336 intern_c_string ("coding-category-charset"));
10337 ASET (Vcoding_category_table, coding_category_sjis,
10338 intern_c_string ("coding-category-sjis"));
10339 ASET (Vcoding_category_table, coding_category_big5,
10340 intern_c_string ("coding-category-big5"));
10341 ASET (Vcoding_category_table, coding_category_ccl,
10342 intern_c_string ("coding-category-ccl"));
10343 ASET (Vcoding_category_table, coding_category_emacs_mule,
10344 intern_c_string ("coding-category-emacs-mule"));
10345 /* Followings are NOT target of code detection. */
10346 ASET (Vcoding_category_table, coding_category_raw_text,
10347 intern_c_string ("coding-category-raw-text"));
10348 ASET (Vcoding_category_table, coding_category_undecided,
10349 intern_c_string ("coding-category-undecided"));
10350
10351 DEFSYM (Qinsufficient_source, "insufficient-source");
10352 DEFSYM (Qinconsistent_eol, "inconsistent-eol");
10353 DEFSYM (Qinvalid_source, "invalid-source");
10354 DEFSYM (Qinterrupted, "interrupted");
10355 DEFSYM (Qinsufficient_memory, "insufficient-memory");
10356 DEFSYM (Qcoding_system_define_form, "coding-system-define-form");
10357
10358 defsubr (&Scoding_system_p);
10359 defsubr (&Sread_coding_system);
10360 defsubr (&Sread_non_nil_coding_system);
10361 defsubr (&Scheck_coding_system);
10362 defsubr (&Sdetect_coding_region);
10363 defsubr (&Sdetect_coding_string);
10364 defsubr (&Sfind_coding_systems_region_internal);
10365 defsubr (&Sunencodable_char_position);
10366 defsubr (&Scheck_coding_systems_region);
10367 defsubr (&Sdecode_coding_region);
10368 defsubr (&Sencode_coding_region);
10369 defsubr (&Sdecode_coding_string);
10370 defsubr (&Sencode_coding_string);
10371 defsubr (&Sdecode_sjis_char);
10372 defsubr (&Sencode_sjis_char);
10373 defsubr (&Sdecode_big5_char);
10374 defsubr (&Sencode_big5_char);
10375 defsubr (&Sset_terminal_coding_system_internal);
10376 defsubr (&Sset_safe_terminal_coding_system_internal);
10377 defsubr (&Sterminal_coding_system);
10378 defsubr (&Sset_keyboard_coding_system_internal);
10379 defsubr (&Skeyboard_coding_system);
10380 defsubr (&Sfind_operation_coding_system);
10381 defsubr (&Sset_coding_system_priority);
10382 defsubr (&Sdefine_coding_system_internal);
10383 defsubr (&Sdefine_coding_system_alias);
10384 defsubr (&Scoding_system_put);
10385 defsubr (&Scoding_system_base);
10386 defsubr (&Scoding_system_plist);
10387 defsubr (&Scoding_system_aliases);
10388 defsubr (&Scoding_system_eol_type);
10389 defsubr (&Scoding_system_priority_list);
10390
10391 DEFVAR_LISP ("coding-system-list", Vcoding_system_list,
10392 doc: /* List of coding systems.
10393
10394 Do not alter the value of this variable manually. This variable should be
10395 updated by the functions `define-coding-system' and
10396 `define-coding-system-alias'. */);
10397 Vcoding_system_list = Qnil;
10398
10399 DEFVAR_LISP ("coding-system-alist", Vcoding_system_alist,
10400 doc: /* Alist of coding system names.
10401 Each element is one element list of coding system name.
10402 This variable is given to `completing-read' as COLLECTION argument.
10403
10404 Do not alter the value of this variable manually. This variable should be
10405 updated by the functions `make-coding-system' and
10406 `define-coding-system-alias'. */);
10407 Vcoding_system_alist = Qnil;
10408
10409 DEFVAR_LISP ("coding-category-list", Vcoding_category_list,
10410 doc: /* List of coding-categories (symbols) ordered by priority.
10411
10412 On detecting a coding system, Emacs tries code detection algorithms
10413 associated with each coding-category one by one in this order. When
10414 one algorithm agrees with a byte sequence of source text, the coding
10415 system bound to the corresponding coding-category is selected.
10416
10417 Don't modify this variable directly, but use `set-coding-system-priority'. */);
10418 {
10419 int i;
10420
10421 Vcoding_category_list = Qnil;
10422 for (i = coding_category_max - 1; i >= 0; i--)
10423 Vcoding_category_list
10424 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
10425 Vcoding_category_list);
10426 }
10427
10428 DEFVAR_LISP ("coding-system-for-read", Vcoding_system_for_read,
10429 doc: /* Specify the coding system for read operations.
10430 It is useful to bind this variable with `let', but do not set it globally.
10431 If the value is a coding system, it is used for decoding on read operation.
10432 If not, an appropriate element is used from one of the coding system alists.
10433 There are three such tables: `file-coding-system-alist',
10434 `process-coding-system-alist', and `network-coding-system-alist'. */);
10435 Vcoding_system_for_read = Qnil;
10436
10437 DEFVAR_LISP ("coding-system-for-write", Vcoding_system_for_write,
10438 doc: /* Specify the coding system for write operations.
10439 Programs bind this variable with `let', but you should not set it globally.
10440 If the value is a coding system, it is used for encoding of output,
10441 when writing it to a file and when sending it to a file or subprocess.
10442
10443 If this does not specify a coding system, an appropriate element
10444 is used from one of the coding system alists.
10445 There are three such tables: `file-coding-system-alist',
10446 `process-coding-system-alist', and `network-coding-system-alist'.
10447 For output to files, if the above procedure does not specify a coding system,
10448 the value of `buffer-file-coding-system' is used. */);
10449 Vcoding_system_for_write = Qnil;
10450
10451 DEFVAR_LISP ("last-coding-system-used", Vlast_coding_system_used,
10452 doc: /*
10453 Coding system used in the latest file or process I/O. */);
10454 Vlast_coding_system_used = Qnil;
10455
10456 DEFVAR_LISP ("last-code-conversion-error", Vlast_code_conversion_error,
10457 doc: /*
10458 Error status of the last code conversion.
10459
10460 When an error was detected in the last code conversion, this variable
10461 is set to one of the following symbols.
10462 `insufficient-source'
10463 `inconsistent-eol'
10464 `invalid-source'
10465 `interrupted'
10466 `insufficient-memory'
10467 When no error was detected, the value doesn't change. So, to check
10468 the error status of a code conversion by this variable, you must
10469 explicitly set this variable to nil before performing code
10470 conversion. */);
10471 Vlast_code_conversion_error = Qnil;
10472
10473 DEFVAR_BOOL ("inhibit-eol-conversion", inhibit_eol_conversion,
10474 doc: /*
10475 *Non-nil means always inhibit code conversion of end-of-line format.
10476 See info node `Coding Systems' and info node `Text and Binary' concerning
10477 such conversion. */);
10478 inhibit_eol_conversion = 0;
10479
10480 DEFVAR_BOOL ("inherit-process-coding-system", inherit_process_coding_system,
10481 doc: /*
10482 Non-nil means process buffer inherits coding system of process output.
10483 Bind it to t if the process output is to be treated as if it were a file
10484 read from some filesystem. */);
10485 inherit_process_coding_system = 0;
10486
10487 DEFVAR_LISP ("file-coding-system-alist", Vfile_coding_system_alist,
10488 doc: /*
10489 Alist to decide a coding system to use for a file I/O operation.
10490 The format is ((PATTERN . VAL) ...),
10491 where PATTERN is a regular expression matching a file name,
10492 VAL is a coding system, a cons of coding systems, or a function symbol.
10493 If VAL is a coding system, it is used for both decoding and encoding
10494 the file contents.
10495 If VAL is a cons of coding systems, the car part is used for decoding,
10496 and the cdr part is used for encoding.
10497 If VAL is a function symbol, the function must return a coding system
10498 or a cons of coding systems which are used as above. The function is
10499 called with an argument that is a list of the arguments with which
10500 `find-operation-coding-system' was called. If the function can't decide
10501 a coding system, it can return `undecided' so that the normal
10502 code-detection is performed.
10503
10504 See also the function `find-operation-coding-system'
10505 and the variable `auto-coding-alist'. */);
10506 Vfile_coding_system_alist = Qnil;
10507
10508 DEFVAR_LISP ("process-coding-system-alist", Vprocess_coding_system_alist,
10509 doc: /*
10510 Alist to decide a coding system to use for a process I/O operation.
10511 The format is ((PATTERN . VAL) ...),
10512 where PATTERN is a regular expression matching a program name,
10513 VAL is a coding system, a cons of coding systems, or a function symbol.
10514 If VAL is a coding system, it is used for both decoding what received
10515 from the program and encoding what sent to the program.
10516 If VAL is a cons of coding systems, the car part is used for decoding,
10517 and the cdr part is used for encoding.
10518 If VAL is a function symbol, the function must return a coding system
10519 or a cons of coding systems which are used as above.
10520
10521 See also the function `find-operation-coding-system'. */);
10522 Vprocess_coding_system_alist = Qnil;
10523
10524 DEFVAR_LISP ("network-coding-system-alist", Vnetwork_coding_system_alist,
10525 doc: /*
10526 Alist to decide a coding system to use for a network I/O operation.
10527 The format is ((PATTERN . VAL) ...),
10528 where PATTERN is a regular expression matching a network service name
10529 or is a port number to connect to,
10530 VAL is a coding system, a cons of coding systems, or a function symbol.
10531 If VAL is a coding system, it is used for both decoding what received
10532 from the network stream and encoding what sent to the network stream.
10533 If VAL is a cons of coding systems, the car part is used for decoding,
10534 and the cdr part is used for encoding.
10535 If VAL is a function symbol, the function must return a coding system
10536 or a cons of coding systems which are used as above.
10537
10538 See also the function `find-operation-coding-system'. */);
10539 Vnetwork_coding_system_alist = Qnil;
10540
10541 DEFVAR_LISP ("locale-coding-system", Vlocale_coding_system,
10542 doc: /* Coding system to use with system messages.
10543 Also used for decoding keyboard input on X Window system. */);
10544 Vlocale_coding_system = Qnil;
10545
10546 /* The eol mnemonics are reset in startup.el system-dependently. */
10547 DEFVAR_LISP ("eol-mnemonic-unix", eol_mnemonic_unix,
10548 doc: /*
10549 *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
10550 eol_mnemonic_unix = make_pure_c_string (":");
10551
10552 DEFVAR_LISP ("eol-mnemonic-dos", eol_mnemonic_dos,
10553 doc: /*
10554 *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
10555 eol_mnemonic_dos = make_pure_c_string ("\\");
10556
10557 DEFVAR_LISP ("eol-mnemonic-mac", eol_mnemonic_mac,
10558 doc: /*
10559 *String displayed in mode line for MAC-like (CR) end-of-line format. */);
10560 eol_mnemonic_mac = make_pure_c_string ("/");
10561
10562 DEFVAR_LISP ("eol-mnemonic-undecided", eol_mnemonic_undecided,
10563 doc: /*
10564 *String displayed in mode line when end-of-line format is not yet determined. */);
10565 eol_mnemonic_undecided = make_pure_c_string (":");
10566
10567 DEFVAR_LISP ("enable-character-translation", Venable_character_translation,
10568 doc: /*
10569 *Non-nil enables character translation while encoding and decoding. */);
10570 Venable_character_translation = Qt;
10571
10572 DEFVAR_LISP ("standard-translation-table-for-decode",
10573 Vstandard_translation_table_for_decode,
10574 doc: /* Table for translating characters while decoding. */);
10575 Vstandard_translation_table_for_decode = Qnil;
10576
10577 DEFVAR_LISP ("standard-translation-table-for-encode",
10578 Vstandard_translation_table_for_encode,
10579 doc: /* Table for translating characters while encoding. */);
10580 Vstandard_translation_table_for_encode = Qnil;
10581
10582 DEFVAR_LISP ("charset-revision-table", Vcharset_revision_table,
10583 doc: /* Alist of charsets vs revision numbers.
10584 While encoding, if a charset (car part of an element) is found,
10585 designate it with the escape sequence identifying revision (cdr part
10586 of the element). */);
10587 Vcharset_revision_table = Qnil;
10588
10589 DEFVAR_LISP ("default-process-coding-system",
10590 Vdefault_process_coding_system,
10591 doc: /* Cons of coding systems used for process I/O by default.
10592 The car part is used for decoding a process output,
10593 the cdr part is used for encoding a text to be sent to a process. */);
10594 Vdefault_process_coding_system = Qnil;
10595
10596 DEFVAR_LISP ("latin-extra-code-table", Vlatin_extra_code_table,
10597 doc: /*
10598 Table of extra Latin codes in the range 128..159 (inclusive).
10599 This is a vector of length 256.
10600 If Nth element is non-nil, the existence of code N in a file
10601 \(or output of subprocess) doesn't prevent it to be detected as
10602 a coding system of ISO 2022 variant which has a flag
10603 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
10604 or reading output of a subprocess.
10605 Only 128th through 159th elements have a meaning. */);
10606 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
10607
10608 DEFVAR_LISP ("select-safe-coding-system-function",
10609 Vselect_safe_coding_system_function,
10610 doc: /*
10611 Function to call to select safe coding system for encoding a text.
10612
10613 If set, this function is called to force a user to select a proper
10614 coding system which can encode the text in the case that a default
10615 coding system used in each operation can't encode the text. The
10616 function should take care that the buffer is not modified while
10617 the coding system is being selected.
10618
10619 The default value is `select-safe-coding-system' (which see). */);
10620 Vselect_safe_coding_system_function = Qnil;
10621
10622 DEFVAR_BOOL ("coding-system-require-warning",
10623 coding_system_require_warning,
10624 doc: /* Internal use only.
10625 If non-nil, on writing a file, `select-safe-coding-system-function' is
10626 called even if `coding-system-for-write' is non-nil. The command
10627 `universal-coding-system-argument' binds this variable to t temporarily. */);
10628 coding_system_require_warning = 0;
10629
10630
10631 DEFVAR_BOOL ("inhibit-iso-escape-detection",
10632 inhibit_iso_escape_detection,
10633 doc: /*
10634 If non-nil, Emacs ignores ISO-2022 escape sequences during code detection.
10635
10636 When Emacs reads text, it tries to detect how the text is encoded.
10637 This code detection is sensitive to escape sequences. If Emacs sees
10638 a valid ISO-2022 escape sequence, it assumes the text is encoded in one
10639 of the ISO2022 encodings, and decodes text by the corresponding coding
10640 system (e.g. `iso-2022-7bit').
10641
10642 However, there may be a case that you want to read escape sequences in
10643 a file as is. In such a case, you can set this variable to non-nil.
10644 Then the code detection will ignore any escape sequences, and no text is
10645 detected as encoded in some ISO-2022 encoding. The result is that all
10646 escape sequences become visible in a buffer.
10647
10648 The default value is nil, and it is strongly recommended not to change
10649 it. That is because many Emacs Lisp source files that contain
10650 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
10651 in Emacs's distribution, and they won't be decoded correctly on
10652 reading if you suppress escape sequence detection.
10653
10654 The other way to read escape sequences in a file without decoding is
10655 to explicitly specify some coding system that doesn't use ISO-2022
10656 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
10657 inhibit_iso_escape_detection = 0;
10658
10659 DEFVAR_BOOL ("inhibit-null-byte-detection",
10660 inhibit_null_byte_detection,
10661 doc: /* If non-nil, Emacs ignores null bytes on code detection.
10662 By default, Emacs treats it as binary data, and does not attempt to
10663 decode it. The effect is as if you specified `no-conversion' for
10664 reading that text.
10665
10666 Set this to non-nil when a regular text happens to include null bytes.
10667 Examples are Index nodes of Info files and null-byte delimited output
10668 from GNU Find and GNU Grep. Emacs will then ignore the null bytes and
10669 decode text as usual. */);
10670 inhibit_null_byte_detection = 0;
10671
10672 DEFVAR_LISP ("translation-table-for-input", Vtranslation_table_for_input,
10673 doc: /* Char table for translating self-inserting characters.
10674 This is applied to the result of input methods, not their input.
10675 See also `keyboard-translate-table'.
10676
10677 Use of this variable for character code unification was rendered
10678 obsolete in Emacs 23.1 and later, since Unicode is now the basis of
10679 internal character representation. */);
10680 Vtranslation_table_for_input = Qnil;
10681
10682 {
10683 Lisp_Object args[coding_arg_max];
10684 Lisp_Object plist[16];
10685 int i;
10686
10687 for (i = 0; i < coding_arg_max; i++)
10688 args[i] = Qnil;
10689
10690 plist[0] = intern_c_string (":name");
10691 plist[1] = args[coding_arg_name] = Qno_conversion;
10692 plist[2] = intern_c_string (":mnemonic");
10693 plist[3] = args[coding_arg_mnemonic] = make_number ('=');
10694 plist[4] = intern_c_string (":coding-type");
10695 plist[5] = args[coding_arg_coding_type] = Qraw_text;
10696 plist[6] = intern_c_string (":ascii-compatible-p");
10697 plist[7] = args[coding_arg_ascii_compatible_p] = Qt;
10698 plist[8] = intern_c_string (":default-char");
10699 plist[9] = args[coding_arg_default_char] = make_number (0);
10700 plist[10] = intern_c_string (":for-unibyte");
10701 plist[11] = args[coding_arg_for_unibyte] = Qt;
10702 plist[12] = intern_c_string (":docstring");
10703 plist[13] = make_pure_c_string ("Do no conversion.\n\
10704 \n\
10705 When you visit a file with this coding, the file is read into a\n\
10706 unibyte buffer as is, thus each byte of a file is treated as a\n\
10707 character.");
10708 plist[14] = intern_c_string (":eol-type");
10709 plist[15] = args[coding_arg_eol_type] = Qunix;
10710 args[coding_arg_plist] = Flist (16, plist);
10711 Fdefine_coding_system_internal (coding_arg_max, args);
10712
10713 plist[1] = args[coding_arg_name] = Qundecided;
10714 plist[3] = args[coding_arg_mnemonic] = make_number ('-');
10715 plist[5] = args[coding_arg_coding_type] = Qundecided;
10716 /* This is already set.
10717 plist[7] = args[coding_arg_ascii_compatible_p] = Qt; */
10718 plist[8] = intern_c_string (":charset-list");
10719 plist[9] = args[coding_arg_charset_list] = Fcons (Qascii, Qnil);
10720 plist[11] = args[coding_arg_for_unibyte] = Qnil;
10721 plist[13] = make_pure_c_string ("No conversion on encoding, automatic conversion on decoding.");
10722 plist[15] = args[coding_arg_eol_type] = Qnil;
10723 args[coding_arg_plist] = Flist (16, plist);
10724 Fdefine_coding_system_internal (coding_arg_max, args);
10725 }
10726
10727 setup_coding_system (Qno_conversion, &safe_terminal_coding);
10728
10729 {
10730 int i;
10731
10732 for (i = 0; i < coding_category_max; i++)
10733 Fset (AREF (Vcoding_category_table, i), Qno_conversion);
10734 }
10735 #if defined (DOS_NT)
10736 system_eol_type = Qdos;
10737 #else
10738 system_eol_type = Qunix;
10739 #endif
10740 staticpro (&system_eol_type);
10741 }
10742
10743 char *
10744 emacs_strerror (int error_number)
10745 {
10746 char *str;
10747
10748 synchronize_system_messages_locale ();
10749 str = strerror (error_number);
10750
10751 if (! NILP (Vlocale_coding_system))
10752 {
10753 Lisp_Object dec = code_convert_string_norecord (build_string (str),
10754 Vlocale_coding_system,
10755 0);
10756 str = SSDATA (dec);
10757 }
10758
10759 return str;
10760 }
10761
10762 #endif /* emacs */