USE_LISP_UNION_TYPE + USE_LSB_TAG cleanup (Bug#11604)
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "character.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 EMACS_INT consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* Nonzero during GC. */
181
182 int gc_in_progress;
183
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 int abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
204
205 #define SPARE_MEMORY (1 << 14)
206
207 /* Number of extra blocks malloc should get when it needs more core. */
208
209 static int malloc_hysteresis;
210
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
216
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
219
220 /* Pointer to the pure area, and its size. */
221
222 static char *purebeg;
223 static ptrdiff_t pure_size;
224
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
228 static ptrdiff_t pure_bytes_used_before_overflow;
229
230 /* Value is non-zero if P points into pure space. */
231
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
234
235 /* Index in pure at which next pure Lisp object will be allocated.. */
236
237 static ptrdiff_t pure_bytes_used_lisp;
238
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
240
241 static ptrdiff_t pure_bytes_used_non_lisp;
242
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
246 const char *pending_malloc_warning;
247
248 /* Maximum amount of C stack to save when a GC happens. */
249
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
253
254 /* Buffer in which we save a copy of the C stack at each GC. */
255
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
260
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
264 static int ignore_warnings;
265
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_buffer (Lisp_Object);
274 static void mark_terminals (void);
275 static void gc_sweep (void);
276 static Lisp_Object make_pure_vector (ptrdiff_t);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static struct Lisp_String *allocate_string (void);
284 static void compact_small_strings (void);
285 static void free_large_strings (void);
286 static void sweep_strings (void);
287 static void free_misc (Lisp_Object);
288 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
289
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294 enum mem_type
295 {
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
310 };
311
312 static void *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325 #define DEADP(x) EQ (x, Vdead)
326
327 #ifdef GC_MALLOC_CHECK
328
329 enum mem_type allocated_mem_type;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
394 static void lisp_free (void *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *);
405 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 #endif
410 static void mem_rotate_left (struct mem_node *);
411 static void mem_rotate_right (struct mem_node *);
412 static void mem_delete (struct mem_node *);
413 static void mem_delete_fixup (struct mem_node *);
414 static inline struct mem_node *mem_find (void *);
415
416
417 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
418 static void check_gcpros (void);
419 #endif
420
421 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
422
423 #ifndef DEADP
424 # define DEADP(x) 0
425 #endif
426
427 /* Recording what needs to be marked for gc. */
428
429 struct gcpro *gcprolist;
430
431 /* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
433
434 #define NSTATICS 0x640
435 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
436
437 /* Index of next unused slot in staticvec. */
438
439 static int staticidx = 0;
440
441 static void *pure_alloc (size_t, int);
442
443
444 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
446
447 #define ALIGN(ptr, ALIGNMENT) \
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
450
451
452 \f
453 /************************************************************************
454 Malloc
455 ************************************************************************/
456
457 /* Function malloc calls this if it finds we are near exhausting storage. */
458
459 void
460 malloc_warning (const char *str)
461 {
462 pending_malloc_warning = str;
463 }
464
465
466 /* Display an already-pending malloc warning. */
467
468 void
469 display_malloc_warning (void)
470 {
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
475 pending_malloc_warning = 0;
476 }
477 \f
478 /* Called if we can't allocate relocatable space for a buffer. */
479
480 void
481 buffer_memory_full (ptrdiff_t nbytes)
482 {
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
489
490 #ifndef REL_ALLOC
491 memory_full (nbytes);
492 #endif
493
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 }
498
499 /* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502 #define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
504
505 #ifndef XMALLOC_OVERRUN_CHECK
506 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
507 #else
508
509 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
511
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
516
517 The header is used to detect whether this block has been allocated
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
520
521 #define XMALLOC_OVERRUN_CHECK_SIZE 16
522 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
524
525 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528 #define XMALLOC_BASE_ALIGNMENT \
529 offsetof ( \
530 struct { \
531 union { long double d; intmax_t i; void *p; } u; \
532 char c; \
533 }, \
534 c)
535
536 #if USE_LSB_TAG
537 # define XMALLOC_HEADER_ALIGNMENT \
538 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
539 #else
540 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
541 #endif
542 #define XMALLOC_OVERRUN_SIZE_SIZE \
543 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
544 + XMALLOC_HEADER_ALIGNMENT - 1) \
545 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
546 - XMALLOC_OVERRUN_CHECK_SIZE)
547
548 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\x9a', '\x9b', '\xae', '\xaf',
550 '\xbf', '\xbe', '\xce', '\xcf',
551 '\xea', '\xeb', '\xec', '\xed',
552 '\xdf', '\xde', '\x9c', '\x9d' };
553
554 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
555 { '\xaa', '\xab', '\xac', '\xad',
556 '\xba', '\xbb', '\xbc', '\xbd',
557 '\xca', '\xcb', '\xcc', '\xcd',
558 '\xda', '\xdb', '\xdc', '\xdd' };
559
560 /* Insert and extract the block size in the header. */
561
562 static void
563 xmalloc_put_size (unsigned char *ptr, size_t size)
564 {
565 int i;
566 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
567 {
568 *--ptr = size & ((1 << CHAR_BIT) - 1);
569 size >>= CHAR_BIT;
570 }
571 }
572
573 static size_t
574 xmalloc_get_size (unsigned char *ptr)
575 {
576 size_t size = 0;
577 int i;
578 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
579 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
580 {
581 size <<= CHAR_BIT;
582 size += *ptr++;
583 }
584 return size;
585 }
586
587
588 /* The call depth in overrun_check functions. For example, this might happen:
589 xmalloc()
590 overrun_check_malloc()
591 -> malloc -> (via hook)_-> emacs_blocked_malloc
592 -> overrun_check_malloc
593 call malloc (hooks are NULL, so real malloc is called).
594 malloc returns 10000.
595 add overhead, return 10016.
596 <- (back in overrun_check_malloc)
597 add overhead again, return 10032
598 xmalloc returns 10032.
599
600 (time passes).
601
602 xfree(10032)
603 overrun_check_free(10032)
604 decrease overhead
605 free(10016) <- crash, because 10000 is the original pointer. */
606
607 static ptrdiff_t check_depth;
608
609 /* Like malloc, but wraps allocated block with header and trailer. */
610
611 static void *
612 overrun_check_malloc (size_t size)
613 {
614 register unsigned char *val;
615 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
616 if (SIZE_MAX - overhead < size)
617 abort ();
618
619 val = (unsigned char *) malloc (size + overhead);
620 if (val && check_depth == 1)
621 {
622 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
623 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
624 xmalloc_put_size (val, size);
625 memcpy (val + size, xmalloc_overrun_check_trailer,
626 XMALLOC_OVERRUN_CHECK_SIZE);
627 }
628 --check_depth;
629 return val;
630 }
631
632
633 /* Like realloc, but checks old block for overrun, and wraps new block
634 with header and trailer. */
635
636 static void *
637 overrun_check_realloc (void *block, size_t size)
638 {
639 register unsigned char *val = (unsigned char *) block;
640 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
641 if (SIZE_MAX - overhead < size)
642 abort ();
643
644 if (val
645 && check_depth == 1
646 && memcmp (xmalloc_overrun_check_header,
647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
649 {
650 size_t osize = xmalloc_get_size (val);
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
653 abort ();
654 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
657 }
658
659 val = realloc (val, size + overhead);
660
661 if (val && check_depth == 1)
662 {
663 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
664 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 xmalloc_put_size (val, size);
666 memcpy (val + size, xmalloc_overrun_check_trailer,
667 XMALLOC_OVERRUN_CHECK_SIZE);
668 }
669 --check_depth;
670 return val;
671 }
672
673 /* Like free, but checks block for overrun. */
674
675 static void
676 overrun_check_free (void *block)
677 {
678 unsigned char *val = (unsigned char *) block;
679
680 ++check_depth;
681 if (val
682 && check_depth == 1
683 && memcmp (xmalloc_overrun_check_header,
684 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
685 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
686 {
687 size_t osize = xmalloc_get_size (val);
688 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
689 XMALLOC_OVERRUN_CHECK_SIZE))
690 abort ();
691 #ifdef XMALLOC_CLEAR_FREE_MEMORY
692 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
693 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
694 #else
695 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
696 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
697 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
698 #endif
699 }
700
701 free (val);
702 --check_depth;
703 }
704
705 #undef malloc
706 #undef realloc
707 #undef free
708 #define malloc overrun_check_malloc
709 #define realloc overrun_check_realloc
710 #define free overrun_check_free
711 #endif
712
713 #ifdef SYNC_INPUT
714 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
715 there's no need to block input around malloc. */
716 #define MALLOC_BLOCK_INPUT ((void)0)
717 #define MALLOC_UNBLOCK_INPUT ((void)0)
718 #else
719 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
720 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
721 #endif
722
723 /* Like malloc but check for no memory and block interrupt input.. */
724
725 void *
726 xmalloc (size_t size)
727 {
728 void *val;
729
730 MALLOC_BLOCK_INPUT;
731 val = malloc (size);
732 MALLOC_UNBLOCK_INPUT;
733
734 if (!val && size)
735 memory_full (size);
736 return val;
737 }
738
739
740 /* Like realloc but check for no memory and block interrupt input.. */
741
742 void *
743 xrealloc (void *block, size_t size)
744 {
745 void *val;
746
747 MALLOC_BLOCK_INPUT;
748 /* We must call malloc explicitly when BLOCK is 0, since some
749 reallocs don't do this. */
750 if (! block)
751 val = malloc (size);
752 else
753 val = realloc (block, size);
754 MALLOC_UNBLOCK_INPUT;
755
756 if (!val && size)
757 memory_full (size);
758 return val;
759 }
760
761
762 /* Like free but block interrupt input. */
763
764 void
765 xfree (void *block)
766 {
767 if (!block)
768 return;
769 MALLOC_BLOCK_INPUT;
770 free (block);
771 MALLOC_UNBLOCK_INPUT;
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
775 }
776
777
778 /* Other parts of Emacs pass large int values to allocator functions
779 expecting ptrdiff_t. This is portable in practice, but check it to
780 be safe. */
781 verify (INT_MAX <= PTRDIFF_MAX);
782
783
784 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
785 Signal an error on memory exhaustion, and block interrupt input. */
786
787 void *
788 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
789 {
790 xassert (0 <= nitems && 0 < item_size);
791 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
792 memory_full (SIZE_MAX);
793 return xmalloc (nitems * item_size);
794 }
795
796
797 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
798 Signal an error on memory exhaustion, and block interrupt input. */
799
800 void *
801 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
802 {
803 xassert (0 <= nitems && 0 < item_size);
804 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
805 memory_full (SIZE_MAX);
806 return xrealloc (pa, nitems * item_size);
807 }
808
809
810 /* Grow PA, which points to an array of *NITEMS items, and return the
811 location of the reallocated array, updating *NITEMS to reflect its
812 new size. The new array will contain at least NITEMS_INCR_MIN more
813 items, but will not contain more than NITEMS_MAX items total.
814 ITEM_SIZE is the size of each item, in bytes.
815
816 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
817 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
818 infinity.
819
820 If PA is null, then allocate a new array instead of reallocating
821 the old one. Thus, to grow an array A without saving its old
822 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
823 &NITEMS, ...).
824
825 Block interrupt input as needed. If memory exhaustion occurs, set
826 *NITEMS to zero if PA is null, and signal an error (i.e., do not
827 return). */
828
829 void *
830 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
831 ptrdiff_t nitems_max, ptrdiff_t item_size)
832 {
833 /* The approximate size to use for initial small allocation
834 requests. This is the largest "small" request for the GNU C
835 library malloc. */
836 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
837
838 /* If the array is tiny, grow it to about (but no greater than)
839 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
840 ptrdiff_t n = *nitems;
841 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
842 ptrdiff_t half_again = n >> 1;
843 ptrdiff_t incr_estimate = max (tiny_max, half_again);
844
845 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
846 NITEMS_MAX, and what the C language can represent safely. */
847 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
848 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
849 ? nitems_max : C_language_max);
850 ptrdiff_t nitems_incr_max = n_max - n;
851 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
852
853 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
854 if (! pa)
855 *nitems = 0;
856 if (nitems_incr_max < incr)
857 memory_full (SIZE_MAX);
858 n += incr;
859 pa = xrealloc (pa, n * item_size);
860 *nitems = n;
861 return pa;
862 }
863
864
865 /* Like strdup, but uses xmalloc. */
866
867 char *
868 xstrdup (const char *s)
869 {
870 size_t len = strlen (s) + 1;
871 char *p = (char *) xmalloc (len);
872 memcpy (p, s, len);
873 return p;
874 }
875
876
877 /* Unwind for SAFE_ALLOCA */
878
879 Lisp_Object
880 safe_alloca_unwind (Lisp_Object arg)
881 {
882 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
883
884 p->dogc = 0;
885 xfree (p->pointer);
886 p->pointer = 0;
887 free_misc (arg);
888 return Qnil;
889 }
890
891
892 /* Like malloc but used for allocating Lisp data. NBYTES is the
893 number of bytes to allocate, TYPE describes the intended use of the
894 allocated memory block (for strings, for conses, ...). */
895
896 #if ! USE_LSB_TAG
897 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
898 #endif
899
900 static void *
901 lisp_malloc (size_t nbytes, enum mem_type type)
902 {
903 register void *val;
904
905 MALLOC_BLOCK_INPUT;
906
907 #ifdef GC_MALLOC_CHECK
908 allocated_mem_type = type;
909 #endif
910
911 val = (void *) malloc (nbytes);
912
913 #if ! USE_LSB_TAG
914 /* If the memory just allocated cannot be addressed thru a Lisp
915 object's pointer, and it needs to be,
916 that's equivalent to running out of memory. */
917 if (val && type != MEM_TYPE_NON_LISP)
918 {
919 Lisp_Object tem;
920 XSETCONS (tem, (char *) val + nbytes - 1);
921 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
922 {
923 lisp_malloc_loser = val;
924 free (val);
925 val = 0;
926 }
927 }
928 #endif
929
930 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
931 if (val && type != MEM_TYPE_NON_LISP)
932 mem_insert (val, (char *) val + nbytes, type);
933 #endif
934
935 MALLOC_UNBLOCK_INPUT;
936 if (!val && nbytes)
937 memory_full (nbytes);
938 return val;
939 }
940
941 /* Free BLOCK. This must be called to free memory allocated with a
942 call to lisp_malloc. */
943
944 static void
945 lisp_free (void *block)
946 {
947 MALLOC_BLOCK_INPUT;
948 free (block);
949 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
950 mem_delete (mem_find (block));
951 #endif
952 MALLOC_UNBLOCK_INPUT;
953 }
954
955 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
956
957 /* The entry point is lisp_align_malloc which returns blocks of at most
958 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
959
960 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
961 #define USE_POSIX_MEMALIGN 1
962 #endif
963
964 /* BLOCK_ALIGN has to be a power of 2. */
965 #define BLOCK_ALIGN (1 << 10)
966
967 /* Padding to leave at the end of a malloc'd block. This is to give
968 malloc a chance to minimize the amount of memory wasted to alignment.
969 It should be tuned to the particular malloc library used.
970 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
971 posix_memalign on the other hand would ideally prefer a value of 4
972 because otherwise, there's 1020 bytes wasted between each ablocks.
973 In Emacs, testing shows that those 1020 can most of the time be
974 efficiently used by malloc to place other objects, so a value of 0 can
975 still preferable unless you have a lot of aligned blocks and virtually
976 nothing else. */
977 #define BLOCK_PADDING 0
978 #define BLOCK_BYTES \
979 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
980
981 /* Internal data structures and constants. */
982
983 #define ABLOCKS_SIZE 16
984
985 /* An aligned block of memory. */
986 struct ablock
987 {
988 union
989 {
990 char payload[BLOCK_BYTES];
991 struct ablock *next_free;
992 } x;
993 /* `abase' is the aligned base of the ablocks. */
994 /* It is overloaded to hold the virtual `busy' field that counts
995 the number of used ablock in the parent ablocks.
996 The first ablock has the `busy' field, the others have the `abase'
997 field. To tell the difference, we assume that pointers will have
998 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
999 is used to tell whether the real base of the parent ablocks is `abase'
1000 (if not, the word before the first ablock holds a pointer to the
1001 real base). */
1002 struct ablocks *abase;
1003 /* The padding of all but the last ablock is unused. The padding of
1004 the last ablock in an ablocks is not allocated. */
1005 #if BLOCK_PADDING
1006 char padding[BLOCK_PADDING];
1007 #endif
1008 };
1009
1010 /* A bunch of consecutive aligned blocks. */
1011 struct ablocks
1012 {
1013 struct ablock blocks[ABLOCKS_SIZE];
1014 };
1015
1016 /* Size of the block requested from malloc or posix_memalign. */
1017 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1018
1019 #define ABLOCK_ABASE(block) \
1020 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1021 ? (struct ablocks *)(block) \
1022 : (block)->abase)
1023
1024 /* Virtual `busy' field. */
1025 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1026
1027 /* Pointer to the (not necessarily aligned) malloc block. */
1028 #ifdef USE_POSIX_MEMALIGN
1029 #define ABLOCKS_BASE(abase) (abase)
1030 #else
1031 #define ABLOCKS_BASE(abase) \
1032 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1033 #endif
1034
1035 /* The list of free ablock. */
1036 static struct ablock *free_ablock;
1037
1038 /* Allocate an aligned block of nbytes.
1039 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1040 smaller or equal to BLOCK_BYTES. */
1041 static void *
1042 lisp_align_malloc (size_t nbytes, enum mem_type type)
1043 {
1044 void *base, *val;
1045 struct ablocks *abase;
1046
1047 eassert (nbytes <= BLOCK_BYTES);
1048
1049 MALLOC_BLOCK_INPUT;
1050
1051 #ifdef GC_MALLOC_CHECK
1052 allocated_mem_type = type;
1053 #endif
1054
1055 if (!free_ablock)
1056 {
1057 int i;
1058 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1059
1060 #ifdef DOUG_LEA_MALLOC
1061 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1062 because mapped region contents are not preserved in
1063 a dumped Emacs. */
1064 mallopt (M_MMAP_MAX, 0);
1065 #endif
1066
1067 #ifdef USE_POSIX_MEMALIGN
1068 {
1069 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1070 if (err)
1071 base = NULL;
1072 abase = base;
1073 }
1074 #else
1075 base = malloc (ABLOCKS_BYTES);
1076 abase = ALIGN (base, BLOCK_ALIGN);
1077 #endif
1078
1079 if (base == 0)
1080 {
1081 MALLOC_UNBLOCK_INPUT;
1082 memory_full (ABLOCKS_BYTES);
1083 }
1084
1085 aligned = (base == abase);
1086 if (!aligned)
1087 ((void**)abase)[-1] = base;
1088
1089 #ifdef DOUG_LEA_MALLOC
1090 /* Back to a reasonable maximum of mmap'ed areas. */
1091 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1092 #endif
1093
1094 #if ! USE_LSB_TAG
1095 /* If the memory just allocated cannot be addressed thru a Lisp
1096 object's pointer, and it needs to be, that's equivalent to
1097 running out of memory. */
1098 if (type != MEM_TYPE_NON_LISP)
1099 {
1100 Lisp_Object tem;
1101 char *end = (char *) base + ABLOCKS_BYTES - 1;
1102 XSETCONS (tem, end);
1103 if ((char *) XCONS (tem) != end)
1104 {
1105 lisp_malloc_loser = base;
1106 free (base);
1107 MALLOC_UNBLOCK_INPUT;
1108 memory_full (SIZE_MAX);
1109 }
1110 }
1111 #endif
1112
1113 /* Initialize the blocks and put them on the free list.
1114 If `base' was not properly aligned, we can't use the last block. */
1115 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1116 {
1117 abase->blocks[i].abase = abase;
1118 abase->blocks[i].x.next_free = free_ablock;
1119 free_ablock = &abase->blocks[i];
1120 }
1121 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1122
1123 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1124 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1125 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1126 eassert (ABLOCKS_BASE (abase) == base);
1127 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1128 }
1129
1130 abase = ABLOCK_ABASE (free_ablock);
1131 ABLOCKS_BUSY (abase) =
1132 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1133 val = free_ablock;
1134 free_ablock = free_ablock->x.next_free;
1135
1136 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1137 if (type != MEM_TYPE_NON_LISP)
1138 mem_insert (val, (char *) val + nbytes, type);
1139 #endif
1140
1141 MALLOC_UNBLOCK_INPUT;
1142
1143 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1144 return val;
1145 }
1146
1147 static void
1148 lisp_align_free (void *block)
1149 {
1150 struct ablock *ablock = block;
1151 struct ablocks *abase = ABLOCK_ABASE (ablock);
1152
1153 MALLOC_BLOCK_INPUT;
1154 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1155 mem_delete (mem_find (block));
1156 #endif
1157 /* Put on free list. */
1158 ablock->x.next_free = free_ablock;
1159 free_ablock = ablock;
1160 /* Update busy count. */
1161 ABLOCKS_BUSY (abase)
1162 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1163
1164 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1165 { /* All the blocks are free. */
1166 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1167 struct ablock **tem = &free_ablock;
1168 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1169
1170 while (*tem)
1171 {
1172 if (*tem >= (struct ablock *) abase && *tem < atop)
1173 {
1174 i++;
1175 *tem = (*tem)->x.next_free;
1176 }
1177 else
1178 tem = &(*tem)->x.next_free;
1179 }
1180 eassert ((aligned & 1) == aligned);
1181 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1182 #ifdef USE_POSIX_MEMALIGN
1183 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1184 #endif
1185 free (ABLOCKS_BASE (abase));
1186 }
1187 MALLOC_UNBLOCK_INPUT;
1188 }
1189
1190 /* Return a new buffer structure allocated from the heap with
1191 a call to lisp_malloc. */
1192
1193 struct buffer *
1194 allocate_buffer (void)
1195 {
1196 struct buffer *b
1197 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1198 MEM_TYPE_BUFFER);
1199 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1200 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1201 / sizeof (EMACS_INT)));
1202 return b;
1203 }
1204
1205 \f
1206 #ifndef SYSTEM_MALLOC
1207
1208 /* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1217
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1221
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1231
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1237
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1241
1242 static size_t bytes_used_when_reconsidered;
1243
1244 /* Value of _bytes_used, when spare_memory was freed. */
1245
1246 static size_t bytes_used_when_full;
1247
1248 /* This function is used as the hook for free to call. */
1249
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1252 {
1253 BLOCK_INPUT_ALLOC;
1254
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1257 {
1258 struct mem_node *m;
1259
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
1273 #endif /* GC_MALLOC_CHECK */
1274
1275 __free_hook = old_free_hook;
1276 free (ptr);
1277
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1290
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1293 }
1294
1295
1296 /* This function is the malloc hook that Emacs uses. */
1297
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1300 {
1301 void *value;
1302
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1311
1312 value = (void *) malloc (size);
1313
1314 #ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333 #endif /* GC_MALLOC_CHECK */
1334
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1337
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1340 }
1341
1342
1343 /* This function is the realloc hook that Emacs uses. */
1344
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1347 {
1348 void *value;
1349
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1352
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
1367
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1369
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1373
1374 value = (void *) realloc (ptr, size);
1375
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
1390
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1393
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1396
1397 return value;
1398 }
1399
1400
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407 void
1408 reset_malloc_hooks (void)
1409 {
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1413 }
1414 #endif /* HAVE_PTHREAD */
1415
1416
1417 /* Called from main to set up malloc to use our hooks. */
1418
1419 void
1420 uninterrupt_malloc (void)
1421 {
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1425
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1437
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1441
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1445
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1449 }
1450
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1453
1454
1455 \f
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1459
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
1469 struct interval_block
1470 {
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1474 };
1475
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
1479 static struct interval_block *interval_block;
1480
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1483
1484 static int interval_block_index;
1485
1486 /* Number of free and live intervals. */
1487
1488 static EMACS_INT total_free_intervals, total_intervals;
1489
1490 /* List of free intervals. */
1491
1492 static INTERVAL interval_free_list;
1493
1494
1495 /* Initialize interval allocation. */
1496
1497 static void
1498 init_intervals (void)
1499 {
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1503 }
1504
1505
1506 /* Return a new interval. */
1507
1508 INTERVAL
1509 make_interval (void)
1510 {
1511 INTERVAL val;
1512
1513 /* eassert (!handling_signal); */
1514
1515 MALLOC_BLOCK_INPUT;
1516
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
1526 register struct interval_block *newi;
1527
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
1530
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1534 }
1535 val = &interval_block->intervals[interval_block_index++];
1536 }
1537
1538 MALLOC_UNBLOCK_INPUT;
1539
1540 consing_since_gc += sizeof (struct interval);
1541 intervals_consed++;
1542 RESET_INTERVAL (val);
1543 val->gcmarkbit = 0;
1544 return val;
1545 }
1546
1547
1548 /* Mark Lisp objects in interval I. */
1549
1550 static void
1551 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 {
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
1555 mark_object (i->plist);
1556 }
1557
1558
1559 /* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1561
1562 static void
1563 mark_interval_tree (register INTERVAL tree)
1564 {
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1568
1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
1570 }
1571
1572
1573 /* Mark the interval tree rooted in I. */
1574
1575 #define MARK_INTERVAL_TREE(i) \
1576 do { \
1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1578 mark_interval_tree (i); \
1579 } while (0)
1580
1581
1582 #define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
1585 (i) = balance_intervals (i); \
1586 } while (0)
1587 \f
1588 /* Convert the pointer-sized word P to EMACS_INT while preserving its
1589 type and ptr fields. */
1590 static Lisp_Object
1591 widen_to_Lisp_Object (void *p)
1592 {
1593 intptr_t i = (intptr_t) p;
1594 #ifdef USE_LISP_UNION_TYPE
1595 Lisp_Object obj;
1596 obj.i = i;
1597 return obj;
1598 #else
1599 return i;
1600 #endif
1601 }
1602 \f
1603 /***********************************************************************
1604 String Allocation
1605 ***********************************************************************/
1606
1607 /* Lisp_Strings are allocated in string_block structures. When a new
1608 string_block is allocated, all the Lisp_Strings it contains are
1609 added to a free-list string_free_list. When a new Lisp_String is
1610 needed, it is taken from that list. During the sweep phase of GC,
1611 string_blocks that are entirely free are freed, except two which
1612 we keep.
1613
1614 String data is allocated from sblock structures. Strings larger
1615 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1616 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1617
1618 Sblocks consist internally of sdata structures, one for each
1619 Lisp_String. The sdata structure points to the Lisp_String it
1620 belongs to. The Lisp_String points back to the `u.data' member of
1621 its sdata structure.
1622
1623 When a Lisp_String is freed during GC, it is put back on
1624 string_free_list, and its `data' member and its sdata's `string'
1625 pointer is set to null. The size of the string is recorded in the
1626 `u.nbytes' member of the sdata. So, sdata structures that are no
1627 longer used, can be easily recognized, and it's easy to compact the
1628 sblocks of small strings which we do in compact_small_strings. */
1629
1630 /* Size in bytes of an sblock structure used for small strings. This
1631 is 8192 minus malloc overhead. */
1632
1633 #define SBLOCK_SIZE 8188
1634
1635 /* Strings larger than this are considered large strings. String data
1636 for large strings is allocated from individual sblocks. */
1637
1638 #define LARGE_STRING_BYTES 1024
1639
1640 /* Structure describing string memory sub-allocated from an sblock.
1641 This is where the contents of Lisp strings are stored. */
1642
1643 struct sdata
1644 {
1645 /* Back-pointer to the string this sdata belongs to. If null, this
1646 structure is free, and the NBYTES member of the union below
1647 contains the string's byte size (the same value that STRING_BYTES
1648 would return if STRING were non-null). If non-null, STRING_BYTES
1649 (STRING) is the size of the data, and DATA contains the string's
1650 contents. */
1651 struct Lisp_String *string;
1652
1653 #ifdef GC_CHECK_STRING_BYTES
1654
1655 ptrdiff_t nbytes;
1656 unsigned char data[1];
1657
1658 #define SDATA_NBYTES(S) (S)->nbytes
1659 #define SDATA_DATA(S) (S)->data
1660 #define SDATA_SELECTOR(member) member
1661
1662 #else /* not GC_CHECK_STRING_BYTES */
1663
1664 union
1665 {
1666 /* When STRING is non-null. */
1667 unsigned char data[1];
1668
1669 /* When STRING is null. */
1670 ptrdiff_t nbytes;
1671 } u;
1672
1673 #define SDATA_NBYTES(S) (S)->u.nbytes
1674 #define SDATA_DATA(S) (S)->u.data
1675 #define SDATA_SELECTOR(member) u.member
1676
1677 #endif /* not GC_CHECK_STRING_BYTES */
1678
1679 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1680 };
1681
1682
1683 /* Structure describing a block of memory which is sub-allocated to
1684 obtain string data memory for strings. Blocks for small strings
1685 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1686 as large as needed. */
1687
1688 struct sblock
1689 {
1690 /* Next in list. */
1691 struct sblock *next;
1692
1693 /* Pointer to the next free sdata block. This points past the end
1694 of the sblock if there isn't any space left in this block. */
1695 struct sdata *next_free;
1696
1697 /* Start of data. */
1698 struct sdata first_data;
1699 };
1700
1701 /* Number of Lisp strings in a string_block structure. The 1020 is
1702 1024 minus malloc overhead. */
1703
1704 #define STRING_BLOCK_SIZE \
1705 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1706
1707 /* Structure describing a block from which Lisp_String structures
1708 are allocated. */
1709
1710 struct string_block
1711 {
1712 /* Place `strings' first, to preserve alignment. */
1713 struct Lisp_String strings[STRING_BLOCK_SIZE];
1714 struct string_block *next;
1715 };
1716
1717 /* Head and tail of the list of sblock structures holding Lisp string
1718 data. We always allocate from current_sblock. The NEXT pointers
1719 in the sblock structures go from oldest_sblock to current_sblock. */
1720
1721 static struct sblock *oldest_sblock, *current_sblock;
1722
1723 /* List of sblocks for large strings. */
1724
1725 static struct sblock *large_sblocks;
1726
1727 /* List of string_block structures. */
1728
1729 static struct string_block *string_blocks;
1730
1731 /* Free-list of Lisp_Strings. */
1732
1733 static struct Lisp_String *string_free_list;
1734
1735 /* Number of live and free Lisp_Strings. */
1736
1737 static EMACS_INT total_strings, total_free_strings;
1738
1739 /* Number of bytes used by live strings. */
1740
1741 static EMACS_INT total_string_size;
1742
1743 /* Given a pointer to a Lisp_String S which is on the free-list
1744 string_free_list, return a pointer to its successor in the
1745 free-list. */
1746
1747 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1748
1749 /* Return a pointer to the sdata structure belonging to Lisp string S.
1750 S must be live, i.e. S->data must not be null. S->data is actually
1751 a pointer to the `u.data' member of its sdata structure; the
1752 structure starts at a constant offset in front of that. */
1753
1754 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1755
1756
1757 #ifdef GC_CHECK_STRING_OVERRUN
1758
1759 /* We check for overrun in string data blocks by appending a small
1760 "cookie" after each allocated string data block, and check for the
1761 presence of this cookie during GC. */
1762
1763 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1764 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1765 { '\xde', '\xad', '\xbe', '\xef' };
1766
1767 #else
1768 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1769 #endif
1770
1771 /* Value is the size of an sdata structure large enough to hold NBYTES
1772 bytes of string data. The value returned includes a terminating
1773 NUL byte, the size of the sdata structure, and padding. */
1774
1775 #ifdef GC_CHECK_STRING_BYTES
1776
1777 #define SDATA_SIZE(NBYTES) \
1778 ((SDATA_DATA_OFFSET \
1779 + (NBYTES) + 1 \
1780 + sizeof (ptrdiff_t) - 1) \
1781 & ~(sizeof (ptrdiff_t) - 1))
1782
1783 #else /* not GC_CHECK_STRING_BYTES */
1784
1785 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1786 less than the size of that member. The 'max' is not needed when
1787 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1788 alignment code reserves enough space. */
1789
1790 #define SDATA_SIZE(NBYTES) \
1791 ((SDATA_DATA_OFFSET \
1792 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1793 ? NBYTES \
1794 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1795 + 1 \
1796 + sizeof (ptrdiff_t) - 1) \
1797 & ~(sizeof (ptrdiff_t) - 1))
1798
1799 #endif /* not GC_CHECK_STRING_BYTES */
1800
1801 /* Extra bytes to allocate for each string. */
1802
1803 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1804
1805 /* Exact bound on the number of bytes in a string, not counting the
1806 terminating null. A string cannot contain more bytes than
1807 STRING_BYTES_BOUND, nor can it be so long that the size_t
1808 arithmetic in allocate_string_data would overflow while it is
1809 calculating a value to be passed to malloc. */
1810 #define STRING_BYTES_MAX \
1811 min (STRING_BYTES_BOUND, \
1812 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1813 - GC_STRING_EXTRA \
1814 - offsetof (struct sblock, first_data) \
1815 - SDATA_DATA_OFFSET) \
1816 & ~(sizeof (EMACS_INT) - 1)))
1817
1818 /* Initialize string allocation. Called from init_alloc_once. */
1819
1820 static void
1821 init_strings (void)
1822 {
1823 total_strings = total_free_strings = total_string_size = 0;
1824 oldest_sblock = current_sblock = large_sblocks = NULL;
1825 string_blocks = NULL;
1826 string_free_list = NULL;
1827 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1828 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1829 }
1830
1831
1832 #ifdef GC_CHECK_STRING_BYTES
1833
1834 static int check_string_bytes_count;
1835
1836 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1837
1838
1839 /* Like GC_STRING_BYTES, but with debugging check. */
1840
1841 ptrdiff_t
1842 string_bytes (struct Lisp_String *s)
1843 {
1844 ptrdiff_t nbytes =
1845 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1846
1847 if (!PURE_POINTER_P (s)
1848 && s->data
1849 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1850 abort ();
1851 return nbytes;
1852 }
1853
1854 /* Check validity of Lisp strings' string_bytes member in B. */
1855
1856 static void
1857 check_sblock (struct sblock *b)
1858 {
1859 struct sdata *from, *end, *from_end;
1860
1861 end = b->next_free;
1862
1863 for (from = &b->first_data; from < end; from = from_end)
1864 {
1865 /* Compute the next FROM here because copying below may
1866 overwrite data we need to compute it. */
1867 ptrdiff_t nbytes;
1868
1869 /* Check that the string size recorded in the string is the
1870 same as the one recorded in the sdata structure. */
1871 if (from->string)
1872 CHECK_STRING_BYTES (from->string);
1873
1874 if (from->string)
1875 nbytes = GC_STRING_BYTES (from->string);
1876 else
1877 nbytes = SDATA_NBYTES (from);
1878
1879 nbytes = SDATA_SIZE (nbytes);
1880 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1881 }
1882 }
1883
1884
1885 /* Check validity of Lisp strings' string_bytes member. ALL_P
1886 non-zero means check all strings, otherwise check only most
1887 recently allocated strings. Used for hunting a bug. */
1888
1889 static void
1890 check_string_bytes (int all_p)
1891 {
1892 if (all_p)
1893 {
1894 struct sblock *b;
1895
1896 for (b = large_sblocks; b; b = b->next)
1897 {
1898 struct Lisp_String *s = b->first_data.string;
1899 if (s)
1900 CHECK_STRING_BYTES (s);
1901 }
1902
1903 for (b = oldest_sblock; b; b = b->next)
1904 check_sblock (b);
1905 }
1906 else
1907 check_sblock (current_sblock);
1908 }
1909
1910 #endif /* GC_CHECK_STRING_BYTES */
1911
1912 #ifdef GC_CHECK_STRING_FREE_LIST
1913
1914 /* Walk through the string free list looking for bogus next pointers.
1915 This may catch buffer overrun from a previous string. */
1916
1917 static void
1918 check_string_free_list (void)
1919 {
1920 struct Lisp_String *s;
1921
1922 /* Pop a Lisp_String off the free-list. */
1923 s = string_free_list;
1924 while (s != NULL)
1925 {
1926 if ((uintptr_t) s < 1024)
1927 abort ();
1928 s = NEXT_FREE_LISP_STRING (s);
1929 }
1930 }
1931 #else
1932 #define check_string_free_list()
1933 #endif
1934
1935 /* Return a new Lisp_String. */
1936
1937 static struct Lisp_String *
1938 allocate_string (void)
1939 {
1940 struct Lisp_String *s;
1941
1942 /* eassert (!handling_signal); */
1943
1944 MALLOC_BLOCK_INPUT;
1945
1946 /* If the free-list is empty, allocate a new string_block, and
1947 add all the Lisp_Strings in it to the free-list. */
1948 if (string_free_list == NULL)
1949 {
1950 struct string_block *b;
1951 int i;
1952
1953 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1954 memset (b, 0, sizeof *b);
1955 b->next = string_blocks;
1956 string_blocks = b;
1957
1958 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1959 {
1960 s = b->strings + i;
1961 NEXT_FREE_LISP_STRING (s) = string_free_list;
1962 string_free_list = s;
1963 }
1964
1965 total_free_strings += STRING_BLOCK_SIZE;
1966 }
1967
1968 check_string_free_list ();
1969
1970 /* Pop a Lisp_String off the free-list. */
1971 s = string_free_list;
1972 string_free_list = NEXT_FREE_LISP_STRING (s);
1973
1974 MALLOC_UNBLOCK_INPUT;
1975
1976 /* Probably not strictly necessary, but play it safe. */
1977 memset (s, 0, sizeof *s);
1978
1979 --total_free_strings;
1980 ++total_strings;
1981 ++strings_consed;
1982 consing_since_gc += sizeof *s;
1983
1984 #ifdef GC_CHECK_STRING_BYTES
1985 if (!noninteractive)
1986 {
1987 if (++check_string_bytes_count == 200)
1988 {
1989 check_string_bytes_count = 0;
1990 check_string_bytes (1);
1991 }
1992 else
1993 check_string_bytes (0);
1994 }
1995 #endif /* GC_CHECK_STRING_BYTES */
1996
1997 return s;
1998 }
1999
2000
2001 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
2002 plus a NUL byte at the end. Allocate an sdata structure for S, and
2003 set S->data to its `u.data' member. Store a NUL byte at the end of
2004 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
2005 S->data if it was initially non-null. */
2006
2007 void
2008 allocate_string_data (struct Lisp_String *s,
2009 EMACS_INT nchars, EMACS_INT nbytes)
2010 {
2011 struct sdata *data, *old_data;
2012 struct sblock *b;
2013 ptrdiff_t needed, old_nbytes;
2014
2015 if (STRING_BYTES_MAX < nbytes)
2016 string_overflow ();
2017
2018 /* Determine the number of bytes needed to store NBYTES bytes
2019 of string data. */
2020 needed = SDATA_SIZE (nbytes);
2021 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2022 old_nbytes = GC_STRING_BYTES (s);
2023
2024 MALLOC_BLOCK_INPUT;
2025
2026 if (nbytes > LARGE_STRING_BYTES)
2027 {
2028 size_t size = offsetof (struct sblock, first_data) + needed;
2029
2030 #ifdef DOUG_LEA_MALLOC
2031 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2032 because mapped region contents are not preserved in
2033 a dumped Emacs.
2034
2035 In case you think of allowing it in a dumped Emacs at the
2036 cost of not being able to re-dump, there's another reason:
2037 mmap'ed data typically have an address towards the top of the
2038 address space, which won't fit into an EMACS_INT (at least on
2039 32-bit systems with the current tagging scheme). --fx */
2040 mallopt (M_MMAP_MAX, 0);
2041 #endif
2042
2043 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2044
2045 #ifdef DOUG_LEA_MALLOC
2046 /* Back to a reasonable maximum of mmap'ed areas. */
2047 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2048 #endif
2049
2050 b->next_free = &b->first_data;
2051 b->first_data.string = NULL;
2052 b->next = large_sblocks;
2053 large_sblocks = b;
2054 }
2055 else if (current_sblock == NULL
2056 || (((char *) current_sblock + SBLOCK_SIZE
2057 - (char *) current_sblock->next_free)
2058 < (needed + GC_STRING_EXTRA)))
2059 {
2060 /* Not enough room in the current sblock. */
2061 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2062 b->next_free = &b->first_data;
2063 b->first_data.string = NULL;
2064 b->next = NULL;
2065
2066 if (current_sblock)
2067 current_sblock->next = b;
2068 else
2069 oldest_sblock = b;
2070 current_sblock = b;
2071 }
2072 else
2073 b = current_sblock;
2074
2075 data = b->next_free;
2076 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2077
2078 MALLOC_UNBLOCK_INPUT;
2079
2080 data->string = s;
2081 s->data = SDATA_DATA (data);
2082 #ifdef GC_CHECK_STRING_BYTES
2083 SDATA_NBYTES (data) = nbytes;
2084 #endif
2085 s->size = nchars;
2086 s->size_byte = nbytes;
2087 s->data[nbytes] = '\0';
2088 #ifdef GC_CHECK_STRING_OVERRUN
2089 memcpy ((char *) data + needed, string_overrun_cookie,
2090 GC_STRING_OVERRUN_COOKIE_SIZE);
2091 #endif
2092
2093 /* If S had already data assigned, mark that as free by setting its
2094 string back-pointer to null, and recording the size of the data
2095 in it. */
2096 if (old_data)
2097 {
2098 SDATA_NBYTES (old_data) = old_nbytes;
2099 old_data->string = NULL;
2100 }
2101
2102 consing_since_gc += needed;
2103 }
2104
2105
2106 /* Sweep and compact strings. */
2107
2108 static void
2109 sweep_strings (void)
2110 {
2111 struct string_block *b, *next;
2112 struct string_block *live_blocks = NULL;
2113
2114 string_free_list = NULL;
2115 total_strings = total_free_strings = 0;
2116 total_string_size = 0;
2117
2118 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2119 for (b = string_blocks; b; b = next)
2120 {
2121 int i, nfree = 0;
2122 struct Lisp_String *free_list_before = string_free_list;
2123
2124 next = b->next;
2125
2126 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2127 {
2128 struct Lisp_String *s = b->strings + i;
2129
2130 if (s->data)
2131 {
2132 /* String was not on free-list before. */
2133 if (STRING_MARKED_P (s))
2134 {
2135 /* String is live; unmark it and its intervals. */
2136 UNMARK_STRING (s);
2137
2138 if (!NULL_INTERVAL_P (s->intervals))
2139 UNMARK_BALANCE_INTERVALS (s->intervals);
2140
2141 ++total_strings;
2142 total_string_size += STRING_BYTES (s);
2143 }
2144 else
2145 {
2146 /* String is dead. Put it on the free-list. */
2147 struct sdata *data = SDATA_OF_STRING (s);
2148
2149 /* Save the size of S in its sdata so that we know
2150 how large that is. Reset the sdata's string
2151 back-pointer so that we know it's free. */
2152 #ifdef GC_CHECK_STRING_BYTES
2153 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2154 abort ();
2155 #else
2156 data->u.nbytes = GC_STRING_BYTES (s);
2157 #endif
2158 data->string = NULL;
2159
2160 /* Reset the strings's `data' member so that we
2161 know it's free. */
2162 s->data = NULL;
2163
2164 /* Put the string on the free-list. */
2165 NEXT_FREE_LISP_STRING (s) = string_free_list;
2166 string_free_list = s;
2167 ++nfree;
2168 }
2169 }
2170 else
2171 {
2172 /* S was on the free-list before. Put it there again. */
2173 NEXT_FREE_LISP_STRING (s) = string_free_list;
2174 string_free_list = s;
2175 ++nfree;
2176 }
2177 }
2178
2179 /* Free blocks that contain free Lisp_Strings only, except
2180 the first two of them. */
2181 if (nfree == STRING_BLOCK_SIZE
2182 && total_free_strings > STRING_BLOCK_SIZE)
2183 {
2184 lisp_free (b);
2185 string_free_list = free_list_before;
2186 }
2187 else
2188 {
2189 total_free_strings += nfree;
2190 b->next = live_blocks;
2191 live_blocks = b;
2192 }
2193 }
2194
2195 check_string_free_list ();
2196
2197 string_blocks = live_blocks;
2198 free_large_strings ();
2199 compact_small_strings ();
2200
2201 check_string_free_list ();
2202 }
2203
2204
2205 /* Free dead large strings. */
2206
2207 static void
2208 free_large_strings (void)
2209 {
2210 struct sblock *b, *next;
2211 struct sblock *live_blocks = NULL;
2212
2213 for (b = large_sblocks; b; b = next)
2214 {
2215 next = b->next;
2216
2217 if (b->first_data.string == NULL)
2218 lisp_free (b);
2219 else
2220 {
2221 b->next = live_blocks;
2222 live_blocks = b;
2223 }
2224 }
2225
2226 large_sblocks = live_blocks;
2227 }
2228
2229
2230 /* Compact data of small strings. Free sblocks that don't contain
2231 data of live strings after compaction. */
2232
2233 static void
2234 compact_small_strings (void)
2235 {
2236 struct sblock *b, *tb, *next;
2237 struct sdata *from, *to, *end, *tb_end;
2238 struct sdata *to_end, *from_end;
2239
2240 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2241 to, and TB_END is the end of TB. */
2242 tb = oldest_sblock;
2243 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2244 to = &tb->first_data;
2245
2246 /* Step through the blocks from the oldest to the youngest. We
2247 expect that old blocks will stabilize over time, so that less
2248 copying will happen this way. */
2249 for (b = oldest_sblock; b; b = b->next)
2250 {
2251 end = b->next_free;
2252 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2253
2254 for (from = &b->first_data; from < end; from = from_end)
2255 {
2256 /* Compute the next FROM here because copying below may
2257 overwrite data we need to compute it. */
2258 ptrdiff_t nbytes;
2259
2260 #ifdef GC_CHECK_STRING_BYTES
2261 /* Check that the string size recorded in the string is the
2262 same as the one recorded in the sdata structure. */
2263 if (from->string
2264 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2265 abort ();
2266 #endif /* GC_CHECK_STRING_BYTES */
2267
2268 if (from->string)
2269 nbytes = GC_STRING_BYTES (from->string);
2270 else
2271 nbytes = SDATA_NBYTES (from);
2272
2273 if (nbytes > LARGE_STRING_BYTES)
2274 abort ();
2275
2276 nbytes = SDATA_SIZE (nbytes);
2277 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2278
2279 #ifdef GC_CHECK_STRING_OVERRUN
2280 if (memcmp (string_overrun_cookie,
2281 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2282 GC_STRING_OVERRUN_COOKIE_SIZE))
2283 abort ();
2284 #endif
2285
2286 /* FROM->string non-null means it's alive. Copy its data. */
2287 if (from->string)
2288 {
2289 /* If TB is full, proceed with the next sblock. */
2290 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2291 if (to_end > tb_end)
2292 {
2293 tb->next_free = to;
2294 tb = tb->next;
2295 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2296 to = &tb->first_data;
2297 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2298 }
2299
2300 /* Copy, and update the string's `data' pointer. */
2301 if (from != to)
2302 {
2303 xassert (tb != b || to < from);
2304 memmove (to, from, nbytes + GC_STRING_EXTRA);
2305 to->string->data = SDATA_DATA (to);
2306 }
2307
2308 /* Advance past the sdata we copied to. */
2309 to = to_end;
2310 }
2311 }
2312 }
2313
2314 /* The rest of the sblocks following TB don't contain live data, so
2315 we can free them. */
2316 for (b = tb->next; b; b = next)
2317 {
2318 next = b->next;
2319 lisp_free (b);
2320 }
2321
2322 tb->next_free = to;
2323 tb->next = NULL;
2324 current_sblock = tb;
2325 }
2326
2327 void
2328 string_overflow (void)
2329 {
2330 error ("Maximum string size exceeded");
2331 }
2332
2333 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2334 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2335 LENGTH must be an integer.
2336 INIT must be an integer that represents a character. */)
2337 (Lisp_Object length, Lisp_Object init)
2338 {
2339 register Lisp_Object val;
2340 register unsigned char *p, *end;
2341 int c;
2342 EMACS_INT nbytes;
2343
2344 CHECK_NATNUM (length);
2345 CHECK_CHARACTER (init);
2346
2347 c = XFASTINT (init);
2348 if (ASCII_CHAR_P (c))
2349 {
2350 nbytes = XINT (length);
2351 val = make_uninit_string (nbytes);
2352 p = SDATA (val);
2353 end = p + SCHARS (val);
2354 while (p != end)
2355 *p++ = c;
2356 }
2357 else
2358 {
2359 unsigned char str[MAX_MULTIBYTE_LENGTH];
2360 int len = CHAR_STRING (c, str);
2361 EMACS_INT string_len = XINT (length);
2362
2363 if (string_len > STRING_BYTES_MAX / len)
2364 string_overflow ();
2365 nbytes = len * string_len;
2366 val = make_uninit_multibyte_string (string_len, nbytes);
2367 p = SDATA (val);
2368 end = p + nbytes;
2369 while (p != end)
2370 {
2371 memcpy (p, str, len);
2372 p += len;
2373 }
2374 }
2375
2376 *p = 0;
2377 return val;
2378 }
2379
2380
2381 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2382 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2383 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2384 (Lisp_Object length, Lisp_Object init)
2385 {
2386 register Lisp_Object val;
2387 struct Lisp_Bool_Vector *p;
2388 ptrdiff_t length_in_chars;
2389 EMACS_INT length_in_elts;
2390 int bits_per_value;
2391
2392 CHECK_NATNUM (length);
2393
2394 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2395
2396 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2397
2398 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2399 slot `size' of the struct Lisp_Bool_Vector. */
2400 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2401
2402 /* No Lisp_Object to trace in there. */
2403 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2404
2405 p = XBOOL_VECTOR (val);
2406 p->size = XFASTINT (length);
2407
2408 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2409 / BOOL_VECTOR_BITS_PER_CHAR);
2410 if (length_in_chars)
2411 {
2412 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2413
2414 /* Clear any extraneous bits in the last byte. */
2415 p->data[length_in_chars - 1]
2416 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2417 }
2418
2419 return val;
2420 }
2421
2422
2423 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2424 of characters from the contents. This string may be unibyte or
2425 multibyte, depending on the contents. */
2426
2427 Lisp_Object
2428 make_string (const char *contents, ptrdiff_t nbytes)
2429 {
2430 register Lisp_Object val;
2431 ptrdiff_t nchars, multibyte_nbytes;
2432
2433 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2434 &nchars, &multibyte_nbytes);
2435 if (nbytes == nchars || nbytes != multibyte_nbytes)
2436 /* CONTENTS contains no multibyte sequences or contains an invalid
2437 multibyte sequence. We must make unibyte string. */
2438 val = make_unibyte_string (contents, nbytes);
2439 else
2440 val = make_multibyte_string (contents, nchars, nbytes);
2441 return val;
2442 }
2443
2444
2445 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2446
2447 Lisp_Object
2448 make_unibyte_string (const char *contents, ptrdiff_t length)
2449 {
2450 register Lisp_Object val;
2451 val = make_uninit_string (length);
2452 memcpy (SDATA (val), contents, length);
2453 return val;
2454 }
2455
2456
2457 /* Make a multibyte string from NCHARS characters occupying NBYTES
2458 bytes at CONTENTS. */
2459
2460 Lisp_Object
2461 make_multibyte_string (const char *contents,
2462 ptrdiff_t nchars, ptrdiff_t nbytes)
2463 {
2464 register Lisp_Object val;
2465 val = make_uninit_multibyte_string (nchars, nbytes);
2466 memcpy (SDATA (val), contents, nbytes);
2467 return val;
2468 }
2469
2470
2471 /* Make a string from NCHARS characters occupying NBYTES bytes at
2472 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2473
2474 Lisp_Object
2475 make_string_from_bytes (const char *contents,
2476 ptrdiff_t nchars, ptrdiff_t nbytes)
2477 {
2478 register Lisp_Object val;
2479 val = make_uninit_multibyte_string (nchars, nbytes);
2480 memcpy (SDATA (val), contents, nbytes);
2481 if (SBYTES (val) == SCHARS (val))
2482 STRING_SET_UNIBYTE (val);
2483 return val;
2484 }
2485
2486
2487 /* Make a string from NCHARS characters occupying NBYTES bytes at
2488 CONTENTS. The argument MULTIBYTE controls whether to label the
2489 string as multibyte. If NCHARS is negative, it counts the number of
2490 characters by itself. */
2491
2492 Lisp_Object
2493 make_specified_string (const char *contents,
2494 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2495 {
2496 register Lisp_Object val;
2497
2498 if (nchars < 0)
2499 {
2500 if (multibyte)
2501 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2502 nbytes);
2503 else
2504 nchars = nbytes;
2505 }
2506 val = make_uninit_multibyte_string (nchars, nbytes);
2507 memcpy (SDATA (val), contents, nbytes);
2508 if (!multibyte)
2509 STRING_SET_UNIBYTE (val);
2510 return val;
2511 }
2512
2513
2514 /* Make a string from the data at STR, treating it as multibyte if the
2515 data warrants. */
2516
2517 Lisp_Object
2518 build_string (const char *str)
2519 {
2520 return make_string (str, strlen (str));
2521 }
2522
2523
2524 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2525 occupying LENGTH bytes. */
2526
2527 Lisp_Object
2528 make_uninit_string (EMACS_INT length)
2529 {
2530 Lisp_Object val;
2531
2532 if (!length)
2533 return empty_unibyte_string;
2534 val = make_uninit_multibyte_string (length, length);
2535 STRING_SET_UNIBYTE (val);
2536 return val;
2537 }
2538
2539
2540 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2541 which occupy NBYTES bytes. */
2542
2543 Lisp_Object
2544 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2545 {
2546 Lisp_Object string;
2547 struct Lisp_String *s;
2548
2549 if (nchars < 0)
2550 abort ();
2551 if (!nbytes)
2552 return empty_multibyte_string;
2553
2554 s = allocate_string ();
2555 allocate_string_data (s, nchars, nbytes);
2556 XSETSTRING (string, s);
2557 string_chars_consed += nbytes;
2558 return string;
2559 }
2560
2561
2562 \f
2563 /***********************************************************************
2564 Float Allocation
2565 ***********************************************************************/
2566
2567 /* We store float cells inside of float_blocks, allocating a new
2568 float_block with malloc whenever necessary. Float cells reclaimed
2569 by GC are put on a free list to be reallocated before allocating
2570 any new float cells from the latest float_block. */
2571
2572 #define FLOAT_BLOCK_SIZE \
2573 (((BLOCK_BYTES - sizeof (struct float_block *) \
2574 /* The compiler might add padding at the end. */ \
2575 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2576 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2577
2578 #define GETMARKBIT(block,n) \
2579 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2580 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2581 & 1)
2582
2583 #define SETMARKBIT(block,n) \
2584 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2585 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2586
2587 #define UNSETMARKBIT(block,n) \
2588 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2589 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2590
2591 #define FLOAT_BLOCK(fptr) \
2592 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2593
2594 #define FLOAT_INDEX(fptr) \
2595 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2596
2597 struct float_block
2598 {
2599 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2600 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2601 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2602 struct float_block *next;
2603 };
2604
2605 #define FLOAT_MARKED_P(fptr) \
2606 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2607
2608 #define FLOAT_MARK(fptr) \
2609 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2610
2611 #define FLOAT_UNMARK(fptr) \
2612 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2613
2614 /* Current float_block. */
2615
2616 static struct float_block *float_block;
2617
2618 /* Index of first unused Lisp_Float in the current float_block. */
2619
2620 static int float_block_index;
2621
2622 /* Free-list of Lisp_Floats. */
2623
2624 static struct Lisp_Float *float_free_list;
2625
2626
2627 /* Initialize float allocation. */
2628
2629 static void
2630 init_float (void)
2631 {
2632 float_block = NULL;
2633 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2634 float_free_list = 0;
2635 }
2636
2637
2638 /* Return a new float object with value FLOAT_VALUE. */
2639
2640 Lisp_Object
2641 make_float (double float_value)
2642 {
2643 register Lisp_Object val;
2644
2645 /* eassert (!handling_signal); */
2646
2647 MALLOC_BLOCK_INPUT;
2648
2649 if (float_free_list)
2650 {
2651 /* We use the data field for chaining the free list
2652 so that we won't use the same field that has the mark bit. */
2653 XSETFLOAT (val, float_free_list);
2654 float_free_list = float_free_list->u.chain;
2655 }
2656 else
2657 {
2658 if (float_block_index == FLOAT_BLOCK_SIZE)
2659 {
2660 register struct float_block *new;
2661
2662 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2663 MEM_TYPE_FLOAT);
2664 new->next = float_block;
2665 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2666 float_block = new;
2667 float_block_index = 0;
2668 }
2669 XSETFLOAT (val, &float_block->floats[float_block_index]);
2670 float_block_index++;
2671 }
2672
2673 MALLOC_UNBLOCK_INPUT;
2674
2675 XFLOAT_INIT (val, float_value);
2676 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2677 consing_since_gc += sizeof (struct Lisp_Float);
2678 floats_consed++;
2679 return val;
2680 }
2681
2682
2683 \f
2684 /***********************************************************************
2685 Cons Allocation
2686 ***********************************************************************/
2687
2688 /* We store cons cells inside of cons_blocks, allocating a new
2689 cons_block with malloc whenever necessary. Cons cells reclaimed by
2690 GC are put on a free list to be reallocated before allocating
2691 any new cons cells from the latest cons_block. */
2692
2693 #define CONS_BLOCK_SIZE \
2694 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2695 /* The compiler might add padding at the end. */ \
2696 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2697 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2698
2699 #define CONS_BLOCK(fptr) \
2700 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2701
2702 #define CONS_INDEX(fptr) \
2703 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2704
2705 struct cons_block
2706 {
2707 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2708 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2709 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2710 struct cons_block *next;
2711 };
2712
2713 #define CONS_MARKED_P(fptr) \
2714 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2715
2716 #define CONS_MARK(fptr) \
2717 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2718
2719 #define CONS_UNMARK(fptr) \
2720 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2721
2722 /* Current cons_block. */
2723
2724 static struct cons_block *cons_block;
2725
2726 /* Index of first unused Lisp_Cons in the current block. */
2727
2728 static int cons_block_index;
2729
2730 /* Free-list of Lisp_Cons structures. */
2731
2732 static struct Lisp_Cons *cons_free_list;
2733
2734
2735 /* Initialize cons allocation. */
2736
2737 static void
2738 init_cons (void)
2739 {
2740 cons_block = NULL;
2741 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2742 cons_free_list = 0;
2743 }
2744
2745
2746 /* Explicitly free a cons cell by putting it on the free-list. */
2747
2748 void
2749 free_cons (struct Lisp_Cons *ptr)
2750 {
2751 ptr->u.chain = cons_free_list;
2752 #if GC_MARK_STACK
2753 ptr->car = Vdead;
2754 #endif
2755 cons_free_list = ptr;
2756 }
2757
2758 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2759 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2760 (Lisp_Object car, Lisp_Object cdr)
2761 {
2762 register Lisp_Object val;
2763
2764 /* eassert (!handling_signal); */
2765
2766 MALLOC_BLOCK_INPUT;
2767
2768 if (cons_free_list)
2769 {
2770 /* We use the cdr for chaining the free list
2771 so that we won't use the same field that has the mark bit. */
2772 XSETCONS (val, cons_free_list);
2773 cons_free_list = cons_free_list->u.chain;
2774 }
2775 else
2776 {
2777 if (cons_block_index == CONS_BLOCK_SIZE)
2778 {
2779 register struct cons_block *new;
2780 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2781 MEM_TYPE_CONS);
2782 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2783 new->next = cons_block;
2784 cons_block = new;
2785 cons_block_index = 0;
2786 }
2787 XSETCONS (val, &cons_block->conses[cons_block_index]);
2788 cons_block_index++;
2789 }
2790
2791 MALLOC_UNBLOCK_INPUT;
2792
2793 XSETCAR (val, car);
2794 XSETCDR (val, cdr);
2795 eassert (!CONS_MARKED_P (XCONS (val)));
2796 consing_since_gc += sizeof (struct Lisp_Cons);
2797 cons_cells_consed++;
2798 return val;
2799 }
2800
2801 #ifdef GC_CHECK_CONS_LIST
2802 /* Get an error now if there's any junk in the cons free list. */
2803 void
2804 check_cons_list (void)
2805 {
2806 struct Lisp_Cons *tail = cons_free_list;
2807
2808 while (tail)
2809 tail = tail->u.chain;
2810 }
2811 #endif
2812
2813 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2814
2815 Lisp_Object
2816 list1 (Lisp_Object arg1)
2817 {
2818 return Fcons (arg1, Qnil);
2819 }
2820
2821 Lisp_Object
2822 list2 (Lisp_Object arg1, Lisp_Object arg2)
2823 {
2824 return Fcons (arg1, Fcons (arg2, Qnil));
2825 }
2826
2827
2828 Lisp_Object
2829 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2830 {
2831 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2832 }
2833
2834
2835 Lisp_Object
2836 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2837 {
2838 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2839 }
2840
2841
2842 Lisp_Object
2843 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2844 {
2845 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2846 Fcons (arg5, Qnil)))));
2847 }
2848
2849
2850 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2851 doc: /* Return a newly created list with specified arguments as elements.
2852 Any number of arguments, even zero arguments, are allowed.
2853 usage: (list &rest OBJECTS) */)
2854 (ptrdiff_t nargs, Lisp_Object *args)
2855 {
2856 register Lisp_Object val;
2857 val = Qnil;
2858
2859 while (nargs > 0)
2860 {
2861 nargs--;
2862 val = Fcons (args[nargs], val);
2863 }
2864 return val;
2865 }
2866
2867
2868 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2869 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2870 (register Lisp_Object length, Lisp_Object init)
2871 {
2872 register Lisp_Object val;
2873 register EMACS_INT size;
2874
2875 CHECK_NATNUM (length);
2876 size = XFASTINT (length);
2877
2878 val = Qnil;
2879 while (size > 0)
2880 {
2881 val = Fcons (init, val);
2882 --size;
2883
2884 if (size > 0)
2885 {
2886 val = Fcons (init, val);
2887 --size;
2888
2889 if (size > 0)
2890 {
2891 val = Fcons (init, val);
2892 --size;
2893
2894 if (size > 0)
2895 {
2896 val = Fcons (init, val);
2897 --size;
2898
2899 if (size > 0)
2900 {
2901 val = Fcons (init, val);
2902 --size;
2903 }
2904 }
2905 }
2906 }
2907
2908 QUIT;
2909 }
2910
2911 return val;
2912 }
2913
2914
2915 \f
2916 /***********************************************************************
2917 Vector Allocation
2918 ***********************************************************************/
2919
2920 /* This value is balanced well enough to avoid too much internal overhead
2921 for the most common cases; it's not required to be a power of two, but
2922 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2923
2924 #define VECTOR_BLOCK_SIZE 4096
2925
2926 /* Handy constants for vectorlike objects. */
2927 enum
2928 {
2929 header_size = offsetof (struct Lisp_Vector, contents),
2930 word_size = sizeof (Lisp_Object),
2931 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2932 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2933 };
2934
2935 /* ROUNDUP_SIZE must be a power of 2. */
2936 verify ((roundup_size & (roundup_size - 1)) == 0);
2937
2938 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2939
2940 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2941
2942 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2943
2944 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2945
2946 /* Size of the minimal vector allocated from block. */
2947
2948 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2949
2950 /* Size of the largest vector allocated from block. */
2951
2952 #define VBLOCK_BYTES_MAX \
2953 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2954
2955 /* We maintain one free list for each possible block-allocated
2956 vector size, and this is the number of free lists we have. */
2957
2958 #define VECTOR_MAX_FREE_LIST_INDEX \
2959 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2960
2961 /* When the vector is on a free list, vectorlike_header.SIZE is set to
2962 this special value ORed with vector's memory footprint size. */
2963
2964 #define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2965 | (VECTOR_BLOCK_SIZE - 1)))
2966
2967 /* Common shortcut to advance vector pointer over a block data. */
2968
2969 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2970
2971 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2972
2973 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2974
2975 /* Common shortcut to setup vector on a free list. */
2976
2977 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2978 do { \
2979 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2980 eassert ((nbytes) % roundup_size == 0); \
2981 (index) = VINDEX (nbytes); \
2982 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2983 (v)->header.next.vector = vector_free_lists[index]; \
2984 vector_free_lists[index] = (v); \
2985 } while (0)
2986
2987 struct vector_block
2988 {
2989 char data[VECTOR_BLOCK_BYTES];
2990 struct vector_block *next;
2991 };
2992
2993 /* Chain of vector blocks. */
2994
2995 static struct vector_block *vector_blocks;
2996
2997 /* Vector free lists, where NTH item points to a chain of free
2998 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2999
3000 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3001
3002 /* Singly-linked list of large vectors. */
3003
3004 static struct Lisp_Vector *large_vectors;
3005
3006 /* The only vector with 0 slots, allocated from pure space. */
3007
3008 static struct Lisp_Vector *zero_vector;
3009
3010 /* Get a new vector block. */
3011
3012 static struct vector_block *
3013 allocate_vector_block (void)
3014 {
3015 struct vector_block *block;
3016
3017 #ifdef DOUG_LEA_MALLOC
3018 mallopt (M_MMAP_MAX, 0);
3019 #endif
3020
3021 block = xmalloc (sizeof (struct vector_block));
3022
3023 #ifdef DOUG_LEA_MALLOC
3024 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3025 #endif
3026
3027 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3028 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3029 MEM_TYPE_VECTOR_BLOCK);
3030 #endif
3031
3032 block->next = vector_blocks;
3033 vector_blocks = block;
3034 return block;
3035 }
3036
3037 /* Called once to initialize vector allocation. */
3038
3039 static void
3040 init_vectors (void)
3041 {
3042 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3043 zero_vector->header.size = 0;
3044 }
3045
3046 /* Allocate vector from a vector block. */
3047
3048 static struct Lisp_Vector *
3049 allocate_vector_from_block (size_t nbytes)
3050 {
3051 struct Lisp_Vector *vector, *rest;
3052 struct vector_block *block;
3053 size_t index, restbytes;
3054
3055 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3056 eassert (nbytes % roundup_size == 0);
3057
3058 /* First, try to allocate from a free list
3059 containing vectors of the requested size. */
3060 index = VINDEX (nbytes);
3061 if (vector_free_lists[index])
3062 {
3063 vector = vector_free_lists[index];
3064 vector_free_lists[index] = vector->header.next.vector;
3065 vector->header.next.nbytes = nbytes;
3066 return vector;
3067 }
3068
3069 /* Next, check free lists containing larger vectors. Since
3070 we will split the result, we should have remaining space
3071 large enough to use for one-slot vector at least. */
3072 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3073 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3074 if (vector_free_lists[index])
3075 {
3076 /* This vector is larger than requested. */
3077 vector = vector_free_lists[index];
3078 vector_free_lists[index] = vector->header.next.vector;
3079 vector->header.next.nbytes = nbytes;
3080
3081 /* Excess bytes are used for the smaller vector,
3082 which should be set on an appropriate free list. */
3083 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3084 eassert (restbytes % roundup_size == 0);
3085 rest = ADVANCE (vector, nbytes);
3086 SETUP_ON_FREE_LIST (rest, restbytes, index);
3087 return vector;
3088 }
3089
3090 /* Finally, need a new vector block. */
3091 block = allocate_vector_block ();
3092
3093 /* New vector will be at the beginning of this block. */
3094 vector = (struct Lisp_Vector *) block->data;
3095 vector->header.next.nbytes = nbytes;
3096
3097 /* If the rest of space from this block is large enough
3098 for one-slot vector at least, set up it on a free list. */
3099 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3100 if (restbytes >= VBLOCK_BYTES_MIN)
3101 {
3102 eassert (restbytes % roundup_size == 0);
3103 rest = ADVANCE (vector, nbytes);
3104 SETUP_ON_FREE_LIST (rest, restbytes, index);
3105 }
3106 return vector;
3107 }
3108
3109 /* Return how many Lisp_Objects can be stored in V. */
3110
3111 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3112 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3113 (v)->header.size)
3114
3115 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3116
3117 #define VECTOR_IN_BLOCK(vector, block) \
3118 ((char *) (vector) <= (block)->data \
3119 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3120
3121 /* Reclaim space used by unmarked vectors. */
3122
3123 static void
3124 sweep_vectors (void)
3125 {
3126 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3127 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3128
3129 total_vector_size = 0;
3130 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3131
3132 /* Looking through vector blocks. */
3133
3134 for (block = vector_blocks; block; block = *bprev)
3135 {
3136 int free_this_block = 0;
3137
3138 for (vector = (struct Lisp_Vector *) block->data;
3139 VECTOR_IN_BLOCK (vector, block); vector = next)
3140 {
3141 if (VECTOR_MARKED_P (vector))
3142 {
3143 VECTOR_UNMARK (vector);
3144 total_vector_size += VECTOR_SIZE (vector);
3145 next = ADVANCE (vector, vector->header.next.nbytes);
3146 }
3147 else
3148 {
3149 ptrdiff_t nbytes;
3150
3151 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3152 == VECTOR_FREE_LIST_FLAG)
3153 vector->header.next.nbytes =
3154 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
3155
3156 next = ADVANCE (vector, vector->header.next.nbytes);
3157
3158 /* While NEXT is not marked, try to coalesce with VECTOR,
3159 thus making VECTOR of the largest possible size. */
3160
3161 while (VECTOR_IN_BLOCK (next, block))
3162 {
3163 if (VECTOR_MARKED_P (next))
3164 break;
3165 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3166 == VECTOR_FREE_LIST_FLAG)
3167 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3168 else
3169 nbytes = next->header.next.nbytes;
3170 vector->header.next.nbytes += nbytes;
3171 next = ADVANCE (next, nbytes);
3172 }
3173
3174 eassert (vector->header.next.nbytes % roundup_size == 0);
3175
3176 if (vector == (struct Lisp_Vector *) block->data
3177 && !VECTOR_IN_BLOCK (next, block))
3178 /* This block should be freed because all of it's
3179 space was coalesced into the only free vector. */
3180 free_this_block = 1;
3181 else
3182 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3183 }
3184 }
3185
3186 if (free_this_block)
3187 {
3188 *bprev = block->next;
3189 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3190 mem_delete (mem_find (block->data));
3191 #endif
3192 xfree (block);
3193 }
3194 else
3195 bprev = &block->next;
3196 }
3197
3198 /* Sweep large vectors. */
3199
3200 for (vector = large_vectors; vector; vector = *vprev)
3201 {
3202 if (VECTOR_MARKED_P (vector))
3203 {
3204 VECTOR_UNMARK (vector);
3205 total_vector_size += VECTOR_SIZE (vector);
3206 vprev = &vector->header.next.vector;
3207 }
3208 else
3209 {
3210 *vprev = vector->header.next.vector;
3211 lisp_free (vector);
3212 }
3213 }
3214 }
3215
3216 /* Value is a pointer to a newly allocated Lisp_Vector structure
3217 with room for LEN Lisp_Objects. */
3218
3219 static struct Lisp_Vector *
3220 allocate_vectorlike (ptrdiff_t len)
3221 {
3222 struct Lisp_Vector *p;
3223 size_t nbytes;
3224
3225 MALLOC_BLOCK_INPUT;
3226
3227 #ifdef DOUG_LEA_MALLOC
3228 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3229 because mapped region contents are not preserved in
3230 a dumped Emacs. */
3231 mallopt (M_MMAP_MAX, 0);
3232 #endif
3233
3234 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3235 /* eassert (!handling_signal); */
3236
3237 if (len == 0)
3238 {
3239 MALLOC_UNBLOCK_INPUT;
3240 return zero_vector;
3241 }
3242
3243 nbytes = header_size + len * word_size;
3244
3245 if (nbytes <= VBLOCK_BYTES_MAX)
3246 p = allocate_vector_from_block (vroundup (nbytes));
3247 else
3248 {
3249 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3250 p->header.next.vector = large_vectors;
3251 large_vectors = p;
3252 }
3253
3254 #ifdef DOUG_LEA_MALLOC
3255 /* Back to a reasonable maximum of mmap'ed areas. */
3256 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3257 #endif
3258
3259 consing_since_gc += nbytes;
3260 vector_cells_consed += len;
3261
3262 MALLOC_UNBLOCK_INPUT;
3263
3264 return p;
3265 }
3266
3267
3268 /* Allocate a vector with LEN slots. */
3269
3270 struct Lisp_Vector *
3271 allocate_vector (EMACS_INT len)
3272 {
3273 struct Lisp_Vector *v;
3274 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3275
3276 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3277 memory_full (SIZE_MAX);
3278 v = allocate_vectorlike (len);
3279 v->header.size = len;
3280 return v;
3281 }
3282
3283
3284 /* Allocate other vector-like structures. */
3285
3286 struct Lisp_Vector *
3287 allocate_pseudovector (int memlen, int lisplen, int tag)
3288 {
3289 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3290 int i;
3291
3292 /* Only the first lisplen slots will be traced normally by the GC. */
3293 for (i = 0; i < lisplen; ++i)
3294 v->contents[i] = Qnil;
3295
3296 XSETPVECTYPESIZE (v, tag, lisplen);
3297 return v;
3298 }
3299
3300 struct Lisp_Hash_Table *
3301 allocate_hash_table (void)
3302 {
3303 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3304 }
3305
3306
3307 struct window *
3308 allocate_window (void)
3309 {
3310 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3311 }
3312
3313
3314 struct terminal *
3315 allocate_terminal (void)
3316 {
3317 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3318 next_terminal, PVEC_TERMINAL);
3319 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3320 memset (&t->next_terminal, 0,
3321 (char*) (t + 1) - (char*) &t->next_terminal);
3322
3323 return t;
3324 }
3325
3326 struct frame *
3327 allocate_frame (void)
3328 {
3329 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3330 face_cache, PVEC_FRAME);
3331 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3332 memset (&f->face_cache, 0,
3333 (char *) (f + 1) - (char *) &f->face_cache);
3334 return f;
3335 }
3336
3337
3338 struct Lisp_Process *
3339 allocate_process (void)
3340 {
3341 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3342 }
3343
3344
3345 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3346 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3347 See also the function `vector'. */)
3348 (register Lisp_Object length, Lisp_Object init)
3349 {
3350 Lisp_Object vector;
3351 register ptrdiff_t sizei;
3352 register ptrdiff_t i;
3353 register struct Lisp_Vector *p;
3354
3355 CHECK_NATNUM (length);
3356
3357 p = allocate_vector (XFASTINT (length));
3358 sizei = XFASTINT (length);
3359 for (i = 0; i < sizei; i++)
3360 p->contents[i] = init;
3361
3362 XSETVECTOR (vector, p);
3363 return vector;
3364 }
3365
3366
3367 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3368 doc: /* Return a newly created vector with specified arguments as elements.
3369 Any number of arguments, even zero arguments, are allowed.
3370 usage: (vector &rest OBJECTS) */)
3371 (ptrdiff_t nargs, Lisp_Object *args)
3372 {
3373 register Lisp_Object len, val;
3374 ptrdiff_t i;
3375 register struct Lisp_Vector *p;
3376
3377 XSETFASTINT (len, nargs);
3378 val = Fmake_vector (len, Qnil);
3379 p = XVECTOR (val);
3380 for (i = 0; i < nargs; i++)
3381 p->contents[i] = args[i];
3382 return val;
3383 }
3384
3385 void
3386 make_byte_code (struct Lisp_Vector *v)
3387 {
3388 if (v->header.size > 1 && STRINGP (v->contents[1])
3389 && STRING_MULTIBYTE (v->contents[1]))
3390 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3391 earlier because they produced a raw 8-bit string for byte-code
3392 and now such a byte-code string is loaded as multibyte while
3393 raw 8-bit characters converted to multibyte form. Thus, now we
3394 must convert them back to the original unibyte form. */
3395 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3396 XSETPVECTYPE (v, PVEC_COMPILED);
3397 }
3398
3399 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3400 doc: /* Create a byte-code object with specified arguments as elements.
3401 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3402 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3403 and (optional) INTERACTIVE-SPEC.
3404 The first four arguments are required; at most six have any
3405 significance.
3406 The ARGLIST can be either like the one of `lambda', in which case the arguments
3407 will be dynamically bound before executing the byte code, or it can be an
3408 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3409 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3410 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3411 argument to catch the left-over arguments. If such an integer is used, the
3412 arguments will not be dynamically bound but will be instead pushed on the
3413 stack before executing the byte-code.
3414 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3415 (ptrdiff_t nargs, Lisp_Object *args)
3416 {
3417 register Lisp_Object len, val;
3418 ptrdiff_t i;
3419 register struct Lisp_Vector *p;
3420
3421 /* We used to purecopy everything here, if purify-flga was set. This worked
3422 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3423 dangerous, since make-byte-code is used during execution to build
3424 closures, so any closure built during the preload phase would end up
3425 copied into pure space, including its free variables, which is sometimes
3426 just wasteful and other times plainly wrong (e.g. those free vars may want
3427 to be setcar'd). */
3428
3429 XSETFASTINT (len, nargs);
3430 val = Fmake_vector (len, Qnil);
3431
3432 p = XVECTOR (val);
3433 for (i = 0; i < nargs; i++)
3434 p->contents[i] = args[i];
3435 make_byte_code (p);
3436 XSETCOMPILED (val, p);
3437 return val;
3438 }
3439
3440
3441 \f
3442 /***********************************************************************
3443 Symbol Allocation
3444 ***********************************************************************/
3445
3446 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3447 of the required alignment if LSB tags are used. */
3448
3449 union aligned_Lisp_Symbol
3450 {
3451 struct Lisp_Symbol s;
3452 #if USE_LSB_TAG
3453 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3454 & -(1 << GCTYPEBITS)];
3455 #endif
3456 };
3457
3458 /* Each symbol_block is just under 1020 bytes long, since malloc
3459 really allocates in units of powers of two and uses 4 bytes for its
3460 own overhead. */
3461
3462 #define SYMBOL_BLOCK_SIZE \
3463 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3464
3465 struct symbol_block
3466 {
3467 /* Place `symbols' first, to preserve alignment. */
3468 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3469 struct symbol_block *next;
3470 };
3471
3472 /* Current symbol block and index of first unused Lisp_Symbol
3473 structure in it. */
3474
3475 static struct symbol_block *symbol_block;
3476 static int symbol_block_index;
3477
3478 /* List of free symbols. */
3479
3480 static struct Lisp_Symbol *symbol_free_list;
3481
3482
3483 /* Initialize symbol allocation. */
3484
3485 static void
3486 init_symbol (void)
3487 {
3488 symbol_block = NULL;
3489 symbol_block_index = SYMBOL_BLOCK_SIZE;
3490 symbol_free_list = 0;
3491 }
3492
3493
3494 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3495 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3496 Its value and function definition are void, and its property list is nil. */)
3497 (Lisp_Object name)
3498 {
3499 register Lisp_Object val;
3500 register struct Lisp_Symbol *p;
3501
3502 CHECK_STRING (name);
3503
3504 /* eassert (!handling_signal); */
3505
3506 MALLOC_BLOCK_INPUT;
3507
3508 if (symbol_free_list)
3509 {
3510 XSETSYMBOL (val, symbol_free_list);
3511 symbol_free_list = symbol_free_list->next;
3512 }
3513 else
3514 {
3515 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3516 {
3517 struct symbol_block *new;
3518 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3519 MEM_TYPE_SYMBOL);
3520 new->next = symbol_block;
3521 symbol_block = new;
3522 symbol_block_index = 0;
3523 }
3524 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3525 symbol_block_index++;
3526 }
3527
3528 MALLOC_UNBLOCK_INPUT;
3529
3530 p = XSYMBOL (val);
3531 p->xname = name;
3532 p->plist = Qnil;
3533 p->redirect = SYMBOL_PLAINVAL;
3534 SET_SYMBOL_VAL (p, Qunbound);
3535 p->function = Qunbound;
3536 p->next = NULL;
3537 p->gcmarkbit = 0;
3538 p->interned = SYMBOL_UNINTERNED;
3539 p->constant = 0;
3540 p->declared_special = 0;
3541 consing_since_gc += sizeof (struct Lisp_Symbol);
3542 symbols_consed++;
3543 return val;
3544 }
3545
3546
3547 \f
3548 /***********************************************************************
3549 Marker (Misc) Allocation
3550 ***********************************************************************/
3551
3552 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3553 the required alignment when LSB tags are used. */
3554
3555 union aligned_Lisp_Misc
3556 {
3557 union Lisp_Misc m;
3558 #if USE_LSB_TAG
3559 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3560 & -(1 << GCTYPEBITS)];
3561 #endif
3562 };
3563
3564 /* Allocation of markers and other objects that share that structure.
3565 Works like allocation of conses. */
3566
3567 #define MARKER_BLOCK_SIZE \
3568 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3569
3570 struct marker_block
3571 {
3572 /* Place `markers' first, to preserve alignment. */
3573 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3574 struct marker_block *next;
3575 };
3576
3577 static struct marker_block *marker_block;
3578 static int marker_block_index;
3579
3580 static union Lisp_Misc *marker_free_list;
3581
3582 static void
3583 init_marker (void)
3584 {
3585 marker_block = NULL;
3586 marker_block_index = MARKER_BLOCK_SIZE;
3587 marker_free_list = 0;
3588 }
3589
3590 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3591
3592 Lisp_Object
3593 allocate_misc (void)
3594 {
3595 Lisp_Object val;
3596
3597 /* eassert (!handling_signal); */
3598
3599 MALLOC_BLOCK_INPUT;
3600
3601 if (marker_free_list)
3602 {
3603 XSETMISC (val, marker_free_list);
3604 marker_free_list = marker_free_list->u_free.chain;
3605 }
3606 else
3607 {
3608 if (marker_block_index == MARKER_BLOCK_SIZE)
3609 {
3610 struct marker_block *new;
3611 new = (struct marker_block *) lisp_malloc (sizeof *new,
3612 MEM_TYPE_MISC);
3613 new->next = marker_block;
3614 marker_block = new;
3615 marker_block_index = 0;
3616 total_free_markers += MARKER_BLOCK_SIZE;
3617 }
3618 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3619 marker_block_index++;
3620 }
3621
3622 MALLOC_UNBLOCK_INPUT;
3623
3624 --total_free_markers;
3625 consing_since_gc += sizeof (union Lisp_Misc);
3626 misc_objects_consed++;
3627 XMISCANY (val)->gcmarkbit = 0;
3628 return val;
3629 }
3630
3631 /* Free a Lisp_Misc object */
3632
3633 static void
3634 free_misc (Lisp_Object misc)
3635 {
3636 XMISCTYPE (misc) = Lisp_Misc_Free;
3637 XMISC (misc)->u_free.chain = marker_free_list;
3638 marker_free_list = XMISC (misc);
3639
3640 total_free_markers++;
3641 }
3642
3643 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3644 INTEGER. This is used to package C values to call record_unwind_protect.
3645 The unwind function can get the C values back using XSAVE_VALUE. */
3646
3647 Lisp_Object
3648 make_save_value (void *pointer, ptrdiff_t integer)
3649 {
3650 register Lisp_Object val;
3651 register struct Lisp_Save_Value *p;
3652
3653 val = allocate_misc ();
3654 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3655 p = XSAVE_VALUE (val);
3656 p->pointer = pointer;
3657 p->integer = integer;
3658 p->dogc = 0;
3659 return val;
3660 }
3661
3662 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3663 doc: /* Return a newly allocated marker which does not point at any place. */)
3664 (void)
3665 {
3666 register Lisp_Object val;
3667 register struct Lisp_Marker *p;
3668
3669 val = allocate_misc ();
3670 XMISCTYPE (val) = Lisp_Misc_Marker;
3671 p = XMARKER (val);
3672 p->buffer = 0;
3673 p->bytepos = 0;
3674 p->charpos = 0;
3675 p->next = NULL;
3676 p->insertion_type = 0;
3677 return val;
3678 }
3679
3680 /* Put MARKER back on the free list after using it temporarily. */
3681
3682 void
3683 free_marker (Lisp_Object marker)
3684 {
3685 unchain_marker (XMARKER (marker));
3686 free_misc (marker);
3687 }
3688
3689 \f
3690 /* Return a newly created vector or string with specified arguments as
3691 elements. If all the arguments are characters that can fit
3692 in a string of events, make a string; otherwise, make a vector.
3693
3694 Any number of arguments, even zero arguments, are allowed. */
3695
3696 Lisp_Object
3697 make_event_array (register int nargs, Lisp_Object *args)
3698 {
3699 int i;
3700
3701 for (i = 0; i < nargs; i++)
3702 /* The things that fit in a string
3703 are characters that are in 0...127,
3704 after discarding the meta bit and all the bits above it. */
3705 if (!INTEGERP (args[i])
3706 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3707 return Fvector (nargs, args);
3708
3709 /* Since the loop exited, we know that all the things in it are
3710 characters, so we can make a string. */
3711 {
3712 Lisp_Object result;
3713
3714 result = Fmake_string (make_number (nargs), make_number (0));
3715 for (i = 0; i < nargs; i++)
3716 {
3717 SSET (result, i, XINT (args[i]));
3718 /* Move the meta bit to the right place for a string char. */
3719 if (XINT (args[i]) & CHAR_META)
3720 SSET (result, i, SREF (result, i) | 0x80);
3721 }
3722
3723 return result;
3724 }
3725 }
3726
3727
3728 \f
3729 /************************************************************************
3730 Memory Full Handling
3731 ************************************************************************/
3732
3733
3734 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3735 there may have been size_t overflow so that malloc was never
3736 called, or perhaps malloc was invoked successfully but the
3737 resulting pointer had problems fitting into a tagged EMACS_INT. In
3738 either case this counts as memory being full even though malloc did
3739 not fail. */
3740
3741 void
3742 memory_full (size_t nbytes)
3743 {
3744 /* Do not go into hysterics merely because a large request failed. */
3745 int enough_free_memory = 0;
3746 if (SPARE_MEMORY < nbytes)
3747 {
3748 void *p;
3749
3750 MALLOC_BLOCK_INPUT;
3751 p = malloc (SPARE_MEMORY);
3752 if (p)
3753 {
3754 free (p);
3755 enough_free_memory = 1;
3756 }
3757 MALLOC_UNBLOCK_INPUT;
3758 }
3759
3760 if (! enough_free_memory)
3761 {
3762 int i;
3763
3764 Vmemory_full = Qt;
3765
3766 memory_full_cons_threshold = sizeof (struct cons_block);
3767
3768 /* The first time we get here, free the spare memory. */
3769 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3770 if (spare_memory[i])
3771 {
3772 if (i == 0)
3773 free (spare_memory[i]);
3774 else if (i >= 1 && i <= 4)
3775 lisp_align_free (spare_memory[i]);
3776 else
3777 lisp_free (spare_memory[i]);
3778 spare_memory[i] = 0;
3779 }
3780
3781 /* Record the space now used. When it decreases substantially,
3782 we can refill the memory reserve. */
3783 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3784 bytes_used_when_full = BYTES_USED;
3785 #endif
3786 }
3787
3788 /* This used to call error, but if we've run out of memory, we could
3789 get infinite recursion trying to build the string. */
3790 xsignal (Qnil, Vmemory_signal_data);
3791 }
3792
3793 /* If we released our reserve (due to running out of memory),
3794 and we have a fair amount free once again,
3795 try to set aside another reserve in case we run out once more.
3796
3797 This is called when a relocatable block is freed in ralloc.c,
3798 and also directly from this file, in case we're not using ralloc.c. */
3799
3800 void
3801 refill_memory_reserve (void)
3802 {
3803 #ifndef SYSTEM_MALLOC
3804 if (spare_memory[0] == 0)
3805 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3806 if (spare_memory[1] == 0)
3807 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3808 MEM_TYPE_CONS);
3809 if (spare_memory[2] == 0)
3810 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3811 MEM_TYPE_CONS);
3812 if (spare_memory[3] == 0)
3813 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3814 MEM_TYPE_CONS);
3815 if (spare_memory[4] == 0)
3816 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3817 MEM_TYPE_CONS);
3818 if (spare_memory[5] == 0)
3819 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3820 MEM_TYPE_STRING);
3821 if (spare_memory[6] == 0)
3822 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3823 MEM_TYPE_STRING);
3824 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3825 Vmemory_full = Qnil;
3826 #endif
3827 }
3828 \f
3829 /************************************************************************
3830 C Stack Marking
3831 ************************************************************************/
3832
3833 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3834
3835 /* Conservative C stack marking requires a method to identify possibly
3836 live Lisp objects given a pointer value. We do this by keeping
3837 track of blocks of Lisp data that are allocated in a red-black tree
3838 (see also the comment of mem_node which is the type of nodes in
3839 that tree). Function lisp_malloc adds information for an allocated
3840 block to the red-black tree with calls to mem_insert, and function
3841 lisp_free removes it with mem_delete. Functions live_string_p etc
3842 call mem_find to lookup information about a given pointer in the
3843 tree, and use that to determine if the pointer points to a Lisp
3844 object or not. */
3845
3846 /* Initialize this part of alloc.c. */
3847
3848 static void
3849 mem_init (void)
3850 {
3851 mem_z.left = mem_z.right = MEM_NIL;
3852 mem_z.parent = NULL;
3853 mem_z.color = MEM_BLACK;
3854 mem_z.start = mem_z.end = NULL;
3855 mem_root = MEM_NIL;
3856 }
3857
3858
3859 /* Value is a pointer to the mem_node containing START. Value is
3860 MEM_NIL if there is no node in the tree containing START. */
3861
3862 static inline struct mem_node *
3863 mem_find (void *start)
3864 {
3865 struct mem_node *p;
3866
3867 if (start < min_heap_address || start > max_heap_address)
3868 return MEM_NIL;
3869
3870 /* Make the search always successful to speed up the loop below. */
3871 mem_z.start = start;
3872 mem_z.end = (char *) start + 1;
3873
3874 p = mem_root;
3875 while (start < p->start || start >= p->end)
3876 p = start < p->start ? p->left : p->right;
3877 return p;
3878 }
3879
3880
3881 /* Insert a new node into the tree for a block of memory with start
3882 address START, end address END, and type TYPE. Value is a
3883 pointer to the node that was inserted. */
3884
3885 static struct mem_node *
3886 mem_insert (void *start, void *end, enum mem_type type)
3887 {
3888 struct mem_node *c, *parent, *x;
3889
3890 if (min_heap_address == NULL || start < min_heap_address)
3891 min_heap_address = start;
3892 if (max_heap_address == NULL || end > max_heap_address)
3893 max_heap_address = end;
3894
3895 /* See where in the tree a node for START belongs. In this
3896 particular application, it shouldn't happen that a node is already
3897 present. For debugging purposes, let's check that. */
3898 c = mem_root;
3899 parent = NULL;
3900
3901 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3902
3903 while (c != MEM_NIL)
3904 {
3905 if (start >= c->start && start < c->end)
3906 abort ();
3907 parent = c;
3908 c = start < c->start ? c->left : c->right;
3909 }
3910
3911 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3912
3913 while (c != MEM_NIL)
3914 {
3915 parent = c;
3916 c = start < c->start ? c->left : c->right;
3917 }
3918
3919 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3920
3921 /* Create a new node. */
3922 #ifdef GC_MALLOC_CHECK
3923 x = (struct mem_node *) _malloc_internal (sizeof *x);
3924 if (x == NULL)
3925 abort ();
3926 #else
3927 x = (struct mem_node *) xmalloc (sizeof *x);
3928 #endif
3929 x->start = start;
3930 x->end = end;
3931 x->type = type;
3932 x->parent = parent;
3933 x->left = x->right = MEM_NIL;
3934 x->color = MEM_RED;
3935
3936 /* Insert it as child of PARENT or install it as root. */
3937 if (parent)
3938 {
3939 if (start < parent->start)
3940 parent->left = x;
3941 else
3942 parent->right = x;
3943 }
3944 else
3945 mem_root = x;
3946
3947 /* Re-establish red-black tree properties. */
3948 mem_insert_fixup (x);
3949
3950 return x;
3951 }
3952
3953
3954 /* Re-establish the red-black properties of the tree, and thereby
3955 balance the tree, after node X has been inserted; X is always red. */
3956
3957 static void
3958 mem_insert_fixup (struct mem_node *x)
3959 {
3960 while (x != mem_root && x->parent->color == MEM_RED)
3961 {
3962 /* X is red and its parent is red. This is a violation of
3963 red-black tree property #3. */
3964
3965 if (x->parent == x->parent->parent->left)
3966 {
3967 /* We're on the left side of our grandparent, and Y is our
3968 "uncle". */
3969 struct mem_node *y = x->parent->parent->right;
3970
3971 if (y->color == MEM_RED)
3972 {
3973 /* Uncle and parent are red but should be black because
3974 X is red. Change the colors accordingly and proceed
3975 with the grandparent. */
3976 x->parent->color = MEM_BLACK;
3977 y->color = MEM_BLACK;
3978 x->parent->parent->color = MEM_RED;
3979 x = x->parent->parent;
3980 }
3981 else
3982 {
3983 /* Parent and uncle have different colors; parent is
3984 red, uncle is black. */
3985 if (x == x->parent->right)
3986 {
3987 x = x->parent;
3988 mem_rotate_left (x);
3989 }
3990
3991 x->parent->color = MEM_BLACK;
3992 x->parent->parent->color = MEM_RED;
3993 mem_rotate_right (x->parent->parent);
3994 }
3995 }
3996 else
3997 {
3998 /* This is the symmetrical case of above. */
3999 struct mem_node *y = x->parent->parent->left;
4000
4001 if (y->color == MEM_RED)
4002 {
4003 x->parent->color = MEM_BLACK;
4004 y->color = MEM_BLACK;
4005 x->parent->parent->color = MEM_RED;
4006 x = x->parent->parent;
4007 }
4008 else
4009 {
4010 if (x == x->parent->left)
4011 {
4012 x = x->parent;
4013 mem_rotate_right (x);
4014 }
4015
4016 x->parent->color = MEM_BLACK;
4017 x->parent->parent->color = MEM_RED;
4018 mem_rotate_left (x->parent->parent);
4019 }
4020 }
4021 }
4022
4023 /* The root may have been changed to red due to the algorithm. Set
4024 it to black so that property #5 is satisfied. */
4025 mem_root->color = MEM_BLACK;
4026 }
4027
4028
4029 /* (x) (y)
4030 / \ / \
4031 a (y) ===> (x) c
4032 / \ / \
4033 b c a b */
4034
4035 static void
4036 mem_rotate_left (struct mem_node *x)
4037 {
4038 struct mem_node *y;
4039
4040 /* Turn y's left sub-tree into x's right sub-tree. */
4041 y = x->right;
4042 x->right = y->left;
4043 if (y->left != MEM_NIL)
4044 y->left->parent = x;
4045
4046 /* Y's parent was x's parent. */
4047 if (y != MEM_NIL)
4048 y->parent = x->parent;
4049
4050 /* Get the parent to point to y instead of x. */
4051 if (x->parent)
4052 {
4053 if (x == x->parent->left)
4054 x->parent->left = y;
4055 else
4056 x->parent->right = y;
4057 }
4058 else
4059 mem_root = y;
4060
4061 /* Put x on y's left. */
4062 y->left = x;
4063 if (x != MEM_NIL)
4064 x->parent = y;
4065 }
4066
4067
4068 /* (x) (Y)
4069 / \ / \
4070 (y) c ===> a (x)
4071 / \ / \
4072 a b b c */
4073
4074 static void
4075 mem_rotate_right (struct mem_node *x)
4076 {
4077 struct mem_node *y = x->left;
4078
4079 x->left = y->right;
4080 if (y->right != MEM_NIL)
4081 y->right->parent = x;
4082
4083 if (y != MEM_NIL)
4084 y->parent = x->parent;
4085 if (x->parent)
4086 {
4087 if (x == x->parent->right)
4088 x->parent->right = y;
4089 else
4090 x->parent->left = y;
4091 }
4092 else
4093 mem_root = y;
4094
4095 y->right = x;
4096 if (x != MEM_NIL)
4097 x->parent = y;
4098 }
4099
4100
4101 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4102
4103 static void
4104 mem_delete (struct mem_node *z)
4105 {
4106 struct mem_node *x, *y;
4107
4108 if (!z || z == MEM_NIL)
4109 return;
4110
4111 if (z->left == MEM_NIL || z->right == MEM_NIL)
4112 y = z;
4113 else
4114 {
4115 y = z->right;
4116 while (y->left != MEM_NIL)
4117 y = y->left;
4118 }
4119
4120 if (y->left != MEM_NIL)
4121 x = y->left;
4122 else
4123 x = y->right;
4124
4125 x->parent = y->parent;
4126 if (y->parent)
4127 {
4128 if (y == y->parent->left)
4129 y->parent->left = x;
4130 else
4131 y->parent->right = x;
4132 }
4133 else
4134 mem_root = x;
4135
4136 if (y != z)
4137 {
4138 z->start = y->start;
4139 z->end = y->end;
4140 z->type = y->type;
4141 }
4142
4143 if (y->color == MEM_BLACK)
4144 mem_delete_fixup (x);
4145
4146 #ifdef GC_MALLOC_CHECK
4147 _free_internal (y);
4148 #else
4149 xfree (y);
4150 #endif
4151 }
4152
4153
4154 /* Re-establish the red-black properties of the tree, after a
4155 deletion. */
4156
4157 static void
4158 mem_delete_fixup (struct mem_node *x)
4159 {
4160 while (x != mem_root && x->color == MEM_BLACK)
4161 {
4162 if (x == x->parent->left)
4163 {
4164 struct mem_node *w = x->parent->right;
4165
4166 if (w->color == MEM_RED)
4167 {
4168 w->color = MEM_BLACK;
4169 x->parent->color = MEM_RED;
4170 mem_rotate_left (x->parent);
4171 w = x->parent->right;
4172 }
4173
4174 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4175 {
4176 w->color = MEM_RED;
4177 x = x->parent;
4178 }
4179 else
4180 {
4181 if (w->right->color == MEM_BLACK)
4182 {
4183 w->left->color = MEM_BLACK;
4184 w->color = MEM_RED;
4185 mem_rotate_right (w);
4186 w = x->parent->right;
4187 }
4188 w->color = x->parent->color;
4189 x->parent->color = MEM_BLACK;
4190 w->right->color = MEM_BLACK;
4191 mem_rotate_left (x->parent);
4192 x = mem_root;
4193 }
4194 }
4195 else
4196 {
4197 struct mem_node *w = x->parent->left;
4198
4199 if (w->color == MEM_RED)
4200 {
4201 w->color = MEM_BLACK;
4202 x->parent->color = MEM_RED;
4203 mem_rotate_right (x->parent);
4204 w = x->parent->left;
4205 }
4206
4207 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4208 {
4209 w->color = MEM_RED;
4210 x = x->parent;
4211 }
4212 else
4213 {
4214 if (w->left->color == MEM_BLACK)
4215 {
4216 w->right->color = MEM_BLACK;
4217 w->color = MEM_RED;
4218 mem_rotate_left (w);
4219 w = x->parent->left;
4220 }
4221
4222 w->color = x->parent->color;
4223 x->parent->color = MEM_BLACK;
4224 w->left->color = MEM_BLACK;
4225 mem_rotate_right (x->parent);
4226 x = mem_root;
4227 }
4228 }
4229 }
4230
4231 x->color = MEM_BLACK;
4232 }
4233
4234
4235 /* Value is non-zero if P is a pointer to a live Lisp string on
4236 the heap. M is a pointer to the mem_block for P. */
4237
4238 static inline int
4239 live_string_p (struct mem_node *m, void *p)
4240 {
4241 if (m->type == MEM_TYPE_STRING)
4242 {
4243 struct string_block *b = (struct string_block *) m->start;
4244 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4245
4246 /* P must point to the start of a Lisp_String structure, and it
4247 must not be on the free-list. */
4248 return (offset >= 0
4249 && offset % sizeof b->strings[0] == 0
4250 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4251 && ((struct Lisp_String *) p)->data != NULL);
4252 }
4253 else
4254 return 0;
4255 }
4256
4257
4258 /* Value is non-zero if P is a pointer to a live Lisp cons on
4259 the heap. M is a pointer to the mem_block for P. */
4260
4261 static inline int
4262 live_cons_p (struct mem_node *m, void *p)
4263 {
4264 if (m->type == MEM_TYPE_CONS)
4265 {
4266 struct cons_block *b = (struct cons_block *) m->start;
4267 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4268
4269 /* P must point to the start of a Lisp_Cons, not be
4270 one of the unused cells in the current cons block,
4271 and not be on the free-list. */
4272 return (offset >= 0
4273 && offset % sizeof b->conses[0] == 0
4274 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4275 && (b != cons_block
4276 || offset / sizeof b->conses[0] < cons_block_index)
4277 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4278 }
4279 else
4280 return 0;
4281 }
4282
4283
4284 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4285 the heap. M is a pointer to the mem_block for P. */
4286
4287 static inline int
4288 live_symbol_p (struct mem_node *m, void *p)
4289 {
4290 if (m->type == MEM_TYPE_SYMBOL)
4291 {
4292 struct symbol_block *b = (struct symbol_block *) m->start;
4293 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4294
4295 /* P must point to the start of a Lisp_Symbol, not be
4296 one of the unused cells in the current symbol block,
4297 and not be on the free-list. */
4298 return (offset >= 0
4299 && offset % sizeof b->symbols[0] == 0
4300 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4301 && (b != symbol_block
4302 || offset / sizeof b->symbols[0] < symbol_block_index)
4303 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4304 }
4305 else
4306 return 0;
4307 }
4308
4309
4310 /* Value is non-zero if P is a pointer to a live Lisp float on
4311 the heap. M is a pointer to the mem_block for P. */
4312
4313 static inline int
4314 live_float_p (struct mem_node *m, void *p)
4315 {
4316 if (m->type == MEM_TYPE_FLOAT)
4317 {
4318 struct float_block *b = (struct float_block *) m->start;
4319 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4320
4321 /* P must point to the start of a Lisp_Float and not be
4322 one of the unused cells in the current float block. */
4323 return (offset >= 0
4324 && offset % sizeof b->floats[0] == 0
4325 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4326 && (b != float_block
4327 || offset / sizeof b->floats[0] < float_block_index));
4328 }
4329 else
4330 return 0;
4331 }
4332
4333
4334 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4335 the heap. M is a pointer to the mem_block for P. */
4336
4337 static inline int
4338 live_misc_p (struct mem_node *m, void *p)
4339 {
4340 if (m->type == MEM_TYPE_MISC)
4341 {
4342 struct marker_block *b = (struct marker_block *) m->start;
4343 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4344
4345 /* P must point to the start of a Lisp_Misc, not be
4346 one of the unused cells in the current misc block,
4347 and not be on the free-list. */
4348 return (offset >= 0
4349 && offset % sizeof b->markers[0] == 0
4350 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4351 && (b != marker_block
4352 || offset / sizeof b->markers[0] < marker_block_index)
4353 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4354 }
4355 else
4356 return 0;
4357 }
4358
4359
4360 /* Value is non-zero if P is a pointer to a live vector-like object.
4361 M is a pointer to the mem_block for P. */
4362
4363 static inline int
4364 live_vector_p (struct mem_node *m, void *p)
4365 {
4366 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4367 {
4368 /* This memory node corresponds to a vector block. */
4369 struct vector_block *block = (struct vector_block *) m->start;
4370 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4371
4372 /* P is in the block's allocation range. Scan the block
4373 up to P and see whether P points to the start of some
4374 vector which is not on a free list. FIXME: check whether
4375 some allocation patterns (probably a lot of short vectors)
4376 may cause a substantial overhead of this loop. */
4377 while (VECTOR_IN_BLOCK (vector, block)
4378 && vector <= (struct Lisp_Vector *) p)
4379 {
4380 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4381 == VECTOR_FREE_LIST_FLAG)
4382 vector = ADVANCE (vector, (vector->header.size
4383 & (VECTOR_BLOCK_SIZE - 1)));
4384 else if (vector == p)
4385 return 1;
4386 else
4387 vector = ADVANCE (vector, vector->header.next.nbytes);
4388 }
4389 }
4390 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4391 /* This memory node corresponds to a large vector. */
4392 return 1;
4393 return 0;
4394 }
4395
4396
4397 /* Value is non-zero if P is a pointer to a live buffer. M is a
4398 pointer to the mem_block for P. */
4399
4400 static inline int
4401 live_buffer_p (struct mem_node *m, void *p)
4402 {
4403 /* P must point to the start of the block, and the buffer
4404 must not have been killed. */
4405 return (m->type == MEM_TYPE_BUFFER
4406 && p == m->start
4407 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4408 }
4409
4410 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4411
4412 #if GC_MARK_STACK
4413
4414 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4415
4416 /* Array of objects that are kept alive because the C stack contains
4417 a pattern that looks like a reference to them . */
4418
4419 #define MAX_ZOMBIES 10
4420 static Lisp_Object zombies[MAX_ZOMBIES];
4421
4422 /* Number of zombie objects. */
4423
4424 static EMACS_INT nzombies;
4425
4426 /* Number of garbage collections. */
4427
4428 static EMACS_INT ngcs;
4429
4430 /* Average percentage of zombies per collection. */
4431
4432 static double avg_zombies;
4433
4434 /* Max. number of live and zombie objects. */
4435
4436 static EMACS_INT max_live, max_zombies;
4437
4438 /* Average number of live objects per GC. */
4439
4440 static double avg_live;
4441
4442 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4443 doc: /* Show information about live and zombie objects. */)
4444 (void)
4445 {
4446 Lisp_Object args[8], zombie_list = Qnil;
4447 EMACS_INT i;
4448 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4449 zombie_list = Fcons (zombies[i], zombie_list);
4450 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4451 args[1] = make_number (ngcs);
4452 args[2] = make_float (avg_live);
4453 args[3] = make_float (avg_zombies);
4454 args[4] = make_float (avg_zombies / avg_live / 100);
4455 args[5] = make_number (max_live);
4456 args[6] = make_number (max_zombies);
4457 args[7] = zombie_list;
4458 return Fmessage (8, args);
4459 }
4460
4461 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4462
4463
4464 /* Mark OBJ if we can prove it's a Lisp_Object. */
4465
4466 static inline void
4467 mark_maybe_object (Lisp_Object obj)
4468 {
4469 void *po;
4470 struct mem_node *m;
4471
4472 if (INTEGERP (obj))
4473 return;
4474
4475 po = (void *) XPNTR (obj);
4476 m = mem_find (po);
4477
4478 if (m != MEM_NIL)
4479 {
4480 int mark_p = 0;
4481
4482 switch (XTYPE (obj))
4483 {
4484 case Lisp_String:
4485 mark_p = (live_string_p (m, po)
4486 && !STRING_MARKED_P ((struct Lisp_String *) po));
4487 break;
4488
4489 case Lisp_Cons:
4490 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4491 break;
4492
4493 case Lisp_Symbol:
4494 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4495 break;
4496
4497 case Lisp_Float:
4498 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4499 break;
4500
4501 case Lisp_Vectorlike:
4502 /* Note: can't check BUFFERP before we know it's a
4503 buffer because checking that dereferences the pointer
4504 PO which might point anywhere. */
4505 if (live_vector_p (m, po))
4506 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4507 else if (live_buffer_p (m, po))
4508 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4509 break;
4510
4511 case Lisp_Misc:
4512 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4513 break;
4514
4515 default:
4516 break;
4517 }
4518
4519 if (mark_p)
4520 {
4521 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4522 if (nzombies < MAX_ZOMBIES)
4523 zombies[nzombies] = obj;
4524 ++nzombies;
4525 #endif
4526 mark_object (obj);
4527 }
4528 }
4529 }
4530
4531
4532 /* If P points to Lisp data, mark that as live if it isn't already
4533 marked. */
4534
4535 static inline void
4536 mark_maybe_pointer (void *p)
4537 {
4538 struct mem_node *m;
4539
4540 /* Quickly rule out some values which can't point to Lisp data.
4541 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4542 Otherwise, assume that Lisp data is aligned on even addresses. */
4543 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4544 return;
4545
4546 m = mem_find (p);
4547 if (m != MEM_NIL)
4548 {
4549 Lisp_Object obj = Qnil;
4550
4551 switch (m->type)
4552 {
4553 case MEM_TYPE_NON_LISP:
4554 /* Nothing to do; not a pointer to Lisp memory. */
4555 break;
4556
4557 case MEM_TYPE_BUFFER:
4558 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4559 XSETVECTOR (obj, p);
4560 break;
4561
4562 case MEM_TYPE_CONS:
4563 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4564 XSETCONS (obj, p);
4565 break;
4566
4567 case MEM_TYPE_STRING:
4568 if (live_string_p (m, p)
4569 && !STRING_MARKED_P ((struct Lisp_String *) p))
4570 XSETSTRING (obj, p);
4571 break;
4572
4573 case MEM_TYPE_MISC:
4574 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4575 XSETMISC (obj, p);
4576 break;
4577
4578 case MEM_TYPE_SYMBOL:
4579 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4580 XSETSYMBOL (obj, p);
4581 break;
4582
4583 case MEM_TYPE_FLOAT:
4584 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4585 XSETFLOAT (obj, p);
4586 break;
4587
4588 case MEM_TYPE_VECTORLIKE:
4589 case MEM_TYPE_VECTOR_BLOCK:
4590 if (live_vector_p (m, p))
4591 {
4592 Lisp_Object tem;
4593 XSETVECTOR (tem, p);
4594 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4595 obj = tem;
4596 }
4597 break;
4598
4599 default:
4600 abort ();
4601 }
4602
4603 if (!NILP (obj))
4604 mark_object (obj);
4605 }
4606 }
4607
4608
4609 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4610 a smaller alignment than GCC's __alignof__ and mark_memory might
4611 miss objects if __alignof__ were used. */
4612 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4613
4614 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4615 not suffice, which is the typical case. A host where a Lisp_Object is
4616 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4617 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4618 suffice to widen it to to a Lisp_Object and check it that way. */
4619 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4620 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4621 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4622 nor mark_maybe_object can follow the pointers. This should not occur on
4623 any practical porting target. */
4624 # error "MSB type bits straddle pointer-word boundaries"
4625 # endif
4626 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4627 pointer words that hold pointers ORed with type bits. */
4628 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4629 #else
4630 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4631 words that hold unmodified pointers. */
4632 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4633 #endif
4634
4635 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4636 or END+OFFSET..START. */
4637
4638 static void
4639 mark_memory (void *start, void *end)
4640 {
4641 void **pp;
4642 int i;
4643
4644 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4645 nzombies = 0;
4646 #endif
4647
4648 /* Make START the pointer to the start of the memory region,
4649 if it isn't already. */
4650 if (end < start)
4651 {
4652 void *tem = start;
4653 start = end;
4654 end = tem;
4655 }
4656
4657 /* Mark Lisp data pointed to. This is necessary because, in some
4658 situations, the C compiler optimizes Lisp objects away, so that
4659 only a pointer to them remains. Example:
4660
4661 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4662 ()
4663 {
4664 Lisp_Object obj = build_string ("test");
4665 struct Lisp_String *s = XSTRING (obj);
4666 Fgarbage_collect ();
4667 fprintf (stderr, "test `%s'\n", s->data);
4668 return Qnil;
4669 }
4670
4671 Here, `obj' isn't really used, and the compiler optimizes it
4672 away. The only reference to the life string is through the
4673 pointer `s'. */
4674
4675 for (pp = start; (void *) pp < end; pp++)
4676 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4677 {
4678 void *p = *(void **) ((char *) pp + i);
4679 mark_maybe_pointer (p);
4680 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4681 mark_maybe_object (widen_to_Lisp_Object (p));
4682 }
4683 }
4684
4685 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4686 the GCC system configuration. In gcc 3.2, the only systems for
4687 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4688 by others?) and ns32k-pc532-min. */
4689
4690 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4691
4692 static int setjmp_tested_p, longjmps_done;
4693
4694 #define SETJMP_WILL_LIKELY_WORK "\
4695 \n\
4696 Emacs garbage collector has been changed to use conservative stack\n\
4697 marking. Emacs has determined that the method it uses to do the\n\
4698 marking will likely work on your system, but this isn't sure.\n\
4699 \n\
4700 If you are a system-programmer, or can get the help of a local wizard\n\
4701 who is, please take a look at the function mark_stack in alloc.c, and\n\
4702 verify that the methods used are appropriate for your system.\n\
4703 \n\
4704 Please mail the result to <emacs-devel@gnu.org>.\n\
4705 "
4706
4707 #define SETJMP_WILL_NOT_WORK "\
4708 \n\
4709 Emacs garbage collector has been changed to use conservative stack\n\
4710 marking. Emacs has determined that the default method it uses to do the\n\
4711 marking will not work on your system. We will need a system-dependent\n\
4712 solution for your system.\n\
4713 \n\
4714 Please take a look at the function mark_stack in alloc.c, and\n\
4715 try to find a way to make it work on your system.\n\
4716 \n\
4717 Note that you may get false negatives, depending on the compiler.\n\
4718 In particular, you need to use -O with GCC for this test.\n\
4719 \n\
4720 Please mail the result to <emacs-devel@gnu.org>.\n\
4721 "
4722
4723
4724 /* Perform a quick check if it looks like setjmp saves registers in a
4725 jmp_buf. Print a message to stderr saying so. When this test
4726 succeeds, this is _not_ a proof that setjmp is sufficient for
4727 conservative stack marking. Only the sources or a disassembly
4728 can prove that. */
4729
4730 static void
4731 test_setjmp (void)
4732 {
4733 char buf[10];
4734 register int x;
4735 jmp_buf jbuf;
4736 int result = 0;
4737
4738 /* Arrange for X to be put in a register. */
4739 sprintf (buf, "1");
4740 x = strlen (buf);
4741 x = 2 * x - 1;
4742
4743 setjmp (jbuf);
4744 if (longjmps_done == 1)
4745 {
4746 /* Came here after the longjmp at the end of the function.
4747
4748 If x == 1, the longjmp has restored the register to its
4749 value before the setjmp, and we can hope that setjmp
4750 saves all such registers in the jmp_buf, although that
4751 isn't sure.
4752
4753 For other values of X, either something really strange is
4754 taking place, or the setjmp just didn't save the register. */
4755
4756 if (x == 1)
4757 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4758 else
4759 {
4760 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4761 exit (1);
4762 }
4763 }
4764
4765 ++longjmps_done;
4766 x = 2;
4767 if (longjmps_done == 1)
4768 longjmp (jbuf, 1);
4769 }
4770
4771 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4772
4773
4774 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4775
4776 /* Abort if anything GCPRO'd doesn't survive the GC. */
4777
4778 static void
4779 check_gcpros (void)
4780 {
4781 struct gcpro *p;
4782 ptrdiff_t i;
4783
4784 for (p = gcprolist; p; p = p->next)
4785 for (i = 0; i < p->nvars; ++i)
4786 if (!survives_gc_p (p->var[i]))
4787 /* FIXME: It's not necessarily a bug. It might just be that the
4788 GCPRO is unnecessary or should release the object sooner. */
4789 abort ();
4790 }
4791
4792 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4793
4794 static void
4795 dump_zombies (void)
4796 {
4797 int i;
4798
4799 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4800 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4801 {
4802 fprintf (stderr, " %d = ", i);
4803 debug_print (zombies[i]);
4804 }
4805 }
4806
4807 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4808
4809
4810 /* Mark live Lisp objects on the C stack.
4811
4812 There are several system-dependent problems to consider when
4813 porting this to new architectures:
4814
4815 Processor Registers
4816
4817 We have to mark Lisp objects in CPU registers that can hold local
4818 variables or are used to pass parameters.
4819
4820 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4821 something that either saves relevant registers on the stack, or
4822 calls mark_maybe_object passing it each register's contents.
4823
4824 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4825 implementation assumes that calling setjmp saves registers we need
4826 to see in a jmp_buf which itself lies on the stack. This doesn't
4827 have to be true! It must be verified for each system, possibly
4828 by taking a look at the source code of setjmp.
4829
4830 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4831 can use it as a machine independent method to store all registers
4832 to the stack. In this case the macros described in the previous
4833 two paragraphs are not used.
4834
4835 Stack Layout
4836
4837 Architectures differ in the way their processor stack is organized.
4838 For example, the stack might look like this
4839
4840 +----------------+
4841 | Lisp_Object | size = 4
4842 +----------------+
4843 | something else | size = 2
4844 +----------------+
4845 | Lisp_Object | size = 4
4846 +----------------+
4847 | ... |
4848
4849 In such a case, not every Lisp_Object will be aligned equally. To
4850 find all Lisp_Object on the stack it won't be sufficient to walk
4851 the stack in steps of 4 bytes. Instead, two passes will be
4852 necessary, one starting at the start of the stack, and a second
4853 pass starting at the start of the stack + 2. Likewise, if the
4854 minimal alignment of Lisp_Objects on the stack is 1, four passes
4855 would be necessary, each one starting with one byte more offset
4856 from the stack start. */
4857
4858 static void
4859 mark_stack (void)
4860 {
4861 void *end;
4862
4863 #ifdef HAVE___BUILTIN_UNWIND_INIT
4864 /* Force callee-saved registers and register windows onto the stack.
4865 This is the preferred method if available, obviating the need for
4866 machine dependent methods. */
4867 __builtin_unwind_init ();
4868 end = &end;
4869 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4870 #ifndef GC_SAVE_REGISTERS_ON_STACK
4871 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4872 union aligned_jmpbuf {
4873 Lisp_Object o;
4874 jmp_buf j;
4875 } j;
4876 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4877 #endif
4878 /* This trick flushes the register windows so that all the state of
4879 the process is contained in the stack. */
4880 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4881 needed on ia64 too. See mach_dep.c, where it also says inline
4882 assembler doesn't work with relevant proprietary compilers. */
4883 #ifdef __sparc__
4884 #if defined (__sparc64__) && defined (__FreeBSD__)
4885 /* FreeBSD does not have a ta 3 handler. */
4886 asm ("flushw");
4887 #else
4888 asm ("ta 3");
4889 #endif
4890 #endif
4891
4892 /* Save registers that we need to see on the stack. We need to see
4893 registers used to hold register variables and registers used to
4894 pass parameters. */
4895 #ifdef GC_SAVE_REGISTERS_ON_STACK
4896 GC_SAVE_REGISTERS_ON_STACK (end);
4897 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4898
4899 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4900 setjmp will definitely work, test it
4901 and print a message with the result
4902 of the test. */
4903 if (!setjmp_tested_p)
4904 {
4905 setjmp_tested_p = 1;
4906 test_setjmp ();
4907 }
4908 #endif /* GC_SETJMP_WORKS */
4909
4910 setjmp (j.j);
4911 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4912 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4913 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4914
4915 /* This assumes that the stack is a contiguous region in memory. If
4916 that's not the case, something has to be done here to iterate
4917 over the stack segments. */
4918 mark_memory (stack_base, end);
4919
4920 /* Allow for marking a secondary stack, like the register stack on the
4921 ia64. */
4922 #ifdef GC_MARK_SECONDARY_STACK
4923 GC_MARK_SECONDARY_STACK ();
4924 #endif
4925
4926 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4927 check_gcpros ();
4928 #endif
4929 }
4930
4931 #endif /* GC_MARK_STACK != 0 */
4932
4933
4934 /* Determine whether it is safe to access memory at address P. */
4935 static int
4936 valid_pointer_p (void *p)
4937 {
4938 #ifdef WINDOWSNT
4939 return w32_valid_pointer_p (p, 16);
4940 #else
4941 int fd[2];
4942
4943 /* Obviously, we cannot just access it (we would SEGV trying), so we
4944 trick the o/s to tell us whether p is a valid pointer.
4945 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4946 not validate p in that case. */
4947
4948 if (pipe (fd) == 0)
4949 {
4950 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4951 emacs_close (fd[1]);
4952 emacs_close (fd[0]);
4953 return valid;
4954 }
4955
4956 return -1;
4957 #endif
4958 }
4959
4960 /* Return 1 if OBJ is a valid lisp object.
4961 Return 0 if OBJ is NOT a valid lisp object.
4962 Return -1 if we cannot validate OBJ.
4963 This function can be quite slow,
4964 so it should only be used in code for manual debugging. */
4965
4966 int
4967 valid_lisp_object_p (Lisp_Object obj)
4968 {
4969 void *p;
4970 #if GC_MARK_STACK
4971 struct mem_node *m;
4972 #endif
4973
4974 if (INTEGERP (obj))
4975 return 1;
4976
4977 p = (void *) XPNTR (obj);
4978 if (PURE_POINTER_P (p))
4979 return 1;
4980
4981 #if !GC_MARK_STACK
4982 return valid_pointer_p (p);
4983 #else
4984
4985 m = mem_find (p);
4986
4987 if (m == MEM_NIL)
4988 {
4989 int valid = valid_pointer_p (p);
4990 if (valid <= 0)
4991 return valid;
4992
4993 if (SUBRP (obj))
4994 return 1;
4995
4996 return 0;
4997 }
4998
4999 switch (m->type)
5000 {
5001 case MEM_TYPE_NON_LISP:
5002 return 0;
5003
5004 case MEM_TYPE_BUFFER:
5005 return live_buffer_p (m, p);
5006
5007 case MEM_TYPE_CONS:
5008 return live_cons_p (m, p);
5009
5010 case MEM_TYPE_STRING:
5011 return live_string_p (m, p);
5012
5013 case MEM_TYPE_MISC:
5014 return live_misc_p (m, p);
5015
5016 case MEM_TYPE_SYMBOL:
5017 return live_symbol_p (m, p);
5018
5019 case MEM_TYPE_FLOAT:
5020 return live_float_p (m, p);
5021
5022 case MEM_TYPE_VECTORLIKE:
5023 case MEM_TYPE_VECTOR_BLOCK:
5024 return live_vector_p (m, p);
5025
5026 default:
5027 break;
5028 }
5029
5030 return 0;
5031 #endif
5032 }
5033
5034
5035
5036 \f
5037 /***********************************************************************
5038 Pure Storage Management
5039 ***********************************************************************/
5040
5041 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5042 pointer to it. TYPE is the Lisp type for which the memory is
5043 allocated. TYPE < 0 means it's not used for a Lisp object. */
5044
5045 static void *
5046 pure_alloc (size_t size, int type)
5047 {
5048 void *result;
5049 #if USE_LSB_TAG
5050 size_t alignment = (1 << GCTYPEBITS);
5051 #else
5052 size_t alignment = sizeof (EMACS_INT);
5053
5054 /* Give Lisp_Floats an extra alignment. */
5055 if (type == Lisp_Float)
5056 {
5057 #if defined __GNUC__ && __GNUC__ >= 2
5058 alignment = __alignof (struct Lisp_Float);
5059 #else
5060 alignment = sizeof (struct Lisp_Float);
5061 #endif
5062 }
5063 #endif
5064
5065 again:
5066 if (type >= 0)
5067 {
5068 /* Allocate space for a Lisp object from the beginning of the free
5069 space with taking account of alignment. */
5070 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5071 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5072 }
5073 else
5074 {
5075 /* Allocate space for a non-Lisp object from the end of the free
5076 space. */
5077 pure_bytes_used_non_lisp += size;
5078 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5079 }
5080 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5081
5082 if (pure_bytes_used <= pure_size)
5083 return result;
5084
5085 /* Don't allocate a large amount here,
5086 because it might get mmap'd and then its address
5087 might not be usable. */
5088 purebeg = (char *) xmalloc (10000);
5089 pure_size = 10000;
5090 pure_bytes_used_before_overflow += pure_bytes_used - size;
5091 pure_bytes_used = 0;
5092 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5093 goto again;
5094 }
5095
5096
5097 /* Print a warning if PURESIZE is too small. */
5098
5099 void
5100 check_pure_size (void)
5101 {
5102 if (pure_bytes_used_before_overflow)
5103 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5104 " bytes needed)"),
5105 pure_bytes_used + pure_bytes_used_before_overflow);
5106 }
5107
5108
5109 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5110 the non-Lisp data pool of the pure storage, and return its start
5111 address. Return NULL if not found. */
5112
5113 static char *
5114 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5115 {
5116 int i;
5117 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5118 const unsigned char *p;
5119 char *non_lisp_beg;
5120
5121 if (pure_bytes_used_non_lisp <= nbytes)
5122 return NULL;
5123
5124 /* Set up the Boyer-Moore table. */
5125 skip = nbytes + 1;
5126 for (i = 0; i < 256; i++)
5127 bm_skip[i] = skip;
5128
5129 p = (const unsigned char *) data;
5130 while (--skip > 0)
5131 bm_skip[*p++] = skip;
5132
5133 last_char_skip = bm_skip['\0'];
5134
5135 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5136 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5137
5138 /* See the comments in the function `boyer_moore' (search.c) for the
5139 use of `infinity'. */
5140 infinity = pure_bytes_used_non_lisp + 1;
5141 bm_skip['\0'] = infinity;
5142
5143 p = (const unsigned char *) non_lisp_beg + nbytes;
5144 start = 0;
5145 do
5146 {
5147 /* Check the last character (== '\0'). */
5148 do
5149 {
5150 start += bm_skip[*(p + start)];
5151 }
5152 while (start <= start_max);
5153
5154 if (start < infinity)
5155 /* Couldn't find the last character. */
5156 return NULL;
5157
5158 /* No less than `infinity' means we could find the last
5159 character at `p[start - infinity]'. */
5160 start -= infinity;
5161
5162 /* Check the remaining characters. */
5163 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5164 /* Found. */
5165 return non_lisp_beg + start;
5166
5167 start += last_char_skip;
5168 }
5169 while (start <= start_max);
5170
5171 return NULL;
5172 }
5173
5174
5175 /* Return a string allocated in pure space. DATA is a buffer holding
5176 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5177 non-zero means make the result string multibyte.
5178
5179 Must get an error if pure storage is full, since if it cannot hold
5180 a large string it may be able to hold conses that point to that
5181 string; then the string is not protected from gc. */
5182
5183 Lisp_Object
5184 make_pure_string (const char *data,
5185 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5186 {
5187 Lisp_Object string;
5188 struct Lisp_String *s;
5189
5190 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5191 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5192 if (s->data == NULL)
5193 {
5194 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5195 memcpy (s->data, data, nbytes);
5196 s->data[nbytes] = '\0';
5197 }
5198 s->size = nchars;
5199 s->size_byte = multibyte ? nbytes : -1;
5200 s->intervals = NULL_INTERVAL;
5201 XSETSTRING (string, s);
5202 return string;
5203 }
5204
5205 /* Return a string a string allocated in pure space. Do not allocate
5206 the string data, just point to DATA. */
5207
5208 Lisp_Object
5209 make_pure_c_string (const char *data)
5210 {
5211 Lisp_Object string;
5212 struct Lisp_String *s;
5213 ptrdiff_t nchars = strlen (data);
5214
5215 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5216 s->size = nchars;
5217 s->size_byte = -1;
5218 s->data = (unsigned char *) data;
5219 s->intervals = NULL_INTERVAL;
5220 XSETSTRING (string, s);
5221 return string;
5222 }
5223
5224 /* Return a cons allocated from pure space. Give it pure copies
5225 of CAR as car and CDR as cdr. */
5226
5227 Lisp_Object
5228 pure_cons (Lisp_Object car, Lisp_Object cdr)
5229 {
5230 register Lisp_Object new;
5231 struct Lisp_Cons *p;
5232
5233 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5234 XSETCONS (new, p);
5235 XSETCAR (new, Fpurecopy (car));
5236 XSETCDR (new, Fpurecopy (cdr));
5237 return new;
5238 }
5239
5240
5241 /* Value is a float object with value NUM allocated from pure space. */
5242
5243 static Lisp_Object
5244 make_pure_float (double num)
5245 {
5246 register Lisp_Object new;
5247 struct Lisp_Float *p;
5248
5249 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5250 XSETFLOAT (new, p);
5251 XFLOAT_INIT (new, num);
5252 return new;
5253 }
5254
5255
5256 /* Return a vector with room for LEN Lisp_Objects allocated from
5257 pure space. */
5258
5259 static Lisp_Object
5260 make_pure_vector (ptrdiff_t len)
5261 {
5262 Lisp_Object new;
5263 struct Lisp_Vector *p;
5264 size_t size = (offsetof (struct Lisp_Vector, contents)
5265 + len * sizeof (Lisp_Object));
5266
5267 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5268 XSETVECTOR (new, p);
5269 XVECTOR (new)->header.size = len;
5270 return new;
5271 }
5272
5273
5274 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5275 doc: /* Make a copy of object OBJ in pure storage.
5276 Recursively copies contents of vectors and cons cells.
5277 Does not copy symbols. Copies strings without text properties. */)
5278 (register Lisp_Object obj)
5279 {
5280 if (NILP (Vpurify_flag))
5281 return obj;
5282
5283 if (PURE_POINTER_P (XPNTR (obj)))
5284 return obj;
5285
5286 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5287 {
5288 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5289 if (!NILP (tmp))
5290 return tmp;
5291 }
5292
5293 if (CONSP (obj))
5294 obj = pure_cons (XCAR (obj), XCDR (obj));
5295 else if (FLOATP (obj))
5296 obj = make_pure_float (XFLOAT_DATA (obj));
5297 else if (STRINGP (obj))
5298 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5299 SBYTES (obj),
5300 STRING_MULTIBYTE (obj));
5301 else if (COMPILEDP (obj) || VECTORP (obj))
5302 {
5303 register struct Lisp_Vector *vec;
5304 register ptrdiff_t i;
5305 ptrdiff_t size;
5306
5307 size = ASIZE (obj);
5308 if (size & PSEUDOVECTOR_FLAG)
5309 size &= PSEUDOVECTOR_SIZE_MASK;
5310 vec = XVECTOR (make_pure_vector (size));
5311 for (i = 0; i < size; i++)
5312 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
5313 if (COMPILEDP (obj))
5314 {
5315 XSETPVECTYPE (vec, PVEC_COMPILED);
5316 XSETCOMPILED (obj, vec);
5317 }
5318 else
5319 XSETVECTOR (obj, vec);
5320 }
5321 else if (MARKERP (obj))
5322 error ("Attempt to copy a marker to pure storage");
5323 else
5324 /* Not purified, don't hash-cons. */
5325 return obj;
5326
5327 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5328 Fputhash (obj, obj, Vpurify_flag);
5329
5330 return obj;
5331 }
5332
5333
5334 \f
5335 /***********************************************************************
5336 Protection from GC
5337 ***********************************************************************/
5338
5339 /* Put an entry in staticvec, pointing at the variable with address
5340 VARADDRESS. */
5341
5342 void
5343 staticpro (Lisp_Object *varaddress)
5344 {
5345 staticvec[staticidx++] = varaddress;
5346 if (staticidx >= NSTATICS)
5347 abort ();
5348 }
5349
5350 \f
5351 /***********************************************************************
5352 Protection from GC
5353 ***********************************************************************/
5354
5355 /* Temporarily prevent garbage collection. */
5356
5357 ptrdiff_t
5358 inhibit_garbage_collection (void)
5359 {
5360 ptrdiff_t count = SPECPDL_INDEX ();
5361
5362 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5363 return count;
5364 }
5365
5366
5367 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5368 doc: /* Reclaim storage for Lisp objects no longer needed.
5369 Garbage collection happens automatically if you cons more than
5370 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5371 `garbage-collect' normally returns a list with info on amount of space in use:
5372 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5373 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5374 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5375 (USED-STRINGS . FREE-STRINGS))
5376 However, if there was overflow in pure space, `garbage-collect'
5377 returns nil, because real GC can't be done.
5378 See Info node `(elisp)Garbage Collection'. */)
5379 (void)
5380 {
5381 register struct specbinding *bind;
5382 char stack_top_variable;
5383 ptrdiff_t i;
5384 int message_p;
5385 Lisp_Object total[8];
5386 ptrdiff_t count = SPECPDL_INDEX ();
5387 EMACS_TIME t1, t2, t3;
5388
5389 if (abort_on_gc)
5390 abort ();
5391
5392 /* Can't GC if pure storage overflowed because we can't determine
5393 if something is a pure object or not. */
5394 if (pure_bytes_used_before_overflow)
5395 return Qnil;
5396
5397 CHECK_CONS_LIST ();
5398
5399 /* Don't keep undo information around forever.
5400 Do this early on, so it is no problem if the user quits. */
5401 {
5402 register struct buffer *nextb = all_buffers;
5403
5404 while (nextb)
5405 {
5406 /* If a buffer's undo list is Qt, that means that undo is
5407 turned off in that buffer. Calling truncate_undo_list on
5408 Qt tends to return NULL, which effectively turns undo back on.
5409 So don't call truncate_undo_list if undo_list is Qt. */
5410 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5411 truncate_undo_list (nextb);
5412
5413 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5414 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5415 && ! nextb->text->inhibit_shrinking)
5416 {
5417 /* If a buffer's gap size is more than 10% of the buffer
5418 size, or larger than 2000 bytes, then shrink it
5419 accordingly. Keep a minimum size of 20 bytes. */
5420 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5421
5422 if (nextb->text->gap_size > size)
5423 {
5424 struct buffer *save_current = current_buffer;
5425 current_buffer = nextb;
5426 make_gap (-(nextb->text->gap_size - size));
5427 current_buffer = save_current;
5428 }
5429 }
5430
5431 nextb = nextb->header.next.buffer;
5432 }
5433 }
5434
5435 EMACS_GET_TIME (t1);
5436
5437 /* In case user calls debug_print during GC,
5438 don't let that cause a recursive GC. */
5439 consing_since_gc = 0;
5440
5441 /* Save what's currently displayed in the echo area. */
5442 message_p = push_message ();
5443 record_unwind_protect (pop_message_unwind, Qnil);
5444
5445 /* Save a copy of the contents of the stack, for debugging. */
5446 #if MAX_SAVE_STACK > 0
5447 if (NILP (Vpurify_flag))
5448 {
5449 char *stack;
5450 ptrdiff_t stack_size;
5451 if (&stack_top_variable < stack_bottom)
5452 {
5453 stack = &stack_top_variable;
5454 stack_size = stack_bottom - &stack_top_variable;
5455 }
5456 else
5457 {
5458 stack = stack_bottom;
5459 stack_size = &stack_top_variable - stack_bottom;
5460 }
5461 if (stack_size <= MAX_SAVE_STACK)
5462 {
5463 if (stack_copy_size < stack_size)
5464 {
5465 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5466 stack_copy_size = stack_size;
5467 }
5468 memcpy (stack_copy, stack, stack_size);
5469 }
5470 }
5471 #endif /* MAX_SAVE_STACK > 0 */
5472
5473 if (garbage_collection_messages)
5474 message1_nolog ("Garbage collecting...");
5475
5476 BLOCK_INPUT;
5477
5478 shrink_regexp_cache ();
5479
5480 gc_in_progress = 1;
5481
5482 /* clear_marks (); */
5483
5484 /* Mark all the special slots that serve as the roots of accessibility. */
5485
5486 for (i = 0; i < staticidx; i++)
5487 mark_object (*staticvec[i]);
5488
5489 for (bind = specpdl; bind != specpdl_ptr; bind++)
5490 {
5491 mark_object (bind->symbol);
5492 mark_object (bind->old_value);
5493 }
5494 mark_terminals ();
5495 mark_kboards ();
5496 mark_ttys ();
5497
5498 #ifdef USE_GTK
5499 {
5500 extern void xg_mark_data (void);
5501 xg_mark_data ();
5502 }
5503 #endif
5504
5505 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5506 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5507 mark_stack ();
5508 #else
5509 {
5510 register struct gcpro *tail;
5511 for (tail = gcprolist; tail; tail = tail->next)
5512 for (i = 0; i < tail->nvars; i++)
5513 mark_object (tail->var[i]);
5514 }
5515 mark_byte_stack ();
5516 {
5517 struct catchtag *catch;
5518 struct handler *handler;
5519
5520 for (catch = catchlist; catch; catch = catch->next)
5521 {
5522 mark_object (catch->tag);
5523 mark_object (catch->val);
5524 }
5525 for (handler = handlerlist; handler; handler = handler->next)
5526 {
5527 mark_object (handler->handler);
5528 mark_object (handler->var);
5529 }
5530 }
5531 mark_backtrace ();
5532 #endif
5533
5534 #ifdef HAVE_WINDOW_SYSTEM
5535 mark_fringe_data ();
5536 #endif
5537
5538 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5539 mark_stack ();
5540 #endif
5541
5542 /* Everything is now marked, except for the things that require special
5543 finalization, i.e. the undo_list.
5544 Look thru every buffer's undo list
5545 for elements that update markers that were not marked,
5546 and delete them. */
5547 {
5548 register struct buffer *nextb = all_buffers;
5549
5550 while (nextb)
5551 {
5552 /* If a buffer's undo list is Qt, that means that undo is
5553 turned off in that buffer. Calling truncate_undo_list on
5554 Qt tends to return NULL, which effectively turns undo back on.
5555 So don't call truncate_undo_list if undo_list is Qt. */
5556 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5557 {
5558 Lisp_Object tail, prev;
5559 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5560 prev = Qnil;
5561 while (CONSP (tail))
5562 {
5563 if (CONSP (XCAR (tail))
5564 && MARKERP (XCAR (XCAR (tail)))
5565 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5566 {
5567 if (NILP (prev))
5568 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5569 else
5570 {
5571 tail = XCDR (tail);
5572 XSETCDR (prev, tail);
5573 }
5574 }
5575 else
5576 {
5577 prev = tail;
5578 tail = XCDR (tail);
5579 }
5580 }
5581 }
5582 /* Now that we have stripped the elements that need not be in the
5583 undo_list any more, we can finally mark the list. */
5584 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5585
5586 nextb = nextb->header.next.buffer;
5587 }
5588 }
5589
5590 gc_sweep ();
5591
5592 /* Clear the mark bits that we set in certain root slots. */
5593
5594 unmark_byte_stack ();
5595 VECTOR_UNMARK (&buffer_defaults);
5596 VECTOR_UNMARK (&buffer_local_symbols);
5597
5598 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5599 dump_zombies ();
5600 #endif
5601
5602 UNBLOCK_INPUT;
5603
5604 CHECK_CONS_LIST ();
5605
5606 /* clear_marks (); */
5607 gc_in_progress = 0;
5608
5609 consing_since_gc = 0;
5610 if (gc_cons_threshold < 10000)
5611 gc_cons_threshold = 10000;
5612
5613 gc_relative_threshold = 0;
5614 if (FLOATP (Vgc_cons_percentage))
5615 { /* Set gc_cons_combined_threshold. */
5616 double tot = 0;
5617
5618 tot += total_conses * sizeof (struct Lisp_Cons);
5619 tot += total_symbols * sizeof (struct Lisp_Symbol);
5620 tot += total_markers * sizeof (union Lisp_Misc);
5621 tot += total_string_size;
5622 tot += total_vector_size * sizeof (Lisp_Object);
5623 tot += total_floats * sizeof (struct Lisp_Float);
5624 tot += total_intervals * sizeof (struct interval);
5625 tot += total_strings * sizeof (struct Lisp_String);
5626
5627 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5628 if (0 < tot)
5629 {
5630 if (tot < TYPE_MAXIMUM (EMACS_INT))
5631 gc_relative_threshold = tot;
5632 else
5633 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5634 }
5635 }
5636
5637 if (garbage_collection_messages)
5638 {
5639 if (message_p || minibuf_level > 0)
5640 restore_message ();
5641 else
5642 message1_nolog ("Garbage collecting...done");
5643 }
5644
5645 unbind_to (count, Qnil);
5646
5647 total[0] = Fcons (make_number (total_conses),
5648 make_number (total_free_conses));
5649 total[1] = Fcons (make_number (total_symbols),
5650 make_number (total_free_symbols));
5651 total[2] = Fcons (make_number (total_markers),
5652 make_number (total_free_markers));
5653 total[3] = make_number (total_string_size);
5654 total[4] = make_number (total_vector_size);
5655 total[5] = Fcons (make_number (total_floats),
5656 make_number (total_free_floats));
5657 total[6] = Fcons (make_number (total_intervals),
5658 make_number (total_free_intervals));
5659 total[7] = Fcons (make_number (total_strings),
5660 make_number (total_free_strings));
5661
5662 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5663 {
5664 /* Compute average percentage of zombies. */
5665 double nlive = 0;
5666
5667 for (i = 0; i < 7; ++i)
5668 if (CONSP (total[i]))
5669 nlive += XFASTINT (XCAR (total[i]));
5670
5671 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5672 max_live = max (nlive, max_live);
5673 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5674 max_zombies = max (nzombies, max_zombies);
5675 ++ngcs;
5676 }
5677 #endif
5678
5679 if (!NILP (Vpost_gc_hook))
5680 {
5681 ptrdiff_t gc_count = inhibit_garbage_collection ();
5682 safe_run_hooks (Qpost_gc_hook);
5683 unbind_to (gc_count, Qnil);
5684 }
5685
5686 /* Accumulate statistics. */
5687 EMACS_GET_TIME (t2);
5688 EMACS_SUB_TIME (t3, t2, t1);
5689 if (FLOATP (Vgc_elapsed))
5690 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5691 EMACS_SECS (t3) +
5692 EMACS_USECS (t3) * 1.0e-6);
5693 gcs_done++;
5694
5695 return Flist (sizeof total / sizeof *total, total);
5696 }
5697
5698
5699 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5700 only interesting objects referenced from glyphs are strings. */
5701
5702 static void
5703 mark_glyph_matrix (struct glyph_matrix *matrix)
5704 {
5705 struct glyph_row *row = matrix->rows;
5706 struct glyph_row *end = row + matrix->nrows;
5707
5708 for (; row < end; ++row)
5709 if (row->enabled_p)
5710 {
5711 int area;
5712 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5713 {
5714 struct glyph *glyph = row->glyphs[area];
5715 struct glyph *end_glyph = glyph + row->used[area];
5716
5717 for (; glyph < end_glyph; ++glyph)
5718 if (STRINGP (glyph->object)
5719 && !STRING_MARKED_P (XSTRING (glyph->object)))
5720 mark_object (glyph->object);
5721 }
5722 }
5723 }
5724
5725
5726 /* Mark Lisp faces in the face cache C. */
5727
5728 static void
5729 mark_face_cache (struct face_cache *c)
5730 {
5731 if (c)
5732 {
5733 int i, j;
5734 for (i = 0; i < c->used; ++i)
5735 {
5736 struct face *face = FACE_FROM_ID (c->f, i);
5737
5738 if (face)
5739 {
5740 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5741 mark_object (face->lface[j]);
5742 }
5743 }
5744 }
5745 }
5746
5747
5748 \f
5749 /* Mark reference to a Lisp_Object.
5750 If the object referred to has not been seen yet, recursively mark
5751 all the references contained in it. */
5752
5753 #define LAST_MARKED_SIZE 500
5754 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5755 static int last_marked_index;
5756
5757 /* For debugging--call abort when we cdr down this many
5758 links of a list, in mark_object. In debugging,
5759 the call to abort will hit a breakpoint.
5760 Normally this is zero and the check never goes off. */
5761 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5762
5763 static void
5764 mark_vectorlike (struct Lisp_Vector *ptr)
5765 {
5766 ptrdiff_t size = ptr->header.size;
5767 ptrdiff_t i;
5768
5769 eassert (!VECTOR_MARKED_P (ptr));
5770 VECTOR_MARK (ptr); /* Else mark it */
5771 if (size & PSEUDOVECTOR_FLAG)
5772 size &= PSEUDOVECTOR_SIZE_MASK;
5773
5774 /* Note that this size is not the memory-footprint size, but only
5775 the number of Lisp_Object fields that we should trace.
5776 The distinction is used e.g. by Lisp_Process which places extra
5777 non-Lisp_Object fields at the end of the structure. */
5778 for (i = 0; i < size; i++) /* and then mark its elements */
5779 mark_object (ptr->contents[i]);
5780 }
5781
5782 /* Like mark_vectorlike but optimized for char-tables (and
5783 sub-char-tables) assuming that the contents are mostly integers or
5784 symbols. */
5785
5786 static void
5787 mark_char_table (struct Lisp_Vector *ptr)
5788 {
5789 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5790 int i;
5791
5792 eassert (!VECTOR_MARKED_P (ptr));
5793 VECTOR_MARK (ptr);
5794 for (i = 0; i < size; i++)
5795 {
5796 Lisp_Object val = ptr->contents[i];
5797
5798 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5799 continue;
5800 if (SUB_CHAR_TABLE_P (val))
5801 {
5802 if (! VECTOR_MARKED_P (XVECTOR (val)))
5803 mark_char_table (XVECTOR (val));
5804 }
5805 else
5806 mark_object (val);
5807 }
5808 }
5809
5810 void
5811 mark_object (Lisp_Object arg)
5812 {
5813 register Lisp_Object obj = arg;
5814 #ifdef GC_CHECK_MARKED_OBJECTS
5815 void *po;
5816 struct mem_node *m;
5817 #endif
5818 ptrdiff_t cdr_count = 0;
5819
5820 loop:
5821
5822 if (PURE_POINTER_P (XPNTR (obj)))
5823 return;
5824
5825 last_marked[last_marked_index++] = obj;
5826 if (last_marked_index == LAST_MARKED_SIZE)
5827 last_marked_index = 0;
5828
5829 /* Perform some sanity checks on the objects marked here. Abort if
5830 we encounter an object we know is bogus. This increases GC time
5831 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5832 #ifdef GC_CHECK_MARKED_OBJECTS
5833
5834 po = (void *) XPNTR (obj);
5835
5836 /* Check that the object pointed to by PO is known to be a Lisp
5837 structure allocated from the heap. */
5838 #define CHECK_ALLOCATED() \
5839 do { \
5840 m = mem_find (po); \
5841 if (m == MEM_NIL) \
5842 abort (); \
5843 } while (0)
5844
5845 /* Check that the object pointed to by PO is live, using predicate
5846 function LIVEP. */
5847 #define CHECK_LIVE(LIVEP) \
5848 do { \
5849 if (!LIVEP (m, po)) \
5850 abort (); \
5851 } while (0)
5852
5853 /* Check both of the above conditions. */
5854 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5855 do { \
5856 CHECK_ALLOCATED (); \
5857 CHECK_LIVE (LIVEP); \
5858 } while (0) \
5859
5860 #else /* not GC_CHECK_MARKED_OBJECTS */
5861
5862 #define CHECK_LIVE(LIVEP) (void) 0
5863 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5864
5865 #endif /* not GC_CHECK_MARKED_OBJECTS */
5866
5867 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5868 {
5869 case Lisp_String:
5870 {
5871 register struct Lisp_String *ptr = XSTRING (obj);
5872 if (STRING_MARKED_P (ptr))
5873 break;
5874 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5875 MARK_INTERVAL_TREE (ptr->intervals);
5876 MARK_STRING (ptr);
5877 #ifdef GC_CHECK_STRING_BYTES
5878 /* Check that the string size recorded in the string is the
5879 same as the one recorded in the sdata structure. */
5880 CHECK_STRING_BYTES (ptr);
5881 #endif /* GC_CHECK_STRING_BYTES */
5882 }
5883 break;
5884
5885 case Lisp_Vectorlike:
5886 if (VECTOR_MARKED_P (XVECTOR (obj)))
5887 break;
5888 #ifdef GC_CHECK_MARKED_OBJECTS
5889 m = mem_find (po);
5890 if (m == MEM_NIL && !SUBRP (obj)
5891 && po != &buffer_defaults
5892 && po != &buffer_local_symbols)
5893 abort ();
5894 #endif /* GC_CHECK_MARKED_OBJECTS */
5895
5896 if (BUFFERP (obj))
5897 {
5898 #ifdef GC_CHECK_MARKED_OBJECTS
5899 if (po != &buffer_defaults && po != &buffer_local_symbols)
5900 {
5901 struct buffer *b;
5902 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5903 ;
5904 if (b == NULL)
5905 abort ();
5906 }
5907 #endif /* GC_CHECK_MARKED_OBJECTS */
5908 mark_buffer (obj);
5909 }
5910 else if (SUBRP (obj))
5911 break;
5912 else if (COMPILEDP (obj))
5913 /* We could treat this just like a vector, but it is better to
5914 save the COMPILED_CONSTANTS element for last and avoid
5915 recursion there. */
5916 {
5917 register struct Lisp_Vector *ptr = XVECTOR (obj);
5918 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5919 int i;
5920
5921 CHECK_LIVE (live_vector_p);
5922 VECTOR_MARK (ptr); /* Else mark it */
5923 for (i = 0; i < size; i++) /* and then mark its elements */
5924 {
5925 if (i != COMPILED_CONSTANTS)
5926 mark_object (ptr->contents[i]);
5927 }
5928 obj = ptr->contents[COMPILED_CONSTANTS];
5929 goto loop;
5930 }
5931 else if (FRAMEP (obj))
5932 {
5933 register struct frame *ptr = XFRAME (obj);
5934 mark_vectorlike (XVECTOR (obj));
5935 mark_face_cache (ptr->face_cache);
5936 }
5937 else if (WINDOWP (obj))
5938 {
5939 register struct Lisp_Vector *ptr = XVECTOR (obj);
5940 struct window *w = XWINDOW (obj);
5941 mark_vectorlike (ptr);
5942 /* Mark glyphs for leaf windows. Marking window matrices is
5943 sufficient because frame matrices use the same glyph
5944 memory. */
5945 if (NILP (w->hchild)
5946 && NILP (w->vchild)
5947 && w->current_matrix)
5948 {
5949 mark_glyph_matrix (w->current_matrix);
5950 mark_glyph_matrix (w->desired_matrix);
5951 }
5952 }
5953 else if (HASH_TABLE_P (obj))
5954 {
5955 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5956 mark_vectorlike ((struct Lisp_Vector *)h);
5957 /* If hash table is not weak, mark all keys and values.
5958 For weak tables, mark only the vector. */
5959 if (NILP (h->weak))
5960 mark_object (h->key_and_value);
5961 else
5962 VECTOR_MARK (XVECTOR (h->key_and_value));
5963 }
5964 else if (CHAR_TABLE_P (obj))
5965 mark_char_table (XVECTOR (obj));
5966 else
5967 mark_vectorlike (XVECTOR (obj));
5968 break;
5969
5970 case Lisp_Symbol:
5971 {
5972 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5973 struct Lisp_Symbol *ptrx;
5974
5975 if (ptr->gcmarkbit)
5976 break;
5977 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5978 ptr->gcmarkbit = 1;
5979 mark_object (ptr->function);
5980 mark_object (ptr->plist);
5981 switch (ptr->redirect)
5982 {
5983 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5984 case SYMBOL_VARALIAS:
5985 {
5986 Lisp_Object tem;
5987 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5988 mark_object (tem);
5989 break;
5990 }
5991 case SYMBOL_LOCALIZED:
5992 {
5993 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5994 /* If the value is forwarded to a buffer or keyboard field,
5995 these are marked when we see the corresponding object.
5996 And if it's forwarded to a C variable, either it's not
5997 a Lisp_Object var, or it's staticpro'd already. */
5998 mark_object (blv->where);
5999 mark_object (blv->valcell);
6000 mark_object (blv->defcell);
6001 break;
6002 }
6003 case SYMBOL_FORWARDED:
6004 /* If the value is forwarded to a buffer or keyboard field,
6005 these are marked when we see the corresponding object.
6006 And if it's forwarded to a C variable, either it's not
6007 a Lisp_Object var, or it's staticpro'd already. */
6008 break;
6009 default: abort ();
6010 }
6011 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6012 MARK_STRING (XSTRING (ptr->xname));
6013 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6014
6015 ptr = ptr->next;
6016 if (ptr)
6017 {
6018 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
6019 XSETSYMBOL (obj, ptrx);
6020 goto loop;
6021 }
6022 }
6023 break;
6024
6025 case Lisp_Misc:
6026 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6027 if (XMISCANY (obj)->gcmarkbit)
6028 break;
6029 XMISCANY (obj)->gcmarkbit = 1;
6030
6031 switch (XMISCTYPE (obj))
6032 {
6033
6034 case Lisp_Misc_Marker:
6035 /* DO NOT mark thru the marker's chain.
6036 The buffer's markers chain does not preserve markers from gc;
6037 instead, markers are removed from the chain when freed by gc. */
6038 break;
6039
6040 case Lisp_Misc_Save_Value:
6041 #if GC_MARK_STACK
6042 {
6043 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6044 /* If DOGC is set, POINTER is the address of a memory
6045 area containing INTEGER potential Lisp_Objects. */
6046 if (ptr->dogc)
6047 {
6048 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6049 ptrdiff_t nelt;
6050 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6051 mark_maybe_object (*p);
6052 }
6053 }
6054 #endif
6055 break;
6056
6057 case Lisp_Misc_Overlay:
6058 {
6059 struct Lisp_Overlay *ptr = XOVERLAY (obj);
6060 mark_object (ptr->start);
6061 mark_object (ptr->end);
6062 mark_object (ptr->plist);
6063 if (ptr->next)
6064 {
6065 XSETMISC (obj, ptr->next);
6066 goto loop;
6067 }
6068 }
6069 break;
6070
6071 default:
6072 abort ();
6073 }
6074 break;
6075
6076 case Lisp_Cons:
6077 {
6078 register struct Lisp_Cons *ptr = XCONS (obj);
6079 if (CONS_MARKED_P (ptr))
6080 break;
6081 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6082 CONS_MARK (ptr);
6083 /* If the cdr is nil, avoid recursion for the car. */
6084 if (EQ (ptr->u.cdr, Qnil))
6085 {
6086 obj = ptr->car;
6087 cdr_count = 0;
6088 goto loop;
6089 }
6090 mark_object (ptr->car);
6091 obj = ptr->u.cdr;
6092 cdr_count++;
6093 if (cdr_count == mark_object_loop_halt)
6094 abort ();
6095 goto loop;
6096 }
6097
6098 case Lisp_Float:
6099 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6100 FLOAT_MARK (XFLOAT (obj));
6101 break;
6102
6103 case_Lisp_Int:
6104 break;
6105
6106 default:
6107 abort ();
6108 }
6109
6110 #undef CHECK_LIVE
6111 #undef CHECK_ALLOCATED
6112 #undef CHECK_ALLOCATED_AND_LIVE
6113 }
6114
6115 /* Mark the pointers in a buffer structure. */
6116
6117 static void
6118 mark_buffer (Lisp_Object buf)
6119 {
6120 register struct buffer *buffer = XBUFFER (buf);
6121 register Lisp_Object *ptr, tmp;
6122 Lisp_Object base_buffer;
6123
6124 eassert (!VECTOR_MARKED_P (buffer));
6125 VECTOR_MARK (buffer);
6126
6127 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
6128
6129 /* For now, we just don't mark the undo_list. It's done later in
6130 a special way just before the sweep phase, and after stripping
6131 some of its elements that are not needed any more. */
6132
6133 if (buffer->overlays_before)
6134 {
6135 XSETMISC (tmp, buffer->overlays_before);
6136 mark_object (tmp);
6137 }
6138 if (buffer->overlays_after)
6139 {
6140 XSETMISC (tmp, buffer->overlays_after);
6141 mark_object (tmp);
6142 }
6143
6144 /* buffer-local Lisp variables start at `undo_list',
6145 tho only the ones from `name' on are GC'd normally. */
6146 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
6147 ptr <= &PER_BUFFER_VALUE (buffer,
6148 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
6149 ptr++)
6150 mark_object (*ptr);
6151
6152 /* If this is an indirect buffer, mark its base buffer. */
6153 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6154 {
6155 XSETBUFFER (base_buffer, buffer->base_buffer);
6156 mark_buffer (base_buffer);
6157 }
6158 }
6159
6160 /* Mark the Lisp pointers in the terminal objects.
6161 Called by Fgarbage_collect. */
6162
6163 static void
6164 mark_terminals (void)
6165 {
6166 struct terminal *t;
6167 for (t = terminal_list; t; t = t->next_terminal)
6168 {
6169 eassert (t->name != NULL);
6170 #ifdef HAVE_WINDOW_SYSTEM
6171 /* If a terminal object is reachable from a stacpro'ed object,
6172 it might have been marked already. Make sure the image cache
6173 gets marked. */
6174 mark_image_cache (t->image_cache);
6175 #endif /* HAVE_WINDOW_SYSTEM */
6176 if (!VECTOR_MARKED_P (t))
6177 mark_vectorlike ((struct Lisp_Vector *)t);
6178 }
6179 }
6180
6181
6182
6183 /* Value is non-zero if OBJ will survive the current GC because it's
6184 either marked or does not need to be marked to survive. */
6185
6186 int
6187 survives_gc_p (Lisp_Object obj)
6188 {
6189 int survives_p;
6190
6191 switch (XTYPE (obj))
6192 {
6193 case_Lisp_Int:
6194 survives_p = 1;
6195 break;
6196
6197 case Lisp_Symbol:
6198 survives_p = XSYMBOL (obj)->gcmarkbit;
6199 break;
6200
6201 case Lisp_Misc:
6202 survives_p = XMISCANY (obj)->gcmarkbit;
6203 break;
6204
6205 case Lisp_String:
6206 survives_p = STRING_MARKED_P (XSTRING (obj));
6207 break;
6208
6209 case Lisp_Vectorlike:
6210 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6211 break;
6212
6213 case Lisp_Cons:
6214 survives_p = CONS_MARKED_P (XCONS (obj));
6215 break;
6216
6217 case Lisp_Float:
6218 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6219 break;
6220
6221 default:
6222 abort ();
6223 }
6224
6225 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6226 }
6227
6228
6229 \f
6230 /* Sweep: find all structures not marked, and free them. */
6231
6232 static void
6233 gc_sweep (void)
6234 {
6235 /* Remove or mark entries in weak hash tables.
6236 This must be done before any object is unmarked. */
6237 sweep_weak_hash_tables ();
6238
6239 sweep_strings ();
6240 #ifdef GC_CHECK_STRING_BYTES
6241 if (!noninteractive)
6242 check_string_bytes (1);
6243 #endif
6244
6245 /* Put all unmarked conses on free list */
6246 {
6247 register struct cons_block *cblk;
6248 struct cons_block **cprev = &cons_block;
6249 register int lim = cons_block_index;
6250 EMACS_INT num_free = 0, num_used = 0;
6251
6252 cons_free_list = 0;
6253
6254 for (cblk = cons_block; cblk; cblk = *cprev)
6255 {
6256 register int i = 0;
6257 int this_free = 0;
6258 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6259
6260 /* Scan the mark bits an int at a time. */
6261 for (i = 0; i < ilim; i++)
6262 {
6263 if (cblk->gcmarkbits[i] == -1)
6264 {
6265 /* Fast path - all cons cells for this int are marked. */
6266 cblk->gcmarkbits[i] = 0;
6267 num_used += BITS_PER_INT;
6268 }
6269 else
6270 {
6271 /* Some cons cells for this int are not marked.
6272 Find which ones, and free them. */
6273 int start, pos, stop;
6274
6275 start = i * BITS_PER_INT;
6276 stop = lim - start;
6277 if (stop > BITS_PER_INT)
6278 stop = BITS_PER_INT;
6279 stop += start;
6280
6281 for (pos = start; pos < stop; pos++)
6282 {
6283 if (!CONS_MARKED_P (&cblk->conses[pos]))
6284 {
6285 this_free++;
6286 cblk->conses[pos].u.chain = cons_free_list;
6287 cons_free_list = &cblk->conses[pos];
6288 #if GC_MARK_STACK
6289 cons_free_list->car = Vdead;
6290 #endif
6291 }
6292 else
6293 {
6294 num_used++;
6295 CONS_UNMARK (&cblk->conses[pos]);
6296 }
6297 }
6298 }
6299 }
6300
6301 lim = CONS_BLOCK_SIZE;
6302 /* If this block contains only free conses and we have already
6303 seen more than two blocks worth of free conses then deallocate
6304 this block. */
6305 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6306 {
6307 *cprev = cblk->next;
6308 /* Unhook from the free list. */
6309 cons_free_list = cblk->conses[0].u.chain;
6310 lisp_align_free (cblk);
6311 }
6312 else
6313 {
6314 num_free += this_free;
6315 cprev = &cblk->next;
6316 }
6317 }
6318 total_conses = num_used;
6319 total_free_conses = num_free;
6320 }
6321
6322 /* Put all unmarked floats on free list */
6323 {
6324 register struct float_block *fblk;
6325 struct float_block **fprev = &float_block;
6326 register int lim = float_block_index;
6327 EMACS_INT num_free = 0, num_used = 0;
6328
6329 float_free_list = 0;
6330
6331 for (fblk = float_block; fblk; fblk = *fprev)
6332 {
6333 register int i;
6334 int this_free = 0;
6335 for (i = 0; i < lim; i++)
6336 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6337 {
6338 this_free++;
6339 fblk->floats[i].u.chain = float_free_list;
6340 float_free_list = &fblk->floats[i];
6341 }
6342 else
6343 {
6344 num_used++;
6345 FLOAT_UNMARK (&fblk->floats[i]);
6346 }
6347 lim = FLOAT_BLOCK_SIZE;
6348 /* If this block contains only free floats and we have already
6349 seen more than two blocks worth of free floats then deallocate
6350 this block. */
6351 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6352 {
6353 *fprev = fblk->next;
6354 /* Unhook from the free list. */
6355 float_free_list = fblk->floats[0].u.chain;
6356 lisp_align_free (fblk);
6357 }
6358 else
6359 {
6360 num_free += this_free;
6361 fprev = &fblk->next;
6362 }
6363 }
6364 total_floats = num_used;
6365 total_free_floats = num_free;
6366 }
6367
6368 /* Put all unmarked intervals on free list */
6369 {
6370 register struct interval_block *iblk;
6371 struct interval_block **iprev = &interval_block;
6372 register int lim = interval_block_index;
6373 EMACS_INT num_free = 0, num_used = 0;
6374
6375 interval_free_list = 0;
6376
6377 for (iblk = interval_block; iblk; iblk = *iprev)
6378 {
6379 register int i;
6380 int this_free = 0;
6381
6382 for (i = 0; i < lim; i++)
6383 {
6384 if (!iblk->intervals[i].gcmarkbit)
6385 {
6386 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6387 interval_free_list = &iblk->intervals[i];
6388 this_free++;
6389 }
6390 else
6391 {
6392 num_used++;
6393 iblk->intervals[i].gcmarkbit = 0;
6394 }
6395 }
6396 lim = INTERVAL_BLOCK_SIZE;
6397 /* If this block contains only free intervals and we have already
6398 seen more than two blocks worth of free intervals then
6399 deallocate this block. */
6400 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6401 {
6402 *iprev = iblk->next;
6403 /* Unhook from the free list. */
6404 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6405 lisp_free (iblk);
6406 }
6407 else
6408 {
6409 num_free += this_free;
6410 iprev = &iblk->next;
6411 }
6412 }
6413 total_intervals = num_used;
6414 total_free_intervals = num_free;
6415 }
6416
6417 /* Put all unmarked symbols on free list */
6418 {
6419 register struct symbol_block *sblk;
6420 struct symbol_block **sprev = &symbol_block;
6421 register int lim = symbol_block_index;
6422 EMACS_INT num_free = 0, num_used = 0;
6423
6424 symbol_free_list = NULL;
6425
6426 for (sblk = symbol_block; sblk; sblk = *sprev)
6427 {
6428 int this_free = 0;
6429 union aligned_Lisp_Symbol *sym = sblk->symbols;
6430 union aligned_Lisp_Symbol *end = sym + lim;
6431
6432 for (; sym < end; ++sym)
6433 {
6434 /* Check if the symbol was created during loadup. In such a case
6435 it might be pointed to by pure bytecode which we don't trace,
6436 so we conservatively assume that it is live. */
6437 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6438
6439 if (!sym->s.gcmarkbit && !pure_p)
6440 {
6441 if (sym->s.redirect == SYMBOL_LOCALIZED)
6442 xfree (SYMBOL_BLV (&sym->s));
6443 sym->s.next = symbol_free_list;
6444 symbol_free_list = &sym->s;
6445 #if GC_MARK_STACK
6446 symbol_free_list->function = Vdead;
6447 #endif
6448 ++this_free;
6449 }
6450 else
6451 {
6452 ++num_used;
6453 if (!pure_p)
6454 UNMARK_STRING (XSTRING (sym->s.xname));
6455 sym->s.gcmarkbit = 0;
6456 }
6457 }
6458
6459 lim = SYMBOL_BLOCK_SIZE;
6460 /* If this block contains only free symbols and we have already
6461 seen more than two blocks worth of free symbols then deallocate
6462 this block. */
6463 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6464 {
6465 *sprev = sblk->next;
6466 /* Unhook from the free list. */
6467 symbol_free_list = sblk->symbols[0].s.next;
6468 lisp_free (sblk);
6469 }
6470 else
6471 {
6472 num_free += this_free;
6473 sprev = &sblk->next;
6474 }
6475 }
6476 total_symbols = num_used;
6477 total_free_symbols = num_free;
6478 }
6479
6480 /* Put all unmarked misc's on free list.
6481 For a marker, first unchain it from the buffer it points into. */
6482 {
6483 register struct marker_block *mblk;
6484 struct marker_block **mprev = &marker_block;
6485 register int lim = marker_block_index;
6486 EMACS_INT num_free = 0, num_used = 0;
6487
6488 marker_free_list = 0;
6489
6490 for (mblk = marker_block; mblk; mblk = *mprev)
6491 {
6492 register int i;
6493 int this_free = 0;
6494
6495 for (i = 0; i < lim; i++)
6496 {
6497 if (!mblk->markers[i].m.u_any.gcmarkbit)
6498 {
6499 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6500 unchain_marker (&mblk->markers[i].m.u_marker);
6501 /* Set the type of the freed object to Lisp_Misc_Free.
6502 We could leave the type alone, since nobody checks it,
6503 but this might catch bugs faster. */
6504 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6505 mblk->markers[i].m.u_free.chain = marker_free_list;
6506 marker_free_list = &mblk->markers[i].m;
6507 this_free++;
6508 }
6509 else
6510 {
6511 num_used++;
6512 mblk->markers[i].m.u_any.gcmarkbit = 0;
6513 }
6514 }
6515 lim = MARKER_BLOCK_SIZE;
6516 /* If this block contains only free markers and we have already
6517 seen more than two blocks worth of free markers then deallocate
6518 this block. */
6519 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6520 {
6521 *mprev = mblk->next;
6522 /* Unhook from the free list. */
6523 marker_free_list = mblk->markers[0].m.u_free.chain;
6524 lisp_free (mblk);
6525 }
6526 else
6527 {
6528 num_free += this_free;
6529 mprev = &mblk->next;
6530 }
6531 }
6532
6533 total_markers = num_used;
6534 total_free_markers = num_free;
6535 }
6536
6537 /* Free all unmarked buffers */
6538 {
6539 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6540
6541 while (buffer)
6542 if (!VECTOR_MARKED_P (buffer))
6543 {
6544 if (prev)
6545 prev->header.next = buffer->header.next;
6546 else
6547 all_buffers = buffer->header.next.buffer;
6548 next = buffer->header.next.buffer;
6549 lisp_free (buffer);
6550 buffer = next;
6551 }
6552 else
6553 {
6554 VECTOR_UNMARK (buffer);
6555 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6556 prev = buffer, buffer = buffer->header.next.buffer;
6557 }
6558 }
6559
6560 sweep_vectors ();
6561
6562 #ifdef GC_CHECK_STRING_BYTES
6563 if (!noninteractive)
6564 check_string_bytes (1);
6565 #endif
6566 }
6567
6568
6569
6570 \f
6571 /* Debugging aids. */
6572
6573 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6574 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6575 This may be helpful in debugging Emacs's memory usage.
6576 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6577 (void)
6578 {
6579 Lisp_Object end;
6580
6581 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6582
6583 return end;
6584 }
6585
6586 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6587 doc: /* Return a list of counters that measure how much consing there has been.
6588 Each of these counters increments for a certain kind of object.
6589 The counters wrap around from the largest positive integer to zero.
6590 Garbage collection does not decrease them.
6591 The elements of the value are as follows:
6592 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6593 All are in units of 1 = one object consed
6594 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6595 objects consed.
6596 MISCS include overlays, markers, and some internal types.
6597 Frames, windows, buffers, and subprocesses count as vectors
6598 (but the contents of a buffer's text do not count here). */)
6599 (void)
6600 {
6601 Lisp_Object consed[8];
6602
6603 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6604 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6605 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6606 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6607 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6608 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6609 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6610 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6611
6612 return Flist (8, consed);
6613 }
6614
6615 /* Find at most FIND_MAX symbols which have OBJ as their value or
6616 function. This is used in gdbinit's `xwhichsymbols' command. */
6617
6618 Lisp_Object
6619 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6620 {
6621 struct symbol_block *sblk;
6622 ptrdiff_t gc_count = inhibit_garbage_collection ();
6623 Lisp_Object found = Qnil;
6624
6625 if (! DEADP (obj))
6626 {
6627 for (sblk = symbol_block; sblk; sblk = sblk->next)
6628 {
6629 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6630 int bn;
6631
6632 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6633 {
6634 struct Lisp_Symbol *sym = &aligned_sym->s;
6635 Lisp_Object val;
6636 Lisp_Object tem;
6637
6638 if (sblk == symbol_block && bn >= symbol_block_index)
6639 break;
6640
6641 XSETSYMBOL (tem, sym);
6642 val = find_symbol_value (tem);
6643 if (EQ (val, obj)
6644 || EQ (sym->function, obj)
6645 || (!NILP (sym->function)
6646 && COMPILEDP (sym->function)
6647 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6648 || (!NILP (val)
6649 && COMPILEDP (val)
6650 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6651 {
6652 found = Fcons (tem, found);
6653 if (--find_max == 0)
6654 goto out;
6655 }
6656 }
6657 }
6658 }
6659
6660 out:
6661 unbind_to (gc_count, Qnil);
6662 return found;
6663 }
6664
6665 #ifdef ENABLE_CHECKING
6666 int suppress_checking;
6667
6668 void
6669 die (const char *msg, const char *file, int line)
6670 {
6671 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6672 file, line, msg);
6673 abort ();
6674 }
6675 #endif
6676 \f
6677 /* Initialization */
6678
6679 void
6680 init_alloc_once (void)
6681 {
6682 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6683 purebeg = PUREBEG;
6684 pure_size = PURESIZE;
6685 pure_bytes_used = 0;
6686 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6687 pure_bytes_used_before_overflow = 0;
6688
6689 /* Initialize the list of free aligned blocks. */
6690 free_ablock = NULL;
6691
6692 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6693 mem_init ();
6694 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6695 #endif
6696
6697 ignore_warnings = 1;
6698 #ifdef DOUG_LEA_MALLOC
6699 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6700 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6701 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6702 #endif
6703 init_strings ();
6704 init_cons ();
6705 init_symbol ();
6706 init_marker ();
6707 init_float ();
6708 init_intervals ();
6709 init_vectors ();
6710 init_weak_hash_tables ();
6711
6712 #ifdef REL_ALLOC
6713 malloc_hysteresis = 32;
6714 #else
6715 malloc_hysteresis = 0;
6716 #endif
6717
6718 refill_memory_reserve ();
6719
6720 ignore_warnings = 0;
6721 gcprolist = 0;
6722 byte_stack_list = 0;
6723 staticidx = 0;
6724 consing_since_gc = 0;
6725 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6726 gc_relative_threshold = 0;
6727 }
6728
6729 void
6730 init_alloc (void)
6731 {
6732 gcprolist = 0;
6733 byte_stack_list = 0;
6734 #if GC_MARK_STACK
6735 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6736 setjmp_tested_p = longjmps_done = 0;
6737 #endif
6738 #endif
6739 Vgc_elapsed = make_float (0.0);
6740 gcs_done = 0;
6741 }
6742
6743 void
6744 syms_of_alloc (void)
6745 {
6746 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6747 doc: /* Number of bytes of consing between garbage collections.
6748 Garbage collection can happen automatically once this many bytes have been
6749 allocated since the last garbage collection. All data types count.
6750
6751 Garbage collection happens automatically only when `eval' is called.
6752
6753 By binding this temporarily to a large number, you can effectively
6754 prevent garbage collection during a part of the program.
6755 See also `gc-cons-percentage'. */);
6756
6757 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6758 doc: /* Portion of the heap used for allocation.
6759 Garbage collection can happen automatically once this portion of the heap
6760 has been allocated since the last garbage collection.
6761 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6762 Vgc_cons_percentage = make_float (0.1);
6763
6764 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6765 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6766
6767 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6768 doc: /* Number of cons cells that have been consed so far. */);
6769
6770 DEFVAR_INT ("floats-consed", floats_consed,
6771 doc: /* Number of floats that have been consed so far. */);
6772
6773 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6774 doc: /* Number of vector cells that have been consed so far. */);
6775
6776 DEFVAR_INT ("symbols-consed", symbols_consed,
6777 doc: /* Number of symbols that have been consed so far. */);
6778
6779 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6780 doc: /* Number of string characters that have been consed so far. */);
6781
6782 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6783 doc: /* Number of miscellaneous objects that have been consed so far.
6784 These include markers and overlays, plus certain objects not visible
6785 to users. */);
6786
6787 DEFVAR_INT ("intervals-consed", intervals_consed,
6788 doc: /* Number of intervals that have been consed so far. */);
6789
6790 DEFVAR_INT ("strings-consed", strings_consed,
6791 doc: /* Number of strings that have been consed so far. */);
6792
6793 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6794 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6795 This means that certain objects should be allocated in shared (pure) space.
6796 It can also be set to a hash-table, in which case this table is used to
6797 do hash-consing of the objects allocated to pure space. */);
6798
6799 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6800 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6801 garbage_collection_messages = 0;
6802
6803 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6804 doc: /* Hook run after garbage collection has finished. */);
6805 Vpost_gc_hook = Qnil;
6806 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6807
6808 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6809 doc: /* Precomputed `signal' argument for memory-full error. */);
6810 /* We build this in advance because if we wait until we need it, we might
6811 not be able to allocate the memory to hold it. */
6812 Vmemory_signal_data
6813 = pure_cons (Qerror,
6814 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6815
6816 DEFVAR_LISP ("memory-full", Vmemory_full,
6817 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6818 Vmemory_full = Qnil;
6819
6820 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6821 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6822
6823 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6824 doc: /* Accumulated time elapsed in garbage collections.
6825 The time is in seconds as a floating point value. */);
6826 DEFVAR_INT ("gcs-done", gcs_done,
6827 doc: /* Accumulated number of garbage collections done. */);
6828
6829 defsubr (&Scons);
6830 defsubr (&Slist);
6831 defsubr (&Svector);
6832 defsubr (&Smake_byte_code);
6833 defsubr (&Smake_list);
6834 defsubr (&Smake_vector);
6835 defsubr (&Smake_string);
6836 defsubr (&Smake_bool_vector);
6837 defsubr (&Smake_symbol);
6838 defsubr (&Smake_marker);
6839 defsubr (&Spurecopy);
6840 defsubr (&Sgarbage_collect);
6841 defsubr (&Smemory_limit);
6842 defsubr (&Smemory_use_counts);
6843
6844 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6845 defsubr (&Sgc_status);
6846 #endif
6847 }