Remove obsolete '#define static' cruft.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23 #include <setjmp.h>
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "buffer.h"
28 #include "character.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 char posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104 static void matcher_overflow (void) NO_RETURN;
105
106 static void
107 matcher_overflow (void)
108 {
109 error ("Stack overflow in regexp matcher");
110 }
111
112 /* Compile a regexp and signal a Lisp error if anything goes wrong.
113 PATTERN is the pattern to compile.
114 CP is the place to put the result.
115 TRANSLATE is a translation table for ignoring case, or nil for none.
116 POSIX is nonzero if we want full backtracking (POSIX style)
117 for this pattern. 0 means backtrack only enough to get a valid match.
118
119 The behavior also depends on Vsearch_spaces_regexp. */
120
121 static void
122 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
136
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
144
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
149
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
152
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
156
157 re_set_whitespace_regexp (NULL);
158
159 re_set_syntax (old);
160 /* UNBLOCK_INPUT; */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
163
164 cp->regexp = Fcopy_sequence (pattern);
165 }
166
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
170
171 void
172 shrink_regexp_cache (void)
173 {
174 struct regexp_cache *cp;
175
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
177 {
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer
180 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
181 }
182 }
183
184 /* Clear the regexp cache w.r.t. a particular syntax table,
185 because it was changed.
186 There is no danger of memory leak here because re_compile_pattern
187 automagically manages the memory in each re_pattern_buffer struct,
188 based on its `allocated' and `buffer' values. */
189 void
190 clear_regexp_cache (void)
191 {
192 int i;
193
194 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
195 /* It's tempting to compare with the syntax-table we've actually changed,
196 but it's not sufficient because char-table inheritance means that
197 modifying one syntax-table can change others at the same time. */
198 if (!EQ (searchbufs[i].syntax_table, Qt))
199 searchbufs[i].regexp = Qnil;
200 }
201
202 /* Compile a regexp if necessary, but first check to see if there's one in
203 the cache.
204 PATTERN is the pattern to compile.
205 TRANSLATE is a translation table for ignoring case, or nil for none.
206 REGP is the structure that says where to store the "register"
207 values that will result from matching this pattern.
208 If it is 0, we should compile the pattern not to record any
209 subexpression bounds.
210 POSIX is nonzero if we want full backtracking (POSIX style)
211 for this pattern. 0 means backtrack only enough to get a valid match. */
212
213 struct re_pattern_buffer *
214 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
215 {
216 struct regexp_cache *cp, **cpp;
217
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
219 {
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
238
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
243 {
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
247 }
248 }
249
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
256
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
261
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
265
266 return &cp->buf;
267 }
268
269 \f
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, int posix)
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 ptrdiff_t s1, s2;
276 register ptrdiff_t i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
284 = BVAR (current_buffer, case_eqv_table);
285
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
294
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
297
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
300
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
306 {
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
310 }
311 if (s2 < 0)
312 {
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
315 }
316
317 re_match_object = Qnil;
318
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
325
326 if (i == -2)
327 matcher_overflow ();
328
329 val = (0 <= i ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 for (i = 0; i < search_regs.num_regs; i++)
332 if (search_regs.start[i] >= 0)
333 {
334 search_regs.start[i]
335 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
336 search_regs.end[i]
337 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
338 }
339
340 /* Set last_thing_searched only when match data is changed. */
341 if (NILP (Vinhibit_changing_match_data))
342 XSETBUFFER (last_thing_searched, current_buffer);
343
344 return val;
345 }
346
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
364 {
365 return looking_at_1 (regexp, 1);
366 }
367 \f
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
370 {
371 ptrdiff_t val;
372 struct re_pattern_buffer *bufp;
373 EMACS_INT pos;
374 ptrdiff_t pos_byte, i;
375
376 if (running_asynch_code)
377 save_search_regs ();
378
379 CHECK_STRING (regexp);
380 CHECK_STRING (string);
381
382 if (NILP (start))
383 pos = 0, pos_byte = 0;
384 else
385 {
386 ptrdiff_t len = SCHARS (string);
387
388 CHECK_NUMBER (start);
389 pos = XINT (start);
390 if (pos < 0 && -pos <= len)
391 pos = len + pos;
392 else if (0 > pos || pos > len)
393 args_out_of_range (string, start);
394 pos_byte = string_char_to_byte (string, pos);
395 }
396
397 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
398 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
399 = BVAR (current_buffer, case_eqv_table);
400
401 bufp = compile_pattern (regexp,
402 (NILP (Vinhibit_changing_match_data)
403 ? &search_regs : NULL),
404 (!NILP (BVAR (current_buffer, case_fold_search))
405 ? BVAR (current_buffer, case_canon_table) : Qnil),
406 posix,
407 STRING_MULTIBYTE (string));
408 immediate_quit = 1;
409 re_match_object = string;
410
411 val = re_search (bufp, SSDATA (string),
412 SBYTES (string), pos_byte,
413 SBYTES (string) - pos_byte,
414 (NILP (Vinhibit_changing_match_data)
415 ? &search_regs : NULL));
416 immediate_quit = 0;
417
418 /* Set last_thing_searched only when match data is changed. */
419 if (NILP (Vinhibit_changing_match_data))
420 last_thing_searched = Qt;
421
422 if (val == -2)
423 matcher_overflow ();
424 if (val < 0) return Qnil;
425
426 if (NILP (Vinhibit_changing_match_data))
427 for (i = 0; i < search_regs.num_regs; i++)
428 if (search_regs.start[i] >= 0)
429 {
430 search_regs.start[i]
431 = string_byte_to_char (string, search_regs.start[i]);
432 search_regs.end[i]
433 = string_byte_to_char (string, search_regs.end[i]);
434 }
435
436 return make_number (string_byte_to_char (string, val));
437 }
438
439 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
440 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
441 Matching ignores case if `case-fold-search' is non-nil.
442 If third arg START is non-nil, start search at that index in STRING.
443 For index of first char beyond the match, do (match-end 0).
444 `match-end' and `match-beginning' also give indices of substrings
445 matched by parenthesis constructs in the pattern.
446
447 You can use the function `match-string' to extract the substrings
448 matched by the parenthesis constructions in REGEXP. */)
449 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
450 {
451 return string_match_1 (regexp, string, start, 0);
452 }
453
454 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
455 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
456 Find the longest match, in accord with Posix regular expression rules.
457 Case is ignored if `case-fold-search' is non-nil in the current buffer.
458 If third arg START is non-nil, start search at that index in STRING.
459 For index of first char beyond the match, do (match-end 0).
460 `match-end' and `match-beginning' also give indices of substrings
461 matched by parenthesis constructs in the pattern. */)
462 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
463 {
464 return string_match_1 (regexp, string, start, 1);
465 }
466
467 /* Match REGEXP against STRING, searching all of STRING,
468 and return the index of the match, or negative on failure.
469 This does not clobber the match data. */
470
471 ptrdiff_t
472 fast_string_match (Lisp_Object regexp, Lisp_Object string)
473 {
474 ptrdiff_t val;
475 struct re_pattern_buffer *bufp;
476
477 bufp = compile_pattern (regexp, 0, Qnil,
478 0, STRING_MULTIBYTE (string));
479 immediate_quit = 1;
480 re_match_object = string;
481
482 val = re_search (bufp, SSDATA (string),
483 SBYTES (string), 0,
484 SBYTES (string), 0);
485 immediate_quit = 0;
486 return val;
487 }
488
489 /* Match REGEXP against STRING, searching all of STRING ignoring case,
490 and return the index of the match, or negative on failure.
491 This does not clobber the match data.
492 We assume that STRING contains single-byte characters. */
493
494 ptrdiff_t
495 fast_c_string_match_ignore_case (Lisp_Object regexp, const char *string)
496 {
497 ptrdiff_t val;
498 struct re_pattern_buffer *bufp;
499 size_t len = strlen (string);
500
501 regexp = string_make_unibyte (regexp);
502 re_match_object = Qt;
503 bufp = compile_pattern (regexp, 0,
504 Vascii_canon_table, 0,
505 0);
506 immediate_quit = 1;
507 val = re_search (bufp, string, len, 0, len, 0);
508 immediate_quit = 0;
509 return val;
510 }
511
512 /* Like fast_string_match but ignore case. */
513
514 ptrdiff_t
515 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
516 {
517 ptrdiff_t val;
518 struct re_pattern_buffer *bufp;
519
520 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
521 0, STRING_MULTIBYTE (string));
522 immediate_quit = 1;
523 re_match_object = string;
524
525 val = re_search (bufp, SSDATA (string),
526 SBYTES (string), 0,
527 SBYTES (string), 0);
528 immediate_quit = 0;
529 return val;
530 }
531 \f
532 /* Match REGEXP against the characters after POS to LIMIT, and return
533 the number of matched characters. If STRING is non-nil, match
534 against the characters in it. In that case, POS and LIMIT are
535 indices into the string. This function doesn't modify the match
536 data. */
537
538 ptrdiff_t
539 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
540 {
541 int multibyte;
542 struct re_pattern_buffer *buf;
543 unsigned char *p1, *p2;
544 ptrdiff_t s1, s2;
545 ptrdiff_t len;
546
547 if (STRINGP (string))
548 {
549 if (pos_byte < 0)
550 pos_byte = string_char_to_byte (string, pos);
551 if (limit_byte < 0)
552 limit_byte = string_char_to_byte (string, limit);
553 p1 = NULL;
554 s1 = 0;
555 p2 = SDATA (string);
556 s2 = SBYTES (string);
557 re_match_object = string;
558 multibyte = STRING_MULTIBYTE (string);
559 }
560 else
561 {
562 if (pos_byte < 0)
563 pos_byte = CHAR_TO_BYTE (pos);
564 if (limit_byte < 0)
565 limit_byte = CHAR_TO_BYTE (limit);
566 pos_byte -= BEGV_BYTE;
567 limit_byte -= BEGV_BYTE;
568 p1 = BEGV_ADDR;
569 s1 = GPT_BYTE - BEGV_BYTE;
570 p2 = GAP_END_ADDR;
571 s2 = ZV_BYTE - GPT_BYTE;
572 if (s1 < 0)
573 {
574 p2 = p1;
575 s2 = ZV_BYTE - BEGV_BYTE;
576 s1 = 0;
577 }
578 if (s2 < 0)
579 {
580 s1 = ZV_BYTE - BEGV_BYTE;
581 s2 = 0;
582 }
583 re_match_object = Qnil;
584 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
585 }
586
587 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
588 immediate_quit = 1;
589 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
590 pos_byte, NULL, limit_byte);
591 immediate_quit = 0;
592
593 return len;
594 }
595
596 \f
597 /* The newline cache: remembering which sections of text have no newlines. */
598
599 /* If the user has requested newline caching, make sure it's on.
600 Otherwise, make sure it's off.
601 This is our cheezy way of associating an action with the change of
602 state of a buffer-local variable. */
603 static void
604 newline_cache_on_off (struct buffer *buf)
605 {
606 if (NILP (BVAR (buf, cache_long_line_scans)))
607 {
608 /* It should be off. */
609 if (buf->newline_cache)
610 {
611 free_region_cache (buf->newline_cache);
612 buf->newline_cache = 0;
613 }
614 }
615 else
616 {
617 /* It should be on. */
618 if (buf->newline_cache == 0)
619 buf->newline_cache = new_region_cache ();
620 }
621 }
622
623 \f
624 /* Search for COUNT instances of the character TARGET between START and END.
625
626 If COUNT is positive, search forwards; END must be >= START.
627 If COUNT is negative, search backwards for the -COUNTth instance;
628 END must be <= START.
629 If COUNT is zero, do anything you please; run rogue, for all I care.
630
631 If END is zero, use BEGV or ZV instead, as appropriate for the
632 direction indicated by COUNT.
633
634 If we find COUNT instances, set *SHORTAGE to zero, and return the
635 position past the COUNTth match. Note that for reverse motion
636 this is not the same as the usual convention for Emacs motion commands.
637
638 If we don't find COUNT instances before reaching END, set *SHORTAGE
639 to the number of TARGETs left unfound, and return END.
640
641 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
642 except when inside redisplay. */
643
644 ptrdiff_t
645 scan_buffer (register int target, ptrdiff_t start, ptrdiff_t end,
646 ptrdiff_t count, ptrdiff_t *shortage, int allow_quit)
647 {
648 struct region_cache *newline_cache;
649 int direction;
650
651 if (count > 0)
652 {
653 direction = 1;
654 if (! end) end = ZV;
655 }
656 else
657 {
658 direction = -1;
659 if (! end) end = BEGV;
660 }
661
662 newline_cache_on_off (current_buffer);
663 newline_cache = current_buffer->newline_cache;
664
665 if (shortage != 0)
666 *shortage = 0;
667
668 immediate_quit = allow_quit;
669
670 if (count > 0)
671 while (start != end)
672 {
673 /* Our innermost scanning loop is very simple; it doesn't know
674 about gaps, buffer ends, or the newline cache. ceiling is
675 the position of the last character before the next such
676 obstacle --- the last character the dumb search loop should
677 examine. */
678 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end) - 1;
679 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
680 ptrdiff_t tem;
681
682 /* If we're looking for a newline, consult the newline cache
683 to see where we can avoid some scanning. */
684 if (target == '\n' && newline_cache)
685 {
686 ptrdiff_t next_change;
687 immediate_quit = 0;
688 while (region_cache_forward
689 (current_buffer, newline_cache, start_byte, &next_change))
690 start_byte = next_change;
691 immediate_quit = allow_quit;
692
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
696
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (next_change - 1, ceiling_byte);
700 }
701
702 /* The dumb loop can only scan text stored in contiguous
703 bytes. BUFFER_CEILING_OF returns the last character
704 position that is contiguous, so the ceiling is the
705 position after that. */
706 tem = BUFFER_CEILING_OF (start_byte);
707 ceiling_byte = min (tem, ceiling_byte);
708
709 {
710 /* The termination address of the dumb loop. */
711 register unsigned char *ceiling_addr
712 = BYTE_POS_ADDR (ceiling_byte) + 1;
713 register unsigned char *cursor
714 = BYTE_POS_ADDR (start_byte);
715 unsigned char *base = cursor;
716
717 while (cursor < ceiling_addr)
718 {
719 unsigned char *scan_start = cursor;
720
721 /* The dumb loop. */
722 while (*cursor != target && ++cursor < ceiling_addr)
723 ;
724
725 /* If we're looking for newlines, cache the fact that
726 the region from start to cursor is free of them. */
727 if (target == '\n' && newline_cache)
728 know_region_cache (current_buffer, newline_cache,
729 BYTE_TO_CHAR (start_byte + scan_start - base),
730 BYTE_TO_CHAR (start_byte + cursor - base));
731
732 /* Did we find the target character? */
733 if (cursor < ceiling_addr)
734 {
735 if (--count == 0)
736 {
737 immediate_quit = 0;
738 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
739 }
740 cursor++;
741 }
742 }
743
744 start = BYTE_TO_CHAR (start_byte + cursor - base);
745 }
746 }
747 else
748 while (start > end)
749 {
750 /* The last character to check before the next obstacle. */
751 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end);
752 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
753 ptrdiff_t tem;
754
755 /* Consult the newline cache, if appropriate. */
756 if (target == '\n' && newline_cache)
757 {
758 ptrdiff_t next_change;
759 immediate_quit = 0;
760 while (region_cache_backward
761 (current_buffer, newline_cache, start_byte, &next_change))
762 start_byte = next_change;
763 immediate_quit = allow_quit;
764
765 /* Start should never be at or before end. */
766 if (start_byte <= ceiling_byte)
767 start_byte = ceiling_byte + 1;
768
769 /* Now the text before start is an unknown region, and
770 next_change is the position of the next known region. */
771 ceiling_byte = max (next_change, ceiling_byte);
772 }
773
774 /* Stop scanning before the gap. */
775 tem = BUFFER_FLOOR_OF (start_byte - 1);
776 ceiling_byte = max (tem, ceiling_byte);
777
778 {
779 /* The termination address of the dumb loop. */
780 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
781 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
782 unsigned char *base = cursor;
783
784 while (cursor >= ceiling_addr)
785 {
786 unsigned char *scan_start = cursor;
787
788 while (*cursor != target && --cursor >= ceiling_addr)
789 ;
790
791 /* If we're looking for newlines, cache the fact that
792 the region from after the cursor to start is free of them. */
793 if (target == '\n' && newline_cache)
794 know_region_cache (current_buffer, newline_cache,
795 BYTE_TO_CHAR (start_byte + cursor - base),
796 BYTE_TO_CHAR (start_byte + scan_start - base));
797
798 /* Did we find the target character? */
799 if (cursor >= ceiling_addr)
800 {
801 if (++count >= 0)
802 {
803 immediate_quit = 0;
804 return BYTE_TO_CHAR (start_byte + cursor - base);
805 }
806 cursor--;
807 }
808 }
809
810 start = BYTE_TO_CHAR (start_byte + cursor - base);
811 }
812 }
813
814 immediate_quit = 0;
815 if (shortage != 0)
816 *shortage = count * direction;
817 return start;
818 }
819 \f
820 /* Search for COUNT instances of a line boundary, which means either a
821 newline or (if selective display enabled) a carriage return.
822 Start at START. If COUNT is negative, search backwards.
823
824 We report the resulting position by calling TEMP_SET_PT_BOTH.
825
826 If we find COUNT instances. we position after (always after,
827 even if scanning backwards) the COUNTth match, and return 0.
828
829 If we don't find COUNT instances before reaching the end of the
830 buffer (or the beginning, if scanning backwards), we return
831 the number of line boundaries left unfound, and position at
832 the limit we bumped up against.
833
834 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
835 except in special cases. */
836
837 EMACS_INT
838 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
839 ptrdiff_t limit, ptrdiff_t limit_byte,
840 register EMACS_INT count, int allow_quit)
841 {
842 int direction = ((count > 0) ? 1 : -1);
843
844 register unsigned char *cursor;
845 unsigned char *base;
846
847 ptrdiff_t ceiling;
848 register unsigned char *ceiling_addr;
849
850 int old_immediate_quit = immediate_quit;
851
852 /* The code that follows is like scan_buffer
853 but checks for either newline or carriage return. */
854
855 if (allow_quit)
856 immediate_quit++;
857
858 start_byte = CHAR_TO_BYTE (start);
859
860 if (count > 0)
861 {
862 while (start_byte < limit_byte)
863 {
864 ceiling = BUFFER_CEILING_OF (start_byte);
865 ceiling = min (limit_byte - 1, ceiling);
866 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
867 base = (cursor = BYTE_POS_ADDR (start_byte));
868 while (1)
869 {
870 while (*cursor != '\n' && ++cursor != ceiling_addr)
871 ;
872
873 if (cursor != ceiling_addr)
874 {
875 if (--count == 0)
876 {
877 immediate_quit = old_immediate_quit;
878 start_byte = start_byte + cursor - base + 1;
879 start = BYTE_TO_CHAR (start_byte);
880 TEMP_SET_PT_BOTH (start, start_byte);
881 return 0;
882 }
883 else
884 if (++cursor == ceiling_addr)
885 break;
886 }
887 else
888 break;
889 }
890 start_byte += cursor - base;
891 }
892 }
893 else
894 {
895 while (start_byte > limit_byte)
896 {
897 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
898 ceiling = max (limit_byte, ceiling);
899 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
900 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
901 while (1)
902 {
903 while (--cursor != ceiling_addr && *cursor != '\n')
904 ;
905
906 if (cursor != ceiling_addr)
907 {
908 if (++count == 0)
909 {
910 immediate_quit = old_immediate_quit;
911 /* Return the position AFTER the match we found. */
912 start_byte = start_byte + cursor - base + 1;
913 start = BYTE_TO_CHAR (start_byte);
914 TEMP_SET_PT_BOTH (start, start_byte);
915 return 0;
916 }
917 }
918 else
919 break;
920 }
921 /* Here we add 1 to compensate for the last decrement
922 of CURSOR, which took it past the valid range. */
923 start_byte += cursor - base + 1;
924 }
925 }
926
927 TEMP_SET_PT_BOTH (limit, limit_byte);
928 immediate_quit = old_immediate_quit;
929
930 return count * direction;
931 }
932
933 ptrdiff_t
934 find_next_newline_no_quit (ptrdiff_t from, ptrdiff_t cnt)
935 {
936 return scan_buffer ('\n', from, 0, cnt, (ptrdiff_t *) 0, 0);
937 }
938
939 /* Like find_next_newline, but returns position before the newline,
940 not after, and only search up to TO. This isn't just
941 find_next_newline (...)-1, because you might hit TO. */
942
943 ptrdiff_t
944 find_before_next_newline (ptrdiff_t from, ptrdiff_t to, ptrdiff_t cnt)
945 {
946 ptrdiff_t shortage;
947 ptrdiff_t pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
948
949 if (shortage == 0)
950 pos--;
951
952 return pos;
953 }
954 \f
955 /* Subroutines of Lisp buffer search functions. */
956
957 static Lisp_Object
958 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
959 Lisp_Object count, int direction, int RE, int posix)
960 {
961 register EMACS_INT np;
962 EMACS_INT lim;
963 ptrdiff_t lim_byte;
964 EMACS_INT n = direction;
965
966 if (!NILP (count))
967 {
968 CHECK_NUMBER (count);
969 n *= XINT (count);
970 }
971
972 CHECK_STRING (string);
973 if (NILP (bound))
974 {
975 if (n > 0)
976 lim = ZV, lim_byte = ZV_BYTE;
977 else
978 lim = BEGV, lim_byte = BEGV_BYTE;
979 }
980 else
981 {
982 CHECK_NUMBER_COERCE_MARKER (bound);
983 lim = XINT (bound);
984 if (n > 0 ? lim < PT : lim > PT)
985 error ("Invalid search bound (wrong side of point)");
986 if (lim > ZV)
987 lim = ZV, lim_byte = ZV_BYTE;
988 else if (lim < BEGV)
989 lim = BEGV, lim_byte = BEGV_BYTE;
990 else
991 lim_byte = CHAR_TO_BYTE (lim);
992 }
993
994 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
995 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
996 = BVAR (current_buffer, case_eqv_table);
997
998 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
999 (!NILP (BVAR (current_buffer, case_fold_search))
1000 ? BVAR (current_buffer, case_canon_table)
1001 : Qnil),
1002 (!NILP (BVAR (current_buffer, case_fold_search))
1003 ? BVAR (current_buffer, case_eqv_table)
1004 : Qnil),
1005 posix);
1006 if (np <= 0)
1007 {
1008 if (NILP (noerror))
1009 xsignal1 (Qsearch_failed, string);
1010
1011 if (!EQ (noerror, Qt))
1012 {
1013 if (lim < BEGV || lim > ZV)
1014 abort ();
1015 SET_PT_BOTH (lim, lim_byte);
1016 return Qnil;
1017 #if 0 /* This would be clean, but maybe programs depend on
1018 a value of nil here. */
1019 np = lim;
1020 #endif
1021 }
1022 else
1023 return Qnil;
1024 }
1025
1026 if (np < BEGV || np > ZV)
1027 abort ();
1028
1029 SET_PT (np);
1030
1031 return make_number (np);
1032 }
1033 \f
1034 /* Return 1 if REGEXP it matches just one constant string. */
1035
1036 static int
1037 trivial_regexp_p (Lisp_Object regexp)
1038 {
1039 ptrdiff_t len = SBYTES (regexp);
1040 unsigned char *s = SDATA (regexp);
1041 while (--len >= 0)
1042 {
1043 switch (*s++)
1044 {
1045 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1046 return 0;
1047 case '\\':
1048 if (--len < 0)
1049 return 0;
1050 switch (*s++)
1051 {
1052 case '|': case '(': case ')': case '`': case '\'': case 'b':
1053 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1054 case 'S': case '=': case '{': case '}': case '_':
1055 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1056 case '1': case '2': case '3': case '4': case '5':
1057 case '6': case '7': case '8': case '9':
1058 return 0;
1059 }
1060 }
1061 }
1062 return 1;
1063 }
1064
1065 /* Search for the n'th occurrence of STRING in the current buffer,
1066 starting at position POS and stopping at position LIM,
1067 treating STRING as a literal string if RE is false or as
1068 a regular expression if RE is true.
1069
1070 If N is positive, searching is forward and LIM must be greater than POS.
1071 If N is negative, searching is backward and LIM must be less than POS.
1072
1073 Returns -x if x occurrences remain to be found (x > 0),
1074 or else the position at the beginning of the Nth occurrence
1075 (if searching backward) or the end (if searching forward).
1076
1077 POSIX is nonzero if we want full backtracking (POSIX style)
1078 for this pattern. 0 means backtrack only enough to get a valid match. */
1079
1080 #define TRANSLATE(out, trt, d) \
1081 do \
1082 { \
1083 if (! NILP (trt)) \
1084 { \
1085 Lisp_Object temp; \
1086 temp = Faref (trt, make_number (d)); \
1087 if (INTEGERP (temp)) \
1088 out = XINT (temp); \
1089 else \
1090 out = d; \
1091 } \
1092 else \
1093 out = d; \
1094 } \
1095 while (0)
1096
1097 /* Only used in search_buffer, to record the end position of the match
1098 when searching regexps and SEARCH_REGS should not be changed
1099 (i.e. Vinhibit_changing_match_data is non-nil). */
1100 static struct re_registers search_regs_1;
1101
1102 static EMACS_INT
1103 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1104 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1105 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1106 {
1107 ptrdiff_t len = SCHARS (string);
1108 ptrdiff_t len_byte = SBYTES (string);
1109 register ptrdiff_t i;
1110
1111 if (running_asynch_code)
1112 save_search_regs ();
1113
1114 /* Searching 0 times means don't move. */
1115 /* Null string is found at starting position. */
1116 if (len == 0 || n == 0)
1117 {
1118 set_search_regs (pos_byte, 0);
1119 return pos;
1120 }
1121
1122 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1123 {
1124 unsigned char *p1, *p2;
1125 ptrdiff_t s1, s2;
1126 struct re_pattern_buffer *bufp;
1127
1128 bufp = compile_pattern (string,
1129 (NILP (Vinhibit_changing_match_data)
1130 ? &search_regs : &search_regs_1),
1131 trt, posix,
1132 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1133
1134 immediate_quit = 1; /* Quit immediately if user types ^G,
1135 because letting this function finish
1136 can take too long. */
1137 QUIT; /* Do a pending quit right away,
1138 to avoid paradoxical behavior */
1139 /* Get pointers and sizes of the two strings
1140 that make up the visible portion of the buffer. */
1141
1142 p1 = BEGV_ADDR;
1143 s1 = GPT_BYTE - BEGV_BYTE;
1144 p2 = GAP_END_ADDR;
1145 s2 = ZV_BYTE - GPT_BYTE;
1146 if (s1 < 0)
1147 {
1148 p2 = p1;
1149 s2 = ZV_BYTE - BEGV_BYTE;
1150 s1 = 0;
1151 }
1152 if (s2 < 0)
1153 {
1154 s1 = ZV_BYTE - BEGV_BYTE;
1155 s2 = 0;
1156 }
1157 re_match_object = Qnil;
1158
1159 while (n < 0)
1160 {
1161 ptrdiff_t val;
1162
1163 #ifdef REL_ALLOC
1164 /* re_search_2 below is passed C pointers to buffer text.
1165 If some code called by it causes memory (re)allocation,
1166 buffer text could be relocated on platforms that use
1167 REL_ALLOC, which invalidates those C pointers. So we
1168 inhibit relocation of buffer text for as long as
1169 re_search_2 runs. */
1170 r_alloc_inhibit_buffer_relocation (1);
1171 #endif
1172 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1173 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1174 (NILP (Vinhibit_changing_match_data)
1175 ? &search_regs : &search_regs_1),
1176 /* Don't allow match past current point */
1177 pos_byte - BEGV_BYTE);
1178 #ifdef REL_ALLOC
1179 r_alloc_inhibit_buffer_relocation (0);
1180 #endif
1181 if (val == -2)
1182 {
1183 matcher_overflow ();
1184 }
1185 if (val >= 0)
1186 {
1187 if (NILP (Vinhibit_changing_match_data))
1188 {
1189 pos_byte = search_regs.start[0] + BEGV_BYTE;
1190 for (i = 0; i < search_regs.num_regs; i++)
1191 if (search_regs.start[i] >= 0)
1192 {
1193 search_regs.start[i]
1194 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1195 search_regs.end[i]
1196 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1197 }
1198 XSETBUFFER (last_thing_searched, current_buffer);
1199 /* Set pos to the new position. */
1200 pos = search_regs.start[0];
1201 }
1202 else
1203 {
1204 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1205 /* Set pos to the new position. */
1206 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1207 }
1208 }
1209 else
1210 {
1211 immediate_quit = 0;
1212 return (n);
1213 }
1214 n++;
1215 }
1216 while (n > 0)
1217 {
1218 ptrdiff_t val;
1219
1220 #ifdef REL_ALLOC
1221 /* See commentary above for the reasons for inhibiting
1222 buffer text relocation here. */
1223 r_alloc_inhibit_buffer_relocation (1);
1224 #endif
1225 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1226 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1227 (NILP (Vinhibit_changing_match_data)
1228 ? &search_regs : &search_regs_1),
1229 lim_byte - BEGV_BYTE);
1230 #ifdef REL_ALLOC
1231 r_alloc_inhibit_buffer_relocation (0);
1232 #endif
1233 if (val == -2)
1234 {
1235 matcher_overflow ();
1236 }
1237 if (val >= 0)
1238 {
1239 if (NILP (Vinhibit_changing_match_data))
1240 {
1241 pos_byte = search_regs.end[0] + BEGV_BYTE;
1242 for (i = 0; i < search_regs.num_regs; i++)
1243 if (search_regs.start[i] >= 0)
1244 {
1245 search_regs.start[i]
1246 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1247 search_regs.end[i]
1248 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1249 }
1250 XSETBUFFER (last_thing_searched, current_buffer);
1251 pos = search_regs.end[0];
1252 }
1253 else
1254 {
1255 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1256 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1257 }
1258 }
1259 else
1260 {
1261 immediate_quit = 0;
1262 return (0 - n);
1263 }
1264 n--;
1265 }
1266 immediate_quit = 0;
1267 return (pos);
1268 }
1269 else /* non-RE case */
1270 {
1271 unsigned char *raw_pattern, *pat;
1272 ptrdiff_t raw_pattern_size;
1273 ptrdiff_t raw_pattern_size_byte;
1274 unsigned char *patbuf;
1275 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1276 unsigned char *base_pat;
1277 /* Set to positive if we find a non-ASCII char that need
1278 translation. Otherwise set to zero later. */
1279 int char_base = -1;
1280 int boyer_moore_ok = 1;
1281
1282 /* MULTIBYTE says whether the text to be searched is multibyte.
1283 We must convert PATTERN to match that, or we will not really
1284 find things right. */
1285
1286 if (multibyte == STRING_MULTIBYTE (string))
1287 {
1288 raw_pattern = SDATA (string);
1289 raw_pattern_size = SCHARS (string);
1290 raw_pattern_size_byte = SBYTES (string);
1291 }
1292 else if (multibyte)
1293 {
1294 raw_pattern_size = SCHARS (string);
1295 raw_pattern_size_byte
1296 = count_size_as_multibyte (SDATA (string),
1297 raw_pattern_size);
1298 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1299 copy_text (SDATA (string), raw_pattern,
1300 SCHARS (string), 0, 1);
1301 }
1302 else
1303 {
1304 /* Converting multibyte to single-byte.
1305
1306 ??? Perhaps this conversion should be done in a special way
1307 by subtracting nonascii-insert-offset from each non-ASCII char,
1308 so that only the multibyte chars which really correspond to
1309 the chosen single-byte character set can possibly match. */
1310 raw_pattern_size = SCHARS (string);
1311 raw_pattern_size_byte = SCHARS (string);
1312 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1313 copy_text (SDATA (string), raw_pattern,
1314 SBYTES (string), 1, 0);
1315 }
1316
1317 /* Copy and optionally translate the pattern. */
1318 len = raw_pattern_size;
1319 len_byte = raw_pattern_size_byte;
1320 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1321 pat = patbuf;
1322 base_pat = raw_pattern;
1323 if (multibyte)
1324 {
1325 /* Fill patbuf by translated characters in STRING while
1326 checking if we can use boyer-moore search. If TRT is
1327 non-nil, we can use boyer-moore search only if TRT can be
1328 represented by the byte array of 256 elements. For that,
1329 all non-ASCII case-equivalents of all case-sensitive
1330 characters in STRING must belong to the same charset and
1331 row. */
1332
1333 while (--len >= 0)
1334 {
1335 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1336 int c, translated, inverse;
1337 int in_charlen, charlen;
1338
1339 /* If we got here and the RE flag is set, it's because we're
1340 dealing with a regexp known to be trivial, so the backslash
1341 just quotes the next character. */
1342 if (RE && *base_pat == '\\')
1343 {
1344 len--;
1345 raw_pattern_size--;
1346 len_byte--;
1347 base_pat++;
1348 }
1349
1350 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1351
1352 if (NILP (trt))
1353 {
1354 str = base_pat;
1355 charlen = in_charlen;
1356 }
1357 else
1358 {
1359 /* Translate the character. */
1360 TRANSLATE (translated, trt, c);
1361 charlen = CHAR_STRING (translated, str_base);
1362 str = str_base;
1363
1364 /* Check if C has any other case-equivalents. */
1365 TRANSLATE (inverse, inverse_trt, c);
1366 /* If so, check if we can use boyer-moore. */
1367 if (c != inverse && boyer_moore_ok)
1368 {
1369 /* Check if all equivalents belong to the same
1370 group of characters. Note that the check of C
1371 itself is done by the last iteration. */
1372 int this_char_base = -1;
1373
1374 while (boyer_moore_ok)
1375 {
1376 if (ASCII_BYTE_P (inverse))
1377 {
1378 if (this_char_base > 0)
1379 boyer_moore_ok = 0;
1380 else
1381 this_char_base = 0;
1382 }
1383 else if (CHAR_BYTE8_P (inverse))
1384 /* Boyer-moore search can't handle a
1385 translation of an eight-bit
1386 character. */
1387 boyer_moore_ok = 0;
1388 else if (this_char_base < 0)
1389 {
1390 this_char_base = inverse & ~0x3F;
1391 if (char_base < 0)
1392 char_base = this_char_base;
1393 else if (this_char_base != char_base)
1394 boyer_moore_ok = 0;
1395 }
1396 else if ((inverse & ~0x3F) != this_char_base)
1397 boyer_moore_ok = 0;
1398 if (c == inverse)
1399 break;
1400 TRANSLATE (inverse, inverse_trt, inverse);
1401 }
1402 }
1403 }
1404
1405 /* Store this character into the translated pattern. */
1406 memcpy (pat, str, charlen);
1407 pat += charlen;
1408 base_pat += in_charlen;
1409 len_byte -= in_charlen;
1410 }
1411
1412 /* If char_base is still negative we didn't find any translated
1413 non-ASCII characters. */
1414 if (char_base < 0)
1415 char_base = 0;
1416 }
1417 else
1418 {
1419 /* Unibyte buffer. */
1420 char_base = 0;
1421 while (--len >= 0)
1422 {
1423 int c, translated;
1424
1425 /* If we got here and the RE flag is set, it's because we're
1426 dealing with a regexp known to be trivial, so the backslash
1427 just quotes the next character. */
1428 if (RE && *base_pat == '\\')
1429 {
1430 len--;
1431 raw_pattern_size--;
1432 base_pat++;
1433 }
1434 c = *base_pat++;
1435 TRANSLATE (translated, trt, c);
1436 *pat++ = translated;
1437 }
1438 }
1439
1440 len_byte = pat - patbuf;
1441 pat = base_pat = patbuf;
1442
1443 if (boyer_moore_ok)
1444 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1445 pos_byte, lim_byte,
1446 char_base);
1447 else
1448 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1449 pos, pos_byte, lim, lim_byte);
1450 }
1451 }
1452 \f
1453 /* Do a simple string search N times for the string PAT,
1454 whose length is LEN/LEN_BYTE,
1455 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1456 TRT is the translation table.
1457
1458 Return the character position where the match is found.
1459 Otherwise, if M matches remained to be found, return -M.
1460
1461 This kind of search works regardless of what is in PAT and
1462 regardless of what is in TRT. It is used in cases where
1463 boyer_moore cannot work. */
1464
1465 static EMACS_INT
1466 simple_search (EMACS_INT n, unsigned char *pat,
1467 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1468 ptrdiff_t pos, ptrdiff_t pos_byte,
1469 ptrdiff_t lim, ptrdiff_t lim_byte)
1470 {
1471 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1472 int forward = n > 0;
1473 /* Number of buffer bytes matched. Note that this may be different
1474 from len_byte in a multibyte buffer. */
1475 ptrdiff_t match_byte;
1476
1477 if (lim > pos && multibyte)
1478 while (n > 0)
1479 {
1480 while (1)
1481 {
1482 /* Try matching at position POS. */
1483 ptrdiff_t this_pos = pos;
1484 ptrdiff_t this_pos_byte = pos_byte;
1485 ptrdiff_t this_len = len;
1486 unsigned char *p = pat;
1487 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1488 goto stop;
1489
1490 while (this_len > 0)
1491 {
1492 int charlen, buf_charlen;
1493 int pat_ch, buf_ch;
1494
1495 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1496 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1497 buf_charlen);
1498 TRANSLATE (buf_ch, trt, buf_ch);
1499
1500 if (buf_ch != pat_ch)
1501 break;
1502
1503 this_len--;
1504 p += charlen;
1505
1506 this_pos_byte += buf_charlen;
1507 this_pos++;
1508 }
1509
1510 if (this_len == 0)
1511 {
1512 match_byte = this_pos_byte - pos_byte;
1513 pos += len;
1514 pos_byte += match_byte;
1515 break;
1516 }
1517
1518 INC_BOTH (pos, pos_byte);
1519 }
1520
1521 n--;
1522 }
1523 else if (lim > pos)
1524 while (n > 0)
1525 {
1526 while (1)
1527 {
1528 /* Try matching at position POS. */
1529 ptrdiff_t this_pos = pos;
1530 ptrdiff_t this_len = len;
1531 unsigned char *p = pat;
1532
1533 if (pos + len > lim)
1534 goto stop;
1535
1536 while (this_len > 0)
1537 {
1538 int pat_ch = *p++;
1539 int buf_ch = FETCH_BYTE (this_pos);
1540 TRANSLATE (buf_ch, trt, buf_ch);
1541
1542 if (buf_ch != pat_ch)
1543 break;
1544
1545 this_len--;
1546 this_pos++;
1547 }
1548
1549 if (this_len == 0)
1550 {
1551 match_byte = len;
1552 pos += len;
1553 break;
1554 }
1555
1556 pos++;
1557 }
1558
1559 n--;
1560 }
1561 /* Backwards search. */
1562 else if (lim < pos && multibyte)
1563 while (n < 0)
1564 {
1565 while (1)
1566 {
1567 /* Try matching at position POS. */
1568 ptrdiff_t this_pos = pos;
1569 ptrdiff_t this_pos_byte = pos_byte;
1570 ptrdiff_t this_len = len;
1571 const unsigned char *p = pat + len_byte;
1572
1573 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1574 goto stop;
1575
1576 while (this_len > 0)
1577 {
1578 int pat_ch, buf_ch;
1579
1580 DEC_BOTH (this_pos, this_pos_byte);
1581 PREV_CHAR_BOUNDARY (p, pat);
1582 pat_ch = STRING_CHAR (p);
1583 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1584 TRANSLATE (buf_ch, trt, buf_ch);
1585
1586 if (buf_ch != pat_ch)
1587 break;
1588
1589 this_len--;
1590 }
1591
1592 if (this_len == 0)
1593 {
1594 match_byte = pos_byte - this_pos_byte;
1595 pos = this_pos;
1596 pos_byte = this_pos_byte;
1597 break;
1598 }
1599
1600 DEC_BOTH (pos, pos_byte);
1601 }
1602
1603 n++;
1604 }
1605 else if (lim < pos)
1606 while (n < 0)
1607 {
1608 while (1)
1609 {
1610 /* Try matching at position POS. */
1611 ptrdiff_t this_pos = pos - len;
1612 ptrdiff_t this_len = len;
1613 unsigned char *p = pat;
1614
1615 if (this_pos < lim)
1616 goto stop;
1617
1618 while (this_len > 0)
1619 {
1620 int pat_ch = *p++;
1621 int buf_ch = FETCH_BYTE (this_pos);
1622 TRANSLATE (buf_ch, trt, buf_ch);
1623
1624 if (buf_ch != pat_ch)
1625 break;
1626 this_len--;
1627 this_pos++;
1628 }
1629
1630 if (this_len == 0)
1631 {
1632 match_byte = len;
1633 pos -= len;
1634 break;
1635 }
1636
1637 pos--;
1638 }
1639
1640 n++;
1641 }
1642
1643 stop:
1644 if (n == 0)
1645 {
1646 if (forward)
1647 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1648 else
1649 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1650
1651 return pos;
1652 }
1653 else if (n > 0)
1654 return -n;
1655 else
1656 return n;
1657 }
1658 \f
1659 /* Do Boyer-Moore search N times for the string BASE_PAT,
1660 whose length is LEN_BYTE,
1661 from buffer position POS_BYTE until LIM_BYTE.
1662 DIRECTION says which direction we search in.
1663 TRT and INVERSE_TRT are translation tables.
1664 Characters in PAT are already translated by TRT.
1665
1666 This kind of search works if all the characters in BASE_PAT that
1667 have nontrivial translation are the same aside from the last byte.
1668 This makes it possible to translate just the last byte of a
1669 character, and do so after just a simple test of the context.
1670 CHAR_BASE is nonzero if there is such a non-ASCII character.
1671
1672 If that criterion is not satisfied, do not call this function. */
1673
1674 static EMACS_INT
1675 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1676 ptrdiff_t len_byte,
1677 Lisp_Object trt, Lisp_Object inverse_trt,
1678 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1679 int char_base)
1680 {
1681 int direction = ((n > 0) ? 1 : -1);
1682 register ptrdiff_t dirlen;
1683 ptrdiff_t limit;
1684 int stride_for_teases = 0;
1685 int BM_tab[0400];
1686 register unsigned char *cursor, *p_limit;
1687 register ptrdiff_t i;
1688 register int j;
1689 unsigned char *pat, *pat_end;
1690 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1691
1692 unsigned char simple_translate[0400];
1693 /* These are set to the preceding bytes of a byte to be translated
1694 if char_base is nonzero. As the maximum byte length of a
1695 multibyte character is 5, we have to check at most four previous
1696 bytes. */
1697 int translate_prev_byte1 = 0;
1698 int translate_prev_byte2 = 0;
1699 int translate_prev_byte3 = 0;
1700
1701 /* The general approach is that we are going to maintain that we know
1702 the first (closest to the present position, in whatever direction
1703 we're searching) character that could possibly be the last
1704 (furthest from present position) character of a valid match. We
1705 advance the state of our knowledge by looking at that character
1706 and seeing whether it indeed matches the last character of the
1707 pattern. If it does, we take a closer look. If it does not, we
1708 move our pointer (to putative last characters) as far as is
1709 logically possible. This amount of movement, which I call a
1710 stride, will be the length of the pattern if the actual character
1711 appears nowhere in the pattern, otherwise it will be the distance
1712 from the last occurrence of that character to the end of the
1713 pattern. If the amount is zero we have a possible match. */
1714
1715 /* Here we make a "mickey mouse" BM table. The stride of the search
1716 is determined only by the last character of the putative match.
1717 If that character does not match, we will stride the proper
1718 distance to propose a match that superimposes it on the last
1719 instance of a character that matches it (per trt), or misses
1720 it entirely if there is none. */
1721
1722 dirlen = len_byte * direction;
1723
1724 /* Record position after the end of the pattern. */
1725 pat_end = base_pat + len_byte;
1726 /* BASE_PAT points to a character that we start scanning from.
1727 It is the first character in a forward search,
1728 the last character in a backward search. */
1729 if (direction < 0)
1730 base_pat = pat_end - 1;
1731
1732 /* A character that does not appear in the pattern induces a
1733 stride equal to the pattern length. */
1734 for (i = 0; i < 0400; i++)
1735 BM_tab[i] = dirlen;
1736
1737 /* We use this for translation, instead of TRT itself.
1738 We fill this in to handle the characters that actually
1739 occur in the pattern. Others don't matter anyway! */
1740 for (i = 0; i < 0400; i++)
1741 simple_translate[i] = i;
1742
1743 if (char_base)
1744 {
1745 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1746 byte following them are the target of translation. */
1747 unsigned char str[MAX_MULTIBYTE_LENGTH];
1748 int cblen = CHAR_STRING (char_base, str);
1749
1750 translate_prev_byte1 = str[cblen - 2];
1751 if (cblen > 2)
1752 {
1753 translate_prev_byte2 = str[cblen - 3];
1754 if (cblen > 3)
1755 translate_prev_byte3 = str[cblen - 4];
1756 }
1757 }
1758
1759 i = 0;
1760 while (i != dirlen)
1761 {
1762 unsigned char *ptr = base_pat + i;
1763 i += direction;
1764 if (! NILP (trt))
1765 {
1766 /* If the byte currently looking at is the last of a
1767 character to check case-equivalents, set CH to that
1768 character. An ASCII character and a non-ASCII character
1769 matching with CHAR_BASE are to be checked. */
1770 int ch = -1;
1771
1772 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1773 ch = *ptr;
1774 else if (char_base
1775 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1776 {
1777 unsigned char *charstart = ptr - 1;
1778
1779 while (! (CHAR_HEAD_P (*charstart)))
1780 charstart--;
1781 ch = STRING_CHAR (charstart);
1782 if (char_base != (ch & ~0x3F))
1783 ch = -1;
1784 }
1785
1786 if (ch >= 0200 && multibyte)
1787 j = (ch & 0x3F) | 0200;
1788 else
1789 j = *ptr;
1790
1791 if (i == dirlen)
1792 stride_for_teases = BM_tab[j];
1793
1794 BM_tab[j] = dirlen - i;
1795 /* A translation table is accompanied by its inverse -- see
1796 comment following downcase_table for details. */
1797 if (ch >= 0)
1798 {
1799 int starting_ch = ch;
1800 int starting_j = j;
1801
1802 while (1)
1803 {
1804 TRANSLATE (ch, inverse_trt, ch);
1805 if (ch >= 0200 && multibyte)
1806 j = (ch & 0x3F) | 0200;
1807 else
1808 j = ch;
1809
1810 /* For all the characters that map into CH,
1811 set up simple_translate to map the last byte
1812 into STARTING_J. */
1813 simple_translate[j] = starting_j;
1814 if (ch == starting_ch)
1815 break;
1816 BM_tab[j] = dirlen - i;
1817 }
1818 }
1819 }
1820 else
1821 {
1822 j = *ptr;
1823
1824 if (i == dirlen)
1825 stride_for_teases = BM_tab[j];
1826 BM_tab[j] = dirlen - i;
1827 }
1828 /* stride_for_teases tells how much to stride if we get a
1829 match on the far character but are subsequently
1830 disappointed, by recording what the stride would have been
1831 for that character if the last character had been
1832 different. */
1833 }
1834 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1835 /* loop invariant - POS_BYTE points at where last char (first
1836 char if reverse) of pattern would align in a possible match. */
1837 while (n != 0)
1838 {
1839 ptrdiff_t tail_end;
1840 unsigned char *tail_end_ptr;
1841
1842 /* It's been reported that some (broken) compiler thinks that
1843 Boolean expressions in an arithmetic context are unsigned.
1844 Using an explicit ?1:0 prevents this. */
1845 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1846 < 0)
1847 return (n * (0 - direction));
1848 /* First we do the part we can by pointers (maybe nothing) */
1849 QUIT;
1850 pat = base_pat;
1851 limit = pos_byte - dirlen + direction;
1852 if (direction > 0)
1853 {
1854 limit = BUFFER_CEILING_OF (limit);
1855 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1856 can take on without hitting edge of buffer or the gap. */
1857 limit = min (limit, pos_byte + 20000);
1858 limit = min (limit, lim_byte - 1);
1859 }
1860 else
1861 {
1862 limit = BUFFER_FLOOR_OF (limit);
1863 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1864 can take on without hitting edge of buffer or the gap. */
1865 limit = max (limit, pos_byte - 20000);
1866 limit = max (limit, lim_byte);
1867 }
1868 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1869 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1870
1871 if ((limit - pos_byte) * direction > 20)
1872 {
1873 unsigned char *p2;
1874
1875 p_limit = BYTE_POS_ADDR (limit);
1876 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1877 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1878 while (1) /* use one cursor setting as long as i can */
1879 {
1880 if (direction > 0) /* worth duplicating */
1881 {
1882 while (cursor <= p_limit)
1883 {
1884 if (BM_tab[*cursor] == 0)
1885 goto hit;
1886 cursor += BM_tab[*cursor];
1887 }
1888 }
1889 else
1890 {
1891 while (cursor >= p_limit)
1892 {
1893 if (BM_tab[*cursor] == 0)
1894 goto hit;
1895 cursor += BM_tab[*cursor];
1896 }
1897 }
1898 /* If you are here, cursor is beyond the end of the
1899 searched region. You fail to match within the
1900 permitted region and would otherwise try a character
1901 beyond that region. */
1902 break;
1903
1904 hit:
1905 i = dirlen - direction;
1906 if (! NILP (trt))
1907 {
1908 while ((i -= direction) + direction != 0)
1909 {
1910 int ch;
1911 cursor -= direction;
1912 /* Translate only the last byte of a character. */
1913 if (! multibyte
1914 || ((cursor == tail_end_ptr
1915 || CHAR_HEAD_P (cursor[1]))
1916 && (CHAR_HEAD_P (cursor[0])
1917 /* Check if this is the last byte of
1918 a translatable character. */
1919 || (translate_prev_byte1 == cursor[-1]
1920 && (CHAR_HEAD_P (translate_prev_byte1)
1921 || (translate_prev_byte2 == cursor[-2]
1922 && (CHAR_HEAD_P (translate_prev_byte2)
1923 || (translate_prev_byte3 == cursor[-3]))))))))
1924 ch = simple_translate[*cursor];
1925 else
1926 ch = *cursor;
1927 if (pat[i] != ch)
1928 break;
1929 }
1930 }
1931 else
1932 {
1933 while ((i -= direction) + direction != 0)
1934 {
1935 cursor -= direction;
1936 if (pat[i] != *cursor)
1937 break;
1938 }
1939 }
1940 cursor += dirlen - i - direction; /* fix cursor */
1941 if (i + direction == 0)
1942 {
1943 ptrdiff_t position, start, end;
1944
1945 cursor -= direction;
1946
1947 position = pos_byte + cursor - p2 + ((direction > 0)
1948 ? 1 - len_byte : 0);
1949 set_search_regs (position, len_byte);
1950
1951 if (NILP (Vinhibit_changing_match_data))
1952 {
1953 start = search_regs.start[0];
1954 end = search_regs.end[0];
1955 }
1956 else
1957 /* If Vinhibit_changing_match_data is non-nil,
1958 search_regs will not be changed. So let's
1959 compute start and end here. */
1960 {
1961 start = BYTE_TO_CHAR (position);
1962 end = BYTE_TO_CHAR (position + len_byte);
1963 }
1964
1965 if ((n -= direction) != 0)
1966 cursor += dirlen; /* to resume search */
1967 else
1968 return direction > 0 ? end : start;
1969 }
1970 else
1971 cursor += stride_for_teases; /* <sigh> we lose - */
1972 }
1973 pos_byte += cursor - p2;
1974 }
1975 else
1976 /* Now we'll pick up a clump that has to be done the hard
1977 way because it covers a discontinuity. */
1978 {
1979 limit = ((direction > 0)
1980 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1981 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1982 limit = ((direction > 0)
1983 ? min (limit + len_byte, lim_byte - 1)
1984 : max (limit - len_byte, lim_byte));
1985 /* LIMIT is now the last value POS_BYTE can have
1986 and still be valid for a possible match. */
1987 while (1)
1988 {
1989 /* This loop can be coded for space rather than
1990 speed because it will usually run only once.
1991 (the reach is at most len + 21, and typically
1992 does not exceed len). */
1993 while ((limit - pos_byte) * direction >= 0)
1994 {
1995 int ch = FETCH_BYTE (pos_byte);
1996 if (BM_tab[ch] == 0)
1997 goto hit2;
1998 pos_byte += BM_tab[ch];
1999 }
2000 break; /* ran off the end */
2001
2002 hit2:
2003 /* Found what might be a match. */
2004 i = dirlen - direction;
2005 while ((i -= direction) + direction != 0)
2006 {
2007 int ch;
2008 unsigned char *ptr;
2009 pos_byte -= direction;
2010 ptr = BYTE_POS_ADDR (pos_byte);
2011 /* Translate only the last byte of a character. */
2012 if (! multibyte
2013 || ((ptr == tail_end_ptr
2014 || CHAR_HEAD_P (ptr[1]))
2015 && (CHAR_HEAD_P (ptr[0])
2016 /* Check if this is the last byte of a
2017 translatable character. */
2018 || (translate_prev_byte1 == ptr[-1]
2019 && (CHAR_HEAD_P (translate_prev_byte1)
2020 || (translate_prev_byte2 == ptr[-2]
2021 && (CHAR_HEAD_P (translate_prev_byte2)
2022 || translate_prev_byte3 == ptr[-3])))))))
2023 ch = simple_translate[*ptr];
2024 else
2025 ch = *ptr;
2026 if (pat[i] != ch)
2027 break;
2028 }
2029 /* Above loop has moved POS_BYTE part or all the way
2030 back to the first pos (last pos if reverse).
2031 Set it once again at the last (first if reverse) char. */
2032 pos_byte += dirlen - i - direction;
2033 if (i + direction == 0)
2034 {
2035 ptrdiff_t position, start, end;
2036 pos_byte -= direction;
2037
2038 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2039 set_search_regs (position, len_byte);
2040
2041 if (NILP (Vinhibit_changing_match_data))
2042 {
2043 start = search_regs.start[0];
2044 end = search_regs.end[0];
2045 }
2046 else
2047 /* If Vinhibit_changing_match_data is non-nil,
2048 search_regs will not be changed. So let's
2049 compute start and end here. */
2050 {
2051 start = BYTE_TO_CHAR (position);
2052 end = BYTE_TO_CHAR (position + len_byte);
2053 }
2054
2055 if ((n -= direction) != 0)
2056 pos_byte += dirlen; /* to resume search */
2057 else
2058 return direction > 0 ? end : start;
2059 }
2060 else
2061 pos_byte += stride_for_teases;
2062 }
2063 }
2064 /* We have done one clump. Can we continue? */
2065 if ((lim_byte - pos_byte) * direction < 0)
2066 return ((0 - n) * direction);
2067 }
2068 return BYTE_TO_CHAR (pos_byte);
2069 }
2070
2071 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2072 for the overall match just found in the current buffer.
2073 Also clear out the match data for registers 1 and up. */
2074
2075 static void
2076 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2077 {
2078 ptrdiff_t i;
2079
2080 if (!NILP (Vinhibit_changing_match_data))
2081 return;
2082
2083 /* Make sure we have registers in which to store
2084 the match position. */
2085 if (search_regs.num_regs == 0)
2086 {
2087 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2088 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2089 search_regs.num_regs = 2;
2090 }
2091
2092 /* Clear out the other registers. */
2093 for (i = 1; i < search_regs.num_regs; i++)
2094 {
2095 search_regs.start[i] = -1;
2096 search_regs.end[i] = -1;
2097 }
2098
2099 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2100 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2101 XSETBUFFER (last_thing_searched, current_buffer);
2102 }
2103 \f
2104 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2105 "MSearch backward: ",
2106 doc: /* Search backward from point for STRING.
2107 Set point to the beginning of the occurrence found, and return point.
2108 An optional second argument bounds the search; it is a buffer position.
2109 The match found must not extend before that position.
2110 Optional third argument, if t, means if fail just return nil (no error).
2111 If not nil and not t, position at limit of search and return nil.
2112 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2113 successive occurrences. If COUNT is negative, search forward,
2114 instead of backward, for -COUNT occurrences.
2115
2116 Search case-sensitivity is determined by the value of the variable
2117 `case-fold-search', which see.
2118
2119 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2120 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2121 {
2122 return search_command (string, bound, noerror, count, -1, 0, 0);
2123 }
2124
2125 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2126 doc: /* Search forward from point for STRING.
2127 Set point to the end of the occurrence found, and return point.
2128 An optional second argument bounds the search; it is a buffer position.
2129 The match found must not extend after that position. A value of nil is
2130 equivalent to (point-max).
2131 Optional third argument, if t, means if fail just return nil (no error).
2132 If not nil and not t, move to limit of search and return nil.
2133 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2134 successive occurrences. If COUNT is negative, search backward,
2135 instead of forward, for -COUNT occurrences.
2136
2137 Search case-sensitivity is determined by the value of the variable
2138 `case-fold-search', which see.
2139
2140 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2141 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2142 {
2143 return search_command (string, bound, noerror, count, 1, 0, 0);
2144 }
2145
2146 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2147 "sRE search backward: ",
2148 doc: /* Search backward from point for match for regular expression REGEXP.
2149 Set point to the beginning of the match, and return point.
2150 The match found is the one starting last in the buffer
2151 and yet ending before the origin of the search.
2152 An optional second argument bounds the search; it is a buffer position.
2153 The match found must start at or after that position.
2154 Optional third argument, if t, means if fail just return nil (no error).
2155 If not nil and not t, move to limit of search and return nil.
2156 Optional fourth argument is repeat count--search for successive occurrences.
2157
2158 Search case-sensitivity is determined by the value of the variable
2159 `case-fold-search', which see.
2160
2161 See also the functions `match-beginning', `match-end', `match-string',
2162 and `replace-match'. */)
2163 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2164 {
2165 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2166 }
2167
2168 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2169 "sRE search: ",
2170 doc: /* Search forward from point for regular expression REGEXP.
2171 Set point to the end of the occurrence found, and return point.
2172 An optional second argument bounds the search; it is a buffer position.
2173 The match found must not extend after that position.
2174 Optional third argument, if t, means if fail just return nil (no error).
2175 If not nil and not t, move to limit of search and return nil.
2176 Optional fourth argument is repeat count--search for successive occurrences.
2177
2178 Search case-sensitivity is determined by the value of the variable
2179 `case-fold-search', which see.
2180
2181 See also the functions `match-beginning', `match-end', `match-string',
2182 and `replace-match'. */)
2183 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2184 {
2185 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2186 }
2187
2188 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2189 "sPosix search backward: ",
2190 doc: /* Search backward from point for match for regular expression REGEXP.
2191 Find the longest match in accord with Posix regular expression rules.
2192 Set point to the beginning of the match, and return point.
2193 The match found is the one starting last in the buffer
2194 and yet ending before the origin of the search.
2195 An optional second argument bounds the search; it is a buffer position.
2196 The match found must start at or after that position.
2197 Optional third argument, if t, means if fail just return nil (no error).
2198 If not nil and not t, move to limit of search and return nil.
2199 Optional fourth argument is repeat count--search for successive occurrences.
2200
2201 Search case-sensitivity is determined by the value of the variable
2202 `case-fold-search', which see.
2203
2204 See also the functions `match-beginning', `match-end', `match-string',
2205 and `replace-match'. */)
2206 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2207 {
2208 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2209 }
2210
2211 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2212 "sPosix search: ",
2213 doc: /* Search forward from point for regular expression REGEXP.
2214 Find the longest match in accord with Posix regular expression rules.
2215 Set point to the end of the occurrence found, and return point.
2216 An optional second argument bounds the search; it is a buffer position.
2217 The match found must not extend after that position.
2218 Optional third argument, if t, means if fail just return nil (no error).
2219 If not nil and not t, move to limit of search and return nil.
2220 Optional fourth argument is repeat count--search for successive occurrences.
2221
2222 Search case-sensitivity is determined by the value of the variable
2223 `case-fold-search', which see.
2224
2225 See also the functions `match-beginning', `match-end', `match-string',
2226 and `replace-match'. */)
2227 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2228 {
2229 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2230 }
2231 \f
2232 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2233 doc: /* Replace text matched by last search with NEWTEXT.
2234 Leave point at the end of the replacement text.
2235
2236 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2237 Otherwise maybe capitalize the whole text, or maybe just word initials,
2238 based on the replaced text.
2239 If the replaced text has only capital letters
2240 and has at least one multiletter word, convert NEWTEXT to all caps.
2241 Otherwise if all words are capitalized in the replaced text,
2242 capitalize each word in NEWTEXT.
2243
2244 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2245 Otherwise treat `\\' as special:
2246 `\\&' in NEWTEXT means substitute original matched text.
2247 `\\N' means substitute what matched the Nth `\\(...\\)'.
2248 If Nth parens didn't match, substitute nothing.
2249 `\\\\' means insert one `\\'.
2250 Case conversion does not apply to these substitutions.
2251
2252 FIXEDCASE and LITERAL are optional arguments.
2253
2254 The optional fourth argument STRING can be a string to modify.
2255 This is meaningful when the previous match was done against STRING,
2256 using `string-match'. When used this way, `replace-match'
2257 creates and returns a new string made by copying STRING and replacing
2258 the part of STRING that was matched.
2259
2260 The optional fifth argument SUBEXP specifies a subexpression;
2261 it says to replace just that subexpression with NEWTEXT,
2262 rather than replacing the entire matched text.
2263 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2264 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2265 NEWTEXT in place of subexp N.
2266 This is useful only after a regular expression search or match,
2267 since only regular expressions have distinguished subexpressions. */)
2268 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2269 {
2270 enum { nochange, all_caps, cap_initial } case_action;
2271 register ptrdiff_t pos, pos_byte;
2272 int some_multiletter_word;
2273 int some_lowercase;
2274 int some_uppercase;
2275 int some_nonuppercase_initial;
2276 register int c, prevc;
2277 ptrdiff_t sub;
2278 ptrdiff_t opoint, newpoint;
2279
2280 CHECK_STRING (newtext);
2281
2282 if (! NILP (string))
2283 CHECK_STRING (string);
2284
2285 case_action = nochange; /* We tried an initialization */
2286 /* but some C compilers blew it */
2287
2288 if (search_regs.num_regs <= 0)
2289 error ("`replace-match' called before any match found");
2290
2291 if (NILP (subexp))
2292 sub = 0;
2293 else
2294 {
2295 CHECK_NUMBER (subexp);
2296 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2297 args_out_of_range (subexp, make_number (search_regs.num_regs));
2298 sub = XINT (subexp);
2299 }
2300
2301 if (NILP (string))
2302 {
2303 if (search_regs.start[sub] < BEGV
2304 || search_regs.start[sub] > search_regs.end[sub]
2305 || search_regs.end[sub] > ZV)
2306 args_out_of_range (make_number (search_regs.start[sub]),
2307 make_number (search_regs.end[sub]));
2308 }
2309 else
2310 {
2311 if (search_regs.start[sub] < 0
2312 || search_regs.start[sub] > search_regs.end[sub]
2313 || search_regs.end[sub] > SCHARS (string))
2314 args_out_of_range (make_number (search_regs.start[sub]),
2315 make_number (search_regs.end[sub]));
2316 }
2317
2318 if (NILP (fixedcase))
2319 {
2320 /* Decide how to casify by examining the matched text. */
2321 ptrdiff_t last;
2322
2323 pos = search_regs.start[sub];
2324 last = search_regs.end[sub];
2325
2326 if (NILP (string))
2327 pos_byte = CHAR_TO_BYTE (pos);
2328 else
2329 pos_byte = string_char_to_byte (string, pos);
2330
2331 prevc = '\n';
2332 case_action = all_caps;
2333
2334 /* some_multiletter_word is set nonzero if any original word
2335 is more than one letter long. */
2336 some_multiletter_word = 0;
2337 some_lowercase = 0;
2338 some_nonuppercase_initial = 0;
2339 some_uppercase = 0;
2340
2341 while (pos < last)
2342 {
2343 if (NILP (string))
2344 {
2345 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2346 INC_BOTH (pos, pos_byte);
2347 }
2348 else
2349 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2350
2351 if (lowercasep (c))
2352 {
2353 /* Cannot be all caps if any original char is lower case */
2354
2355 some_lowercase = 1;
2356 if (SYNTAX (prevc) != Sword)
2357 some_nonuppercase_initial = 1;
2358 else
2359 some_multiletter_word = 1;
2360 }
2361 else if (uppercasep (c))
2362 {
2363 some_uppercase = 1;
2364 if (SYNTAX (prevc) != Sword)
2365 ;
2366 else
2367 some_multiletter_word = 1;
2368 }
2369 else
2370 {
2371 /* If the initial is a caseless word constituent,
2372 treat that like a lowercase initial. */
2373 if (SYNTAX (prevc) != Sword)
2374 some_nonuppercase_initial = 1;
2375 }
2376
2377 prevc = c;
2378 }
2379
2380 /* Convert to all caps if the old text is all caps
2381 and has at least one multiletter word. */
2382 if (! some_lowercase && some_multiletter_word)
2383 case_action = all_caps;
2384 /* Capitalize each word, if the old text has all capitalized words. */
2385 else if (!some_nonuppercase_initial && some_multiletter_word)
2386 case_action = cap_initial;
2387 else if (!some_nonuppercase_initial && some_uppercase)
2388 /* Should x -> yz, operating on X, give Yz or YZ?
2389 We'll assume the latter. */
2390 case_action = all_caps;
2391 else
2392 case_action = nochange;
2393 }
2394
2395 /* Do replacement in a string. */
2396 if (!NILP (string))
2397 {
2398 Lisp_Object before, after;
2399
2400 before = Fsubstring (string, make_number (0),
2401 make_number (search_regs.start[sub]));
2402 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2403
2404 /* Substitute parts of the match into NEWTEXT
2405 if desired. */
2406 if (NILP (literal))
2407 {
2408 ptrdiff_t lastpos = 0;
2409 ptrdiff_t lastpos_byte = 0;
2410 /* We build up the substituted string in ACCUM. */
2411 Lisp_Object accum;
2412 Lisp_Object middle;
2413 ptrdiff_t length = SBYTES (newtext);
2414
2415 accum = Qnil;
2416
2417 for (pos_byte = 0, pos = 0; pos_byte < length;)
2418 {
2419 ptrdiff_t substart = -1;
2420 ptrdiff_t subend = 0;
2421 int delbackslash = 0;
2422
2423 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2424
2425 if (c == '\\')
2426 {
2427 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2428
2429 if (c == '&')
2430 {
2431 substart = search_regs.start[sub];
2432 subend = search_regs.end[sub];
2433 }
2434 else if (c >= '1' && c <= '9')
2435 {
2436 if (c - '0' < search_regs.num_regs
2437 && 0 <= search_regs.start[c - '0'])
2438 {
2439 substart = search_regs.start[c - '0'];
2440 subend = search_regs.end[c - '0'];
2441 }
2442 else
2443 {
2444 /* If that subexp did not match,
2445 replace \\N with nothing. */
2446 substart = 0;
2447 subend = 0;
2448 }
2449 }
2450 else if (c == '\\')
2451 delbackslash = 1;
2452 else
2453 error ("Invalid use of `\\' in replacement text");
2454 }
2455 if (substart >= 0)
2456 {
2457 if (pos - 2 != lastpos)
2458 middle = substring_both (newtext, lastpos,
2459 lastpos_byte,
2460 pos - 2, pos_byte - 2);
2461 else
2462 middle = Qnil;
2463 accum = concat3 (accum, middle,
2464 Fsubstring (string,
2465 make_number (substart),
2466 make_number (subend)));
2467 lastpos = pos;
2468 lastpos_byte = pos_byte;
2469 }
2470 else if (delbackslash)
2471 {
2472 middle = substring_both (newtext, lastpos,
2473 lastpos_byte,
2474 pos - 1, pos_byte - 1);
2475
2476 accum = concat2 (accum, middle);
2477 lastpos = pos;
2478 lastpos_byte = pos_byte;
2479 }
2480 }
2481
2482 if (pos != lastpos)
2483 middle = substring_both (newtext, lastpos,
2484 lastpos_byte,
2485 pos, pos_byte);
2486 else
2487 middle = Qnil;
2488
2489 newtext = concat2 (accum, middle);
2490 }
2491
2492 /* Do case substitution in NEWTEXT if desired. */
2493 if (case_action == all_caps)
2494 newtext = Fupcase (newtext);
2495 else if (case_action == cap_initial)
2496 newtext = Fupcase_initials (newtext);
2497
2498 return concat3 (before, newtext, after);
2499 }
2500
2501 /* Record point, then move (quietly) to the start of the match. */
2502 if (PT >= search_regs.end[sub])
2503 opoint = PT - ZV;
2504 else if (PT > search_regs.start[sub])
2505 opoint = search_regs.end[sub] - ZV;
2506 else
2507 opoint = PT;
2508
2509 /* If we want non-literal replacement,
2510 perform substitution on the replacement string. */
2511 if (NILP (literal))
2512 {
2513 ptrdiff_t length = SBYTES (newtext);
2514 unsigned char *substed;
2515 ptrdiff_t substed_alloc_size, substed_len;
2516 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2517 int str_multibyte = STRING_MULTIBYTE (newtext);
2518 int really_changed = 0;
2519
2520 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2521 ? STRING_BYTES_BOUND
2522 : length * 2 + 100);
2523 substed = (unsigned char *) xmalloc (substed_alloc_size);
2524 substed_len = 0;
2525
2526 /* Go thru NEWTEXT, producing the actual text to insert in
2527 SUBSTED while adjusting multibyteness to that of the current
2528 buffer. */
2529
2530 for (pos_byte = 0, pos = 0; pos_byte < length;)
2531 {
2532 unsigned char str[MAX_MULTIBYTE_LENGTH];
2533 const unsigned char *add_stuff = NULL;
2534 ptrdiff_t add_len = 0;
2535 ptrdiff_t idx = -1;
2536
2537 if (str_multibyte)
2538 {
2539 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2540 if (!buf_multibyte)
2541 c = multibyte_char_to_unibyte (c);
2542 }
2543 else
2544 {
2545 /* Note that we don't have to increment POS. */
2546 c = SREF (newtext, pos_byte++);
2547 if (buf_multibyte)
2548 MAKE_CHAR_MULTIBYTE (c);
2549 }
2550
2551 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2552 or set IDX to a match index, which means put that part
2553 of the buffer text into SUBSTED. */
2554
2555 if (c == '\\')
2556 {
2557 really_changed = 1;
2558
2559 if (str_multibyte)
2560 {
2561 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2562 pos, pos_byte);
2563 if (!buf_multibyte && !ASCII_CHAR_P (c))
2564 c = multibyte_char_to_unibyte (c);
2565 }
2566 else
2567 {
2568 c = SREF (newtext, pos_byte++);
2569 if (buf_multibyte)
2570 MAKE_CHAR_MULTIBYTE (c);
2571 }
2572
2573 if (c == '&')
2574 idx = sub;
2575 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2576 {
2577 if (search_regs.start[c - '0'] >= 1)
2578 idx = c - '0';
2579 }
2580 else if (c == '\\')
2581 add_len = 1, add_stuff = (unsigned char *) "\\";
2582 else
2583 {
2584 xfree (substed);
2585 error ("Invalid use of `\\' in replacement text");
2586 }
2587 }
2588 else
2589 {
2590 add_len = CHAR_STRING (c, str);
2591 add_stuff = str;
2592 }
2593
2594 /* If we want to copy part of a previous match,
2595 set up ADD_STUFF and ADD_LEN to point to it. */
2596 if (idx >= 0)
2597 {
2598 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2599 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2600 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2601 move_gap (search_regs.start[idx]);
2602 add_stuff = BYTE_POS_ADDR (begbyte);
2603 }
2604
2605 /* Now the stuff we want to add to SUBSTED
2606 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2607
2608 /* Make sure SUBSTED is big enough. */
2609 if (substed_alloc_size - substed_len < add_len)
2610 substed =
2611 xpalloc (substed, &substed_alloc_size,
2612 add_len - (substed_alloc_size - substed_len),
2613 STRING_BYTES_BOUND, 1);
2614
2615 /* Now add to the end of SUBSTED. */
2616 if (add_stuff)
2617 {
2618 memcpy (substed + substed_len, add_stuff, add_len);
2619 substed_len += add_len;
2620 }
2621 }
2622
2623 if (really_changed)
2624 {
2625 if (buf_multibyte)
2626 {
2627 ptrdiff_t nchars =
2628 multibyte_chars_in_text (substed, substed_len);
2629
2630 newtext = make_multibyte_string ((char *) substed, nchars,
2631 substed_len);
2632 }
2633 else
2634 newtext = make_unibyte_string ((char *) substed, substed_len);
2635 }
2636 xfree (substed);
2637 }
2638
2639 /* Replace the old text with the new in the cleanest possible way. */
2640 replace_range (search_regs.start[sub], search_regs.end[sub],
2641 newtext, 1, 0, 1);
2642 newpoint = search_regs.start[sub] + SCHARS (newtext);
2643
2644 if (case_action == all_caps)
2645 Fupcase_region (make_number (search_regs.start[sub]),
2646 make_number (newpoint));
2647 else if (case_action == cap_initial)
2648 Fupcase_initials_region (make_number (search_regs.start[sub]),
2649 make_number (newpoint));
2650
2651 /* Adjust search data for this change. */
2652 {
2653 ptrdiff_t oldend = search_regs.end[sub];
2654 ptrdiff_t oldstart = search_regs.start[sub];
2655 ptrdiff_t change = newpoint - search_regs.end[sub];
2656 ptrdiff_t i;
2657
2658 for (i = 0; i < search_regs.num_regs; i++)
2659 {
2660 if (search_regs.start[i] >= oldend)
2661 search_regs.start[i] += change;
2662 else if (search_regs.start[i] > oldstart)
2663 search_regs.start[i] = oldstart;
2664 if (search_regs.end[i] >= oldend)
2665 search_regs.end[i] += change;
2666 else if (search_regs.end[i] > oldstart)
2667 search_regs.end[i] = oldstart;
2668 }
2669 }
2670
2671 /* Put point back where it was in the text. */
2672 if (opoint <= 0)
2673 TEMP_SET_PT (opoint + ZV);
2674 else
2675 TEMP_SET_PT (opoint);
2676
2677 /* Now move point "officially" to the start of the inserted replacement. */
2678 move_if_not_intangible (newpoint);
2679
2680 return Qnil;
2681 }
2682 \f
2683 static Lisp_Object
2684 match_limit (Lisp_Object num, int beginningp)
2685 {
2686 EMACS_INT n;
2687
2688 CHECK_NUMBER (num);
2689 n = XINT (num);
2690 if (n < 0)
2691 args_out_of_range (num, make_number (0));
2692 if (search_regs.num_regs <= 0)
2693 error ("No match data, because no search succeeded");
2694 if (n >= search_regs.num_regs
2695 || search_regs.start[n] < 0)
2696 return Qnil;
2697 return (make_number ((beginningp) ? search_regs.start[n]
2698 : search_regs.end[n]));
2699 }
2700
2701 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2702 doc: /* Return position of start of text matched by last search.
2703 SUBEXP, a number, specifies which parenthesized expression in the last
2704 regexp.
2705 Value is nil if SUBEXPth pair didn't match, or there were less than
2706 SUBEXP pairs.
2707 Zero means the entire text matched by the whole regexp or whole string. */)
2708 (Lisp_Object subexp)
2709 {
2710 return match_limit (subexp, 1);
2711 }
2712
2713 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2714 doc: /* Return position of end of text matched by last search.
2715 SUBEXP, a number, specifies which parenthesized expression in the last
2716 regexp.
2717 Value is nil if SUBEXPth pair didn't match, or there were less than
2718 SUBEXP pairs.
2719 Zero means the entire text matched by the whole regexp or whole string. */)
2720 (Lisp_Object subexp)
2721 {
2722 return match_limit (subexp, 0);
2723 }
2724
2725 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2726 doc: /* Return a list containing all info on what the last search matched.
2727 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2728 All the elements are markers or nil (nil if the Nth pair didn't match)
2729 if the last match was on a buffer; integers or nil if a string was matched.
2730 Use `set-match-data' to reinstate the data in this list.
2731
2732 If INTEGERS (the optional first argument) is non-nil, always use
2733 integers \(rather than markers) to represent buffer positions. In
2734 this case, and if the last match was in a buffer, the buffer will get
2735 stored as one additional element at the end of the list.
2736
2737 If REUSE is a list, reuse it as part of the value. If REUSE is long
2738 enough to hold all the values, and if INTEGERS is non-nil, no consing
2739 is done.
2740
2741 If optional third arg RESEAT is non-nil, any previous markers on the
2742 REUSE list will be modified to point to nowhere.
2743
2744 Return value is undefined if the last search failed. */)
2745 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2746 {
2747 Lisp_Object tail, prev;
2748 Lisp_Object *data;
2749 ptrdiff_t i, len;
2750
2751 if (!NILP (reseat))
2752 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2753 if (MARKERP (XCAR (tail)))
2754 {
2755 unchain_marker (XMARKER (XCAR (tail)));
2756 XSETCAR (tail, Qnil);
2757 }
2758
2759 if (NILP (last_thing_searched))
2760 return Qnil;
2761
2762 prev = Qnil;
2763
2764 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2765 * sizeof (Lisp_Object));
2766
2767 len = 0;
2768 for (i = 0; i < search_regs.num_regs; i++)
2769 {
2770 ptrdiff_t start = search_regs.start[i];
2771 if (start >= 0)
2772 {
2773 if (EQ (last_thing_searched, Qt)
2774 || ! NILP (integers))
2775 {
2776 XSETFASTINT (data[2 * i], start);
2777 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2778 }
2779 else if (BUFFERP (last_thing_searched))
2780 {
2781 data[2 * i] = Fmake_marker ();
2782 Fset_marker (data[2 * i],
2783 make_number (start),
2784 last_thing_searched);
2785 data[2 * i + 1] = Fmake_marker ();
2786 Fset_marker (data[2 * i + 1],
2787 make_number (search_regs.end[i]),
2788 last_thing_searched);
2789 }
2790 else
2791 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2792 abort ();
2793
2794 len = 2 * i + 2;
2795 }
2796 else
2797 data[2 * i] = data[2 * i + 1] = Qnil;
2798 }
2799
2800 if (BUFFERP (last_thing_searched) && !NILP (integers))
2801 {
2802 data[len] = last_thing_searched;
2803 len++;
2804 }
2805
2806 /* If REUSE is not usable, cons up the values and return them. */
2807 if (! CONSP (reuse))
2808 return Flist (len, data);
2809
2810 /* If REUSE is a list, store as many value elements as will fit
2811 into the elements of REUSE. */
2812 for (i = 0, tail = reuse; CONSP (tail);
2813 i++, tail = XCDR (tail))
2814 {
2815 if (i < len)
2816 XSETCAR (tail, data[i]);
2817 else
2818 XSETCAR (tail, Qnil);
2819 prev = tail;
2820 }
2821
2822 /* If we couldn't fit all value elements into REUSE,
2823 cons up the rest of them and add them to the end of REUSE. */
2824 if (i < len)
2825 XSETCDR (prev, Flist (len - i, data + i));
2826
2827 return reuse;
2828 }
2829
2830 /* We used to have an internal use variant of `reseat' described as:
2831
2832 If RESEAT is `evaporate', put the markers back on the free list
2833 immediately. No other references to the markers must exist in this
2834 case, so it is used only internally on the unwind stack and
2835 save-match-data from Lisp.
2836
2837 But it was ill-conceived: those supposedly-internal markers get exposed via
2838 the undo-list, so freeing them here is unsafe. */
2839
2840 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2841 doc: /* Set internal data on last search match from elements of LIST.
2842 LIST should have been created by calling `match-data' previously.
2843
2844 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2845 (register Lisp_Object list, Lisp_Object reseat)
2846 {
2847 ptrdiff_t i;
2848 register Lisp_Object marker;
2849
2850 if (running_asynch_code)
2851 save_search_regs ();
2852
2853 CHECK_LIST (list);
2854
2855 /* Unless we find a marker with a buffer or an explicit buffer
2856 in LIST, assume that this match data came from a string. */
2857 last_thing_searched = Qt;
2858
2859 /* Allocate registers if they don't already exist. */
2860 {
2861 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2862
2863 if (length > search_regs.num_regs)
2864 {
2865 ptrdiff_t num_regs = search_regs.num_regs;
2866 if (PTRDIFF_MAX < length)
2867 memory_full (SIZE_MAX);
2868 search_regs.start =
2869 xpalloc (search_regs.start, &num_regs, length - num_regs,
2870 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2871 search_regs.end =
2872 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2873
2874 for (i = search_regs.num_regs; i < num_regs; i++)
2875 search_regs.start[i] = -1;
2876
2877 search_regs.num_regs = num_regs;
2878 }
2879
2880 for (i = 0; CONSP (list); i++)
2881 {
2882 marker = XCAR (list);
2883 if (BUFFERP (marker))
2884 {
2885 last_thing_searched = marker;
2886 break;
2887 }
2888 if (i >= length)
2889 break;
2890 if (NILP (marker))
2891 {
2892 search_regs.start[i] = -1;
2893 list = XCDR (list);
2894 }
2895 else
2896 {
2897 Lisp_Object from;
2898 Lisp_Object m;
2899
2900 m = marker;
2901 if (MARKERP (marker))
2902 {
2903 if (XMARKER (marker)->buffer == 0)
2904 XSETFASTINT (marker, 0);
2905 else
2906 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2907 }
2908
2909 CHECK_NUMBER_COERCE_MARKER (marker);
2910 from = marker;
2911
2912 if (!NILP (reseat) && MARKERP (m))
2913 {
2914 unchain_marker (XMARKER (m));
2915 XSETCAR (list, Qnil);
2916 }
2917
2918 if ((list = XCDR (list), !CONSP (list)))
2919 break;
2920
2921 m = marker = XCAR (list);
2922
2923 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2924 XSETFASTINT (marker, 0);
2925
2926 CHECK_NUMBER_COERCE_MARKER (marker);
2927 if ((XINT (from) < 0
2928 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2929 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2930 && (XINT (marker) < 0
2931 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2932 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2933 {
2934 search_regs.start[i] = XINT (from);
2935 search_regs.end[i] = XINT (marker);
2936 }
2937 else
2938 {
2939 search_regs.start[i] = -1;
2940 }
2941
2942 if (!NILP (reseat) && MARKERP (m))
2943 {
2944 unchain_marker (XMARKER (m));
2945 XSETCAR (list, Qnil);
2946 }
2947 }
2948 list = XCDR (list);
2949 }
2950
2951 for (; i < search_regs.num_regs; i++)
2952 search_regs.start[i] = -1;
2953 }
2954
2955 return Qnil;
2956 }
2957
2958 /* If non-zero the match data have been saved in saved_search_regs
2959 during the execution of a sentinel or filter. */
2960 static int search_regs_saved;
2961 static struct re_registers saved_search_regs;
2962 static Lisp_Object saved_last_thing_searched;
2963
2964 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2965 if asynchronous code (filter or sentinel) is running. */
2966 static void
2967 save_search_regs (void)
2968 {
2969 if (!search_regs_saved)
2970 {
2971 saved_search_regs.num_regs = search_regs.num_regs;
2972 saved_search_regs.start = search_regs.start;
2973 saved_search_regs.end = search_regs.end;
2974 saved_last_thing_searched = last_thing_searched;
2975 last_thing_searched = Qnil;
2976 search_regs.num_regs = 0;
2977 search_regs.start = 0;
2978 search_regs.end = 0;
2979
2980 search_regs_saved = 1;
2981 }
2982 }
2983
2984 /* Called upon exit from filters and sentinels. */
2985 void
2986 restore_search_regs (void)
2987 {
2988 if (search_regs_saved)
2989 {
2990 if (search_regs.num_regs > 0)
2991 {
2992 xfree (search_regs.start);
2993 xfree (search_regs.end);
2994 }
2995 search_regs.num_regs = saved_search_regs.num_regs;
2996 search_regs.start = saved_search_regs.start;
2997 search_regs.end = saved_search_regs.end;
2998 last_thing_searched = saved_last_thing_searched;
2999 saved_last_thing_searched = Qnil;
3000 search_regs_saved = 0;
3001 }
3002 }
3003
3004 static Lisp_Object
3005 unwind_set_match_data (Lisp_Object list)
3006 {
3007 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3008 return Fset_match_data (list, Qt);
3009 }
3010
3011 /* Called to unwind protect the match data. */
3012 void
3013 record_unwind_save_match_data (void)
3014 {
3015 record_unwind_protect (unwind_set_match_data,
3016 Fmatch_data (Qnil, Qnil, Qnil));
3017 }
3018
3019 /* Quote a string to deactivate reg-expr chars */
3020
3021 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3022 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3023 (Lisp_Object string)
3024 {
3025 register char *in, *out, *end;
3026 register char *temp;
3027 int backslashes_added = 0;
3028
3029 CHECK_STRING (string);
3030
3031 temp = (char *) alloca (SBYTES (string) * 2);
3032
3033 /* Now copy the data into the new string, inserting escapes. */
3034
3035 in = SSDATA (string);
3036 end = in + SBYTES (string);
3037 out = temp;
3038
3039 for (; in != end; in++)
3040 {
3041 if (*in == '['
3042 || *in == '*' || *in == '.' || *in == '\\'
3043 || *in == '?' || *in == '+'
3044 || *in == '^' || *in == '$')
3045 *out++ = '\\', backslashes_added++;
3046 *out++ = *in;
3047 }
3048
3049 return make_specified_string (temp,
3050 SCHARS (string) + backslashes_added,
3051 out - temp,
3052 STRING_MULTIBYTE (string));
3053 }
3054 \f
3055 void
3056 syms_of_search (void)
3057 {
3058 register int i;
3059
3060 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3061 {
3062 searchbufs[i].buf.allocated = 100;
3063 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3064 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3065 searchbufs[i].regexp = Qnil;
3066 searchbufs[i].whitespace_regexp = Qnil;
3067 searchbufs[i].syntax_table = Qnil;
3068 staticpro (&searchbufs[i].regexp);
3069 staticpro (&searchbufs[i].whitespace_regexp);
3070 staticpro (&searchbufs[i].syntax_table);
3071 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3072 }
3073 searchbuf_head = &searchbufs[0];
3074
3075 DEFSYM (Qsearch_failed, "search-failed");
3076 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3077
3078 Fput (Qsearch_failed, Qerror_conditions,
3079 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3080 Fput (Qsearch_failed, Qerror_message,
3081 make_pure_c_string ("Search failed"));
3082
3083 Fput (Qinvalid_regexp, Qerror_conditions,
3084 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3085 Fput (Qinvalid_regexp, Qerror_message,
3086 make_pure_c_string ("Invalid regexp"));
3087
3088 last_thing_searched = Qnil;
3089 staticpro (&last_thing_searched);
3090
3091 saved_last_thing_searched = Qnil;
3092 staticpro (&saved_last_thing_searched);
3093
3094 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3095 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3096 Some commands use this for user-specified regexps.
3097 Spaces that occur inside character classes or repetition operators
3098 or other such regexp constructs are not replaced with this.
3099 A value of nil (which is the normal value) means treat spaces literally. */);
3100 Vsearch_spaces_regexp = Qnil;
3101
3102 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3103 doc: /* Internal use only.
3104 If non-nil, the primitive searching and matching functions
3105 such as `looking-at', `string-match', `re-search-forward', etc.,
3106 do not set the match data. The proper way to use this variable
3107 is to bind it with `let' around a small expression. */);
3108 Vinhibit_changing_match_data = Qnil;
3109
3110 defsubr (&Slooking_at);
3111 defsubr (&Sposix_looking_at);
3112 defsubr (&Sstring_match);
3113 defsubr (&Sposix_string_match);
3114 defsubr (&Ssearch_forward);
3115 defsubr (&Ssearch_backward);
3116 defsubr (&Sre_search_forward);
3117 defsubr (&Sre_search_backward);
3118 defsubr (&Sposix_search_forward);
3119 defsubr (&Sposix_search_backward);
3120 defsubr (&Sreplace_match);
3121 defsubr (&Smatch_beginning);
3122 defsubr (&Smatch_end);
3123 defsubr (&Smatch_data);
3124 defsubr (&Sset_match_data);
3125 defsubr (&Sregexp_quote);
3126 }