(rx-constituents): Add symbol-start and symbol-end.
[bpt/emacs.git] / lisp / emacs-lisp / rx.el
1 ;;; rx.el --- sexp notation for regular expressions
2
3 ;; Copyright (C) 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 ;; Author: Gerd Moellmann <gerd@gnu.org>
6 ;; Maintainer: FSF
7 ;; Keywords: strings, regexps, extensions
8
9 ;; This file is part of GNU Emacs.
10
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
15
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 ;; Boston, MA 02111-1307, USA.
25
26 ;;; Commentary:
27
28 ;; This is another implementation of sexp-form regular expressions.
29 ;; It was unfortunately written without being aware of the Sregex
30 ;; package coming with Emacs, but as things stand, Rx completely
31 ;; covers all regexp features, which Sregex doesn't, doesn't suffer
32 ;; from the bugs mentioned in the commentary section of Sregex, and
33 ;; uses a nicer syntax (IMHO, of course :-).
34
35 ;; This significantly extended version of the original, is almost
36 ;; compatible with Sregex. The only incompatibility I (fx) know of is
37 ;; that the `repeat' form can't have multiple regexp args.
38
39 ;; Now alternative forms are provided for a degree of compatibility
40 ;; with Shivers' attempted definitive SRE notation
41 ;; <URL:http://www.ai.mit.edu/~/shivers/sre.txt>. SRE forms not
42 ;; catered for include: dsm, uncase, w/case, w/nocase, ,@<exp>,
43 ;; ,<exp>, (word ...), word+, posix-string, and character class forms.
44 ;; Some forms are inconsistent with SRE, either for historical reasons
45 ;; or because of the implementation -- simple translation into Emacs
46 ;; regexp strings. These include: any, word. Also, case-sensitivity
47 ;; and greediness are controlled by variables external to the regexp,
48 ;; and you need to feed the forms to the `posix-' functions to get
49 ;; SRE's POSIX semantics. There are probably more difficulties.
50
51 ;; Rx translates a sexp notation for regular expressions into the
52 ;; usual string notation. The translation can be done at compile-time
53 ;; by using the `rx' macro. It can be done at run-time by calling
54 ;; function `rx-to-string'. See the documentation of `rx' for a
55 ;; complete description of the sexp notation.
56 ;;
57 ;; Some examples of string regexps and their sexp counterparts:
58 ;;
59 ;; "^[a-z]*"
60 ;; (rx (and line-start (0+ (in "a-z"))))
61 ;;
62 ;; "\n[^ \t]"
63 ;; (rx (and "\n" (not blank))), or
64 ;; (rx (and "\n" (not (any " \t"))))
65 ;;
66 ;; "\\*\\*\\* EOOH \\*\\*\\*\n"
67 ;; (rx "*** EOOH ***\n")
68 ;;
69 ;; "\\<\\(catch\\|finally\\)\\>[^_]"
70 ;; (rx (and word-start (submatch (or "catch" "finally")) word-end
71 ;; (not (any ?_))))
72 ;;
73 ;; "[ \t\n]*:\\([^:]+\\|$\\)"
74 ;; (rx (and (zero-or-more (in " \t\n")) ":"
75 ;; (submatch (or line-end (one-or-more (not (any ?:)))))))
76 ;;
77 ;; "^content-transfer-encoding:\\(\n?[\t ]\\)*quoted-printable\\(\n?[\t ]\\)*"
78 ;; (rx (and line-start
79 ;; "content-transfer-encoding:"
80 ;; (+ (? ?\n)) blank
81 ;; "quoted-printable"
82 ;; (+ (? ?\n)) blank))
83 ;;
84 ;; (concat "^\\(?:" something-else "\\)")
85 ;; (rx (and line-start (eval something-else))), statically or
86 ;; (rx-to-string '(and line-start ,something-else)), dynamically.
87 ;;
88 ;; (regexp-opt '(STRING1 STRING2 ...))
89 ;; (rx (or STRING1 STRING2 ...)), or in other words, `or' automatically
90 ;; calls `regexp-opt' as needed.
91 ;;
92 ;; "^;;\\s-*\n\\|^\n"
93 ;; (rx (or (and line-start ";;" (0+ space) ?\n)
94 ;; (and line-start ?\n)))
95 ;;
96 ;; "\\$[I]d: [^ ]+ \\([^ ]+\\) "
97 ;; (rx (and "$Id: "
98 ;; (1+ (not (in " ")))
99 ;; " "
100 ;; (submatch (1+ (not (in " "))))
101 ;; " "))
102 ;;
103 ;; "\\\\\\\\\\[\\w+"
104 ;; (rx (and ?\\ ?\\ ?\[ (1+ word)))
105 ;;
106 ;; etc.
107
108 ;;; History:
109 ;;
110
111 ;;; Code:
112
113 (defconst rx-constituents
114 '((and . (rx-and 1 nil))
115 (seq . and) ; SRE
116 (: . and) ; SRE
117 (sequence . and) ; sregex
118 (or . (rx-or 1 nil))
119 (| . or) ; SRE
120 (not-newline . ".")
121 (nonl . not-newline) ; SRE
122 (anything . ".\\|\n")
123 (any . (rx-any 1 nil rx-check-any)) ; inconsistent with SRE
124 (in . any)
125 (char . any) ; sregex
126 (not-char . (rx-not-char 1 nil rx-check-any)) ; sregex
127 (not . (rx-not 1 1 rx-check-not))
128 ;; Partially consistent with sregex, whose `repeat' is like our
129 ;; `**'. (`repeat' with optional max arg and multiple sexp forms
130 ;; is ambiguous.)
131 (repeat . (rx-repeat 2 3))
132 (= . (rx-= 2 nil)) ; SRE
133 (>= . (rx->= 2 nil)) ; SRE
134 (** . (rx-** 2 nil)) ; SRE
135 (submatch . (rx-submatch 1 nil)) ; SRE
136 (group . submatch)
137 (zero-or-more . (rx-kleene 1 nil))
138 (one-or-more . (rx-kleene 1 nil))
139 (zero-or-one . (rx-kleene 1 nil))
140 (\? . zero-or-one) ; SRE
141 (\?? . zero-or-one)
142 (* . zero-or-more) ; SRE
143 (*? . zero-or-more)
144 (0+ . zero-or-more)
145 (+ . one-or-more) ; SRE
146 (+? . one-or-more)
147 (1+ . one-or-more)
148 (optional . zero-or-one)
149 (opt . zero-or-one) ; sregex
150 (minimal-match . (rx-greedy 1 1))
151 (maximal-match . (rx-greedy 1 1))
152 (backref . (rx-backref 1 1 rx-check-backref))
153 (line-start . "^")
154 (bol . line-start) ; SRE
155 (line-end . "$")
156 (eol . line-end) ; SRE
157 (string-start . "\\`")
158 (bos . string-start) ; SRE
159 (bot . string-start) ; sregex
160 (string-end . "\\'")
161 (eos . string-end) ; SRE
162 (eot . string-end) ; sregex
163 (buffer-start . "\\`")
164 (buffer-end . "\\'")
165 (point . "\\=")
166 (word-start . "\\<")
167 (bow . word-start) ; SRE
168 (word-end . "\\>")
169 (eow . word-end) ; SRE
170 (word-boundary . "\\b")
171 (not-word-boundary . "\\B") ; sregex
172 (symbol-start . "\\_<")
173 (symbol-end . "\\_>")
174 (syntax . (rx-syntax 1 1))
175 (not-syntax . (rx-not-syntax 1 1)) ; sregex
176 (category . (rx-category 1 1 rx-check-category))
177 (eval . (rx-eval 1 1))
178 (regexp . (rx-regexp 1 1 stringp))
179 (digit . "[[:digit:]]")
180 (numeric . digit) ; SRE
181 (num . digit) ; SRE
182 (control . "[[:cntrl:]]") ; SRE
183 (cntrl . control) ; SRE
184 (hex-digit . "[[:xdigit:]]") ; SRE
185 (hex . hex-digit) ; SRE
186 (xdigit . hex-digit) ; SRE
187 (blank . "[[:blank:]]") ; SRE
188 (graphic . "[[:graph:]]") ; SRE
189 (graph . graphic) ; SRE
190 (printing . "[[:print:]]") ; SRE
191 (print . printing) ; SRE
192 (alphanumeric . "[[:alnum:]]") ; SRE
193 (alnum . alphanumeric) ; SRE
194 (letter . "[[:alpha:]]")
195 (alphabetic . letter) ; SRE
196 (alpha . letter) ; SRE
197 (ascii . "[[:ascii:]]") ; SRE
198 (nonascii . "[[:nonascii:]]")
199 (lower . "[[:lower:]]") ; SRE
200 (lower-case . lower) ; SRE
201 (punctuation . "[[:punct:]]") ; SRE
202 (punct . punctuation) ; SRE
203 (space . "[[:space:]]") ; SRE
204 (whitespace . space) ; SRE
205 (white . space) ; SRE
206 (upper . "[[:upper:]]") ; SRE
207 (upper-case . upper) ; SRE
208 (word . "[[:word:]]") ; inconsistent with SRE
209 (wordchar . word) ; sregex
210 (not-wordchar . "[^[:word:]]") ; sregex (use \\W?)
211 )
212 "Alist of sexp form regexp constituents.
213 Each element of the alist has the form (SYMBOL . DEFN).
214 SYMBOL is a valid constituent of sexp regular expressions.
215 If DEFN is a string, SYMBOL is translated into DEFN.
216 If DEFN is a symbol, use the definition of DEFN, recursively.
217 Otherwise, DEFN must be a list (FUNCTION MIN-ARGS MAX-ARGS PREDICATE).
218 FUNCTION is used to produce code for SYMBOL. MIN-ARGS and MAX-ARGS
219 are the minimum and maximum number of arguments the function-form
220 sexp constituent SYMBOL may have in sexp regular expressions.
221 MAX-ARGS nil means no limit. PREDICATE, if specified, means that
222 all arguments must satisfy PREDICATE.")
223
224
225 (defconst rx-syntax
226 '((whitespace . ?-)
227 (punctuation . ?.)
228 (word . ?w)
229 (symbol . ?_)
230 (open-parenthesis . ?\()
231 (close-parenthesis . ?\))
232 (expression-prefix . ?\')
233 (string-quote . ?\")
234 (paired-delimiter . ?$)
235 (escape . ?\\)
236 (character-quote . ?/)
237 (comment-start . ?<)
238 (comment-end . ?>)
239 (string-delimiter . ?|)
240 (comment-delimiter . ?!))
241 "Alist mapping Rx syntax symbols to syntax characters.
242 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
243 symbol in `(syntax SYMBOL)', and CHAR is the syntax character
244 corresponding to SYMBOL, as it would be used with \\s or \\S in
245 regular expressions.")
246
247
248 (defconst rx-categories
249 '((consonant . ?0)
250 (base-vowel . ?1)
251 (upper-diacritical-mark . ?2)
252 (lower-diacritical-mark . ?3)
253 (tone-mark . ?4)
254 (symbol . ?5)
255 (digit . ?6)
256 (vowel-modifying-diacritical-mark . ?7)
257 (vowel-sign . ?8)
258 (semivowel-lower . ?9)
259 (not-at-end-of-line . ?<)
260 (not-at-beginning-of-line . ?>)
261 (alpha-numeric-two-byte . ?A)
262 (chinse-two-byte . ?C)
263 (greek-two-byte . ?G)
264 (japanese-hiragana-two-byte . ?H)
265 (indian-two-byte . ?I)
266 (japanese-katakana-two-byte . ?K)
267 (korean-hangul-two-byte . ?N)
268 (cyrillic-two-byte . ?Y)
269 (combining-diacritic . ?^)
270 (ascii . ?a)
271 (arabic . ?b)
272 (chinese . ?c)
273 (ethiopic . ?e)
274 (greek . ?g)
275 (korean . ?h)
276 (indian . ?i)
277 (japanese . ?j)
278 (japanese-katakana . ?k)
279 (latin . ?l)
280 (lao . ?o)
281 (tibetan . ?q)
282 (japanese-roman . ?r)
283 (thai . ?t)
284 (vietnamese . ?v)
285 (hebrew . ?w)
286 (cyrillic . ?y)
287 (can-break . ?|))
288 "Alist mapping symbols to category characters.
289 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
290 symbol in `(category SYMBOL)', and CHAR is the category character
291 corresponding to SYMBOL, as it would be used with `\\c' or `\\C' in
292 regular expression strings.")
293
294
295 (defvar rx-greedy-flag t
296 "Non-nil means produce greedy regular expressions for `zero-or-one',
297 `zero-or-more', and `one-or-more'. Dynamically bound.")
298
299
300 (defun rx-info (op)
301 "Return parsing/code generation info for OP.
302 If OP is the space character ASCII 32, return info for the symbol `?'.
303 If OP is the character `?', return info for the symbol `??'.
304 See also `rx-constituents'."
305 (cond ((eq op ? ) (setq op '\?))
306 ((eq op ??) (setq op '\??)))
307 (while (and (not (null op)) (symbolp op))
308 (setq op (cdr (assq op rx-constituents))))
309 op)
310
311
312 (defun rx-check (form)
313 "Check FORM according to its car's parsing info."
314 (unless (listp form)
315 (error "rx `%s' needs argument(s)" form))
316 (let* ((rx (rx-info (car form)))
317 (nargs (1- (length form)))
318 (min-args (nth 1 rx))
319 (max-args (nth 2 rx))
320 (type-pred (nth 3 rx)))
321 (when (and (not (null min-args))
322 (< nargs min-args))
323 (error "rx form `%s' requires at least %d args"
324 (car form) min-args))
325 (when (and (not (null max-args))
326 (> nargs max-args))
327 (error "rx form `%s' accepts at most %d args"
328 (car form) max-args))
329 (when (not (null type-pred))
330 (dolist (sub-form (cdr form))
331 (unless (funcall type-pred sub-form)
332 (error "rx form `%s' requires args satisfying `%s'"
333 (car form) type-pred))))))
334
335
336 (defun rx-and (form)
337 "Parse and produce code from FORM.
338 FORM is of the form `(and FORM1 ...)'."
339 (rx-check form)
340 (concat "\\(?:"
341 (mapconcat
342 (function (lambda (x) (rx-to-string x 'no-group)))
343 (cdr form) nil)
344 "\\)"))
345
346
347 (defun rx-or (form)
348 "Parse and produce code from FORM, which is `(or FORM1 ...)'."
349 (rx-check form)
350 (let ((all-args-strings t))
351 (dolist (arg (cdr form))
352 (unless (stringp arg)
353 (setq all-args-strings nil)))
354 (concat "\\(?:"
355 (if all-args-strings
356 (regexp-opt (cdr form))
357 (mapconcat #'rx-to-string (cdr form) "\\|"))
358 "\\)")))
359
360
361 (defvar rx-bracket) ; dynamically bound in `rx-any'
362
363 (defun rx-check-any (arg)
364 "Check arg ARG for Rx `any'."
365 (if (integerp arg)
366 (setq arg (string arg)))
367 (when (stringp arg)
368 (if (zerop (length arg))
369 (error "String arg for Rx `any' must not be empty"))
370 ;; Quote ^ at start; don't bother to check whether this is first arg.
371 (if (eq ?^ (aref arg 0))
372 (setq arg (concat "\\" arg)))
373 ;; Remove ] and set flag for adding it to start of overall result.
374 (when (string-match "]" arg)
375 (setq arg (replace-regexp-in-string "]" "" arg)
376 rx-bracket "]")))
377 (when (symbolp arg)
378 (let ((translation (condition-case nil
379 (rx-to-string arg 'no-group)
380 (error nil))))
381 (unless translation (error "Invalid char class `%s' in Rx `any'" arg))
382 (setq arg (substring translation 1 -1)))) ; strip outer brackets
383 ;; sregex compatibility
384 (when (and (integerp (car-safe arg))
385 (integerp (cdr-safe arg)))
386 (setq arg (string (car arg) ?- (cdr arg))))
387 (unless (stringp arg)
388 (error "rx `any' requires string, character, char pair or char class args"))
389 arg)
390
391 (defun rx-any (form)
392 "Parse and produce code from FORM, which is `(any ARG ...)'.
393 ARG is optional."
394 (rx-check form)
395 (let* ((rx-bracket nil)
396 (args (mapcar #'rx-check-any (cdr form)))) ; side-effects `rx-bracket'
397 ;; If there was a ?- in the form, move it to the front to avoid
398 ;; accidental range.
399 (if (member "-" args)
400 (setq args (cons "-" (delete "-" args))))
401 (apply #'concat "[" rx-bracket (append args '("]")))))
402
403
404 (defun rx-check-not (arg)
405 "Check arg ARG for Rx `not'."
406 (unless (or (and (symbolp arg)
407 (string-match "\\`\\[\\[:[-a-z]:]]\\'"
408 (condition-case nil
409 (rx-to-string arg 'no-group)
410 (error ""))))
411 (eq arg 'word-boundary)
412 (and (consp arg)
413 (memq (car arg) '(not any in syntax category))))
414 (error "rx `not' syntax error: %s" arg))
415 t)
416
417
418 (defun rx-not (form)
419 "Parse and produce code from FORM. FORM is `(not ...)'."
420 (rx-check form)
421 (let ((result (rx-to-string (cadr form) 'no-group))
422 case-fold-search)
423 (cond ((string-match "\\`\\[^" result)
424 (if (= (length result) 4)
425 (substring result 2 3)
426 (concat "[" (substring result 2))))
427 ((eq ?\[ (aref result 0))
428 (concat "[^" (substring result 1)))
429 ((string-match "\\`\\\\[scb]" result)
430 (concat (capitalize (substring result 0 2)) (substring result 2)))
431 (t
432 (concat "[^" result "]")))))
433
434
435 (defun rx-not-char (form)
436 "Parse and produce code from FORM. FORM is `(not-char ...)'."
437 (rx-check form)
438 (rx-not `(not (in ,@(cdr form)))))
439
440
441 (defun rx-not-syntax (form)
442 "Parse and produce code from FORM. FORM is `(not-syntax SYNTAX)'."
443 (rx-check form)
444 (rx-not `(not (syntax ,@(cdr form)))))
445
446
447 (defun rx-trans-forms (form &optional skip)
448 "If FORM's length is greater than two, transform it to length two.
449 A form (HEAD REST ...) becomes (HEAD (and REST ...)).
450 If SKIP is non-nil, allow that number of items after the head, i.e.
451 `(= N REST ...)' becomes `(= N (and REST ...))' if SKIP is 1."
452 (unless skip (setq skip 0))
453 (let ((tail (nthcdr (1+ skip) form)))
454 (if (= (length tail) 1)
455 form
456 (let ((form (copy-sequence form)))
457 (setcdr (nthcdr skip form) (list (cons 'and tail)))
458 form))))
459
460
461 (defun rx-= (form)
462 "Parse and produce code from FORM `(= N ...)'."
463 (rx-check form)
464 (setq form (rx-trans-forms form 1))
465 (unless (and (integerp (nth 1 form))
466 (> (nth 1 form) 0))
467 (error "rx `=' requires positive integer first arg"))
468 (format "%s\\{%d\\}" (rx-to-string (nth 2 form)) (nth 1 form)))
469
470
471 (defun rx->= (form)
472 "Parse and produce code from FORM `(>= N ...)'."
473 (rx-check form)
474 (setq form (rx-trans-forms form 1))
475 (unless (and (integerp (nth 1 form))
476 (> (nth 1 form) 0))
477 (error "rx `>=' requires positive integer first arg"))
478 (format "%s\\{%d,\\}" (rx-to-string (nth 2 form)) (nth 1 form)))
479
480
481 (defun rx-** (form)
482 "Parse and produce code from FORM `(** N M ...)'."
483 (rx-check form)
484 (setq form (cons 'repeat (cdr (rx-trans-forms form 2))))
485 (rx-to-string form))
486
487
488 (defun rx-repeat (form)
489 "Parse and produce code from FORM.
490 FORM is either `(repeat N FORM1)' or `(repeat N M FORM1)'."
491 (rx-check form)
492 (cond ((= (length form) 3)
493 (unless (and (integerp (nth 1 form))
494 (> (nth 1 form) 0))
495 (error "rx `repeat' requires positive integer first arg"))
496 (format "%s\\{%d\\}" (rx-to-string (nth 2 form)) (nth 1 form)))
497 ((or (not (integerp (nth 2 form)))
498 (< (nth 2 form) 0)
499 (not (integerp (nth 1 form)))
500 (< (nth 1 form) 0)
501 (< (nth 2 form) (nth 1 form)))
502 (error "rx `repeat' range error"))
503 (t
504 (format "%s\\{%d,%d\\}" (rx-to-string (nth 3 form))
505 (nth 1 form) (nth 2 form)))))
506
507
508 (defun rx-submatch (form)
509 "Parse and produce code from FORM, which is `(submatch ...)'."
510 (concat "\\("
511 (mapconcat (function (lambda (x) (rx-to-string x 'no-group)))
512 (cdr form) nil)
513 "\\)"))
514
515 (defun rx-backref (form)
516 "Parse and produce code from FORM, which is `(backref N)'."
517 (rx-check form)
518 (format "\\%d" (nth 1 form)))
519
520 (defun rx-check-backref (arg)
521 "Check arg ARG for Rx `backref'."
522 (or (and (integerp arg) (>= arg 1) (<= arg 9))
523 (error "rx `backref' requires numeric 1<=arg<=9: %s" arg)))
524
525 (defun rx-kleene (form)
526 "Parse and produce code from FORM.
527 FORM is `(OP FORM1)', where OP is one of the `zero-or-one',
528 `zero-or-more' etc. operators.
529 If OP is one of `*', `+', `?', produce a greedy regexp.
530 If OP is one of `*?', `+?', `??', produce a non-greedy regexp.
531 If OP is anything else, produce a greedy regexp if `rx-greedy-flag'
532 is non-nil."
533 (rx-check form)
534 (setq form (rx-trans-forms form))
535 (let ((suffix (cond ((memq (car form) '(* + ? )) "")
536 ((memq (car form) '(*? +? ??)) "?")
537 (rx-greedy-flag "")
538 (t "?")))
539 (op (cond ((memq (car form) '(* *? 0+ zero-or-more)) "*")
540 ((memq (car form) '(+ +? 1+ one-or-more)) "+")
541 (t "?")))
542 (result (rx-to-string (cadr form) 'no-group)))
543 (if (not (rx-atomic-p result))
544 (setq result (concat "\\(?:" result "\\)")))
545 (concat result op suffix)))
546
547 (defun rx-atomic-p (r)
548 "Return non-nil if regexp string R is atomic.
549 An atomic regexp R is one such that a suffix operator
550 appended to R will apply to all of R. For example, \"a\"
551 \"[abc]\" and \"\\(ab\\|ab*c\\)\" are atomic and \"ab\",
552 \"[ab]c\", and \"ab\\|ab*c\" are not atomic.
553
554 This function may return false negatives, but it will not
555 return false positives. It is nevertheless useful in
556 situations where an efficiency shortcut can be taken iff a
557 regexp is atomic. The function can be improved to detect
558 more cases of atomic regexps. Presently, this function
559 detects the following categories of atomic regexp;
560
561 a group or shy group: \\(...\\)
562 a character class: [...]
563 a single character: a
564
565 On the other hand, false negatives will be returned for
566 regexps that are atomic but end in operators, such as
567 \"a+\". I think these are rare. Probably such cases could
568 be detected without much effort. A guarantee of no false
569 negatives would require a theoretic specification of the set
570 of all atomic regexps."
571 (let ((l (length r)))
572 (or (equal l 1)
573 (and (>= l 6)
574 (equal (substring r 0 2) "\\(")
575 (equal (substring r -2) "\\)"))
576 (and (>= l 2)
577 (equal (substring r 0 1) "[")
578 (equal (substring r -1) "]")))))
579
580
581 (defun rx-syntax (form)
582 "Parse and produce code from FORM, which is `(syntax SYMBOL)'."
583 (rx-check form)
584 (let* ((sym (cadr form))
585 (syntax (assq sym rx-syntax)))
586 (unless syntax
587 ;; Try sregex compatibility.
588 (let ((name (symbol-name sym)))
589 (if (= 1 (length name))
590 (setq syntax (rassq (aref name 0) rx-syntax))))
591 (unless syntax
592 (error "Unknown rx syntax `%s'" (cadr form))))
593 (format "\\s%c" (cdr syntax))))
594
595
596 (defun rx-check-category (form)
597 "Check the argument FORM of a `(category FORM)'."
598 (unless (or (integerp form)
599 (cdr (assq form rx-categories)))
600 (error "Unknown category `%s'" form))
601 t)
602
603
604 (defun rx-category (form)
605 "Parse and produce code from FORM, which is `(category SYMBOL)'."
606 (rx-check form)
607 (let ((char (if (integerp (cadr form))
608 (cadr form)
609 (cdr (assq (cadr form) rx-categories)))))
610 (format "\\c%c" char)))
611
612
613 (defun rx-eval (form)
614 "Parse and produce code from FORM, which is `(eval FORM)'."
615 (rx-check form)
616 (rx-to-string (eval (cadr form))))
617
618
619 (defun rx-greedy (form)
620 "Parse and produce code from FORM.
621 If FORM is '(minimal-match FORM1)', non-greedy versions of `*',
622 `+', and `?' operators will be used in FORM1. If FORM is
623 '(maximal-match FORM1)', greedy operators will be used."
624 (rx-check form)
625 (let ((rx-greedy-flag (eq (car form) 'maximal-match)))
626 (rx-to-string (cadr form))))
627
628
629 (defun rx-regexp (form)
630 "Parse and produce code from FORM, which is `(regexp STRING)'."
631 (rx-check form)
632 (concat "\\(?:" (cadr form) "\\)"))
633
634
635 ;;;###autoload
636 (defun rx-to-string (form &optional no-group)
637 "Parse and produce code for regular expression FORM.
638 FORM is a regular expression in sexp form.
639 NO-GROUP non-nil means don't put shy groups around the result."
640 (cond ((stringp form)
641 (regexp-quote form))
642 ((integerp form)
643 (regexp-quote (char-to-string form)))
644 ((symbolp form)
645 (let ((info (rx-info form)))
646 (cond ((stringp info)
647 info)
648 ((null info)
649 (error "Unknown rx form `%s'" form))
650 (t
651 (funcall (nth 0 info) form)))))
652 ((consp form)
653 (let ((info (rx-info (car form))))
654 (unless (consp info)
655 (error "Unknown rx form `%s'" (car form)))
656 (let ((result (funcall (nth 0 info) form)))
657 (if (or no-group (string-match "\\`\\\\[(]" result))
658 result
659 (concat "\\(?:" result "\\)")))))
660 (t
661 (error "rx syntax error at `%s'" form))))
662
663
664 ;;;###autoload
665 (defmacro rx (&rest regexps)
666 "Translate regular expressions REGEXPS in sexp form to a regexp string.
667 REGEXPS is a non-empty sequence of forms of the sort listed below.
668 See also `rx-to-string' for how to do such a translation at run-time.
669
670 The following are valid subforms of regular expressions in sexp
671 notation.
672
673 STRING
674 matches string STRING literally.
675
676 CHAR
677 matches character CHAR literally.
678
679 `not-newline', `nonl'
680 matches any character except a newline.
681 .
682 `anything'
683 matches any character
684
685 `(any SET ...)'
686 `(in SET ...)'
687 `(char SET ...)'
688 matches any character in SET .... SET may be a character or string.
689 Ranges of characters can be specified as `A-Z' in strings.
690 Ranges may also be specified as conses like `(?A . ?Z)'.
691
692 SET may also be the name of a character class: `digit',
693 `control', `hex-digit', `blank', `graph', `print', `alnum',
694 `alpha', `ascii', `nonascii', `lower', `punct', `space', `upper',
695 `word', or one of their synonyms.
696
697 `(not (any SET ...))'
698 matches any character not in SET ...
699
700 `line-start', `bol'
701 matches the empty string, but only at the beginning of a line
702 in the text being matched
703
704 `line-end', `eol'
705 is similar to `line-start' but matches only at the end of a line
706
707 `string-start', `bos', `bot'
708 matches the empty string, but only at the beginning of the
709 string being matched against.
710
711 `string-end', `eos', `eot'
712 matches the empty string, but only at the end of the
713 string being matched against.
714
715 `buffer-start'
716 matches the empty string, but only at the beginning of the
717 buffer being matched against. Actually equivalent to `string-start'.
718
719 `buffer-end'
720 matches the empty string, but only at the end of the
721 buffer being matched against. Actually equivalent to `string-end'.
722
723 `point'
724 matches the empty string, but only at point.
725
726 `word-start', `bow'
727 matches the empty string, but only at the beginning or end of a
728 word.
729
730 `word-end', `eow'
731 matches the empty string, but only at the end of a word.
732
733 `word-boundary'
734 matches the empty string, but only at the beginning or end of a
735 word.
736
737 `(not word-boundary)'
738 `not-word-boundary'
739 matches the empty string, but not at the beginning or end of a
740 word.
741
742 `digit', `numeric', `num'
743 matches 0 through 9.
744
745 `control', `cntrl'
746 matches ASCII control characters.
747
748 `hex-digit', `hex', `xdigit'
749 matches 0 through 9, a through f and A through F.
750
751 `blank'
752 matches space and tab only.
753
754 `graphic', `graph'
755 matches graphic characters--everything except ASCII control chars,
756 space, and DEL.
757
758 `printing', `print'
759 matches printing characters--everything except ASCII control chars
760 and DEL.
761
762 `alphanumeric', `alnum'
763 matches letters and digits. (But at present, for multibyte characters,
764 it matches anything that has word syntax.)
765
766 `letter', `alphabetic', `alpha'
767 matches letters. (But at present, for multibyte characters,
768 it matches anything that has word syntax.)
769
770 `ascii'
771 matches ASCII (unibyte) characters.
772
773 `nonascii'
774 matches non-ASCII (multibyte) characters.
775
776 `lower', `lower-case'
777 matches anything lower-case.
778
779 `upper', `upper-case'
780 matches anything upper-case.
781
782 `punctuation', `punct'
783 matches punctuation. (But at present, for multibyte characters,
784 it matches anything that has non-word syntax.)
785
786 `space', `whitespace', `white'
787 matches anything that has whitespace syntax.
788
789 `word', `wordchar'
790 matches anything that has word syntax.
791
792 `not-wordchar'
793 matches anything that has non-word syntax.
794
795 `(syntax SYNTAX)'
796 matches a character with syntax SYNTAX. SYNTAX must be one
797 of the following symbols, or a symbol corresponding to the syntax
798 character, e.g. `\\.' for `\\s.'.
799
800 `whitespace' (\\s- in string notation)
801 `punctuation' (\\s.)
802 `word' (\\sw)
803 `symbol' (\\s_)
804 `open-parenthesis' (\\s()
805 `close-parenthesis' (\\s))
806 `expression-prefix' (\\s')
807 `string-quote' (\\s\")
808 `paired-delimiter' (\\s$)
809 `escape' (\\s\\)
810 `character-quote' (\\s/)
811 `comment-start' (\\s<)
812 `comment-end' (\\s>)
813 `string-delimiter' (\\s|)
814 `comment-delimiter' (\\s!)
815
816 `(not (syntax SYNTAX))'
817 matches a character that doesn't have syntax SYNTAX.
818
819 `(category CATEGORY)'
820 matches a character with category CATEGORY. CATEGORY must be
821 either a character to use for C, or one of the following symbols.
822
823 `consonant' (\\c0 in string notation)
824 `base-vowel' (\\c1)
825 `upper-diacritical-mark' (\\c2)
826 `lower-diacritical-mark' (\\c3)
827 `tone-mark' (\\c4)
828 `symbol' (\\c5)
829 `digit' (\\c6)
830 `vowel-modifying-diacritical-mark' (\\c7)
831 `vowel-sign' (\\c8)
832 `semivowel-lower' (\\c9)
833 `not-at-end-of-line' (\\c<)
834 `not-at-beginning-of-line' (\\c>)
835 `alpha-numeric-two-byte' (\\cA)
836 `chinse-two-byte' (\\cC)
837 `greek-two-byte' (\\cG)
838 `japanese-hiragana-two-byte' (\\cH)
839 `indian-tow-byte' (\\cI)
840 `japanese-katakana-two-byte' (\\cK)
841 `korean-hangul-two-byte' (\\cN)
842 `cyrillic-two-byte' (\\cY)
843 `combining-diacritic' (\\c^)
844 `ascii' (\\ca)
845 `arabic' (\\cb)
846 `chinese' (\\cc)
847 `ethiopic' (\\ce)
848 `greek' (\\cg)
849 `korean' (\\ch)
850 `indian' (\\ci)
851 `japanese' (\\cj)
852 `japanese-katakana' (\\ck)
853 `latin' (\\cl)
854 `lao' (\\co)
855 `tibetan' (\\cq)
856 `japanese-roman' (\\cr)
857 `thai' (\\ct)
858 `vietnamese' (\\cv)
859 `hebrew' (\\cw)
860 `cyrillic' (\\cy)
861 `can-break' (\\c|)
862
863 `(not (category CATEGORY))'
864 matches a character that doesn't have category CATEGORY.
865
866 `(and SEXP1 SEXP2 ...)'
867 `(: SEXP1 SEXP2 ...)'
868 `(seq SEXP1 SEXP2 ...)'
869 `(sequence SEXP1 SEXP2 ...)'
870 matches what SEXP1 matches, followed by what SEXP2 matches, etc.
871
872 `(submatch SEXP1 SEXP2 ...)'
873 `(group SEXP1 SEXP2 ...)'
874 like `and', but makes the match accessible with `match-end',
875 `match-beginning', and `match-string'.
876
877 `(group SEXP1 SEXP2 ...)'
878 another name for `submatch'.
879
880 `(or SEXP1 SEXP2 ...)'
881 `(| SEXP1 SEXP2 ...)'
882 matches anything that matches SEXP1 or SEXP2, etc. If all
883 args are strings, use `regexp-opt' to optimize the resulting
884 regular expression.
885
886 `(minimal-match SEXP)'
887 produce a non-greedy regexp for SEXP. Normally, regexps matching
888 zero or more occurrences of something are \"greedy\" in that they
889 match as much as they can, as long as the overall regexp can
890 still match. A non-greedy regexp matches as little as possible.
891
892 `(maximal-match SEXP)'
893 produce a greedy regexp for SEXP. This is the default.
894
895 Below, `SEXP ...' represents a sequence of regexp forms, treated as if
896 enclosed in `(and ...)'.
897
898 `(zero-or-more SEXP ...)'
899 `(0+ SEXP ...)'
900 matches zero or more occurrences of what SEXP ... matches.
901
902 `(* SEXP ...)'
903 like `zero-or-more', but always produces a greedy regexp, independent
904 of `rx-greedy-flag'.
905
906 `(*? SEXP ...)'
907 like `zero-or-more', but always produces a non-greedy regexp,
908 independent of `rx-greedy-flag'.
909
910 `(one-or-more SEXP ...)'
911 `(1+ SEXP ...)'
912 matches one or more occurrences of SEXP ...
913
914 `(+ SEXP ...)'
915 like `one-or-more', but always produces a greedy regexp.
916
917 `(+? SEXP ...)'
918 like `one-or-more', but always produces a non-greedy regexp.
919
920 `(zero-or-one SEXP ...)'
921 `(optional SEXP ...)'
922 `(opt SEXP ...)'
923 matches zero or one occurrences of A.
924
925 `(? SEXP ...)'
926 like `zero-or-one', but always produces a greedy regexp.
927
928 `(?? SEXP ...)'
929 like `zero-or-one', but always produces a non-greedy regexp.
930
931 `(repeat N SEXP)'
932 `(= N SEXP ...)'
933 matches N occurrences.
934
935 `(>= N SEXP ...)'
936 matches N or more occurrences.
937
938 `(repeat N M SEXP)'
939 `(** N M SEXP ...)'
940 matches N to M occurrences.
941
942 `(backref N)'
943 matches what was matched previously by submatch N.
944
945 `(backref N)'
946 matches what was matched previously by submatch N.
947
948 `(backref N)'
949 matches what was matched previously by submatch N.
950
951 `(eval FORM)'
952 evaluate FORM and insert result. If result is a string,
953 `regexp-quote' it.
954
955 `(regexp REGEXP)'
956 include REGEXP in string notation in the result."
957 (cond ((null regexps)
958 (error "No regexp"))
959 ((cdr regexps)
960 (rx-to-string `(and ,@regexps) t))
961 (t
962 (rx-to-string (car regexps) t))))
963 \f
964 ;; ;; sregex.el replacement
965
966 ;; ;;;###autoload (provide 'sregex)
967 ;; ;;;###autoload (autoload 'sregex "rx")
968 ;; (defalias 'sregex 'rx-to-string)
969 ;; ;;;###autoload (autoload 'sregexq "rx" nil nil 'macro)
970 ;; (defalias 'sregexq 'rx)
971 \f
972 (provide 'rx)
973
974 ;; arch-tag: 12d01a63-0008-42bb-ab8c-1c7d63be370b
975 ;;; rx.el ends here