alloc.c (mark_memory): Guard the "no_address_safety_analysis" function
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 EMACS_INT consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* Nonzero during GC. */
181
182 int gc_in_progress;
183
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 int abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
204
205 #define SPARE_MEMORY (1 << 14)
206
207 /* Number of extra blocks malloc should get when it needs more core. */
208
209 static int malloc_hysteresis;
210
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
216
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
219
220 /* Pointer to the pure area, and its size. */
221
222 static char *purebeg;
223 static ptrdiff_t pure_size;
224
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
228 static ptrdiff_t pure_bytes_used_before_overflow;
229
230 /* Value is non-zero if P points into pure space. */
231
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
234
235 /* Index in pure at which next pure Lisp object will be allocated.. */
236
237 static ptrdiff_t pure_bytes_used_lisp;
238
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
240
241 static ptrdiff_t pure_bytes_used_non_lisp;
242
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
246 const char *pending_malloc_warning;
247
248 /* Maximum amount of C stack to save when a GC happens. */
249
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
253
254 /* Buffer in which we save a copy of the C stack at each GC. */
255
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
260
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
264 static int ignore_warnings;
265
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_terminals (void);
274 static void gc_sweep (void);
275 static Lisp_Object make_pure_vector (ptrdiff_t);
276 static void mark_glyph_matrix (struct glyph_matrix *);
277 static void mark_face_cache (struct face_cache *);
278
279 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
280 static void refill_memory_reserve (void);
281 #endif
282 static struct Lisp_String *allocate_string (void);
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 static void sweep_strings (void);
286 static void free_misc (Lisp_Object);
287 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
288
289 /* When scanning the C stack for live Lisp objects, Emacs keeps track
290 of what memory allocated via lisp_malloc is intended for what
291 purpose. This enumeration specifies the type of memory. */
292
293 enum mem_type
294 {
295 MEM_TYPE_NON_LISP,
296 MEM_TYPE_BUFFER,
297 MEM_TYPE_CONS,
298 MEM_TYPE_STRING,
299 MEM_TYPE_MISC,
300 MEM_TYPE_SYMBOL,
301 MEM_TYPE_FLOAT,
302 /* We used to keep separate mem_types for subtypes of vectors such as
303 process, hash_table, frame, terminal, and window, but we never made
304 use of the distinction, so it only caused source-code complexity
305 and runtime slowdown. Minor but pointless. */
306 MEM_TYPE_VECTORLIKE,
307 /* Special type to denote vector blocks. */
308 MEM_TYPE_VECTOR_BLOCK
309 };
310
311 static void *lisp_malloc (size_t, enum mem_type);
312
313
314 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
315
316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317 #include <stdio.h> /* For fprintf. */
318 #endif
319
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
323 static Lisp_Object Vdead;
324 #define DEADP(x) EQ (x, Vdead)
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329
330 #endif /* GC_MALLOC_CHECK */
331
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356 struct mem_node
357 {
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
370
371 /* Memory type. */
372 enum mem_type type;
373 };
374
375 /* Base address of stack. Set in main. */
376
377 Lisp_Object *stack_base;
378
379 /* Root of the tree describing allocated Lisp memory. */
380
381 static struct mem_node *mem_root;
382
383 /* Lowest and highest known address in the heap. */
384
385 static void *min_heap_address, *max_heap_address;
386
387 /* Sentinel node of the tree. */
388
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
391
392 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
393 static void lisp_free (void *);
394 static void mark_stack (void);
395 static int live_vector_p (struct mem_node *, void *);
396 static int live_buffer_p (struct mem_node *, void *);
397 static int live_string_p (struct mem_node *, void *);
398 static int live_cons_p (struct mem_node *, void *);
399 static int live_symbol_p (struct mem_node *, void *);
400 static int live_float_p (struct mem_node *, void *);
401 static int live_misc_p (struct mem_node *, void *);
402 static void mark_maybe_object (Lisp_Object);
403 static void mark_memory (void *, void *);
404 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 #endif
409 static void mem_rotate_left (struct mem_node *);
410 static void mem_rotate_right (struct mem_node *);
411 static void mem_delete (struct mem_node *);
412 static void mem_delete_fixup (struct mem_node *);
413 static inline struct mem_node *mem_find (void *);
414
415
416 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
417 static void check_gcpros (void);
418 #endif
419
420 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
421
422 #ifndef DEADP
423 # define DEADP(x) 0
424 #endif
425
426 /* Recording what needs to be marked for gc. */
427
428 struct gcpro *gcprolist;
429
430 /* Addresses of staticpro'd variables. Initialize it to a nonzero
431 value; otherwise some compilers put it into BSS. */
432
433 #define NSTATICS 0x650
434 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
435
436 /* Index of next unused slot in staticvec. */
437
438 static int staticidx = 0;
439
440 static void *pure_alloc (size_t, int);
441
442
443 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
444 ALIGNMENT must be a power of 2. */
445
446 #define ALIGN(ptr, ALIGNMENT) \
447 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
448 & ~ ((ALIGNMENT) - 1)))
449
450
451 \f
452 /************************************************************************
453 Malloc
454 ************************************************************************/
455
456 /* Function malloc calls this if it finds we are near exhausting storage. */
457
458 void
459 malloc_warning (const char *str)
460 {
461 pending_malloc_warning = str;
462 }
463
464
465 /* Display an already-pending malloc warning. */
466
467 void
468 display_malloc_warning (void)
469 {
470 call3 (intern ("display-warning"),
471 intern ("alloc"),
472 build_string (pending_malloc_warning),
473 intern ("emergency"));
474 pending_malloc_warning = 0;
475 }
476 \f
477 /* Called if we can't allocate relocatable space for a buffer. */
478
479 void
480 buffer_memory_full (ptrdiff_t nbytes)
481 {
482 /* If buffers use the relocating allocator, no need to free
483 spare_memory, because we may have plenty of malloc space left
484 that we could get, and if we don't, the malloc that fails will
485 itself cause spare_memory to be freed. If buffers don't use the
486 relocating allocator, treat this like any other failing
487 malloc. */
488
489 #ifndef REL_ALLOC
490 memory_full (nbytes);
491 #endif
492
493 /* This used to call error, but if we've run out of memory, we could
494 get infinite recursion trying to build the string. */
495 xsignal (Qnil, Vmemory_signal_data);
496 }
497
498 /* A common multiple of the positive integers A and B. Ideally this
499 would be the least common multiple, but there's no way to do that
500 as a constant expression in C, so do the best that we can easily do. */
501 #define COMMON_MULTIPLE(a, b) \
502 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
503
504 #ifndef XMALLOC_OVERRUN_CHECK
505 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
506 #else
507
508 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
509 around each block.
510
511 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
512 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
513 block size in little-endian order. The trailer consists of
514 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
515
516 The header is used to detect whether this block has been allocated
517 through these functions, as some low-level libc functions may
518 bypass the malloc hooks. */
519
520 #define XMALLOC_OVERRUN_CHECK_SIZE 16
521 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
522 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
523
524 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
525 hold a size_t value and (2) the header size is a multiple of the
526 alignment that Emacs needs for C types and for USE_LSB_TAG. */
527 #define XMALLOC_BASE_ALIGNMENT \
528 offsetof ( \
529 struct { \
530 union { long double d; intmax_t i; void *p; } u; \
531 char c; \
532 }, \
533 c)
534
535 #if USE_LSB_TAG
536 # define XMALLOC_HEADER_ALIGNMENT \
537 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
538 #else
539 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
540 #endif
541 #define XMALLOC_OVERRUN_SIZE_SIZE \
542 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
543 + XMALLOC_HEADER_ALIGNMENT - 1) \
544 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
545 - XMALLOC_OVERRUN_CHECK_SIZE)
546
547 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
548 { '\x9a', '\x9b', '\xae', '\xaf',
549 '\xbf', '\xbe', '\xce', '\xcf',
550 '\xea', '\xeb', '\xec', '\xed',
551 '\xdf', '\xde', '\x9c', '\x9d' };
552
553 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
554 { '\xaa', '\xab', '\xac', '\xad',
555 '\xba', '\xbb', '\xbc', '\xbd',
556 '\xca', '\xcb', '\xcc', '\xcd',
557 '\xda', '\xdb', '\xdc', '\xdd' };
558
559 /* Insert and extract the block size in the header. */
560
561 static void
562 xmalloc_put_size (unsigned char *ptr, size_t size)
563 {
564 int i;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
566 {
567 *--ptr = size & ((1 << CHAR_BIT) - 1);
568 size >>= CHAR_BIT;
569 }
570 }
571
572 static size_t
573 xmalloc_get_size (unsigned char *ptr)
574 {
575 size_t size = 0;
576 int i;
577 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
578 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
579 {
580 size <<= CHAR_BIT;
581 size += *ptr++;
582 }
583 return size;
584 }
585
586
587 /* The call depth in overrun_check functions. For example, this might happen:
588 xmalloc()
589 overrun_check_malloc()
590 -> malloc -> (via hook)_-> emacs_blocked_malloc
591 -> overrun_check_malloc
592 call malloc (hooks are NULL, so real malloc is called).
593 malloc returns 10000.
594 add overhead, return 10016.
595 <- (back in overrun_check_malloc)
596 add overhead again, return 10032
597 xmalloc returns 10032.
598
599 (time passes).
600
601 xfree(10032)
602 overrun_check_free(10032)
603 decrease overhead
604 free(10016) <- crash, because 10000 is the original pointer. */
605
606 static ptrdiff_t check_depth;
607
608 /* Like malloc, but wraps allocated block with header and trailer. */
609
610 static void *
611 overrun_check_malloc (size_t size)
612 {
613 register unsigned char *val;
614 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
615 if (SIZE_MAX - overhead < size)
616 abort ();
617
618 val = malloc (size + overhead);
619 if (val && check_depth == 1)
620 {
621 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
622 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
623 xmalloc_put_size (val, size);
624 memcpy (val + size, xmalloc_overrun_check_trailer,
625 XMALLOC_OVERRUN_CHECK_SIZE);
626 }
627 --check_depth;
628 return val;
629 }
630
631
632 /* Like realloc, but checks old block for overrun, and wraps new block
633 with header and trailer. */
634
635 static void *
636 overrun_check_realloc (void *block, size_t size)
637 {
638 register unsigned char *val = (unsigned char *) block;
639 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
640 if (SIZE_MAX - overhead < size)
641 abort ();
642
643 if (val
644 && check_depth == 1
645 && memcmp (xmalloc_overrun_check_header,
646 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
647 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
648 {
649 size_t osize = xmalloc_get_size (val);
650 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
651 XMALLOC_OVERRUN_CHECK_SIZE))
652 abort ();
653 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
654 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
655 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
656 }
657
658 val = realloc (val, size + overhead);
659
660 if (val && check_depth == 1)
661 {
662 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
663 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
664 xmalloc_put_size (val, size);
665 memcpy (val + size, xmalloc_overrun_check_trailer,
666 XMALLOC_OVERRUN_CHECK_SIZE);
667 }
668 --check_depth;
669 return val;
670 }
671
672 /* Like free, but checks block for overrun. */
673
674 static void
675 overrun_check_free (void *block)
676 {
677 unsigned char *val = (unsigned char *) block;
678
679 ++check_depth;
680 if (val
681 && check_depth == 1
682 && memcmp (xmalloc_overrun_check_header,
683 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
684 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
685 {
686 size_t osize = xmalloc_get_size (val);
687 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
688 XMALLOC_OVERRUN_CHECK_SIZE))
689 abort ();
690 #ifdef XMALLOC_CLEAR_FREE_MEMORY
691 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
692 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
693 #else
694 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
695 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
696 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
697 #endif
698 }
699
700 free (val);
701 --check_depth;
702 }
703
704 #undef malloc
705 #undef realloc
706 #undef free
707 #define malloc overrun_check_malloc
708 #define realloc overrun_check_realloc
709 #define free overrun_check_free
710 #endif
711
712 #ifdef SYNC_INPUT
713 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
714 there's no need to block input around malloc. */
715 #define MALLOC_BLOCK_INPUT ((void)0)
716 #define MALLOC_UNBLOCK_INPUT ((void)0)
717 #else
718 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
719 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
720 #endif
721
722 /* Like malloc but check for no memory and block interrupt input.. */
723
724 void *
725 xmalloc (size_t size)
726 {
727 void *val;
728
729 MALLOC_BLOCK_INPUT;
730 val = malloc (size);
731 MALLOC_UNBLOCK_INPUT;
732
733 if (!val && size)
734 memory_full (size);
735 return val;
736 }
737
738 /* Like the above, but zeroes out the memory just allocated. */
739
740 void *
741 xzalloc (size_t size)
742 {
743 void *val;
744
745 MALLOC_BLOCK_INPUT;
746 val = malloc (size);
747 MALLOC_UNBLOCK_INPUT;
748
749 if (!val && size)
750 memory_full (size);
751 memset (val, 0, size);
752 return val;
753 }
754
755 /* Like realloc but check for no memory and block interrupt input.. */
756
757 void *
758 xrealloc (void *block, size_t size)
759 {
760 void *val;
761
762 MALLOC_BLOCK_INPUT;
763 /* We must call malloc explicitly when BLOCK is 0, since some
764 reallocs don't do this. */
765 if (! block)
766 val = malloc (size);
767 else
768 val = realloc (block, size);
769 MALLOC_UNBLOCK_INPUT;
770
771 if (!val && size)
772 memory_full (size);
773 return val;
774 }
775
776
777 /* Like free but block interrupt input. */
778
779 void
780 xfree (void *block)
781 {
782 if (!block)
783 return;
784 MALLOC_BLOCK_INPUT;
785 free (block);
786 MALLOC_UNBLOCK_INPUT;
787 /* We don't call refill_memory_reserve here
788 because that duplicates doing so in emacs_blocked_free
789 and the criterion should go there. */
790 }
791
792
793 /* Other parts of Emacs pass large int values to allocator functions
794 expecting ptrdiff_t. This is portable in practice, but check it to
795 be safe. */
796 verify (INT_MAX <= PTRDIFF_MAX);
797
798
799 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
800 Signal an error on memory exhaustion, and block interrupt input. */
801
802 void *
803 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
804 {
805 eassert (0 <= nitems && 0 < item_size);
806 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
807 memory_full (SIZE_MAX);
808 return xmalloc (nitems * item_size);
809 }
810
811
812 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
813 Signal an error on memory exhaustion, and block interrupt input. */
814
815 void *
816 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
817 {
818 eassert (0 <= nitems && 0 < item_size);
819 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
820 memory_full (SIZE_MAX);
821 return xrealloc (pa, nitems * item_size);
822 }
823
824
825 /* Grow PA, which points to an array of *NITEMS items, and return the
826 location of the reallocated array, updating *NITEMS to reflect its
827 new size. The new array will contain at least NITEMS_INCR_MIN more
828 items, but will not contain more than NITEMS_MAX items total.
829 ITEM_SIZE is the size of each item, in bytes.
830
831 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
832 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
833 infinity.
834
835 If PA is null, then allocate a new array instead of reallocating
836 the old one. Thus, to grow an array A without saving its old
837 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
838 &NITEMS, ...).
839
840 Block interrupt input as needed. If memory exhaustion occurs, set
841 *NITEMS to zero if PA is null, and signal an error (i.e., do not
842 return). */
843
844 void *
845 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
846 ptrdiff_t nitems_max, ptrdiff_t item_size)
847 {
848 /* The approximate size to use for initial small allocation
849 requests. This is the largest "small" request for the GNU C
850 library malloc. */
851 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
852
853 /* If the array is tiny, grow it to about (but no greater than)
854 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
855 ptrdiff_t n = *nitems;
856 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
857 ptrdiff_t half_again = n >> 1;
858 ptrdiff_t incr_estimate = max (tiny_max, half_again);
859
860 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
861 NITEMS_MAX, and what the C language can represent safely. */
862 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
863 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
864 ? nitems_max : C_language_max);
865 ptrdiff_t nitems_incr_max = n_max - n;
866 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
867
868 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
869 if (! pa)
870 *nitems = 0;
871 if (nitems_incr_max < incr)
872 memory_full (SIZE_MAX);
873 n += incr;
874 pa = xrealloc (pa, n * item_size);
875 *nitems = n;
876 return pa;
877 }
878
879
880 /* Like strdup, but uses xmalloc. */
881
882 char *
883 xstrdup (const char *s)
884 {
885 size_t len = strlen (s) + 1;
886 char *p = xmalloc (len);
887 memcpy (p, s, len);
888 return p;
889 }
890
891
892 /* Unwind for SAFE_ALLOCA */
893
894 Lisp_Object
895 safe_alloca_unwind (Lisp_Object arg)
896 {
897 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
898
899 p->dogc = 0;
900 xfree (p->pointer);
901 p->pointer = 0;
902 free_misc (arg);
903 return Qnil;
904 }
905
906
907 /* Like malloc but used for allocating Lisp data. NBYTES is the
908 number of bytes to allocate, TYPE describes the intended use of the
909 allocated memory block (for strings, for conses, ...). */
910
911 #if ! USE_LSB_TAG
912 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
913 #endif
914
915 static void *
916 lisp_malloc (size_t nbytes, enum mem_type type)
917 {
918 register void *val;
919
920 MALLOC_BLOCK_INPUT;
921
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
925
926 val = malloc (nbytes);
927
928 #if ! USE_LSB_TAG
929 /* If the memory just allocated cannot be addressed thru a Lisp
930 object's pointer, and it needs to be,
931 that's equivalent to running out of memory. */
932 if (val && type != MEM_TYPE_NON_LISP)
933 {
934 Lisp_Object tem;
935 XSETCONS (tem, (char *) val + nbytes - 1);
936 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
937 {
938 lisp_malloc_loser = val;
939 free (val);
940 val = 0;
941 }
942 }
943 #endif
944
945 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
946 if (val && type != MEM_TYPE_NON_LISP)
947 mem_insert (val, (char *) val + nbytes, type);
948 #endif
949
950 MALLOC_UNBLOCK_INPUT;
951 if (!val && nbytes)
952 memory_full (nbytes);
953 return val;
954 }
955
956 /* Free BLOCK. This must be called to free memory allocated with a
957 call to lisp_malloc. */
958
959 static void
960 lisp_free (void *block)
961 {
962 MALLOC_BLOCK_INPUT;
963 free (block);
964 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
965 mem_delete (mem_find (block));
966 #endif
967 MALLOC_UNBLOCK_INPUT;
968 }
969
970 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
971
972 /* The entry point is lisp_align_malloc which returns blocks of at most
973 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
974
975 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
976 #define USE_POSIX_MEMALIGN 1
977 #endif
978
979 /* BLOCK_ALIGN has to be a power of 2. */
980 #define BLOCK_ALIGN (1 << 10)
981
982 /* Padding to leave at the end of a malloc'd block. This is to give
983 malloc a chance to minimize the amount of memory wasted to alignment.
984 It should be tuned to the particular malloc library used.
985 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
986 posix_memalign on the other hand would ideally prefer a value of 4
987 because otherwise, there's 1020 bytes wasted between each ablocks.
988 In Emacs, testing shows that those 1020 can most of the time be
989 efficiently used by malloc to place other objects, so a value of 0 can
990 still preferable unless you have a lot of aligned blocks and virtually
991 nothing else. */
992 #define BLOCK_PADDING 0
993 #define BLOCK_BYTES \
994 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
995
996 /* Internal data structures and constants. */
997
998 #define ABLOCKS_SIZE 16
999
1000 /* An aligned block of memory. */
1001 struct ablock
1002 {
1003 union
1004 {
1005 char payload[BLOCK_BYTES];
1006 struct ablock *next_free;
1007 } x;
1008 /* `abase' is the aligned base of the ablocks. */
1009 /* It is overloaded to hold the virtual `busy' field that counts
1010 the number of used ablock in the parent ablocks.
1011 The first ablock has the `busy' field, the others have the `abase'
1012 field. To tell the difference, we assume that pointers will have
1013 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1014 is used to tell whether the real base of the parent ablocks is `abase'
1015 (if not, the word before the first ablock holds a pointer to the
1016 real base). */
1017 struct ablocks *abase;
1018 /* The padding of all but the last ablock is unused. The padding of
1019 the last ablock in an ablocks is not allocated. */
1020 #if BLOCK_PADDING
1021 char padding[BLOCK_PADDING];
1022 #endif
1023 };
1024
1025 /* A bunch of consecutive aligned blocks. */
1026 struct ablocks
1027 {
1028 struct ablock blocks[ABLOCKS_SIZE];
1029 };
1030
1031 /* Size of the block requested from malloc or posix_memalign. */
1032 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1033
1034 #define ABLOCK_ABASE(block) \
1035 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1036 ? (struct ablocks *)(block) \
1037 : (block)->abase)
1038
1039 /* Virtual `busy' field. */
1040 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1041
1042 /* Pointer to the (not necessarily aligned) malloc block. */
1043 #ifdef USE_POSIX_MEMALIGN
1044 #define ABLOCKS_BASE(abase) (abase)
1045 #else
1046 #define ABLOCKS_BASE(abase) \
1047 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1048 #endif
1049
1050 /* The list of free ablock. */
1051 static struct ablock *free_ablock;
1052
1053 /* Allocate an aligned block of nbytes.
1054 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1055 smaller or equal to BLOCK_BYTES. */
1056 static void *
1057 lisp_align_malloc (size_t nbytes, enum mem_type type)
1058 {
1059 void *base, *val;
1060 struct ablocks *abase;
1061
1062 eassert (nbytes <= BLOCK_BYTES);
1063
1064 MALLOC_BLOCK_INPUT;
1065
1066 #ifdef GC_MALLOC_CHECK
1067 allocated_mem_type = type;
1068 #endif
1069
1070 if (!free_ablock)
1071 {
1072 int i;
1073 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1074
1075 #ifdef DOUG_LEA_MALLOC
1076 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1077 because mapped region contents are not preserved in
1078 a dumped Emacs. */
1079 mallopt (M_MMAP_MAX, 0);
1080 #endif
1081
1082 #ifdef USE_POSIX_MEMALIGN
1083 {
1084 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1085 if (err)
1086 base = NULL;
1087 abase = base;
1088 }
1089 #else
1090 base = malloc (ABLOCKS_BYTES);
1091 abase = ALIGN (base, BLOCK_ALIGN);
1092 #endif
1093
1094 if (base == 0)
1095 {
1096 MALLOC_UNBLOCK_INPUT;
1097 memory_full (ABLOCKS_BYTES);
1098 }
1099
1100 aligned = (base == abase);
1101 if (!aligned)
1102 ((void**)abase)[-1] = base;
1103
1104 #ifdef DOUG_LEA_MALLOC
1105 /* Back to a reasonable maximum of mmap'ed areas. */
1106 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1107 #endif
1108
1109 #if ! USE_LSB_TAG
1110 /* If the memory just allocated cannot be addressed thru a Lisp
1111 object's pointer, and it needs to be, that's equivalent to
1112 running out of memory. */
1113 if (type != MEM_TYPE_NON_LISP)
1114 {
1115 Lisp_Object tem;
1116 char *end = (char *) base + ABLOCKS_BYTES - 1;
1117 XSETCONS (tem, end);
1118 if ((char *) XCONS (tem) != end)
1119 {
1120 lisp_malloc_loser = base;
1121 free (base);
1122 MALLOC_UNBLOCK_INPUT;
1123 memory_full (SIZE_MAX);
1124 }
1125 }
1126 #endif
1127
1128 /* Initialize the blocks and put them on the free list.
1129 If `base' was not properly aligned, we can't use the last block. */
1130 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1131 {
1132 abase->blocks[i].abase = abase;
1133 abase->blocks[i].x.next_free = free_ablock;
1134 free_ablock = &abase->blocks[i];
1135 }
1136 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1137
1138 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1139 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1140 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1141 eassert (ABLOCKS_BASE (abase) == base);
1142 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1143 }
1144
1145 abase = ABLOCK_ABASE (free_ablock);
1146 ABLOCKS_BUSY (abase) =
1147 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1148 val = free_ablock;
1149 free_ablock = free_ablock->x.next_free;
1150
1151 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1152 if (type != MEM_TYPE_NON_LISP)
1153 mem_insert (val, (char *) val + nbytes, type);
1154 #endif
1155
1156 MALLOC_UNBLOCK_INPUT;
1157
1158 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1159 return val;
1160 }
1161
1162 static void
1163 lisp_align_free (void *block)
1164 {
1165 struct ablock *ablock = block;
1166 struct ablocks *abase = ABLOCK_ABASE (ablock);
1167
1168 MALLOC_BLOCK_INPUT;
1169 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1170 mem_delete (mem_find (block));
1171 #endif
1172 /* Put on free list. */
1173 ablock->x.next_free = free_ablock;
1174 free_ablock = ablock;
1175 /* Update busy count. */
1176 ABLOCKS_BUSY (abase)
1177 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1178
1179 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1180 { /* All the blocks are free. */
1181 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1182 struct ablock **tem = &free_ablock;
1183 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1184
1185 while (*tem)
1186 {
1187 if (*tem >= (struct ablock *) abase && *tem < atop)
1188 {
1189 i++;
1190 *tem = (*tem)->x.next_free;
1191 }
1192 else
1193 tem = &(*tem)->x.next_free;
1194 }
1195 eassert ((aligned & 1) == aligned);
1196 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1197 #ifdef USE_POSIX_MEMALIGN
1198 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1199 #endif
1200 free (ABLOCKS_BASE (abase));
1201 }
1202 MALLOC_UNBLOCK_INPUT;
1203 }
1204
1205 \f
1206 #ifndef SYSTEM_MALLOC
1207
1208 /* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1217
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1221
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1231
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1237
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1241
1242 static size_t bytes_used_when_reconsidered;
1243
1244 /* Value of _bytes_used, when spare_memory was freed. */
1245
1246 static size_t bytes_used_when_full;
1247
1248 /* This function is used as the hook for free to call. */
1249
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1252 {
1253 BLOCK_INPUT_ALLOC;
1254
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1257 {
1258 struct mem_node *m;
1259
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
1273 #endif /* GC_MALLOC_CHECK */
1274
1275 __free_hook = old_free_hook;
1276 free (ptr);
1277
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1290
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1293 }
1294
1295
1296 /* This function is the malloc hook that Emacs uses. */
1297
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1300 {
1301 void *value;
1302
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1311
1312 value = malloc (size);
1313
1314 #ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333 #endif /* GC_MALLOC_CHECK */
1334
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1337
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1340 }
1341
1342
1343 /* This function is the realloc hook that Emacs uses. */
1344
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1347 {
1348 void *value;
1349
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1352
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
1367
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1369
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1373
1374 value = realloc (ptr, size);
1375
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
1390
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1393
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1396
1397 return value;
1398 }
1399
1400
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407 void
1408 reset_malloc_hooks (void)
1409 {
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1413 }
1414 #endif /* HAVE_PTHREAD */
1415
1416
1417 /* Called from main to set up malloc to use our hooks. */
1418
1419 void
1420 uninterrupt_malloc (void)
1421 {
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1425
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1437
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1441
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1445
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1449 }
1450
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1453
1454
1455 \f
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1459
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
1469 struct interval_block
1470 {
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1474 };
1475
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
1479 static struct interval_block *interval_block;
1480
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1483
1484 static int interval_block_index;
1485
1486 /* Number of free and live intervals. */
1487
1488 static EMACS_INT total_free_intervals, total_intervals;
1489
1490 /* List of free intervals. */
1491
1492 static INTERVAL interval_free_list;
1493
1494
1495 /* Initialize interval allocation. */
1496
1497 static void
1498 init_intervals (void)
1499 {
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1503 }
1504
1505
1506 /* Return a new interval. */
1507
1508 INTERVAL
1509 make_interval (void)
1510 {
1511 INTERVAL val;
1512
1513 /* eassert (!handling_signal); */
1514
1515 MALLOC_BLOCK_INPUT;
1516
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
1526 struct interval_block *newi
1527 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1528
1529 newi->next = interval_block;
1530 interval_block = newi;
1531 interval_block_index = 0;
1532 }
1533 val = &interval_block->intervals[interval_block_index++];
1534 }
1535
1536 MALLOC_UNBLOCK_INPUT;
1537
1538 consing_since_gc += sizeof (struct interval);
1539 intervals_consed++;
1540 RESET_INTERVAL (val);
1541 val->gcmarkbit = 0;
1542 return val;
1543 }
1544
1545
1546 /* Mark Lisp objects in interval I. */
1547
1548 static void
1549 mark_interval (register INTERVAL i, Lisp_Object dummy)
1550 {
1551 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1552 i->gcmarkbit = 1;
1553 mark_object (i->plist);
1554 }
1555
1556
1557 /* Mark the interval tree rooted in TREE. Don't call this directly;
1558 use the macro MARK_INTERVAL_TREE instead. */
1559
1560 static void
1561 mark_interval_tree (register INTERVAL tree)
1562 {
1563 /* No need to test if this tree has been marked already; this
1564 function is always called through the MARK_INTERVAL_TREE macro,
1565 which takes care of that. */
1566
1567 traverse_intervals_noorder (tree, mark_interval, Qnil);
1568 }
1569
1570
1571 /* Mark the interval tree rooted in I. */
1572
1573 #define MARK_INTERVAL_TREE(i) \
1574 do { \
1575 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1576 mark_interval_tree (i); \
1577 } while (0)
1578
1579
1580 #define UNMARK_BALANCE_INTERVALS(i) \
1581 do { \
1582 if (! NULL_INTERVAL_P (i)) \
1583 (i) = balance_intervals (i); \
1584 } while (0)
1585 \f
1586 /***********************************************************************
1587 String Allocation
1588 ***********************************************************************/
1589
1590 /* Lisp_Strings are allocated in string_block structures. When a new
1591 string_block is allocated, all the Lisp_Strings it contains are
1592 added to a free-list string_free_list. When a new Lisp_String is
1593 needed, it is taken from that list. During the sweep phase of GC,
1594 string_blocks that are entirely free are freed, except two which
1595 we keep.
1596
1597 String data is allocated from sblock structures. Strings larger
1598 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1599 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1600
1601 Sblocks consist internally of sdata structures, one for each
1602 Lisp_String. The sdata structure points to the Lisp_String it
1603 belongs to. The Lisp_String points back to the `u.data' member of
1604 its sdata structure.
1605
1606 When a Lisp_String is freed during GC, it is put back on
1607 string_free_list, and its `data' member and its sdata's `string'
1608 pointer is set to null. The size of the string is recorded in the
1609 `u.nbytes' member of the sdata. So, sdata structures that are no
1610 longer used, can be easily recognized, and it's easy to compact the
1611 sblocks of small strings which we do in compact_small_strings. */
1612
1613 /* Size in bytes of an sblock structure used for small strings. This
1614 is 8192 minus malloc overhead. */
1615
1616 #define SBLOCK_SIZE 8188
1617
1618 /* Strings larger than this are considered large strings. String data
1619 for large strings is allocated from individual sblocks. */
1620
1621 #define LARGE_STRING_BYTES 1024
1622
1623 /* Structure describing string memory sub-allocated from an sblock.
1624 This is where the contents of Lisp strings are stored. */
1625
1626 struct sdata
1627 {
1628 /* Back-pointer to the string this sdata belongs to. If null, this
1629 structure is free, and the NBYTES member of the union below
1630 contains the string's byte size (the same value that STRING_BYTES
1631 would return if STRING were non-null). If non-null, STRING_BYTES
1632 (STRING) is the size of the data, and DATA contains the string's
1633 contents. */
1634 struct Lisp_String *string;
1635
1636 #ifdef GC_CHECK_STRING_BYTES
1637
1638 ptrdiff_t nbytes;
1639 unsigned char data[1];
1640
1641 #define SDATA_NBYTES(S) (S)->nbytes
1642 #define SDATA_DATA(S) (S)->data
1643 #define SDATA_SELECTOR(member) member
1644
1645 #else /* not GC_CHECK_STRING_BYTES */
1646
1647 union
1648 {
1649 /* When STRING is non-null. */
1650 unsigned char data[1];
1651
1652 /* When STRING is null. */
1653 ptrdiff_t nbytes;
1654 } u;
1655
1656 #define SDATA_NBYTES(S) (S)->u.nbytes
1657 #define SDATA_DATA(S) (S)->u.data
1658 #define SDATA_SELECTOR(member) u.member
1659
1660 #endif /* not GC_CHECK_STRING_BYTES */
1661
1662 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1663 };
1664
1665
1666 /* Structure describing a block of memory which is sub-allocated to
1667 obtain string data memory for strings. Blocks for small strings
1668 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1669 as large as needed. */
1670
1671 struct sblock
1672 {
1673 /* Next in list. */
1674 struct sblock *next;
1675
1676 /* Pointer to the next free sdata block. This points past the end
1677 of the sblock if there isn't any space left in this block. */
1678 struct sdata *next_free;
1679
1680 /* Start of data. */
1681 struct sdata first_data;
1682 };
1683
1684 /* Number of Lisp strings in a string_block structure. The 1020 is
1685 1024 minus malloc overhead. */
1686
1687 #define STRING_BLOCK_SIZE \
1688 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1689
1690 /* Structure describing a block from which Lisp_String structures
1691 are allocated. */
1692
1693 struct string_block
1694 {
1695 /* Place `strings' first, to preserve alignment. */
1696 struct Lisp_String strings[STRING_BLOCK_SIZE];
1697 struct string_block *next;
1698 };
1699
1700 /* Head and tail of the list of sblock structures holding Lisp string
1701 data. We always allocate from current_sblock. The NEXT pointers
1702 in the sblock structures go from oldest_sblock to current_sblock. */
1703
1704 static struct sblock *oldest_sblock, *current_sblock;
1705
1706 /* List of sblocks for large strings. */
1707
1708 static struct sblock *large_sblocks;
1709
1710 /* List of string_block structures. */
1711
1712 static struct string_block *string_blocks;
1713
1714 /* Free-list of Lisp_Strings. */
1715
1716 static struct Lisp_String *string_free_list;
1717
1718 /* Number of live and free Lisp_Strings. */
1719
1720 static EMACS_INT total_strings, total_free_strings;
1721
1722 /* Number of bytes used by live strings. */
1723
1724 static EMACS_INT total_string_size;
1725
1726 /* Given a pointer to a Lisp_String S which is on the free-list
1727 string_free_list, return a pointer to its successor in the
1728 free-list. */
1729
1730 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1731
1732 /* Return a pointer to the sdata structure belonging to Lisp string S.
1733 S must be live, i.e. S->data must not be null. S->data is actually
1734 a pointer to the `u.data' member of its sdata structure; the
1735 structure starts at a constant offset in front of that. */
1736
1737 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1738
1739
1740 #ifdef GC_CHECK_STRING_OVERRUN
1741
1742 /* We check for overrun in string data blocks by appending a small
1743 "cookie" after each allocated string data block, and check for the
1744 presence of this cookie during GC. */
1745
1746 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1747 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1748 { '\xde', '\xad', '\xbe', '\xef' };
1749
1750 #else
1751 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1752 #endif
1753
1754 /* Value is the size of an sdata structure large enough to hold NBYTES
1755 bytes of string data. The value returned includes a terminating
1756 NUL byte, the size of the sdata structure, and padding. */
1757
1758 #ifdef GC_CHECK_STRING_BYTES
1759
1760 #define SDATA_SIZE(NBYTES) \
1761 ((SDATA_DATA_OFFSET \
1762 + (NBYTES) + 1 \
1763 + sizeof (ptrdiff_t) - 1) \
1764 & ~(sizeof (ptrdiff_t) - 1))
1765
1766 #else /* not GC_CHECK_STRING_BYTES */
1767
1768 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1769 less than the size of that member. The 'max' is not needed when
1770 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1771 alignment code reserves enough space. */
1772
1773 #define SDATA_SIZE(NBYTES) \
1774 ((SDATA_DATA_OFFSET \
1775 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1776 ? NBYTES \
1777 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1778 + 1 \
1779 + sizeof (ptrdiff_t) - 1) \
1780 & ~(sizeof (ptrdiff_t) - 1))
1781
1782 #endif /* not GC_CHECK_STRING_BYTES */
1783
1784 /* Extra bytes to allocate for each string. */
1785
1786 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787
1788 /* Exact bound on the number of bytes in a string, not counting the
1789 terminating null. A string cannot contain more bytes than
1790 STRING_BYTES_BOUND, nor can it be so long that the size_t
1791 arithmetic in allocate_string_data would overflow while it is
1792 calculating a value to be passed to malloc. */
1793 #define STRING_BYTES_MAX \
1794 min (STRING_BYTES_BOUND, \
1795 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1796 - GC_STRING_EXTRA \
1797 - offsetof (struct sblock, first_data) \
1798 - SDATA_DATA_OFFSET) \
1799 & ~(sizeof (EMACS_INT) - 1)))
1800
1801 /* Initialize string allocation. Called from init_alloc_once. */
1802
1803 static void
1804 init_strings (void)
1805 {
1806 total_strings = total_free_strings = total_string_size = 0;
1807 oldest_sblock = current_sblock = large_sblocks = NULL;
1808 string_blocks = NULL;
1809 string_free_list = NULL;
1810 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1811 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1812 }
1813
1814
1815 #ifdef GC_CHECK_STRING_BYTES
1816
1817 static int check_string_bytes_count;
1818
1819 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1820
1821
1822 /* Like GC_STRING_BYTES, but with debugging check. */
1823
1824 ptrdiff_t
1825 string_bytes (struct Lisp_String *s)
1826 {
1827 ptrdiff_t nbytes =
1828 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1829
1830 if (!PURE_POINTER_P (s)
1831 && s->data
1832 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1833 abort ();
1834 return nbytes;
1835 }
1836
1837 /* Check validity of Lisp strings' string_bytes member in B. */
1838
1839 static void
1840 check_sblock (struct sblock *b)
1841 {
1842 struct sdata *from, *end, *from_end;
1843
1844 end = b->next_free;
1845
1846 for (from = &b->first_data; from < end; from = from_end)
1847 {
1848 /* Compute the next FROM here because copying below may
1849 overwrite data we need to compute it. */
1850 ptrdiff_t nbytes;
1851
1852 /* Check that the string size recorded in the string is the
1853 same as the one recorded in the sdata structure. */
1854 if (from->string)
1855 CHECK_STRING_BYTES (from->string);
1856
1857 if (from->string)
1858 nbytes = GC_STRING_BYTES (from->string);
1859 else
1860 nbytes = SDATA_NBYTES (from);
1861
1862 nbytes = SDATA_SIZE (nbytes);
1863 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1864 }
1865 }
1866
1867
1868 /* Check validity of Lisp strings' string_bytes member. ALL_P
1869 non-zero means check all strings, otherwise check only most
1870 recently allocated strings. Used for hunting a bug. */
1871
1872 static void
1873 check_string_bytes (int all_p)
1874 {
1875 if (all_p)
1876 {
1877 struct sblock *b;
1878
1879 for (b = large_sblocks; b; b = b->next)
1880 {
1881 struct Lisp_String *s = b->first_data.string;
1882 if (s)
1883 CHECK_STRING_BYTES (s);
1884 }
1885
1886 for (b = oldest_sblock; b; b = b->next)
1887 check_sblock (b);
1888 }
1889 else if (current_sblock)
1890 check_sblock (current_sblock);
1891 }
1892
1893 #endif /* GC_CHECK_STRING_BYTES */
1894
1895 #ifdef GC_CHECK_STRING_FREE_LIST
1896
1897 /* Walk through the string free list looking for bogus next pointers.
1898 This may catch buffer overrun from a previous string. */
1899
1900 static void
1901 check_string_free_list (void)
1902 {
1903 struct Lisp_String *s;
1904
1905 /* Pop a Lisp_String off the free-list. */
1906 s = string_free_list;
1907 while (s != NULL)
1908 {
1909 if ((uintptr_t) s < 1024)
1910 abort ();
1911 s = NEXT_FREE_LISP_STRING (s);
1912 }
1913 }
1914 #else
1915 #define check_string_free_list()
1916 #endif
1917
1918 /* Return a new Lisp_String. */
1919
1920 static struct Lisp_String *
1921 allocate_string (void)
1922 {
1923 struct Lisp_String *s;
1924
1925 /* eassert (!handling_signal); */
1926
1927 MALLOC_BLOCK_INPUT;
1928
1929 /* If the free-list is empty, allocate a new string_block, and
1930 add all the Lisp_Strings in it to the free-list. */
1931 if (string_free_list == NULL)
1932 {
1933 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1934 int i;
1935
1936 b->next = string_blocks;
1937 string_blocks = b;
1938
1939 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1940 {
1941 s = b->strings + i;
1942 /* Every string on a free list should have NULL data pointer. */
1943 s->data = NULL;
1944 NEXT_FREE_LISP_STRING (s) = string_free_list;
1945 string_free_list = s;
1946 }
1947
1948 total_free_strings += STRING_BLOCK_SIZE;
1949 }
1950
1951 check_string_free_list ();
1952
1953 /* Pop a Lisp_String off the free-list. */
1954 s = string_free_list;
1955 string_free_list = NEXT_FREE_LISP_STRING (s);
1956
1957 MALLOC_UNBLOCK_INPUT;
1958
1959 --total_free_strings;
1960 ++total_strings;
1961 ++strings_consed;
1962 consing_since_gc += sizeof *s;
1963
1964 #ifdef GC_CHECK_STRING_BYTES
1965 if (!noninteractive)
1966 {
1967 if (++check_string_bytes_count == 200)
1968 {
1969 check_string_bytes_count = 0;
1970 check_string_bytes (1);
1971 }
1972 else
1973 check_string_bytes (0);
1974 }
1975 #endif /* GC_CHECK_STRING_BYTES */
1976
1977 return s;
1978 }
1979
1980
1981 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1982 plus a NUL byte at the end. Allocate an sdata structure for S, and
1983 set S->data to its `u.data' member. Store a NUL byte at the end of
1984 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1985 S->data if it was initially non-null. */
1986
1987 void
1988 allocate_string_data (struct Lisp_String *s,
1989 EMACS_INT nchars, EMACS_INT nbytes)
1990 {
1991 struct sdata *data;
1992 struct sblock *b;
1993 ptrdiff_t needed;
1994
1995 if (STRING_BYTES_MAX < nbytes)
1996 string_overflow ();
1997
1998 /* Determine the number of bytes needed to store NBYTES bytes
1999 of string data. */
2000 needed = SDATA_SIZE (nbytes);
2001
2002 MALLOC_BLOCK_INPUT;
2003
2004 if (nbytes > LARGE_STRING_BYTES)
2005 {
2006 size_t size = offsetof (struct sblock, first_data) + needed;
2007
2008 #ifdef DOUG_LEA_MALLOC
2009 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2010 because mapped region contents are not preserved in
2011 a dumped Emacs.
2012
2013 In case you think of allowing it in a dumped Emacs at the
2014 cost of not being able to re-dump, there's another reason:
2015 mmap'ed data typically have an address towards the top of the
2016 address space, which won't fit into an EMACS_INT (at least on
2017 32-bit systems with the current tagging scheme). --fx */
2018 mallopt (M_MMAP_MAX, 0);
2019 #endif
2020
2021 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2022
2023 #ifdef DOUG_LEA_MALLOC
2024 /* Back to a reasonable maximum of mmap'ed areas. */
2025 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2026 #endif
2027
2028 b->next_free = &b->first_data;
2029 b->first_data.string = NULL;
2030 b->next = large_sblocks;
2031 large_sblocks = b;
2032 }
2033 else if (current_sblock == NULL
2034 || (((char *) current_sblock + SBLOCK_SIZE
2035 - (char *) current_sblock->next_free)
2036 < (needed + GC_STRING_EXTRA)))
2037 {
2038 /* Not enough room in the current sblock. */
2039 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2040 b->next_free = &b->first_data;
2041 b->first_data.string = NULL;
2042 b->next = NULL;
2043
2044 if (current_sblock)
2045 current_sblock->next = b;
2046 else
2047 oldest_sblock = b;
2048 current_sblock = b;
2049 }
2050 else
2051 b = current_sblock;
2052
2053 data = b->next_free;
2054 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2055
2056 MALLOC_UNBLOCK_INPUT;
2057
2058 data->string = s;
2059 s->data = SDATA_DATA (data);
2060 #ifdef GC_CHECK_STRING_BYTES
2061 SDATA_NBYTES (data) = nbytes;
2062 #endif
2063 s->size = nchars;
2064 s->size_byte = nbytes;
2065 s->data[nbytes] = '\0';
2066 #ifdef GC_CHECK_STRING_OVERRUN
2067 memcpy ((char *) data + needed, string_overrun_cookie,
2068 GC_STRING_OVERRUN_COOKIE_SIZE);
2069 #endif
2070 consing_since_gc += needed;
2071 }
2072
2073
2074 /* Sweep and compact strings. */
2075
2076 static void
2077 sweep_strings (void)
2078 {
2079 struct string_block *b, *next;
2080 struct string_block *live_blocks = NULL;
2081
2082 string_free_list = NULL;
2083 total_strings = total_free_strings = 0;
2084 total_string_size = 0;
2085
2086 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2087 for (b = string_blocks; b; b = next)
2088 {
2089 int i, nfree = 0;
2090 struct Lisp_String *free_list_before = string_free_list;
2091
2092 next = b->next;
2093
2094 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2095 {
2096 struct Lisp_String *s = b->strings + i;
2097
2098 if (s->data)
2099 {
2100 /* String was not on free-list before. */
2101 if (STRING_MARKED_P (s))
2102 {
2103 /* String is live; unmark it and its intervals. */
2104 UNMARK_STRING (s);
2105
2106 if (!NULL_INTERVAL_P (s->intervals))
2107 UNMARK_BALANCE_INTERVALS (s->intervals);
2108
2109 ++total_strings;
2110 total_string_size += STRING_BYTES (s);
2111 }
2112 else
2113 {
2114 /* String is dead. Put it on the free-list. */
2115 struct sdata *data = SDATA_OF_STRING (s);
2116
2117 /* Save the size of S in its sdata so that we know
2118 how large that is. Reset the sdata's string
2119 back-pointer so that we know it's free. */
2120 #ifdef GC_CHECK_STRING_BYTES
2121 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2122 abort ();
2123 #else
2124 data->u.nbytes = GC_STRING_BYTES (s);
2125 #endif
2126 data->string = NULL;
2127
2128 /* Reset the strings's `data' member so that we
2129 know it's free. */
2130 s->data = NULL;
2131
2132 /* Put the string on the free-list. */
2133 NEXT_FREE_LISP_STRING (s) = string_free_list;
2134 string_free_list = s;
2135 ++nfree;
2136 }
2137 }
2138 else
2139 {
2140 /* S was on the free-list before. Put it there again. */
2141 NEXT_FREE_LISP_STRING (s) = string_free_list;
2142 string_free_list = s;
2143 ++nfree;
2144 }
2145 }
2146
2147 /* Free blocks that contain free Lisp_Strings only, except
2148 the first two of them. */
2149 if (nfree == STRING_BLOCK_SIZE
2150 && total_free_strings > STRING_BLOCK_SIZE)
2151 {
2152 lisp_free (b);
2153 string_free_list = free_list_before;
2154 }
2155 else
2156 {
2157 total_free_strings += nfree;
2158 b->next = live_blocks;
2159 live_blocks = b;
2160 }
2161 }
2162
2163 check_string_free_list ();
2164
2165 string_blocks = live_blocks;
2166 free_large_strings ();
2167 compact_small_strings ();
2168
2169 check_string_free_list ();
2170 }
2171
2172
2173 /* Free dead large strings. */
2174
2175 static void
2176 free_large_strings (void)
2177 {
2178 struct sblock *b, *next;
2179 struct sblock *live_blocks = NULL;
2180
2181 for (b = large_sblocks; b; b = next)
2182 {
2183 next = b->next;
2184
2185 if (b->first_data.string == NULL)
2186 lisp_free (b);
2187 else
2188 {
2189 b->next = live_blocks;
2190 live_blocks = b;
2191 }
2192 }
2193
2194 large_sblocks = live_blocks;
2195 }
2196
2197
2198 /* Compact data of small strings. Free sblocks that don't contain
2199 data of live strings after compaction. */
2200
2201 static void
2202 compact_small_strings (void)
2203 {
2204 struct sblock *b, *tb, *next;
2205 struct sdata *from, *to, *end, *tb_end;
2206 struct sdata *to_end, *from_end;
2207
2208 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2209 to, and TB_END is the end of TB. */
2210 tb = oldest_sblock;
2211 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2212 to = &tb->first_data;
2213
2214 /* Step through the blocks from the oldest to the youngest. We
2215 expect that old blocks will stabilize over time, so that less
2216 copying will happen this way. */
2217 for (b = oldest_sblock; b; b = b->next)
2218 {
2219 end = b->next_free;
2220 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2221
2222 for (from = &b->first_data; from < end; from = from_end)
2223 {
2224 /* Compute the next FROM here because copying below may
2225 overwrite data we need to compute it. */
2226 ptrdiff_t nbytes;
2227
2228 #ifdef GC_CHECK_STRING_BYTES
2229 /* Check that the string size recorded in the string is the
2230 same as the one recorded in the sdata structure. */
2231 if (from->string
2232 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2233 abort ();
2234 #endif /* GC_CHECK_STRING_BYTES */
2235
2236 if (from->string)
2237 nbytes = GC_STRING_BYTES (from->string);
2238 else
2239 nbytes = SDATA_NBYTES (from);
2240
2241 if (nbytes > LARGE_STRING_BYTES)
2242 abort ();
2243
2244 nbytes = SDATA_SIZE (nbytes);
2245 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2246
2247 #ifdef GC_CHECK_STRING_OVERRUN
2248 if (memcmp (string_overrun_cookie,
2249 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2250 GC_STRING_OVERRUN_COOKIE_SIZE))
2251 abort ();
2252 #endif
2253
2254 /* FROM->string non-null means it's alive. Copy its data. */
2255 if (from->string)
2256 {
2257 /* If TB is full, proceed with the next sblock. */
2258 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2259 if (to_end > tb_end)
2260 {
2261 tb->next_free = to;
2262 tb = tb->next;
2263 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2264 to = &tb->first_data;
2265 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2266 }
2267
2268 /* Copy, and update the string's `data' pointer. */
2269 if (from != to)
2270 {
2271 eassert (tb != b || to < from);
2272 memmove (to, from, nbytes + GC_STRING_EXTRA);
2273 to->string->data = SDATA_DATA (to);
2274 }
2275
2276 /* Advance past the sdata we copied to. */
2277 to = to_end;
2278 }
2279 }
2280 }
2281
2282 /* The rest of the sblocks following TB don't contain live data, so
2283 we can free them. */
2284 for (b = tb->next; b; b = next)
2285 {
2286 next = b->next;
2287 lisp_free (b);
2288 }
2289
2290 tb->next_free = to;
2291 tb->next = NULL;
2292 current_sblock = tb;
2293 }
2294
2295 void
2296 string_overflow (void)
2297 {
2298 error ("Maximum string size exceeded");
2299 }
2300
2301 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2302 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2303 LENGTH must be an integer.
2304 INIT must be an integer that represents a character. */)
2305 (Lisp_Object length, Lisp_Object init)
2306 {
2307 register Lisp_Object val;
2308 register unsigned char *p, *end;
2309 int c;
2310 EMACS_INT nbytes;
2311
2312 CHECK_NATNUM (length);
2313 CHECK_CHARACTER (init);
2314
2315 c = XFASTINT (init);
2316 if (ASCII_CHAR_P (c))
2317 {
2318 nbytes = XINT (length);
2319 val = make_uninit_string (nbytes);
2320 p = SDATA (val);
2321 end = p + SCHARS (val);
2322 while (p != end)
2323 *p++ = c;
2324 }
2325 else
2326 {
2327 unsigned char str[MAX_MULTIBYTE_LENGTH];
2328 int len = CHAR_STRING (c, str);
2329 EMACS_INT string_len = XINT (length);
2330
2331 if (string_len > STRING_BYTES_MAX / len)
2332 string_overflow ();
2333 nbytes = len * string_len;
2334 val = make_uninit_multibyte_string (string_len, nbytes);
2335 p = SDATA (val);
2336 end = p + nbytes;
2337 while (p != end)
2338 {
2339 memcpy (p, str, len);
2340 p += len;
2341 }
2342 }
2343
2344 *p = 0;
2345 return val;
2346 }
2347
2348
2349 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2350 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2351 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2352 (Lisp_Object length, Lisp_Object init)
2353 {
2354 register Lisp_Object val;
2355 struct Lisp_Bool_Vector *p;
2356 ptrdiff_t length_in_chars;
2357 EMACS_INT length_in_elts;
2358 int bits_per_value;
2359
2360 CHECK_NATNUM (length);
2361
2362 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2363
2364 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2365
2366 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2367 slot `size' of the struct Lisp_Bool_Vector. */
2368 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2369
2370 /* No Lisp_Object to trace in there. */
2371 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2372
2373 p = XBOOL_VECTOR (val);
2374 p->size = XFASTINT (length);
2375
2376 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2377 / BOOL_VECTOR_BITS_PER_CHAR);
2378 if (length_in_chars)
2379 {
2380 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2381
2382 /* Clear any extraneous bits in the last byte. */
2383 p->data[length_in_chars - 1]
2384 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2385 }
2386
2387 return val;
2388 }
2389
2390
2391 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2392 of characters from the contents. This string may be unibyte or
2393 multibyte, depending on the contents. */
2394
2395 Lisp_Object
2396 make_string (const char *contents, ptrdiff_t nbytes)
2397 {
2398 register Lisp_Object val;
2399 ptrdiff_t nchars, multibyte_nbytes;
2400
2401 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2402 &nchars, &multibyte_nbytes);
2403 if (nbytes == nchars || nbytes != multibyte_nbytes)
2404 /* CONTENTS contains no multibyte sequences or contains an invalid
2405 multibyte sequence. We must make unibyte string. */
2406 val = make_unibyte_string (contents, nbytes);
2407 else
2408 val = make_multibyte_string (contents, nchars, nbytes);
2409 return val;
2410 }
2411
2412
2413 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2414
2415 Lisp_Object
2416 make_unibyte_string (const char *contents, ptrdiff_t length)
2417 {
2418 register Lisp_Object val;
2419 val = make_uninit_string (length);
2420 memcpy (SDATA (val), contents, length);
2421 return val;
2422 }
2423
2424
2425 /* Make a multibyte string from NCHARS characters occupying NBYTES
2426 bytes at CONTENTS. */
2427
2428 Lisp_Object
2429 make_multibyte_string (const char *contents,
2430 ptrdiff_t nchars, ptrdiff_t nbytes)
2431 {
2432 register Lisp_Object val;
2433 val = make_uninit_multibyte_string (nchars, nbytes);
2434 memcpy (SDATA (val), contents, nbytes);
2435 return val;
2436 }
2437
2438
2439 /* Make a string from NCHARS characters occupying NBYTES bytes at
2440 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2441
2442 Lisp_Object
2443 make_string_from_bytes (const char *contents,
2444 ptrdiff_t nchars, ptrdiff_t nbytes)
2445 {
2446 register Lisp_Object val;
2447 val = make_uninit_multibyte_string (nchars, nbytes);
2448 memcpy (SDATA (val), contents, nbytes);
2449 if (SBYTES (val) == SCHARS (val))
2450 STRING_SET_UNIBYTE (val);
2451 return val;
2452 }
2453
2454
2455 /* Make a string from NCHARS characters occupying NBYTES bytes at
2456 CONTENTS. The argument MULTIBYTE controls whether to label the
2457 string as multibyte. If NCHARS is negative, it counts the number of
2458 characters by itself. */
2459
2460 Lisp_Object
2461 make_specified_string (const char *contents,
2462 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2463 {
2464 register Lisp_Object val;
2465
2466 if (nchars < 0)
2467 {
2468 if (multibyte)
2469 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2470 nbytes);
2471 else
2472 nchars = nbytes;
2473 }
2474 val = make_uninit_multibyte_string (nchars, nbytes);
2475 memcpy (SDATA (val), contents, nbytes);
2476 if (!multibyte)
2477 STRING_SET_UNIBYTE (val);
2478 return val;
2479 }
2480
2481
2482 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2483 occupying LENGTH bytes. */
2484
2485 Lisp_Object
2486 make_uninit_string (EMACS_INT length)
2487 {
2488 Lisp_Object val;
2489
2490 if (!length)
2491 return empty_unibyte_string;
2492 val = make_uninit_multibyte_string (length, length);
2493 STRING_SET_UNIBYTE (val);
2494 return val;
2495 }
2496
2497
2498 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2499 which occupy NBYTES bytes. */
2500
2501 Lisp_Object
2502 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2503 {
2504 Lisp_Object string;
2505 struct Lisp_String *s;
2506
2507 if (nchars < 0)
2508 abort ();
2509 if (!nbytes)
2510 return empty_multibyte_string;
2511
2512 s = allocate_string ();
2513 s->intervals = NULL_INTERVAL;
2514 allocate_string_data (s, nchars, nbytes);
2515 XSETSTRING (string, s);
2516 string_chars_consed += nbytes;
2517 return string;
2518 }
2519
2520 /* Print arguments to BUF according to a FORMAT, then return
2521 a Lisp_String initialized with the data from BUF. */
2522
2523 Lisp_Object
2524 make_formatted_string (char *buf, const char *format, ...)
2525 {
2526 va_list ap;
2527 int length;
2528
2529 va_start (ap, format);
2530 length = vsprintf (buf, format, ap);
2531 va_end (ap);
2532 return make_string (buf, length);
2533 }
2534
2535 \f
2536 /***********************************************************************
2537 Float Allocation
2538 ***********************************************************************/
2539
2540 /* We store float cells inside of float_blocks, allocating a new
2541 float_block with malloc whenever necessary. Float cells reclaimed
2542 by GC are put on a free list to be reallocated before allocating
2543 any new float cells from the latest float_block. */
2544
2545 #define FLOAT_BLOCK_SIZE \
2546 (((BLOCK_BYTES - sizeof (struct float_block *) \
2547 /* The compiler might add padding at the end. */ \
2548 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2549 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2550
2551 #define GETMARKBIT(block,n) \
2552 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2553 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2554 & 1)
2555
2556 #define SETMARKBIT(block,n) \
2557 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2558 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2559
2560 #define UNSETMARKBIT(block,n) \
2561 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2562 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2563
2564 #define FLOAT_BLOCK(fptr) \
2565 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2566
2567 #define FLOAT_INDEX(fptr) \
2568 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2569
2570 struct float_block
2571 {
2572 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2573 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2574 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2575 struct float_block *next;
2576 };
2577
2578 #define FLOAT_MARKED_P(fptr) \
2579 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2580
2581 #define FLOAT_MARK(fptr) \
2582 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2583
2584 #define FLOAT_UNMARK(fptr) \
2585 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2586
2587 /* Current float_block. */
2588
2589 static struct float_block *float_block;
2590
2591 /* Index of first unused Lisp_Float in the current float_block. */
2592
2593 static int float_block_index;
2594
2595 /* Free-list of Lisp_Floats. */
2596
2597 static struct Lisp_Float *float_free_list;
2598
2599
2600 /* Initialize float allocation. */
2601
2602 static void
2603 init_float (void)
2604 {
2605 float_block = NULL;
2606 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2607 float_free_list = 0;
2608 }
2609
2610
2611 /* Return a new float object with value FLOAT_VALUE. */
2612
2613 Lisp_Object
2614 make_float (double float_value)
2615 {
2616 register Lisp_Object val;
2617
2618 /* eassert (!handling_signal); */
2619
2620 MALLOC_BLOCK_INPUT;
2621
2622 if (float_free_list)
2623 {
2624 /* We use the data field for chaining the free list
2625 so that we won't use the same field that has the mark bit. */
2626 XSETFLOAT (val, float_free_list);
2627 float_free_list = float_free_list->u.chain;
2628 }
2629 else
2630 {
2631 if (float_block_index == FLOAT_BLOCK_SIZE)
2632 {
2633 struct float_block *new
2634 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2635 new->next = float_block;
2636 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2637 float_block = new;
2638 float_block_index = 0;
2639 }
2640 XSETFLOAT (val, &float_block->floats[float_block_index]);
2641 float_block_index++;
2642 }
2643
2644 MALLOC_UNBLOCK_INPUT;
2645
2646 XFLOAT_INIT (val, float_value);
2647 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2648 consing_since_gc += sizeof (struct Lisp_Float);
2649 floats_consed++;
2650 return val;
2651 }
2652
2653
2654 \f
2655 /***********************************************************************
2656 Cons Allocation
2657 ***********************************************************************/
2658
2659 /* We store cons cells inside of cons_blocks, allocating a new
2660 cons_block with malloc whenever necessary. Cons cells reclaimed by
2661 GC are put on a free list to be reallocated before allocating
2662 any new cons cells from the latest cons_block. */
2663
2664 #define CONS_BLOCK_SIZE \
2665 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2666 /* The compiler might add padding at the end. */ \
2667 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2668 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2669
2670 #define CONS_BLOCK(fptr) \
2671 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2672
2673 #define CONS_INDEX(fptr) \
2674 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2675
2676 struct cons_block
2677 {
2678 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2679 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2680 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2681 struct cons_block *next;
2682 };
2683
2684 #define CONS_MARKED_P(fptr) \
2685 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687 #define CONS_MARK(fptr) \
2688 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 #define CONS_UNMARK(fptr) \
2691 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2692
2693 /* Current cons_block. */
2694
2695 static struct cons_block *cons_block;
2696
2697 /* Index of first unused Lisp_Cons in the current block. */
2698
2699 static int cons_block_index;
2700
2701 /* Free-list of Lisp_Cons structures. */
2702
2703 static struct Lisp_Cons *cons_free_list;
2704
2705
2706 /* Initialize cons allocation. */
2707
2708 static void
2709 init_cons (void)
2710 {
2711 cons_block = NULL;
2712 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2713 cons_free_list = 0;
2714 }
2715
2716
2717 /* Explicitly free a cons cell by putting it on the free-list. */
2718
2719 void
2720 free_cons (struct Lisp_Cons *ptr)
2721 {
2722 ptr->u.chain = cons_free_list;
2723 #if GC_MARK_STACK
2724 ptr->car = Vdead;
2725 #endif
2726 cons_free_list = ptr;
2727 }
2728
2729 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2730 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2731 (Lisp_Object car, Lisp_Object cdr)
2732 {
2733 register Lisp_Object val;
2734
2735 /* eassert (!handling_signal); */
2736
2737 MALLOC_BLOCK_INPUT;
2738
2739 if (cons_free_list)
2740 {
2741 /* We use the cdr for chaining the free list
2742 so that we won't use the same field that has the mark bit. */
2743 XSETCONS (val, cons_free_list);
2744 cons_free_list = cons_free_list->u.chain;
2745 }
2746 else
2747 {
2748 if (cons_block_index == CONS_BLOCK_SIZE)
2749 {
2750 struct cons_block *new
2751 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2752 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2753 new->next = cons_block;
2754 cons_block = new;
2755 cons_block_index = 0;
2756 }
2757 XSETCONS (val, &cons_block->conses[cons_block_index]);
2758 cons_block_index++;
2759 }
2760
2761 MALLOC_UNBLOCK_INPUT;
2762
2763 XSETCAR (val, car);
2764 XSETCDR (val, cdr);
2765 eassert (!CONS_MARKED_P (XCONS (val)));
2766 consing_since_gc += sizeof (struct Lisp_Cons);
2767 cons_cells_consed++;
2768 return val;
2769 }
2770
2771 #ifdef GC_CHECK_CONS_LIST
2772 /* Get an error now if there's any junk in the cons free list. */
2773 void
2774 check_cons_list (void)
2775 {
2776 struct Lisp_Cons *tail = cons_free_list;
2777
2778 while (tail)
2779 tail = tail->u.chain;
2780 }
2781 #endif
2782
2783 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2784
2785 Lisp_Object
2786 list1 (Lisp_Object arg1)
2787 {
2788 return Fcons (arg1, Qnil);
2789 }
2790
2791 Lisp_Object
2792 list2 (Lisp_Object arg1, Lisp_Object arg2)
2793 {
2794 return Fcons (arg1, Fcons (arg2, Qnil));
2795 }
2796
2797
2798 Lisp_Object
2799 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2800 {
2801 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2802 }
2803
2804
2805 Lisp_Object
2806 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2807 {
2808 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2809 }
2810
2811
2812 Lisp_Object
2813 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2814 {
2815 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2816 Fcons (arg5, Qnil)))));
2817 }
2818
2819
2820 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2821 doc: /* Return a newly created list with specified arguments as elements.
2822 Any number of arguments, even zero arguments, are allowed.
2823 usage: (list &rest OBJECTS) */)
2824 (ptrdiff_t nargs, Lisp_Object *args)
2825 {
2826 register Lisp_Object val;
2827 val = Qnil;
2828
2829 while (nargs > 0)
2830 {
2831 nargs--;
2832 val = Fcons (args[nargs], val);
2833 }
2834 return val;
2835 }
2836
2837
2838 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2839 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2840 (register Lisp_Object length, Lisp_Object init)
2841 {
2842 register Lisp_Object val;
2843 register EMACS_INT size;
2844
2845 CHECK_NATNUM (length);
2846 size = XFASTINT (length);
2847
2848 val = Qnil;
2849 while (size > 0)
2850 {
2851 val = Fcons (init, val);
2852 --size;
2853
2854 if (size > 0)
2855 {
2856 val = Fcons (init, val);
2857 --size;
2858
2859 if (size > 0)
2860 {
2861 val = Fcons (init, val);
2862 --size;
2863
2864 if (size > 0)
2865 {
2866 val = Fcons (init, val);
2867 --size;
2868
2869 if (size > 0)
2870 {
2871 val = Fcons (init, val);
2872 --size;
2873 }
2874 }
2875 }
2876 }
2877
2878 QUIT;
2879 }
2880
2881 return val;
2882 }
2883
2884
2885 \f
2886 /***********************************************************************
2887 Vector Allocation
2888 ***********************************************************************/
2889
2890 /* This value is balanced well enough to avoid too much internal overhead
2891 for the most common cases; it's not required to be a power of two, but
2892 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2893
2894 #define VECTOR_BLOCK_SIZE 4096
2895
2896 /* Handy constants for vectorlike objects. */
2897 enum
2898 {
2899 header_size = offsetof (struct Lisp_Vector, contents),
2900 word_size = sizeof (Lisp_Object),
2901 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2902 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2903 };
2904
2905 /* ROUNDUP_SIZE must be a power of 2. */
2906 verify ((roundup_size & (roundup_size - 1)) == 0);
2907
2908 /* Verify assumptions described above. */
2909 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2910 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2911
2912 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2913
2914 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2915
2916 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2917
2918 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2919
2920 /* Size of the minimal vector allocated from block. */
2921
2922 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2923
2924 /* Size of the largest vector allocated from block. */
2925
2926 #define VBLOCK_BYTES_MAX \
2927 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2928
2929 /* We maintain one free list for each possible block-allocated
2930 vector size, and this is the number of free lists we have. */
2931
2932 #define VECTOR_MAX_FREE_LIST_INDEX \
2933 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2934
2935 /* Common shortcut to advance vector pointer over a block data. */
2936
2937 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2938
2939 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2940
2941 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2942
2943 /* Common shortcut to setup vector on a free list. */
2944
2945 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2946 do { \
2947 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2948 eassert ((nbytes) % roundup_size == 0); \
2949 (index) = VINDEX (nbytes); \
2950 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2951 (v)->header.next.vector = vector_free_lists[index]; \
2952 vector_free_lists[index] = (v); \
2953 } while (0)
2954
2955 struct vector_block
2956 {
2957 char data[VECTOR_BLOCK_BYTES];
2958 struct vector_block *next;
2959 };
2960
2961 /* Chain of vector blocks. */
2962
2963 static struct vector_block *vector_blocks;
2964
2965 /* Vector free lists, where NTH item points to a chain of free
2966 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2967
2968 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2969
2970 /* Singly-linked list of large vectors. */
2971
2972 static struct Lisp_Vector *large_vectors;
2973
2974 /* The only vector with 0 slots, allocated from pure space. */
2975
2976 static struct Lisp_Vector *zero_vector;
2977
2978 /* Get a new vector block. */
2979
2980 static struct vector_block *
2981 allocate_vector_block (void)
2982 {
2983 struct vector_block *block = xmalloc (sizeof *block);
2984
2985 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2986 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2987 MEM_TYPE_VECTOR_BLOCK);
2988 #endif
2989
2990 block->next = vector_blocks;
2991 vector_blocks = block;
2992 return block;
2993 }
2994
2995 /* Called once to initialize vector allocation. */
2996
2997 static void
2998 init_vectors (void)
2999 {
3000 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3001 zero_vector->header.size = 0;
3002 }
3003
3004 /* Allocate vector from a vector block. */
3005
3006 static struct Lisp_Vector *
3007 allocate_vector_from_block (size_t nbytes)
3008 {
3009 struct Lisp_Vector *vector, *rest;
3010 struct vector_block *block;
3011 size_t index, restbytes;
3012
3013 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3014 eassert (nbytes % roundup_size == 0);
3015
3016 /* First, try to allocate from a free list
3017 containing vectors of the requested size. */
3018 index = VINDEX (nbytes);
3019 if (vector_free_lists[index])
3020 {
3021 vector = vector_free_lists[index];
3022 vector_free_lists[index] = vector->header.next.vector;
3023 vector->header.next.nbytes = nbytes;
3024 return vector;
3025 }
3026
3027 /* Next, check free lists containing larger vectors. Since
3028 we will split the result, we should have remaining space
3029 large enough to use for one-slot vector at least. */
3030 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3031 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3032 if (vector_free_lists[index])
3033 {
3034 /* This vector is larger than requested. */
3035 vector = vector_free_lists[index];
3036 vector_free_lists[index] = vector->header.next.vector;
3037 vector->header.next.nbytes = nbytes;
3038
3039 /* Excess bytes are used for the smaller vector,
3040 which should be set on an appropriate free list. */
3041 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3042 eassert (restbytes % roundup_size == 0);
3043 rest = ADVANCE (vector, nbytes);
3044 SETUP_ON_FREE_LIST (rest, restbytes, index);
3045 return vector;
3046 }
3047
3048 /* Finally, need a new vector block. */
3049 block = allocate_vector_block ();
3050
3051 /* New vector will be at the beginning of this block. */
3052 vector = (struct Lisp_Vector *) block->data;
3053 vector->header.next.nbytes = nbytes;
3054
3055 /* If the rest of space from this block is large enough
3056 for one-slot vector at least, set up it on a free list. */
3057 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3058 if (restbytes >= VBLOCK_BYTES_MIN)
3059 {
3060 eassert (restbytes % roundup_size == 0);
3061 rest = ADVANCE (vector, nbytes);
3062 SETUP_ON_FREE_LIST (rest, restbytes, index);
3063 }
3064 return vector;
3065 }
3066
3067 /* Return how many Lisp_Objects can be stored in V. */
3068
3069 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3070 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3071 (v)->header.size)
3072
3073 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3074
3075 #define VECTOR_IN_BLOCK(vector, block) \
3076 ((char *) (vector) <= (block)->data \
3077 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3078
3079 /* Number of bytes used by vector-block-allocated object. This is the only
3080 place where we actually use the `nbytes' field of the vector-header.
3081 I.e. we could get rid of the `nbytes' field by computing it based on the
3082 vector-type. */
3083
3084 #define PSEUDOVECTOR_NBYTES(vector) \
3085 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3086 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3087 : vector->header.next.nbytes)
3088
3089 /* Reclaim space used by unmarked vectors. */
3090
3091 static void
3092 sweep_vectors (void)
3093 {
3094 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3095 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3096
3097 total_vector_size = 0;
3098 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3099
3100 /* Looking through vector blocks. */
3101
3102 for (block = vector_blocks; block; block = *bprev)
3103 {
3104 int free_this_block = 0;
3105
3106 for (vector = (struct Lisp_Vector *) block->data;
3107 VECTOR_IN_BLOCK (vector, block); vector = next)
3108 {
3109 if (VECTOR_MARKED_P (vector))
3110 {
3111 VECTOR_UNMARK (vector);
3112 total_vector_size += VECTOR_SIZE (vector);
3113 next = ADVANCE (vector, vector->header.next.nbytes);
3114 }
3115 else
3116 {
3117 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3118 ptrdiff_t total_bytes = nbytes;
3119
3120 next = ADVANCE (vector, nbytes);
3121
3122 /* While NEXT is not marked, try to coalesce with VECTOR,
3123 thus making VECTOR of the largest possible size. */
3124
3125 while (VECTOR_IN_BLOCK (next, block))
3126 {
3127 if (VECTOR_MARKED_P (next))
3128 break;
3129 nbytes = PSEUDOVECTOR_NBYTES (next);
3130 total_bytes += nbytes;
3131 next = ADVANCE (next, nbytes);
3132 }
3133
3134 eassert (total_bytes % roundup_size == 0);
3135
3136 if (vector == (struct Lisp_Vector *) block->data
3137 && !VECTOR_IN_BLOCK (next, block))
3138 /* This block should be freed because all of it's
3139 space was coalesced into the only free vector. */
3140 free_this_block = 1;
3141 else
3142 {
3143 int tmp;
3144 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3145 }
3146 }
3147 }
3148
3149 if (free_this_block)
3150 {
3151 *bprev = block->next;
3152 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3153 mem_delete (mem_find (block->data));
3154 #endif
3155 xfree (block);
3156 }
3157 else
3158 bprev = &block->next;
3159 }
3160
3161 /* Sweep large vectors. */
3162
3163 for (vector = large_vectors; vector; vector = *vprev)
3164 {
3165 if (VECTOR_MARKED_P (vector))
3166 {
3167 VECTOR_UNMARK (vector);
3168 total_vector_size += VECTOR_SIZE (vector);
3169 vprev = &vector->header.next.vector;
3170 }
3171 else
3172 {
3173 *vprev = vector->header.next.vector;
3174 lisp_free (vector);
3175 }
3176 }
3177 }
3178
3179 /* Value is a pointer to a newly allocated Lisp_Vector structure
3180 with room for LEN Lisp_Objects. */
3181
3182 static struct Lisp_Vector *
3183 allocate_vectorlike (ptrdiff_t len)
3184 {
3185 struct Lisp_Vector *p;
3186
3187 MALLOC_BLOCK_INPUT;
3188
3189 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3190 /* eassert (!handling_signal); */
3191
3192 if (len == 0)
3193 p = zero_vector;
3194 else
3195 {
3196 size_t nbytes = header_size + len * word_size;
3197
3198 #ifdef DOUG_LEA_MALLOC
3199 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3200 because mapped region contents are not preserved in
3201 a dumped Emacs. */
3202 mallopt (M_MMAP_MAX, 0);
3203 #endif
3204
3205 if (nbytes <= VBLOCK_BYTES_MAX)
3206 p = allocate_vector_from_block (vroundup (nbytes));
3207 else
3208 {
3209 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3210 p->header.next.vector = large_vectors;
3211 large_vectors = p;
3212 }
3213
3214 #ifdef DOUG_LEA_MALLOC
3215 /* Back to a reasonable maximum of mmap'ed areas. */
3216 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3217 #endif
3218
3219 consing_since_gc += nbytes;
3220 vector_cells_consed += len;
3221 }
3222
3223 MALLOC_UNBLOCK_INPUT;
3224
3225 return p;
3226 }
3227
3228
3229 /* Allocate a vector with LEN slots. */
3230
3231 struct Lisp_Vector *
3232 allocate_vector (EMACS_INT len)
3233 {
3234 struct Lisp_Vector *v;
3235 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3236
3237 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3238 memory_full (SIZE_MAX);
3239 v = allocate_vectorlike (len);
3240 v->header.size = len;
3241 return v;
3242 }
3243
3244
3245 /* Allocate other vector-like structures. */
3246
3247 struct Lisp_Vector *
3248 allocate_pseudovector (int memlen, int lisplen, int tag)
3249 {
3250 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3251 int i;
3252
3253 /* Only the first lisplen slots will be traced normally by the GC. */
3254 for (i = 0; i < lisplen; ++i)
3255 v->contents[i] = Qnil;
3256
3257 XSETPVECTYPESIZE (v, tag, lisplen);
3258 return v;
3259 }
3260
3261 struct buffer *
3262 allocate_buffer (void)
3263 {
3264 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3265
3266 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3267 - header_size) / word_size);
3268 /* Note that the fields of B are not initialized. */
3269 return b;
3270 }
3271
3272 struct Lisp_Hash_Table *
3273 allocate_hash_table (void)
3274 {
3275 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3276 }
3277
3278 struct window *
3279 allocate_window (void)
3280 {
3281 struct window *w;
3282
3283 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3284 /* Users assumes that non-Lisp data is zeroed. */
3285 memset (&w->current_matrix, 0,
3286 sizeof (*w) - offsetof (struct window, current_matrix));
3287 return w;
3288 }
3289
3290 struct terminal *
3291 allocate_terminal (void)
3292 {
3293 struct terminal *t;
3294
3295 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3296 /* Users assumes that non-Lisp data is zeroed. */
3297 memset (&t->next_terminal, 0,
3298 sizeof (*t) - offsetof (struct terminal, next_terminal));
3299 return t;
3300 }
3301
3302 struct frame *
3303 allocate_frame (void)
3304 {
3305 struct frame *f;
3306
3307 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3308 /* Users assumes that non-Lisp data is zeroed. */
3309 memset (&f->face_cache, 0,
3310 sizeof (*f) - offsetof (struct frame, face_cache));
3311 return f;
3312 }
3313
3314 struct Lisp_Process *
3315 allocate_process (void)
3316 {
3317 struct Lisp_Process *p;
3318
3319 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3320 /* Users assumes that non-Lisp data is zeroed. */
3321 memset (&p->pid, 0,
3322 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3323 return p;
3324 }
3325
3326 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3327 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3328 See also the function `vector'. */)
3329 (register Lisp_Object length, Lisp_Object init)
3330 {
3331 Lisp_Object vector;
3332 register ptrdiff_t sizei;
3333 register ptrdiff_t i;
3334 register struct Lisp_Vector *p;
3335
3336 CHECK_NATNUM (length);
3337
3338 p = allocate_vector (XFASTINT (length));
3339 sizei = XFASTINT (length);
3340 for (i = 0; i < sizei; i++)
3341 p->contents[i] = init;
3342
3343 XSETVECTOR (vector, p);
3344 return vector;
3345 }
3346
3347
3348 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3349 doc: /* Return a newly created vector with specified arguments as elements.
3350 Any number of arguments, even zero arguments, are allowed.
3351 usage: (vector &rest OBJECTS) */)
3352 (ptrdiff_t nargs, Lisp_Object *args)
3353 {
3354 register Lisp_Object len, val;
3355 ptrdiff_t i;
3356 register struct Lisp_Vector *p;
3357
3358 XSETFASTINT (len, nargs);
3359 val = Fmake_vector (len, Qnil);
3360 p = XVECTOR (val);
3361 for (i = 0; i < nargs; i++)
3362 p->contents[i] = args[i];
3363 return val;
3364 }
3365
3366 void
3367 make_byte_code (struct Lisp_Vector *v)
3368 {
3369 if (v->header.size > 1 && STRINGP (v->contents[1])
3370 && STRING_MULTIBYTE (v->contents[1]))
3371 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3372 earlier because they produced a raw 8-bit string for byte-code
3373 and now such a byte-code string is loaded as multibyte while
3374 raw 8-bit characters converted to multibyte form. Thus, now we
3375 must convert them back to the original unibyte form. */
3376 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3377 XSETPVECTYPE (v, PVEC_COMPILED);
3378 }
3379
3380 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3381 doc: /* Create a byte-code object with specified arguments as elements.
3382 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3383 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3384 and (optional) INTERACTIVE-SPEC.
3385 The first four arguments are required; at most six have any
3386 significance.
3387 The ARGLIST can be either like the one of `lambda', in which case the arguments
3388 will be dynamically bound before executing the byte code, or it can be an
3389 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3390 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3391 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3392 argument to catch the left-over arguments. If such an integer is used, the
3393 arguments will not be dynamically bound but will be instead pushed on the
3394 stack before executing the byte-code.
3395 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3396 (ptrdiff_t nargs, Lisp_Object *args)
3397 {
3398 register Lisp_Object len, val;
3399 ptrdiff_t i;
3400 register struct Lisp_Vector *p;
3401
3402 /* We used to purecopy everything here, if purify-flga was set. This worked
3403 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3404 dangerous, since make-byte-code is used during execution to build
3405 closures, so any closure built during the preload phase would end up
3406 copied into pure space, including its free variables, which is sometimes
3407 just wasteful and other times plainly wrong (e.g. those free vars may want
3408 to be setcar'd). */
3409
3410 XSETFASTINT (len, nargs);
3411 val = Fmake_vector (len, Qnil);
3412
3413 p = XVECTOR (val);
3414 for (i = 0; i < nargs; i++)
3415 p->contents[i] = args[i];
3416 make_byte_code (p);
3417 XSETCOMPILED (val, p);
3418 return val;
3419 }
3420
3421
3422 \f
3423 /***********************************************************************
3424 Symbol Allocation
3425 ***********************************************************************/
3426
3427 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3428 of the required alignment if LSB tags are used. */
3429
3430 union aligned_Lisp_Symbol
3431 {
3432 struct Lisp_Symbol s;
3433 #if USE_LSB_TAG
3434 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3435 & -(1 << GCTYPEBITS)];
3436 #endif
3437 };
3438
3439 /* Each symbol_block is just under 1020 bytes long, since malloc
3440 really allocates in units of powers of two and uses 4 bytes for its
3441 own overhead. */
3442
3443 #define SYMBOL_BLOCK_SIZE \
3444 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3445
3446 struct symbol_block
3447 {
3448 /* Place `symbols' first, to preserve alignment. */
3449 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3450 struct symbol_block *next;
3451 };
3452
3453 /* Current symbol block and index of first unused Lisp_Symbol
3454 structure in it. */
3455
3456 static struct symbol_block *symbol_block;
3457 static int symbol_block_index;
3458
3459 /* List of free symbols. */
3460
3461 static struct Lisp_Symbol *symbol_free_list;
3462
3463
3464 /* Initialize symbol allocation. */
3465
3466 static void
3467 init_symbol (void)
3468 {
3469 symbol_block = NULL;
3470 symbol_block_index = SYMBOL_BLOCK_SIZE;
3471 symbol_free_list = 0;
3472 }
3473
3474
3475 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3476 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3477 Its value and function definition are void, and its property list is nil. */)
3478 (Lisp_Object name)
3479 {
3480 register Lisp_Object val;
3481 register struct Lisp_Symbol *p;
3482
3483 CHECK_STRING (name);
3484
3485 /* eassert (!handling_signal); */
3486
3487 MALLOC_BLOCK_INPUT;
3488
3489 if (symbol_free_list)
3490 {
3491 XSETSYMBOL (val, symbol_free_list);
3492 symbol_free_list = symbol_free_list->next;
3493 }
3494 else
3495 {
3496 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3497 {
3498 struct symbol_block *new
3499 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3500 new->next = symbol_block;
3501 symbol_block = new;
3502 symbol_block_index = 0;
3503 }
3504 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3505 symbol_block_index++;
3506 }
3507
3508 MALLOC_UNBLOCK_INPUT;
3509
3510 p = XSYMBOL (val);
3511 p->xname = name;
3512 p->plist = Qnil;
3513 p->redirect = SYMBOL_PLAINVAL;
3514 SET_SYMBOL_VAL (p, Qunbound);
3515 p->function = Qunbound;
3516 p->next = NULL;
3517 p->gcmarkbit = 0;
3518 p->interned = SYMBOL_UNINTERNED;
3519 p->constant = 0;
3520 p->declared_special = 0;
3521 consing_since_gc += sizeof (struct Lisp_Symbol);
3522 symbols_consed++;
3523 return val;
3524 }
3525
3526
3527 \f
3528 /***********************************************************************
3529 Marker (Misc) Allocation
3530 ***********************************************************************/
3531
3532 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3533 the required alignment when LSB tags are used. */
3534
3535 union aligned_Lisp_Misc
3536 {
3537 union Lisp_Misc m;
3538 #if USE_LSB_TAG
3539 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3540 & -(1 << GCTYPEBITS)];
3541 #endif
3542 };
3543
3544 /* Allocation of markers and other objects that share that structure.
3545 Works like allocation of conses. */
3546
3547 #define MARKER_BLOCK_SIZE \
3548 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3549
3550 struct marker_block
3551 {
3552 /* Place `markers' first, to preserve alignment. */
3553 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3554 struct marker_block *next;
3555 };
3556
3557 static struct marker_block *marker_block;
3558 static int marker_block_index;
3559
3560 static union Lisp_Misc *marker_free_list;
3561
3562 static void
3563 init_marker (void)
3564 {
3565 marker_block = NULL;
3566 marker_block_index = MARKER_BLOCK_SIZE;
3567 marker_free_list = 0;
3568 }
3569
3570 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3571
3572 Lisp_Object
3573 allocate_misc (void)
3574 {
3575 Lisp_Object val;
3576
3577 /* eassert (!handling_signal); */
3578
3579 MALLOC_BLOCK_INPUT;
3580
3581 if (marker_free_list)
3582 {
3583 XSETMISC (val, marker_free_list);
3584 marker_free_list = marker_free_list->u_free.chain;
3585 }
3586 else
3587 {
3588 if (marker_block_index == MARKER_BLOCK_SIZE)
3589 {
3590 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3591 new->next = marker_block;
3592 marker_block = new;
3593 marker_block_index = 0;
3594 total_free_markers += MARKER_BLOCK_SIZE;
3595 }
3596 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3597 marker_block_index++;
3598 }
3599
3600 MALLOC_UNBLOCK_INPUT;
3601
3602 --total_free_markers;
3603 consing_since_gc += sizeof (union Lisp_Misc);
3604 misc_objects_consed++;
3605 XMISCANY (val)->gcmarkbit = 0;
3606 return val;
3607 }
3608
3609 /* Free a Lisp_Misc object */
3610
3611 static void
3612 free_misc (Lisp_Object misc)
3613 {
3614 XMISCTYPE (misc) = Lisp_Misc_Free;
3615 XMISC (misc)->u_free.chain = marker_free_list;
3616 marker_free_list = XMISC (misc);
3617
3618 total_free_markers++;
3619 }
3620
3621 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3622 INTEGER. This is used to package C values to call record_unwind_protect.
3623 The unwind function can get the C values back using XSAVE_VALUE. */
3624
3625 Lisp_Object
3626 make_save_value (void *pointer, ptrdiff_t integer)
3627 {
3628 register Lisp_Object val;
3629 register struct Lisp_Save_Value *p;
3630
3631 val = allocate_misc ();
3632 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3633 p = XSAVE_VALUE (val);
3634 p->pointer = pointer;
3635 p->integer = integer;
3636 p->dogc = 0;
3637 return val;
3638 }
3639
3640 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3641 doc: /* Return a newly allocated marker which does not point at any place. */)
3642 (void)
3643 {
3644 register Lisp_Object val;
3645 register struct Lisp_Marker *p;
3646
3647 val = allocate_misc ();
3648 XMISCTYPE (val) = Lisp_Misc_Marker;
3649 p = XMARKER (val);
3650 p->buffer = 0;
3651 p->bytepos = 0;
3652 p->charpos = 0;
3653 p->next = NULL;
3654 p->insertion_type = 0;
3655 return val;
3656 }
3657
3658 /* Return a newly allocated marker which points into BUF
3659 at character position CHARPOS and byte position BYTEPOS. */
3660
3661 Lisp_Object
3662 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3663 {
3664 Lisp_Object obj;
3665 struct Lisp_Marker *m;
3666
3667 /* No dead buffers here. */
3668 eassert (!NILP (BVAR (buf, name)));
3669
3670 /* Every character is at least one byte. */
3671 eassert (charpos <= bytepos);
3672
3673 obj = allocate_misc ();
3674 XMISCTYPE (obj) = Lisp_Misc_Marker;
3675 m = XMARKER (obj);
3676 m->buffer = buf;
3677 m->charpos = charpos;
3678 m->bytepos = bytepos;
3679 m->insertion_type = 0;
3680 m->next = BUF_MARKERS (buf);
3681 BUF_MARKERS (buf) = m;
3682 return obj;
3683 }
3684
3685 /* Put MARKER back on the free list after using it temporarily. */
3686
3687 void
3688 free_marker (Lisp_Object marker)
3689 {
3690 unchain_marker (XMARKER (marker));
3691 free_misc (marker);
3692 }
3693
3694 \f
3695 /* Return a newly created vector or string with specified arguments as
3696 elements. If all the arguments are characters that can fit
3697 in a string of events, make a string; otherwise, make a vector.
3698
3699 Any number of arguments, even zero arguments, are allowed. */
3700
3701 Lisp_Object
3702 make_event_array (register int nargs, Lisp_Object *args)
3703 {
3704 int i;
3705
3706 for (i = 0; i < nargs; i++)
3707 /* The things that fit in a string
3708 are characters that are in 0...127,
3709 after discarding the meta bit and all the bits above it. */
3710 if (!INTEGERP (args[i])
3711 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3712 return Fvector (nargs, args);
3713
3714 /* Since the loop exited, we know that all the things in it are
3715 characters, so we can make a string. */
3716 {
3717 Lisp_Object result;
3718
3719 result = Fmake_string (make_number (nargs), make_number (0));
3720 for (i = 0; i < nargs; i++)
3721 {
3722 SSET (result, i, XINT (args[i]));
3723 /* Move the meta bit to the right place for a string char. */
3724 if (XINT (args[i]) & CHAR_META)
3725 SSET (result, i, SREF (result, i) | 0x80);
3726 }
3727
3728 return result;
3729 }
3730 }
3731
3732
3733 \f
3734 /************************************************************************
3735 Memory Full Handling
3736 ************************************************************************/
3737
3738
3739 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3740 there may have been size_t overflow so that malloc was never
3741 called, or perhaps malloc was invoked successfully but the
3742 resulting pointer had problems fitting into a tagged EMACS_INT. In
3743 either case this counts as memory being full even though malloc did
3744 not fail. */
3745
3746 void
3747 memory_full (size_t nbytes)
3748 {
3749 /* Do not go into hysterics merely because a large request failed. */
3750 int enough_free_memory = 0;
3751 if (SPARE_MEMORY < nbytes)
3752 {
3753 void *p;
3754
3755 MALLOC_BLOCK_INPUT;
3756 p = malloc (SPARE_MEMORY);
3757 if (p)
3758 {
3759 free (p);
3760 enough_free_memory = 1;
3761 }
3762 MALLOC_UNBLOCK_INPUT;
3763 }
3764
3765 if (! enough_free_memory)
3766 {
3767 int i;
3768
3769 Vmemory_full = Qt;
3770
3771 memory_full_cons_threshold = sizeof (struct cons_block);
3772
3773 /* The first time we get here, free the spare memory. */
3774 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3775 if (spare_memory[i])
3776 {
3777 if (i == 0)
3778 free (spare_memory[i]);
3779 else if (i >= 1 && i <= 4)
3780 lisp_align_free (spare_memory[i]);
3781 else
3782 lisp_free (spare_memory[i]);
3783 spare_memory[i] = 0;
3784 }
3785
3786 /* Record the space now used. When it decreases substantially,
3787 we can refill the memory reserve. */
3788 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3789 bytes_used_when_full = BYTES_USED;
3790 #endif
3791 }
3792
3793 /* This used to call error, but if we've run out of memory, we could
3794 get infinite recursion trying to build the string. */
3795 xsignal (Qnil, Vmemory_signal_data);
3796 }
3797
3798 /* If we released our reserve (due to running out of memory),
3799 and we have a fair amount free once again,
3800 try to set aside another reserve in case we run out once more.
3801
3802 This is called when a relocatable block is freed in ralloc.c,
3803 and also directly from this file, in case we're not using ralloc.c. */
3804
3805 void
3806 refill_memory_reserve (void)
3807 {
3808 #ifndef SYSTEM_MALLOC
3809 if (spare_memory[0] == 0)
3810 spare_memory[0] = malloc (SPARE_MEMORY);
3811 if (spare_memory[1] == 0)
3812 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3813 MEM_TYPE_CONS);
3814 if (spare_memory[2] == 0)
3815 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3816 MEM_TYPE_CONS);
3817 if (spare_memory[3] == 0)
3818 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3819 MEM_TYPE_CONS);
3820 if (spare_memory[4] == 0)
3821 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3822 MEM_TYPE_CONS);
3823 if (spare_memory[5] == 0)
3824 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3825 MEM_TYPE_STRING);
3826 if (spare_memory[6] == 0)
3827 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3828 MEM_TYPE_STRING);
3829 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3830 Vmemory_full = Qnil;
3831 #endif
3832 }
3833 \f
3834 /************************************************************************
3835 C Stack Marking
3836 ************************************************************************/
3837
3838 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3839
3840 /* Conservative C stack marking requires a method to identify possibly
3841 live Lisp objects given a pointer value. We do this by keeping
3842 track of blocks of Lisp data that are allocated in a red-black tree
3843 (see also the comment of mem_node which is the type of nodes in
3844 that tree). Function lisp_malloc adds information for an allocated
3845 block to the red-black tree with calls to mem_insert, and function
3846 lisp_free removes it with mem_delete. Functions live_string_p etc
3847 call mem_find to lookup information about a given pointer in the
3848 tree, and use that to determine if the pointer points to a Lisp
3849 object or not. */
3850
3851 /* Initialize this part of alloc.c. */
3852
3853 static void
3854 mem_init (void)
3855 {
3856 mem_z.left = mem_z.right = MEM_NIL;
3857 mem_z.parent = NULL;
3858 mem_z.color = MEM_BLACK;
3859 mem_z.start = mem_z.end = NULL;
3860 mem_root = MEM_NIL;
3861 }
3862
3863
3864 /* Value is a pointer to the mem_node containing START. Value is
3865 MEM_NIL if there is no node in the tree containing START. */
3866
3867 static inline struct mem_node *
3868 mem_find (void *start)
3869 {
3870 struct mem_node *p;
3871
3872 if (start < min_heap_address || start > max_heap_address)
3873 return MEM_NIL;
3874
3875 /* Make the search always successful to speed up the loop below. */
3876 mem_z.start = start;
3877 mem_z.end = (char *) start + 1;
3878
3879 p = mem_root;
3880 while (start < p->start || start >= p->end)
3881 p = start < p->start ? p->left : p->right;
3882 return p;
3883 }
3884
3885
3886 /* Insert a new node into the tree for a block of memory with start
3887 address START, end address END, and type TYPE. Value is a
3888 pointer to the node that was inserted. */
3889
3890 static struct mem_node *
3891 mem_insert (void *start, void *end, enum mem_type type)
3892 {
3893 struct mem_node *c, *parent, *x;
3894
3895 if (min_heap_address == NULL || start < min_heap_address)
3896 min_heap_address = start;
3897 if (max_heap_address == NULL || end > max_heap_address)
3898 max_heap_address = end;
3899
3900 /* See where in the tree a node for START belongs. In this
3901 particular application, it shouldn't happen that a node is already
3902 present. For debugging purposes, let's check that. */
3903 c = mem_root;
3904 parent = NULL;
3905
3906 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3907
3908 while (c != MEM_NIL)
3909 {
3910 if (start >= c->start && start < c->end)
3911 abort ();
3912 parent = c;
3913 c = start < c->start ? c->left : c->right;
3914 }
3915
3916 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3917
3918 while (c != MEM_NIL)
3919 {
3920 parent = c;
3921 c = start < c->start ? c->left : c->right;
3922 }
3923
3924 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3925
3926 /* Create a new node. */
3927 #ifdef GC_MALLOC_CHECK
3928 x = _malloc_internal (sizeof *x);
3929 if (x == NULL)
3930 abort ();
3931 #else
3932 x = xmalloc (sizeof *x);
3933 #endif
3934 x->start = start;
3935 x->end = end;
3936 x->type = type;
3937 x->parent = parent;
3938 x->left = x->right = MEM_NIL;
3939 x->color = MEM_RED;
3940
3941 /* Insert it as child of PARENT or install it as root. */
3942 if (parent)
3943 {
3944 if (start < parent->start)
3945 parent->left = x;
3946 else
3947 parent->right = x;
3948 }
3949 else
3950 mem_root = x;
3951
3952 /* Re-establish red-black tree properties. */
3953 mem_insert_fixup (x);
3954
3955 return x;
3956 }
3957
3958
3959 /* Re-establish the red-black properties of the tree, and thereby
3960 balance the tree, after node X has been inserted; X is always red. */
3961
3962 static void
3963 mem_insert_fixup (struct mem_node *x)
3964 {
3965 while (x != mem_root && x->parent->color == MEM_RED)
3966 {
3967 /* X is red and its parent is red. This is a violation of
3968 red-black tree property #3. */
3969
3970 if (x->parent == x->parent->parent->left)
3971 {
3972 /* We're on the left side of our grandparent, and Y is our
3973 "uncle". */
3974 struct mem_node *y = x->parent->parent->right;
3975
3976 if (y->color == MEM_RED)
3977 {
3978 /* Uncle and parent are red but should be black because
3979 X is red. Change the colors accordingly and proceed
3980 with the grandparent. */
3981 x->parent->color = MEM_BLACK;
3982 y->color = MEM_BLACK;
3983 x->parent->parent->color = MEM_RED;
3984 x = x->parent->parent;
3985 }
3986 else
3987 {
3988 /* Parent and uncle have different colors; parent is
3989 red, uncle is black. */
3990 if (x == x->parent->right)
3991 {
3992 x = x->parent;
3993 mem_rotate_left (x);
3994 }
3995
3996 x->parent->color = MEM_BLACK;
3997 x->parent->parent->color = MEM_RED;
3998 mem_rotate_right (x->parent->parent);
3999 }
4000 }
4001 else
4002 {
4003 /* This is the symmetrical case of above. */
4004 struct mem_node *y = x->parent->parent->left;
4005
4006 if (y->color == MEM_RED)
4007 {
4008 x->parent->color = MEM_BLACK;
4009 y->color = MEM_BLACK;
4010 x->parent->parent->color = MEM_RED;
4011 x = x->parent->parent;
4012 }
4013 else
4014 {
4015 if (x == x->parent->left)
4016 {
4017 x = x->parent;
4018 mem_rotate_right (x);
4019 }
4020
4021 x->parent->color = MEM_BLACK;
4022 x->parent->parent->color = MEM_RED;
4023 mem_rotate_left (x->parent->parent);
4024 }
4025 }
4026 }
4027
4028 /* The root may have been changed to red due to the algorithm. Set
4029 it to black so that property #5 is satisfied. */
4030 mem_root->color = MEM_BLACK;
4031 }
4032
4033
4034 /* (x) (y)
4035 / \ / \
4036 a (y) ===> (x) c
4037 / \ / \
4038 b c a b */
4039
4040 static void
4041 mem_rotate_left (struct mem_node *x)
4042 {
4043 struct mem_node *y;
4044
4045 /* Turn y's left sub-tree into x's right sub-tree. */
4046 y = x->right;
4047 x->right = y->left;
4048 if (y->left != MEM_NIL)
4049 y->left->parent = x;
4050
4051 /* Y's parent was x's parent. */
4052 if (y != MEM_NIL)
4053 y->parent = x->parent;
4054
4055 /* Get the parent to point to y instead of x. */
4056 if (x->parent)
4057 {
4058 if (x == x->parent->left)
4059 x->parent->left = y;
4060 else
4061 x->parent->right = y;
4062 }
4063 else
4064 mem_root = y;
4065
4066 /* Put x on y's left. */
4067 y->left = x;
4068 if (x != MEM_NIL)
4069 x->parent = y;
4070 }
4071
4072
4073 /* (x) (Y)
4074 / \ / \
4075 (y) c ===> a (x)
4076 / \ / \
4077 a b b c */
4078
4079 static void
4080 mem_rotate_right (struct mem_node *x)
4081 {
4082 struct mem_node *y = x->left;
4083
4084 x->left = y->right;
4085 if (y->right != MEM_NIL)
4086 y->right->parent = x;
4087
4088 if (y != MEM_NIL)
4089 y->parent = x->parent;
4090 if (x->parent)
4091 {
4092 if (x == x->parent->right)
4093 x->parent->right = y;
4094 else
4095 x->parent->left = y;
4096 }
4097 else
4098 mem_root = y;
4099
4100 y->right = x;
4101 if (x != MEM_NIL)
4102 x->parent = y;
4103 }
4104
4105
4106 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4107
4108 static void
4109 mem_delete (struct mem_node *z)
4110 {
4111 struct mem_node *x, *y;
4112
4113 if (!z || z == MEM_NIL)
4114 return;
4115
4116 if (z->left == MEM_NIL || z->right == MEM_NIL)
4117 y = z;
4118 else
4119 {
4120 y = z->right;
4121 while (y->left != MEM_NIL)
4122 y = y->left;
4123 }
4124
4125 if (y->left != MEM_NIL)
4126 x = y->left;
4127 else
4128 x = y->right;
4129
4130 x->parent = y->parent;
4131 if (y->parent)
4132 {
4133 if (y == y->parent->left)
4134 y->parent->left = x;
4135 else
4136 y->parent->right = x;
4137 }
4138 else
4139 mem_root = x;
4140
4141 if (y != z)
4142 {
4143 z->start = y->start;
4144 z->end = y->end;
4145 z->type = y->type;
4146 }
4147
4148 if (y->color == MEM_BLACK)
4149 mem_delete_fixup (x);
4150
4151 #ifdef GC_MALLOC_CHECK
4152 _free_internal (y);
4153 #else
4154 xfree (y);
4155 #endif
4156 }
4157
4158
4159 /* Re-establish the red-black properties of the tree, after a
4160 deletion. */
4161
4162 static void
4163 mem_delete_fixup (struct mem_node *x)
4164 {
4165 while (x != mem_root && x->color == MEM_BLACK)
4166 {
4167 if (x == x->parent->left)
4168 {
4169 struct mem_node *w = x->parent->right;
4170
4171 if (w->color == MEM_RED)
4172 {
4173 w->color = MEM_BLACK;
4174 x->parent->color = MEM_RED;
4175 mem_rotate_left (x->parent);
4176 w = x->parent->right;
4177 }
4178
4179 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4180 {
4181 w->color = MEM_RED;
4182 x = x->parent;
4183 }
4184 else
4185 {
4186 if (w->right->color == MEM_BLACK)
4187 {
4188 w->left->color = MEM_BLACK;
4189 w->color = MEM_RED;
4190 mem_rotate_right (w);
4191 w = x->parent->right;
4192 }
4193 w->color = x->parent->color;
4194 x->parent->color = MEM_BLACK;
4195 w->right->color = MEM_BLACK;
4196 mem_rotate_left (x->parent);
4197 x = mem_root;
4198 }
4199 }
4200 else
4201 {
4202 struct mem_node *w = x->parent->left;
4203
4204 if (w->color == MEM_RED)
4205 {
4206 w->color = MEM_BLACK;
4207 x->parent->color = MEM_RED;
4208 mem_rotate_right (x->parent);
4209 w = x->parent->left;
4210 }
4211
4212 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4213 {
4214 w->color = MEM_RED;
4215 x = x->parent;
4216 }
4217 else
4218 {
4219 if (w->left->color == MEM_BLACK)
4220 {
4221 w->right->color = MEM_BLACK;
4222 w->color = MEM_RED;
4223 mem_rotate_left (w);
4224 w = x->parent->left;
4225 }
4226
4227 w->color = x->parent->color;
4228 x->parent->color = MEM_BLACK;
4229 w->left->color = MEM_BLACK;
4230 mem_rotate_right (x->parent);
4231 x = mem_root;
4232 }
4233 }
4234 }
4235
4236 x->color = MEM_BLACK;
4237 }
4238
4239
4240 /* Value is non-zero if P is a pointer to a live Lisp string on
4241 the heap. M is a pointer to the mem_block for P. */
4242
4243 static inline int
4244 live_string_p (struct mem_node *m, void *p)
4245 {
4246 if (m->type == MEM_TYPE_STRING)
4247 {
4248 struct string_block *b = (struct string_block *) m->start;
4249 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4250
4251 /* P must point to the start of a Lisp_String structure, and it
4252 must not be on the free-list. */
4253 return (offset >= 0
4254 && offset % sizeof b->strings[0] == 0
4255 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4256 && ((struct Lisp_String *) p)->data != NULL);
4257 }
4258 else
4259 return 0;
4260 }
4261
4262
4263 /* Value is non-zero if P is a pointer to a live Lisp cons on
4264 the heap. M is a pointer to the mem_block for P. */
4265
4266 static inline int
4267 live_cons_p (struct mem_node *m, void *p)
4268 {
4269 if (m->type == MEM_TYPE_CONS)
4270 {
4271 struct cons_block *b = (struct cons_block *) m->start;
4272 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4273
4274 /* P must point to the start of a Lisp_Cons, not be
4275 one of the unused cells in the current cons block,
4276 and not be on the free-list. */
4277 return (offset >= 0
4278 && offset % sizeof b->conses[0] == 0
4279 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4280 && (b != cons_block
4281 || offset / sizeof b->conses[0] < cons_block_index)
4282 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4283 }
4284 else
4285 return 0;
4286 }
4287
4288
4289 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4290 the heap. M is a pointer to the mem_block for P. */
4291
4292 static inline int
4293 live_symbol_p (struct mem_node *m, void *p)
4294 {
4295 if (m->type == MEM_TYPE_SYMBOL)
4296 {
4297 struct symbol_block *b = (struct symbol_block *) m->start;
4298 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4299
4300 /* P must point to the start of a Lisp_Symbol, not be
4301 one of the unused cells in the current symbol block,
4302 and not be on the free-list. */
4303 return (offset >= 0
4304 && offset % sizeof b->symbols[0] == 0
4305 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4306 && (b != symbol_block
4307 || offset / sizeof b->symbols[0] < symbol_block_index)
4308 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4309 }
4310 else
4311 return 0;
4312 }
4313
4314
4315 /* Value is non-zero if P is a pointer to a live Lisp float on
4316 the heap. M is a pointer to the mem_block for P. */
4317
4318 static inline int
4319 live_float_p (struct mem_node *m, void *p)
4320 {
4321 if (m->type == MEM_TYPE_FLOAT)
4322 {
4323 struct float_block *b = (struct float_block *) m->start;
4324 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4325
4326 /* P must point to the start of a Lisp_Float and not be
4327 one of the unused cells in the current float block. */
4328 return (offset >= 0
4329 && offset % sizeof b->floats[0] == 0
4330 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4331 && (b != float_block
4332 || offset / sizeof b->floats[0] < float_block_index));
4333 }
4334 else
4335 return 0;
4336 }
4337
4338
4339 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4340 the heap. M is a pointer to the mem_block for P. */
4341
4342 static inline int
4343 live_misc_p (struct mem_node *m, void *p)
4344 {
4345 if (m->type == MEM_TYPE_MISC)
4346 {
4347 struct marker_block *b = (struct marker_block *) m->start;
4348 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4349
4350 /* P must point to the start of a Lisp_Misc, not be
4351 one of the unused cells in the current misc block,
4352 and not be on the free-list. */
4353 return (offset >= 0
4354 && offset % sizeof b->markers[0] == 0
4355 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4356 && (b != marker_block
4357 || offset / sizeof b->markers[0] < marker_block_index)
4358 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4359 }
4360 else
4361 return 0;
4362 }
4363
4364
4365 /* Value is non-zero if P is a pointer to a live vector-like object.
4366 M is a pointer to the mem_block for P. */
4367
4368 static inline int
4369 live_vector_p (struct mem_node *m, void *p)
4370 {
4371 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4372 {
4373 /* This memory node corresponds to a vector block. */
4374 struct vector_block *block = (struct vector_block *) m->start;
4375 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4376
4377 /* P is in the block's allocation range. Scan the block
4378 up to P and see whether P points to the start of some
4379 vector which is not on a free list. FIXME: check whether
4380 some allocation patterns (probably a lot of short vectors)
4381 may cause a substantial overhead of this loop. */
4382 while (VECTOR_IN_BLOCK (vector, block)
4383 && vector <= (struct Lisp_Vector *) p)
4384 {
4385 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4386 vector = ADVANCE (vector, (vector->header.size
4387 & PSEUDOVECTOR_SIZE_MASK));
4388 else if (vector == p)
4389 return 1;
4390 else
4391 vector = ADVANCE (vector, vector->header.next.nbytes);
4392 }
4393 }
4394 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4395 /* This memory node corresponds to a large vector. */
4396 return 1;
4397 return 0;
4398 }
4399
4400
4401 /* Value is non-zero if P is a pointer to a live buffer. M is a
4402 pointer to the mem_block for P. */
4403
4404 static inline int
4405 live_buffer_p (struct mem_node *m, void *p)
4406 {
4407 /* P must point to the start of the block, and the buffer
4408 must not have been killed. */
4409 return (m->type == MEM_TYPE_BUFFER
4410 && p == m->start
4411 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4412 }
4413
4414 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4415
4416 #if GC_MARK_STACK
4417
4418 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4419
4420 /* Array of objects that are kept alive because the C stack contains
4421 a pattern that looks like a reference to them . */
4422
4423 #define MAX_ZOMBIES 10
4424 static Lisp_Object zombies[MAX_ZOMBIES];
4425
4426 /* Number of zombie objects. */
4427
4428 static EMACS_INT nzombies;
4429
4430 /* Number of garbage collections. */
4431
4432 static EMACS_INT ngcs;
4433
4434 /* Average percentage of zombies per collection. */
4435
4436 static double avg_zombies;
4437
4438 /* Max. number of live and zombie objects. */
4439
4440 static EMACS_INT max_live, max_zombies;
4441
4442 /* Average number of live objects per GC. */
4443
4444 static double avg_live;
4445
4446 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4447 doc: /* Show information about live and zombie objects. */)
4448 (void)
4449 {
4450 Lisp_Object args[8], zombie_list = Qnil;
4451 EMACS_INT i;
4452 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4453 zombie_list = Fcons (zombies[i], zombie_list);
4454 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4455 args[1] = make_number (ngcs);
4456 args[2] = make_float (avg_live);
4457 args[3] = make_float (avg_zombies);
4458 args[4] = make_float (avg_zombies / avg_live / 100);
4459 args[5] = make_number (max_live);
4460 args[6] = make_number (max_zombies);
4461 args[7] = zombie_list;
4462 return Fmessage (8, args);
4463 }
4464
4465 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4466
4467
4468 /* Mark OBJ if we can prove it's a Lisp_Object. */
4469
4470 static inline void
4471 mark_maybe_object (Lisp_Object obj)
4472 {
4473 void *po;
4474 struct mem_node *m;
4475
4476 if (INTEGERP (obj))
4477 return;
4478
4479 po = (void *) XPNTR (obj);
4480 m = mem_find (po);
4481
4482 if (m != MEM_NIL)
4483 {
4484 int mark_p = 0;
4485
4486 switch (XTYPE (obj))
4487 {
4488 case Lisp_String:
4489 mark_p = (live_string_p (m, po)
4490 && !STRING_MARKED_P ((struct Lisp_String *) po));
4491 break;
4492
4493 case Lisp_Cons:
4494 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4495 break;
4496
4497 case Lisp_Symbol:
4498 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4499 break;
4500
4501 case Lisp_Float:
4502 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4503 break;
4504
4505 case Lisp_Vectorlike:
4506 /* Note: can't check BUFFERP before we know it's a
4507 buffer because checking that dereferences the pointer
4508 PO which might point anywhere. */
4509 if (live_vector_p (m, po))
4510 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4511 else if (live_buffer_p (m, po))
4512 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4513 break;
4514
4515 case Lisp_Misc:
4516 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4517 break;
4518
4519 default:
4520 break;
4521 }
4522
4523 if (mark_p)
4524 {
4525 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4526 if (nzombies < MAX_ZOMBIES)
4527 zombies[nzombies] = obj;
4528 ++nzombies;
4529 #endif
4530 mark_object (obj);
4531 }
4532 }
4533 }
4534
4535
4536 /* If P points to Lisp data, mark that as live if it isn't already
4537 marked. */
4538
4539 static inline void
4540 mark_maybe_pointer (void *p)
4541 {
4542 struct mem_node *m;
4543
4544 /* Quickly rule out some values which can't point to Lisp data.
4545 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4546 Otherwise, assume that Lisp data is aligned on even addresses. */
4547 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4548 return;
4549
4550 m = mem_find (p);
4551 if (m != MEM_NIL)
4552 {
4553 Lisp_Object obj = Qnil;
4554
4555 switch (m->type)
4556 {
4557 case MEM_TYPE_NON_LISP:
4558 /* Nothing to do; not a pointer to Lisp memory. */
4559 break;
4560
4561 case MEM_TYPE_BUFFER:
4562 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4563 XSETVECTOR (obj, p);
4564 break;
4565
4566 case MEM_TYPE_CONS:
4567 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4568 XSETCONS (obj, p);
4569 break;
4570
4571 case MEM_TYPE_STRING:
4572 if (live_string_p (m, p)
4573 && !STRING_MARKED_P ((struct Lisp_String *) p))
4574 XSETSTRING (obj, p);
4575 break;
4576
4577 case MEM_TYPE_MISC:
4578 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4579 XSETMISC (obj, p);
4580 break;
4581
4582 case MEM_TYPE_SYMBOL:
4583 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4584 XSETSYMBOL (obj, p);
4585 break;
4586
4587 case MEM_TYPE_FLOAT:
4588 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4589 XSETFLOAT (obj, p);
4590 break;
4591
4592 case MEM_TYPE_VECTORLIKE:
4593 case MEM_TYPE_VECTOR_BLOCK:
4594 if (live_vector_p (m, p))
4595 {
4596 Lisp_Object tem;
4597 XSETVECTOR (tem, p);
4598 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4599 obj = tem;
4600 }
4601 break;
4602
4603 default:
4604 abort ();
4605 }
4606
4607 if (!NILP (obj))
4608 mark_object (obj);
4609 }
4610 }
4611
4612
4613 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4614 a smaller alignment than GCC's __alignof__ and mark_memory might
4615 miss objects if __alignof__ were used. */
4616 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4617
4618 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4619 not suffice, which is the typical case. A host where a Lisp_Object is
4620 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4621 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4622 suffice to widen it to to a Lisp_Object and check it that way. */
4623 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4624 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4625 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4626 nor mark_maybe_object can follow the pointers. This should not occur on
4627 any practical porting target. */
4628 # error "MSB type bits straddle pointer-word boundaries"
4629 # endif
4630 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4631 pointer words that hold pointers ORed with type bits. */
4632 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4633 #else
4634 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4635 words that hold unmodified pointers. */
4636 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4637 #endif
4638
4639 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4640 or END+OFFSET..START. */
4641
4642 static void
4643 mark_memory (void *start, void *end)
4644 #if defined (__clang__) && defined (__has_feature)
4645 #if __has_feature(address_sanitizer)
4646 /* Do not allow -faddress-sanitizer to check this function, since it
4647 crosses the function stack boundary, and thus would yield many
4648 false positives. */
4649 __attribute__((no_address_safety_analysis))
4650 #endif
4651 #endif
4652 {
4653 void **pp;
4654 int i;
4655
4656 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4657 nzombies = 0;
4658 #endif
4659
4660 /* Make START the pointer to the start of the memory region,
4661 if it isn't already. */
4662 if (end < start)
4663 {
4664 void *tem = start;
4665 start = end;
4666 end = tem;
4667 }
4668
4669 /* Mark Lisp data pointed to. This is necessary because, in some
4670 situations, the C compiler optimizes Lisp objects away, so that
4671 only a pointer to them remains. Example:
4672
4673 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4674 ()
4675 {
4676 Lisp_Object obj = build_string ("test");
4677 struct Lisp_String *s = XSTRING (obj);
4678 Fgarbage_collect ();
4679 fprintf (stderr, "test `%s'\n", s->data);
4680 return Qnil;
4681 }
4682
4683 Here, `obj' isn't really used, and the compiler optimizes it
4684 away. The only reference to the life string is through the
4685 pointer `s'. */
4686
4687 for (pp = start; (void *) pp < end; pp++)
4688 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4689 {
4690 void *p = *(void **) ((char *) pp + i);
4691 mark_maybe_pointer (p);
4692 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4693 mark_maybe_object (XIL ((intptr_t) p));
4694 }
4695 }
4696
4697 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4698 the GCC system configuration. In gcc 3.2, the only systems for
4699 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4700 by others?) and ns32k-pc532-min. */
4701
4702 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4703
4704 static int setjmp_tested_p, longjmps_done;
4705
4706 #define SETJMP_WILL_LIKELY_WORK "\
4707 \n\
4708 Emacs garbage collector has been changed to use conservative stack\n\
4709 marking. Emacs has determined that the method it uses to do the\n\
4710 marking will likely work on your system, but this isn't sure.\n\
4711 \n\
4712 If you are a system-programmer, or can get the help of a local wizard\n\
4713 who is, please take a look at the function mark_stack in alloc.c, and\n\
4714 verify that the methods used are appropriate for your system.\n\
4715 \n\
4716 Please mail the result to <emacs-devel@gnu.org>.\n\
4717 "
4718
4719 #define SETJMP_WILL_NOT_WORK "\
4720 \n\
4721 Emacs garbage collector has been changed to use conservative stack\n\
4722 marking. Emacs has determined that the default method it uses to do the\n\
4723 marking will not work on your system. We will need a system-dependent\n\
4724 solution for your system.\n\
4725 \n\
4726 Please take a look at the function mark_stack in alloc.c, and\n\
4727 try to find a way to make it work on your system.\n\
4728 \n\
4729 Note that you may get false negatives, depending on the compiler.\n\
4730 In particular, you need to use -O with GCC for this test.\n\
4731 \n\
4732 Please mail the result to <emacs-devel@gnu.org>.\n\
4733 "
4734
4735
4736 /* Perform a quick check if it looks like setjmp saves registers in a
4737 jmp_buf. Print a message to stderr saying so. When this test
4738 succeeds, this is _not_ a proof that setjmp is sufficient for
4739 conservative stack marking. Only the sources or a disassembly
4740 can prove that. */
4741
4742 static void
4743 test_setjmp (void)
4744 {
4745 char buf[10];
4746 register int x;
4747 jmp_buf jbuf;
4748 int result = 0;
4749
4750 /* Arrange for X to be put in a register. */
4751 sprintf (buf, "1");
4752 x = strlen (buf);
4753 x = 2 * x - 1;
4754
4755 setjmp (jbuf);
4756 if (longjmps_done == 1)
4757 {
4758 /* Came here after the longjmp at the end of the function.
4759
4760 If x == 1, the longjmp has restored the register to its
4761 value before the setjmp, and we can hope that setjmp
4762 saves all such registers in the jmp_buf, although that
4763 isn't sure.
4764
4765 For other values of X, either something really strange is
4766 taking place, or the setjmp just didn't save the register. */
4767
4768 if (x == 1)
4769 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4770 else
4771 {
4772 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4773 exit (1);
4774 }
4775 }
4776
4777 ++longjmps_done;
4778 x = 2;
4779 if (longjmps_done == 1)
4780 longjmp (jbuf, 1);
4781 }
4782
4783 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4784
4785
4786 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4787
4788 /* Abort if anything GCPRO'd doesn't survive the GC. */
4789
4790 static void
4791 check_gcpros (void)
4792 {
4793 struct gcpro *p;
4794 ptrdiff_t i;
4795
4796 for (p = gcprolist; p; p = p->next)
4797 for (i = 0; i < p->nvars; ++i)
4798 if (!survives_gc_p (p->var[i]))
4799 /* FIXME: It's not necessarily a bug. It might just be that the
4800 GCPRO is unnecessary or should release the object sooner. */
4801 abort ();
4802 }
4803
4804 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4805
4806 static void
4807 dump_zombies (void)
4808 {
4809 int i;
4810
4811 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4812 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4813 {
4814 fprintf (stderr, " %d = ", i);
4815 debug_print (zombies[i]);
4816 }
4817 }
4818
4819 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4820
4821
4822 /* Mark live Lisp objects on the C stack.
4823
4824 There are several system-dependent problems to consider when
4825 porting this to new architectures:
4826
4827 Processor Registers
4828
4829 We have to mark Lisp objects in CPU registers that can hold local
4830 variables or are used to pass parameters.
4831
4832 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4833 something that either saves relevant registers on the stack, or
4834 calls mark_maybe_object passing it each register's contents.
4835
4836 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4837 implementation assumes that calling setjmp saves registers we need
4838 to see in a jmp_buf which itself lies on the stack. This doesn't
4839 have to be true! It must be verified for each system, possibly
4840 by taking a look at the source code of setjmp.
4841
4842 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4843 can use it as a machine independent method to store all registers
4844 to the stack. In this case the macros described in the previous
4845 two paragraphs are not used.
4846
4847 Stack Layout
4848
4849 Architectures differ in the way their processor stack is organized.
4850 For example, the stack might look like this
4851
4852 +----------------+
4853 | Lisp_Object | size = 4
4854 +----------------+
4855 | something else | size = 2
4856 +----------------+
4857 | Lisp_Object | size = 4
4858 +----------------+
4859 | ... |
4860
4861 In such a case, not every Lisp_Object will be aligned equally. To
4862 find all Lisp_Object on the stack it won't be sufficient to walk
4863 the stack in steps of 4 bytes. Instead, two passes will be
4864 necessary, one starting at the start of the stack, and a second
4865 pass starting at the start of the stack + 2. Likewise, if the
4866 minimal alignment of Lisp_Objects on the stack is 1, four passes
4867 would be necessary, each one starting with one byte more offset
4868 from the stack start. */
4869
4870 static void
4871 mark_stack (void)
4872 {
4873 void *end;
4874
4875 #ifdef HAVE___BUILTIN_UNWIND_INIT
4876 /* Force callee-saved registers and register windows onto the stack.
4877 This is the preferred method if available, obviating the need for
4878 machine dependent methods. */
4879 __builtin_unwind_init ();
4880 end = &end;
4881 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4882 #ifndef GC_SAVE_REGISTERS_ON_STACK
4883 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4884 union aligned_jmpbuf {
4885 Lisp_Object o;
4886 jmp_buf j;
4887 } j;
4888 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4889 #endif
4890 /* This trick flushes the register windows so that all the state of
4891 the process is contained in the stack. */
4892 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4893 needed on ia64 too. See mach_dep.c, where it also says inline
4894 assembler doesn't work with relevant proprietary compilers. */
4895 #ifdef __sparc__
4896 #if defined (__sparc64__) && defined (__FreeBSD__)
4897 /* FreeBSD does not have a ta 3 handler. */
4898 asm ("flushw");
4899 #else
4900 asm ("ta 3");
4901 #endif
4902 #endif
4903
4904 /* Save registers that we need to see on the stack. We need to see
4905 registers used to hold register variables and registers used to
4906 pass parameters. */
4907 #ifdef GC_SAVE_REGISTERS_ON_STACK
4908 GC_SAVE_REGISTERS_ON_STACK (end);
4909 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4910
4911 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4912 setjmp will definitely work, test it
4913 and print a message with the result
4914 of the test. */
4915 if (!setjmp_tested_p)
4916 {
4917 setjmp_tested_p = 1;
4918 test_setjmp ();
4919 }
4920 #endif /* GC_SETJMP_WORKS */
4921
4922 setjmp (j.j);
4923 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4924 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4925 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4926
4927 /* This assumes that the stack is a contiguous region in memory. If
4928 that's not the case, something has to be done here to iterate
4929 over the stack segments. */
4930 mark_memory (stack_base, end);
4931
4932 /* Allow for marking a secondary stack, like the register stack on the
4933 ia64. */
4934 #ifdef GC_MARK_SECONDARY_STACK
4935 GC_MARK_SECONDARY_STACK ();
4936 #endif
4937
4938 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4939 check_gcpros ();
4940 #endif
4941 }
4942
4943 #endif /* GC_MARK_STACK != 0 */
4944
4945
4946 /* Determine whether it is safe to access memory at address P. */
4947 static int
4948 valid_pointer_p (void *p)
4949 {
4950 #ifdef WINDOWSNT
4951 return w32_valid_pointer_p (p, 16);
4952 #else
4953 int fd[2];
4954
4955 /* Obviously, we cannot just access it (we would SEGV trying), so we
4956 trick the o/s to tell us whether p is a valid pointer.
4957 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4958 not validate p in that case. */
4959
4960 if (pipe (fd) == 0)
4961 {
4962 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4963 emacs_close (fd[1]);
4964 emacs_close (fd[0]);
4965 return valid;
4966 }
4967
4968 return -1;
4969 #endif
4970 }
4971
4972 /* Return 1 if OBJ is a valid lisp object.
4973 Return 0 if OBJ is NOT a valid lisp object.
4974 Return -1 if we cannot validate OBJ.
4975 This function can be quite slow,
4976 so it should only be used in code for manual debugging. */
4977
4978 int
4979 valid_lisp_object_p (Lisp_Object obj)
4980 {
4981 void *p;
4982 #if GC_MARK_STACK
4983 struct mem_node *m;
4984 #endif
4985
4986 if (INTEGERP (obj))
4987 return 1;
4988
4989 p = (void *) XPNTR (obj);
4990 if (PURE_POINTER_P (p))
4991 return 1;
4992
4993 #if !GC_MARK_STACK
4994 return valid_pointer_p (p);
4995 #else
4996
4997 m = mem_find (p);
4998
4999 if (m == MEM_NIL)
5000 {
5001 int valid = valid_pointer_p (p);
5002 if (valid <= 0)
5003 return valid;
5004
5005 if (SUBRP (obj))
5006 return 1;
5007
5008 return 0;
5009 }
5010
5011 switch (m->type)
5012 {
5013 case MEM_TYPE_NON_LISP:
5014 return 0;
5015
5016 case MEM_TYPE_BUFFER:
5017 return live_buffer_p (m, p);
5018
5019 case MEM_TYPE_CONS:
5020 return live_cons_p (m, p);
5021
5022 case MEM_TYPE_STRING:
5023 return live_string_p (m, p);
5024
5025 case MEM_TYPE_MISC:
5026 return live_misc_p (m, p);
5027
5028 case MEM_TYPE_SYMBOL:
5029 return live_symbol_p (m, p);
5030
5031 case MEM_TYPE_FLOAT:
5032 return live_float_p (m, p);
5033
5034 case MEM_TYPE_VECTORLIKE:
5035 case MEM_TYPE_VECTOR_BLOCK:
5036 return live_vector_p (m, p);
5037
5038 default:
5039 break;
5040 }
5041
5042 return 0;
5043 #endif
5044 }
5045
5046
5047
5048 \f
5049 /***********************************************************************
5050 Pure Storage Management
5051 ***********************************************************************/
5052
5053 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5054 pointer to it. TYPE is the Lisp type for which the memory is
5055 allocated. TYPE < 0 means it's not used for a Lisp object. */
5056
5057 static void *
5058 pure_alloc (size_t size, int type)
5059 {
5060 void *result;
5061 #if USE_LSB_TAG
5062 size_t alignment = (1 << GCTYPEBITS);
5063 #else
5064 size_t alignment = sizeof (EMACS_INT);
5065
5066 /* Give Lisp_Floats an extra alignment. */
5067 if (type == Lisp_Float)
5068 {
5069 #if defined __GNUC__ && __GNUC__ >= 2
5070 alignment = __alignof (struct Lisp_Float);
5071 #else
5072 alignment = sizeof (struct Lisp_Float);
5073 #endif
5074 }
5075 #endif
5076
5077 again:
5078 if (type >= 0)
5079 {
5080 /* Allocate space for a Lisp object from the beginning of the free
5081 space with taking account of alignment. */
5082 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5083 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5084 }
5085 else
5086 {
5087 /* Allocate space for a non-Lisp object from the end of the free
5088 space. */
5089 pure_bytes_used_non_lisp += size;
5090 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5091 }
5092 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5093
5094 if (pure_bytes_used <= pure_size)
5095 return result;
5096
5097 /* Don't allocate a large amount here,
5098 because it might get mmap'd and then its address
5099 might not be usable. */
5100 purebeg = xmalloc (10000);
5101 pure_size = 10000;
5102 pure_bytes_used_before_overflow += pure_bytes_used - size;
5103 pure_bytes_used = 0;
5104 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5105 goto again;
5106 }
5107
5108
5109 /* Print a warning if PURESIZE is too small. */
5110
5111 void
5112 check_pure_size (void)
5113 {
5114 if (pure_bytes_used_before_overflow)
5115 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5116 " bytes needed)"),
5117 pure_bytes_used + pure_bytes_used_before_overflow);
5118 }
5119
5120
5121 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5122 the non-Lisp data pool of the pure storage, and return its start
5123 address. Return NULL if not found. */
5124
5125 static char *
5126 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5127 {
5128 int i;
5129 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5130 const unsigned char *p;
5131 char *non_lisp_beg;
5132
5133 if (pure_bytes_used_non_lisp <= nbytes)
5134 return NULL;
5135
5136 /* Set up the Boyer-Moore table. */
5137 skip = nbytes + 1;
5138 for (i = 0; i < 256; i++)
5139 bm_skip[i] = skip;
5140
5141 p = (const unsigned char *) data;
5142 while (--skip > 0)
5143 bm_skip[*p++] = skip;
5144
5145 last_char_skip = bm_skip['\0'];
5146
5147 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5148 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5149
5150 /* See the comments in the function `boyer_moore' (search.c) for the
5151 use of `infinity'. */
5152 infinity = pure_bytes_used_non_lisp + 1;
5153 bm_skip['\0'] = infinity;
5154
5155 p = (const unsigned char *) non_lisp_beg + nbytes;
5156 start = 0;
5157 do
5158 {
5159 /* Check the last character (== '\0'). */
5160 do
5161 {
5162 start += bm_skip[*(p + start)];
5163 }
5164 while (start <= start_max);
5165
5166 if (start < infinity)
5167 /* Couldn't find the last character. */
5168 return NULL;
5169
5170 /* No less than `infinity' means we could find the last
5171 character at `p[start - infinity]'. */
5172 start -= infinity;
5173
5174 /* Check the remaining characters. */
5175 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5176 /* Found. */
5177 return non_lisp_beg + start;
5178
5179 start += last_char_skip;
5180 }
5181 while (start <= start_max);
5182
5183 return NULL;
5184 }
5185
5186
5187 /* Return a string allocated in pure space. DATA is a buffer holding
5188 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5189 non-zero means make the result string multibyte.
5190
5191 Must get an error if pure storage is full, since if it cannot hold
5192 a large string it may be able to hold conses that point to that
5193 string; then the string is not protected from gc. */
5194
5195 Lisp_Object
5196 make_pure_string (const char *data,
5197 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5198 {
5199 Lisp_Object string;
5200 struct Lisp_String *s;
5201
5202 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5203 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5204 if (s->data == NULL)
5205 {
5206 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5207 memcpy (s->data, data, nbytes);
5208 s->data[nbytes] = '\0';
5209 }
5210 s->size = nchars;
5211 s->size_byte = multibyte ? nbytes : -1;
5212 s->intervals = NULL_INTERVAL;
5213 XSETSTRING (string, s);
5214 return string;
5215 }
5216
5217 /* Return a string allocated in pure space. Do not
5218 allocate the string data, just point to DATA. */
5219
5220 Lisp_Object
5221 make_pure_c_string (const char *data, ptrdiff_t nchars)
5222 {
5223 Lisp_Object string;
5224 struct Lisp_String *s;
5225
5226 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5227 s->size = nchars;
5228 s->size_byte = -1;
5229 s->data = (unsigned char *) data;
5230 s->intervals = NULL_INTERVAL;
5231 XSETSTRING (string, s);
5232 return string;
5233 }
5234
5235 /* Return a cons allocated from pure space. Give it pure copies
5236 of CAR as car and CDR as cdr. */
5237
5238 Lisp_Object
5239 pure_cons (Lisp_Object car, Lisp_Object cdr)
5240 {
5241 register Lisp_Object new;
5242 struct Lisp_Cons *p;
5243
5244 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5245 XSETCONS (new, p);
5246 XSETCAR (new, Fpurecopy (car));
5247 XSETCDR (new, Fpurecopy (cdr));
5248 return new;
5249 }
5250
5251
5252 /* Value is a float object with value NUM allocated from pure space. */
5253
5254 static Lisp_Object
5255 make_pure_float (double num)
5256 {
5257 register Lisp_Object new;
5258 struct Lisp_Float *p;
5259
5260 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5261 XSETFLOAT (new, p);
5262 XFLOAT_INIT (new, num);
5263 return new;
5264 }
5265
5266
5267 /* Return a vector with room for LEN Lisp_Objects allocated from
5268 pure space. */
5269
5270 static Lisp_Object
5271 make_pure_vector (ptrdiff_t len)
5272 {
5273 Lisp_Object new;
5274 struct Lisp_Vector *p;
5275 size_t size = (offsetof (struct Lisp_Vector, contents)
5276 + len * sizeof (Lisp_Object));
5277
5278 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5279 XSETVECTOR (new, p);
5280 XVECTOR (new)->header.size = len;
5281 return new;
5282 }
5283
5284
5285 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5286 doc: /* Make a copy of object OBJ in pure storage.
5287 Recursively copies contents of vectors and cons cells.
5288 Does not copy symbols. Copies strings without text properties. */)
5289 (register Lisp_Object obj)
5290 {
5291 if (NILP (Vpurify_flag))
5292 return obj;
5293
5294 if (PURE_POINTER_P (XPNTR (obj)))
5295 return obj;
5296
5297 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5298 {
5299 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5300 if (!NILP (tmp))
5301 return tmp;
5302 }
5303
5304 if (CONSP (obj))
5305 obj = pure_cons (XCAR (obj), XCDR (obj));
5306 else if (FLOATP (obj))
5307 obj = make_pure_float (XFLOAT_DATA (obj));
5308 else if (STRINGP (obj))
5309 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5310 SBYTES (obj),
5311 STRING_MULTIBYTE (obj));
5312 else if (COMPILEDP (obj) || VECTORP (obj))
5313 {
5314 register struct Lisp_Vector *vec;
5315 register ptrdiff_t i;
5316 ptrdiff_t size;
5317
5318 size = ASIZE (obj);
5319 if (size & PSEUDOVECTOR_FLAG)
5320 size &= PSEUDOVECTOR_SIZE_MASK;
5321 vec = XVECTOR (make_pure_vector (size));
5322 for (i = 0; i < size; i++)
5323 vec->contents[i] = Fpurecopy (AREF (obj, i));
5324 if (COMPILEDP (obj))
5325 {
5326 XSETPVECTYPE (vec, PVEC_COMPILED);
5327 XSETCOMPILED (obj, vec);
5328 }
5329 else
5330 XSETVECTOR (obj, vec);
5331 }
5332 else if (MARKERP (obj))
5333 error ("Attempt to copy a marker to pure storage");
5334 else
5335 /* Not purified, don't hash-cons. */
5336 return obj;
5337
5338 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5339 Fputhash (obj, obj, Vpurify_flag);
5340
5341 return obj;
5342 }
5343
5344
5345 \f
5346 /***********************************************************************
5347 Protection from GC
5348 ***********************************************************************/
5349
5350 /* Put an entry in staticvec, pointing at the variable with address
5351 VARADDRESS. */
5352
5353 void
5354 staticpro (Lisp_Object *varaddress)
5355 {
5356 staticvec[staticidx++] = varaddress;
5357 if (staticidx >= NSTATICS)
5358 abort ();
5359 }
5360
5361 \f
5362 /***********************************************************************
5363 Protection from GC
5364 ***********************************************************************/
5365
5366 /* Temporarily prevent garbage collection. */
5367
5368 ptrdiff_t
5369 inhibit_garbage_collection (void)
5370 {
5371 ptrdiff_t count = SPECPDL_INDEX ();
5372
5373 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5374 return count;
5375 }
5376
5377
5378 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5379 doc: /* Reclaim storage for Lisp objects no longer needed.
5380 Garbage collection happens automatically if you cons more than
5381 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5382 `garbage-collect' normally returns a list with info on amount of space in use:
5383 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5384 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5385 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5386 (USED-STRINGS . FREE-STRINGS))
5387 However, if there was overflow in pure space, `garbage-collect'
5388 returns nil, because real GC can't be done.
5389 See Info node `(elisp)Garbage Collection'. */)
5390 (void)
5391 {
5392 register struct specbinding *bind;
5393 char stack_top_variable;
5394 ptrdiff_t i;
5395 int message_p;
5396 Lisp_Object total[8];
5397 ptrdiff_t count = SPECPDL_INDEX ();
5398 EMACS_TIME t1;
5399
5400 if (abort_on_gc)
5401 abort ();
5402
5403 /* Can't GC if pure storage overflowed because we can't determine
5404 if something is a pure object or not. */
5405 if (pure_bytes_used_before_overflow)
5406 return Qnil;
5407
5408 CHECK_CONS_LIST ();
5409
5410 /* Don't keep undo information around forever.
5411 Do this early on, so it is no problem if the user quits. */
5412 {
5413 register struct buffer *nextb = all_buffers;
5414
5415 while (nextb)
5416 {
5417 /* If a buffer's undo list is Qt, that means that undo is
5418 turned off in that buffer. Calling truncate_undo_list on
5419 Qt tends to return NULL, which effectively turns undo back on.
5420 So don't call truncate_undo_list if undo_list is Qt. */
5421 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5422 && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5423 truncate_undo_list (nextb);
5424
5425 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5426 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5427 && ! nextb->text->inhibit_shrinking)
5428 {
5429 /* If a buffer's gap size is more than 10% of the buffer
5430 size, or larger than 2000 bytes, then shrink it
5431 accordingly. Keep a minimum size of 20 bytes. */
5432 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5433
5434 if (nextb->text->gap_size > size)
5435 {
5436 struct buffer *save_current = current_buffer;
5437 current_buffer = nextb;
5438 make_gap (-(nextb->text->gap_size - size));
5439 current_buffer = save_current;
5440 }
5441 }
5442
5443 nextb = nextb->header.next.buffer;
5444 }
5445 }
5446
5447 t1 = current_emacs_time ();
5448
5449 /* In case user calls debug_print during GC,
5450 don't let that cause a recursive GC. */
5451 consing_since_gc = 0;
5452
5453 /* Save what's currently displayed in the echo area. */
5454 message_p = push_message ();
5455 record_unwind_protect (pop_message_unwind, Qnil);
5456
5457 /* Save a copy of the contents of the stack, for debugging. */
5458 #if MAX_SAVE_STACK > 0
5459 if (NILP (Vpurify_flag))
5460 {
5461 char *stack;
5462 ptrdiff_t stack_size;
5463 if (&stack_top_variable < stack_bottom)
5464 {
5465 stack = &stack_top_variable;
5466 stack_size = stack_bottom - &stack_top_variable;
5467 }
5468 else
5469 {
5470 stack = stack_bottom;
5471 stack_size = &stack_top_variable - stack_bottom;
5472 }
5473 if (stack_size <= MAX_SAVE_STACK)
5474 {
5475 if (stack_copy_size < stack_size)
5476 {
5477 stack_copy = xrealloc (stack_copy, stack_size);
5478 stack_copy_size = stack_size;
5479 }
5480 memcpy (stack_copy, stack, stack_size);
5481 }
5482 }
5483 #endif /* MAX_SAVE_STACK > 0 */
5484
5485 if (garbage_collection_messages)
5486 message1_nolog ("Garbage collecting...");
5487
5488 BLOCK_INPUT;
5489
5490 shrink_regexp_cache ();
5491
5492 gc_in_progress = 1;
5493
5494 /* clear_marks (); */
5495
5496 /* Mark all the special slots that serve as the roots of accessibility. */
5497
5498 for (i = 0; i < staticidx; i++)
5499 mark_object (*staticvec[i]);
5500
5501 for (bind = specpdl; bind != specpdl_ptr; bind++)
5502 {
5503 mark_object (bind->symbol);
5504 mark_object (bind->old_value);
5505 }
5506 mark_terminals ();
5507 mark_kboards ();
5508 mark_ttys ();
5509
5510 #ifdef USE_GTK
5511 {
5512 extern void xg_mark_data (void);
5513 xg_mark_data ();
5514 }
5515 #endif
5516
5517 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5518 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5519 mark_stack ();
5520 #else
5521 {
5522 register struct gcpro *tail;
5523 for (tail = gcprolist; tail; tail = tail->next)
5524 for (i = 0; i < tail->nvars; i++)
5525 mark_object (tail->var[i]);
5526 }
5527 mark_byte_stack ();
5528 {
5529 struct catchtag *catch;
5530 struct handler *handler;
5531
5532 for (catch = catchlist; catch; catch = catch->next)
5533 {
5534 mark_object (catch->tag);
5535 mark_object (catch->val);
5536 }
5537 for (handler = handlerlist; handler; handler = handler->next)
5538 {
5539 mark_object (handler->handler);
5540 mark_object (handler->var);
5541 }
5542 }
5543 mark_backtrace ();
5544 #endif
5545
5546 #ifdef HAVE_WINDOW_SYSTEM
5547 mark_fringe_data ();
5548 #endif
5549
5550 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5551 mark_stack ();
5552 #endif
5553
5554 /* Everything is now marked, except for the things that require special
5555 finalization, i.e. the undo_list.
5556 Look thru every buffer's undo list
5557 for elements that update markers that were not marked,
5558 and delete them. */
5559 {
5560 register struct buffer *nextb = all_buffers;
5561
5562 while (nextb)
5563 {
5564 /* If a buffer's undo list is Qt, that means that undo is
5565 turned off in that buffer. Calling truncate_undo_list on
5566 Qt tends to return NULL, which effectively turns undo back on.
5567 So don't call truncate_undo_list if undo_list is Qt. */
5568 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5569 {
5570 Lisp_Object tail, prev;
5571 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5572 prev = Qnil;
5573 while (CONSP (tail))
5574 {
5575 if (CONSP (XCAR (tail))
5576 && MARKERP (XCAR (XCAR (tail)))
5577 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5578 {
5579 if (NILP (prev))
5580 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5581 else
5582 {
5583 tail = XCDR (tail);
5584 XSETCDR (prev, tail);
5585 }
5586 }
5587 else
5588 {
5589 prev = tail;
5590 tail = XCDR (tail);
5591 }
5592 }
5593 }
5594 /* Now that we have stripped the elements that need not be in the
5595 undo_list any more, we can finally mark the list. */
5596 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5597
5598 nextb = nextb->header.next.buffer;
5599 }
5600 }
5601
5602 gc_sweep ();
5603
5604 /* Clear the mark bits that we set in certain root slots. */
5605
5606 unmark_byte_stack ();
5607 VECTOR_UNMARK (&buffer_defaults);
5608 VECTOR_UNMARK (&buffer_local_symbols);
5609
5610 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5611 dump_zombies ();
5612 #endif
5613
5614 UNBLOCK_INPUT;
5615
5616 CHECK_CONS_LIST ();
5617
5618 /* clear_marks (); */
5619 gc_in_progress = 0;
5620
5621 consing_since_gc = 0;
5622 if (gc_cons_threshold < 10000)
5623 gc_cons_threshold = 10000;
5624
5625 gc_relative_threshold = 0;
5626 if (FLOATP (Vgc_cons_percentage))
5627 { /* Set gc_cons_combined_threshold. */
5628 double tot = 0;
5629
5630 tot += total_conses * sizeof (struct Lisp_Cons);
5631 tot += total_symbols * sizeof (struct Lisp_Symbol);
5632 tot += total_markers * sizeof (union Lisp_Misc);
5633 tot += total_string_size;
5634 tot += total_vector_size * sizeof (Lisp_Object);
5635 tot += total_floats * sizeof (struct Lisp_Float);
5636 tot += total_intervals * sizeof (struct interval);
5637 tot += total_strings * sizeof (struct Lisp_String);
5638
5639 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5640 if (0 < tot)
5641 {
5642 if (tot < TYPE_MAXIMUM (EMACS_INT))
5643 gc_relative_threshold = tot;
5644 else
5645 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5646 }
5647 }
5648
5649 if (garbage_collection_messages)
5650 {
5651 if (message_p || minibuf_level > 0)
5652 restore_message ();
5653 else
5654 message1_nolog ("Garbage collecting...done");
5655 }
5656
5657 unbind_to (count, Qnil);
5658
5659 total[0] = Fcons (make_number (total_conses),
5660 make_number (total_free_conses));
5661 total[1] = Fcons (make_number (total_symbols),
5662 make_number (total_free_symbols));
5663 total[2] = Fcons (make_number (total_markers),
5664 make_number (total_free_markers));
5665 total[3] = make_number (total_string_size);
5666 total[4] = make_number (total_vector_size);
5667 total[5] = Fcons (make_number (total_floats),
5668 make_number (total_free_floats));
5669 total[6] = Fcons (make_number (total_intervals),
5670 make_number (total_free_intervals));
5671 total[7] = Fcons (make_number (total_strings),
5672 make_number (total_free_strings));
5673
5674 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5675 {
5676 /* Compute average percentage of zombies. */
5677 double nlive = 0;
5678
5679 for (i = 0; i < 7; ++i)
5680 if (CONSP (total[i]))
5681 nlive += XFASTINT (XCAR (total[i]));
5682
5683 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5684 max_live = max (nlive, max_live);
5685 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5686 max_zombies = max (nzombies, max_zombies);
5687 ++ngcs;
5688 }
5689 #endif
5690
5691 if (!NILP (Vpost_gc_hook))
5692 {
5693 ptrdiff_t gc_count = inhibit_garbage_collection ();
5694 safe_run_hooks (Qpost_gc_hook);
5695 unbind_to (gc_count, Qnil);
5696 }
5697
5698 /* Accumulate statistics. */
5699 if (FLOATP (Vgc_elapsed))
5700 {
5701 EMACS_TIME t2 = current_emacs_time ();
5702 EMACS_TIME t3 = sub_emacs_time (t2, t1);
5703 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5704 + EMACS_TIME_TO_DOUBLE (t3));
5705 }
5706
5707 gcs_done++;
5708
5709 return Flist (sizeof total / sizeof *total, total);
5710 }
5711
5712
5713 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5714 only interesting objects referenced from glyphs are strings. */
5715
5716 static void
5717 mark_glyph_matrix (struct glyph_matrix *matrix)
5718 {
5719 struct glyph_row *row = matrix->rows;
5720 struct glyph_row *end = row + matrix->nrows;
5721
5722 for (; row < end; ++row)
5723 if (row->enabled_p)
5724 {
5725 int area;
5726 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5727 {
5728 struct glyph *glyph = row->glyphs[area];
5729 struct glyph *end_glyph = glyph + row->used[area];
5730
5731 for (; glyph < end_glyph; ++glyph)
5732 if (STRINGP (glyph->object)
5733 && !STRING_MARKED_P (XSTRING (glyph->object)))
5734 mark_object (glyph->object);
5735 }
5736 }
5737 }
5738
5739
5740 /* Mark Lisp faces in the face cache C. */
5741
5742 static void
5743 mark_face_cache (struct face_cache *c)
5744 {
5745 if (c)
5746 {
5747 int i, j;
5748 for (i = 0; i < c->used; ++i)
5749 {
5750 struct face *face = FACE_FROM_ID (c->f, i);
5751
5752 if (face)
5753 {
5754 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5755 mark_object (face->lface[j]);
5756 }
5757 }
5758 }
5759 }
5760
5761
5762 \f
5763 /* Mark reference to a Lisp_Object.
5764 If the object referred to has not been seen yet, recursively mark
5765 all the references contained in it. */
5766
5767 #define LAST_MARKED_SIZE 500
5768 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5769 static int last_marked_index;
5770
5771 /* For debugging--call abort when we cdr down this many
5772 links of a list, in mark_object. In debugging,
5773 the call to abort will hit a breakpoint.
5774 Normally this is zero and the check never goes off. */
5775 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5776
5777 static void
5778 mark_vectorlike (struct Lisp_Vector *ptr)
5779 {
5780 ptrdiff_t size = ptr->header.size;
5781 ptrdiff_t i;
5782
5783 eassert (!VECTOR_MARKED_P (ptr));
5784 VECTOR_MARK (ptr); /* Else mark it. */
5785 if (size & PSEUDOVECTOR_FLAG)
5786 size &= PSEUDOVECTOR_SIZE_MASK;
5787
5788 /* Note that this size is not the memory-footprint size, but only
5789 the number of Lisp_Object fields that we should trace.
5790 The distinction is used e.g. by Lisp_Process which places extra
5791 non-Lisp_Object fields at the end of the structure... */
5792 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5793 mark_object (ptr->contents[i]);
5794 }
5795
5796 /* Like mark_vectorlike but optimized for char-tables (and
5797 sub-char-tables) assuming that the contents are mostly integers or
5798 symbols. */
5799
5800 static void
5801 mark_char_table (struct Lisp_Vector *ptr)
5802 {
5803 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5804 int i;
5805
5806 eassert (!VECTOR_MARKED_P (ptr));
5807 VECTOR_MARK (ptr);
5808 for (i = 0; i < size; i++)
5809 {
5810 Lisp_Object val = ptr->contents[i];
5811
5812 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5813 continue;
5814 if (SUB_CHAR_TABLE_P (val))
5815 {
5816 if (! VECTOR_MARKED_P (XVECTOR (val)))
5817 mark_char_table (XVECTOR (val));
5818 }
5819 else
5820 mark_object (val);
5821 }
5822 }
5823
5824 /* Mark the chain of overlays starting at PTR. */
5825
5826 static void
5827 mark_overlay (struct Lisp_Overlay *ptr)
5828 {
5829 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5830 {
5831 ptr->gcmarkbit = 1;
5832 mark_object (ptr->start);
5833 mark_object (ptr->end);
5834 mark_object (ptr->plist);
5835 }
5836 }
5837
5838 /* Mark Lisp_Objects and special pointers in BUFFER. */
5839
5840 static void
5841 mark_buffer (struct buffer *buffer)
5842 {
5843 /* This is handled much like other pseudovectors... */
5844 mark_vectorlike ((struct Lisp_Vector *) buffer);
5845
5846 /* ...but there are some buffer-specific things. */
5847
5848 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5849
5850 /* For now, we just don't mark the undo_list. It's done later in
5851 a special way just before the sweep phase, and after stripping
5852 some of its elements that are not needed any more. */
5853
5854 mark_overlay (buffer->overlays_before);
5855 mark_overlay (buffer->overlays_after);
5856
5857 /* If this is an indirect buffer, mark its base buffer. */
5858 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5859 mark_buffer (buffer->base_buffer);
5860 }
5861
5862 /* Determine type of generic Lisp_Object and mark it accordingly. */
5863
5864 void
5865 mark_object (Lisp_Object arg)
5866 {
5867 register Lisp_Object obj = arg;
5868 #ifdef GC_CHECK_MARKED_OBJECTS
5869 void *po;
5870 struct mem_node *m;
5871 #endif
5872 ptrdiff_t cdr_count = 0;
5873
5874 loop:
5875
5876 if (PURE_POINTER_P (XPNTR (obj)))
5877 return;
5878
5879 last_marked[last_marked_index++] = obj;
5880 if (last_marked_index == LAST_MARKED_SIZE)
5881 last_marked_index = 0;
5882
5883 /* Perform some sanity checks on the objects marked here. Abort if
5884 we encounter an object we know is bogus. This increases GC time
5885 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5886 #ifdef GC_CHECK_MARKED_OBJECTS
5887
5888 po = (void *) XPNTR (obj);
5889
5890 /* Check that the object pointed to by PO is known to be a Lisp
5891 structure allocated from the heap. */
5892 #define CHECK_ALLOCATED() \
5893 do { \
5894 m = mem_find (po); \
5895 if (m == MEM_NIL) \
5896 abort (); \
5897 } while (0)
5898
5899 /* Check that the object pointed to by PO is live, using predicate
5900 function LIVEP. */
5901 #define CHECK_LIVE(LIVEP) \
5902 do { \
5903 if (!LIVEP (m, po)) \
5904 abort (); \
5905 } while (0)
5906
5907 /* Check both of the above conditions. */
5908 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5909 do { \
5910 CHECK_ALLOCATED (); \
5911 CHECK_LIVE (LIVEP); \
5912 } while (0) \
5913
5914 #else /* not GC_CHECK_MARKED_OBJECTS */
5915
5916 #define CHECK_LIVE(LIVEP) (void) 0
5917 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5918
5919 #endif /* not GC_CHECK_MARKED_OBJECTS */
5920
5921 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5922 {
5923 case Lisp_String:
5924 {
5925 register struct Lisp_String *ptr = XSTRING (obj);
5926 if (STRING_MARKED_P (ptr))
5927 break;
5928 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5929 MARK_STRING (ptr);
5930 MARK_INTERVAL_TREE (ptr->intervals);
5931 #ifdef GC_CHECK_STRING_BYTES
5932 /* Check that the string size recorded in the string is the
5933 same as the one recorded in the sdata structure. */
5934 CHECK_STRING_BYTES (ptr);
5935 #endif /* GC_CHECK_STRING_BYTES */
5936 }
5937 break;
5938
5939 case Lisp_Vectorlike:
5940 {
5941 register struct Lisp_Vector *ptr = XVECTOR (obj);
5942 register ptrdiff_t pvectype;
5943
5944 if (VECTOR_MARKED_P (ptr))
5945 break;
5946
5947 #ifdef GC_CHECK_MARKED_OBJECTS
5948 m = mem_find (po);
5949 if (m == MEM_NIL && !SUBRP (obj)
5950 && po != &buffer_defaults
5951 && po != &buffer_local_symbols)
5952 abort ();
5953 #endif /* GC_CHECK_MARKED_OBJECTS */
5954
5955 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5956 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5957 >> PSEUDOVECTOR_SIZE_BITS);
5958 else
5959 pvectype = 0;
5960
5961 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5962 CHECK_LIVE (live_vector_p);
5963
5964 switch (pvectype)
5965 {
5966 case PVEC_BUFFER:
5967 #ifdef GC_CHECK_MARKED_OBJECTS
5968 if (po != &buffer_defaults && po != &buffer_local_symbols)
5969 {
5970 struct buffer *b = all_buffers;
5971 for (; b && b != po; b = b->header.next.buffer)
5972 ;
5973 if (b == NULL)
5974 abort ();
5975 }
5976 #endif /* GC_CHECK_MARKED_OBJECTS */
5977 mark_buffer ((struct buffer *) ptr);
5978 break;
5979
5980 case PVEC_COMPILED:
5981 { /* We could treat this just like a vector, but it is better
5982 to save the COMPILED_CONSTANTS element for last and avoid
5983 recursion there. */
5984 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5985 int i;
5986
5987 VECTOR_MARK (ptr);
5988 for (i = 0; i < size; i++)
5989 if (i != COMPILED_CONSTANTS)
5990 mark_object (ptr->contents[i]);
5991 if (size > COMPILED_CONSTANTS)
5992 {
5993 obj = ptr->contents[COMPILED_CONSTANTS];
5994 goto loop;
5995 }
5996 }
5997 break;
5998
5999 case PVEC_FRAME:
6000 {
6001 mark_vectorlike (ptr);
6002 mark_face_cache (((struct frame *) ptr)->face_cache);
6003 }
6004 break;
6005
6006 case PVEC_WINDOW:
6007 {
6008 struct window *w = (struct window *) ptr;
6009
6010 mark_vectorlike (ptr);
6011 /* Mark glyphs for leaf windows. Marking window
6012 matrices is sufficient because frame matrices
6013 use the same glyph memory. */
6014 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6015 {
6016 mark_glyph_matrix (w->current_matrix);
6017 mark_glyph_matrix (w->desired_matrix);
6018 }
6019 }
6020 break;
6021
6022 case PVEC_HASH_TABLE:
6023 {
6024 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6025
6026 mark_vectorlike (ptr);
6027 /* If hash table is not weak, mark all keys and values.
6028 For weak tables, mark only the vector. */
6029 if (NILP (h->weak))
6030 mark_object (h->key_and_value);
6031 else
6032 VECTOR_MARK (XVECTOR (h->key_and_value));
6033 }
6034 break;
6035
6036 case PVEC_CHAR_TABLE:
6037 mark_char_table (ptr);
6038 break;
6039
6040 case PVEC_BOOL_VECTOR:
6041 /* No Lisp_Objects to mark in a bool vector. */
6042 VECTOR_MARK (ptr);
6043 break;
6044
6045 case PVEC_SUBR:
6046 break;
6047
6048 case PVEC_FREE:
6049 abort ();
6050
6051 default:
6052 mark_vectorlike (ptr);
6053 }
6054 }
6055 break;
6056
6057 case Lisp_Symbol:
6058 {
6059 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6060 struct Lisp_Symbol *ptrx;
6061
6062 if (ptr->gcmarkbit)
6063 break;
6064 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6065 ptr->gcmarkbit = 1;
6066 mark_object (ptr->function);
6067 mark_object (ptr->plist);
6068 switch (ptr->redirect)
6069 {
6070 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6071 case SYMBOL_VARALIAS:
6072 {
6073 Lisp_Object tem;
6074 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6075 mark_object (tem);
6076 break;
6077 }
6078 case SYMBOL_LOCALIZED:
6079 {
6080 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6081 /* If the value is forwarded to a buffer or keyboard field,
6082 these are marked when we see the corresponding object.
6083 And if it's forwarded to a C variable, either it's not
6084 a Lisp_Object var, or it's staticpro'd already. */
6085 mark_object (blv->where);
6086 mark_object (blv->valcell);
6087 mark_object (blv->defcell);
6088 break;
6089 }
6090 case SYMBOL_FORWARDED:
6091 /* If the value is forwarded to a buffer or keyboard field,
6092 these are marked when we see the corresponding object.
6093 And if it's forwarded to a C variable, either it's not
6094 a Lisp_Object var, or it's staticpro'd already. */
6095 break;
6096 default: abort ();
6097 }
6098 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6099 MARK_STRING (XSTRING (ptr->xname));
6100 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6101
6102 ptr = ptr->next;
6103 if (ptr)
6104 {
6105 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6106 XSETSYMBOL (obj, ptrx);
6107 goto loop;
6108 }
6109 }
6110 break;
6111
6112 case Lisp_Misc:
6113 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6114
6115 if (XMISCANY (obj)->gcmarkbit)
6116 break;
6117
6118 switch (XMISCTYPE (obj))
6119 {
6120 case Lisp_Misc_Marker:
6121 /* DO NOT mark thru the marker's chain.
6122 The buffer's markers chain does not preserve markers from gc;
6123 instead, markers are removed from the chain when freed by gc. */
6124 XMISCANY (obj)->gcmarkbit = 1;
6125 break;
6126
6127 case Lisp_Misc_Save_Value:
6128 XMISCANY (obj)->gcmarkbit = 1;
6129 #if GC_MARK_STACK
6130 {
6131 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6132 /* If DOGC is set, POINTER is the address of a memory
6133 area containing INTEGER potential Lisp_Objects. */
6134 if (ptr->dogc)
6135 {
6136 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6137 ptrdiff_t nelt;
6138 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6139 mark_maybe_object (*p);
6140 }
6141 }
6142 #endif
6143 break;
6144
6145 case Lisp_Misc_Overlay:
6146 mark_overlay (XOVERLAY (obj));
6147 break;
6148
6149 default:
6150 abort ();
6151 }
6152 break;
6153
6154 case Lisp_Cons:
6155 {
6156 register struct Lisp_Cons *ptr = XCONS (obj);
6157 if (CONS_MARKED_P (ptr))
6158 break;
6159 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6160 CONS_MARK (ptr);
6161 /* If the cdr is nil, avoid recursion for the car. */
6162 if (EQ (ptr->u.cdr, Qnil))
6163 {
6164 obj = ptr->car;
6165 cdr_count = 0;
6166 goto loop;
6167 }
6168 mark_object (ptr->car);
6169 obj = ptr->u.cdr;
6170 cdr_count++;
6171 if (cdr_count == mark_object_loop_halt)
6172 abort ();
6173 goto loop;
6174 }
6175
6176 case Lisp_Float:
6177 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6178 FLOAT_MARK (XFLOAT (obj));
6179 break;
6180
6181 case_Lisp_Int:
6182 break;
6183
6184 default:
6185 abort ();
6186 }
6187
6188 #undef CHECK_LIVE
6189 #undef CHECK_ALLOCATED
6190 #undef CHECK_ALLOCATED_AND_LIVE
6191 }
6192 /* Mark the Lisp pointers in the terminal objects.
6193 Called by Fgarbage_collect. */
6194
6195 static void
6196 mark_terminals (void)
6197 {
6198 struct terminal *t;
6199 for (t = terminal_list; t; t = t->next_terminal)
6200 {
6201 eassert (t->name != NULL);
6202 #ifdef HAVE_WINDOW_SYSTEM
6203 /* If a terminal object is reachable from a stacpro'ed object,
6204 it might have been marked already. Make sure the image cache
6205 gets marked. */
6206 mark_image_cache (t->image_cache);
6207 #endif /* HAVE_WINDOW_SYSTEM */
6208 if (!VECTOR_MARKED_P (t))
6209 mark_vectorlike ((struct Lisp_Vector *)t);
6210 }
6211 }
6212
6213
6214
6215 /* Value is non-zero if OBJ will survive the current GC because it's
6216 either marked or does not need to be marked to survive. */
6217
6218 int
6219 survives_gc_p (Lisp_Object obj)
6220 {
6221 int survives_p;
6222
6223 switch (XTYPE (obj))
6224 {
6225 case_Lisp_Int:
6226 survives_p = 1;
6227 break;
6228
6229 case Lisp_Symbol:
6230 survives_p = XSYMBOL (obj)->gcmarkbit;
6231 break;
6232
6233 case Lisp_Misc:
6234 survives_p = XMISCANY (obj)->gcmarkbit;
6235 break;
6236
6237 case Lisp_String:
6238 survives_p = STRING_MARKED_P (XSTRING (obj));
6239 break;
6240
6241 case Lisp_Vectorlike:
6242 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6243 break;
6244
6245 case Lisp_Cons:
6246 survives_p = CONS_MARKED_P (XCONS (obj));
6247 break;
6248
6249 case Lisp_Float:
6250 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6251 break;
6252
6253 default:
6254 abort ();
6255 }
6256
6257 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6258 }
6259
6260
6261 \f
6262 /* Sweep: find all structures not marked, and free them. */
6263
6264 static void
6265 gc_sweep (void)
6266 {
6267 /* Remove or mark entries in weak hash tables.
6268 This must be done before any object is unmarked. */
6269 sweep_weak_hash_tables ();
6270
6271 sweep_strings ();
6272 #ifdef GC_CHECK_STRING_BYTES
6273 if (!noninteractive)
6274 check_string_bytes (1);
6275 #endif
6276
6277 /* Put all unmarked conses on free list */
6278 {
6279 register struct cons_block *cblk;
6280 struct cons_block **cprev = &cons_block;
6281 register int lim = cons_block_index;
6282 EMACS_INT num_free = 0, num_used = 0;
6283
6284 cons_free_list = 0;
6285
6286 for (cblk = cons_block; cblk; cblk = *cprev)
6287 {
6288 register int i = 0;
6289 int this_free = 0;
6290 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6291
6292 /* Scan the mark bits an int at a time. */
6293 for (i = 0; i < ilim; i++)
6294 {
6295 if (cblk->gcmarkbits[i] == -1)
6296 {
6297 /* Fast path - all cons cells for this int are marked. */
6298 cblk->gcmarkbits[i] = 0;
6299 num_used += BITS_PER_INT;
6300 }
6301 else
6302 {
6303 /* Some cons cells for this int are not marked.
6304 Find which ones, and free them. */
6305 int start, pos, stop;
6306
6307 start = i * BITS_PER_INT;
6308 stop = lim - start;
6309 if (stop > BITS_PER_INT)
6310 stop = BITS_PER_INT;
6311 stop += start;
6312
6313 for (pos = start; pos < stop; pos++)
6314 {
6315 if (!CONS_MARKED_P (&cblk->conses[pos]))
6316 {
6317 this_free++;
6318 cblk->conses[pos].u.chain = cons_free_list;
6319 cons_free_list = &cblk->conses[pos];
6320 #if GC_MARK_STACK
6321 cons_free_list->car = Vdead;
6322 #endif
6323 }
6324 else
6325 {
6326 num_used++;
6327 CONS_UNMARK (&cblk->conses[pos]);
6328 }
6329 }
6330 }
6331 }
6332
6333 lim = CONS_BLOCK_SIZE;
6334 /* If this block contains only free conses and we have already
6335 seen more than two blocks worth of free conses then deallocate
6336 this block. */
6337 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6338 {
6339 *cprev = cblk->next;
6340 /* Unhook from the free list. */
6341 cons_free_list = cblk->conses[0].u.chain;
6342 lisp_align_free (cblk);
6343 }
6344 else
6345 {
6346 num_free += this_free;
6347 cprev = &cblk->next;
6348 }
6349 }
6350 total_conses = num_used;
6351 total_free_conses = num_free;
6352 }
6353
6354 /* Put all unmarked floats on free list */
6355 {
6356 register struct float_block *fblk;
6357 struct float_block **fprev = &float_block;
6358 register int lim = float_block_index;
6359 EMACS_INT num_free = 0, num_used = 0;
6360
6361 float_free_list = 0;
6362
6363 for (fblk = float_block; fblk; fblk = *fprev)
6364 {
6365 register int i;
6366 int this_free = 0;
6367 for (i = 0; i < lim; i++)
6368 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6369 {
6370 this_free++;
6371 fblk->floats[i].u.chain = float_free_list;
6372 float_free_list = &fblk->floats[i];
6373 }
6374 else
6375 {
6376 num_used++;
6377 FLOAT_UNMARK (&fblk->floats[i]);
6378 }
6379 lim = FLOAT_BLOCK_SIZE;
6380 /* If this block contains only free floats and we have already
6381 seen more than two blocks worth of free floats then deallocate
6382 this block. */
6383 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6384 {
6385 *fprev = fblk->next;
6386 /* Unhook from the free list. */
6387 float_free_list = fblk->floats[0].u.chain;
6388 lisp_align_free (fblk);
6389 }
6390 else
6391 {
6392 num_free += this_free;
6393 fprev = &fblk->next;
6394 }
6395 }
6396 total_floats = num_used;
6397 total_free_floats = num_free;
6398 }
6399
6400 /* Put all unmarked intervals on free list */
6401 {
6402 register struct interval_block *iblk;
6403 struct interval_block **iprev = &interval_block;
6404 register int lim = interval_block_index;
6405 EMACS_INT num_free = 0, num_used = 0;
6406
6407 interval_free_list = 0;
6408
6409 for (iblk = interval_block; iblk; iblk = *iprev)
6410 {
6411 register int i;
6412 int this_free = 0;
6413
6414 for (i = 0; i < lim; i++)
6415 {
6416 if (!iblk->intervals[i].gcmarkbit)
6417 {
6418 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6419 interval_free_list = &iblk->intervals[i];
6420 this_free++;
6421 }
6422 else
6423 {
6424 num_used++;
6425 iblk->intervals[i].gcmarkbit = 0;
6426 }
6427 }
6428 lim = INTERVAL_BLOCK_SIZE;
6429 /* If this block contains only free intervals and we have already
6430 seen more than two blocks worth of free intervals then
6431 deallocate this block. */
6432 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6433 {
6434 *iprev = iblk->next;
6435 /* Unhook from the free list. */
6436 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6437 lisp_free (iblk);
6438 }
6439 else
6440 {
6441 num_free += this_free;
6442 iprev = &iblk->next;
6443 }
6444 }
6445 total_intervals = num_used;
6446 total_free_intervals = num_free;
6447 }
6448
6449 /* Put all unmarked symbols on free list */
6450 {
6451 register struct symbol_block *sblk;
6452 struct symbol_block **sprev = &symbol_block;
6453 register int lim = symbol_block_index;
6454 EMACS_INT num_free = 0, num_used = 0;
6455
6456 symbol_free_list = NULL;
6457
6458 for (sblk = symbol_block; sblk; sblk = *sprev)
6459 {
6460 int this_free = 0;
6461 union aligned_Lisp_Symbol *sym = sblk->symbols;
6462 union aligned_Lisp_Symbol *end = sym + lim;
6463
6464 for (; sym < end; ++sym)
6465 {
6466 /* Check if the symbol was created during loadup. In such a case
6467 it might be pointed to by pure bytecode which we don't trace,
6468 so we conservatively assume that it is live. */
6469 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6470
6471 if (!sym->s.gcmarkbit && !pure_p)
6472 {
6473 if (sym->s.redirect == SYMBOL_LOCALIZED)
6474 xfree (SYMBOL_BLV (&sym->s));
6475 sym->s.next = symbol_free_list;
6476 symbol_free_list = &sym->s;
6477 #if GC_MARK_STACK
6478 symbol_free_list->function = Vdead;
6479 #endif
6480 ++this_free;
6481 }
6482 else
6483 {
6484 ++num_used;
6485 if (!pure_p)
6486 UNMARK_STRING (XSTRING (sym->s.xname));
6487 sym->s.gcmarkbit = 0;
6488 }
6489 }
6490
6491 lim = SYMBOL_BLOCK_SIZE;
6492 /* If this block contains only free symbols and we have already
6493 seen more than two blocks worth of free symbols then deallocate
6494 this block. */
6495 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6496 {
6497 *sprev = sblk->next;
6498 /* Unhook from the free list. */
6499 symbol_free_list = sblk->symbols[0].s.next;
6500 lisp_free (sblk);
6501 }
6502 else
6503 {
6504 num_free += this_free;
6505 sprev = &sblk->next;
6506 }
6507 }
6508 total_symbols = num_used;
6509 total_free_symbols = num_free;
6510 }
6511
6512 /* Put all unmarked misc's on free list.
6513 For a marker, first unchain it from the buffer it points into. */
6514 {
6515 register struct marker_block *mblk;
6516 struct marker_block **mprev = &marker_block;
6517 register int lim = marker_block_index;
6518 EMACS_INT num_free = 0, num_used = 0;
6519
6520 marker_free_list = 0;
6521
6522 for (mblk = marker_block; mblk; mblk = *mprev)
6523 {
6524 register int i;
6525 int this_free = 0;
6526
6527 for (i = 0; i < lim; i++)
6528 {
6529 if (!mblk->markers[i].m.u_any.gcmarkbit)
6530 {
6531 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6532 unchain_marker (&mblk->markers[i].m.u_marker);
6533 /* Set the type of the freed object to Lisp_Misc_Free.
6534 We could leave the type alone, since nobody checks it,
6535 but this might catch bugs faster. */
6536 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6537 mblk->markers[i].m.u_free.chain = marker_free_list;
6538 marker_free_list = &mblk->markers[i].m;
6539 this_free++;
6540 }
6541 else
6542 {
6543 num_used++;
6544 mblk->markers[i].m.u_any.gcmarkbit = 0;
6545 }
6546 }
6547 lim = MARKER_BLOCK_SIZE;
6548 /* If this block contains only free markers and we have already
6549 seen more than two blocks worth of free markers then deallocate
6550 this block. */
6551 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6552 {
6553 *mprev = mblk->next;
6554 /* Unhook from the free list. */
6555 marker_free_list = mblk->markers[0].m.u_free.chain;
6556 lisp_free (mblk);
6557 }
6558 else
6559 {
6560 num_free += this_free;
6561 mprev = &mblk->next;
6562 }
6563 }
6564
6565 total_markers = num_used;
6566 total_free_markers = num_free;
6567 }
6568
6569 /* Free all unmarked buffers */
6570 {
6571 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6572
6573 while (buffer)
6574 if (!VECTOR_MARKED_P (buffer))
6575 {
6576 if (prev)
6577 prev->header.next = buffer->header.next;
6578 else
6579 all_buffers = buffer->header.next.buffer;
6580 next = buffer->header.next.buffer;
6581 lisp_free (buffer);
6582 buffer = next;
6583 }
6584 else
6585 {
6586 VECTOR_UNMARK (buffer);
6587 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6588 prev = buffer, buffer = buffer->header.next.buffer;
6589 }
6590 }
6591
6592 sweep_vectors ();
6593
6594 #ifdef GC_CHECK_STRING_BYTES
6595 if (!noninteractive)
6596 check_string_bytes (1);
6597 #endif
6598 }
6599
6600
6601
6602 \f
6603 /* Debugging aids. */
6604
6605 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6606 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6607 This may be helpful in debugging Emacs's memory usage.
6608 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6609 (void)
6610 {
6611 Lisp_Object end;
6612
6613 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6614
6615 return end;
6616 }
6617
6618 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6619 doc: /* Return a list of counters that measure how much consing there has been.
6620 Each of these counters increments for a certain kind of object.
6621 The counters wrap around from the largest positive integer to zero.
6622 Garbage collection does not decrease them.
6623 The elements of the value are as follows:
6624 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6625 All are in units of 1 = one object consed
6626 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6627 objects consed.
6628 MISCS include overlays, markers, and some internal types.
6629 Frames, windows, buffers, and subprocesses count as vectors
6630 (but the contents of a buffer's text do not count here). */)
6631 (void)
6632 {
6633 Lisp_Object consed[8];
6634
6635 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6636 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6637 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6638 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6639 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6640 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6641 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6642 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6643
6644 return Flist (8, consed);
6645 }
6646
6647 /* Find at most FIND_MAX symbols which have OBJ as their value or
6648 function. This is used in gdbinit's `xwhichsymbols' command. */
6649
6650 Lisp_Object
6651 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6652 {
6653 struct symbol_block *sblk;
6654 ptrdiff_t gc_count = inhibit_garbage_collection ();
6655 Lisp_Object found = Qnil;
6656
6657 if (! DEADP (obj))
6658 {
6659 for (sblk = symbol_block; sblk; sblk = sblk->next)
6660 {
6661 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6662 int bn;
6663
6664 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6665 {
6666 struct Lisp_Symbol *sym = &aligned_sym->s;
6667 Lisp_Object val;
6668 Lisp_Object tem;
6669
6670 if (sblk == symbol_block && bn >= symbol_block_index)
6671 break;
6672
6673 XSETSYMBOL (tem, sym);
6674 val = find_symbol_value (tem);
6675 if (EQ (val, obj)
6676 || EQ (sym->function, obj)
6677 || (!NILP (sym->function)
6678 && COMPILEDP (sym->function)
6679 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6680 || (!NILP (val)
6681 && COMPILEDP (val)
6682 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6683 {
6684 found = Fcons (tem, found);
6685 if (--find_max == 0)
6686 goto out;
6687 }
6688 }
6689 }
6690 }
6691
6692 out:
6693 unbind_to (gc_count, Qnil);
6694 return found;
6695 }
6696
6697 #ifdef ENABLE_CHECKING
6698 int suppress_checking;
6699
6700 void
6701 die (const char *msg, const char *file, int line)
6702 {
6703 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6704 file, line, msg);
6705 abort ();
6706 }
6707 #endif
6708 \f
6709 /* Initialization */
6710
6711 void
6712 init_alloc_once (void)
6713 {
6714 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6715 purebeg = PUREBEG;
6716 pure_size = PURESIZE;
6717 pure_bytes_used = 0;
6718 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6719 pure_bytes_used_before_overflow = 0;
6720
6721 /* Initialize the list of free aligned blocks. */
6722 free_ablock = NULL;
6723
6724 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6725 mem_init ();
6726 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6727 #endif
6728
6729 ignore_warnings = 1;
6730 #ifdef DOUG_LEA_MALLOC
6731 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6732 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6733 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6734 #endif
6735 init_strings ();
6736 init_cons ();
6737 init_symbol ();
6738 init_marker ();
6739 init_float ();
6740 init_intervals ();
6741 init_vectors ();
6742 init_weak_hash_tables ();
6743
6744 #ifdef REL_ALLOC
6745 malloc_hysteresis = 32;
6746 #else
6747 malloc_hysteresis = 0;
6748 #endif
6749
6750 refill_memory_reserve ();
6751
6752 ignore_warnings = 0;
6753 gcprolist = 0;
6754 byte_stack_list = 0;
6755 staticidx = 0;
6756 consing_since_gc = 0;
6757 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6758 gc_relative_threshold = 0;
6759 }
6760
6761 void
6762 init_alloc (void)
6763 {
6764 gcprolist = 0;
6765 byte_stack_list = 0;
6766 #if GC_MARK_STACK
6767 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6768 setjmp_tested_p = longjmps_done = 0;
6769 #endif
6770 #endif
6771 Vgc_elapsed = make_float (0.0);
6772 gcs_done = 0;
6773 }
6774
6775 void
6776 syms_of_alloc (void)
6777 {
6778 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6779 doc: /* Number of bytes of consing between garbage collections.
6780 Garbage collection can happen automatically once this many bytes have been
6781 allocated since the last garbage collection. All data types count.
6782
6783 Garbage collection happens automatically only when `eval' is called.
6784
6785 By binding this temporarily to a large number, you can effectively
6786 prevent garbage collection during a part of the program.
6787 See also `gc-cons-percentage'. */);
6788
6789 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6790 doc: /* Portion of the heap used for allocation.
6791 Garbage collection can happen automatically once this portion of the heap
6792 has been allocated since the last garbage collection.
6793 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6794 Vgc_cons_percentage = make_float (0.1);
6795
6796 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6797 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6798
6799 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6800 doc: /* Number of cons cells that have been consed so far. */);
6801
6802 DEFVAR_INT ("floats-consed", floats_consed,
6803 doc: /* Number of floats that have been consed so far. */);
6804
6805 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6806 doc: /* Number of vector cells that have been consed so far. */);
6807
6808 DEFVAR_INT ("symbols-consed", symbols_consed,
6809 doc: /* Number of symbols that have been consed so far. */);
6810
6811 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6812 doc: /* Number of string characters that have been consed so far. */);
6813
6814 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6815 doc: /* Number of miscellaneous objects that have been consed so far.
6816 These include markers and overlays, plus certain objects not visible
6817 to users. */);
6818
6819 DEFVAR_INT ("intervals-consed", intervals_consed,
6820 doc: /* Number of intervals that have been consed so far. */);
6821
6822 DEFVAR_INT ("strings-consed", strings_consed,
6823 doc: /* Number of strings that have been consed so far. */);
6824
6825 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6826 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6827 This means that certain objects should be allocated in shared (pure) space.
6828 It can also be set to a hash-table, in which case this table is used to
6829 do hash-consing of the objects allocated to pure space. */);
6830
6831 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6832 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6833 garbage_collection_messages = 0;
6834
6835 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6836 doc: /* Hook run after garbage collection has finished. */);
6837 Vpost_gc_hook = Qnil;
6838 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6839
6840 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6841 doc: /* Precomputed `signal' argument for memory-full error. */);
6842 /* We build this in advance because if we wait until we need it, we might
6843 not be able to allocate the memory to hold it. */
6844 Vmemory_signal_data
6845 = pure_cons (Qerror,
6846 pure_cons (build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6847
6848 DEFVAR_LISP ("memory-full", Vmemory_full,
6849 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6850 Vmemory_full = Qnil;
6851
6852 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6853 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6854
6855 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6856 doc: /* Accumulated time elapsed in garbage collections.
6857 The time is in seconds as a floating point value. */);
6858 DEFVAR_INT ("gcs-done", gcs_done,
6859 doc: /* Accumulated number of garbage collections done. */);
6860
6861 defsubr (&Scons);
6862 defsubr (&Slist);
6863 defsubr (&Svector);
6864 defsubr (&Smake_byte_code);
6865 defsubr (&Smake_list);
6866 defsubr (&Smake_vector);
6867 defsubr (&Smake_string);
6868 defsubr (&Smake_bool_vector);
6869 defsubr (&Smake_symbol);
6870 defsubr (&Smake_marker);
6871 defsubr (&Spurecopy);
6872 defsubr (&Sgarbage_collect);
6873 defsubr (&Smemory_limit);
6874 defsubr (&Smemory_use_counts);
6875
6876 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6877 defsubr (&Sgc_status);
6878 #endif
6879 }