Various compiler bug-fixes. MPC seems to run correctly now.
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
2
3 ;; Copyright (C) 1991, 1994, 2000-2011 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Maintainer: FSF
8 ;; Keywords: internal
9 ;; Package: emacs
10
11 ;; This file is part of GNU Emacs.
12
13 ;; GNU Emacs is free software: you can redistribute it and/or modify
14 ;; it under the terms of the GNU General Public License as published by
15 ;; the Free Software Foundation, either version 3 of the License, or
16 ;; (at your option) any later version.
17
18 ;; GNU Emacs is distributed in the hope that it will be useful,
19 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 ;; GNU General Public License for more details.
22
23 ;; You should have received a copy of the GNU General Public License
24 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
25
26 ;;; Commentary:
27
28 ;; ========================================================================
29 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
30 ;; You can, however, make a faster pig."
31 ;;
32 ;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
33 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
34 ;; still not going to make it go faster than 70 mph, but it might be easier
35 ;; to get it there.
36 ;;
37
38 ;; TO DO:
39 ;;
40 ;; (apply (lambda (x &rest y) ...) 1 (foo))
41 ;;
42 ;; maintain a list of functions known not to access any global variables
43 ;; (actually, give them a 'dynamically-safe property) and then
44 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
45 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
46 ;; by recursing on this, we might be able to eliminate the entire let.
47 ;; However certain variables should never have their bindings optimized
48 ;; away, because they affect everything.
49 ;; (put 'debug-on-error 'binding-is-magic t)
50 ;; (put 'debug-on-abort 'binding-is-magic t)
51 ;; (put 'debug-on-next-call 'binding-is-magic t)
52 ;; (put 'inhibit-quit 'binding-is-magic t)
53 ;; (put 'quit-flag 'binding-is-magic t)
54 ;; (put 't 'binding-is-magic t)
55 ;; (put 'nil 'binding-is-magic t)
56 ;; possibly also
57 ;; (put 'gc-cons-threshold 'binding-is-magic t)
58 ;; (put 'track-mouse 'binding-is-magic t)
59 ;; others?
60 ;;
61 ;; Simple defsubsts often produce forms like
62 ;; (let ((v1 (f1)) (v2 (f2)) ...)
63 ;; (FN v1 v2 ...))
64 ;; It would be nice if we could optimize this to
65 ;; (FN (f1) (f2) ...)
66 ;; but we can't unless FN is dynamically-safe (it might be dynamically
67 ;; referring to the bindings that the lambda arglist established.)
68 ;; One of the uncountable lossages introduced by dynamic scope...
69 ;;
70 ;; Maybe there should be a control-structure that says "turn on
71 ;; fast-and-loose type-assumptive optimizations here." Then when
72 ;; we see a form like (car foo) we can from then on assume that
73 ;; the variable foo is of type cons, and optimize based on that.
74 ;; But, this won't win much because of (you guessed it) dynamic
75 ;; scope. Anything down the stack could change the value.
76 ;; (Another reason it doesn't work is that it is perfectly valid
77 ;; to call car with a null argument.) A better approach might
78 ;; be to allow type-specification of the form
79 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
80 ;; (put 'foo 'result-type 'bool)
81 ;; It should be possible to have these types checked to a certain
82 ;; degree.
83 ;;
84 ;; collapse common subexpressions
85 ;;
86 ;; It would be nice if redundant sequences could be factored out as well,
87 ;; when they are known to have no side-effects:
88 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
89 ;; but beware of traps like
90 ;; (cons (list x y) (list x y))
91 ;;
92 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
93 ;; Tail-recursion elimination is almost always impossible when all variables
94 ;; have dynamic scope, but given that the "return" byteop requires the
95 ;; binding stack to be empty (rather than emptying it itself), there can be
96 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
97 ;; make any bindings.
98 ;;
99 ;; Here is an example of an Emacs Lisp function which could safely be
100 ;; byte-compiled tail-recursively:
101 ;;
102 ;; (defun tail-map (fn list)
103 ;; (cond (list
104 ;; (funcall fn (car list))
105 ;; (tail-map fn (cdr list)))))
106 ;;
107 ;; However, if there was even a single let-binding around the COND,
108 ;; it could not be byte-compiled, because there would be an "unbind"
109 ;; byte-op between the final "call" and "return." Adding a
110 ;; Bunbind_all byteop would fix this.
111 ;;
112 ;; (defun foo (x y z) ... (foo a b c))
113 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
114 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
115 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
116 ;;
117 ;; this also can be considered tail recursion:
118 ;;
119 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
120 ;; could generalize this by doing the optimization
121 ;; (goto X) ... X: (return) --> (return)
122 ;;
123 ;; But this doesn't solve all of the problems: although by doing tail-
124 ;; recursion elimination in this way, the call-stack does not grow, the
125 ;; binding-stack would grow with each recursive step, and would eventually
126 ;; overflow. I don't believe there is any way around this without lexical
127 ;; scope.
128 ;;
129 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
130 ;;
131 ;; Idea: the form (lexical-scope) in a file means that the file may be
132 ;; compiled lexically. This proclamation is file-local. Then, within
133 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
134 ;; would do things the old way. (Or we could use CL "declare" forms.)
135 ;; We'd have to notice defvars and defconsts, since those variables should
136 ;; always be dynamic, and attempting to do a lexical binding of them
137 ;; should simply do a dynamic binding instead.
138 ;; But! We need to know about variables that were not necessarily defvarred
139 ;; in the file being compiled (doing a boundp check isn't good enough.)
140 ;; Fdefvar() would have to be modified to add something to the plist.
141 ;;
142 ;; A major disadvantage of this scheme is that the interpreter and compiler
143 ;; would have different semantics for files compiled with (dynamic-scope).
144 ;; Since this would be a file-local optimization, there would be no way to
145 ;; modify the interpreter to obey this (unless the loader was hacked
146 ;; in some grody way, but that's a really bad idea.)
147
148 ;; Other things to consider:
149
150 ;; ;; Associative math should recognize subcalls to identical function:
151 ;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
152 ;; ;; This should generate the same as (1+ x) and (1- x)
153
154 ;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
155 ;; ;; An awful lot of functions always return a non-nil value. If they're
156 ;; ;; error free also they may act as true-constants.
157
158 ;; (disassemble (lambda (x) (and (point) (foo))))
159 ;; ;; When
160 ;; ;; - all but one arguments to a function are constant
161 ;; ;; - the non-constant argument is an if-expression (cond-expression?)
162 ;; ;; then the outer function can be distributed. If the guarding
163 ;; ;; condition is side-effect-free [assignment-free] then the other
164 ;; ;; arguments may be any expressions. Since, however, the code size
165 ;; ;; can increase this way they should be "simple". Compare:
166
167 ;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
168 ;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
169
170 ;; ;; (car (cons A B)) -> (prog1 A B)
171 ;; (disassemble (lambda (x) (car (cons (foo) 42))))
172
173 ;; ;; (cdr (cons A B)) -> (progn A B)
174 ;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
175
176 ;; ;; (car (list A B ...)) -> (prog1 A B ...)
177 ;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
178
179 ;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
180 ;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
181
182
183 ;;; Code:
184
185 (require 'bytecomp)
186 (eval-when-compile (require 'cl))
187
188 (defun byte-compile-log-lap-1 (format &rest args)
189 ;; (if (aref byte-code-vector 0)
190 ;; (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
191 (byte-compile-log-1
192 (apply 'format format
193 (let (c a)
194 (mapcar (lambda (arg)
195 (if (not (consp arg))
196 (if (and (symbolp arg)
197 (string-match "^byte-" (symbol-name arg)))
198 (intern (substring (symbol-name arg) 5))
199 arg)
200 (if (integerp (setq c (car arg)))
201 (error "non-symbolic byte-op %s" c))
202 (if (eq c 'TAG)
203 (setq c arg)
204 (setq a (cond ((memq c byte-goto-ops)
205 (car (cdr (cdr arg))))
206 ((memq c byte-constref-ops)
207 (car (cdr arg)))
208 (t (cdr arg))))
209 (setq c (symbol-name c))
210 (if (string-match "^byte-." c)
211 (setq c (intern (substring c 5)))))
212 (if (eq c 'constant) (setq c 'const))
213 (if (and (eq (cdr arg) 0)
214 (not (memq c '(unbind call const))))
215 c
216 (format "(%s %s)" c a))))
217 args)))))
218
219 (defmacro byte-compile-log-lap (format-string &rest args)
220 `(and (memq byte-optimize-log '(t byte))
221 (byte-compile-log-lap-1 ,format-string ,@args)))
222
223 \f
224 ;;; byte-compile optimizers to support inlining
225
226 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
227
228 (defun byte-optimize-inline-handler (form)
229 "byte-optimize-handler for the `inline' special-form."
230 (cons 'progn
231 (mapcar
232 (lambda (sexp)
233 (let ((f (car-safe sexp)))
234 (if (and (symbolp f)
235 (or (cdr (assq f byte-compile-function-environment))
236 (not (or (not (fboundp f))
237 (cdr (assq f byte-compile-macro-environment))
238 (and (consp (setq f (symbol-function f)))
239 (eq (car f) 'macro))
240 (subrp f)))))
241 (byte-compile-inline-expand sexp)
242 sexp)))
243 (cdr form))))
244
245
246 ;; Splice the given lap code into the current instruction stream.
247 ;; If it has any labels in it, you're responsible for making sure there
248 ;; are no collisions, and that byte-compile-tag-number is reasonable
249 ;; after this is spliced in. The provided list is destroyed.
250 (defun byte-inline-lapcode (lap)
251 ;; "Replay" the operations: we used to just do
252 ;; (setq byte-compile-output (nconc (nreverse lap) byte-compile-output))
253 ;; but that fails to update byte-compile-depth, so we had to assume
254 ;; that `lap' ends up adding exactly 1 element to the stack. This
255 ;; happens to be true for byte-code generated by bytecomp.el without
256 ;; lexical-binding, but it's not true in general, and it's not true for
257 ;; code output by bytecomp.el with lexical-binding.
258 (dolist (op lap)
259 (cond
260 ((eq (car op) 'TAG) (byte-compile-out-tag op))
261 ((memq (car op) byte-goto-ops) (byte-compile-goto (car op) (cdr op)))
262 (t (byte-compile-out (car op) (cdr op))))))
263
264 (defun byte-compile-inline-expand (form)
265 (let* ((name (car form))
266 (fn (or (cdr (assq name byte-compile-function-environment))
267 (and (fboundp name) (symbol-function name)))))
268 (if (null fn)
269 (progn
270 (byte-compile-warn "attempt to inline `%s' before it was defined"
271 name)
272 form)
273 ;; else
274 (when (and (consp fn) (eq (car fn) 'autoload))
275 (load (nth 1 fn))
276 (setq fn (or (and (fboundp name) (symbol-function name))
277 (cdr (assq name byte-compile-function-environment)))))
278 (if (and (consp fn) (eq (car fn) 'autoload))
279 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
280 (cond
281 ((and (symbolp fn) (not (eq fn t))) ;A function alias.
282 (byte-compile-inline-expand (cons fn (cdr form))))
283 ((and (byte-code-function-p fn)
284 ;; FIXME: This works to inline old-style-byte-codes into
285 ;; old-style-byte-codes, but not mixed cases (not sure
286 ;; about new-style into new-style).
287 (not lexical-binding)
288 (not (and (>= (length fn) 7)
289 (aref fn 6)))) ;6 = COMPILED_PUSH_ARGS
290 ;; (message "Inlining %S byte-code" name)
291 (fetch-bytecode fn)
292 (let ((string (aref fn 1)))
293 ;; Isn't it an error for `string' not to be unibyte?? --stef
294 (if (fboundp 'string-as-unibyte)
295 (setq string (string-as-unibyte string)))
296 ;; `byte-compile-splice-in-already-compiled-code'
297 ;; takes care of inlining the body.
298 (cons `(lambda ,(aref fn 0)
299 (byte-code ,string ,(aref fn 2) ,(aref fn 3)))
300 (cdr form))))
301 ((eq (car-safe fn) 'lambda)
302 (macroexpand-all (cons fn (cdr form))
303 byte-compile-macro-environment))
304 (t ;; Give up on inlining.
305 form)))))
306
307 ;; ((lambda ...) ...)
308 (defun byte-compile-unfold-lambda (form &optional name)
309 (or name (setq name "anonymous lambda"))
310 (let ((lambda (car form))
311 (values (cdr form)))
312 (if (byte-code-function-p lambda)
313 (setq lambda (list 'lambda (aref lambda 0)
314 (list 'byte-code (aref lambda 1)
315 (aref lambda 2) (aref lambda 3)))))
316 (let ((arglist (nth 1 lambda))
317 (body (cdr (cdr lambda)))
318 optionalp restp
319 bindings)
320 (if (and (stringp (car body)) (cdr body))
321 (setq body (cdr body)))
322 (if (and (consp (car body)) (eq 'interactive (car (car body))))
323 (setq body (cdr body)))
324 (while arglist
325 (cond ((eq (car arglist) '&optional)
326 ;; ok, I'll let this slide because funcall_lambda() does...
327 ;; (if optionalp (error "multiple &optional keywords in %s" name))
328 (if restp (error "&optional found after &rest in %s" name))
329 (if (null (cdr arglist))
330 (error "nothing after &optional in %s" name))
331 (setq optionalp t))
332 ((eq (car arglist) '&rest)
333 ;; ...but it is by no stretch of the imagination a reasonable
334 ;; thing that funcall_lambda() allows (&rest x y) and
335 ;; (&rest x &optional y) in arglists.
336 (if (null (cdr arglist))
337 (error "nothing after &rest in %s" name))
338 (if (cdr (cdr arglist))
339 (error "multiple vars after &rest in %s" name))
340 (setq restp t))
341 (restp
342 (setq bindings (cons (list (car arglist)
343 (and values (cons 'list values)))
344 bindings)
345 values nil))
346 ((and (not optionalp) (null values))
347 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
348 (setq arglist nil values 'too-few))
349 (t
350 (setq bindings (cons (list (car arglist) (car values))
351 bindings)
352 values (cdr values))))
353 (setq arglist (cdr arglist)))
354 (if values
355 (progn
356 (or (eq values 'too-few)
357 (byte-compile-warn
358 "attempt to open-code `%s' with too many arguments" name))
359 form)
360
361 ;; The following leads to infinite recursion when loading a
362 ;; file containing `(defsubst f () (f))', and then trying to
363 ;; byte-compile that file.
364 ;(setq body (mapcar 'byte-optimize-form body)))
365
366 (let ((newform
367 (if bindings
368 (cons 'let (cons (nreverse bindings) body))
369 (cons 'progn body))))
370 (byte-compile-log " %s\t==>\t%s" form newform)
371 newform)))))
372
373 \f
374 ;;; implementing source-level optimizers
375
376 (defun byte-optimize-form-code-walker (form for-effect)
377 ;;
378 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
379 ;; we need to have special knowledge of the syntax of the special forms
380 ;; like let and defun (that's why they're special forms :-). (Actually,
381 ;; the important aspect is that they are subrs that don't evaluate all of
382 ;; their args.)
383 ;;
384 (let ((fn (car-safe form))
385 tmp)
386 (cond ((not (consp form))
387 (if (not (and for-effect
388 (or byte-compile-delete-errors
389 (not (symbolp form))
390 (eq form t))))
391 form))
392 ((eq fn 'quote)
393 (if (cdr (cdr form))
394 (byte-compile-warn "malformed quote form: `%s'"
395 (prin1-to-string form)))
396 ;; map (quote nil) to nil to simplify optimizer logic.
397 ;; map quoted constants to nil if for-effect (just because).
398 (and (nth 1 form)
399 (not for-effect)
400 form))
401 ((or (byte-code-function-p fn)
402 (eq 'lambda (car-safe fn)))
403 (let ((newform (byte-compile-unfold-lambda form)))
404 (if (eq newform form)
405 ;; Some error occurred, avoid infinite recursion
406 form
407 (byte-optimize-form-code-walker newform for-effect))))
408 ((memq fn '(let let*))
409 ;; recursively enter the optimizer for the bindings and body
410 ;; of a let or let*. This for depth-firstness: forms that
411 ;; are more deeply nested are optimized first.
412 (cons fn
413 (cons
414 (mapcar (lambda (binding)
415 (if (symbolp binding)
416 binding
417 (if (cdr (cdr binding))
418 (byte-compile-warn "malformed let binding: `%s'"
419 (prin1-to-string binding)))
420 (list (car binding)
421 (byte-optimize-form (nth 1 binding) nil))))
422 (nth 1 form))
423 (byte-optimize-body (cdr (cdr form)) for-effect))))
424 ((eq fn 'cond)
425 (cons fn
426 (mapcar (lambda (clause)
427 (if (consp clause)
428 (cons
429 (byte-optimize-form (car clause) nil)
430 (byte-optimize-body (cdr clause) for-effect))
431 (byte-compile-warn "malformed cond form: `%s'"
432 (prin1-to-string clause))
433 clause))
434 (cdr form))))
435 ((eq fn 'progn)
436 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
437 (if (cdr (cdr form))
438 (progn
439 (setq tmp (byte-optimize-body (cdr form) for-effect))
440 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
441 (byte-optimize-form (nth 1 form) for-effect)))
442 ((eq fn 'prog1)
443 (if (cdr (cdr form))
444 (cons 'prog1
445 (cons (byte-optimize-form (nth 1 form) for-effect)
446 (byte-optimize-body (cdr (cdr form)) t)))
447 (byte-optimize-form (nth 1 form) for-effect)))
448 ((eq fn 'prog2)
449 (cons 'prog2
450 (cons (byte-optimize-form (nth 1 form) t)
451 (cons (byte-optimize-form (nth 2 form) for-effect)
452 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
453
454 ((memq fn '(save-excursion save-restriction save-current-buffer))
455 ;; those subrs which have an implicit progn; it's not quite good
456 ;; enough to treat these like normal function calls.
457 ;; This can turn (save-excursion ...) into (save-excursion) which
458 ;; will be optimized away in the lap-optimize pass.
459 (cons fn (byte-optimize-body (cdr form) for-effect)))
460
461 ((eq fn 'with-output-to-temp-buffer)
462 ;; this is just like the above, except for the first argument.
463 (cons fn
464 (cons
465 (byte-optimize-form (nth 1 form) nil)
466 (byte-optimize-body (cdr (cdr form)) for-effect))))
467
468 ((eq fn 'if)
469 (when (< (length form) 3)
470 (byte-compile-warn "too few arguments for `if'"))
471 (cons fn
472 (cons (byte-optimize-form (nth 1 form) nil)
473 (cons
474 (byte-optimize-form (nth 2 form) for-effect)
475 (byte-optimize-body (nthcdr 3 form) for-effect)))))
476
477 ((memq fn '(and or)) ; remember, and/or are control structures.
478 ;; take forms off the back until we can't any more.
479 ;; In the future it could conceivably be a problem that the
480 ;; subexpressions of these forms are optimized in the reverse
481 ;; order, but it's ok for now.
482 (if for-effect
483 (let ((backwards (reverse (cdr form))))
484 (while (and backwards
485 (null (setcar backwards
486 (byte-optimize-form (car backwards)
487 for-effect))))
488 (setq backwards (cdr backwards)))
489 (if (and (cdr form) (null backwards))
490 (byte-compile-log
491 " all subforms of %s called for effect; deleted" form))
492 (and backwards
493 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
494 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
495
496 ((eq fn 'interactive)
497 (byte-compile-warn "misplaced interactive spec: `%s'"
498 (prin1-to-string form))
499 nil)
500
501 ((memq fn '(defun defmacro function
502 condition-case save-window-excursion))
503 ;; These forms are compiled as constants or by breaking out
504 ;; all the subexpressions and compiling them separately.
505 form)
506
507 ((eq fn 'unwind-protect)
508 ;; the "protected" part of an unwind-protect is compiled (and thus
509 ;; optimized) as a top-level form, so don't do it here. But the
510 ;; non-protected part has the same for-effect status as the
511 ;; unwind-protect itself. (The protected part is always for effect,
512 ;; but that isn't handled properly yet.)
513 (cons fn
514 (cons (byte-optimize-form (nth 1 form) for-effect)
515 (cdr (cdr form)))))
516
517 ((eq fn 'catch)
518 ;; the body of a catch is compiled (and thus optimized) as a
519 ;; top-level form, so don't do it here. The tag is never
520 ;; for-effect. The body should have the same for-effect status
521 ;; as the catch form itself, but that isn't handled properly yet.
522 (cons fn
523 (cons (byte-optimize-form (nth 1 form) nil)
524 (cdr (cdr form)))))
525
526 ((eq fn 'ignore)
527 ;; Don't treat the args to `ignore' as being
528 ;; computed for effect. We want to avoid the warnings
529 ;; that might occur if they were treated that way.
530 ;; However, don't actually bother calling `ignore'.
531 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
532
533 ;; If optimization is on, this is the only place that macros are
534 ;; expanded. If optimization is off, then macroexpansion happens
535 ;; in byte-compile-form. Otherwise, the macros are already expanded
536 ;; by the time that is reached.
537 ((not (eq form
538 (setq form (macroexpand form
539 byte-compile-macro-environment))))
540 (byte-optimize-form form for-effect))
541
542 ;; Support compiler macros as in cl.el.
543 ((and (fboundp 'compiler-macroexpand)
544 (symbolp (car-safe form))
545 (get (car-safe form) 'cl-compiler-macro)
546 (not (eq form
547 (with-no-warnings
548 (setq form (compiler-macroexpand form))))))
549 (byte-optimize-form form for-effect))
550
551 ((not (symbolp fn))
552 (byte-compile-warn "`%s' is a malformed function"
553 (prin1-to-string fn))
554 form)
555
556 ((and for-effect (setq tmp (get fn 'side-effect-free))
557 (or byte-compile-delete-errors
558 (eq tmp 'error-free)
559 ;; Detect the expansion of (pop foo).
560 ;; There is no need to compile the call to `car' there.
561 (and (eq fn 'car)
562 (eq (car-safe (cadr form)) 'prog1)
563 (let ((var (cadr (cadr form)))
564 (last (nth 2 (cadr form))))
565 (and (symbolp var)
566 (null (nthcdr 3 (cadr form)))
567 (eq (car-safe last) 'setq)
568 (eq (cadr last) var)
569 (eq (car-safe (nth 2 last)) 'cdr)
570 (eq (cadr (nth 2 last)) var))))
571 (progn
572 (byte-compile-warn "value returned from %s is unused"
573 (prin1-to-string form))
574 nil)))
575 (byte-compile-log " %s called for effect; deleted" fn)
576 ;; appending a nil here might not be necessary, but it can't hurt.
577 (byte-optimize-form
578 (cons 'progn (append (cdr form) '(nil))) t))
579
580 (t
581 ;; Otherwise, no args can be considered to be for-effect,
582 ;; even if the called function is for-effect, because we
583 ;; don't know anything about that function.
584 (let ((args (mapcar #'byte-optimize-form (cdr form))))
585 (if (and (get fn 'pure)
586 (byte-optimize-all-constp args))
587 (list 'quote (apply fn (mapcar #'eval args)))
588 (cons fn args)))))))
589
590 (defun byte-optimize-all-constp (list)
591 "Non-nil if all elements of LIST satisfy `byte-compile-constp'."
592 (let ((constant t))
593 (while (and list constant)
594 (unless (byte-compile-constp (car list))
595 (setq constant nil))
596 (setq list (cdr list)))
597 constant))
598
599 (defun byte-optimize-form (form &optional for-effect)
600 "The source-level pass of the optimizer."
601 ;;
602 ;; First, optimize all sub-forms of this one.
603 (setq form (byte-optimize-form-code-walker form for-effect))
604 ;;
605 ;; after optimizing all subforms, optimize this form until it doesn't
606 ;; optimize any further. This means that some forms will be passed through
607 ;; the optimizer many times, but that's necessary to make the for-effect
608 ;; processing do as much as possible.
609 ;;
610 (let (opt new)
611 (if (and (consp form)
612 (symbolp (car form))
613 (or (and for-effect
614 ;; we don't have any of these yet, but we might.
615 (setq opt (get (car form) 'byte-for-effect-optimizer)))
616 (setq opt (get (car form) 'byte-optimizer)))
617 (not (eq form (setq new (funcall opt form)))))
618 (progn
619 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
620 (byte-compile-log " %s\t==>\t%s" form new)
621 (setq new (byte-optimize-form new for-effect))
622 new)
623 form)))
624
625
626 (defun byte-optimize-body (forms all-for-effect)
627 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
628 ;; forms, all but the last of which are optimized with the assumption that
629 ;; they are being called for effect. the last is for-effect as well if
630 ;; all-for-effect is true. returns a new list of forms.
631 (let ((rest forms)
632 (result nil)
633 fe new)
634 (while rest
635 (setq fe (or all-for-effect (cdr rest)))
636 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
637 (if (or new (not fe))
638 (setq result (cons new result)))
639 (setq rest (cdr rest)))
640 (nreverse result)))
641
642 \f
643 ;; some source-level optimizers
644 ;;
645 ;; when writing optimizers, be VERY careful that the optimizer returns
646 ;; something not EQ to its argument if and ONLY if it has made a change.
647 ;; This implies that you cannot simply destructively modify the list;
648 ;; you must return something not EQ to it if you make an optimization.
649 ;;
650 ;; It is now safe to optimize code such that it introduces new bindings.
651
652 (defsubst byte-compile-trueconstp (form)
653 "Return non-nil if FORM always evaluates to a non-nil value."
654 (while (eq (car-safe form) 'progn)
655 (setq form (car (last (cdr form)))))
656 (cond ((consp form)
657 (case (car form)
658 (quote (cadr form))
659 ;; Can't use recursion in a defsubst.
660 ;; (progn (byte-compile-trueconstp (car (last (cdr form)))))
661 ))
662 ((not (symbolp form)))
663 ((eq form t))
664 ((keywordp form))))
665
666 (defsubst byte-compile-nilconstp (form)
667 "Return non-nil if FORM always evaluates to a nil value."
668 (while (eq (car-safe form) 'progn)
669 (setq form (car (last (cdr form)))))
670 (cond ((consp form)
671 (case (car form)
672 (quote (null (cadr form)))
673 ;; Can't use recursion in a defsubst.
674 ;; (progn (byte-compile-nilconstp (car (last (cdr form)))))
675 ))
676 ((not (symbolp form)) nil)
677 ((null form))))
678
679 ;; If the function is being called with constant numeric args,
680 ;; evaluate as much as possible at compile-time. This optimizer
681 ;; assumes that the function is associative, like + or *.
682 (defun byte-optimize-associative-math (form)
683 (let ((args nil)
684 (constants nil)
685 (rest (cdr form)))
686 (while rest
687 (if (numberp (car rest))
688 (setq constants (cons (car rest) constants))
689 (setq args (cons (car rest) args)))
690 (setq rest (cdr rest)))
691 (if (cdr constants)
692 (if args
693 (list (car form)
694 (apply (car form) constants)
695 (if (cdr args)
696 (cons (car form) (nreverse args))
697 (car args)))
698 (apply (car form) constants))
699 form)))
700
701 ;; If the function is being called with constant numeric args,
702 ;; evaluate as much as possible at compile-time. This optimizer
703 ;; assumes that the function satisfies
704 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
705 ;; like - and /.
706 (defun byte-optimize-nonassociative-math (form)
707 (if (or (not (numberp (car (cdr form))))
708 (not (numberp (car (cdr (cdr form))))))
709 form
710 (let ((constant (car (cdr form)))
711 (rest (cdr (cdr form))))
712 (while (numberp (car rest))
713 (setq constant (funcall (car form) constant (car rest))
714 rest (cdr rest)))
715 (if rest
716 (cons (car form) (cons constant rest))
717 constant))))
718
719 ;;(defun byte-optimize-associative-two-args-math (form)
720 ;; (setq form (byte-optimize-associative-math form))
721 ;; (if (consp form)
722 ;; (byte-optimize-two-args-left form)
723 ;; form))
724
725 ;;(defun byte-optimize-nonassociative-two-args-math (form)
726 ;; (setq form (byte-optimize-nonassociative-math form))
727 ;; (if (consp form)
728 ;; (byte-optimize-two-args-right form)
729 ;; form))
730
731 (defun byte-optimize-approx-equal (x y)
732 (<= (* (abs (- x y)) 100) (abs (+ x y))))
733
734 ;; Collect all the constants from FORM, after the STARTth arg,
735 ;; and apply FUN to them to make one argument at the end.
736 ;; For functions that can handle floats, that optimization
737 ;; can be incorrect because reordering can cause an overflow
738 ;; that would otherwise be avoided by encountering an arg that is a float.
739 ;; We avoid this problem by (1) not moving float constants and
740 ;; (2) not moving anything if it would cause an overflow.
741 (defun byte-optimize-delay-constants-math (form start fun)
742 ;; Merge all FORM's constants from number START, call FUN on them
743 ;; and put the result at the end.
744 (let ((rest (nthcdr (1- start) form))
745 (orig form)
746 ;; t means we must check for overflow.
747 (overflow (memq fun '(+ *))))
748 (while (cdr (setq rest (cdr rest)))
749 (if (integerp (car rest))
750 (let (constants)
751 (setq form (copy-sequence form)
752 rest (nthcdr (1- start) form))
753 (while (setq rest (cdr rest))
754 (cond ((integerp (car rest))
755 (setq constants (cons (car rest) constants))
756 (setcar rest nil))))
757 ;; If necessary, check now for overflow
758 ;; that might be caused by reordering.
759 (if (and overflow
760 ;; We have overflow if the result of doing the arithmetic
761 ;; on floats is not even close to the result
762 ;; of doing it on integers.
763 (not (byte-optimize-approx-equal
764 (apply fun (mapcar 'float constants))
765 (float (apply fun constants)))))
766 (setq form orig)
767 (setq form (nconc (delq nil form)
768 (list (apply fun (nreverse constants)))))))))
769 form))
770
771 (defsubst byte-compile-butlast (form)
772 (nreverse (cdr (reverse form))))
773
774 (defun byte-optimize-plus (form)
775 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
776 ;;(setq form (byte-optimize-delay-constants-math form 1 '+))
777 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
778 ;; For (+ constants...), byte-optimize-predicate does the work.
779 (when (memq nil (mapcar 'numberp (cdr form)))
780 (cond
781 ;; (+ x 1) --> (1+ x) and (+ x -1) --> (1- x).
782 ((and (= (length form) 3)
783 (or (memq (nth 1 form) '(1 -1))
784 (memq (nth 2 form) '(1 -1))))
785 (let (integer other)
786 (if (memq (nth 1 form) '(1 -1))
787 (setq integer (nth 1 form) other (nth 2 form))
788 (setq integer (nth 2 form) other (nth 1 form)))
789 (setq form
790 (list (if (eq integer 1) '1+ '1-) other))))
791 ;; Here, we could also do
792 ;; (+ x y ... 1) --> (1+ (+ x y ...))
793 ;; (+ x y ... -1) --> (1- (+ x y ...))
794 ;; The resulting bytecode is smaller, but is it faster? -- cyd
795 ))
796 (byte-optimize-predicate form))
797
798 (defun byte-optimize-minus (form)
799 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
800 ;;(setq form (byte-optimize-delay-constants-math form 2 '+))
801 ;; Remove zeros.
802 (when (and (nthcdr 3 form)
803 (memq 0 (cddr form)))
804 (setq form (nconc (list (car form) (cadr form))
805 (delq 0 (copy-sequence (cddr form)))))
806 ;; After the above, we must turn (- x) back into (- x 0)
807 (or (cddr form)
808 (setq form (nconc form (list 0)))))
809 ;; For (- constants..), byte-optimize-predicate does the work.
810 (when (memq nil (mapcar 'numberp (cdr form)))
811 (cond
812 ;; (- x 1) --> (1- x)
813 ((equal (nthcdr 2 form) '(1))
814 (setq form (list '1- (nth 1 form))))
815 ;; (- x -1) --> (1+ x)
816 ((equal (nthcdr 2 form) '(-1))
817 (setq form (list '1+ (nth 1 form))))
818 ;; (- 0 x) --> (- x)
819 ((and (eq (nth 1 form) 0)
820 (= (length form) 3))
821 (setq form (list '- (nth 2 form))))
822 ;; Here, we could also do
823 ;; (- x y ... 1) --> (1- (- x y ...))
824 ;; (- x y ... -1) --> (1+ (- x y ...))
825 ;; The resulting bytecode is smaller, but is it faster? -- cyd
826 ))
827 (byte-optimize-predicate form))
828
829 (defun byte-optimize-multiply (form)
830 (setq form (byte-optimize-delay-constants-math form 1 '*))
831 ;; For (* constants..), byte-optimize-predicate does the work.
832 (when (memq nil (mapcar 'numberp (cdr form)))
833 ;; After `byte-optimize-predicate', if there is a INTEGER constant
834 ;; in FORM, it is in the last element.
835 (let ((last (car (reverse (cdr form)))))
836 (cond
837 ;; Would handling (* ... 0) here cause floating point errors?
838 ;; See bug#1334.
839 ((eq 1 last) (setq form (byte-compile-butlast form)))
840 ((eq -1 last)
841 (setq form (list '- (if (nthcdr 3 form)
842 (byte-compile-butlast form)
843 (nth 1 form))))))))
844 (byte-optimize-predicate form))
845
846 (defun byte-optimize-divide (form)
847 (setq form (byte-optimize-delay-constants-math form 2 '*))
848 ;; After `byte-optimize-predicate', if there is a INTEGER constant
849 ;; in FORM, it is in the last element.
850 (let ((last (car (reverse (cdr (cdr form))))))
851 (cond
852 ;; Runtime error (leave it intact).
853 ((or (null last)
854 (eq last 0)
855 (memql 0.0 (cddr form))))
856 ;; No constants in expression
857 ((not (numberp last)))
858 ;; For (* constants..), byte-optimize-predicate does the work.
859 ((null (memq nil (mapcar 'numberp (cdr form)))))
860 ;; (/ x y.. 1) --> (/ x y..)
861 ((and (eq last 1) (nthcdr 3 form))
862 (setq form (byte-compile-butlast form)))
863 ;; (/ x -1), (/ x .. -1) --> (- x), (- (/ x ..))
864 ((eq last -1)
865 (setq form (list '- (if (nthcdr 3 form)
866 (byte-compile-butlast form)
867 (nth 1 form)))))))
868 (byte-optimize-predicate form))
869
870 (defun byte-optimize-logmumble (form)
871 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
872 (byte-optimize-predicate
873 (cond ((memq 0 form)
874 (setq form (if (eq (car form) 'logand)
875 (cons 'progn (cdr form))
876 (delq 0 (copy-sequence form)))))
877 ((and (eq (car-safe form) 'logior)
878 (memq -1 form))
879 (cons 'progn (cdr form)))
880 (form))))
881
882
883 (defun byte-optimize-binary-predicate (form)
884 (if (byte-compile-constp (nth 1 form))
885 (if (byte-compile-constp (nth 2 form))
886 (condition-case ()
887 (list 'quote (eval form))
888 (error form))
889 ;; This can enable some lapcode optimizations.
890 (list (car form) (nth 2 form) (nth 1 form)))
891 form))
892
893 (defun byte-optimize-predicate (form)
894 (let ((ok t)
895 (rest (cdr form)))
896 (while (and rest ok)
897 (setq ok (byte-compile-constp (car rest))
898 rest (cdr rest)))
899 (if ok
900 (condition-case ()
901 (list 'quote (eval form))
902 (error form))
903 form)))
904
905 (defun byte-optimize-identity (form)
906 (if (and (cdr form) (null (cdr (cdr form))))
907 (nth 1 form)
908 (byte-compile-warn "identity called with %d arg%s, but requires 1"
909 (length (cdr form))
910 (if (= 1 (length (cdr form))) "" "s"))
911 form))
912
913 (put 'identity 'byte-optimizer 'byte-optimize-identity)
914
915 (put '+ 'byte-optimizer 'byte-optimize-plus)
916 (put '* 'byte-optimizer 'byte-optimize-multiply)
917 (put '- 'byte-optimizer 'byte-optimize-minus)
918 (put '/ 'byte-optimizer 'byte-optimize-divide)
919 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
920 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
921
922 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
923 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
924 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
925 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
926 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
927
928 (put '< 'byte-optimizer 'byte-optimize-predicate)
929 (put '> 'byte-optimizer 'byte-optimize-predicate)
930 (put '<= 'byte-optimizer 'byte-optimize-predicate)
931 (put '>= 'byte-optimizer 'byte-optimize-predicate)
932 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
933 (put '1- 'byte-optimizer 'byte-optimize-predicate)
934 (put 'not 'byte-optimizer 'byte-optimize-predicate)
935 (put 'null 'byte-optimizer 'byte-optimize-predicate)
936 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
937 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
938 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
939 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
940 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
941 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
942 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
943
944 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
945 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
946 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
947 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
948
949 (put 'car 'byte-optimizer 'byte-optimize-predicate)
950 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
951 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
952 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
953
954
955 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
956 ;; take care of this? - Jamie
957 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
958 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
959 (put 'quote 'byte-optimizer 'byte-optimize-quote)
960 (defun byte-optimize-quote (form)
961 (if (or (consp (nth 1 form))
962 (and (symbolp (nth 1 form))
963 (not (byte-compile-const-symbol-p form))))
964 form
965 (nth 1 form)))
966
967 (defun byte-optimize-zerop (form)
968 (cond ((numberp (nth 1 form))
969 (eval form))
970 (byte-compile-delete-errors
971 (list '= (nth 1 form) 0))
972 (form)))
973
974 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
975
976 (defun byte-optimize-and (form)
977 ;; Simplify if less than 2 args.
978 ;; if there is a literal nil in the args to `and', throw it and following
979 ;; forms away, and surround the `and' with (progn ... nil).
980 (cond ((null (cdr form)))
981 ((memq nil form)
982 (list 'progn
983 (byte-optimize-and
984 (prog1 (setq form (copy-sequence form))
985 (while (nth 1 form)
986 (setq form (cdr form)))
987 (setcdr form nil)))
988 nil))
989 ((null (cdr (cdr form)))
990 (nth 1 form))
991 ((byte-optimize-predicate form))))
992
993 (defun byte-optimize-or (form)
994 ;; Throw away nil's, and simplify if less than 2 args.
995 ;; If there is a literal non-nil constant in the args to `or', throw away all
996 ;; following forms.
997 (if (memq nil form)
998 (setq form (delq nil (copy-sequence form))))
999 (let ((rest form))
1000 (while (cdr (setq rest (cdr rest)))
1001 (if (byte-compile-trueconstp (car rest))
1002 (setq form (copy-sequence form)
1003 rest (setcdr (memq (car rest) form) nil))))
1004 (if (cdr (cdr form))
1005 (byte-optimize-predicate form)
1006 (nth 1 form))))
1007
1008 (defun byte-optimize-cond (form)
1009 ;; if any clauses have a literal nil as their test, throw them away.
1010 ;; if any clause has a literal non-nil constant as its test, throw
1011 ;; away all following clauses.
1012 (let (rest)
1013 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
1014 (while (setq rest (assq nil (cdr form)))
1015 (setq form (delq rest (copy-sequence form))))
1016 (if (memq nil (cdr form))
1017 (setq form (delq nil (copy-sequence form))))
1018 (setq rest form)
1019 (while (setq rest (cdr rest))
1020 (cond ((byte-compile-trueconstp (car-safe (car rest)))
1021 ;; This branch will always be taken: kill the subsequent ones.
1022 (cond ((eq rest (cdr form)) ;First branch of `cond'.
1023 (setq form `(progn ,@(car rest))))
1024 ((cdr rest)
1025 (setq form (copy-sequence form))
1026 (setcdr (memq (car rest) form) nil)))
1027 (setq rest nil))
1028 ((and (consp (car rest))
1029 (byte-compile-nilconstp (caar rest)))
1030 ;; This branch will never be taken: kill its body.
1031 (setcdr (car rest) nil)))))
1032 ;;
1033 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
1034 (if (eq 'cond (car-safe form))
1035 (let ((clauses (cdr form)))
1036 (if (and (consp (car clauses))
1037 (null (cdr (car clauses))))
1038 (list 'or (car (car clauses))
1039 (byte-optimize-cond
1040 (cons (car form) (cdr (cdr form)))))
1041 form))
1042 form))
1043
1044 (defun byte-optimize-if (form)
1045 ;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
1046 ;; (if <true-constant> <then> <else...>) ==> <then>
1047 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1048 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1049 ;; (if <test> <then> nil) ==> (if <test> <then>)
1050 (let ((clause (nth 1 form)))
1051 (cond ((and (eq (car-safe clause) 'progn)
1052 ;; `clause' is a proper list.
1053 (null (cdr (last clause))))
1054 (if (null (cddr clause))
1055 ;; A trivial `progn'.
1056 (byte-optimize-if `(if ,(cadr clause) ,@(nthcdr 2 form)))
1057 (nconc (butlast clause)
1058 (list
1059 (byte-optimize-if
1060 `(if ,(car (last clause)) ,@(nthcdr 2 form)))))))
1061 ((byte-compile-trueconstp clause)
1062 `(progn ,clause ,(nth 2 form)))
1063 ((byte-compile-nilconstp clause)
1064 `(progn ,clause ,@(nthcdr 3 form)))
1065 ((nth 2 form)
1066 (if (equal '(nil) (nthcdr 3 form))
1067 (list 'if clause (nth 2 form))
1068 form))
1069 ((or (nth 3 form) (nthcdr 4 form))
1070 (list 'if
1071 ;; Don't make a double negative;
1072 ;; instead, take away the one that is there.
1073 (if (and (consp clause) (memq (car clause) '(not null))
1074 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1075 (nth 1 clause)
1076 (list 'not clause))
1077 (if (nthcdr 4 form)
1078 (cons 'progn (nthcdr 3 form))
1079 (nth 3 form))))
1080 (t
1081 (list 'progn clause nil)))))
1082
1083 (defun byte-optimize-while (form)
1084 (when (< (length form) 2)
1085 (byte-compile-warn "too few arguments for `while'"))
1086 (if (nth 1 form)
1087 form))
1088
1089 (put 'and 'byte-optimizer 'byte-optimize-and)
1090 (put 'or 'byte-optimizer 'byte-optimize-or)
1091 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1092 (put 'if 'byte-optimizer 'byte-optimize-if)
1093 (put 'while 'byte-optimizer 'byte-optimize-while)
1094
1095 ;; byte-compile-negation-optimizer lives in bytecomp.el
1096 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1097 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1098 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1099
1100
1101 (defun byte-optimize-funcall (form)
1102 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1103 ;; (funcall foo ...) ==> (foo ...)
1104 (let ((fn (nth 1 form)))
1105 (if (memq (car-safe fn) '(quote function))
1106 (cons (nth 1 fn) (cdr (cdr form)))
1107 form)))
1108
1109 (defun byte-optimize-apply (form)
1110 ;; If the last arg is a literal constant, turn this into a funcall.
1111 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1112 (let ((fn (nth 1 form))
1113 (last (nth (1- (length form)) form))) ; I think this really is fastest
1114 (or (if (or (null last)
1115 (eq (car-safe last) 'quote))
1116 (if (listp (nth 1 last))
1117 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1118 (nconc (list 'funcall fn) butlast
1119 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1120 (byte-compile-warn
1121 "last arg to apply can't be a literal atom: `%s'"
1122 (prin1-to-string last))
1123 nil))
1124 form)))
1125
1126 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1127 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1128
1129
1130 (put 'let 'byte-optimizer 'byte-optimize-letX)
1131 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1132 (defun byte-optimize-letX (form)
1133 (cond ((null (nth 1 form))
1134 ;; No bindings
1135 (cons 'progn (cdr (cdr form))))
1136 ((or (nth 2 form) (nthcdr 3 form))
1137 form)
1138 ;; The body is nil
1139 ((eq (car form) 'let)
1140 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1141 '(nil)))
1142 (t
1143 (let ((binds (reverse (nth 1 form))))
1144 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1145
1146
1147 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1148 (defun byte-optimize-nth (form)
1149 (if (= (safe-length form) 3)
1150 (if (memq (nth 1 form) '(0 1))
1151 (list 'car (if (zerop (nth 1 form))
1152 (nth 2 form)
1153 (list 'cdr (nth 2 form))))
1154 (byte-optimize-predicate form))
1155 form))
1156
1157 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1158 (defun byte-optimize-nthcdr (form)
1159 (if (= (safe-length form) 3)
1160 (if (memq (nth 1 form) '(0 1 2))
1161 (let ((count (nth 1 form)))
1162 (setq form (nth 2 form))
1163 (while (>= (setq count (1- count)) 0)
1164 (setq form (list 'cdr form)))
1165 form)
1166 (byte-optimize-predicate form))
1167 form))
1168
1169 ;; Fixme: delete-char -> delete-region (byte-coded)
1170 ;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1171 ;; string-make-multibyte for constant args.
1172
1173 (put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1174 (defun byte-optimize-featurep (form)
1175 ;; Emacs-21's byte-code doesn't run under XEmacs or SXEmacs anyway, so we
1176 ;; can safely optimize away this test.
1177 (if (member (cdr-safe form) '(((quote xemacs)) ((quote sxemacs))))
1178 nil
1179 (if (member (cdr-safe form) '(((quote emacs))))
1180 t
1181 form)))
1182
1183 (put 'set 'byte-optimizer 'byte-optimize-set)
1184 (defun byte-optimize-set (form)
1185 (let ((var (car-safe (cdr-safe form))))
1186 (cond
1187 ((and (eq (car-safe var) 'quote) (consp (cdr var)))
1188 `(setq ,(cadr var) ,@(cddr form)))
1189 ((and (eq (car-safe var) 'make-local-variable)
1190 (eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
1191 (consp (cdr var)))
1192 `(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
1193 (t form))))
1194 \f
1195 ;; enumerating those functions which need not be called if the returned
1196 ;; value is not used. That is, something like
1197 ;; (progn (list (something-with-side-effects) (yow))
1198 ;; (foo))
1199 ;; may safely be turned into
1200 ;; (progn (progn (something-with-side-effects) (yow))
1201 ;; (foo))
1202 ;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1203
1204 ;; Some of these functions have the side effect of allocating memory
1205 ;; and it would be incorrect to replace two calls with one.
1206 ;; But we don't try to do those kinds of optimizations,
1207 ;; so it is safe to list such functions here.
1208 ;; Some of these functions return values that depend on environment
1209 ;; state, so that constant folding them would be wrong,
1210 ;; but we don't do constant folding based on this list.
1211
1212 ;; However, at present the only optimization we normally do
1213 ;; is delete calls that need not occur, and we only do that
1214 ;; with the error-free functions.
1215
1216 ;; I wonder if I missed any :-\)
1217 (let ((side-effect-free-fns
1218 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1219 assoc assq
1220 boundp buffer-file-name buffer-local-variables buffer-modified-p
1221 buffer-substring byte-code-function-p
1222 capitalize car-less-than-car car cdr ceiling char-after char-before
1223 char-equal char-to-string char-width
1224 compare-strings concat coordinates-in-window-p
1225 copy-alist copy-sequence copy-marker cos count-lines
1226 decode-char
1227 decode-time default-boundp default-value documentation downcase
1228 elt encode-char exp expt encode-time error-message-string
1229 fboundp fceiling featurep ffloor
1230 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1231 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1232 float float-time floor format format-time-string frame-visible-p
1233 fround ftruncate
1234 get gethash get-buffer get-buffer-window getenv get-file-buffer
1235 hash-table-count
1236 int-to-string intern-soft
1237 keymap-parent
1238 length local-variable-if-set-p local-variable-p log log10 logand
1239 logb logior lognot logxor lsh langinfo
1240 make-list make-string make-symbol
1241 marker-buffer max member memq min mod multibyte-char-to-unibyte
1242 next-window nth nthcdr number-to-string
1243 parse-colon-path plist-get plist-member
1244 prefix-numeric-value previous-window prin1-to-string propertize
1245 degrees-to-radians
1246 radians-to-degrees rassq rassoc read-from-string regexp-quote
1247 region-beginning region-end reverse round
1248 sin sqrt string string< string= string-equal string-lessp string-to-char
1249 string-to-int string-to-number substring sxhash symbol-function
1250 symbol-name symbol-plist symbol-value string-make-unibyte
1251 string-make-multibyte string-as-multibyte string-as-unibyte
1252 string-to-multibyte
1253 tan truncate
1254 unibyte-char-to-multibyte upcase user-full-name
1255 user-login-name user-original-login-name user-variable-p
1256 vconcat
1257 window-buffer window-dedicated-p window-edges window-height
1258 window-hscroll window-minibuffer-p window-width
1259 zerop))
1260 (side-effect-and-error-free-fns
1261 '(arrayp atom
1262 bobp bolp bool-vector-p
1263 buffer-end buffer-list buffer-size buffer-string bufferp
1264 car-safe case-table-p cdr-safe char-or-string-p characterp
1265 charsetp commandp cons consp
1266 current-buffer current-global-map current-indentation
1267 current-local-map current-minor-mode-maps current-time
1268 current-time-string current-time-zone
1269 eobp eolp eq equal eventp
1270 floatp following-char framep
1271 get-largest-window get-lru-window
1272 hash-table-p
1273 identity ignore integerp integer-or-marker-p interactive-p
1274 invocation-directory invocation-name
1275 keymapp
1276 line-beginning-position line-end-position list listp
1277 make-marker mark mark-marker markerp max-char
1278 memory-limit minibuffer-window
1279 mouse-movement-p
1280 natnump nlistp not null number-or-marker-p numberp
1281 one-window-p overlayp
1282 point point-marker point-min point-max preceding-char primary-charset
1283 processp
1284 recent-keys recursion-depth
1285 safe-length selected-frame selected-window sequencep
1286 standard-case-table standard-syntax-table stringp subrp symbolp
1287 syntax-table syntax-table-p
1288 this-command-keys this-command-keys-vector this-single-command-keys
1289 this-single-command-raw-keys
1290 user-real-login-name user-real-uid user-uid
1291 vector vectorp visible-frame-list
1292 wholenump window-configuration-p window-live-p windowp)))
1293 (while side-effect-free-fns
1294 (put (car side-effect-free-fns) 'side-effect-free t)
1295 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1296 (while side-effect-and-error-free-fns
1297 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1298 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1299 nil)
1300
1301 \f
1302 ;; pure functions are side-effect free functions whose values depend
1303 ;; only on their arguments. For these functions, calls with constant
1304 ;; arguments can be evaluated at compile time. This may shift run time
1305 ;; errors to compile time.
1306
1307 (let ((pure-fns
1308 '(concat symbol-name regexp-opt regexp-quote string-to-syntax)))
1309 (while pure-fns
1310 (put (car pure-fns) 'pure t)
1311 (setq pure-fns (cdr pure-fns)))
1312 nil)
1313
1314 (defun byte-compile-splice-in-already-compiled-code (form)
1315 ;; form is (byte-code "..." [...] n)
1316 (if (not (memq byte-optimize '(t lap)))
1317 (byte-compile-normal-call form)
1318 (byte-inline-lapcode
1319 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))))
1320
1321 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1322
1323 \f
1324 (defconst byte-constref-ops
1325 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1326
1327 ;; This function extracts the bitfields from variable-length opcodes.
1328 ;; Originally defined in disass.el (which no longer uses it.)
1329
1330 (defun disassemble-offset ()
1331 "Don't call this!"
1332 ;; fetch and return the offset for the current opcode.
1333 ;; return nil if this opcode has no offset
1334 ;; Used and set dynamically in byte-decompile-bytecode-1.
1335 (defvar bytedecomp-op)
1336 (defvar bytedecomp-ptr)
1337 (defvar bytedecomp-bytes)
1338 (cond ((< bytedecomp-op byte-nth)
1339 (let ((tem (logand bytedecomp-op 7)))
1340 (setq bytedecomp-op (logand bytedecomp-op 248))
1341 (cond ((eq tem 6)
1342 ;; Offset in next byte.
1343 (setq bytedecomp-ptr (1+ bytedecomp-ptr))
1344 (aref bytedecomp-bytes bytedecomp-ptr))
1345 ((eq tem 7)
1346 ;; Offset in next 2 bytes.
1347 (setq bytedecomp-ptr (1+ bytedecomp-ptr))
1348 (+ (aref bytedecomp-bytes bytedecomp-ptr)
1349 (progn (setq bytedecomp-ptr (1+ bytedecomp-ptr))
1350 (lsh (aref bytedecomp-bytes bytedecomp-ptr) 8))))
1351 (t tem)))) ;offset was in opcode
1352 ((>= bytedecomp-op byte-constant)
1353 (prog1 (- bytedecomp-op byte-constant) ;offset in opcode
1354 (setq bytedecomp-op byte-constant)))
1355 ((or (and (>= bytedecomp-op byte-constant2)
1356 (<= bytedecomp-op byte-goto-if-not-nil-else-pop))
1357 (= bytedecomp-op byte-stack-set2))
1358 ;; Offset in next 2 bytes.
1359 (setq bytedecomp-ptr (1+ bytedecomp-ptr))
1360 (+ (aref bytedecomp-bytes bytedecomp-ptr)
1361 (progn (setq bytedecomp-ptr (1+ bytedecomp-ptr))
1362 (lsh (aref bytedecomp-bytes bytedecomp-ptr) 8))))
1363 ((and (>= bytedecomp-op byte-listN)
1364 (<= bytedecomp-op byte-discardN))
1365 (setq bytedecomp-ptr (1+ bytedecomp-ptr)) ;offset in next byte
1366 (aref bytedecomp-bytes bytedecomp-ptr))))
1367
1368
1369 ;; This de-compiler is used for inline expansion of compiled functions,
1370 ;; and by the disassembler.
1371 ;;
1372 ;; This list contains numbers, which are pc values,
1373 ;; before each instruction.
1374 (defun byte-decompile-bytecode (bytes constvec)
1375 "Turn BYTECODE into lapcode, referring to CONSTVEC."
1376 (let ((byte-compile-constants nil)
1377 (byte-compile-variables nil)
1378 (byte-compile-tag-number 0))
1379 (byte-decompile-bytecode-1 bytes constvec)))
1380
1381 ;; As byte-decompile-bytecode, but updates
1382 ;; byte-compile-{constants, variables, tag-number}.
1383 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1384 ;; with `goto's destined for the end of the code.
1385 ;; That is for use by the compiler.
1386 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1387 ;; In that case, we put a pc value into the list
1388 ;; before each insn (or its label).
1389 (defun byte-decompile-bytecode-1 (bytedecomp-bytes constvec
1390 &optional make-spliceable)
1391 (let ((length (length bytedecomp-bytes))
1392 (bytedecomp-ptr 0) optr tags bytedecomp-op offset
1393 lap tmp
1394 endtag)
1395 (while (not (= bytedecomp-ptr length))
1396 (or make-spliceable
1397 (setq lap (cons bytedecomp-ptr lap)))
1398 (setq bytedecomp-op (aref bytedecomp-bytes bytedecomp-ptr)
1399 optr bytedecomp-ptr
1400 offset (disassemble-offset)) ; this does dynamic-scope magic
1401 (setq bytedecomp-op (aref byte-code-vector bytedecomp-op))
1402 (cond ((memq bytedecomp-op byte-goto-ops)
1403 ;; it's a pc
1404 (setq offset
1405 (cdr (or (assq offset tags)
1406 (car (setq tags
1407 (cons (cons offset
1408 (byte-compile-make-tag))
1409 tags)))))))
1410 ((cond ((eq bytedecomp-op 'byte-constant2)
1411 (setq bytedecomp-op 'byte-constant) t)
1412 ((memq bytedecomp-op byte-constref-ops)))
1413 (setq tmp (if (>= offset (length constvec))
1414 (list 'out-of-range offset)
1415 (aref constvec offset))
1416 offset (if (eq bytedecomp-op 'byte-constant)
1417 (byte-compile-get-constant tmp)
1418 (or (assq tmp byte-compile-variables)
1419 (car (setq byte-compile-variables
1420 (cons (list tmp)
1421 byte-compile-variables)))))))
1422 ((and make-spliceable
1423 (eq bytedecomp-op 'byte-return))
1424 (if (= bytedecomp-ptr (1- length))
1425 (setq bytedecomp-op nil)
1426 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1427 bytedecomp-op 'byte-goto)))
1428 ((eq bytedecomp-op 'byte-stack-set2)
1429 (setq bytedecomp-op 'byte-stack-set))
1430 ((and (eq bytedecomp-op 'byte-discardN) (>= offset #x80))
1431 ;; The top bit of the operand for byte-discardN is a flag,
1432 ;; saying whether the top-of-stack is preserved. In
1433 ;; lapcode, we represent this by using a different opcode
1434 ;; (with the flag removed from the operand).
1435 (setq bytedecomp-op 'byte-discardN-preserve-tos)
1436 (setq offset (- offset #x80))))
1437 ;; lap = ( [ (pc . (op . arg)) ]* )
1438 (setq lap (cons (cons optr (cons bytedecomp-op (or offset 0)))
1439 lap))
1440 (setq bytedecomp-ptr (1+ bytedecomp-ptr)))
1441 ;; take off the dummy nil op that we replaced a trailing "return" with.
1442 (let ((rest lap))
1443 (while rest
1444 (cond ((numberp (car rest)))
1445 ((setq tmp (assq (car (car rest)) tags))
1446 ;; this addr is jumped to
1447 (setcdr rest (cons (cons nil (cdr tmp))
1448 (cdr rest)))
1449 (setq tags (delq tmp tags))
1450 (setq rest (cdr rest))))
1451 (setq rest (cdr rest))))
1452 (if tags (error "optimizer error: missed tags %s" tags))
1453 (if (null (car (cdr (car lap))))
1454 (setq lap (cdr lap)))
1455 (if endtag
1456 (setq lap (cons (cons nil endtag) lap)))
1457 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1458 (mapcar (function (lambda (elt)
1459 (if (numberp elt)
1460 elt
1461 (cdr elt))))
1462 (nreverse lap))))
1463
1464 \f
1465 ;;; peephole optimizer
1466
1467 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1468
1469 (defconst byte-conditional-ops
1470 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1471 byte-goto-if-not-nil-else-pop))
1472
1473 (defconst byte-after-unbind-ops
1474 '(byte-constant byte-dup
1475 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1476 byte-eq byte-not
1477 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1478 byte-interactive-p)
1479 ;; How about other side-effect-free-ops? Is it safe to move an
1480 ;; error invocation (such as from nth) out of an unwind-protect?
1481 ;; No, it is not, because the unwind-protect forms can alter
1482 ;; the inside of the object to which nth would apply.
1483 ;; For the same reason, byte-equal was deleted from this list.
1484 "Byte-codes that can be moved past an unbind.")
1485
1486 (defconst byte-compile-side-effect-and-error-free-ops
1487 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1488 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1489 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1490 byte-point-min byte-following-char byte-preceding-char
1491 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1492 byte-current-buffer byte-interactive-p byte-stack-ref))
1493
1494 (defconst byte-compile-side-effect-free-ops
1495 (nconc
1496 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1497 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1498 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1499 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1500 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1501 byte-member byte-assq byte-quo byte-rem)
1502 byte-compile-side-effect-and-error-free-ops))
1503
1504 ;; This crock is because of the way DEFVAR_BOOL variables work.
1505 ;; Consider the code
1506 ;;
1507 ;; (defun foo (flag)
1508 ;; (let ((old-pop-ups pop-up-windows)
1509 ;; (pop-up-windows flag))
1510 ;; (cond ((not (eq pop-up-windows old-pop-ups))
1511 ;; (setq old-pop-ups pop-up-windows)
1512 ;; ...))))
1513 ;;
1514 ;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1515 ;; something else. But if we optimize
1516 ;;
1517 ;; varref flag
1518 ;; varbind pop-up-windows
1519 ;; varref pop-up-windows
1520 ;; not
1521 ;; to
1522 ;; varref flag
1523 ;; dup
1524 ;; varbind pop-up-windows
1525 ;; not
1526 ;;
1527 ;; we break the program, because it will appear that pop-up-windows and
1528 ;; old-pop-ups are not EQ when really they are. So we have to know what
1529 ;; the BOOL variables are, and not perform this optimization on them.
1530
1531 ;; The variable `byte-boolean-vars' is now primitive and updated
1532 ;; automatically by DEFVAR_BOOL.
1533
1534 (defmacro byte-opt-update-stack-params (stack-adjust stack-depth lap0 rest lap)
1535 "...macro used by byte-optimize-lapcode..."
1536 `(progn
1537 (byte-compile-log-lap "Before %s [depth = %s]" ,lap0 ,stack-depth)
1538 (cond ((eq (car ,lap0) 'TAG)
1539 ;; A tag can encode the expected stack depth.
1540 (when (cddr ,lap0)
1541 ;; First, check to see if our notion of the current stack
1542 ;; depth agrees with this tag. We don't check at the
1543 ;; beginning of the function, because the presence of
1544 ;; lexical arguments means the first tag will have a
1545 ;; non-zero offset.
1546 (when (and (not (eq ,rest ,lap)) ; not at first insn
1547 ,stack-depth ; not just after a goto
1548 (not (= (cddr ,lap0) ,stack-depth)))
1549 (error "Compiler error: optimizer is confused about %s:
1550 %s != %s at lapcode %s" ',stack-depth (cddr ,lap0) ,stack-depth ,lap0))
1551 ;; Now set out current depth from this tag
1552 (setq ,stack-depth (cddr ,lap0)))
1553 (setq ,stack-adjust 0))
1554 ((memq (car ,lap0) '(byte-goto byte-return))
1555 ;; These insns leave us in an unknown state
1556 (setq ,stack-adjust nil))
1557 ((car ,lap0)
1558 ;; Not a no-op, set ,stack-adjust for lap0. ,stack-adjust will
1559 ;; be added to ,stack-depth at the end of the loop, so any code
1560 ;; that modifies the instruction sequence must adjust this too.
1561 (setq ,stack-adjust
1562 (byte-compile-stack-adjustment (car ,lap0) (cdr ,lap0)))))
1563 (byte-compile-log-lap "Before %s [depth => %s, adj = %s]" ,lap0 ,stack-depth ,stack-adjust)
1564 ))
1565
1566 (defun byte-optimize-lapcode (lap &optional for-effect)
1567 "Simple peephole optimizer. LAP is both modified and returned.
1568 If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
1569 (let (lap0
1570 lap1
1571 lap2
1572 stack-adjust
1573 stack-depth
1574 (initial-stack-depth
1575 (if (and lap (eq (car (car lap)) 'TAG))
1576 (cdr (cdr (car lap)))
1577 0))
1578 (keep-going 'first-time)
1579 (add-depth 0)
1580 rest tmp tmp2 tmp3
1581 (side-effect-free (if byte-compile-delete-errors
1582 byte-compile-side-effect-free-ops
1583 byte-compile-side-effect-and-error-free-ops)))
1584 (while keep-going
1585 (or (eq keep-going 'first-time)
1586 (byte-compile-log-lap " ---- next pass"))
1587 (setq rest lap
1588 stack-depth initial-stack-depth
1589 keep-going nil)
1590 (while rest
1591 (setq lap0 (car rest)
1592 lap1 (nth 1 rest)
1593 lap2 (nth 2 rest))
1594
1595 (byte-opt-update-stack-params stack-adjust stack-depth lap0 rest lap)
1596
1597 ;; You may notice that sequences like "dup varset discard" are
1598 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1599 ;; You may be tempted to change this; resist that temptation.
1600 (cond ;;
1601 ;; <side-effect-free> pop --> <deleted>
1602 ;; ...including:
1603 ;; const-X pop --> <deleted>
1604 ;; varref-X pop --> <deleted>
1605 ;; dup pop --> <deleted>
1606 ;;
1607 ((and (eq 'byte-discard (car lap1))
1608 (memq (car lap0) side-effect-free))
1609 (setq keep-going t)
1610 (setq rest (cdr rest))
1611 (cond ((= stack-adjust 1)
1612 (byte-compile-log-lap
1613 " %s discard\t-->\t<deleted>" lap0)
1614 (setq lap (delq lap0 (delq lap1 lap))))
1615 ((= stack-adjust 0)
1616 (byte-compile-log-lap
1617 " %s discard\t-->\t<deleted> discard" lap0)
1618 (setq lap (delq lap0 lap)))
1619 ((= stack-adjust -1)
1620 (byte-compile-log-lap
1621 " %s discard\t-->\tdiscard discard" lap0)
1622 (setcar lap0 'byte-discard)
1623 (setcdr lap0 0))
1624 ((error "Optimizer error: too much on the stack")))
1625 (setq stack-adjust (1- stack-adjust)))
1626 ;;
1627 ;; goto*-X X: --> X:
1628 ;;
1629 ((and (memq (car lap0) byte-goto-ops)
1630 (eq (cdr lap0) lap1))
1631 (cond ((eq (car lap0) 'byte-goto)
1632 (setq lap (delq lap0 lap))
1633 (setq tmp "<deleted>"))
1634 ((memq (car lap0) byte-goto-always-pop-ops)
1635 (setcar lap0 (setq tmp 'byte-discard))
1636 (setcdr lap0 0))
1637 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1638 (and (memq byte-optimize-log '(t byte))
1639 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1640 (nth 1 lap1) (nth 1 lap1)
1641 tmp (nth 1 lap1)))
1642 (setq keep-going t))
1643 ;;
1644 ;; varset-X varref-X --> dup varset-X
1645 ;; varbind-X varref-X --> dup varbind-X
1646 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1647 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1648 ;; The latter two can enable other optimizations.
1649 ;;
1650 ((or (and (eq 'byte-varref (car lap2))
1651 (eq (cdr lap1) (cdr lap2))
1652 (memq (car lap1) '(byte-varset byte-varbind)))
1653 (and (eq (car lap2) 'byte-stack-ref)
1654 (eq (car lap1) 'byte-stack-set)
1655 (eq (cdr lap1) (cdr lap2))))
1656 (if (and (eq 'byte-varref (car lap2))
1657 (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1658 (not (eq (car lap0) 'byte-constant)))
1659 nil
1660 (setq keep-going t)
1661 (if (memq (car lap0) '(byte-constant byte-dup))
1662 (progn
1663 (setq tmp (if (or (not tmp)
1664 (byte-compile-const-symbol-p
1665 (car (cdr lap0))))
1666 (cdr lap0)
1667 (byte-compile-get-constant t)))
1668 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1669 lap0 lap1 lap2 lap0 lap1
1670 (cons (car lap0) tmp))
1671 (setcar lap2 (car lap0))
1672 (setcdr lap2 tmp))
1673 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1674 (setcar lap2 (car lap1))
1675 (setcar lap1 'byte-dup)
1676 (setcdr lap1 0)
1677 ;; The stack depth gets locally increased, so we will
1678 ;; increase maxdepth in case depth = maxdepth here.
1679 ;; This can cause the third argument to byte-code to
1680 ;; be larger than necessary.
1681 (setq add-depth 1))))
1682 ;;
1683 ;; dup varset-X discard --> varset-X
1684 ;; dup varbind-X discard --> varbind-X
1685 ;; (the varbind variant can emerge from other optimizations)
1686 ;;
1687 ((and (eq 'byte-dup (car lap0))
1688 (eq 'byte-discard (car lap2))
1689 (memq (car lap1) '(byte-varset byte-varbind byte-stack-set)))
1690 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1691 (setq keep-going t
1692 rest (cdr rest)
1693 stack-adjust -1)
1694 (setq lap (delq lap0 (delq lap2 lap))))
1695 ;;
1696 ;; not goto-X-if-nil --> goto-X-if-non-nil
1697 ;; not goto-X-if-non-nil --> goto-X-if-nil
1698 ;;
1699 ;; it is wrong to do the same thing for the -else-pop variants.
1700 ;;
1701 ((and (eq 'byte-not (car lap0))
1702 (or (eq 'byte-goto-if-nil (car lap1))
1703 (eq 'byte-goto-if-not-nil (car lap1))))
1704 (byte-compile-log-lap " not %s\t-->\t%s"
1705 lap1
1706 (cons
1707 (if (eq (car lap1) 'byte-goto-if-nil)
1708 'byte-goto-if-not-nil
1709 'byte-goto-if-nil)
1710 (cdr lap1)))
1711 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1712 'byte-goto-if-not-nil
1713 'byte-goto-if-nil))
1714 (setq lap (delq lap0 lap))
1715 (setq keep-going t
1716 stack-adjust 0))
1717 ;;
1718 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1719 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1720 ;;
1721 ;; it is wrong to do the same thing for the -else-pop variants.
1722 ;;
1723 ((and (or (eq 'byte-goto-if-nil (car lap0))
1724 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1725 (eq 'byte-goto (car lap1)) ; gotoY
1726 (eq (cdr lap0) lap2)) ; TAG X
1727 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1728 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1729 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1730 lap0 lap1 lap2
1731 (cons inverse (cdr lap1)) lap2)
1732 (setq lap (delq lap0 lap)
1733 stack-adjust 0)
1734 (setcar lap1 inverse)
1735 (setq keep-going t)))
1736 ;;
1737 ;; const goto-if-* --> whatever
1738 ;;
1739 ((and (eq 'byte-constant (car lap0))
1740 (memq (car lap1) byte-conditional-ops))
1741 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1742 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1743 (car (cdr lap0))
1744 (not (car (cdr lap0))))
1745 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1746 lap0 lap1)
1747 (setq rest (cdr rest)
1748 lap (delq lap0 (delq lap1 lap))))
1749 (t
1750 (byte-compile-log-lap " %s %s\t-->\t%s"
1751 lap0 lap1
1752 (cons 'byte-goto (cdr lap1)))
1753 (when (memq (car lap1) byte-goto-always-pop-ops)
1754 (setq lap (delq lap0 lap)))
1755 (setcar lap1 'byte-goto)))
1756 (setq keep-going t
1757 stack-adjust 0))
1758 ;;
1759 ;; varref-X varref-X --> varref-X dup
1760 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1761 ;; We don't optimize the const-X variations on this here,
1762 ;; because that would inhibit some goto optimizations; we
1763 ;; optimize the const-X case after all other optimizations.
1764 ;;
1765 ((and (memq (car lap0) '(byte-varref byte-stack-ref))
1766 (progn
1767 (setq tmp (cdr rest) tmp2 0)
1768 (while (eq (car (car tmp)) 'byte-dup)
1769 (setq tmp (cdr tmp) tmp2 (1+ tmp2)))
1770 t)
1771 (eq (car lap0) (car (car tmp)))
1772 (eq (cdr lap0) (cdr (car tmp))))
1773 (if (memq byte-optimize-log '(t byte))
1774 (let ((str ""))
1775 (setq tmp2 (cdr rest))
1776 (while (not (eq tmp tmp2))
1777 (setq tmp2 (cdr tmp2)
1778 str (concat str " dup")))
1779 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1780 lap0 str lap0 lap0 str)))
1781 (setq keep-going t)
1782 (setcar (car tmp) 'byte-dup)
1783 (setcdr (car tmp) 0)
1784 (setq rest tmp
1785 stack-adjust (+ 2 tmp2)))
1786 ;;
1787 ;; TAG1: TAG2: --> TAG1: <deleted>
1788 ;; (and other references to TAG2 are replaced with TAG1)
1789 ;;
1790 ((and (eq (car lap0) 'TAG)
1791 (eq (car lap1) 'TAG))
1792 (and (memq byte-optimize-log '(t byte))
1793 (byte-compile-log " adjacent tags %d and %d merged"
1794 (nth 1 lap1) (nth 1 lap0)))
1795 (setq tmp3 lap)
1796 (while (setq tmp2 (rassq lap0 tmp3))
1797 (setcdr tmp2 lap1)
1798 (setq tmp3 (cdr (memq tmp2 tmp3))))
1799 (setq lap (delq lap0 lap)
1800 keep-going t))
1801 ;;
1802 ;; unused-TAG: --> <deleted>
1803 ;;
1804 ((and (eq 'TAG (car lap0))
1805 (not (rassq lap0 lap)))
1806 (and (memq byte-optimize-log '(t byte))
1807 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1808 (setq lap (delq lap0 lap)
1809 keep-going t))
1810 ;;
1811 ;; goto ... --> goto <delete until TAG or end>
1812 ;; return ... --> return <delete until TAG or end>
1813 ;;
1814 ((and (memq (car lap0) '(byte-goto byte-return))
1815 (not (memq (car lap1) '(TAG nil))))
1816 (setq tmp rest)
1817 (let ((i 0)
1818 (opt-p (memq byte-optimize-log '(t lap)))
1819 str deleted)
1820 (while (and (setq tmp (cdr tmp))
1821 (not (eq 'TAG (car (car tmp)))))
1822 (if opt-p (setq deleted (cons (car tmp) deleted)
1823 str (concat str " %s")
1824 i (1+ i))))
1825 (if opt-p
1826 (let ((tagstr
1827 (if (eq 'TAG (car (car tmp)))
1828 (format "%d:" (car (cdr (car tmp))))
1829 (or (car tmp) ""))))
1830 (if (< i 6)
1831 (apply 'byte-compile-log-lap-1
1832 (concat " %s" str
1833 " %s\t-->\t%s <deleted> %s")
1834 lap0
1835 (nconc (nreverse deleted)
1836 (list tagstr lap0 tagstr)))
1837 (byte-compile-log-lap
1838 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1839 lap0 i (if (= i 1) "" "s")
1840 tagstr lap0 tagstr))))
1841 (rplacd rest tmp))
1842 (setq keep-going t))
1843 ;;
1844 ;; <safe-op> unbind --> unbind <safe-op>
1845 ;; (this may enable other optimizations.)
1846 ;;
1847 ((and (eq 'byte-unbind (car lap1))
1848 (memq (car lap0) byte-after-unbind-ops))
1849 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1850 (setcar rest lap1)
1851 (setcar (cdr rest) lap0)
1852 (setq keep-going t
1853 stack-adjust 0))
1854 ;;
1855 ;; varbind-X unbind-N --> discard unbind-(N-1)
1856 ;; save-excursion unbind-N --> unbind-(N-1)
1857 ;; save-restriction unbind-N --> unbind-(N-1)
1858 ;;
1859 ((and (eq 'byte-unbind (car lap1))
1860 (memq (car lap0) '(byte-varbind byte-save-excursion
1861 byte-save-restriction))
1862 (< 0 (cdr lap1)))
1863 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1864 (delq lap1 rest))
1865 (if (eq (car lap0) 'byte-varbind)
1866 (setcar rest (cons 'byte-discard 0))
1867 (setq lap (delq lap0 lap)))
1868 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1869 lap0 (cons (car lap1) (1+ (cdr lap1)))
1870 (if (eq (car lap0) 'byte-varbind)
1871 (car rest)
1872 (car (cdr rest)))
1873 (if (and (/= 0 (cdr lap1))
1874 (eq (car lap0) 'byte-varbind))
1875 (car (cdr rest))
1876 ""))
1877 (setq keep-going t))
1878 ;;
1879 ;; stack-ref-N --> dup ; where N is TOS
1880 ;;
1881 ((and stack-depth (eq (car lap0) 'byte-stack-ref)
1882 (= (cdr lap0) (1- stack-depth)))
1883 (setcar lap0 'byte-dup)
1884 (setcdr lap0 nil)
1885 (setq keep-going t))
1886 ;;
1887 ;; goto*-X ... X: goto-Y --> goto*-Y
1888 ;; goto-X ... X: return --> return
1889 ;;
1890 ((and (memq (car lap0) byte-goto-ops)
1891 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1892 '(byte-goto byte-return)))
1893 (cond ((and (not (eq tmp lap0))
1894 (or (eq (car lap0) 'byte-goto)
1895 (eq (car tmp) 'byte-goto)))
1896 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1897 (car lap0) tmp tmp)
1898 (if (eq (car tmp) 'byte-return)
1899 (setcar lap0 'byte-return))
1900 (setcdr lap0 (cdr tmp))
1901 (setq keep-going t))))
1902 ;;
1903 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1904 ;; goto-*-else-pop X ... X: discard --> whatever
1905 ;;
1906 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1907 byte-goto-if-not-nil-else-pop))
1908 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1909 (eval-when-compile
1910 (cons 'byte-discard byte-conditional-ops)))
1911 (not (eq lap0 (car tmp))))
1912 (setq tmp2 (car tmp))
1913 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1914 byte-goto-if-nil)
1915 (byte-goto-if-not-nil-else-pop
1916 byte-goto-if-not-nil))))
1917 (if (memq (car tmp2) tmp3)
1918 (progn (setcar lap0 (car tmp2))
1919 (setcdr lap0 (cdr tmp2))
1920 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1921 (car lap0) tmp2 lap0))
1922 ;; Get rid of the -else-pop's and jump one step further.
1923 (or (eq 'TAG (car (nth 1 tmp)))
1924 (setcdr tmp (cons (byte-compile-make-tag)
1925 (cdr tmp))))
1926 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1927 (car lap0) tmp2 (nth 1 tmp3))
1928 (setcar lap0 (nth 1 tmp3))
1929 (setcdr lap0 (nth 1 tmp)))
1930 (setq keep-going t))
1931 ;;
1932 ;; const goto-X ... X: goto-if-* --> whatever
1933 ;; const goto-X ... X: discard --> whatever
1934 ;;
1935 ((and (eq (car lap0) 'byte-constant)
1936 (eq (car lap1) 'byte-goto)
1937 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1938 (eval-when-compile
1939 (cons 'byte-discard byte-conditional-ops)))
1940 (not (eq lap1 (car tmp))))
1941 (setq tmp2 (car tmp))
1942 (cond ((memq (car tmp2)
1943 (if (null (car (cdr lap0)))
1944 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1945 '(byte-goto-if-not-nil
1946 byte-goto-if-not-nil-else-pop)))
1947 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1948 lap0 tmp2 lap0 tmp2)
1949 (setcar lap1 (car tmp2))
1950 (setcdr lap1 (cdr tmp2))
1951 ;; Let next step fix the (const,goto-if*) sequence.
1952 (setq rest (cons nil rest)))
1953 (t
1954 ;; Jump one step further
1955 (byte-compile-log-lap
1956 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1957 lap0 tmp2)
1958 (or (eq 'TAG (car (nth 1 tmp)))
1959 (setcdr tmp (cons (byte-compile-make-tag)
1960 (cdr tmp))))
1961 (setcdr lap1 (car (cdr tmp)))
1962 (setq lap (delq lap0 lap))))
1963 (setq keep-going t
1964 stack-adjust 0))
1965 ;;
1966 ;; X: varref-Y ... varset-Y goto-X -->
1967 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1968 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1969 ;; (This is so usual for while loops that it is worth handling).
1970 ;;
1971 ((and (memq (car lap1) '(byte-varset byte-stack-set))
1972 (eq (car lap2) 'byte-goto)
1973 (not (memq (cdr lap2) rest)) ;Backwards jump
1974 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1975 (if (eq (car lap1) 'byte-varset) 'byte-varref 'byte-stack-ref))
1976 (eq (cdr (car tmp)) (cdr lap1))
1977 (not (and (eq (car lap1) 'byte-varref)
1978 (memq (car (cdr lap1)) byte-boolean-vars))))
1979 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1980 (let ((newtag (byte-compile-make-tag)))
1981 (byte-compile-log-lap
1982 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1983 (nth 1 (cdr lap2)) (car tmp)
1984 lap1 lap2
1985 (nth 1 (cdr lap2)) (car tmp)
1986 (nth 1 newtag) 'byte-dup lap1
1987 (cons 'byte-goto newtag)
1988 )
1989 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1990 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1991 (setq add-depth 1)
1992 (setq keep-going t))
1993 ;;
1994 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1995 ;; (This can pull the loop test to the end of the loop)
1996 ;;
1997 ((and (eq (car lap0) 'byte-goto)
1998 (eq (car lap1) 'TAG)
1999 (eq lap1
2000 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
2001 (memq (car (car tmp))
2002 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
2003 byte-goto-if-nil-else-pop)))
2004 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
2005 ;; lap0 lap1 (cdr lap0) (car tmp))
2006 (let ((newtag (byte-compile-make-tag)))
2007 (byte-compile-log-lap
2008 "%s %s: ... %s: %s\t-->\t%s ... %s:"
2009 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
2010 (cons (cdr (assq (car (car tmp))
2011 '((byte-goto-if-nil . byte-goto-if-not-nil)
2012 (byte-goto-if-not-nil . byte-goto-if-nil)
2013 (byte-goto-if-nil-else-pop .
2014 byte-goto-if-not-nil-else-pop)
2015 (byte-goto-if-not-nil-else-pop .
2016 byte-goto-if-nil-else-pop))))
2017 newtag)
2018
2019 (nth 1 newtag)
2020 )
2021 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
2022 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
2023 ;; We can handle this case but not the -if-not-nil case,
2024 ;; because we won't know which non-nil constant to push.
2025 (setcdr rest (cons (cons 'byte-constant
2026 (byte-compile-get-constant nil))
2027 (cdr rest))))
2028 (setcar lap0 (nth 1 (memq (car (car tmp))
2029 '(byte-goto-if-nil-else-pop
2030 byte-goto-if-not-nil
2031 byte-goto-if-nil
2032 byte-goto-if-not-nil
2033 byte-goto byte-goto))))
2034 )
2035 (setq keep-going t
2036 stack-adjust (and (not (eq (car lap0) 'byte-goto)) -1)))
2037 )
2038
2039 (setq stack-depth
2040 (and stack-depth stack-adjust (+ stack-depth stack-adjust)))
2041 (setq rest (cdr rest)))
2042 )
2043
2044 ;; Cleanup stage:
2045 ;; Rebuild byte-compile-constants / byte-compile-variables.
2046 ;; Simple optimizations that would inhibit other optimizations if they
2047 ;; were done in the optimizing loop, and optimizations which there is no
2048 ;; need to do more than once.
2049 (setq byte-compile-constants nil
2050 byte-compile-variables nil)
2051 (setq rest lap
2052 stack-depth initial-stack-depth)
2053 (byte-compile-log-lap " ---- final pass")
2054 (while rest
2055 (setq lap0 (car rest)
2056 lap1 (nth 1 rest))
2057 (byte-opt-update-stack-params stack-adjust stack-depth lap0 rest lap)
2058 (if (memq (car lap0) byte-constref-ops)
2059 (if (or (eq (car lap0) 'byte-constant)
2060 (eq (car lap0) 'byte-constant2))
2061 (unless (memq (cdr lap0) byte-compile-constants)
2062 (setq byte-compile-constants (cons (cdr lap0)
2063 byte-compile-constants)))
2064 (unless (memq (cdr lap0) byte-compile-variables)
2065 (setq byte-compile-variables (cons (cdr lap0)
2066 byte-compile-variables)))))
2067 (cond (;;
2068 ;; const-C varset-X const-C --> const-C dup varset-X
2069 ;; const-C varbind-X const-C --> const-C dup varbind-X
2070 ;;
2071 (and (eq (car lap0) 'byte-constant)
2072 (eq (car (nth 2 rest)) 'byte-constant)
2073 (eq (cdr lap0) (cdr (nth 2 rest)))
2074 (memq (car lap1) '(byte-varbind byte-varset)))
2075 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
2076 lap0 lap1 lap0 lap0 lap1)
2077 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
2078 (setcar (cdr rest) (cons 'byte-dup 0))
2079 (setq add-depth 1))
2080 ;;
2081 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
2082 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
2083 ;;
2084 ((memq (car lap0) '(byte-constant byte-varref))
2085 (setq tmp rest
2086 tmp2 nil)
2087 (while (progn
2088 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
2089 (and (eq (cdr lap0) (cdr (car tmp)))
2090 (eq (car lap0) (car (car tmp)))))
2091 (setcar tmp (cons 'byte-dup 0))
2092 (setq tmp2 t))
2093 (if tmp2
2094 (byte-compile-log-lap
2095 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
2096 ;;
2097 ;; unbind-N unbind-M --> unbind-(N+M)
2098 ;;
2099 ((and (eq 'byte-unbind (car lap0))
2100 (eq 'byte-unbind (car lap1)))
2101 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
2102 (cons 'byte-unbind
2103 (+ (cdr lap0) (cdr lap1))))
2104 (setq lap (delq lap0 lap))
2105 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
2106
2107 ;;
2108 ;; stack-set-M [discard/discardN ...] --> discardN-preserve-tos
2109 ;; stack-set-M [discard/discardN ...] --> discardN
2110 ;;
2111 ((and stack-depth ;Make sure we know the stack depth.
2112 (eq (car lap0) 'byte-stack-set)
2113 (memq (car lap1) '(byte-discard byte-discardN))
2114 (progn
2115 ;; See if enough discard operations follow to expose or
2116 ;; destroy the value stored by the stack-set.
2117 (setq tmp (cdr rest))
2118 (setq tmp2 (- stack-depth 2 (cdr lap0)))
2119 (setq tmp3 0)
2120 (while (memq (car (car tmp)) '(byte-discard byte-discardN))
2121 (if (eq (car (car tmp)) 'byte-discard)
2122 (setq tmp3 (1+ tmp3))
2123 (setq tmp3 (+ tmp3 (cdr (car tmp)))))
2124 (setq tmp (cdr tmp)))
2125 (>= tmp3 tmp2)))
2126 ;; Do the optimization
2127 (setq lap (delq lap0 lap))
2128 (cond ((= tmp2 tmp3)
2129 ;; The value stored is the new TOS, so pop one more value
2130 ;; (to get rid of the old value) using the TOS-preserving
2131 ;; discard operator.
2132 (setcar lap1 'byte-discardN-preserve-tos)
2133 (setcdr lap1 (1+ tmp3)))
2134 (t
2135 ;; Otherwise, the value stored is lost, so just use a
2136 ;; normal discard.
2137 (setcar lap1 'byte-discardN)
2138 (setcdr lap1 tmp3)))
2139 (setcdr (cdr rest) tmp)
2140 (setq stack-adjust 0)
2141 (byte-compile-log-lap " %s [discard/discardN]...\t-->\t%s"
2142 lap0 lap1))
2143
2144 ;;
2145 ;; discard/discardN/discardN-preserve-tos-X discard/discardN-Y -->
2146 ;; discardN-(X+Y)
2147 ;;
2148 ((and (memq (car lap0)
2149 '(byte-discard
2150 byte-discardN
2151 byte-discardN-preserve-tos))
2152 (memq (car lap1) '(byte-discard byte-discardN)))
2153 (setq lap (delq lap0 lap))
2154 (byte-compile-log-lap
2155 " %s %s\t-->\t(discardN %s)"
2156 lap0 lap1
2157 (+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
2158 (if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
2159 (setcdr lap1 (+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
2160 (if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
2161 (setcar lap1 'byte-discardN)
2162 (setq stack-adjust 0))
2163
2164 ;;
2165 ;; discardN-preserve-tos-X discardN-preserve-tos-Y -->
2166 ;; discardN-preserve-tos-(X+Y)
2167 ;;
2168 ((and (eq (car lap0) 'byte-discardN-preserve-tos)
2169 (eq (car lap1) 'byte-discardN-preserve-tos))
2170 (setq lap (delq lap0 lap))
2171 (setcdr lap1 (+ (cdr lap0) (cdr lap1)))
2172 (setq stack-adjust 0)
2173 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 (car rest)))
2174
2175 ;;
2176 ;; discardN-preserve-tos return --> return
2177 ;; dup return --> return
2178 ;; stack-set-N return --> return ; where N is TOS-1
2179 ;;
2180 ((and stack-depth ;Make sure we know the stack depth.
2181 (eq (car lap1) 'byte-return)
2182 (or (memq (car lap0) '(byte-discardN-preserve-tos byte-dup))
2183 (and (eq (car lap0) 'byte-stack-set)
2184 (= (cdr lap0) (- stack-depth 2)))))
2185 ;; the byte-code interpreter will pop the stack for us, so
2186 ;; we can just leave stuff on it
2187 (setq lap (delq lap0 lap))
2188 (setq stack-adjust 0)
2189 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 lap1))
2190
2191 ;;
2192 ;; dup stack-set-N return --> return ; where N is TOS
2193 ;;
2194 ((and stack-depth ;Make sure we know the stack depth.
2195 (eq (car lap0) 'byte-dup)
2196 (eq (car lap1) 'byte-stack-set)
2197 (eq (car (car (cdr (cdr rest)))) 'byte-return)
2198 (= (cdr lap1) (1- stack-depth)))
2199 (setq lap (delq lap0 (delq lap1 lap)))
2200 (setq rest (cdr rest))
2201 (setq stack-adjust 0)
2202 (byte-compile-log-lap " dup %s return\t-->\treturn" lap1))
2203 )
2204
2205 (setq stack-depth
2206 (and stack-depth stack-adjust (+ stack-depth stack-adjust)))
2207 (setq rest (cdr rest)))
2208
2209 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
2210 lap)
2211
2212 (provide 'byte-opt)
2213
2214 \f
2215 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2216 ;; itself, compile some of its most used recursive functions (at load time).
2217 ;;
2218 (eval-when-compile
2219 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
2220 (assq 'byte-code (symbol-function 'byte-optimize-form))
2221 (let ((byte-optimize nil)
2222 (byte-compile-warnings nil))
2223 (mapc (lambda (x)
2224 (or noninteractive (message "compiling %s..." x))
2225 (byte-compile x)
2226 (or noninteractive (message "compiling %s...done" x)))
2227 '(byte-optimize-form
2228 byte-optimize-body
2229 byte-optimize-predicate
2230 byte-optimize-binary-predicate
2231 ;; Inserted some more than necessary, to speed it up.
2232 byte-optimize-form-code-walker
2233 byte-optimize-lapcode))))
2234 nil)
2235
2236 ;;; byte-opt.el ends here