(decode_composition_emacs_mule):
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4 Copyright (C) 2001 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*** TABLE OF CONTENTS ***
24
25 0. General comments
26 1. Preamble
27 2. Emacs' internal format (emacs-mule) handlers
28 3. ISO2022 handlers
29 4. Shift-JIS and BIG5 handlers
30 5. CCL handlers
31 6. End-of-line handlers
32 7. C library functions
33 8. Emacs Lisp library functions
34 9. Post-amble
35
36 */
37
38 /*** 0. General comments ***/
39
40
41 /*** GENERAL NOTE on CODING SYSTEMS ***
42
43 A coding system is an encoding mechanism for one or more character
44 sets. Here's a list of coding systems which Emacs can handle. When
45 we say "decode", it means converting some other coding system to
46 Emacs' internal format (emacs-mule), and when we say "encode",
47 it means converting the coding system emacs-mule to some other
48 coding system.
49
50 0. Emacs' internal format (emacs-mule)
51
52 Emacs itself holds a multi-lingual character in buffers and strings
53 in a special format. Details are described in section 2.
54
55 1. ISO2022
56
57 The most famous coding system for multiple character sets. X's
58 Compound Text, various EUCs (Extended Unix Code), and coding
59 systems used in Internet communication such as ISO-2022-JP are
60 all variants of ISO2022. Details are described in section 3.
61
62 2. SJIS (or Shift-JIS or MS-Kanji-Code)
63
64 A coding system to encode character sets: ASCII, JISX0201, and
65 JISX0208. Widely used for PC's in Japan. Details are described in
66 section 4.
67
68 3. BIG5
69
70 A coding system to encode the character sets ASCII and Big5. Widely
71 used for Chinese (mainly in Taiwan and Hong Kong). Details are
72 described in section 4. In this file, when we write "BIG5"
73 (all uppercase), we mean the coding system, and when we write
74 "Big5" (capitalized), we mean the character set.
75
76 4. Raw text
77
78 A coding system for text containing random 8-bit code. Emacs does
79 no code conversion on such text except for end-of-line format.
80
81 5. Other
82
83 If a user wants to read/write text encoded in a coding system not
84 listed above, he can supply a decoder and an encoder for it as CCL
85 (Code Conversion Language) programs. Emacs executes the CCL program
86 while reading/writing.
87
88 Emacs represents a coding system by a Lisp symbol that has a property
89 `coding-system'. But, before actually using the coding system, the
90 information about it is set in a structure of type `struct
91 coding_system' for rapid processing. See section 6 for more details.
92
93 */
94
95 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
96
97 How end-of-line of text is encoded depends on the operating system.
98 For instance, Unix's format is just one byte of `line-feed' code,
99 whereas DOS's format is two-byte sequence of `carriage-return' and
100 `line-feed' codes. MacOS's format is usually one byte of
101 `carriage-return'.
102
103 Since text character encoding and end-of-line encoding are
104 independent, any coding system described above can have any
105 end-of-line format. So Emacs has information about end-of-line
106 format in each coding-system. See section 6 for more details.
107
108 */
109
110 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
111
112 These functions check if a text between SRC and SRC_END is encoded
113 in the coding system category XXX. Each returns an integer value in
114 which appropriate flag bits for the category XXX are set. The flag
115 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
116 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
117 of the range 0x80..0x9F are in multibyte form. */
118 #if 0
119 int
120 detect_coding_emacs_mule (src, src_end, multibytep)
121 unsigned char *src, *src_end;
122 int multibytep;
123 {
124 ...
125 }
126 #endif
127
128 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
129
130 These functions decode SRC_BYTES length of unibyte text at SOURCE
131 encoded in CODING to Emacs' internal format. The resulting
132 multibyte text goes to a place pointed to by DESTINATION, the length
133 of which should not exceed DST_BYTES.
134
135 These functions set the information about original and decoded texts
136 in the members `produced', `produced_char', `consumed', and
137 `consumed_char' of the structure *CODING. They also set the member
138 `result' to one of CODING_FINISH_XXX indicating how the decoding
139 finished.
140
141 DST_BYTES zero means that the source area and destination area are
142 overlapped, which means that we can produce a decoded text until it
143 reaches the head of the not-yet-decoded source text.
144
145 Below is a template for these functions. */
146 #if 0
147 static void
148 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
149 struct coding_system *coding;
150 unsigned char *source, *destination;
151 int src_bytes, dst_bytes;
152 {
153 ...
154 }
155 #endif
156
157 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
158
159 These functions encode SRC_BYTES length text at SOURCE from Emacs'
160 internal multibyte format to CODING. The resulting unibyte text
161 goes to a place pointed to by DESTINATION, the length of which
162 should not exceed DST_BYTES.
163
164 These functions set the information about original and encoded texts
165 in the members `produced', `produced_char', `consumed', and
166 `consumed_char' of the structure *CODING. They also set the member
167 `result' to one of CODING_FINISH_XXX indicating how the encoding
168 finished.
169
170 DST_BYTES zero means that the source area and destination area are
171 overlapped, which means that we can produce encoded text until it
172 reaches at the head of the not-yet-encoded source text.
173
174 Below is a template for these functions. */
175 #if 0
176 static void
177 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
178 struct coding_system *coding;
179 unsigned char *source, *destination;
180 int src_bytes, dst_bytes;
181 {
182 ...
183 }
184 #endif
185
186 /*** COMMONLY USED MACROS ***/
187
188 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
189 get one, two, and three bytes from the source text respectively.
190 If there are not enough bytes in the source, they jump to
191 `label_end_of_loop'. The caller should set variables `coding',
192 `src' and `src_end' to appropriate pointer in advance. These
193 macros are called from decoding routines `decode_coding_XXX', thus
194 it is assumed that the source text is unibyte. */
195
196 #define ONE_MORE_BYTE(c1) \
197 do { \
198 if (src >= src_end) \
199 { \
200 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
201 goto label_end_of_loop; \
202 } \
203 c1 = *src++; \
204 } while (0)
205
206 #define TWO_MORE_BYTES(c1, c2) \
207 do { \
208 if (src + 1 >= src_end) \
209 { \
210 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
211 goto label_end_of_loop; \
212 } \
213 c1 = *src++; \
214 c2 = *src++; \
215 } while (0)
216
217
218 /* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
219 form if MULTIBYTEP is nonzero. */
220
221 #define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
222 do { \
223 if (src >= src_end) \
224 { \
225 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
226 goto label_end_of_loop; \
227 } \
228 c1 = *src++; \
229 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
230 c1 = *src++ - 0x20; \
231 } while (0)
232
233 /* Set C to the next character at the source text pointed by `src'.
234 If there are not enough characters in the source, jump to
235 `label_end_of_loop'. The caller should set variables `coding'
236 `src', `src_end', and `translation_table' to appropriate pointers
237 in advance. This macro is used in encoding routines
238 `encode_coding_XXX', thus it assumes that the source text is in
239 multibyte form except for 8-bit characters. 8-bit characters are
240 in multibyte form if coding->src_multibyte is nonzero, else they
241 are represented by a single byte. */
242
243 #define ONE_MORE_CHAR(c) \
244 do { \
245 int len = src_end - src; \
246 int bytes; \
247 if (len <= 0) \
248 { \
249 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
250 goto label_end_of_loop; \
251 } \
252 if (coding->src_multibyte \
253 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
254 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
255 else \
256 c = *src, bytes = 1; \
257 if (!NILP (translation_table)) \
258 c = translate_char (translation_table, c, -1, 0, 0); \
259 src += bytes; \
260 } while (0)
261
262
263 /* Produce a multibyte form of character C to `dst'. Jump to
264 `label_end_of_loop' if there's not enough space at `dst'.
265
266 If we are now in the middle of a composition sequence, the decoded
267 character may be ALTCHAR (for the current composition). In that
268 case, the character goes to coding->cmp_data->data instead of
269 `dst'.
270
271 This macro is used in decoding routines. */
272
273 #define EMIT_CHAR(c) \
274 do { \
275 if (! COMPOSING_P (coding) \
276 || coding->composing == COMPOSITION_RELATIVE \
277 || coding->composing == COMPOSITION_WITH_RULE) \
278 { \
279 int bytes = CHAR_BYTES (c); \
280 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
281 { \
282 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
283 goto label_end_of_loop; \
284 } \
285 dst += CHAR_STRING (c, dst); \
286 coding->produced_char++; \
287 } \
288 \
289 if (COMPOSING_P (coding) \
290 && coding->composing != COMPOSITION_RELATIVE) \
291 { \
292 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
293 coding->composition_rule_follows \
294 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
295 } \
296 } while (0)
297
298
299 #define EMIT_ONE_BYTE(c) \
300 do { \
301 if (dst >= (dst_bytes ? dst_end : src)) \
302 { \
303 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
304 goto label_end_of_loop; \
305 } \
306 *dst++ = c; \
307 } while (0)
308
309 #define EMIT_TWO_BYTES(c1, c2) \
310 do { \
311 if (dst + 2 > (dst_bytes ? dst_end : src)) \
312 { \
313 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
314 goto label_end_of_loop; \
315 } \
316 *dst++ = c1, *dst++ = c2; \
317 } while (0)
318
319 #define EMIT_BYTES(from, to) \
320 do { \
321 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
322 { \
323 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
324 goto label_end_of_loop; \
325 } \
326 while (from < to) \
327 *dst++ = *from++; \
328 } while (0)
329
330 \f
331 /*** 1. Preamble ***/
332
333 #ifdef emacs
334 #include <config.h>
335 #endif
336
337 #include <stdio.h>
338
339 #ifdef emacs
340
341 #include "lisp.h"
342 #include "buffer.h"
343 #include "charset.h"
344 #include "composite.h"
345 #include "ccl.h"
346 #include "coding.h"
347 #include "window.h"
348
349 #else /* not emacs */
350
351 #include "mulelib.h"
352
353 #endif /* not emacs */
354
355 Lisp_Object Qcoding_system, Qeol_type;
356 Lisp_Object Qbuffer_file_coding_system;
357 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
358 Lisp_Object Qno_conversion, Qundecided;
359 Lisp_Object Qcoding_system_history;
360 Lisp_Object Qsafe_chars;
361 Lisp_Object Qvalid_codes;
362
363 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
364 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
365 Lisp_Object Qstart_process, Qopen_network_stream;
366 Lisp_Object Qtarget_idx;
367
368 Lisp_Object Vselect_safe_coding_system_function;
369
370 /* Mnemonic string for each format of end-of-line. */
371 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
372 /* Mnemonic string to indicate format of end-of-line is not yet
373 decided. */
374 Lisp_Object eol_mnemonic_undecided;
375
376 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
377 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
378 int system_eol_type;
379
380 #ifdef emacs
381
382 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
383
384 Lisp_Object Qcoding_system_p, Qcoding_system_error;
385
386 /* Coding system emacs-mule and raw-text are for converting only
387 end-of-line format. */
388 Lisp_Object Qemacs_mule, Qraw_text;
389
390 /* Coding-systems are handed between Emacs Lisp programs and C internal
391 routines by the following three variables. */
392 /* Coding-system for reading files and receiving data from process. */
393 Lisp_Object Vcoding_system_for_read;
394 /* Coding-system for writing files and sending data to process. */
395 Lisp_Object Vcoding_system_for_write;
396 /* Coding-system actually used in the latest I/O. */
397 Lisp_Object Vlast_coding_system_used;
398
399 /* A vector of length 256 which contains information about special
400 Latin codes (especially for dealing with Microsoft codes). */
401 Lisp_Object Vlatin_extra_code_table;
402
403 /* Flag to inhibit code conversion of end-of-line format. */
404 int inhibit_eol_conversion;
405
406 /* Flag to inhibit ISO2022 escape sequence detection. */
407 int inhibit_iso_escape_detection;
408
409 /* Flag to make buffer-file-coding-system inherit from process-coding. */
410 int inherit_process_coding_system;
411
412 /* Coding system to be used to encode text for terminal display. */
413 struct coding_system terminal_coding;
414
415 /* Coding system to be used to encode text for terminal display when
416 terminal coding system is nil. */
417 struct coding_system safe_terminal_coding;
418
419 /* Coding system of what is sent from terminal keyboard. */
420 struct coding_system keyboard_coding;
421
422 /* Default coding system to be used to write a file. */
423 struct coding_system default_buffer_file_coding;
424
425 Lisp_Object Vfile_coding_system_alist;
426 Lisp_Object Vprocess_coding_system_alist;
427 Lisp_Object Vnetwork_coding_system_alist;
428
429 Lisp_Object Vlocale_coding_system;
430
431 #endif /* emacs */
432
433 Lisp_Object Qcoding_category, Qcoding_category_index;
434
435 /* List of symbols `coding-category-xxx' ordered by priority. */
436 Lisp_Object Vcoding_category_list;
437
438 /* Table of coding categories (Lisp symbols). */
439 Lisp_Object Vcoding_category_table;
440
441 /* Table of names of symbol for each coding-category. */
442 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
443 "coding-category-emacs-mule",
444 "coding-category-sjis",
445 "coding-category-iso-7",
446 "coding-category-iso-7-tight",
447 "coding-category-iso-8-1",
448 "coding-category-iso-8-2",
449 "coding-category-iso-7-else",
450 "coding-category-iso-8-else",
451 "coding-category-ccl",
452 "coding-category-big5",
453 "coding-category-utf-8",
454 "coding-category-utf-16-be",
455 "coding-category-utf-16-le",
456 "coding-category-raw-text",
457 "coding-category-binary"
458 };
459
460 /* Table of pointers to coding systems corresponding to each coding
461 categories. */
462 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
463
464 /* Table of coding category masks. Nth element is a mask for a coding
465 category of which priority is Nth. */
466 static
467 int coding_priorities[CODING_CATEGORY_IDX_MAX];
468
469 /* Flag to tell if we look up translation table on character code
470 conversion. */
471 Lisp_Object Venable_character_translation;
472 /* Standard translation table to look up on decoding (reading). */
473 Lisp_Object Vstandard_translation_table_for_decode;
474 /* Standard translation table to look up on encoding (writing). */
475 Lisp_Object Vstandard_translation_table_for_encode;
476
477 Lisp_Object Qtranslation_table;
478 Lisp_Object Qtranslation_table_id;
479 Lisp_Object Qtranslation_table_for_decode;
480 Lisp_Object Qtranslation_table_for_encode;
481
482 /* Alist of charsets vs revision number. */
483 Lisp_Object Vcharset_revision_alist;
484
485 /* Default coding systems used for process I/O. */
486 Lisp_Object Vdefault_process_coding_system;
487
488 /* Global flag to tell that we can't call post-read-conversion and
489 pre-write-conversion functions. Usually the value is zero, but it
490 is set to 1 temporarily while such functions are running. This is
491 to avoid infinite recursive call. */
492 static int inhibit_pre_post_conversion;
493
494 /* Char-table containing safe coding systems of each character. */
495 Lisp_Object Vchar_coding_system_table;
496 Lisp_Object Qchar_coding_system;
497
498 /* Return `safe-chars' property of coding system CODING. Don't check
499 validity of CODING. */
500
501 Lisp_Object
502 coding_safe_chars (coding)
503 struct coding_system *coding;
504 {
505 Lisp_Object coding_spec, plist, safe_chars;
506
507 coding_spec = Fget (coding->symbol, Qcoding_system);
508 plist = XVECTOR (coding_spec)->contents[3];
509 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
510 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
511 }
512
513 #define CODING_SAFE_CHAR_P(safe_chars, c) \
514 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
515
516 \f
517 /*** 2. Emacs internal format (emacs-mule) handlers ***/
518
519 /* Emacs' internal format for representation of multiple character
520 sets is a kind of multi-byte encoding, i.e. characters are
521 represented by variable-length sequences of one-byte codes.
522
523 ASCII characters and control characters (e.g. `tab', `newline') are
524 represented by one-byte sequences which are their ASCII codes, in
525 the range 0x00 through 0x7F.
526
527 8-bit characters of the range 0x80..0x9F are represented by
528 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
529 code + 0x20).
530
531 8-bit characters of the range 0xA0..0xFF are represented by
532 one-byte sequences which are their 8-bit code.
533
534 The other characters are represented by a sequence of `base
535 leading-code', optional `extended leading-code', and one or two
536 `position-code's. The length of the sequence is determined by the
537 base leading-code. Leading-code takes the range 0x81 through 0x9D,
538 whereas extended leading-code and position-code take the range 0xA0
539 through 0xFF. See `charset.h' for more details about leading-code
540 and position-code.
541
542 --- CODE RANGE of Emacs' internal format ---
543 character set range
544 ------------- -----
545 ascii 0x00..0x7F
546 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
547 eight-bit-graphic 0xA0..0xBF
548 ELSE 0x81..0x9D + [0xA0..0xFF]+
549 ---------------------------------------------
550
551 As this is the internal character representation, the format is
552 usually not used externally (i.e. in a file or in a data sent to a
553 process). But, it is possible to have a text externally in this
554 format (i.e. by encoding by the coding system `emacs-mule').
555
556 In that case, a sequence of one-byte codes has a slightly different
557 form.
558
559 Firstly, all characters in eight-bit-control are represented by
560 one-byte sequences which are their 8-bit code.
561
562 Next, character composition data are represented by the byte
563 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
564 where,
565 METHOD is 0xF0 plus one of composition method (enum
566 composition_method),
567
568 BYTES is 0xA0 plus the byte length of these composition data,
569
570 CHARS is 0xA0 plus the number of characters composed by these
571 data,
572
573 COMPONENTs are characters of multibyte form or composition
574 rules encoded by two-byte of ASCII codes.
575
576 In addition, for backward compatibility, the following formats are
577 also recognized as composition data on decoding.
578
579 0x80 MSEQ ...
580 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
581
582 Here,
583 MSEQ is a multibyte form but in these special format:
584 ASCII: 0xA0 ASCII_CODE+0x80,
585 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
586 RULE is a one byte code of the range 0xA0..0xF0 that
587 represents a composition rule.
588 */
589
590 enum emacs_code_class_type emacs_code_class[256];
591
592 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
593 Check if a text is encoded in Emacs' internal format. If it is,
594 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
595
596 static int
597 detect_coding_emacs_mule (src, src_end, multibytep)
598 unsigned char *src, *src_end;
599 int multibytep;
600 {
601 unsigned char c;
602 int composing = 0;
603 /* Dummy for ONE_MORE_BYTE. */
604 struct coding_system dummy_coding;
605 struct coding_system *coding = &dummy_coding;
606
607 while (1)
608 {
609 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
610
611 if (composing)
612 {
613 if (c < 0xA0)
614 composing = 0;
615 else if (c == 0xA0)
616 {
617 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
618 c &= 0x7F;
619 }
620 else
621 c -= 0x20;
622 }
623
624 if (c < 0x20)
625 {
626 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
627 return 0;
628 }
629 else if (c >= 0x80 && c < 0xA0)
630 {
631 if (c == 0x80)
632 /* Old leading code for a composite character. */
633 composing = 1;
634 else
635 {
636 unsigned char *src_base = src - 1;
637 int bytes;
638
639 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
640 bytes))
641 return 0;
642 src = src_base + bytes;
643 }
644 }
645 }
646 label_end_of_loop:
647 return CODING_CATEGORY_MASK_EMACS_MULE;
648 }
649
650
651 /* Record the starting position START and METHOD of one composition. */
652
653 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
654 do { \
655 struct composition_data *cmp_data = coding->cmp_data; \
656 int *data = cmp_data->data + cmp_data->used; \
657 coding->cmp_data_start = cmp_data->used; \
658 data[0] = -1; \
659 data[1] = cmp_data->char_offset + start; \
660 data[3] = (int) method; \
661 cmp_data->used += 4; \
662 } while (0)
663
664 /* Record the ending position END of the current composition. */
665
666 #define CODING_ADD_COMPOSITION_END(coding, end) \
667 do { \
668 struct composition_data *cmp_data = coding->cmp_data; \
669 int *data = cmp_data->data + coding->cmp_data_start; \
670 data[0] = cmp_data->used - coding->cmp_data_start; \
671 data[2] = cmp_data->char_offset + end; \
672 } while (0)
673
674 /* Record one COMPONENT (alternate character or composition rule). */
675
676 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
677 (coding->cmp_data->data[coding->cmp_data->used++] = component)
678
679
680 /* Get one byte from a data pointed by SRC and increment SRC. If SRC
681 is not less than SRC_END, return -1 without incrementing Src. */
682
683 #define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
684
685
686 /* Decode a character represented as a component of composition
687 sequence of Emacs 20 style at SRC. Set C to that character, store
688 its multibyte form sequence at P, and set P to the end of that
689 sequence. If no valid character is found, set C to -1. */
690
691 #define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
692 do { \
693 int bytes; \
694 \
695 c = SAFE_ONE_MORE_BYTE (); \
696 if (c < 0) \
697 break; \
698 if (CHAR_HEAD_P (c)) \
699 c = -1; \
700 else if (c == 0xA0) \
701 { \
702 c = SAFE_ONE_MORE_BYTE (); \
703 if (c < 0xA0) \
704 c = -1; \
705 else \
706 { \
707 c -= 0xA0; \
708 *p++ = c; \
709 } \
710 } \
711 else if (BASE_LEADING_CODE_P (c - 0x20)) \
712 { \
713 unsigned char *p0 = p; \
714 \
715 c -= 0x20; \
716 *p++ = c; \
717 bytes = BYTES_BY_CHAR_HEAD (c); \
718 while (--bytes) \
719 { \
720 c = SAFE_ONE_MORE_BYTE (); \
721 if (c < 0) \
722 break; \
723 *p++ = c; \
724 } \
725 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes)) \
726 c = STRING_CHAR (p0, bytes); \
727 else \
728 c = -1; \
729 } \
730 else \
731 c = -1; \
732 } while (0)
733
734
735 /* Decode a composition rule represented as a component of composition
736 sequence of Emacs 20 style at SRC. Set C to the rule. If not
737 valid rule is found, set C to -1. */
738
739 #define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
740 do { \
741 c = SAFE_ONE_MORE_BYTE (); \
742 c -= 0xA0; \
743 if (c < 0 || c >= 81) \
744 c = -1; \
745 else \
746 { \
747 gref = c / 9, nref = c % 9; \
748 c = COMPOSITION_ENCODE_RULE (gref, nref); \
749 } \
750 } while (0)
751
752
753 /* Decode composition sequence encoded by `emacs-mule' at the source
754 pointed by SRC. SRC_END is the end of source. Store information
755 of the composition in CODING->cmp_data.
756
757 For backward compatibility, decode also a composition sequence of
758 Emacs 20 style. In that case, the composition sequence contains
759 characters that should be extracted into a buffer or string. Store
760 those characters at *DESTINATION in multibyte form.
761
762 If we encounter an invalid byte sequence, return 0.
763 If we encounter an insufficient source or destination, or
764 insufficient space in CODING->cmp_data, return 1.
765 Otherwise, return consumed bytes in the source.
766
767 */
768 static INLINE int
769 decode_composition_emacs_mule (coding, src, src_end,
770 destination, dst_end, dst_bytes)
771 struct coding_system *coding;
772 unsigned char *src, *src_end, **destination, *dst_end;
773 int dst_bytes;
774 {
775 unsigned char *dst = *destination;
776 int method, data_len, nchars;
777 unsigned char *src_base = src++;
778 /* Store components of composition. */
779 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
780 int ncomponent;
781 /* Store multibyte form of characters to be composed. This is for
782 Emacs 20 style composition sequence. */
783 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
784 unsigned char *bufp = buf;
785 int c, i, gref, nref;
786
787 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
788 >= COMPOSITION_DATA_SIZE)
789 {
790 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
791 return -1;
792 }
793
794 ONE_MORE_BYTE (c);
795 if (c - 0xF0 >= COMPOSITION_RELATIVE
796 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
797 {
798 int with_rule;
799
800 method = c - 0xF0;
801 with_rule = (method == COMPOSITION_WITH_RULE
802 || method == COMPOSITION_WITH_RULE_ALTCHARS);
803 ONE_MORE_BYTE (c);
804 data_len = c - 0xA0;
805 if (data_len < 4
806 || src_base + data_len > src_end)
807 return 0;
808 ONE_MORE_BYTE (c);
809 nchars = c - 0xA0;
810 if (c < 1)
811 return 0;
812 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
813 {
814 /* If it is longer than this, it can't be valid. */
815 if (ncomponent >= COMPOSITION_DATA_MAX_BUNCH_LENGTH)
816 return 0;
817
818 if (ncomponent % 2 && with_rule)
819 {
820 ONE_MORE_BYTE (gref);
821 gref -= 32;
822 ONE_MORE_BYTE (nref);
823 nref -= 32;
824 c = COMPOSITION_ENCODE_RULE (gref, nref);
825 }
826 else
827 {
828 int bytes;
829 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
830 c = STRING_CHAR (src, bytes);
831 else
832 c = *src, bytes = 1;
833 src += bytes;
834 }
835 component[ncomponent] = c;
836 }
837 }
838 else
839 {
840 /* This may be an old Emacs 20 style format. See the comment at
841 the section 2 of this file. */
842 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
843 if (src == src_end
844 && !(coding->mode & CODING_MODE_LAST_BLOCK))
845 goto label_end_of_loop;
846
847 src_end = src;
848 src = src_base + 1;
849 if (c < 0xC0)
850 {
851 method = COMPOSITION_RELATIVE;
852 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
853 {
854 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
855 if (c < 0)
856 break;
857 component[ncomponent++] = c;
858 }
859 if (ncomponent < 2)
860 return 0;
861 nchars = ncomponent;
862 }
863 else if (c == 0xFF)
864 {
865 method = COMPOSITION_WITH_RULE;
866 src++;
867 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
868 if (c < 0)
869 return 0;
870 component[0] = c;
871 for (ncomponent = 1;
872 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
873 {
874 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
875 if (c < 0)
876 break;
877 component[ncomponent++] = c;
878 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
879 if (c < 0)
880 break;
881 component[ncomponent++] = c;
882 }
883 if (ncomponent < 3)
884 return 0;
885 nchars = (ncomponent + 1) / 2;
886 }
887 else
888 return 0;
889 }
890
891 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
892 {
893 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
894 for (i = 0; i < ncomponent; i++)
895 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
896 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
897 if (buf < bufp)
898 {
899 unsigned char *p = buf;
900 EMIT_BYTES (p, bufp);
901 *destination += bufp - buf;
902 coding->produced_char += nchars;
903 }
904 return (src - src_base);
905 }
906 label_end_of_loop:
907 return -1;
908 }
909
910 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
911
912 static void
913 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
914 struct coding_system *coding;
915 unsigned char *source, *destination;
916 int src_bytes, dst_bytes;
917 {
918 unsigned char *src = source;
919 unsigned char *src_end = source + src_bytes;
920 unsigned char *dst = destination;
921 unsigned char *dst_end = destination + dst_bytes;
922 /* SRC_BASE remembers the start position in source in each loop.
923 The loop will be exited when there's not enough source code, or
924 when there's not enough destination area to produce a
925 character. */
926 unsigned char *src_base;
927
928 coding->produced_char = 0;
929 while ((src_base = src) < src_end)
930 {
931 unsigned char tmp[MAX_MULTIBYTE_LENGTH], *p;
932 int bytes;
933
934 if (*src == '\r')
935 {
936 int c = *src++;
937
938 if (coding->eol_type == CODING_EOL_CR)
939 c = '\n';
940 else if (coding->eol_type == CODING_EOL_CRLF)
941 {
942 ONE_MORE_BYTE (c);
943 if (c != '\n')
944 {
945 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
946 {
947 coding->result = CODING_FINISH_INCONSISTENT_EOL;
948 goto label_end_of_loop;
949 }
950 src--;
951 c = '\r';
952 }
953 }
954 *dst++ = c;
955 coding->produced_char++;
956 continue;
957 }
958 else if (*src == '\n')
959 {
960 if ((coding->eol_type == CODING_EOL_CR
961 || coding->eol_type == CODING_EOL_CRLF)
962 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
963 {
964 coding->result = CODING_FINISH_INCONSISTENT_EOL;
965 goto label_end_of_loop;
966 }
967 *dst++ = *src++;
968 coding->produced_char++;
969 continue;
970 }
971 else if (*src == 0x80)
972 {
973 /* Start of composition data. */
974 int consumed = decode_composition_emacs_mule (coding, src, src_end,
975 &dst, dst_end,
976 dst_bytes);
977 if (consumed < 0)
978 goto label_end_of_loop;
979 else if (consumed > 0)
980 {
981 src += consumed;
982 continue;
983 }
984 bytes = CHAR_STRING (*src, tmp);
985 p = tmp;
986 src++;
987 }
988 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
989 {
990 p = src;
991 src += bytes;
992 }
993 else
994 {
995 bytes = CHAR_STRING (*src, tmp);
996 p = tmp;
997 src++;
998 }
999 if (dst + bytes >= (dst_bytes ? dst_end : src))
1000 {
1001 coding->result = CODING_FINISH_INSUFFICIENT_DST;
1002 break;
1003 }
1004 while (bytes--) *dst++ = *p++;
1005 coding->produced_char++;
1006 }
1007 label_end_of_loop:
1008 coding->consumed = coding->consumed_char = src_base - source;
1009 coding->produced = dst - destination;
1010 }
1011
1012
1013 /* Encode composition data stored at DATA into a special byte sequence
1014 starting by 0x80. Update CODING->cmp_data_start and maybe
1015 CODING->cmp_data for the next call. */
1016
1017 #define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1018 do { \
1019 unsigned char buf[1024], *p0 = buf, *p; \
1020 int len = data[0]; \
1021 int i; \
1022 \
1023 buf[0] = 0x80; \
1024 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1025 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1026 p = buf + 4; \
1027 if (data[3] == COMPOSITION_WITH_RULE \
1028 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1029 { \
1030 p += CHAR_STRING (data[4], p); \
1031 for (i = 5; i < len; i += 2) \
1032 { \
1033 int gref, nref; \
1034 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1035 *p++ = 0x20 + gref; \
1036 *p++ = 0x20 + nref; \
1037 p += CHAR_STRING (data[i + 1], p); \
1038 } \
1039 } \
1040 else \
1041 { \
1042 for (i = 4; i < len; i++) \
1043 p += CHAR_STRING (data[i], p); \
1044 } \
1045 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1046 \
1047 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1048 { \
1049 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1050 goto label_end_of_loop; \
1051 } \
1052 while (p0 < p) \
1053 *dst++ = *p0++; \
1054 coding->cmp_data_start += data[0]; \
1055 if (coding->cmp_data_start == coding->cmp_data->used \
1056 && coding->cmp_data->next) \
1057 { \
1058 coding->cmp_data = coding->cmp_data->next; \
1059 coding->cmp_data_start = 0; \
1060 } \
1061 } while (0)
1062
1063
1064 static void encode_eol P_ ((struct coding_system *, unsigned char *,
1065 unsigned char *, int, int));
1066
1067 static void
1068 encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1069 struct coding_system *coding;
1070 unsigned char *source, *destination;
1071 int src_bytes, dst_bytes;
1072 {
1073 unsigned char *src = source;
1074 unsigned char *src_end = source + src_bytes;
1075 unsigned char *dst = destination;
1076 unsigned char *dst_end = destination + dst_bytes;
1077 unsigned char *src_base;
1078 int c;
1079 int char_offset;
1080 int *data;
1081
1082 Lisp_Object translation_table;
1083
1084 translation_table = Qnil;
1085
1086 /* Optimization for the case that there's no composition. */
1087 if (!coding->cmp_data || coding->cmp_data->used == 0)
1088 {
1089 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1090 return;
1091 }
1092
1093 char_offset = coding->cmp_data->char_offset;
1094 data = coding->cmp_data->data + coding->cmp_data_start;
1095 while (1)
1096 {
1097 src_base = src;
1098
1099 /* If SRC starts a composition, encode the information about the
1100 composition in advance. */
1101 if (coding->cmp_data_start < coding->cmp_data->used
1102 && char_offset + coding->consumed_char == data[1])
1103 {
1104 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1105 char_offset = coding->cmp_data->char_offset;
1106 data = coding->cmp_data->data + coding->cmp_data_start;
1107 }
1108
1109 ONE_MORE_CHAR (c);
1110 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1111 || coding->eol_type == CODING_EOL_CR))
1112 {
1113 if (coding->eol_type == CODING_EOL_CRLF)
1114 EMIT_TWO_BYTES ('\r', c);
1115 else
1116 EMIT_ONE_BYTE ('\r');
1117 }
1118 else if (SINGLE_BYTE_CHAR_P (c))
1119 EMIT_ONE_BYTE (c);
1120 else
1121 EMIT_BYTES (src_base, src);
1122 coding->consumed_char++;
1123 }
1124 label_end_of_loop:
1125 coding->consumed = src_base - source;
1126 coding->produced = coding->produced_char = dst - destination;
1127 return;
1128 }
1129
1130 \f
1131 /*** 3. ISO2022 handlers ***/
1132
1133 /* The following note describes the coding system ISO2022 briefly.
1134 Since the intention of this note is to help understand the
1135 functions in this file, some parts are NOT ACCURATE or are OVERLY
1136 SIMPLIFIED. For thorough understanding, please refer to the
1137 original document of ISO2022. This is equivalent to the standard
1138 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1139
1140 ISO2022 provides many mechanisms to encode several character sets
1141 in 7-bit and 8-bit environments. For 7-bit environments, all text
1142 is encoded using bytes less than 128. This may make the encoded
1143 text a little bit longer, but the text passes more easily through
1144 several types of gateway, some of which strip off the MSB (Most
1145 Significant Bit).
1146
1147 There are two kinds of character sets: control character sets and
1148 graphic character sets. The former contain control characters such
1149 as `newline' and `escape' to provide control functions (control
1150 functions are also provided by escape sequences). The latter
1151 contain graphic characters such as 'A' and '-'. Emacs recognizes
1152 two control character sets and many graphic character sets.
1153
1154 Graphic character sets are classified into one of the following
1155 four classes, according to the number of bytes (DIMENSION) and
1156 number of characters in one dimension (CHARS) of the set:
1157 - DIMENSION1_CHARS94
1158 - DIMENSION1_CHARS96
1159 - DIMENSION2_CHARS94
1160 - DIMENSION2_CHARS96
1161
1162 In addition, each character set is assigned an identification tag,
1163 unique for each set, called the "final character" (denoted as <F>
1164 hereafter). The <F> of each character set is decided by ECMA(*)
1165 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1166 (0x30..0x3F are for private use only).
1167
1168 Note (*): ECMA = European Computer Manufacturers Association
1169
1170 Here are examples of graphic character sets [NAME(<F>)]:
1171 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1172 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1173 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1174 o DIMENSION2_CHARS96 -- none for the moment
1175
1176 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1177 C0 [0x00..0x1F] -- control character plane 0
1178 GL [0x20..0x7F] -- graphic character plane 0
1179 C1 [0x80..0x9F] -- control character plane 1
1180 GR [0xA0..0xFF] -- graphic character plane 1
1181
1182 A control character set is directly designated and invoked to C0 or
1183 C1 by an escape sequence. The most common case is that:
1184 - ISO646's control character set is designated/invoked to C0, and
1185 - ISO6429's control character set is designated/invoked to C1,
1186 and usually these designations/invocations are omitted in encoded
1187 text. In a 7-bit environment, only C0 can be used, and a control
1188 character for C1 is encoded by an appropriate escape sequence to
1189 fit into the environment. All control characters for C1 are
1190 defined to have corresponding escape sequences.
1191
1192 A graphic character set is at first designated to one of four
1193 graphic registers (G0 through G3), then these graphic registers are
1194 invoked to GL or GR. These designations and invocations can be
1195 done independently. The most common case is that G0 is invoked to
1196 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1197 these invocations and designations are omitted in encoded text.
1198 In a 7-bit environment, only GL can be used.
1199
1200 When a graphic character set of CHARS94 is invoked to GL, codes
1201 0x20 and 0x7F of the GL area work as control characters SPACE and
1202 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1203 be used.
1204
1205 There are two ways of invocation: locking-shift and single-shift.
1206 With locking-shift, the invocation lasts until the next different
1207 invocation, whereas with single-shift, the invocation affects the
1208 following character only and doesn't affect the locking-shift
1209 state. Invocations are done by the following control characters or
1210 escape sequences:
1211
1212 ----------------------------------------------------------------------
1213 abbrev function cntrl escape seq description
1214 ----------------------------------------------------------------------
1215 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1216 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1217 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1218 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1219 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1220 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1221 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1222 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1223 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1224 ----------------------------------------------------------------------
1225 (*) These are not used by any known coding system.
1226
1227 Control characters for these functions are defined by macros
1228 ISO_CODE_XXX in `coding.h'.
1229
1230 Designations are done by the following escape sequences:
1231 ----------------------------------------------------------------------
1232 escape sequence description
1233 ----------------------------------------------------------------------
1234 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1235 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1236 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1237 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1238 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1239 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1240 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1241 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1242 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1243 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1244 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1245 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1246 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1247 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1248 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1249 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1250 ----------------------------------------------------------------------
1251
1252 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1253 of dimension 1, chars 94, and final character <F>, etc...
1254
1255 Note (*): Although these designations are not allowed in ISO2022,
1256 Emacs accepts them on decoding, and produces them on encoding
1257 CHARS96 character sets in a coding system which is characterized as
1258 7-bit environment, non-locking-shift, and non-single-shift.
1259
1260 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1261 '(' can be omitted. We refer to this as "short-form" hereafter.
1262
1263 Now you may notice that there are a lot of ways of encoding the
1264 same multilingual text in ISO2022. Actually, there exist many
1265 coding systems such as Compound Text (used in X11's inter client
1266 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1267 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1268 localized platforms), and all of these are variants of ISO2022.
1269
1270 In addition to the above, Emacs handles two more kinds of escape
1271 sequences: ISO6429's direction specification and Emacs' private
1272 sequence for specifying character composition.
1273
1274 ISO6429's direction specification takes the following form:
1275 o CSI ']' -- end of the current direction
1276 o CSI '0' ']' -- end of the current direction
1277 o CSI '1' ']' -- start of left-to-right text
1278 o CSI '2' ']' -- start of right-to-left text
1279 The control character CSI (0x9B: control sequence introducer) is
1280 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1281
1282 Character composition specification takes the following form:
1283 o ESC '0' -- start relative composition
1284 o ESC '1' -- end composition
1285 o ESC '2' -- start rule-base composition (*)
1286 o ESC '3' -- start relative composition with alternate chars (**)
1287 o ESC '4' -- start rule-base composition with alternate chars (**)
1288 Since these are not standard escape sequences of any ISO standard,
1289 the use of them with these meanings is restricted to Emacs only.
1290
1291 (*) This form is used only in Emacs 20.5 and older versions,
1292 but the newer versions can safely decode it.
1293 (**) This form is used only in Emacs 21.1 and newer versions,
1294 and the older versions can't decode it.
1295
1296 Here's a list of example usages of these composition escape
1297 sequences (categorized by `enum composition_method').
1298
1299 COMPOSITION_RELATIVE:
1300 ESC 0 CHAR [ CHAR ] ESC 1
1301 COMPOSITION_WITH_RULE:
1302 ESC 2 CHAR [ RULE CHAR ] ESC 1
1303 COMPOSITION_WITH_ALTCHARS:
1304 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1305 COMPOSITION_WITH_RULE_ALTCHARS:
1306 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1307
1308 enum iso_code_class_type iso_code_class[256];
1309
1310 #define CHARSET_OK(idx, charset, c) \
1311 (coding_system_table[idx] \
1312 && (charset == CHARSET_ASCII \
1313 || (safe_chars = coding_safe_chars (coding_system_table[idx]), \
1314 CODING_SAFE_CHAR_P (safe_chars, c))) \
1315 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1316 charset) \
1317 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1318
1319 #define SHIFT_OUT_OK(idx) \
1320 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1321
1322 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1323 Check if a text is encoded in ISO2022. If it is, return an
1324 integer in which appropriate flag bits any of:
1325 CODING_CATEGORY_MASK_ISO_7
1326 CODING_CATEGORY_MASK_ISO_7_TIGHT
1327 CODING_CATEGORY_MASK_ISO_8_1
1328 CODING_CATEGORY_MASK_ISO_8_2
1329 CODING_CATEGORY_MASK_ISO_7_ELSE
1330 CODING_CATEGORY_MASK_ISO_8_ELSE
1331 are set. If a code which should never appear in ISO2022 is found,
1332 returns 0. */
1333
1334 static int
1335 detect_coding_iso2022 (src, src_end, multibytep)
1336 unsigned char *src, *src_end;
1337 int multibytep;
1338 {
1339 int mask = CODING_CATEGORY_MASK_ISO;
1340 int mask_found = 0;
1341 int reg[4], shift_out = 0, single_shifting = 0;
1342 int c, c1, charset;
1343 /* Dummy for ONE_MORE_BYTE. */
1344 struct coding_system dummy_coding;
1345 struct coding_system *coding = &dummy_coding;
1346 Lisp_Object safe_chars;
1347
1348 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1349 while (mask && src < src_end)
1350 {
1351 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1352 switch (c)
1353 {
1354 case ISO_CODE_ESC:
1355 if (inhibit_iso_escape_detection)
1356 break;
1357 single_shifting = 0;
1358 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1359 if (c >= '(' && c <= '/')
1360 {
1361 /* Designation sequence for a charset of dimension 1. */
1362 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1363 if (c1 < ' ' || c1 >= 0x80
1364 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1365 /* Invalid designation sequence. Just ignore. */
1366 break;
1367 reg[(c - '(') % 4] = charset;
1368 }
1369 else if (c == '$')
1370 {
1371 /* Designation sequence for a charset of dimension 2. */
1372 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1373 if (c >= '@' && c <= 'B')
1374 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1375 reg[0] = charset = iso_charset_table[1][0][c];
1376 else if (c >= '(' && c <= '/')
1377 {
1378 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1379 if (c1 < ' ' || c1 >= 0x80
1380 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1381 /* Invalid designation sequence. Just ignore. */
1382 break;
1383 reg[(c - '(') % 4] = charset;
1384 }
1385 else
1386 /* Invalid designation sequence. Just ignore. */
1387 break;
1388 }
1389 else if (c == 'N' || c == 'O')
1390 {
1391 /* ESC <Fe> for SS2 or SS3. */
1392 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1393 break;
1394 }
1395 else if (c >= '0' && c <= '4')
1396 {
1397 /* ESC <Fp> for start/end composition. */
1398 mask_found |= CODING_CATEGORY_MASK_ISO;
1399 break;
1400 }
1401 else
1402 /* Invalid escape sequence. Just ignore. */
1403 break;
1404
1405 /* We found a valid designation sequence for CHARSET. */
1406 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1407 c = MAKE_CHAR (charset, 0, 0);
1408 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1409 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1410 else
1411 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1412 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1413 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1414 else
1415 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1416 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1417 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1418 else
1419 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1420 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1421 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1422 else
1423 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1424 break;
1425
1426 case ISO_CODE_SO:
1427 if (inhibit_iso_escape_detection)
1428 break;
1429 single_shifting = 0;
1430 if (shift_out == 0
1431 && (reg[1] >= 0
1432 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1433 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1434 {
1435 /* Locking shift out. */
1436 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1437 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1438 }
1439 break;
1440
1441 case ISO_CODE_SI:
1442 if (inhibit_iso_escape_detection)
1443 break;
1444 single_shifting = 0;
1445 if (shift_out == 1)
1446 {
1447 /* Locking shift in. */
1448 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1449 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1450 }
1451 break;
1452
1453 case ISO_CODE_CSI:
1454 single_shifting = 0;
1455 case ISO_CODE_SS2:
1456 case ISO_CODE_SS3:
1457 {
1458 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1459
1460 if (inhibit_iso_escape_detection)
1461 break;
1462 if (c != ISO_CODE_CSI)
1463 {
1464 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1465 & CODING_FLAG_ISO_SINGLE_SHIFT)
1466 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1467 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1468 & CODING_FLAG_ISO_SINGLE_SHIFT)
1469 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1470 single_shifting = 1;
1471 }
1472 if (VECTORP (Vlatin_extra_code_table)
1473 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1474 {
1475 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1476 & CODING_FLAG_ISO_LATIN_EXTRA)
1477 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1478 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1479 & CODING_FLAG_ISO_LATIN_EXTRA)
1480 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1481 }
1482 mask &= newmask;
1483 mask_found |= newmask;
1484 }
1485 break;
1486
1487 default:
1488 if (c < 0x80)
1489 {
1490 single_shifting = 0;
1491 break;
1492 }
1493 else if (c < 0xA0)
1494 {
1495 single_shifting = 0;
1496 if (VECTORP (Vlatin_extra_code_table)
1497 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1498 {
1499 int newmask = 0;
1500
1501 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1502 & CODING_FLAG_ISO_LATIN_EXTRA)
1503 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1504 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1505 & CODING_FLAG_ISO_LATIN_EXTRA)
1506 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1507 mask &= newmask;
1508 mask_found |= newmask;
1509 }
1510 else
1511 return 0;
1512 }
1513 else
1514 {
1515 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1516 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1517 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1518 /* Check the length of succeeding codes of the range
1519 0xA0..0FF. If the byte length is odd, we exclude
1520 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1521 when we are not single shifting. */
1522 if (!single_shifting
1523 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1524 {
1525 int i = 1;
1526 while (src < src_end)
1527 {
1528 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1529 if (c < 0xA0)
1530 break;
1531 i++;
1532 }
1533
1534 if (i & 1 && src < src_end)
1535 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1536 else
1537 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1538 }
1539 }
1540 break;
1541 }
1542 }
1543 label_end_of_loop:
1544 return (mask & mask_found);
1545 }
1546
1547 /* Decode a character of which charset is CHARSET, the 1st position
1548 code is C1, the 2nd position code is C2, and return the decoded
1549 character code. If the variable `translation_table' is non-nil,
1550 returned the translated code. */
1551
1552 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1553 (NILP (translation_table) \
1554 ? MAKE_CHAR (charset, c1, c2) \
1555 : translate_char (translation_table, -1, charset, c1, c2))
1556
1557 /* Set designation state into CODING. */
1558 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1559 do { \
1560 int charset, c; \
1561 \
1562 if (final_char < '0' || final_char >= 128) \
1563 goto label_invalid_code; \
1564 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1565 make_number (chars), \
1566 make_number (final_char)); \
1567 c = MAKE_CHAR (charset, 0, 0); \
1568 if (charset >= 0 \
1569 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1570 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1571 { \
1572 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1573 && reg == 0 \
1574 && charset == CHARSET_ASCII) \
1575 { \
1576 /* We should insert this designation sequence as is so \
1577 that it is surely written back to a file. */ \
1578 coding->spec.iso2022.last_invalid_designation_register = -1; \
1579 goto label_invalid_code; \
1580 } \
1581 coding->spec.iso2022.last_invalid_designation_register = -1; \
1582 if ((coding->mode & CODING_MODE_DIRECTION) \
1583 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1584 charset = CHARSET_REVERSE_CHARSET (charset); \
1585 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1586 } \
1587 else \
1588 { \
1589 coding->spec.iso2022.last_invalid_designation_register = reg; \
1590 goto label_invalid_code; \
1591 } \
1592 } while (0)
1593
1594 /* Allocate a memory block for storing information about compositions.
1595 The block is chained to the already allocated blocks. */
1596
1597 void
1598 coding_allocate_composition_data (coding, char_offset)
1599 struct coding_system *coding;
1600 int char_offset;
1601 {
1602 struct composition_data *cmp_data
1603 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1604
1605 cmp_data->char_offset = char_offset;
1606 cmp_data->used = 0;
1607 cmp_data->prev = coding->cmp_data;
1608 cmp_data->next = NULL;
1609 if (coding->cmp_data)
1610 coding->cmp_data->next = cmp_data;
1611 coding->cmp_data = cmp_data;
1612 coding->cmp_data_start = 0;
1613 }
1614
1615 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1616 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1617 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1618 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1619 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1620 */
1621
1622 #define DECODE_COMPOSITION_START(c1) \
1623 do { \
1624 if (coding->composing == COMPOSITION_DISABLED) \
1625 { \
1626 *dst++ = ISO_CODE_ESC; \
1627 *dst++ = c1 & 0x7f; \
1628 coding->produced_char += 2; \
1629 } \
1630 else if (!COMPOSING_P (coding)) \
1631 { \
1632 /* This is surely the start of a composition. We must be sure \
1633 that coding->cmp_data has enough space to store the \
1634 information about the composition. If not, terminate the \
1635 current decoding loop, allocate one more memory block for \
1636 coding->cmp_data in the caller, then start the decoding \
1637 loop again. We can't allocate memory here directly because \
1638 it may cause buffer/string relocation. */ \
1639 if (!coding->cmp_data \
1640 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1641 >= COMPOSITION_DATA_SIZE)) \
1642 { \
1643 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1644 goto label_end_of_loop; \
1645 } \
1646 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1647 : c1 == '2' ? COMPOSITION_WITH_RULE \
1648 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1649 : COMPOSITION_WITH_RULE_ALTCHARS); \
1650 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1651 coding->composing); \
1652 coding->composition_rule_follows = 0; \
1653 } \
1654 else \
1655 { \
1656 /* We are already handling a composition. If the method is \
1657 the following two, the codes following the current escape \
1658 sequence are actual characters stored in a buffer. */ \
1659 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1660 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1661 { \
1662 coding->composing = COMPOSITION_RELATIVE; \
1663 coding->composition_rule_follows = 0; \
1664 } \
1665 } \
1666 } while (0)
1667
1668 /* Handle composition end sequence ESC 1. */
1669
1670 #define DECODE_COMPOSITION_END(c1) \
1671 do { \
1672 if (! COMPOSING_P (coding)) \
1673 { \
1674 *dst++ = ISO_CODE_ESC; \
1675 *dst++ = c1; \
1676 coding->produced_char += 2; \
1677 } \
1678 else \
1679 { \
1680 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1681 coding->composing = COMPOSITION_NO; \
1682 } \
1683 } while (0)
1684
1685 /* Decode a composition rule from the byte C1 (and maybe one more byte
1686 from SRC) and store one encoded composition rule in
1687 coding->cmp_data. */
1688
1689 #define DECODE_COMPOSITION_RULE(c1) \
1690 do { \
1691 int rule = 0; \
1692 (c1) -= 32; \
1693 if (c1 < 81) /* old format (before ver.21) */ \
1694 { \
1695 int gref = (c1) / 9; \
1696 int nref = (c1) % 9; \
1697 if (gref == 4) gref = 10; \
1698 if (nref == 4) nref = 10; \
1699 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1700 } \
1701 else if (c1 < 93) /* new format (after ver.21) */ \
1702 { \
1703 ONE_MORE_BYTE (c2); \
1704 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1705 } \
1706 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1707 coding->composition_rule_follows = 0; \
1708 } while (0)
1709
1710
1711 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1712
1713 static void
1714 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1715 struct coding_system *coding;
1716 unsigned char *source, *destination;
1717 int src_bytes, dst_bytes;
1718 {
1719 unsigned char *src = source;
1720 unsigned char *src_end = source + src_bytes;
1721 unsigned char *dst = destination;
1722 unsigned char *dst_end = destination + dst_bytes;
1723 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1724 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1725 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1726 /* SRC_BASE remembers the start position in source in each loop.
1727 The loop will be exited when there's not enough source code
1728 (within macro ONE_MORE_BYTE), or when there's not enough
1729 destination area to produce a character (within macro
1730 EMIT_CHAR). */
1731 unsigned char *src_base;
1732 int c, charset;
1733 Lisp_Object translation_table;
1734 Lisp_Object safe_chars;
1735
1736 safe_chars = coding_safe_chars (coding);
1737
1738 if (NILP (Venable_character_translation))
1739 translation_table = Qnil;
1740 else
1741 {
1742 translation_table = coding->translation_table_for_decode;
1743 if (NILP (translation_table))
1744 translation_table = Vstandard_translation_table_for_decode;
1745 }
1746
1747 coding->result = CODING_FINISH_NORMAL;
1748
1749 while (1)
1750 {
1751 int c1, c2;
1752
1753 src_base = src;
1754 ONE_MORE_BYTE (c1);
1755
1756 /* We produce no character or one character. */
1757 switch (iso_code_class [c1])
1758 {
1759 case ISO_0x20_or_0x7F:
1760 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1761 {
1762 DECODE_COMPOSITION_RULE (c1);
1763 continue;
1764 }
1765 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1766 {
1767 /* This is SPACE or DEL. */
1768 charset = CHARSET_ASCII;
1769 break;
1770 }
1771 /* This is a graphic character, we fall down ... */
1772
1773 case ISO_graphic_plane_0:
1774 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1775 {
1776 DECODE_COMPOSITION_RULE (c1);
1777 continue;
1778 }
1779 charset = charset0;
1780 break;
1781
1782 case ISO_0xA0_or_0xFF:
1783 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1784 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1785 goto label_invalid_code;
1786 /* This is a graphic character, we fall down ... */
1787
1788 case ISO_graphic_plane_1:
1789 if (charset1 < 0)
1790 goto label_invalid_code;
1791 charset = charset1;
1792 break;
1793
1794 case ISO_control_0:
1795 if (COMPOSING_P (coding))
1796 DECODE_COMPOSITION_END ('1');
1797
1798 /* All ISO2022 control characters in this class have the
1799 same representation in Emacs internal format. */
1800 if (c1 == '\n'
1801 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1802 && (coding->eol_type == CODING_EOL_CR
1803 || coding->eol_type == CODING_EOL_CRLF))
1804 {
1805 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1806 goto label_end_of_loop;
1807 }
1808 charset = CHARSET_ASCII;
1809 break;
1810
1811 case ISO_control_1:
1812 if (COMPOSING_P (coding))
1813 DECODE_COMPOSITION_END ('1');
1814 goto label_invalid_code;
1815
1816 case ISO_carriage_return:
1817 if (COMPOSING_P (coding))
1818 DECODE_COMPOSITION_END ('1');
1819
1820 if (coding->eol_type == CODING_EOL_CR)
1821 c1 = '\n';
1822 else if (coding->eol_type == CODING_EOL_CRLF)
1823 {
1824 ONE_MORE_BYTE (c1);
1825 if (c1 != ISO_CODE_LF)
1826 {
1827 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1828 {
1829 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1830 goto label_end_of_loop;
1831 }
1832 src--;
1833 c1 = '\r';
1834 }
1835 }
1836 charset = CHARSET_ASCII;
1837 break;
1838
1839 case ISO_shift_out:
1840 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1841 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1842 goto label_invalid_code;
1843 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1844 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1845 continue;
1846
1847 case ISO_shift_in:
1848 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1849 goto label_invalid_code;
1850 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1851 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1852 continue;
1853
1854 case ISO_single_shift_2_7:
1855 case ISO_single_shift_2:
1856 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1857 goto label_invalid_code;
1858 /* SS2 is handled as an escape sequence of ESC 'N' */
1859 c1 = 'N';
1860 goto label_escape_sequence;
1861
1862 case ISO_single_shift_3:
1863 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1864 goto label_invalid_code;
1865 /* SS2 is handled as an escape sequence of ESC 'O' */
1866 c1 = 'O';
1867 goto label_escape_sequence;
1868
1869 case ISO_control_sequence_introducer:
1870 /* CSI is handled as an escape sequence of ESC '[' ... */
1871 c1 = '[';
1872 goto label_escape_sequence;
1873
1874 case ISO_escape:
1875 ONE_MORE_BYTE (c1);
1876 label_escape_sequence:
1877 /* Escape sequences handled by Emacs are invocation,
1878 designation, direction specification, and character
1879 composition specification. */
1880 switch (c1)
1881 {
1882 case '&': /* revision of following character set */
1883 ONE_MORE_BYTE (c1);
1884 if (!(c1 >= '@' && c1 <= '~'))
1885 goto label_invalid_code;
1886 ONE_MORE_BYTE (c1);
1887 if (c1 != ISO_CODE_ESC)
1888 goto label_invalid_code;
1889 ONE_MORE_BYTE (c1);
1890 goto label_escape_sequence;
1891
1892 case '$': /* designation of 2-byte character set */
1893 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1894 goto label_invalid_code;
1895 ONE_MORE_BYTE (c1);
1896 if (c1 >= '@' && c1 <= 'B')
1897 { /* designation of JISX0208.1978, GB2312.1980,
1898 or JISX0208.1980 */
1899 DECODE_DESIGNATION (0, 2, 94, c1);
1900 }
1901 else if (c1 >= 0x28 && c1 <= 0x2B)
1902 { /* designation of DIMENSION2_CHARS94 character set */
1903 ONE_MORE_BYTE (c2);
1904 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1905 }
1906 else if (c1 >= 0x2C && c1 <= 0x2F)
1907 { /* designation of DIMENSION2_CHARS96 character set */
1908 ONE_MORE_BYTE (c2);
1909 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1910 }
1911 else
1912 goto label_invalid_code;
1913 /* We must update these variables now. */
1914 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1915 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1916 continue;
1917
1918 case 'n': /* invocation of locking-shift-2 */
1919 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1920 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1921 goto label_invalid_code;
1922 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1923 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1924 continue;
1925
1926 case 'o': /* invocation of locking-shift-3 */
1927 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1928 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1929 goto label_invalid_code;
1930 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1931 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1932 continue;
1933
1934 case 'N': /* invocation of single-shift-2 */
1935 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1936 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1937 goto label_invalid_code;
1938 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1939 ONE_MORE_BYTE (c1);
1940 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1941 goto label_invalid_code;
1942 break;
1943
1944 case 'O': /* invocation of single-shift-3 */
1945 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1946 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1947 goto label_invalid_code;
1948 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1949 ONE_MORE_BYTE (c1);
1950 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1951 goto label_invalid_code;
1952 break;
1953
1954 case '0': case '2': case '3': case '4': /* start composition */
1955 DECODE_COMPOSITION_START (c1);
1956 continue;
1957
1958 case '1': /* end composition */
1959 DECODE_COMPOSITION_END (c1);
1960 continue;
1961
1962 case '[': /* specification of direction */
1963 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1964 goto label_invalid_code;
1965 /* For the moment, nested direction is not supported.
1966 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1967 left-to-right, and nonzero means right-to-left. */
1968 ONE_MORE_BYTE (c1);
1969 switch (c1)
1970 {
1971 case ']': /* end of the current direction */
1972 coding->mode &= ~CODING_MODE_DIRECTION;
1973
1974 case '0': /* end of the current direction */
1975 case '1': /* start of left-to-right direction */
1976 ONE_MORE_BYTE (c1);
1977 if (c1 == ']')
1978 coding->mode &= ~CODING_MODE_DIRECTION;
1979 else
1980 goto label_invalid_code;
1981 break;
1982
1983 case '2': /* start of right-to-left direction */
1984 ONE_MORE_BYTE (c1);
1985 if (c1 == ']')
1986 coding->mode |= CODING_MODE_DIRECTION;
1987 else
1988 goto label_invalid_code;
1989 break;
1990
1991 default:
1992 goto label_invalid_code;
1993 }
1994 continue;
1995
1996 default:
1997 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1998 goto label_invalid_code;
1999 if (c1 >= 0x28 && c1 <= 0x2B)
2000 { /* designation of DIMENSION1_CHARS94 character set */
2001 ONE_MORE_BYTE (c2);
2002 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
2003 }
2004 else if (c1 >= 0x2C && c1 <= 0x2F)
2005 { /* designation of DIMENSION1_CHARS96 character set */
2006 ONE_MORE_BYTE (c2);
2007 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2008 }
2009 else
2010 goto label_invalid_code;
2011 /* We must update these variables now. */
2012 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2013 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2014 continue;
2015 }
2016 }
2017
2018 /* Now we know CHARSET and 1st position code C1 of a character.
2019 Produce a multibyte sequence for that character while getting
2020 2nd position code C2 if necessary. */
2021 if (CHARSET_DIMENSION (charset) == 2)
2022 {
2023 ONE_MORE_BYTE (c2);
2024 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2025 /* C2 is not in a valid range. */
2026 goto label_invalid_code;
2027 }
2028 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2029 EMIT_CHAR (c);
2030 continue;
2031
2032 label_invalid_code:
2033 coding->errors++;
2034 if (COMPOSING_P (coding))
2035 DECODE_COMPOSITION_END ('1');
2036 src = src_base;
2037 c = *src++;
2038 EMIT_CHAR (c);
2039 }
2040
2041 label_end_of_loop:
2042 coding->consumed = coding->consumed_char = src_base - source;
2043 coding->produced = dst - destination;
2044 return;
2045 }
2046
2047
2048 /* ISO2022 encoding stuff. */
2049
2050 /*
2051 It is not enough to say just "ISO2022" on encoding, we have to
2052 specify more details. In Emacs, each ISO2022 coding system
2053 variant has the following specifications:
2054 1. Initial designation to G0 through G3.
2055 2. Allows short-form designation?
2056 3. ASCII should be designated to G0 before control characters?
2057 4. ASCII should be designated to G0 at end of line?
2058 5. 7-bit environment or 8-bit environment?
2059 6. Use locking-shift?
2060 7. Use Single-shift?
2061 And the following two are only for Japanese:
2062 8. Use ASCII in place of JIS0201-1976-Roman?
2063 9. Use JISX0208-1983 in place of JISX0208-1978?
2064 These specifications are encoded in `coding->flags' as flag bits
2065 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2066 details.
2067 */
2068
2069 /* Produce codes (escape sequence) for designating CHARSET to graphic
2070 register REG at DST, and increment DST. If <final-char> of CHARSET is
2071 '@', 'A', or 'B' and the coding system CODING allows, produce
2072 designation sequence of short-form. */
2073
2074 #define ENCODE_DESIGNATION(charset, reg, coding) \
2075 do { \
2076 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2077 char *intermediate_char_94 = "()*+"; \
2078 char *intermediate_char_96 = ",-./"; \
2079 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2080 \
2081 if (revision < 255) \
2082 { \
2083 *dst++ = ISO_CODE_ESC; \
2084 *dst++ = '&'; \
2085 *dst++ = '@' + revision; \
2086 } \
2087 *dst++ = ISO_CODE_ESC; \
2088 if (CHARSET_DIMENSION (charset) == 1) \
2089 { \
2090 if (CHARSET_CHARS (charset) == 94) \
2091 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2092 else \
2093 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2094 } \
2095 else \
2096 { \
2097 *dst++ = '$'; \
2098 if (CHARSET_CHARS (charset) == 94) \
2099 { \
2100 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2101 || reg != 0 \
2102 || final_char < '@' || final_char > 'B') \
2103 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2104 } \
2105 else \
2106 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2107 } \
2108 *dst++ = final_char; \
2109 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2110 } while (0)
2111
2112 /* The following two macros produce codes (control character or escape
2113 sequence) for ISO2022 single-shift functions (single-shift-2 and
2114 single-shift-3). */
2115
2116 #define ENCODE_SINGLE_SHIFT_2 \
2117 do { \
2118 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2119 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2120 else \
2121 *dst++ = ISO_CODE_SS2; \
2122 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2123 } while (0)
2124
2125 #define ENCODE_SINGLE_SHIFT_3 \
2126 do { \
2127 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2128 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2129 else \
2130 *dst++ = ISO_CODE_SS3; \
2131 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2132 } while (0)
2133
2134 /* The following four macros produce codes (control character or
2135 escape sequence) for ISO2022 locking-shift functions (shift-in,
2136 shift-out, locking-shift-2, and locking-shift-3). */
2137
2138 #define ENCODE_SHIFT_IN \
2139 do { \
2140 *dst++ = ISO_CODE_SI; \
2141 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2142 } while (0)
2143
2144 #define ENCODE_SHIFT_OUT \
2145 do { \
2146 *dst++ = ISO_CODE_SO; \
2147 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2148 } while (0)
2149
2150 #define ENCODE_LOCKING_SHIFT_2 \
2151 do { \
2152 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2153 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2154 } while (0)
2155
2156 #define ENCODE_LOCKING_SHIFT_3 \
2157 do { \
2158 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2159 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2160 } while (0)
2161
2162 /* Produce codes for a DIMENSION1 character whose character set is
2163 CHARSET and whose position-code is C1. Designation and invocation
2164 sequences are also produced in advance if necessary. */
2165
2166 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2167 do { \
2168 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2169 { \
2170 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2171 *dst++ = c1 & 0x7F; \
2172 else \
2173 *dst++ = c1 | 0x80; \
2174 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2175 break; \
2176 } \
2177 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2178 { \
2179 *dst++ = c1 & 0x7F; \
2180 break; \
2181 } \
2182 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2183 { \
2184 *dst++ = c1 | 0x80; \
2185 break; \
2186 } \
2187 else \
2188 /* Since CHARSET is not yet invoked to any graphic planes, we \
2189 must invoke it, or, at first, designate it to some graphic \
2190 register. Then repeat the loop to actually produce the \
2191 character. */ \
2192 dst = encode_invocation_designation (charset, coding, dst); \
2193 } while (1)
2194
2195 /* Produce codes for a DIMENSION2 character whose character set is
2196 CHARSET and whose position-codes are C1 and C2. Designation and
2197 invocation codes are also produced in advance if necessary. */
2198
2199 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2200 do { \
2201 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2202 { \
2203 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2204 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2205 else \
2206 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2207 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2208 break; \
2209 } \
2210 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2211 { \
2212 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2213 break; \
2214 } \
2215 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2216 { \
2217 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2218 break; \
2219 } \
2220 else \
2221 /* Since CHARSET is not yet invoked to any graphic planes, we \
2222 must invoke it, or, at first, designate it to some graphic \
2223 register. Then repeat the loop to actually produce the \
2224 character. */ \
2225 dst = encode_invocation_designation (charset, coding, dst); \
2226 } while (1)
2227
2228 #define ENCODE_ISO_CHARACTER(c) \
2229 do { \
2230 int charset, c1, c2; \
2231 \
2232 SPLIT_CHAR (c, charset, c1, c2); \
2233 if (CHARSET_DEFINED_P (charset)) \
2234 { \
2235 if (CHARSET_DIMENSION (charset) == 1) \
2236 { \
2237 if (charset == CHARSET_ASCII \
2238 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2239 charset = charset_latin_jisx0201; \
2240 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2241 } \
2242 else \
2243 { \
2244 if (charset == charset_jisx0208 \
2245 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2246 charset = charset_jisx0208_1978; \
2247 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2248 } \
2249 } \
2250 else \
2251 { \
2252 *dst++ = c1; \
2253 if (c2 >= 0) \
2254 *dst++ = c2; \
2255 } \
2256 } while (0)
2257
2258
2259 /* Instead of encoding character C, produce one or two `?'s. */
2260
2261 #define ENCODE_UNSAFE_CHARACTER(c) \
2262 do { \
2263 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2264 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2265 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2266 } while (0)
2267
2268
2269 /* Produce designation and invocation codes at a place pointed by DST
2270 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2271 Return new DST. */
2272
2273 unsigned char *
2274 encode_invocation_designation (charset, coding, dst)
2275 int charset;
2276 struct coding_system *coding;
2277 unsigned char *dst;
2278 {
2279 int reg; /* graphic register number */
2280
2281 /* At first, check designations. */
2282 for (reg = 0; reg < 4; reg++)
2283 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2284 break;
2285
2286 if (reg >= 4)
2287 {
2288 /* CHARSET is not yet designated to any graphic registers. */
2289 /* At first check the requested designation. */
2290 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2291 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2292 /* Since CHARSET requests no special designation, designate it
2293 to graphic register 0. */
2294 reg = 0;
2295
2296 ENCODE_DESIGNATION (charset, reg, coding);
2297 }
2298
2299 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2300 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2301 {
2302 /* Since the graphic register REG is not invoked to any graphic
2303 planes, invoke it to graphic plane 0. */
2304 switch (reg)
2305 {
2306 case 0: /* graphic register 0 */
2307 ENCODE_SHIFT_IN;
2308 break;
2309
2310 case 1: /* graphic register 1 */
2311 ENCODE_SHIFT_OUT;
2312 break;
2313
2314 case 2: /* graphic register 2 */
2315 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2316 ENCODE_SINGLE_SHIFT_2;
2317 else
2318 ENCODE_LOCKING_SHIFT_2;
2319 break;
2320
2321 case 3: /* graphic register 3 */
2322 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2323 ENCODE_SINGLE_SHIFT_3;
2324 else
2325 ENCODE_LOCKING_SHIFT_3;
2326 break;
2327 }
2328 }
2329
2330 return dst;
2331 }
2332
2333 /* Produce 2-byte codes for encoded composition rule RULE. */
2334
2335 #define ENCODE_COMPOSITION_RULE(rule) \
2336 do { \
2337 int gref, nref; \
2338 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2339 *dst++ = 32 + 81 + gref; \
2340 *dst++ = 32 + nref; \
2341 } while (0)
2342
2343 /* Produce codes for indicating the start of a composition sequence
2344 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2345 which specify information about the composition. See the comment
2346 in coding.h for the format of DATA. */
2347
2348 #define ENCODE_COMPOSITION_START(coding, data) \
2349 do { \
2350 coding->composing = data[3]; \
2351 *dst++ = ISO_CODE_ESC; \
2352 if (coding->composing == COMPOSITION_RELATIVE) \
2353 *dst++ = '0'; \
2354 else \
2355 { \
2356 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2357 ? '3' : '4'); \
2358 coding->cmp_data_index = coding->cmp_data_start + 4; \
2359 coding->composition_rule_follows = 0; \
2360 } \
2361 } while (0)
2362
2363 /* Produce codes for indicating the end of the current composition. */
2364
2365 #define ENCODE_COMPOSITION_END(coding, data) \
2366 do { \
2367 *dst++ = ISO_CODE_ESC; \
2368 *dst++ = '1'; \
2369 coding->cmp_data_start += data[0]; \
2370 coding->composing = COMPOSITION_NO; \
2371 if (coding->cmp_data_start == coding->cmp_data->used \
2372 && coding->cmp_data->next) \
2373 { \
2374 coding->cmp_data = coding->cmp_data->next; \
2375 coding->cmp_data_start = 0; \
2376 } \
2377 } while (0)
2378
2379 /* Produce composition start sequence ESC 0. Here, this sequence
2380 doesn't mean the start of a new composition but means that we have
2381 just produced components (alternate chars and composition rules) of
2382 the composition and the actual text follows in SRC. */
2383
2384 #define ENCODE_COMPOSITION_FAKE_START(coding) \
2385 do { \
2386 *dst++ = ISO_CODE_ESC; \
2387 *dst++ = '0'; \
2388 coding->composing = COMPOSITION_RELATIVE; \
2389 } while (0)
2390
2391 /* The following three macros produce codes for indicating direction
2392 of text. */
2393 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2394 do { \
2395 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2396 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2397 else \
2398 *dst++ = ISO_CODE_CSI; \
2399 } while (0)
2400
2401 #define ENCODE_DIRECTION_R2L \
2402 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2403
2404 #define ENCODE_DIRECTION_L2R \
2405 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2406
2407 /* Produce codes for designation and invocation to reset the graphic
2408 planes and registers to initial state. */
2409 #define ENCODE_RESET_PLANE_AND_REGISTER \
2410 do { \
2411 int reg; \
2412 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2413 ENCODE_SHIFT_IN; \
2414 for (reg = 0; reg < 4; reg++) \
2415 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2416 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2417 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2418 ENCODE_DESIGNATION \
2419 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2420 } while (0)
2421
2422 /* Produce designation sequences of charsets in the line started from
2423 SRC to a place pointed by DST, and return updated DST.
2424
2425 If the current block ends before any end-of-line, we may fail to
2426 find all the necessary designations. */
2427
2428 static unsigned char *
2429 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2430 struct coding_system *coding;
2431 Lisp_Object translation_table;
2432 unsigned char *src, *src_end, *dst;
2433 {
2434 int charset, c, found = 0, reg;
2435 /* Table of charsets to be designated to each graphic register. */
2436 int r[4];
2437
2438 for (reg = 0; reg < 4; reg++)
2439 r[reg] = -1;
2440
2441 while (found < 4)
2442 {
2443 ONE_MORE_CHAR (c);
2444 if (c == '\n')
2445 break;
2446
2447 charset = CHAR_CHARSET (c);
2448 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2449 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2450 {
2451 found++;
2452 r[reg] = charset;
2453 }
2454 }
2455
2456 label_end_of_loop:
2457 if (found)
2458 {
2459 for (reg = 0; reg < 4; reg++)
2460 if (r[reg] >= 0
2461 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2462 ENCODE_DESIGNATION (r[reg], reg, coding);
2463 }
2464
2465 return dst;
2466 }
2467
2468 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2469
2470 static void
2471 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2472 struct coding_system *coding;
2473 unsigned char *source, *destination;
2474 int src_bytes, dst_bytes;
2475 {
2476 unsigned char *src = source;
2477 unsigned char *src_end = source + src_bytes;
2478 unsigned char *dst = destination;
2479 unsigned char *dst_end = destination + dst_bytes;
2480 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2481 from DST_END to assure overflow checking is necessary only at the
2482 head of loop. */
2483 unsigned char *adjusted_dst_end = dst_end - 19;
2484 /* SRC_BASE remembers the start position in source in each loop.
2485 The loop will be exited when there's not enough source text to
2486 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2487 there's not enough destination area to produce encoded codes
2488 (within macro EMIT_BYTES). */
2489 unsigned char *src_base;
2490 int c;
2491 Lisp_Object translation_table;
2492 Lisp_Object safe_chars;
2493
2494 safe_chars = coding_safe_chars (coding);
2495
2496 if (NILP (Venable_character_translation))
2497 translation_table = Qnil;
2498 else
2499 {
2500 translation_table = coding->translation_table_for_encode;
2501 if (NILP (translation_table))
2502 translation_table = Vstandard_translation_table_for_encode;
2503 }
2504
2505 coding->consumed_char = 0;
2506 coding->errors = 0;
2507 while (1)
2508 {
2509 src_base = src;
2510
2511 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2512 {
2513 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2514 break;
2515 }
2516
2517 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2518 && CODING_SPEC_ISO_BOL (coding))
2519 {
2520 /* We have to produce designation sequences if any now. */
2521 dst = encode_designation_at_bol (coding, translation_table,
2522 src, src_end, dst);
2523 CODING_SPEC_ISO_BOL (coding) = 0;
2524 }
2525
2526 /* Check composition start and end. */
2527 if (coding->composing != COMPOSITION_DISABLED
2528 && coding->cmp_data_start < coding->cmp_data->used)
2529 {
2530 struct composition_data *cmp_data = coding->cmp_data;
2531 int *data = cmp_data->data + coding->cmp_data_start;
2532 int this_pos = cmp_data->char_offset + coding->consumed_char;
2533
2534 if (coding->composing == COMPOSITION_RELATIVE)
2535 {
2536 if (this_pos == data[2])
2537 {
2538 ENCODE_COMPOSITION_END (coding, data);
2539 cmp_data = coding->cmp_data;
2540 data = cmp_data->data + coding->cmp_data_start;
2541 }
2542 }
2543 else if (COMPOSING_P (coding))
2544 {
2545 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2546 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2547 /* We have consumed components of the composition.
2548 What follows in SRC is the composition's base
2549 text. */
2550 ENCODE_COMPOSITION_FAKE_START (coding);
2551 else
2552 {
2553 int c = cmp_data->data[coding->cmp_data_index++];
2554 if (coding->composition_rule_follows)
2555 {
2556 ENCODE_COMPOSITION_RULE (c);
2557 coding->composition_rule_follows = 0;
2558 }
2559 else
2560 {
2561 if (coding->flags & CODING_FLAG_ISO_SAFE
2562 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2563 ENCODE_UNSAFE_CHARACTER (c);
2564 else
2565 ENCODE_ISO_CHARACTER (c);
2566 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2567 coding->composition_rule_follows = 1;
2568 }
2569 continue;
2570 }
2571 }
2572 if (!COMPOSING_P (coding))
2573 {
2574 if (this_pos == data[1])
2575 {
2576 ENCODE_COMPOSITION_START (coding, data);
2577 continue;
2578 }
2579 }
2580 }
2581
2582 ONE_MORE_CHAR (c);
2583
2584 /* Now encode the character C. */
2585 if (c < 0x20 || c == 0x7F)
2586 {
2587 if (c == '\r')
2588 {
2589 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2590 {
2591 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2592 ENCODE_RESET_PLANE_AND_REGISTER;
2593 *dst++ = c;
2594 continue;
2595 }
2596 /* fall down to treat '\r' as '\n' ... */
2597 c = '\n';
2598 }
2599 if (c == '\n')
2600 {
2601 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2602 ENCODE_RESET_PLANE_AND_REGISTER;
2603 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2604 bcopy (coding->spec.iso2022.initial_designation,
2605 coding->spec.iso2022.current_designation,
2606 sizeof coding->spec.iso2022.initial_designation);
2607 if (coding->eol_type == CODING_EOL_LF
2608 || coding->eol_type == CODING_EOL_UNDECIDED)
2609 *dst++ = ISO_CODE_LF;
2610 else if (coding->eol_type == CODING_EOL_CRLF)
2611 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2612 else
2613 *dst++ = ISO_CODE_CR;
2614 CODING_SPEC_ISO_BOL (coding) = 1;
2615 }
2616 else
2617 {
2618 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2619 ENCODE_RESET_PLANE_AND_REGISTER;
2620 *dst++ = c;
2621 }
2622 }
2623 else if (ASCII_BYTE_P (c))
2624 ENCODE_ISO_CHARACTER (c);
2625 else if (SINGLE_BYTE_CHAR_P (c))
2626 {
2627 *dst++ = c;
2628 coding->errors++;
2629 }
2630 else if (coding->flags & CODING_FLAG_ISO_SAFE
2631 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2632 ENCODE_UNSAFE_CHARACTER (c);
2633 else
2634 ENCODE_ISO_CHARACTER (c);
2635
2636 coding->consumed_char++;
2637 }
2638
2639 label_end_of_loop:
2640 coding->consumed = src_base - source;
2641 coding->produced = coding->produced_char = dst - destination;
2642 }
2643
2644 \f
2645 /*** 4. SJIS and BIG5 handlers ***/
2646
2647 /* Although SJIS and BIG5 are not ISO coding systems, they are used
2648 quite widely. So, for the moment, Emacs supports them in the bare
2649 C code. But, in the future, they may be supported only by CCL. */
2650
2651 /* SJIS is a coding system encoding three character sets: ASCII, right
2652 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2653 as is. A character of charset katakana-jisx0201 is encoded by
2654 "position-code + 0x80". A character of charset japanese-jisx0208
2655 is encoded in 2-byte but two position-codes are divided and shifted
2656 so that it fits in the range below.
2657
2658 --- CODE RANGE of SJIS ---
2659 (character set) (range)
2660 ASCII 0x00 .. 0x7F
2661 KATAKANA-JISX0201 0xA1 .. 0xDF
2662 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2663 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2664 -------------------------------
2665
2666 */
2667
2668 /* BIG5 is a coding system encoding two character sets: ASCII and
2669 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2670 character set and is encoded in two bytes.
2671
2672 --- CODE RANGE of BIG5 ---
2673 (character set) (range)
2674 ASCII 0x00 .. 0x7F
2675 Big5 (1st byte) 0xA1 .. 0xFE
2676 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2677 --------------------------
2678
2679 Since the number of characters in Big5 is larger than maximum
2680 characters in Emacs' charset (96x96), it can't be handled as one
2681 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2682 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2683 contains frequently used characters and the latter contains less
2684 frequently used characters. */
2685
2686 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2687 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2688 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
2689 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2690
2691 /* Number of Big5 characters which have the same code in 1st byte. */
2692 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2693
2694 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2695 do { \
2696 unsigned int temp \
2697 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2698 if (b1 < 0xC9) \
2699 charset = charset_big5_1; \
2700 else \
2701 { \
2702 charset = charset_big5_2; \
2703 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2704 } \
2705 c1 = temp / (0xFF - 0xA1) + 0x21; \
2706 c2 = temp % (0xFF - 0xA1) + 0x21; \
2707 } while (0)
2708
2709 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2710 do { \
2711 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2712 if (charset == charset_big5_2) \
2713 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2714 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2715 b2 = temp % BIG5_SAME_ROW; \
2716 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2717 } while (0)
2718
2719 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2720 Check if a text is encoded in SJIS. If it is, return
2721 CODING_CATEGORY_MASK_SJIS, else return 0. */
2722
2723 static int
2724 detect_coding_sjis (src, src_end, multibytep)
2725 unsigned char *src, *src_end;
2726 int multibytep;
2727 {
2728 int c;
2729 /* Dummy for ONE_MORE_BYTE. */
2730 struct coding_system dummy_coding;
2731 struct coding_system *coding = &dummy_coding;
2732
2733 while (1)
2734 {
2735 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2736 if (c < 0x80)
2737 continue;
2738 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2739 return 0;
2740 if (c <= 0x9F || c >= 0xE0)
2741 {
2742 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2743 if (c < 0x40 || c == 0x7F || c > 0xFC)
2744 return 0;
2745 }
2746 }
2747 label_end_of_loop:
2748 return CODING_CATEGORY_MASK_SJIS;
2749 }
2750
2751 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2752 Check if a text is encoded in BIG5. If it is, return
2753 CODING_CATEGORY_MASK_BIG5, else return 0. */
2754
2755 static int
2756 detect_coding_big5 (src, src_end, multibytep)
2757 unsigned char *src, *src_end;
2758 int multibytep;
2759 {
2760 int c;
2761 /* Dummy for ONE_MORE_BYTE. */
2762 struct coding_system dummy_coding;
2763 struct coding_system *coding = &dummy_coding;
2764
2765 while (1)
2766 {
2767 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2768 if (c < 0x80)
2769 continue;
2770 if (c < 0xA1 || c > 0xFE)
2771 return 0;
2772 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2773 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2774 return 0;
2775 }
2776 label_end_of_loop:
2777 return CODING_CATEGORY_MASK_BIG5;
2778 }
2779
2780 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2781 Check if a text is encoded in UTF-8. If it is, return
2782 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2783
2784 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2785 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2786 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2787 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2788 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2789 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2790 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2791
2792 static int
2793 detect_coding_utf_8 (src, src_end, multibytep)
2794 unsigned char *src, *src_end;
2795 int multibytep;
2796 {
2797 unsigned char c;
2798 int seq_maybe_bytes;
2799 /* Dummy for ONE_MORE_BYTE. */
2800 struct coding_system dummy_coding;
2801 struct coding_system *coding = &dummy_coding;
2802
2803 while (1)
2804 {
2805 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2806 if (UTF_8_1_OCTET_P (c))
2807 continue;
2808 else if (UTF_8_2_OCTET_LEADING_P (c))
2809 seq_maybe_bytes = 1;
2810 else if (UTF_8_3_OCTET_LEADING_P (c))
2811 seq_maybe_bytes = 2;
2812 else if (UTF_8_4_OCTET_LEADING_P (c))
2813 seq_maybe_bytes = 3;
2814 else if (UTF_8_5_OCTET_LEADING_P (c))
2815 seq_maybe_bytes = 4;
2816 else if (UTF_8_6_OCTET_LEADING_P (c))
2817 seq_maybe_bytes = 5;
2818 else
2819 return 0;
2820
2821 do
2822 {
2823 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2824 if (!UTF_8_EXTRA_OCTET_P (c))
2825 return 0;
2826 seq_maybe_bytes--;
2827 }
2828 while (seq_maybe_bytes > 0);
2829 }
2830
2831 label_end_of_loop:
2832 return CODING_CATEGORY_MASK_UTF_8;
2833 }
2834
2835 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2836 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
2837 Little Endian (otherwise). If it is, return
2838 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
2839 else return 0. */
2840
2841 #define UTF_16_INVALID_P(val) \
2842 (((val) == 0xFFFE) \
2843 || ((val) == 0xFFFF))
2844
2845 #define UTF_16_HIGH_SURROGATE_P(val) \
2846 (((val) & 0xD800) == 0xD800)
2847
2848 #define UTF_16_LOW_SURROGATE_P(val) \
2849 (((val) & 0xDC00) == 0xDC00)
2850
2851 static int
2852 detect_coding_utf_16 (src, src_end, multibytep)
2853 unsigned char *src, *src_end;
2854 int multibytep;
2855 {
2856 unsigned char c1, c2;
2857 /* Dummy for TWO_MORE_BYTES. */
2858 struct coding_system dummy_coding;
2859 struct coding_system *coding = &dummy_coding;
2860
2861 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
2862 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
2863
2864 if ((c1 == 0xFF) && (c2 == 0xFE))
2865 return CODING_CATEGORY_MASK_UTF_16_LE;
2866 else if ((c1 == 0xFE) && (c2 == 0xFF))
2867 return CODING_CATEGORY_MASK_UTF_16_BE;
2868
2869 label_end_of_loop:
2870 return 0;
2871 }
2872
2873 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2874 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2875
2876 static void
2877 decode_coding_sjis_big5 (coding, source, destination,
2878 src_bytes, dst_bytes, sjis_p)
2879 struct coding_system *coding;
2880 unsigned char *source, *destination;
2881 int src_bytes, dst_bytes;
2882 int sjis_p;
2883 {
2884 unsigned char *src = source;
2885 unsigned char *src_end = source + src_bytes;
2886 unsigned char *dst = destination;
2887 unsigned char *dst_end = destination + dst_bytes;
2888 /* SRC_BASE remembers the start position in source in each loop.
2889 The loop will be exited when there's not enough source code
2890 (within macro ONE_MORE_BYTE), or when there's not enough
2891 destination area to produce a character (within macro
2892 EMIT_CHAR). */
2893 unsigned char *src_base;
2894 Lisp_Object translation_table;
2895
2896 if (NILP (Venable_character_translation))
2897 translation_table = Qnil;
2898 else
2899 {
2900 translation_table = coding->translation_table_for_decode;
2901 if (NILP (translation_table))
2902 translation_table = Vstandard_translation_table_for_decode;
2903 }
2904
2905 coding->produced_char = 0;
2906 while (1)
2907 {
2908 int c, charset, c1, c2;
2909
2910 src_base = src;
2911 ONE_MORE_BYTE (c1);
2912
2913 if (c1 < 0x80)
2914 {
2915 charset = CHARSET_ASCII;
2916 if (c1 < 0x20)
2917 {
2918 if (c1 == '\r')
2919 {
2920 if (coding->eol_type == CODING_EOL_CRLF)
2921 {
2922 ONE_MORE_BYTE (c2);
2923 if (c2 == '\n')
2924 c1 = c2;
2925 else if (coding->mode
2926 & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2927 {
2928 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2929 goto label_end_of_loop;
2930 }
2931 else
2932 /* To process C2 again, SRC is subtracted by 1. */
2933 src--;
2934 }
2935 else if (coding->eol_type == CODING_EOL_CR)
2936 c1 = '\n';
2937 }
2938 else if (c1 == '\n'
2939 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2940 && (coding->eol_type == CODING_EOL_CR
2941 || coding->eol_type == CODING_EOL_CRLF))
2942 {
2943 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2944 goto label_end_of_loop;
2945 }
2946 }
2947 }
2948 else
2949 {
2950 if (sjis_p)
2951 {
2952 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
2953 goto label_invalid_code;
2954 if (c1 <= 0x9F || c1 >= 0xE0)
2955 {
2956 /* SJIS -> JISX0208 */
2957 ONE_MORE_BYTE (c2);
2958 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
2959 goto label_invalid_code;
2960 DECODE_SJIS (c1, c2, c1, c2);
2961 charset = charset_jisx0208;
2962 }
2963 else
2964 /* SJIS -> JISX0201-Kana */
2965 charset = charset_katakana_jisx0201;
2966 }
2967 else
2968 {
2969 /* BIG5 -> Big5 */
2970 if (c1 < 0xA0 || c1 > 0xFE)
2971 goto label_invalid_code;
2972 ONE_MORE_BYTE (c2);
2973 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
2974 goto label_invalid_code;
2975 DECODE_BIG5 (c1, c2, charset, c1, c2);
2976 }
2977 }
2978
2979 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2980 EMIT_CHAR (c);
2981 continue;
2982
2983 label_invalid_code:
2984 coding->errors++;
2985 src = src_base;
2986 c = *src++;
2987 EMIT_CHAR (c);
2988 }
2989
2990 label_end_of_loop:
2991 coding->consumed = coding->consumed_char = src_base - source;
2992 coding->produced = dst - destination;
2993 return;
2994 }
2995
2996 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2997 This function can encode charsets `ascii', `katakana-jisx0201',
2998 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
2999 are sure that all these charsets are registered as official charset
3000 (i.e. do not have extended leading-codes). Characters of other
3001 charsets are produced without any encoding. If SJIS_P is 1, encode
3002 SJIS text, else encode BIG5 text. */
3003
3004 static void
3005 encode_coding_sjis_big5 (coding, source, destination,
3006 src_bytes, dst_bytes, sjis_p)
3007 struct coding_system *coding;
3008 unsigned char *source, *destination;
3009 int src_bytes, dst_bytes;
3010 int sjis_p;
3011 {
3012 unsigned char *src = source;
3013 unsigned char *src_end = source + src_bytes;
3014 unsigned char *dst = destination;
3015 unsigned char *dst_end = destination + dst_bytes;
3016 /* SRC_BASE remembers the start position in source in each loop.
3017 The loop will be exited when there's not enough source text to
3018 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3019 there's not enough destination area to produce encoded codes
3020 (within macro EMIT_BYTES). */
3021 unsigned char *src_base;
3022 Lisp_Object translation_table;
3023
3024 if (NILP (Venable_character_translation))
3025 translation_table = Qnil;
3026 else
3027 {
3028 translation_table = coding->translation_table_for_encode;
3029 if (NILP (translation_table))
3030 translation_table = Vstandard_translation_table_for_encode;
3031 }
3032
3033 while (1)
3034 {
3035 int c, charset, c1, c2;
3036
3037 src_base = src;
3038 ONE_MORE_CHAR (c);
3039
3040 /* Now encode the character C. */
3041 if (SINGLE_BYTE_CHAR_P (c))
3042 {
3043 switch (c)
3044 {
3045 case '\r':
3046 if (!coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
3047 {
3048 EMIT_ONE_BYTE (c);
3049 break;
3050 }
3051 c = '\n';
3052 case '\n':
3053 if (coding->eol_type == CODING_EOL_CRLF)
3054 {
3055 EMIT_TWO_BYTES ('\r', c);
3056 break;
3057 }
3058 else if (coding->eol_type == CODING_EOL_CR)
3059 c = '\r';
3060 default:
3061 EMIT_ONE_BYTE (c);
3062 }
3063 }
3064 else
3065 {
3066 SPLIT_CHAR (c, charset, c1, c2);
3067 if (sjis_p)
3068 {
3069 if (charset == charset_jisx0208
3070 || charset == charset_jisx0208_1978)
3071 {
3072 ENCODE_SJIS (c1, c2, c1, c2);
3073 EMIT_TWO_BYTES (c1, c2);
3074 }
3075 else if (charset == charset_katakana_jisx0201)
3076 EMIT_ONE_BYTE (c1 | 0x80);
3077 else if (charset == charset_latin_jisx0201)
3078 EMIT_ONE_BYTE (c1);
3079 else
3080 /* There's no way other than producing the internal
3081 codes as is. */
3082 EMIT_BYTES (src_base, src);
3083 }
3084 else
3085 {
3086 if (charset == charset_big5_1 || charset == charset_big5_2)
3087 {
3088 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3089 EMIT_TWO_BYTES (c1, c2);
3090 }
3091 else
3092 /* There's no way other than producing the internal
3093 codes as is. */
3094 EMIT_BYTES (src_base, src);
3095 }
3096 }
3097 coding->consumed_char++;
3098 }
3099
3100 label_end_of_loop:
3101 coding->consumed = src_base - source;
3102 coding->produced = coding->produced_char = dst - destination;
3103 }
3104
3105 \f
3106 /*** 5. CCL handlers ***/
3107
3108 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3109 Check if a text is encoded in a coding system of which
3110 encoder/decoder are written in CCL program. If it is, return
3111 CODING_CATEGORY_MASK_CCL, else return 0. */
3112
3113 static int
3114 detect_coding_ccl (src, src_end, multibytep)
3115 unsigned char *src, *src_end;
3116 int multibytep;
3117 {
3118 unsigned char *valid;
3119 int c;
3120 /* Dummy for ONE_MORE_BYTE. */
3121 struct coding_system dummy_coding;
3122 struct coding_system *coding = &dummy_coding;
3123
3124 /* No coding system is assigned to coding-category-ccl. */
3125 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3126 return 0;
3127
3128 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3129 while (1)
3130 {
3131 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3132 if (! valid[c])
3133 return 0;
3134 }
3135 label_end_of_loop:
3136 return CODING_CATEGORY_MASK_CCL;
3137 }
3138
3139 \f
3140 /*** 6. End-of-line handlers ***/
3141
3142 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3143
3144 static void
3145 decode_eol (coding, source, destination, src_bytes, dst_bytes)
3146 struct coding_system *coding;
3147 unsigned char *source, *destination;
3148 int src_bytes, dst_bytes;
3149 {
3150 unsigned char *src = source;
3151 unsigned char *dst = destination;
3152 unsigned char *src_end = src + src_bytes;
3153 unsigned char *dst_end = dst + dst_bytes;
3154 Lisp_Object translation_table;
3155 /* SRC_BASE remembers the start position in source in each loop.
3156 The loop will be exited when there's not enough source code
3157 (within macro ONE_MORE_BYTE), or when there's not enough
3158 destination area to produce a character (within macro
3159 EMIT_CHAR). */
3160 unsigned char *src_base;
3161 int c;
3162
3163 translation_table = Qnil;
3164 switch (coding->eol_type)
3165 {
3166 case CODING_EOL_CRLF:
3167 while (1)
3168 {
3169 src_base = src;
3170 ONE_MORE_BYTE (c);
3171 if (c == '\r')
3172 {
3173 ONE_MORE_BYTE (c);
3174 if (c != '\n')
3175 {
3176 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3177 {
3178 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3179 goto label_end_of_loop;
3180 }
3181 src--;
3182 c = '\r';
3183 }
3184 }
3185 else if (c == '\n'
3186 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3187 {
3188 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3189 goto label_end_of_loop;
3190 }
3191 EMIT_CHAR (c);
3192 }
3193 break;
3194
3195 case CODING_EOL_CR:
3196 while (1)
3197 {
3198 src_base = src;
3199 ONE_MORE_BYTE (c);
3200 if (c == '\n')
3201 {
3202 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3203 {
3204 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3205 goto label_end_of_loop;
3206 }
3207 }
3208 else if (c == '\r')
3209 c = '\n';
3210 EMIT_CHAR (c);
3211 }
3212 break;
3213
3214 default: /* no need for EOL handling */
3215 while (1)
3216 {
3217 src_base = src;
3218 ONE_MORE_BYTE (c);
3219 EMIT_CHAR (c);
3220 }
3221 }
3222
3223 label_end_of_loop:
3224 coding->consumed = coding->consumed_char = src_base - source;
3225 coding->produced = dst - destination;
3226 return;
3227 }
3228
3229 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3230 format of end-of-line according to `coding->eol_type'. It also
3231 convert multibyte form 8-bit characters to unibyte if
3232 CODING->src_multibyte is nonzero. If `coding->mode &
3233 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3234 also means end-of-line. */
3235
3236 static void
3237 encode_eol (coding, source, destination, src_bytes, dst_bytes)
3238 struct coding_system *coding;
3239 unsigned char *source, *destination;
3240 int src_bytes, dst_bytes;
3241 {
3242 unsigned char *src = source;
3243 unsigned char *dst = destination;
3244 unsigned char *src_end = src + src_bytes;
3245 unsigned char *dst_end = dst + dst_bytes;
3246 Lisp_Object translation_table;
3247 /* SRC_BASE remembers the start position in source in each loop.
3248 The loop will be exited when there's not enough source text to
3249 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3250 there's not enough destination area to produce encoded codes
3251 (within macro EMIT_BYTES). */
3252 unsigned char *src_base;
3253 int c;
3254 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3255
3256 translation_table = Qnil;
3257 if (coding->src_multibyte
3258 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3259 {
3260 src_end--;
3261 src_bytes--;
3262 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3263 }
3264
3265 if (coding->eol_type == CODING_EOL_CRLF)
3266 {
3267 while (src < src_end)
3268 {
3269 src_base = src;
3270 c = *src++;
3271 if (c >= 0x20)
3272 EMIT_ONE_BYTE (c);
3273 else if (c == '\n' || (c == '\r' && selective_display))
3274 EMIT_TWO_BYTES ('\r', '\n');
3275 else
3276 EMIT_ONE_BYTE (c);
3277 }
3278 src_base = src;
3279 label_end_of_loop:
3280 ;
3281 }
3282 else
3283 {
3284 if (!dst_bytes || src_bytes <= dst_bytes)
3285 {
3286 safe_bcopy (src, dst, src_bytes);
3287 src_base = src_end;
3288 dst += src_bytes;
3289 }
3290 else
3291 {
3292 if (coding->src_multibyte
3293 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3294 dst_bytes--;
3295 safe_bcopy (src, dst, dst_bytes);
3296 src_base = src + dst_bytes;
3297 dst = destination + dst_bytes;
3298 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3299 }
3300 if (coding->eol_type == CODING_EOL_CR)
3301 {
3302 for (src = destination; src < dst; src++)
3303 if (*src == '\n') *src = '\r';
3304 }
3305 else if (selective_display)
3306 {
3307 for (src = destination; src < dst; src++)
3308 if (*src == '\r') *src = '\n';
3309 }
3310 }
3311 if (coding->src_multibyte)
3312 dst = destination + str_as_unibyte (destination, dst - destination);
3313
3314 coding->consumed = src_base - source;
3315 coding->produced = dst - destination;
3316 coding->produced_char = coding->produced;
3317 }
3318
3319 \f
3320 /*** 7. C library functions ***/
3321
3322 /* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3323 has a property `coding-system'. The value of this property is a
3324 vector of length 5 (called the coding-vector). Among elements of
3325 this vector, the first (element[0]) and the fifth (element[4])
3326 carry important information for decoding/encoding. Before
3327 decoding/encoding, this information should be set in fields of a
3328 structure of type `coding_system'.
3329
3330 The value of the property `coding-system' can be a symbol of another
3331 subsidiary coding-system. In that case, Emacs gets coding-vector
3332 from that symbol.
3333
3334 `element[0]' contains information to be set in `coding->type'. The
3335 value and its meaning is as follows:
3336
3337 0 -- coding_type_emacs_mule
3338 1 -- coding_type_sjis
3339 2 -- coding_type_iso2022
3340 3 -- coding_type_big5
3341 4 -- coding_type_ccl encoder/decoder written in CCL
3342 nil -- coding_type_no_conversion
3343 t -- coding_type_undecided (automatic conversion on decoding,
3344 no-conversion on encoding)
3345
3346 `element[4]' contains information to be set in `coding->flags' and
3347 `coding->spec'. The meaning varies by `coding->type'.
3348
3349 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3350 of length 32 (of which the first 13 sub-elements are used now).
3351 Meanings of these sub-elements are:
3352
3353 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3354 If the value is an integer of valid charset, the charset is
3355 assumed to be designated to graphic register N initially.
3356
3357 If the value is minus, it is a minus value of charset which
3358 reserves graphic register N, which means that the charset is
3359 not designated initially but should be designated to graphic
3360 register N just before encoding a character in that charset.
3361
3362 If the value is nil, graphic register N is never used on
3363 encoding.
3364
3365 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3366 Each value takes t or nil. See the section ISO2022 of
3367 `coding.h' for more information.
3368
3369 If `coding->type' is `coding_type_big5', element[4] is t to denote
3370 BIG5-ETen or nil to denote BIG5-HKU.
3371
3372 If `coding->type' takes the other value, element[4] is ignored.
3373
3374 Emacs Lisp's coding systems also carry information about format of
3375 end-of-line in a value of property `eol-type'. If the value is
3376 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3377 means CODING_EOL_CR. If it is not integer, it should be a vector
3378 of subsidiary coding systems of which property `eol-type' has one
3379 of the above values.
3380
3381 */
3382
3383 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3384 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3385 is setup so that no conversion is necessary and return -1, else
3386 return 0. */
3387
3388 int
3389 setup_coding_system (coding_system, coding)
3390 Lisp_Object coding_system;
3391 struct coding_system *coding;
3392 {
3393 Lisp_Object coding_spec, coding_type, eol_type, plist;
3394 Lisp_Object val;
3395
3396 /* At first, zero clear all members. */
3397 bzero (coding, sizeof (struct coding_system));
3398
3399 /* Initialize some fields required for all kinds of coding systems. */
3400 coding->symbol = coding_system;
3401 coding->heading_ascii = -1;
3402 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3403 coding->composing = COMPOSITION_DISABLED;
3404 coding->cmp_data = NULL;
3405
3406 if (NILP (coding_system))
3407 goto label_invalid_coding_system;
3408
3409 coding_spec = Fget (coding_system, Qcoding_system);
3410
3411 if (!VECTORP (coding_spec)
3412 || XVECTOR (coding_spec)->size != 5
3413 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3414 goto label_invalid_coding_system;
3415
3416 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3417 if (VECTORP (eol_type))
3418 {
3419 coding->eol_type = CODING_EOL_UNDECIDED;
3420 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3421 }
3422 else if (XFASTINT (eol_type) == 1)
3423 {
3424 coding->eol_type = CODING_EOL_CRLF;
3425 coding->common_flags
3426 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3427 }
3428 else if (XFASTINT (eol_type) == 2)
3429 {
3430 coding->eol_type = CODING_EOL_CR;
3431 coding->common_flags
3432 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3433 }
3434 else
3435 coding->eol_type = CODING_EOL_LF;
3436
3437 coding_type = XVECTOR (coding_spec)->contents[0];
3438 /* Try short cut. */
3439 if (SYMBOLP (coding_type))
3440 {
3441 if (EQ (coding_type, Qt))
3442 {
3443 coding->type = coding_type_undecided;
3444 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3445 }
3446 else
3447 coding->type = coding_type_no_conversion;
3448 /* Initialize this member. Any thing other than
3449 CODING_CATEGORY_IDX_UTF_16_BE and
3450 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3451 special treatment in detect_eol. */
3452 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3453
3454 return 0;
3455 }
3456
3457 /* Get values of coding system properties:
3458 `post-read-conversion', `pre-write-conversion',
3459 `translation-table-for-decode', `translation-table-for-encode'. */
3460 plist = XVECTOR (coding_spec)->contents[3];
3461 /* Pre & post conversion functions should be disabled if
3462 inhibit_eol_conversion is nonzero. This is the case that a code
3463 conversion function is called while those functions are running. */
3464 if (! inhibit_pre_post_conversion)
3465 {
3466 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3467 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3468 }
3469 val = Fplist_get (plist, Qtranslation_table_for_decode);
3470 if (SYMBOLP (val))
3471 val = Fget (val, Qtranslation_table_for_decode);
3472 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3473 val = Fplist_get (plist, Qtranslation_table_for_encode);
3474 if (SYMBOLP (val))
3475 val = Fget (val, Qtranslation_table_for_encode);
3476 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3477 val = Fplist_get (plist, Qcoding_category);
3478 if (!NILP (val))
3479 {
3480 val = Fget (val, Qcoding_category_index);
3481 if (INTEGERP (val))
3482 coding->category_idx = XINT (val);
3483 else
3484 goto label_invalid_coding_system;
3485 }
3486 else
3487 goto label_invalid_coding_system;
3488
3489 /* If the coding system has non-nil `composition' property, enable
3490 composition handling. */
3491 val = Fplist_get (plist, Qcomposition);
3492 if (!NILP (val))
3493 coding->composing = COMPOSITION_NO;
3494
3495 switch (XFASTINT (coding_type))
3496 {
3497 case 0:
3498 coding->type = coding_type_emacs_mule;
3499 coding->common_flags
3500 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3501 coding->composing = COMPOSITION_NO;
3502 if (!NILP (coding->post_read_conversion))
3503 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3504 if (!NILP (coding->pre_write_conversion))
3505 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3506 break;
3507
3508 case 1:
3509 coding->type = coding_type_sjis;
3510 coding->common_flags
3511 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3512 break;
3513
3514 case 2:
3515 coding->type = coding_type_iso2022;
3516 coding->common_flags
3517 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3518 {
3519 Lisp_Object val, temp;
3520 Lisp_Object *flags;
3521 int i, charset, reg_bits = 0;
3522
3523 val = XVECTOR (coding_spec)->contents[4];
3524
3525 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3526 goto label_invalid_coding_system;
3527
3528 flags = XVECTOR (val)->contents;
3529 coding->flags
3530 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3531 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3532 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3533 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3534 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3535 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3536 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3537 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3538 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3539 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3540 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3541 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3542 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3543 );
3544
3545 /* Invoke graphic register 0 to plane 0. */
3546 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3547 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3548 CODING_SPEC_ISO_INVOCATION (coding, 1)
3549 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3550 /* Not single shifting at first. */
3551 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3552 /* Beginning of buffer should also be regarded as bol. */
3553 CODING_SPEC_ISO_BOL (coding) = 1;
3554
3555 for (charset = 0; charset <= MAX_CHARSET; charset++)
3556 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3557 val = Vcharset_revision_alist;
3558 while (CONSP (val))
3559 {
3560 charset = get_charset_id (Fcar_safe (XCAR (val)));
3561 if (charset >= 0
3562 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3563 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3564 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3565 val = XCDR (val);
3566 }
3567
3568 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3569 FLAGS[REG] can be one of below:
3570 integer CHARSET: CHARSET occupies register I,
3571 t: designate nothing to REG initially, but can be used
3572 by any charsets,
3573 list of integer, nil, or t: designate the first
3574 element (if integer) to REG initially, the remaining
3575 elements (if integer) is designated to REG on request,
3576 if an element is t, REG can be used by any charsets,
3577 nil: REG is never used. */
3578 for (charset = 0; charset <= MAX_CHARSET; charset++)
3579 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3580 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3581 for (i = 0; i < 4; i++)
3582 {
3583 if ((INTEGERP (flags[i])
3584 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset)))
3585 || (charset = get_charset_id (flags[i])) >= 0)
3586 {
3587 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3588 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3589 }
3590 else if (EQ (flags[i], Qt))
3591 {
3592 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3593 reg_bits |= 1 << i;
3594 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3595 }
3596 else if (CONSP (flags[i]))
3597 {
3598 Lisp_Object tail;
3599 tail = flags[i];
3600
3601 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3602 if ((INTEGERP (XCAR (tail))
3603 && (charset = XINT (XCAR (tail)),
3604 CHARSET_VALID_P (charset)))
3605 || (charset = get_charset_id (XCAR (tail))) >= 0)
3606 {
3607 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3608 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3609 }
3610 else
3611 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3612 tail = XCDR (tail);
3613 while (CONSP (tail))
3614 {
3615 if ((INTEGERP (XCAR (tail))
3616 && (charset = XINT (XCAR (tail)),
3617 CHARSET_VALID_P (charset)))
3618 || (charset = get_charset_id (XCAR (tail))) >= 0)
3619 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3620 = i;
3621 else if (EQ (XCAR (tail), Qt))
3622 reg_bits |= 1 << i;
3623 tail = XCDR (tail);
3624 }
3625 }
3626 else
3627 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3628
3629 CODING_SPEC_ISO_DESIGNATION (coding, i)
3630 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3631 }
3632
3633 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3634 {
3635 /* REG 1 can be used only by locking shift in 7-bit env. */
3636 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3637 reg_bits &= ~2;
3638 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3639 /* Without any shifting, only REG 0 and 1 can be used. */
3640 reg_bits &= 3;
3641 }
3642
3643 if (reg_bits)
3644 for (charset = 0; charset <= MAX_CHARSET; charset++)
3645 {
3646 if (CHARSET_DEFINED_P (charset)
3647 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3648 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3649 {
3650 /* There exist some default graphic registers to be
3651 used by CHARSET. */
3652
3653 /* We had better avoid designating a charset of
3654 CHARS96 to REG 0 as far as possible. */
3655 if (CHARSET_CHARS (charset) == 96)
3656 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3657 = (reg_bits & 2
3658 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3659 else
3660 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3661 = (reg_bits & 1
3662 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3663 }
3664 }
3665 }
3666 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3667 coding->spec.iso2022.last_invalid_designation_register = -1;
3668 break;
3669
3670 case 3:
3671 coding->type = coding_type_big5;
3672 coding->common_flags
3673 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3674 coding->flags
3675 = (NILP (XVECTOR (coding_spec)->contents[4])
3676 ? CODING_FLAG_BIG5_HKU
3677 : CODING_FLAG_BIG5_ETEN);
3678 break;
3679
3680 case 4:
3681 coding->type = coding_type_ccl;
3682 coding->common_flags
3683 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3684 {
3685 val = XVECTOR (coding_spec)->contents[4];
3686 if (! CONSP (val)
3687 || setup_ccl_program (&(coding->spec.ccl.decoder),
3688 XCAR (val)) < 0
3689 || setup_ccl_program (&(coding->spec.ccl.encoder),
3690 XCDR (val)) < 0)
3691 goto label_invalid_coding_system;
3692
3693 bzero (coding->spec.ccl.valid_codes, 256);
3694 val = Fplist_get (plist, Qvalid_codes);
3695 if (CONSP (val))
3696 {
3697 Lisp_Object this;
3698
3699 for (; CONSP (val); val = XCDR (val))
3700 {
3701 this = XCAR (val);
3702 if (INTEGERP (this)
3703 && XINT (this) >= 0 && XINT (this) < 256)
3704 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3705 else if (CONSP (this)
3706 && INTEGERP (XCAR (this))
3707 && INTEGERP (XCDR (this)))
3708 {
3709 int start = XINT (XCAR (this));
3710 int end = XINT (XCDR (this));
3711
3712 if (start >= 0 && start <= end && end < 256)
3713 while (start <= end)
3714 coding->spec.ccl.valid_codes[start++] = 1;
3715 }
3716 }
3717 }
3718 }
3719 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3720 coding->spec.ccl.cr_carryover = 0;
3721 coding->spec.ccl.eight_bit_carryover[0] = 0;
3722 break;
3723
3724 case 5:
3725 coding->type = coding_type_raw_text;
3726 break;
3727
3728 default:
3729 goto label_invalid_coding_system;
3730 }
3731 return 0;
3732
3733 label_invalid_coding_system:
3734 coding->type = coding_type_no_conversion;
3735 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3736 coding->common_flags = 0;
3737 coding->eol_type = CODING_EOL_LF;
3738 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3739 return -1;
3740 }
3741
3742 /* Free memory blocks allocated for storing composition information. */
3743
3744 void
3745 coding_free_composition_data (coding)
3746 struct coding_system *coding;
3747 {
3748 struct composition_data *cmp_data = coding->cmp_data, *next;
3749
3750 if (!cmp_data)
3751 return;
3752 /* Memory blocks are chained. At first, rewind to the first, then,
3753 free blocks one by one. */
3754 while (cmp_data->prev)
3755 cmp_data = cmp_data->prev;
3756 while (cmp_data)
3757 {
3758 next = cmp_data->next;
3759 xfree (cmp_data);
3760 cmp_data = next;
3761 }
3762 coding->cmp_data = NULL;
3763 }
3764
3765 /* Set `char_offset' member of all memory blocks pointed by
3766 coding->cmp_data to POS. */
3767
3768 void
3769 coding_adjust_composition_offset (coding, pos)
3770 struct coding_system *coding;
3771 int pos;
3772 {
3773 struct composition_data *cmp_data;
3774
3775 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3776 cmp_data->char_offset = pos;
3777 }
3778
3779 /* Setup raw-text or one of its subsidiaries in the structure
3780 coding_system CODING according to the already setup value eol_type
3781 in CODING. CODING should be setup for some coding system in
3782 advance. */
3783
3784 void
3785 setup_raw_text_coding_system (coding)
3786 struct coding_system *coding;
3787 {
3788 if (coding->type != coding_type_raw_text)
3789 {
3790 coding->symbol = Qraw_text;
3791 coding->type = coding_type_raw_text;
3792 if (coding->eol_type != CODING_EOL_UNDECIDED)
3793 {
3794 Lisp_Object subsidiaries;
3795 subsidiaries = Fget (Qraw_text, Qeol_type);
3796
3797 if (VECTORP (subsidiaries)
3798 && XVECTOR (subsidiaries)->size == 3)
3799 coding->symbol
3800 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3801 }
3802 setup_coding_system (coding->symbol, coding);
3803 }
3804 return;
3805 }
3806
3807 /* Emacs has a mechanism to automatically detect a coding system if it
3808 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3809 it's impossible to distinguish some coding systems accurately
3810 because they use the same range of codes. So, at first, coding
3811 systems are categorized into 7, those are:
3812
3813 o coding-category-emacs-mule
3814
3815 The category for a coding system which has the same code range
3816 as Emacs' internal format. Assigned the coding-system (Lisp
3817 symbol) `emacs-mule' by default.
3818
3819 o coding-category-sjis
3820
3821 The category for a coding system which has the same code range
3822 as SJIS. Assigned the coding-system (Lisp
3823 symbol) `japanese-shift-jis' by default.
3824
3825 o coding-category-iso-7
3826
3827 The category for a coding system which has the same code range
3828 as ISO2022 of 7-bit environment. This doesn't use any locking
3829 shift and single shift functions. This can encode/decode all
3830 charsets. Assigned the coding-system (Lisp symbol)
3831 `iso-2022-7bit' by default.
3832
3833 o coding-category-iso-7-tight
3834
3835 Same as coding-category-iso-7 except that this can
3836 encode/decode only the specified charsets.
3837
3838 o coding-category-iso-8-1
3839
3840 The category for a coding system which has the same code range
3841 as ISO2022 of 8-bit environment and graphic plane 1 used only
3842 for DIMENSION1 charset. This doesn't use any locking shift
3843 and single shift functions. Assigned the coding-system (Lisp
3844 symbol) `iso-latin-1' by default.
3845
3846 o coding-category-iso-8-2
3847
3848 The category for a coding system which has the same code range
3849 as ISO2022 of 8-bit environment and graphic plane 1 used only
3850 for DIMENSION2 charset. This doesn't use any locking shift
3851 and single shift functions. Assigned the coding-system (Lisp
3852 symbol) `japanese-iso-8bit' by default.
3853
3854 o coding-category-iso-7-else
3855
3856 The category for a coding system which has the same code range
3857 as ISO2022 of 7-bit environment but uses locking shift or
3858 single shift functions. Assigned the coding-system (Lisp
3859 symbol) `iso-2022-7bit-lock' by default.
3860
3861 o coding-category-iso-8-else
3862
3863 The category for a coding system which has the same code range
3864 as ISO2022 of 8-bit environment but uses locking shift or
3865 single shift functions. Assigned the coding-system (Lisp
3866 symbol) `iso-2022-8bit-ss2' by default.
3867
3868 o coding-category-big5
3869
3870 The category for a coding system which has the same code range
3871 as BIG5. Assigned the coding-system (Lisp symbol)
3872 `cn-big5' by default.
3873
3874 o coding-category-utf-8
3875
3876 The category for a coding system which has the same code range
3877 as UTF-8 (cf. RFC2279). Assigned the coding-system (Lisp
3878 symbol) `utf-8' by default.
3879
3880 o coding-category-utf-16-be
3881
3882 The category for a coding system in which a text has an
3883 Unicode signature (cf. Unicode Standard) in the order of BIG
3884 endian at the head. Assigned the coding-system (Lisp symbol)
3885 `utf-16-be' by default.
3886
3887 o coding-category-utf-16-le
3888
3889 The category for a coding system in which a text has an
3890 Unicode signature (cf. Unicode Standard) in the order of
3891 LITTLE endian at the head. Assigned the coding-system (Lisp
3892 symbol) `utf-16-le' by default.
3893
3894 o coding-category-ccl
3895
3896 The category for a coding system of which encoder/decoder is
3897 written in CCL programs. The default value is nil, i.e., no
3898 coding system is assigned.
3899
3900 o coding-category-binary
3901
3902 The category for a coding system not categorized in any of the
3903 above. Assigned the coding-system (Lisp symbol)
3904 `no-conversion' by default.
3905
3906 Each of them is a Lisp symbol and the value is an actual
3907 `coding-system' (this is also a Lisp symbol) assigned by a user.
3908 What Emacs does actually is to detect a category of coding system.
3909 Then, it uses a `coding-system' assigned to it. If Emacs can't
3910 decide a single possible category, it selects a category of the
3911 highest priority. Priorities of categories are also specified by a
3912 user in a Lisp variable `coding-category-list'.
3913
3914 */
3915
3916 static
3917 int ascii_skip_code[256];
3918
3919 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3920 If it detects possible coding systems, return an integer in which
3921 appropriate flag bits are set. Flag bits are defined by macros
3922 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
3923 it should point the table `coding_priorities'. In that case, only
3924 the flag bit for a coding system of the highest priority is set in
3925 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
3926 range 0x80..0x9F are in multibyte form.
3927
3928 How many ASCII characters are at the head is returned as *SKIP. */
3929
3930 static int
3931 detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
3932 unsigned char *source;
3933 int src_bytes, *priorities, *skip;
3934 int multibytep;
3935 {
3936 register unsigned char c;
3937 unsigned char *src = source, *src_end = source + src_bytes;
3938 unsigned int mask, utf16_examined_p, iso2022_examined_p;
3939 int i;
3940
3941 /* At first, skip all ASCII characters and control characters except
3942 for three ISO2022 specific control characters. */
3943 ascii_skip_code[ISO_CODE_SO] = 0;
3944 ascii_skip_code[ISO_CODE_SI] = 0;
3945 ascii_skip_code[ISO_CODE_ESC] = 0;
3946
3947 label_loop_detect_coding:
3948 while (src < src_end && ascii_skip_code[*src]) src++;
3949 *skip = src - source;
3950
3951 if (src >= src_end)
3952 /* We found nothing other than ASCII. There's nothing to do. */
3953 return 0;
3954
3955 c = *src;
3956 /* The text seems to be encoded in some multilingual coding system.
3957 Now, try to find in which coding system the text is encoded. */
3958 if (c < 0x80)
3959 {
3960 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3961 /* C is an ISO2022 specific control code of C0. */
3962 mask = detect_coding_iso2022 (src, src_end, multibytep);
3963 if (mask == 0)
3964 {
3965 /* No valid ISO2022 code follows C. Try again. */
3966 src++;
3967 if (c == ISO_CODE_ESC)
3968 ascii_skip_code[ISO_CODE_ESC] = 1;
3969 else
3970 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3971 goto label_loop_detect_coding;
3972 }
3973 if (priorities)
3974 {
3975 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3976 {
3977 if (mask & priorities[i])
3978 return priorities[i];
3979 }
3980 return CODING_CATEGORY_MASK_RAW_TEXT;
3981 }
3982 }
3983 else
3984 {
3985 int try;
3986
3987 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
3988 c = src[1] - 0x20;
3989
3990 if (c < 0xA0)
3991 {
3992 /* C is the first byte of SJIS character code,
3993 or a leading-code of Emacs' internal format (emacs-mule),
3994 or the first byte of UTF-16. */
3995 try = (CODING_CATEGORY_MASK_SJIS
3996 | CODING_CATEGORY_MASK_EMACS_MULE
3997 | CODING_CATEGORY_MASK_UTF_16_BE
3998 | CODING_CATEGORY_MASK_UTF_16_LE);
3999
4000 /* Or, if C is a special latin extra code,
4001 or is an ISO2022 specific control code of C1 (SS2 or SS3),
4002 or is an ISO2022 control-sequence-introducer (CSI),
4003 we should also consider the possibility of ISO2022 codings. */
4004 if ((VECTORP (Vlatin_extra_code_table)
4005 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4006 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4007 || (c == ISO_CODE_CSI
4008 && (src < src_end
4009 && (*src == ']'
4010 || ((*src == '0' || *src == '1' || *src == '2')
4011 && src + 1 < src_end
4012 && src[1] == ']')))))
4013 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4014 | CODING_CATEGORY_MASK_ISO_8BIT);
4015 }
4016 else
4017 /* C is a character of ISO2022 in graphic plane right,
4018 or a SJIS's 1-byte character code (i.e. JISX0201),
4019 or the first byte of BIG5's 2-byte code,
4020 or the first byte of UTF-8/16. */
4021 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4022 | CODING_CATEGORY_MASK_ISO_8BIT
4023 | CODING_CATEGORY_MASK_SJIS
4024 | CODING_CATEGORY_MASK_BIG5
4025 | CODING_CATEGORY_MASK_UTF_8
4026 | CODING_CATEGORY_MASK_UTF_16_BE
4027 | CODING_CATEGORY_MASK_UTF_16_LE);
4028
4029 /* Or, we may have to consider the possibility of CCL. */
4030 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4031 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4032 ->spec.ccl.valid_codes)[c])
4033 try |= CODING_CATEGORY_MASK_CCL;
4034
4035 mask = 0;
4036 utf16_examined_p = iso2022_examined_p = 0;
4037 if (priorities)
4038 {
4039 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4040 {
4041 if (!iso2022_examined_p
4042 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4043 {
4044 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4045 iso2022_examined_p = 1;
4046 }
4047 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4048 mask |= detect_coding_sjis (src, src_end, multibytep);
4049 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4050 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4051 else if (!utf16_examined_p
4052 && (priorities[i] & try &
4053 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4054 {
4055 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4056 utf16_examined_p = 1;
4057 }
4058 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4059 mask |= detect_coding_big5 (src, src_end, multibytep);
4060 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4061 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4062 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4063 mask |= detect_coding_ccl (src, src_end, multibytep);
4064 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4065 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4066 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4067 mask |= CODING_CATEGORY_MASK_BINARY;
4068 if (mask & priorities[i])
4069 return priorities[i];
4070 }
4071 return CODING_CATEGORY_MASK_RAW_TEXT;
4072 }
4073 if (try & CODING_CATEGORY_MASK_ISO)
4074 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4075 if (try & CODING_CATEGORY_MASK_SJIS)
4076 mask |= detect_coding_sjis (src, src_end, multibytep);
4077 if (try & CODING_CATEGORY_MASK_BIG5)
4078 mask |= detect_coding_big5 (src, src_end, multibytep);
4079 if (try & CODING_CATEGORY_MASK_UTF_8)
4080 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4081 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4082 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4083 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4084 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4085 if (try & CODING_CATEGORY_MASK_CCL)
4086 mask |= detect_coding_ccl (src, src_end, multibytep);
4087 }
4088 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4089 }
4090
4091 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4092 The information of the detected coding system is set in CODING. */
4093
4094 void
4095 detect_coding (coding, src, src_bytes)
4096 struct coding_system *coding;
4097 unsigned char *src;
4098 int src_bytes;
4099 {
4100 unsigned int idx;
4101 int skip, mask;
4102 Lisp_Object val;
4103
4104 val = Vcoding_category_list;
4105 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4106 coding->src_multibyte);
4107 coding->heading_ascii = skip;
4108
4109 if (!mask) return;
4110
4111 /* We found a single coding system of the highest priority in MASK. */
4112 idx = 0;
4113 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4114 if (! mask)
4115 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4116
4117 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[idx]);
4118
4119 if (coding->eol_type != CODING_EOL_UNDECIDED)
4120 {
4121 Lisp_Object tmp;
4122
4123 tmp = Fget (val, Qeol_type);
4124 if (VECTORP (tmp))
4125 val = XVECTOR (tmp)->contents[coding->eol_type];
4126 }
4127
4128 /* Setup this new coding system while preserving some slots. */
4129 {
4130 int src_multibyte = coding->src_multibyte;
4131 int dst_multibyte = coding->dst_multibyte;
4132
4133 setup_coding_system (val, coding);
4134 coding->src_multibyte = src_multibyte;
4135 coding->dst_multibyte = dst_multibyte;
4136 coding->heading_ascii = skip;
4137 }
4138 }
4139
4140 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
4141 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4142 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4143
4144 How many non-eol characters are at the head is returned as *SKIP. */
4145
4146 #define MAX_EOL_CHECK_COUNT 3
4147
4148 static int
4149 detect_eol_type (source, src_bytes, skip)
4150 unsigned char *source;
4151 int src_bytes, *skip;
4152 {
4153 unsigned char *src = source, *src_end = src + src_bytes;
4154 unsigned char c;
4155 int total = 0; /* How many end-of-lines are found so far. */
4156 int eol_type = CODING_EOL_UNDECIDED;
4157 int this_eol_type;
4158
4159 *skip = 0;
4160
4161 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4162 {
4163 c = *src++;
4164 if (c == '\n' || c == '\r')
4165 {
4166 if (*skip == 0)
4167 *skip = src - 1 - source;
4168 total++;
4169 if (c == '\n')
4170 this_eol_type = CODING_EOL_LF;
4171 else if (src >= src_end || *src != '\n')
4172 this_eol_type = CODING_EOL_CR;
4173 else
4174 this_eol_type = CODING_EOL_CRLF, src++;
4175
4176 if (eol_type == CODING_EOL_UNDECIDED)
4177 /* This is the first end-of-line. */
4178 eol_type = this_eol_type;
4179 else if (eol_type != this_eol_type)
4180 {
4181 /* The found type is different from what found before. */
4182 eol_type = CODING_EOL_INCONSISTENT;
4183 break;
4184 }
4185 }
4186 }
4187
4188 if (*skip == 0)
4189 *skip = src_end - source;
4190 return eol_type;
4191 }
4192
4193 /* Like detect_eol_type, but detect EOL type in 2-octet
4194 big-endian/little-endian format for coding systems utf-16-be and
4195 utf-16-le. */
4196
4197 static int
4198 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4199 unsigned char *source;
4200 int src_bytes, *skip, big_endian_p;
4201 {
4202 unsigned char *src = source, *src_end = src + src_bytes;
4203 unsigned int c1, c2;
4204 int total = 0; /* How many end-of-lines are found so far. */
4205 int eol_type = CODING_EOL_UNDECIDED;
4206 int this_eol_type;
4207 int msb, lsb;
4208
4209 if (big_endian_p)
4210 msb = 0, lsb = 1;
4211 else
4212 msb = 1, lsb = 0;
4213
4214 *skip = 0;
4215
4216 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4217 {
4218 c1 = (src[msb] << 8) | (src[lsb]);
4219 src += 2;
4220
4221 if (c1 == '\n' || c1 == '\r')
4222 {
4223 if (*skip == 0)
4224 *skip = src - 2 - source;
4225 total++;
4226 if (c1 == '\n')
4227 {
4228 this_eol_type = CODING_EOL_LF;
4229 }
4230 else
4231 {
4232 if ((src + 1) >= src_end)
4233 {
4234 this_eol_type = CODING_EOL_CR;
4235 }
4236 else
4237 {
4238 c2 = (src[msb] << 8) | (src[lsb]);
4239 if (c2 == '\n')
4240 this_eol_type = CODING_EOL_CRLF, src += 2;
4241 else
4242 this_eol_type = CODING_EOL_CR;
4243 }
4244 }
4245
4246 if (eol_type == CODING_EOL_UNDECIDED)
4247 /* This is the first end-of-line. */
4248 eol_type = this_eol_type;
4249 else if (eol_type != this_eol_type)
4250 {
4251 /* The found type is different from what found before. */
4252 eol_type = CODING_EOL_INCONSISTENT;
4253 break;
4254 }
4255 }
4256 }
4257
4258 if (*skip == 0)
4259 *skip = src_end - source;
4260 return eol_type;
4261 }
4262
4263 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4264 is encoded. If it detects an appropriate format of end-of-line, it
4265 sets the information in *CODING. */
4266
4267 void
4268 detect_eol (coding, src, src_bytes)
4269 struct coding_system *coding;
4270 unsigned char *src;
4271 int src_bytes;
4272 {
4273 Lisp_Object val;
4274 int skip;
4275 int eol_type;
4276
4277 switch (coding->category_idx)
4278 {
4279 case CODING_CATEGORY_IDX_UTF_16_BE:
4280 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4281 break;
4282 case CODING_CATEGORY_IDX_UTF_16_LE:
4283 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4284 break;
4285 default:
4286 eol_type = detect_eol_type (src, src_bytes, &skip);
4287 break;
4288 }
4289
4290 if (coding->heading_ascii > skip)
4291 coding->heading_ascii = skip;
4292 else
4293 skip = coding->heading_ascii;
4294
4295 if (eol_type == CODING_EOL_UNDECIDED)
4296 return;
4297 if (eol_type == CODING_EOL_INCONSISTENT)
4298 {
4299 #if 0
4300 /* This code is suppressed until we find a better way to
4301 distinguish raw text file and binary file. */
4302
4303 /* If we have already detected that the coding is raw-text, the
4304 coding should actually be no-conversion. */
4305 if (coding->type == coding_type_raw_text)
4306 {
4307 setup_coding_system (Qno_conversion, coding);
4308 return;
4309 }
4310 /* Else, let's decode only text code anyway. */
4311 #endif /* 0 */
4312 eol_type = CODING_EOL_LF;
4313 }
4314
4315 val = Fget (coding->symbol, Qeol_type);
4316 if (VECTORP (val) && XVECTOR (val)->size == 3)
4317 {
4318 int src_multibyte = coding->src_multibyte;
4319 int dst_multibyte = coding->dst_multibyte;
4320
4321 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4322 coding->src_multibyte = src_multibyte;
4323 coding->dst_multibyte = dst_multibyte;
4324 coding->heading_ascii = skip;
4325 }
4326 }
4327
4328 #define CONVERSION_BUFFER_EXTRA_ROOM 256
4329
4330 #define DECODING_BUFFER_MAG(coding) \
4331 (coding->type == coding_type_iso2022 \
4332 ? 3 \
4333 : (coding->type == coding_type_ccl \
4334 ? coding->spec.ccl.decoder.buf_magnification \
4335 : 2))
4336
4337 /* Return maximum size (bytes) of a buffer enough for decoding
4338 SRC_BYTES of text encoded in CODING. */
4339
4340 int
4341 decoding_buffer_size (coding, src_bytes)
4342 struct coding_system *coding;
4343 int src_bytes;
4344 {
4345 return (src_bytes * DECODING_BUFFER_MAG (coding)
4346 + CONVERSION_BUFFER_EXTRA_ROOM);
4347 }
4348
4349 /* Return maximum size (bytes) of a buffer enough for encoding
4350 SRC_BYTES of text to CODING. */
4351
4352 int
4353 encoding_buffer_size (coding, src_bytes)
4354 struct coding_system *coding;
4355 int src_bytes;
4356 {
4357 int magnification;
4358
4359 if (coding->type == coding_type_ccl)
4360 magnification = coding->spec.ccl.encoder.buf_magnification;
4361 else if (CODING_REQUIRE_ENCODING (coding))
4362 magnification = 3;
4363 else
4364 magnification = 1;
4365
4366 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4367 }
4368
4369 /* Working buffer for code conversion. */
4370 struct conversion_buffer
4371 {
4372 int size; /* size of data. */
4373 int on_stack; /* 1 if allocated by alloca. */
4374 unsigned char *data;
4375 };
4376
4377 /* Don't use alloca for allocating memory space larger than this, lest
4378 we overflow their stack. */
4379 #define MAX_ALLOCA 16*1024
4380
4381 /* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4382 #define allocate_conversion_buffer(buf, len) \
4383 do { \
4384 if (len < MAX_ALLOCA) \
4385 { \
4386 buf.data = (unsigned char *) alloca (len); \
4387 buf.on_stack = 1; \
4388 } \
4389 else \
4390 { \
4391 buf.data = (unsigned char *) xmalloc (len); \
4392 buf.on_stack = 0; \
4393 } \
4394 buf.size = len; \
4395 } while (0)
4396
4397 /* Double the allocated memory for *BUF. */
4398 static void
4399 extend_conversion_buffer (buf)
4400 struct conversion_buffer *buf;
4401 {
4402 if (buf->on_stack)
4403 {
4404 unsigned char *save = buf->data;
4405 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4406 bcopy (save, buf->data, buf->size);
4407 buf->on_stack = 0;
4408 }
4409 else
4410 {
4411 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4412 }
4413 buf->size *= 2;
4414 }
4415
4416 /* Free the allocated memory for BUF if it is not on stack. */
4417 static void
4418 free_conversion_buffer (buf)
4419 struct conversion_buffer *buf;
4420 {
4421 if (!buf->on_stack)
4422 xfree (buf->data);
4423 }
4424
4425 int
4426 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4427 struct coding_system *coding;
4428 unsigned char *source, *destination;
4429 int src_bytes, dst_bytes, encodep;
4430 {
4431 struct ccl_program *ccl
4432 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4433 unsigned char *dst = destination;
4434
4435 ccl->suppress_error = coding->suppress_error;
4436 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4437 if (encodep)
4438 {
4439 /* On encoding, EOL format is converted within ccl_driver. For
4440 that, setup proper information in the structure CCL. */
4441 ccl->eol_type = coding->eol_type;
4442 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4443 ccl->eol_type = CODING_EOL_LF;
4444 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4445 }
4446 ccl->multibyte = coding->src_multibyte;
4447 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4448 {
4449 /* Move carryover bytes to DESTINATION. */
4450 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4451 while (*p)
4452 *dst++ = *p++;
4453 coding->spec.ccl.eight_bit_carryover[0] = 0;
4454 if (dst_bytes)
4455 dst_bytes -= dst - destination;
4456 }
4457
4458 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4459 &(coding->consumed))
4460 + dst - destination);
4461
4462 if (encodep)
4463 {
4464 coding->produced_char = coding->produced;
4465 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4466 }
4467 else if (!ccl->eight_bit_control)
4468 {
4469 /* The produced bytes forms a valid multibyte sequence. */
4470 coding->produced_char
4471 = multibyte_chars_in_text (destination, coding->produced);
4472 coding->spec.ccl.eight_bit_carryover[0] = 0;
4473 }
4474 else
4475 {
4476 /* On decoding, the destination should always multibyte. But,
4477 CCL program might have been generated an invalid multibyte
4478 sequence. Here we make such a sequence valid as
4479 multibyte. */
4480 int bytes
4481 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4482
4483 if ((coding->consumed < src_bytes
4484 || !ccl->last_block)
4485 && coding->produced >= 1
4486 && destination[coding->produced - 1] >= 0x80)
4487 {
4488 /* We should not convert the tailing 8-bit codes to
4489 multibyte form even if they doesn't form a valid
4490 multibyte sequence. They may form a valid sequence in
4491 the next call. */
4492 int carryover = 0;
4493
4494 if (destination[coding->produced - 1] < 0xA0)
4495 carryover = 1;
4496 else if (coding->produced >= 2)
4497 {
4498 if (destination[coding->produced - 2] >= 0x80)
4499 {
4500 if (destination[coding->produced - 2] < 0xA0)
4501 carryover = 2;
4502 else if (coding->produced >= 3
4503 && destination[coding->produced - 3] >= 0x80
4504 && destination[coding->produced - 3] < 0xA0)
4505 carryover = 3;
4506 }
4507 }
4508 if (carryover > 0)
4509 {
4510 BCOPY_SHORT (destination + coding->produced - carryover,
4511 coding->spec.ccl.eight_bit_carryover,
4512 carryover);
4513 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4514 coding->produced -= carryover;
4515 }
4516 }
4517 coding->produced = str_as_multibyte (destination, bytes,
4518 coding->produced,
4519 &(coding->produced_char));
4520 }
4521
4522 switch (ccl->status)
4523 {
4524 case CCL_STAT_SUSPEND_BY_SRC:
4525 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4526 break;
4527 case CCL_STAT_SUSPEND_BY_DST:
4528 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4529 break;
4530 case CCL_STAT_QUIT:
4531 case CCL_STAT_INVALID_CMD:
4532 coding->result = CODING_FINISH_INTERRUPT;
4533 break;
4534 default:
4535 coding->result = CODING_FINISH_NORMAL;
4536 break;
4537 }
4538 return coding->result;
4539 }
4540
4541 /* Decode EOL format of the text at PTR of BYTES length destructively
4542 according to CODING->eol_type. This is called after the CCL
4543 program produced a decoded text at PTR. If we do CRLF->LF
4544 conversion, update CODING->produced and CODING->produced_char. */
4545
4546 static void
4547 decode_eol_post_ccl (coding, ptr, bytes)
4548 struct coding_system *coding;
4549 unsigned char *ptr;
4550 int bytes;
4551 {
4552 Lisp_Object val, saved_coding_symbol;
4553 unsigned char *pend = ptr + bytes;
4554 int dummy;
4555
4556 /* Remember the current coding system symbol. We set it back when
4557 an inconsistent EOL is found so that `last-coding-system-used' is
4558 set to the coding system that doesn't specify EOL conversion. */
4559 saved_coding_symbol = coding->symbol;
4560
4561 coding->spec.ccl.cr_carryover = 0;
4562 if (coding->eol_type == CODING_EOL_UNDECIDED)
4563 {
4564 /* Here, to avoid the call of setup_coding_system, we directly
4565 call detect_eol_type. */
4566 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4567 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4568 coding->eol_type = CODING_EOL_LF;
4569 if (coding->eol_type != CODING_EOL_UNDECIDED)
4570 {
4571 val = Fget (coding->symbol, Qeol_type);
4572 if (VECTORP (val) && XVECTOR (val)->size == 3)
4573 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4574 }
4575 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4576 }
4577
4578 if (coding->eol_type == CODING_EOL_LF
4579 || coding->eol_type == CODING_EOL_UNDECIDED)
4580 {
4581 /* We have nothing to do. */
4582 ptr = pend;
4583 }
4584 else if (coding->eol_type == CODING_EOL_CRLF)
4585 {
4586 unsigned char *pstart = ptr, *p = ptr;
4587
4588 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4589 && *(pend - 1) == '\r')
4590 {
4591 /* If the last character is CR, we can't handle it here
4592 because LF will be in the not-yet-decoded source text.
4593 Recorded that the CR is not yet processed. */
4594 coding->spec.ccl.cr_carryover = 1;
4595 coding->produced--;
4596 coding->produced_char--;
4597 pend--;
4598 }
4599 while (ptr < pend)
4600 {
4601 if (*ptr == '\r')
4602 {
4603 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4604 {
4605 *p++ = '\n';
4606 ptr += 2;
4607 }
4608 else
4609 {
4610 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4611 goto undo_eol_conversion;
4612 *p++ = *ptr++;
4613 }
4614 }
4615 else if (*ptr == '\n'
4616 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4617 goto undo_eol_conversion;
4618 else
4619 *p++ = *ptr++;
4620 continue;
4621
4622 undo_eol_conversion:
4623 /* We have faced with inconsistent EOL format at PTR.
4624 Convert all LFs before PTR back to CRLFs. */
4625 for (p--, ptr--; p >= pstart; p--)
4626 {
4627 if (*p == '\n')
4628 *ptr-- = '\n', *ptr-- = '\r';
4629 else
4630 *ptr-- = *p;
4631 }
4632 /* If carryover is recorded, cancel it because we don't
4633 convert CRLF anymore. */
4634 if (coding->spec.ccl.cr_carryover)
4635 {
4636 coding->spec.ccl.cr_carryover = 0;
4637 coding->produced++;
4638 coding->produced_char++;
4639 pend++;
4640 }
4641 p = ptr = pend;
4642 coding->eol_type = CODING_EOL_LF;
4643 coding->symbol = saved_coding_symbol;
4644 }
4645 if (p < pend)
4646 {
4647 /* As each two-byte sequence CRLF was converted to LF, (PEND
4648 - P) is the number of deleted characters. */
4649 coding->produced -= pend - p;
4650 coding->produced_char -= pend - p;
4651 }
4652 }
4653 else /* i.e. coding->eol_type == CODING_EOL_CR */
4654 {
4655 unsigned char *p = ptr;
4656
4657 for (; ptr < pend; ptr++)
4658 {
4659 if (*ptr == '\r')
4660 *ptr = '\n';
4661 else if (*ptr == '\n'
4662 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4663 {
4664 for (; p < ptr; p++)
4665 {
4666 if (*p == '\n')
4667 *p = '\r';
4668 }
4669 ptr = pend;
4670 coding->eol_type = CODING_EOL_LF;
4671 coding->symbol = saved_coding_symbol;
4672 }
4673 }
4674 }
4675 }
4676
4677 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4678 decoding, it may detect coding system and format of end-of-line if
4679 those are not yet decided. The source should be unibyte, the
4680 result is multibyte if CODING->dst_multibyte is nonzero, else
4681 unibyte. */
4682
4683 int
4684 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4685 struct coding_system *coding;
4686 unsigned char *source, *destination;
4687 int src_bytes, dst_bytes;
4688 {
4689 if (coding->type == coding_type_undecided)
4690 detect_coding (coding, source, src_bytes);
4691
4692 if (coding->eol_type == CODING_EOL_UNDECIDED
4693 && coding->type != coding_type_ccl)
4694 {
4695 detect_eol (coding, source, src_bytes);
4696 /* We had better recover the original eol format if we
4697 encounter an inconsistent eol format while decoding. */
4698 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4699 }
4700
4701 coding->produced = coding->produced_char = 0;
4702 coding->consumed = coding->consumed_char = 0;
4703 coding->errors = 0;
4704 coding->result = CODING_FINISH_NORMAL;
4705
4706 switch (coding->type)
4707 {
4708 case coding_type_sjis:
4709 decode_coding_sjis_big5 (coding, source, destination,
4710 src_bytes, dst_bytes, 1);
4711 break;
4712
4713 case coding_type_iso2022:
4714 decode_coding_iso2022 (coding, source, destination,
4715 src_bytes, dst_bytes);
4716 break;
4717
4718 case coding_type_big5:
4719 decode_coding_sjis_big5 (coding, source, destination,
4720 src_bytes, dst_bytes, 0);
4721 break;
4722
4723 case coding_type_emacs_mule:
4724 decode_coding_emacs_mule (coding, source, destination,
4725 src_bytes, dst_bytes);
4726 break;
4727
4728 case coding_type_ccl:
4729 if (coding->spec.ccl.cr_carryover)
4730 {
4731 /* Set the CR which is not processed by the previous call of
4732 decode_eol_post_ccl in DESTINATION. */
4733 *destination = '\r';
4734 coding->produced++;
4735 coding->produced_char++;
4736 dst_bytes--;
4737 }
4738 ccl_coding_driver (coding, source,
4739 destination + coding->spec.ccl.cr_carryover,
4740 src_bytes, dst_bytes, 0);
4741 if (coding->eol_type != CODING_EOL_LF)
4742 decode_eol_post_ccl (coding, destination, coding->produced);
4743 break;
4744
4745 default:
4746 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4747 }
4748
4749 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4750 && coding->mode & CODING_MODE_LAST_BLOCK
4751 && coding->consumed == src_bytes)
4752 coding->result = CODING_FINISH_NORMAL;
4753
4754 if (coding->mode & CODING_MODE_LAST_BLOCK
4755 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4756 {
4757 unsigned char *src = source + coding->consumed;
4758 unsigned char *dst = destination + coding->produced;
4759
4760 src_bytes -= coding->consumed;
4761 coding->errors++;
4762 if (COMPOSING_P (coding))
4763 DECODE_COMPOSITION_END ('1');
4764 while (src_bytes--)
4765 {
4766 int c = *src++;
4767 dst += CHAR_STRING (c, dst);
4768 coding->produced_char++;
4769 }
4770 coding->consumed = coding->consumed_char = src - source;
4771 coding->produced = dst - destination;
4772 coding->result = CODING_FINISH_NORMAL;
4773 }
4774
4775 if (!coding->dst_multibyte)
4776 {
4777 coding->produced = str_as_unibyte (destination, coding->produced);
4778 coding->produced_char = coding->produced;
4779 }
4780
4781 return coding->result;
4782 }
4783
4784 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4785 multibyteness of the source is CODING->src_multibyte, the
4786 multibyteness of the result is always unibyte. */
4787
4788 int
4789 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4790 struct coding_system *coding;
4791 unsigned char *source, *destination;
4792 int src_bytes, dst_bytes;
4793 {
4794 coding->produced = coding->produced_char = 0;
4795 coding->consumed = coding->consumed_char = 0;
4796 coding->errors = 0;
4797 coding->result = CODING_FINISH_NORMAL;
4798
4799 switch (coding->type)
4800 {
4801 case coding_type_sjis:
4802 encode_coding_sjis_big5 (coding, source, destination,
4803 src_bytes, dst_bytes, 1);
4804 break;
4805
4806 case coding_type_iso2022:
4807 encode_coding_iso2022 (coding, source, destination,
4808 src_bytes, dst_bytes);
4809 break;
4810
4811 case coding_type_big5:
4812 encode_coding_sjis_big5 (coding, source, destination,
4813 src_bytes, dst_bytes, 0);
4814 break;
4815
4816 case coding_type_emacs_mule:
4817 encode_coding_emacs_mule (coding, source, destination,
4818 src_bytes, dst_bytes);
4819 break;
4820
4821 case coding_type_ccl:
4822 ccl_coding_driver (coding, source, destination,
4823 src_bytes, dst_bytes, 1);
4824 break;
4825
4826 default:
4827 encode_eol (coding, source, destination, src_bytes, dst_bytes);
4828 }
4829
4830 if (coding->mode & CODING_MODE_LAST_BLOCK
4831 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4832 {
4833 unsigned char *src = source + coding->consumed;
4834 unsigned char *dst = destination + coding->produced;
4835
4836 if (coding->type == coding_type_iso2022)
4837 ENCODE_RESET_PLANE_AND_REGISTER;
4838 if (COMPOSING_P (coding))
4839 *dst++ = ISO_CODE_ESC, *dst++ = '1';
4840 if (coding->consumed < src_bytes)
4841 {
4842 int len = src_bytes - coding->consumed;
4843
4844 BCOPY_SHORT (src, dst, len);
4845 if (coding->src_multibyte)
4846 len = str_as_unibyte (dst, len);
4847 dst += len;
4848 coding->consumed = src_bytes;
4849 }
4850 coding->produced = coding->produced_char = dst - destination;
4851 coding->result = CODING_FINISH_NORMAL;
4852 }
4853
4854 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4855 && coding->consumed == src_bytes)
4856 coding->result = CODING_FINISH_NORMAL;
4857
4858 return coding->result;
4859 }
4860
4861 /* Scan text in the region between *BEG and *END (byte positions),
4862 skip characters which we don't have to decode by coding system
4863 CODING at the head and tail, then set *BEG and *END to the region
4864 of the text we actually have to convert. The caller should move
4865 the gap out of the region in advance if the region is from a
4866 buffer.
4867
4868 If STR is not NULL, *BEG and *END are indices into STR. */
4869
4870 static void
4871 shrink_decoding_region (beg, end, coding, str)
4872 int *beg, *end;
4873 struct coding_system *coding;
4874 unsigned char *str;
4875 {
4876 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
4877 int eol_conversion;
4878 Lisp_Object translation_table;
4879
4880 if (coding->type == coding_type_ccl
4881 || coding->type == coding_type_undecided
4882 || coding->eol_type != CODING_EOL_LF
4883 || !NILP (coding->post_read_conversion)
4884 || coding->composing != COMPOSITION_DISABLED)
4885 {
4886 /* We can't skip any data. */
4887 return;
4888 }
4889 if (coding->type == coding_type_no_conversion
4890 || coding->type == coding_type_raw_text
4891 || coding->type == coding_type_emacs_mule)
4892 {
4893 /* We need no conversion, but don't have to skip any data here.
4894 Decoding routine handles them effectively anyway. */
4895 return;
4896 }
4897
4898 translation_table = coding->translation_table_for_decode;
4899 if (NILP (translation_table) && !NILP (Venable_character_translation))
4900 translation_table = Vstandard_translation_table_for_decode;
4901 if (CHAR_TABLE_P (translation_table))
4902 {
4903 int i;
4904 for (i = 0; i < 128; i++)
4905 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4906 break;
4907 if (i < 128)
4908 /* Some ASCII character should be translated. We give up
4909 shrinking. */
4910 return;
4911 }
4912
4913 if (coding->heading_ascii >= 0)
4914 /* Detection routine has already found how much we can skip at the
4915 head. */
4916 *beg += coding->heading_ascii;
4917
4918 if (str)
4919 {
4920 begp_orig = begp = str + *beg;
4921 endp_orig = endp = str + *end;
4922 }
4923 else
4924 {
4925 begp_orig = begp = BYTE_POS_ADDR (*beg);
4926 endp_orig = endp = begp + *end - *beg;
4927 }
4928
4929 eol_conversion = (coding->eol_type == CODING_EOL_CR
4930 || coding->eol_type == CODING_EOL_CRLF);
4931
4932 switch (coding->type)
4933 {
4934 case coding_type_sjis:
4935 case coding_type_big5:
4936 /* We can skip all ASCII characters at the head. */
4937 if (coding->heading_ascii < 0)
4938 {
4939 if (eol_conversion)
4940 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
4941 else
4942 while (begp < endp && *begp < 0x80) begp++;
4943 }
4944 /* We can skip all ASCII characters at the tail except for the
4945 second byte of SJIS or BIG5 code. */
4946 if (eol_conversion)
4947 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
4948 else
4949 while (begp < endp && endp[-1] < 0x80) endp--;
4950 /* Do not consider LF as ascii if preceded by CR, since that
4951 confuses eol decoding. */
4952 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4953 endp++;
4954 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
4955 endp++;
4956 break;
4957
4958 case coding_type_iso2022:
4959 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4960 /* We can't skip any data. */
4961 break;
4962 if (coding->heading_ascii < 0)
4963 {
4964 /* We can skip all ASCII characters at the head except for a
4965 few control codes. */
4966 while (begp < endp && (c = *begp) < 0x80
4967 && c != ISO_CODE_CR && c != ISO_CODE_SO
4968 && c != ISO_CODE_SI && c != ISO_CODE_ESC
4969 && (!eol_conversion || c != ISO_CODE_LF))
4970 begp++;
4971 }
4972 switch (coding->category_idx)
4973 {
4974 case CODING_CATEGORY_IDX_ISO_8_1:
4975 case CODING_CATEGORY_IDX_ISO_8_2:
4976 /* We can skip all ASCII characters at the tail. */
4977 if (eol_conversion)
4978 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
4979 else
4980 while (begp < endp && endp[-1] < 0x80) endp--;
4981 /* Do not consider LF as ascii if preceded by CR, since that
4982 confuses eol decoding. */
4983 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4984 endp++;
4985 break;
4986
4987 case CODING_CATEGORY_IDX_ISO_7:
4988 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
4989 {
4990 /* We can skip all characters at the tail except for 8-bit
4991 codes and ESC and the following 2-byte at the tail. */
4992 unsigned char *eight_bit = NULL;
4993
4994 if (eol_conversion)
4995 while (begp < endp
4996 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
4997 {
4998 if (!eight_bit && c & 0x80) eight_bit = endp;
4999 endp--;
5000 }
5001 else
5002 while (begp < endp
5003 && (c = endp[-1]) != ISO_CODE_ESC)
5004 {
5005 if (!eight_bit && c & 0x80) eight_bit = endp;
5006 endp--;
5007 }
5008 /* Do not consider LF as ascii if preceded by CR, since that
5009 confuses eol decoding. */
5010 if (begp < endp && endp < endp_orig
5011 && endp[-1] == '\r' && endp[0] == '\n')
5012 endp++;
5013 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5014 {
5015 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5016 /* This is an ASCII designation sequence. We can
5017 surely skip the tail. But, if we have
5018 encountered an 8-bit code, skip only the codes
5019 after that. */
5020 endp = eight_bit ? eight_bit : endp + 2;
5021 else
5022 /* Hmmm, we can't skip the tail. */
5023 endp = endp_orig;
5024 }
5025 else if (eight_bit)
5026 endp = eight_bit;
5027 }
5028 }
5029 break;
5030
5031 default:
5032 abort ();
5033 }
5034 *beg += begp - begp_orig;
5035 *end += endp - endp_orig;
5036 return;
5037 }
5038
5039 /* Like shrink_decoding_region but for encoding. */
5040
5041 static void
5042 shrink_encoding_region (beg, end, coding, str)
5043 int *beg, *end;
5044 struct coding_system *coding;
5045 unsigned char *str;
5046 {
5047 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5048 int eol_conversion;
5049 Lisp_Object translation_table;
5050
5051 if (coding->type == coding_type_ccl
5052 || coding->eol_type == CODING_EOL_CRLF
5053 || coding->eol_type == CODING_EOL_CR
5054 || (coding->cmp_data && coding->cmp_data->used > 0))
5055 {
5056 /* We can't skip any data. */
5057 return;
5058 }
5059 if (coding->type == coding_type_no_conversion
5060 || coding->type == coding_type_raw_text
5061 || coding->type == coding_type_emacs_mule
5062 || coding->type == coding_type_undecided)
5063 {
5064 /* We need no conversion, but don't have to skip any data here.
5065 Encoding routine handles them effectively anyway. */
5066 return;
5067 }
5068
5069 translation_table = coding->translation_table_for_encode;
5070 if (NILP (translation_table) && !NILP (Venable_character_translation))
5071 translation_table = Vstandard_translation_table_for_encode;
5072 if (CHAR_TABLE_P (translation_table))
5073 {
5074 int i;
5075 for (i = 0; i < 128; i++)
5076 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5077 break;
5078 if (i < 128)
5079 /* Some ASCII character should be translated. We give up
5080 shrinking. */
5081 return;
5082 }
5083
5084 if (str)
5085 {
5086 begp_orig = begp = str + *beg;
5087 endp_orig = endp = str + *end;
5088 }
5089 else
5090 {
5091 begp_orig = begp = BYTE_POS_ADDR (*beg);
5092 endp_orig = endp = begp + *end - *beg;
5093 }
5094
5095 eol_conversion = (coding->eol_type == CODING_EOL_CR
5096 || coding->eol_type == CODING_EOL_CRLF);
5097
5098 /* Here, we don't have to check coding->pre_write_conversion because
5099 the caller is expected to have handled it already. */
5100 switch (coding->type)
5101 {
5102 case coding_type_iso2022:
5103 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5104 /* We can't skip any data. */
5105 break;
5106 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5107 {
5108 unsigned char *bol = begp;
5109 while (begp < endp && *begp < 0x80)
5110 {
5111 begp++;
5112 if (begp[-1] == '\n')
5113 bol = begp;
5114 }
5115 begp = bol;
5116 goto label_skip_tail;
5117 }
5118 /* fall down ... */
5119
5120 case coding_type_sjis:
5121 case coding_type_big5:
5122 /* We can skip all ASCII characters at the head and tail. */
5123 if (eol_conversion)
5124 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5125 else
5126 while (begp < endp && *begp < 0x80) begp++;
5127 label_skip_tail:
5128 if (eol_conversion)
5129 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5130 else
5131 while (begp < endp && *(endp - 1) < 0x80) endp--;
5132 break;
5133
5134 default:
5135 abort ();
5136 }
5137
5138 *beg += begp - begp_orig;
5139 *end += endp - endp_orig;
5140 return;
5141 }
5142
5143 /* As shrinking conversion region requires some overhead, we don't try
5144 shrinking if the length of conversion region is less than this
5145 value. */
5146 static int shrink_conversion_region_threshhold = 1024;
5147
5148 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5149 do { \
5150 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5151 { \
5152 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5153 else shrink_decoding_region (beg, end, coding, str); \
5154 } \
5155 } while (0)
5156
5157 static Lisp_Object
5158 code_convert_region_unwind (dummy)
5159 Lisp_Object dummy;
5160 {
5161 inhibit_pre_post_conversion = 0;
5162 return Qnil;
5163 }
5164
5165 /* Store information about all compositions in the range FROM and TO
5166 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5167 buffer or a string, defaults to the current buffer. */
5168
5169 void
5170 coding_save_composition (coding, from, to, obj)
5171 struct coding_system *coding;
5172 int from, to;
5173 Lisp_Object obj;
5174 {
5175 Lisp_Object prop;
5176 int start, end;
5177
5178 if (coding->composing == COMPOSITION_DISABLED)
5179 return;
5180 if (!coding->cmp_data)
5181 coding_allocate_composition_data (coding, from);
5182 if (!find_composition (from, to, &start, &end, &prop, obj)
5183 || end > to)
5184 return;
5185 if (start < from
5186 && (!find_composition (end, to, &start, &end, &prop, obj)
5187 || end > to))
5188 return;
5189 coding->composing = COMPOSITION_NO;
5190 do
5191 {
5192 if (COMPOSITION_VALID_P (start, end, prop))
5193 {
5194 enum composition_method method = COMPOSITION_METHOD (prop);
5195 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5196 >= COMPOSITION_DATA_SIZE)
5197 coding_allocate_composition_data (coding, from);
5198 /* For relative composition, we remember start and end
5199 positions, for the other compositions, we also remember
5200 components. */
5201 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5202 if (method != COMPOSITION_RELATIVE)
5203 {
5204 /* We must store a*/
5205 Lisp_Object val, ch;
5206
5207 val = COMPOSITION_COMPONENTS (prop);
5208 if (CONSP (val))
5209 while (CONSP (val))
5210 {
5211 ch = XCAR (val), val = XCDR (val);
5212 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5213 }
5214 else if (VECTORP (val) || STRINGP (val))
5215 {
5216 int len = (VECTORP (val)
5217 ? XVECTOR (val)->size : XSTRING (val)->size);
5218 int i;
5219 for (i = 0; i < len; i++)
5220 {
5221 ch = (STRINGP (val)
5222 ? Faref (val, make_number (i))
5223 : XVECTOR (val)->contents[i]);
5224 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5225 }
5226 }
5227 else /* INTEGERP (val) */
5228 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5229 }
5230 CODING_ADD_COMPOSITION_END (coding, end - from);
5231 }
5232 start = end;
5233 }
5234 while (start < to
5235 && find_composition (start, to, &start, &end, &prop, obj)
5236 && end <= to);
5237
5238 /* Make coding->cmp_data point to the first memory block. */
5239 while (coding->cmp_data->prev)
5240 coding->cmp_data = coding->cmp_data->prev;
5241 coding->cmp_data_start = 0;
5242 }
5243
5244 /* Reflect the saved information about compositions to OBJ.
5245 CODING->cmp_data points to a memory block for the information. OBJ
5246 is a buffer or a string, defaults to the current buffer. */
5247
5248 void
5249 coding_restore_composition (coding, obj)
5250 struct coding_system *coding;
5251 Lisp_Object obj;
5252 {
5253 struct composition_data *cmp_data = coding->cmp_data;
5254
5255 if (!cmp_data)
5256 return;
5257
5258 while (cmp_data->prev)
5259 cmp_data = cmp_data->prev;
5260
5261 while (cmp_data)
5262 {
5263 int i;
5264
5265 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5266 i += cmp_data->data[i])
5267 {
5268 int *data = cmp_data->data + i;
5269 enum composition_method method = (enum composition_method) data[3];
5270 Lisp_Object components;
5271
5272 if (method == COMPOSITION_RELATIVE)
5273 components = Qnil;
5274 else
5275 {
5276 int len = data[0] - 4, j;
5277 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5278
5279 for (j = 0; j < len; j++)
5280 args[j] = make_number (data[4 + j]);
5281 components = (method == COMPOSITION_WITH_ALTCHARS
5282 ? Fstring (len, args) : Fvector (len, args));
5283 }
5284 compose_text (data[1], data[2], components, Qnil, obj);
5285 }
5286 cmp_data = cmp_data->next;
5287 }
5288 }
5289
5290 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5291 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5292 coding system CODING, and return the status code of code conversion
5293 (currently, this value has no meaning).
5294
5295 How many characters (and bytes) are converted to how many
5296 characters (and bytes) are recorded in members of the structure
5297 CODING.
5298
5299 If REPLACE is nonzero, we do various things as if the original text
5300 is deleted and a new text is inserted. See the comments in
5301 replace_range (insdel.c) to know what we are doing.
5302
5303 If REPLACE is zero, it is assumed that the source text is unibyte.
5304 Otherwise, it is assumed that the source text is multibyte. */
5305
5306 int
5307 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5308 int from, from_byte, to, to_byte, encodep, replace;
5309 struct coding_system *coding;
5310 {
5311 int len = to - from, len_byte = to_byte - from_byte;
5312 int nchars_del = 0, nbytes_del = 0;
5313 int require, inserted, inserted_byte;
5314 int head_skip, tail_skip, total_skip = 0;
5315 Lisp_Object saved_coding_symbol;
5316 int first = 1;
5317 unsigned char *src, *dst;
5318 Lisp_Object deletion;
5319 int orig_point = PT, orig_len = len;
5320 int prev_Z;
5321 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5322
5323 deletion = Qnil;
5324 saved_coding_symbol = coding->symbol;
5325
5326 if (from < PT && PT < to)
5327 {
5328 TEMP_SET_PT_BOTH (from, from_byte);
5329 orig_point = from;
5330 }
5331
5332 if (replace)
5333 {
5334 int saved_from = from;
5335 int saved_inhibit_modification_hooks;
5336
5337 prepare_to_modify_buffer (from, to, &from);
5338 if (saved_from != from)
5339 {
5340 to = from + len;
5341 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5342 len_byte = to_byte - from_byte;
5343 }
5344
5345 /* The code conversion routine can not preserve text properties
5346 for now. So, we must remove all text properties in the
5347 region. Here, we must suppress all modification hooks. */
5348 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5349 inhibit_modification_hooks = 1;
5350 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5351 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5352 }
5353
5354 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5355 {
5356 /* We must detect encoding of text and eol format. */
5357
5358 if (from < GPT && to > GPT)
5359 move_gap_both (from, from_byte);
5360 if (coding->type == coding_type_undecided)
5361 {
5362 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5363 if (coding->type == coding_type_undecided)
5364 {
5365 /* It seems that the text contains only ASCII, but we
5366 should not leave it undecided because the deeper
5367 decoding routine (decode_coding) tries to detect the
5368 encodings again in vain. */
5369 coding->type = coding_type_emacs_mule;
5370 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5371 /* As emacs-mule decoder will handle composition, we
5372 need this setting to allocate coding->cmp_data
5373 later. */
5374 coding->composing = COMPOSITION_NO;
5375 }
5376 }
5377 if (coding->eol_type == CODING_EOL_UNDECIDED
5378 && coding->type != coding_type_ccl)
5379 {
5380 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5381 if (coding->eol_type == CODING_EOL_UNDECIDED)
5382 coding->eol_type = CODING_EOL_LF;
5383 /* We had better recover the original eol format if we
5384 encounter an inconsistent eol format while decoding. */
5385 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5386 }
5387 }
5388
5389 /* Now we convert the text. */
5390
5391 /* For encoding, we must process pre-write-conversion in advance. */
5392 if (! inhibit_pre_post_conversion
5393 && encodep
5394 && SYMBOLP (coding->pre_write_conversion)
5395 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5396 {
5397 /* The function in pre-write-conversion may put a new text in a
5398 new buffer. */
5399 struct buffer *prev = current_buffer;
5400 Lisp_Object new;
5401
5402 record_unwind_protect (code_convert_region_unwind, Qnil);
5403 /* We should not call any more pre-write/post-read-conversion
5404 functions while this pre-write-conversion is running. */
5405 inhibit_pre_post_conversion = 1;
5406 call2 (coding->pre_write_conversion,
5407 make_number (from), make_number (to));
5408 inhibit_pre_post_conversion = 0;
5409 /* Discard the unwind protect. */
5410 specpdl_ptr--;
5411
5412 if (current_buffer != prev)
5413 {
5414 len = ZV - BEGV;
5415 new = Fcurrent_buffer ();
5416 set_buffer_internal_1 (prev);
5417 del_range_2 (from, from_byte, to, to_byte, 0);
5418 TEMP_SET_PT_BOTH (from, from_byte);
5419 insert_from_buffer (XBUFFER (new), 1, len, 0);
5420 Fkill_buffer (new);
5421 if (orig_point >= to)
5422 orig_point += len - orig_len;
5423 else if (orig_point > from)
5424 orig_point = from;
5425 orig_len = len;
5426 to = from + len;
5427 from_byte = CHAR_TO_BYTE (from);
5428 to_byte = CHAR_TO_BYTE (to);
5429 len_byte = to_byte - from_byte;
5430 TEMP_SET_PT_BOTH (from, from_byte);
5431 }
5432 }
5433
5434 if (replace)
5435 {
5436 if (! EQ (current_buffer->undo_list, Qt))
5437 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5438 else
5439 {
5440 nchars_del = to - from;
5441 nbytes_del = to_byte - from_byte;
5442 }
5443 }
5444
5445 if (coding->composing != COMPOSITION_DISABLED)
5446 {
5447 if (encodep)
5448 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5449 else
5450 coding_allocate_composition_data (coding, from);
5451 }
5452
5453 /* Try to skip the heading and tailing ASCIIs. */
5454 if (coding->type != coding_type_ccl)
5455 {
5456 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5457
5458 if (from < GPT && GPT < to)
5459 move_gap_both (from, from_byte);
5460 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5461 if (from_byte == to_byte
5462 && (encodep || NILP (coding->post_read_conversion))
5463 && ! CODING_REQUIRE_FLUSHING (coding))
5464 {
5465 coding->produced = len_byte;
5466 coding->produced_char = len;
5467 if (!replace)
5468 /* We must record and adjust for this new text now. */
5469 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5470 return 0;
5471 }
5472
5473 head_skip = from_byte - from_byte_orig;
5474 tail_skip = to_byte_orig - to_byte;
5475 total_skip = head_skip + tail_skip;
5476 from += head_skip;
5477 to -= tail_skip;
5478 len -= total_skip; len_byte -= total_skip;
5479 }
5480
5481 /* For conversion, we must put the gap before the text in addition to
5482 making the gap larger for efficient decoding. The required gap
5483 size starts from 2000 which is the magic number used in make_gap.
5484 But, after one batch of conversion, it will be incremented if we
5485 find that it is not enough . */
5486 require = 2000;
5487
5488 if (GAP_SIZE < require)
5489 make_gap (require - GAP_SIZE);
5490 move_gap_both (from, from_byte);
5491
5492 inserted = inserted_byte = 0;
5493
5494 GAP_SIZE += len_byte;
5495 ZV -= len;
5496 Z -= len;
5497 ZV_BYTE -= len_byte;
5498 Z_BYTE -= len_byte;
5499
5500 if (GPT - BEG < BEG_UNCHANGED)
5501 BEG_UNCHANGED = GPT - BEG;
5502 if (Z - GPT < END_UNCHANGED)
5503 END_UNCHANGED = Z - GPT;
5504
5505 if (!encodep && coding->src_multibyte)
5506 {
5507 /* Decoding routines expects that the source text is unibyte.
5508 We must convert 8-bit characters of multibyte form to
5509 unibyte. */
5510 int len_byte_orig = len_byte;
5511 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5512 if (len_byte < len_byte_orig)
5513 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5514 len_byte);
5515 coding->src_multibyte = 0;
5516 }
5517
5518 for (;;)
5519 {
5520 int result;
5521
5522 /* The buffer memory is now:
5523 +--------+converted-text+---------+-------original-text-------+---+
5524 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5525 |<---------------------- GAP ----------------------->| */
5526 src = GAP_END_ADDR - len_byte;
5527 dst = GPT_ADDR + inserted_byte;
5528
5529 if (encodep)
5530 result = encode_coding (coding, src, dst, len_byte, 0);
5531 else
5532 {
5533 if (coding->composing != COMPOSITION_DISABLED)
5534 coding->cmp_data->char_offset = from + inserted;
5535 result = decode_coding (coding, src, dst, len_byte, 0);
5536 }
5537
5538 /* The buffer memory is now:
5539 +--------+-------converted-text----+--+------original-text----+---+
5540 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5541 |<---------------------- GAP ----------------------->| */
5542
5543 inserted += coding->produced_char;
5544 inserted_byte += coding->produced;
5545 len_byte -= coding->consumed;
5546
5547 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5548 {
5549 coding_allocate_composition_data (coding, from + inserted);
5550 continue;
5551 }
5552
5553 src += coding->consumed;
5554 dst += coding->produced;
5555
5556 if (result == CODING_FINISH_NORMAL)
5557 {
5558 src += len_byte;
5559 break;
5560 }
5561 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5562 {
5563 unsigned char *pend = dst, *p = pend - inserted_byte;
5564 Lisp_Object eol_type;
5565
5566 /* Encode LFs back to the original eol format (CR or CRLF). */
5567 if (coding->eol_type == CODING_EOL_CR)
5568 {
5569 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5570 }
5571 else
5572 {
5573 int count = 0;
5574
5575 while (p < pend) if (*p++ == '\n') count++;
5576 if (src - dst < count)
5577 {
5578 /* We don't have sufficient room for encoding LFs
5579 back to CRLF. We must record converted and
5580 not-yet-converted text back to the buffer
5581 content, enlarge the gap, then record them out of
5582 the buffer contents again. */
5583 int add = len_byte + inserted_byte;
5584
5585 GAP_SIZE -= add;
5586 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5587 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5588 make_gap (count - GAP_SIZE);
5589 GAP_SIZE += add;
5590 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5591 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5592 /* Don't forget to update SRC, DST, and PEND. */
5593 src = GAP_END_ADDR - len_byte;
5594 dst = GPT_ADDR + inserted_byte;
5595 pend = dst;
5596 }
5597 inserted += count;
5598 inserted_byte += count;
5599 coding->produced += count;
5600 p = dst = pend + count;
5601 while (count)
5602 {
5603 *--p = *--pend;
5604 if (*p == '\n') count--, *--p = '\r';
5605 }
5606 }
5607
5608 /* Suppress eol-format conversion in the further conversion. */
5609 coding->eol_type = CODING_EOL_LF;
5610
5611 /* Set the coding system symbol to that for Unix-like EOL. */
5612 eol_type = Fget (saved_coding_symbol, Qeol_type);
5613 if (VECTORP (eol_type)
5614 && XVECTOR (eol_type)->size == 3
5615 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5616 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5617 else
5618 coding->symbol = saved_coding_symbol;
5619
5620 continue;
5621 }
5622 if (len_byte <= 0)
5623 {
5624 if (coding->type != coding_type_ccl
5625 || coding->mode & CODING_MODE_LAST_BLOCK)
5626 break;
5627 coding->mode |= CODING_MODE_LAST_BLOCK;
5628 continue;
5629 }
5630 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5631 {
5632 /* The source text ends in invalid codes. Let's just
5633 make them valid buffer contents, and finish conversion. */
5634 if (multibyte_p)
5635 {
5636 unsigned char *start = dst;
5637
5638 inserted += len_byte;
5639 while (len_byte--)
5640 {
5641 int c = *src++;
5642 dst += CHAR_STRING (c, dst);
5643 }
5644
5645 inserted_byte += dst - start;
5646 }
5647 else
5648 {
5649 inserted += len_byte;
5650 inserted_byte += len_byte;
5651 while (len_byte--)
5652 *dst++ = *src++;
5653 }
5654 break;
5655 }
5656 if (result == CODING_FINISH_INTERRUPT)
5657 {
5658 /* The conversion procedure was interrupted by a user. */
5659 break;
5660 }
5661 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5662 if (coding->consumed < 1)
5663 {
5664 /* It's quite strange to require more memory without
5665 consuming any bytes. Perhaps CCL program bug. */
5666 break;
5667 }
5668 if (first)
5669 {
5670 /* We have just done the first batch of conversion which was
5671 stopped because of insufficient gap. Let's reconsider the
5672 required gap size (i.e. SRT - DST) now.
5673
5674 We have converted ORIG bytes (== coding->consumed) into
5675 NEW bytes (coding->produced). To convert the remaining
5676 LEN bytes, we may need REQUIRE bytes of gap, where:
5677 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5678 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5679 Here, we are sure that NEW >= ORIG. */
5680 float ratio = coding->produced - coding->consumed;
5681 ratio /= coding->consumed;
5682 require = len_byte * ratio;
5683 first = 0;
5684 }
5685 if ((src - dst) < (require + 2000))
5686 {
5687 /* See the comment above the previous call of make_gap. */
5688 int add = len_byte + inserted_byte;
5689
5690 GAP_SIZE -= add;
5691 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5692 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5693 make_gap (require + 2000);
5694 GAP_SIZE += add;
5695 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5696 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5697 }
5698 }
5699 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5700
5701 if (encodep && coding->dst_multibyte)
5702 {
5703 /* The output is unibyte. We must convert 8-bit characters to
5704 multibyte form. */
5705 if (inserted_byte * 2 > GAP_SIZE)
5706 {
5707 GAP_SIZE -= inserted_byte;
5708 ZV += inserted_byte; Z += inserted_byte;
5709 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5710 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5711 make_gap (inserted_byte - GAP_SIZE);
5712 GAP_SIZE += inserted_byte;
5713 ZV -= inserted_byte; Z -= inserted_byte;
5714 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5715 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5716 }
5717 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5718 }
5719
5720 /* If we shrank the conversion area, adjust it now. */
5721 if (total_skip > 0)
5722 {
5723 if (tail_skip > 0)
5724 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5725 inserted += total_skip; inserted_byte += total_skip;
5726 GAP_SIZE += total_skip;
5727 GPT -= head_skip; GPT_BYTE -= head_skip;
5728 ZV -= total_skip; ZV_BYTE -= total_skip;
5729 Z -= total_skip; Z_BYTE -= total_skip;
5730 from -= head_skip; from_byte -= head_skip;
5731 to += tail_skip; to_byte += tail_skip;
5732 }
5733
5734 prev_Z = Z;
5735 if (! EQ (current_buffer->undo_list, Qt))
5736 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5737 else
5738 adjust_after_replace_noundo (from, from_byte, nchars_del, nbytes_del,
5739 inserted, inserted_byte);
5740 inserted = Z - prev_Z;
5741
5742 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5743 coding_restore_composition (coding, Fcurrent_buffer ());
5744 coding_free_composition_data (coding);
5745
5746 if (! inhibit_pre_post_conversion
5747 && ! encodep && ! NILP (coding->post_read_conversion))
5748 {
5749 Lisp_Object val;
5750
5751 if (from != PT)
5752 TEMP_SET_PT_BOTH (from, from_byte);
5753 prev_Z = Z;
5754 record_unwind_protect (code_convert_region_unwind, Qnil);
5755 /* We should not call any more pre-write/post-read-conversion
5756 functions while this post-read-conversion is running. */
5757 inhibit_pre_post_conversion = 1;
5758 val = call1 (coding->post_read_conversion, make_number (inserted));
5759 inhibit_pre_post_conversion = 0;
5760 /* Discard the unwind protect. */
5761 specpdl_ptr--;
5762 CHECK_NUMBER (val);
5763 inserted += Z - prev_Z;
5764 }
5765
5766 if (orig_point >= from)
5767 {
5768 if (orig_point >= from + orig_len)
5769 orig_point += inserted - orig_len;
5770 else
5771 orig_point = from;
5772 TEMP_SET_PT (orig_point);
5773 }
5774
5775 if (replace)
5776 {
5777 signal_after_change (from, to - from, inserted);
5778 update_compositions (from, from + inserted, CHECK_BORDER);
5779 }
5780
5781 {
5782 coding->consumed = to_byte - from_byte;
5783 coding->consumed_char = to - from;
5784 coding->produced = inserted_byte;
5785 coding->produced_char = inserted;
5786 }
5787
5788 return 0;
5789 }
5790
5791 Lisp_Object
5792 run_pre_post_conversion_on_str (str, coding, encodep)
5793 Lisp_Object str;
5794 struct coding_system *coding;
5795 int encodep;
5796 {
5797 int count = specpdl_ptr - specpdl;
5798 struct gcpro gcpro1;
5799 int multibyte = STRING_MULTIBYTE (str);
5800
5801 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5802 record_unwind_protect (code_convert_region_unwind, Qnil);
5803 GCPRO1 (str);
5804 temp_output_buffer_setup (" *code-converting-work*");
5805 set_buffer_internal (XBUFFER (Vstandard_output));
5806 /* We must insert the contents of STR as is without
5807 unibyte<->multibyte conversion. For that, we adjust the
5808 multibyteness of the working buffer to that of STR. */
5809 Ferase_buffer ();
5810 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
5811 insert_from_string (str, 0, 0,
5812 XSTRING (str)->size, STRING_BYTES (XSTRING (str)), 0);
5813 UNGCPRO;
5814 inhibit_pre_post_conversion = 1;
5815 if (encodep)
5816 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
5817 else
5818 {
5819 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
5820 call1 (coding->post_read_conversion, make_number (Z - BEG));
5821 }
5822 inhibit_pre_post_conversion = 0;
5823 str = make_buffer_string (BEG, Z, 1);
5824 return unbind_to (count, str);
5825 }
5826
5827 Lisp_Object
5828 decode_coding_string (str, coding, nocopy)
5829 Lisp_Object str;
5830 struct coding_system *coding;
5831 int nocopy;
5832 {
5833 int len;
5834 struct conversion_buffer buf;
5835 int from, to_byte;
5836 Lisp_Object saved_coding_symbol;
5837 int result;
5838 int require_decoding;
5839 int shrinked_bytes = 0;
5840 Lisp_Object newstr;
5841 int consumed, consumed_char, produced, produced_char;
5842
5843 from = 0;
5844 to_byte = STRING_BYTES (XSTRING (str));
5845
5846 saved_coding_symbol = coding->symbol;
5847 coding->src_multibyte = STRING_MULTIBYTE (str);
5848 coding->dst_multibyte = 1;
5849 if (CODING_REQUIRE_DETECTION (coding))
5850 {
5851 /* See the comments in code_convert_region. */
5852 if (coding->type == coding_type_undecided)
5853 {
5854 detect_coding (coding, XSTRING (str)->data, to_byte);
5855 if (coding->type == coding_type_undecided)
5856 {
5857 coding->type = coding_type_emacs_mule;
5858 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5859 /* As emacs-mule decoder will handle composition, we
5860 need this setting to allocate coding->cmp_data
5861 later. */
5862 coding->composing = COMPOSITION_NO;
5863 }
5864 }
5865 if (coding->eol_type == CODING_EOL_UNDECIDED
5866 && coding->type != coding_type_ccl)
5867 {
5868 saved_coding_symbol = coding->symbol;
5869 detect_eol (coding, XSTRING (str)->data, to_byte);
5870 if (coding->eol_type == CODING_EOL_UNDECIDED)
5871 coding->eol_type = CODING_EOL_LF;
5872 /* We had better recover the original eol format if we
5873 encounter an inconsistent eol format while decoding. */
5874 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5875 }
5876 }
5877
5878 if (coding->type == coding_type_no_conversion
5879 || coding->type == coding_type_raw_text)
5880 coding->dst_multibyte = 0;
5881
5882 require_decoding = CODING_REQUIRE_DECODING (coding);
5883
5884 if (STRING_MULTIBYTE (str))
5885 {
5886 /* Decoding routines expect the source text to be unibyte. */
5887 str = Fstring_as_unibyte (str);
5888 to_byte = STRING_BYTES (XSTRING (str));
5889 nocopy = 1;
5890 coding->src_multibyte = 0;
5891 }
5892
5893 /* Try to skip the heading and tailing ASCIIs. */
5894 if (require_decoding && coding->type != coding_type_ccl)
5895 {
5896 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
5897 0);
5898 if (from == to_byte)
5899 require_decoding = 0;
5900 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
5901 }
5902
5903 if (!require_decoding)
5904 {
5905 coding->consumed = STRING_BYTES (XSTRING (str));
5906 coding->consumed_char = XSTRING (str)->size;
5907 if (coding->dst_multibyte)
5908 {
5909 str = Fstring_as_multibyte (str);
5910 nocopy = 1;
5911 }
5912 coding->produced = STRING_BYTES (XSTRING (str));
5913 coding->produced_char = XSTRING (str)->size;
5914 return (nocopy ? str : Fcopy_sequence (str));
5915 }
5916
5917 if (coding->composing != COMPOSITION_DISABLED)
5918 coding_allocate_composition_data (coding, from);
5919 len = decoding_buffer_size (coding, to_byte - from);
5920 allocate_conversion_buffer (buf, len);
5921
5922 consumed = consumed_char = produced = produced_char = 0;
5923 while (1)
5924 {
5925 result = decode_coding (coding, XSTRING (str)->data + from + consumed,
5926 buf.data + produced, to_byte - from - consumed,
5927 buf.size - produced);
5928 consumed += coding->consumed;
5929 consumed_char += coding->consumed_char;
5930 produced += coding->produced;
5931 produced_char += coding->produced_char;
5932 if (result == CODING_FINISH_NORMAL
5933 || (result == CODING_FINISH_INSUFFICIENT_SRC
5934 && coding->consumed == 0))
5935 break;
5936 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5937 coding_allocate_composition_data (coding, from + produced_char);
5938 else if (result == CODING_FINISH_INSUFFICIENT_DST)
5939 extend_conversion_buffer (&buf);
5940 else if (result == CODING_FINISH_INCONSISTENT_EOL)
5941 {
5942 Lisp_Object eol_type;
5943
5944 /* Recover the original EOL format. */
5945 if (coding->eol_type == CODING_EOL_CR)
5946 {
5947 unsigned char *p;
5948 for (p = buf.data; p < buf.data + produced; p++)
5949 if (*p == '\n') *p = '\r';
5950 }
5951 else if (coding->eol_type == CODING_EOL_CRLF)
5952 {
5953 int num_eol = 0;
5954 unsigned char *p0, *p1;
5955 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
5956 if (*p0 == '\n') num_eol++;
5957 if (produced + num_eol >= buf.size)
5958 extend_conversion_buffer (&buf);
5959 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
5960 {
5961 *--p1 = *--p0;
5962 if (*p0 == '\n') *--p1 = '\r';
5963 }
5964 produced += num_eol;
5965 produced_char += num_eol;
5966 }
5967 /* Suppress eol-format conversion in the further conversion. */
5968 coding->eol_type = CODING_EOL_LF;
5969
5970 /* Set the coding system symbol to that for Unix-like EOL. */
5971 eol_type = Fget (saved_coding_symbol, Qeol_type);
5972 if (VECTORP (eol_type)
5973 && XVECTOR (eol_type)->size == 3
5974 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5975 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5976 else
5977 coding->symbol = saved_coding_symbol;
5978
5979
5980 }
5981 }
5982
5983 coding->consumed = consumed;
5984 coding->consumed_char = consumed_char;
5985 coding->produced = produced;
5986 coding->produced_char = produced_char;
5987
5988 if (coding->dst_multibyte)
5989 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
5990 produced + shrinked_bytes);
5991 else
5992 newstr = make_uninit_string (produced + shrinked_bytes);
5993 if (from > 0)
5994 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
5995 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
5996 if (shrinked_bytes > from)
5997 bcopy (XSTRING (str)->data + to_byte,
5998 XSTRING (newstr)->data + from + produced,
5999 shrinked_bytes - from);
6000 free_conversion_buffer (&buf);
6001
6002 if (coding->cmp_data && coding->cmp_data->used)
6003 coding_restore_composition (coding, newstr);
6004 coding_free_composition_data (coding);
6005
6006 if (SYMBOLP (coding->post_read_conversion)
6007 && !NILP (Ffboundp (coding->post_read_conversion)))
6008 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
6009
6010 return newstr;
6011 }
6012
6013 Lisp_Object
6014 encode_coding_string (str, coding, nocopy)
6015 Lisp_Object str;
6016 struct coding_system *coding;
6017 int nocopy;
6018 {
6019 int len;
6020 struct conversion_buffer buf;
6021 int from, to, to_byte;
6022 int result;
6023 int shrinked_bytes = 0;
6024 Lisp_Object newstr;
6025 int consumed, consumed_char, produced, produced_char;
6026
6027 if (SYMBOLP (coding->pre_write_conversion)
6028 && !NILP (Ffboundp (coding->pre_write_conversion)))
6029 str = run_pre_post_conversion_on_str (str, coding, 1);
6030
6031 from = 0;
6032 to = XSTRING (str)->size;
6033 to_byte = STRING_BYTES (XSTRING (str));
6034
6035 /* Encoding routines determine the multibyteness of the source text
6036 by coding->src_multibyte. */
6037 coding->src_multibyte = STRING_MULTIBYTE (str);
6038 coding->dst_multibyte = 0;
6039 if (! CODING_REQUIRE_ENCODING (coding))
6040 {
6041 coding->consumed = STRING_BYTES (XSTRING (str));
6042 coding->consumed_char = XSTRING (str)->size;
6043 if (STRING_MULTIBYTE (str))
6044 {
6045 str = Fstring_as_unibyte (str);
6046 nocopy = 1;
6047 }
6048 coding->produced = STRING_BYTES (XSTRING (str));
6049 coding->produced_char = XSTRING (str)->size;
6050 return (nocopy ? str : Fcopy_sequence (str));
6051 }
6052
6053 if (coding->composing != COMPOSITION_DISABLED)
6054 coding_save_composition (coding, from, to, str);
6055
6056 /* Try to skip the heading and tailing ASCIIs. */
6057 if (coding->type != coding_type_ccl)
6058 {
6059 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
6060 1);
6061 if (from == to_byte)
6062 return (nocopy ? str : Fcopy_sequence (str));
6063 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
6064 }
6065
6066 len = encoding_buffer_size (coding, to_byte - from);
6067 allocate_conversion_buffer (buf, len);
6068
6069 consumed = consumed_char = produced = produced_char = 0;
6070 while (1)
6071 {
6072 result = encode_coding (coding, XSTRING (str)->data + from + consumed,
6073 buf.data + produced, to_byte - from - consumed,
6074 buf.size - produced);
6075 consumed += coding->consumed;
6076 consumed_char += coding->consumed_char;
6077 produced += coding->produced;
6078 produced_char += coding->produced_char;
6079 if (result == CODING_FINISH_NORMAL
6080 || (result == CODING_FINISH_INSUFFICIENT_SRC
6081 && coding->consumed == 0))
6082 break;
6083 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6084 extend_conversion_buffer (&buf);
6085 }
6086
6087 coding->consumed = consumed;
6088 coding->consumed_char = consumed_char;
6089 coding->produced = produced;
6090 coding->produced_char = produced_char;
6091
6092 newstr = make_uninit_string (produced + shrinked_bytes);
6093 if (from > 0)
6094 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
6095 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
6096 if (shrinked_bytes > from)
6097 bcopy (XSTRING (str)->data + to_byte,
6098 XSTRING (newstr)->data + from + produced,
6099 shrinked_bytes - from);
6100
6101 free_conversion_buffer (&buf);
6102 coding_free_composition_data (coding);
6103
6104 return newstr;
6105 }
6106
6107 \f
6108 #ifdef emacs
6109 /*** 8. Emacs Lisp library functions ***/
6110
6111 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6112 doc: /* Return t if OBJECT is nil or a coding-system.
6113 See the documentation of `make-coding-system' for information
6114 about coding-system objects. */)
6115 (obj)
6116 Lisp_Object obj;
6117 {
6118 if (NILP (obj))
6119 return Qt;
6120 if (!SYMBOLP (obj))
6121 return Qnil;
6122 /* Get coding-spec vector for OBJ. */
6123 obj = Fget (obj, Qcoding_system);
6124 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6125 ? Qt : Qnil);
6126 }
6127
6128 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6129 Sread_non_nil_coding_system, 1, 1, 0,
6130 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
6131 (prompt)
6132 Lisp_Object prompt;
6133 {
6134 Lisp_Object val;
6135 do
6136 {
6137 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6138 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6139 }
6140 while (XSTRING (val)->size == 0);
6141 return (Fintern (val, Qnil));
6142 }
6143
6144 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6145 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
6146 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM. */)
6147 (prompt, default_coding_system)
6148 Lisp_Object prompt, default_coding_system;
6149 {
6150 Lisp_Object val;
6151 if (SYMBOLP (default_coding_system))
6152 XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name);
6153 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6154 Qt, Qnil, Qcoding_system_history,
6155 default_coding_system, Qnil);
6156 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
6157 }
6158
6159 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6160 1, 1, 0,
6161 doc: /* Check validity of CODING-SYSTEM.
6162 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
6163 It is valid if it is a symbol with a non-nil `coding-system' property.
6164 The value of property should be a vector of length 5. */)
6165 (coding_system)
6166 Lisp_Object coding_system;
6167 {
6168 CHECK_SYMBOL (coding_system);
6169 if (!NILP (Fcoding_system_p (coding_system)))
6170 return coding_system;
6171 while (1)
6172 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6173 }
6174 \f
6175 Lisp_Object
6176 detect_coding_system (src, src_bytes, highest, multibytep)
6177 unsigned char *src;
6178 int src_bytes, highest;
6179 int multibytep;
6180 {
6181 int coding_mask, eol_type;
6182 Lisp_Object val, tmp;
6183 int dummy;
6184
6185 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6186 eol_type = detect_eol_type (src, src_bytes, &dummy);
6187 if (eol_type == CODING_EOL_INCONSISTENT)
6188 eol_type = CODING_EOL_UNDECIDED;
6189
6190 if (!coding_mask)
6191 {
6192 val = Qundecided;
6193 if (eol_type != CODING_EOL_UNDECIDED)
6194 {
6195 Lisp_Object val2;
6196 val2 = Fget (Qundecided, Qeol_type);
6197 if (VECTORP (val2))
6198 val = XVECTOR (val2)->contents[eol_type];
6199 }
6200 return (highest ? val : Fcons (val, Qnil));
6201 }
6202
6203 /* At first, gather possible coding systems in VAL. */
6204 val = Qnil;
6205 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6206 {
6207 Lisp_Object category_val, category_index;
6208
6209 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6210 category_val = Fsymbol_value (XCAR (tmp));
6211 if (!NILP (category_val)
6212 && NATNUMP (category_index)
6213 && (coding_mask & (1 << XFASTINT (category_index))))
6214 {
6215 val = Fcons (category_val, val);
6216 if (highest)
6217 break;
6218 }
6219 }
6220 if (!highest)
6221 val = Fnreverse (val);
6222
6223 /* Then, replace the elements with subsidiary coding systems. */
6224 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6225 {
6226 if (eol_type != CODING_EOL_UNDECIDED
6227 && eol_type != CODING_EOL_INCONSISTENT)
6228 {
6229 Lisp_Object eol;
6230 eol = Fget (XCAR (tmp), Qeol_type);
6231 if (VECTORP (eol))
6232 XSETCAR (tmp, XVECTOR (eol)->contents[eol_type]);
6233 }
6234 }
6235 return (highest ? XCAR (val) : val);
6236 }
6237
6238 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6239 2, 3, 0,
6240 doc: /* Detect coding system of the text in the region between START and END.
6241 Return a list of possible coding systems ordered by priority.
6242
6243 If only ASCII characters are found, it returns a list of single element
6244 `undecided' or its subsidiary coding system according to a detected
6245 end-of-line format.
6246
6247 If optional argument HIGHEST is non-nil, return the coding system of
6248 highest priority. */)
6249 (start, end, highest)
6250 Lisp_Object start, end, highest;
6251 {
6252 int from, to;
6253 int from_byte, to_byte;
6254 int include_anchor_byte = 0;
6255
6256 CHECK_NUMBER_COERCE_MARKER (start);
6257 CHECK_NUMBER_COERCE_MARKER (end);
6258
6259 validate_region (&start, &end);
6260 from = XINT (start), to = XINT (end);
6261 from_byte = CHAR_TO_BYTE (from);
6262 to_byte = CHAR_TO_BYTE (to);
6263
6264 if (from < GPT && to >= GPT)
6265 move_gap_both (to, to_byte);
6266 /* If we an anchor byte `\0' follows the region, we include it in
6267 the detecting source. Then code detectors can handle the tailing
6268 byte sequence more accurately.
6269
6270 Fix me: This is not an perfect solution. It is better that we
6271 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6272 */
6273 if (to == Z || (to == GPT && GAP_SIZE > 0))
6274 include_anchor_byte = 1;
6275 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6276 to_byte - from_byte + include_anchor_byte,
6277 !NILP (highest),
6278 !NILP (current_buffer
6279 ->enable_multibyte_characters));
6280 }
6281
6282 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6283 1, 2, 0,
6284 doc: /* Detect coding system of the text in STRING.
6285 Return a list of possible coding systems ordered by priority.
6286
6287 If only ASCII characters are found, it returns a list of single element
6288 `undecided' or its subsidiary coding system according to a detected
6289 end-of-line format.
6290
6291 If optional argument HIGHEST is non-nil, return the coding system of
6292 highest priority. */)
6293 (string, highest)
6294 Lisp_Object string, highest;
6295 {
6296 CHECK_STRING (string);
6297
6298 return detect_coding_system (XSTRING (string)->data,
6299 /* "+ 1" is to include the anchor byte
6300 `\0'. With this, code detectors can
6301 handle the tailing bytes more
6302 accurately. */
6303 STRING_BYTES (XSTRING (string)) + 1,
6304 !NILP (highest),
6305 STRING_MULTIBYTE (string));
6306 }
6307
6308 /* Return an intersection of lists L1 and L2. */
6309
6310 static Lisp_Object
6311 intersection (l1, l2)
6312 Lisp_Object l1, l2;
6313 {
6314 Lisp_Object val;
6315
6316 for (val = Qnil; CONSP (l1); l1 = XCDR (l1))
6317 {
6318 if (!NILP (Fmemq (XCAR (l1), l2)))
6319 val = Fcons (XCAR (l1), val);
6320 }
6321 return val;
6322 }
6323
6324
6325 /* Subroutine for Fsafe_coding_systems_region_internal.
6326
6327 Return a list of coding systems that safely encode the multibyte
6328 text between P and PEND. SAFE_CODINGS, if non-nil, is a list of
6329 possible coding systems. If it is nil, it means that we have not
6330 yet found any coding systems.
6331
6332 WORK_TABLE is a copy of the char-table Vchar_coding_system_table. An
6333 element of WORK_TABLE is set to t once the element is looked up.
6334
6335 If a non-ASCII single byte char is found, set
6336 *single_byte_char_found to 1. */
6337
6338 static Lisp_Object
6339 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6340 unsigned char *p, *pend;
6341 Lisp_Object safe_codings, work_table;
6342 int *single_byte_char_found;
6343 {
6344 int c, len, idx;
6345 Lisp_Object val;
6346
6347 while (p < pend)
6348 {
6349 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6350 p += len;
6351 if (ASCII_BYTE_P (c))
6352 /* We can ignore ASCII characters here. */
6353 continue;
6354 if (SINGLE_BYTE_CHAR_P (c))
6355 *single_byte_char_found = 1;
6356 if (NILP (safe_codings))
6357 continue;
6358 /* Check the safe coding systems for C. */
6359 val = char_table_ref_and_index (work_table, c, &idx);
6360 if (EQ (val, Qt))
6361 /* This element was already checked. Ignore it. */
6362 continue;
6363 /* Remember that we checked this element. */
6364 CHAR_TABLE_SET (work_table, make_number (idx), Qt);
6365
6366 /* If there are some safe coding systems for C and we have
6367 already found the other set of coding systems for the
6368 different characters, get the intersection of them. */
6369 if (!EQ (safe_codings, Qt) && !NILP (val))
6370 val = intersection (safe_codings, val);
6371 safe_codings = val;
6372 }
6373 return safe_codings;
6374 }
6375
6376
6377 /* Return a list of coding systems that safely encode the text between
6378 START and END. If the text contains only ASCII or is unibyte,
6379 return t. */
6380
6381 DEFUN ("find-coding-systems-region-internal",
6382 Ffind_coding_systems_region_internal,
6383 Sfind_coding_systems_region_internal, 2, 2, 0,
6384 doc: /* Internal use only. */)
6385 (start, end)
6386 Lisp_Object start, end;
6387 {
6388 Lisp_Object work_table, safe_codings;
6389 int non_ascii_p = 0;
6390 int single_byte_char_found = 0;
6391 unsigned char *p1, *p1end, *p2, *p2end, *p;
6392
6393 if (STRINGP (start))
6394 {
6395 if (!STRING_MULTIBYTE (start))
6396 return Qt;
6397 p1 = XSTRING (start)->data, p1end = p1 + STRING_BYTES (XSTRING (start));
6398 p2 = p2end = p1end;
6399 if (XSTRING (start)->size != STRING_BYTES (XSTRING (start)))
6400 non_ascii_p = 1;
6401 }
6402 else
6403 {
6404 int from, to, stop;
6405
6406 CHECK_NUMBER_COERCE_MARKER (start);
6407 CHECK_NUMBER_COERCE_MARKER (end);
6408 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6409 args_out_of_range (start, end);
6410 if (NILP (current_buffer->enable_multibyte_characters))
6411 return Qt;
6412 from = CHAR_TO_BYTE (XINT (start));
6413 to = CHAR_TO_BYTE (XINT (end));
6414 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6415 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6416 if (stop == to)
6417 p2 = p2end = p1end;
6418 else
6419 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6420 if (XINT (end) - XINT (start) != to - from)
6421 non_ascii_p = 1;
6422 }
6423
6424 if (!non_ascii_p)
6425 {
6426 /* We are sure that the text contains no multibyte character.
6427 Check if it contains eight-bit-graphic. */
6428 p = p1;
6429 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6430 if (p == p1end)
6431 {
6432 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6433 if (p == p2end)
6434 return Qt;
6435 }
6436 }
6437
6438 /* The text contains non-ASCII characters. */
6439 work_table = Fcopy_sequence (Vchar_coding_system_table);
6440 safe_codings = find_safe_codings (p1, p1end, Qt, work_table,
6441 &single_byte_char_found);
6442 if (p2 < p2end)
6443 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6444 &single_byte_char_found);
6445
6446 if (EQ (safe_codings, Qt))
6447 ; /* Nothing to be done. */
6448 else if (!single_byte_char_found)
6449 {
6450 /* Append generic coding systems. */
6451 Lisp_Object args[2];
6452 args[0] = safe_codings;
6453 args[1] = Fchar_table_extra_slot (Vchar_coding_system_table,
6454 make_number (0));
6455 safe_codings = Fappend (2, args);
6456 }
6457 else
6458 safe_codings = Fcons (Qraw_text,
6459 Fcons (Qemacs_mule,
6460 Fcons (Qno_conversion, safe_codings)));
6461 return safe_codings;
6462 }
6463
6464
6465 Lisp_Object
6466 code_convert_region1 (start, end, coding_system, encodep)
6467 Lisp_Object start, end, coding_system;
6468 int encodep;
6469 {
6470 struct coding_system coding;
6471 int from, to;
6472
6473 CHECK_NUMBER_COERCE_MARKER (start);
6474 CHECK_NUMBER_COERCE_MARKER (end);
6475 CHECK_SYMBOL (coding_system);
6476
6477 validate_region (&start, &end);
6478 from = XFASTINT (start);
6479 to = XFASTINT (end);
6480
6481 if (NILP (coding_system))
6482 return make_number (to - from);
6483
6484 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6485 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6486
6487 coding.mode |= CODING_MODE_LAST_BLOCK;
6488 coding.src_multibyte = coding.dst_multibyte
6489 = !NILP (current_buffer->enable_multibyte_characters);
6490 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
6491 &coding, encodep, 1);
6492 Vlast_coding_system_used = coding.symbol;
6493 return make_number (coding.produced_char);
6494 }
6495
6496 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
6497 3, 3, "r\nzCoding system: ",
6498 doc: /* Decode the current region from the specified coding system.
6499 When called from a program, takes three arguments:
6500 START, END, and CODING-SYSTEM. START and END are buffer positions.
6501 This function sets `last-coding-system-used' to the precise coding system
6502 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6503 not fully specified.)
6504 It returns the length of the decoded text. */)
6505 (start, end, coding_system)
6506 Lisp_Object start, end, coding_system;
6507 {
6508 return code_convert_region1 (start, end, coding_system, 0);
6509 }
6510
6511 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
6512 3, 3, "r\nzCoding system: ",
6513 doc: /* Encode the current region into the specified coding system.
6514 When called from a program, takes three arguments:
6515 START, END, and CODING-SYSTEM. START and END are buffer positions.
6516 This function sets `last-coding-system-used' to the precise coding system
6517 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6518 not fully specified.)
6519 It returns the length of the encoded text. */)
6520 (start, end, coding_system)
6521 Lisp_Object start, end, coding_system;
6522 {
6523 return code_convert_region1 (start, end, coding_system, 1);
6524 }
6525
6526 Lisp_Object
6527 code_convert_string1 (string, coding_system, nocopy, encodep)
6528 Lisp_Object string, coding_system, nocopy;
6529 int encodep;
6530 {
6531 struct coding_system coding;
6532
6533 CHECK_STRING (string);
6534 CHECK_SYMBOL (coding_system);
6535
6536 if (NILP (coding_system))
6537 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
6538
6539 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6540 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6541
6542 coding.mode |= CODING_MODE_LAST_BLOCK;
6543 string = (encodep
6544 ? encode_coding_string (string, &coding, !NILP (nocopy))
6545 : decode_coding_string (string, &coding, !NILP (nocopy)));
6546 Vlast_coding_system_used = coding.symbol;
6547
6548 return string;
6549 }
6550
6551 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
6552 2, 3, 0,
6553 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
6554 Optional arg NOCOPY non-nil means it is OK to return STRING itself
6555 if the decoding operation is trivial.
6556 This function sets `last-coding-system-used' to the precise coding system
6557 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6558 not fully specified.) */)
6559 (string, coding_system, nocopy)
6560 Lisp_Object string, coding_system, nocopy;
6561 {
6562 return code_convert_string1 (string, coding_system, nocopy, 0);
6563 }
6564
6565 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
6566 2, 3, 0,
6567 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
6568 Optional arg NOCOPY non-nil means it is OK to return STRING itself
6569 if the encoding operation is trivial.
6570 This function sets `last-coding-system-used' to the precise coding system
6571 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6572 not fully specified.) */)
6573 (string, coding_system, nocopy)
6574 Lisp_Object string, coding_system, nocopy;
6575 {
6576 return code_convert_string1 (string, coding_system, nocopy, 1);
6577 }
6578
6579 /* Encode or decode STRING according to CODING_SYSTEM.
6580 Do not set Vlast_coding_system_used.
6581
6582 This function is called only from macros DECODE_FILE and
6583 ENCODE_FILE, thus we ignore character composition. */
6584
6585 Lisp_Object
6586 code_convert_string_norecord (string, coding_system, encodep)
6587 Lisp_Object string, coding_system;
6588 int encodep;
6589 {
6590 struct coding_system coding;
6591
6592 CHECK_STRING (string);
6593 CHECK_SYMBOL (coding_system);
6594
6595 if (NILP (coding_system))
6596 return string;
6597
6598 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6599 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6600
6601 coding.composing = COMPOSITION_DISABLED;
6602 coding.mode |= CODING_MODE_LAST_BLOCK;
6603 return (encodep
6604 ? encode_coding_string (string, &coding, 1)
6605 : decode_coding_string (string, &coding, 1));
6606 }
6607 \f
6608 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
6609 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
6610 Return the corresponding character. */)
6611 (code)
6612 Lisp_Object code;
6613 {
6614 unsigned char c1, c2, s1, s2;
6615 Lisp_Object val;
6616
6617 CHECK_NUMBER (code);
6618 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
6619 if (s1 == 0)
6620 {
6621 if (s2 < 0x80)
6622 XSETFASTINT (val, s2);
6623 else if (s2 >= 0xA0 || s2 <= 0xDF)
6624 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
6625 else
6626 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6627 }
6628 else
6629 {
6630 if ((s1 < 0x80 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF)
6631 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
6632 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6633 DECODE_SJIS (s1, s2, c1, c2);
6634 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
6635 }
6636 return val;
6637 }
6638
6639 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
6640 doc: /* Encode a Japanese character CHAR to shift_jis encoding.
6641 Return the corresponding code in SJIS. */)
6642 (ch)
6643 Lisp_Object ch;
6644 {
6645 int charset, c1, c2, s1, s2;
6646 Lisp_Object val;
6647
6648 CHECK_NUMBER (ch);
6649 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6650 if (charset == CHARSET_ASCII)
6651 {
6652 val = ch;
6653 }
6654 else if (charset == charset_jisx0208
6655 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
6656 {
6657 ENCODE_SJIS (c1, c2, s1, s2);
6658 XSETFASTINT (val, (s1 << 8) | s2);
6659 }
6660 else if (charset == charset_katakana_jisx0201
6661 && c1 > 0x20 && c2 < 0xE0)
6662 {
6663 XSETFASTINT (val, c1 | 0x80);
6664 }
6665 else
6666 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
6667 return val;
6668 }
6669
6670 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
6671 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
6672 Return the corresponding character. */)
6673 (code)
6674 Lisp_Object code;
6675 {
6676 int charset;
6677 unsigned char b1, b2, c1, c2;
6678 Lisp_Object val;
6679
6680 CHECK_NUMBER (code);
6681 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
6682 if (b1 == 0)
6683 {
6684 if (b2 >= 0x80)
6685 error ("Invalid BIG5 code: %x", XFASTINT (code));
6686 val = code;
6687 }
6688 else
6689 {
6690 if ((b1 < 0xA1 || b1 > 0xFE)
6691 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
6692 error ("Invalid BIG5 code: %x", XFASTINT (code));
6693 DECODE_BIG5 (b1, b2, charset, c1, c2);
6694 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
6695 }
6696 return val;
6697 }
6698
6699 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
6700 doc: /* Encode the Big5 character CHAR to BIG5 coding system.
6701 Return the corresponding character code in Big5. */)
6702 (ch)
6703 Lisp_Object ch;
6704 {
6705 int charset, c1, c2, b1, b2;
6706 Lisp_Object val;
6707
6708 CHECK_NUMBER (ch);
6709 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6710 if (charset == CHARSET_ASCII)
6711 {
6712 val = ch;
6713 }
6714 else if ((charset == charset_big5_1
6715 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
6716 || (charset == charset_big5_2
6717 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
6718 {
6719 ENCODE_BIG5 (charset, c1, c2, b1, b2);
6720 XSETFASTINT (val, (b1 << 8) | b2);
6721 }
6722 else
6723 error ("Can't encode to Big5: %d", XFASTINT (ch));
6724 return val;
6725 }
6726 \f
6727 DEFUN ("set-terminal-coding-system-internal",
6728 Fset_terminal_coding_system_internal,
6729 Sset_terminal_coding_system_internal, 1, 1, 0,
6730 doc: /* Internal use only. */)
6731 (coding_system)
6732 Lisp_Object coding_system;
6733 {
6734 CHECK_SYMBOL (coding_system);
6735 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
6736 /* We had better not send unsafe characters to terminal. */
6737 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
6738 /* Character composition should be disabled. */
6739 terminal_coding.composing = COMPOSITION_DISABLED;
6740 /* Error notification should be suppressed. */
6741 terminal_coding.suppress_error = 1;
6742 terminal_coding.src_multibyte = 1;
6743 terminal_coding.dst_multibyte = 0;
6744 return Qnil;
6745 }
6746
6747 DEFUN ("set-safe-terminal-coding-system-internal",
6748 Fset_safe_terminal_coding_system_internal,
6749 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
6750 doc: /* Internal use only. */)
6751 (coding_system)
6752 Lisp_Object coding_system;
6753 {
6754 CHECK_SYMBOL (coding_system);
6755 setup_coding_system (Fcheck_coding_system (coding_system),
6756 &safe_terminal_coding);
6757 /* Character composition should be disabled. */
6758 safe_terminal_coding.composing = COMPOSITION_DISABLED;
6759 /* Error notification should be suppressed. */
6760 terminal_coding.suppress_error = 1;
6761 safe_terminal_coding.src_multibyte = 1;
6762 safe_terminal_coding.dst_multibyte = 0;
6763 return Qnil;
6764 }
6765
6766 DEFUN ("terminal-coding-system",
6767 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
6768 doc: /* Return coding system specified for terminal output. */)
6769 ()
6770 {
6771 return terminal_coding.symbol;
6772 }
6773
6774 DEFUN ("set-keyboard-coding-system-internal",
6775 Fset_keyboard_coding_system_internal,
6776 Sset_keyboard_coding_system_internal, 1, 1, 0,
6777 doc: /* Internal use only. */)
6778 (coding_system)
6779 Lisp_Object coding_system;
6780 {
6781 CHECK_SYMBOL (coding_system);
6782 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
6783 /* Character composition should be disabled. */
6784 keyboard_coding.composing = COMPOSITION_DISABLED;
6785 return Qnil;
6786 }
6787
6788 DEFUN ("keyboard-coding-system",
6789 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
6790 doc: /* Return coding system specified for decoding keyboard input. */)
6791 ()
6792 {
6793 return keyboard_coding.symbol;
6794 }
6795
6796 \f
6797 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
6798 Sfind_operation_coding_system, 1, MANY, 0,
6799 doc: /* Choose a coding system for an operation based on the target name.
6800 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
6801 DECODING-SYSTEM is the coding system to use for decoding
6802 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
6803 for encoding (in case OPERATION does encoding).
6804
6805 The first argument OPERATION specifies an I/O primitive:
6806 For file I/O, `insert-file-contents' or `write-region'.
6807 For process I/O, `call-process', `call-process-region', or `start-process'.
6808 For network I/O, `open-network-stream'.
6809
6810 The remaining arguments should be the same arguments that were passed
6811 to the primitive. Depending on which primitive, one of those arguments
6812 is selected as the TARGET. For example, if OPERATION does file I/O,
6813 whichever argument specifies the file name is TARGET.
6814
6815 TARGET has a meaning which depends on OPERATION:
6816 For file I/O, TARGET is a file name.
6817 For process I/O, TARGET is a process name.
6818 For network I/O, TARGET is a service name or a port number
6819
6820 This function looks up what specified for TARGET in,
6821 `file-coding-system-alist', `process-coding-system-alist',
6822 or `network-coding-system-alist' depending on OPERATION.
6823 They may specify a coding system, a cons of coding systems,
6824 or a function symbol to call.
6825 In the last case, we call the function with one argument,
6826 which is a list of all the arguments given to this function.
6827
6828 usage: (find-operation-coding-system OPERATION ARGUMENTS ...) */)
6829 (nargs, args)
6830 int nargs;
6831 Lisp_Object *args;
6832 {
6833 Lisp_Object operation, target_idx, target, val;
6834 register Lisp_Object chain;
6835
6836 if (nargs < 2)
6837 error ("Too few arguments");
6838 operation = args[0];
6839 if (!SYMBOLP (operation)
6840 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
6841 error ("Invalid first argument");
6842 if (nargs < 1 + XINT (target_idx))
6843 error ("Too few arguments for operation: %s",
6844 XSYMBOL (operation)->name->data);
6845 target = args[XINT (target_idx) + 1];
6846 if (!(STRINGP (target)
6847 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
6848 error ("Invalid argument %d", XINT (target_idx) + 1);
6849
6850 chain = ((EQ (operation, Qinsert_file_contents)
6851 || EQ (operation, Qwrite_region))
6852 ? Vfile_coding_system_alist
6853 : (EQ (operation, Qopen_network_stream)
6854 ? Vnetwork_coding_system_alist
6855 : Vprocess_coding_system_alist));
6856 if (NILP (chain))
6857 return Qnil;
6858
6859 for (; CONSP (chain); chain = XCDR (chain))
6860 {
6861 Lisp_Object elt;
6862 elt = XCAR (chain);
6863
6864 if (CONSP (elt)
6865 && ((STRINGP (target)
6866 && STRINGP (XCAR (elt))
6867 && fast_string_match (XCAR (elt), target) >= 0)
6868 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
6869 {
6870 val = XCDR (elt);
6871 /* Here, if VAL is both a valid coding system and a valid
6872 function symbol, we return VAL as a coding system. */
6873 if (CONSP (val))
6874 return val;
6875 if (! SYMBOLP (val))
6876 return Qnil;
6877 if (! NILP (Fcoding_system_p (val)))
6878 return Fcons (val, val);
6879 if (! NILP (Ffboundp (val)))
6880 {
6881 val = call1 (val, Flist (nargs, args));
6882 if (CONSP (val))
6883 return val;
6884 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
6885 return Fcons (val, val);
6886 }
6887 return Qnil;
6888 }
6889 }
6890 return Qnil;
6891 }
6892
6893 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
6894 Supdate_coding_systems_internal, 0, 0, 0,
6895 doc: /* Update internal database for ISO2022 and CCL based coding systems.
6896 When values of any coding categories are changed, you must
6897 call this function. */)
6898 ()
6899 {
6900 int i;
6901
6902 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
6903 {
6904 Lisp_Object val;
6905
6906 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[i]);
6907 if (!NILP (val))
6908 {
6909 if (! coding_system_table[i])
6910 coding_system_table[i] = ((struct coding_system *)
6911 xmalloc (sizeof (struct coding_system)));
6912 setup_coding_system (val, coding_system_table[i]);
6913 }
6914 else if (coding_system_table[i])
6915 {
6916 xfree (coding_system_table[i]);
6917 coding_system_table[i] = NULL;
6918 }
6919 }
6920
6921 return Qnil;
6922 }
6923
6924 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
6925 Sset_coding_priority_internal, 0, 0, 0,
6926 doc: /* Update internal database for the current value of `coding-category-list'.
6927 This function is internal use only. */)
6928 ()
6929 {
6930 int i = 0, idx;
6931 Lisp_Object val;
6932
6933 val = Vcoding_category_list;
6934
6935 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
6936 {
6937 if (! SYMBOLP (XCAR (val)))
6938 break;
6939 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
6940 if (idx >= CODING_CATEGORY_IDX_MAX)
6941 break;
6942 coding_priorities[i++] = (1 << idx);
6943 val = XCDR (val);
6944 }
6945 /* If coding-category-list is valid and contains all coding
6946 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
6947 the following code saves Emacs from crashing. */
6948 while (i < CODING_CATEGORY_IDX_MAX)
6949 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
6950
6951 return Qnil;
6952 }
6953
6954 #endif /* emacs */
6955
6956 \f
6957 /*** 9. Post-amble ***/
6958
6959 void
6960 init_coding_once ()
6961 {
6962 int i;
6963
6964 /* Emacs' internal format specific initialize routine. */
6965 for (i = 0; i <= 0x20; i++)
6966 emacs_code_class[i] = EMACS_control_code;
6967 emacs_code_class[0x0A] = EMACS_linefeed_code;
6968 emacs_code_class[0x0D] = EMACS_carriage_return_code;
6969 for (i = 0x21 ; i < 0x7F; i++)
6970 emacs_code_class[i] = EMACS_ascii_code;
6971 emacs_code_class[0x7F] = EMACS_control_code;
6972 for (i = 0x80; i < 0xFF; i++)
6973 emacs_code_class[i] = EMACS_invalid_code;
6974 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
6975 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
6976 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
6977 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
6978
6979 /* ISO2022 specific initialize routine. */
6980 for (i = 0; i < 0x20; i++)
6981 iso_code_class[i] = ISO_control_0;
6982 for (i = 0x21; i < 0x7F; i++)
6983 iso_code_class[i] = ISO_graphic_plane_0;
6984 for (i = 0x80; i < 0xA0; i++)
6985 iso_code_class[i] = ISO_control_1;
6986 for (i = 0xA1; i < 0xFF; i++)
6987 iso_code_class[i] = ISO_graphic_plane_1;
6988 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
6989 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
6990 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
6991 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
6992 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
6993 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
6994 iso_code_class[ISO_CODE_ESC] = ISO_escape;
6995 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
6996 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
6997 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
6998
6999 setup_coding_system (Qnil, &keyboard_coding);
7000 setup_coding_system (Qnil, &terminal_coding);
7001 setup_coding_system (Qnil, &safe_terminal_coding);
7002 setup_coding_system (Qnil, &default_buffer_file_coding);
7003
7004 bzero (coding_system_table, sizeof coding_system_table);
7005
7006 bzero (ascii_skip_code, sizeof ascii_skip_code);
7007 for (i = 0; i < 128; i++)
7008 ascii_skip_code[i] = 1;
7009
7010 #if defined (MSDOS) || defined (WINDOWSNT)
7011 system_eol_type = CODING_EOL_CRLF;
7012 #else
7013 system_eol_type = CODING_EOL_LF;
7014 #endif
7015
7016 inhibit_pre_post_conversion = 0;
7017 }
7018
7019 #ifdef emacs
7020
7021 void
7022 syms_of_coding ()
7023 {
7024 Qtarget_idx = intern ("target-idx");
7025 staticpro (&Qtarget_idx);
7026
7027 Qcoding_system_history = intern ("coding-system-history");
7028 staticpro (&Qcoding_system_history);
7029 Fset (Qcoding_system_history, Qnil);
7030
7031 /* Target FILENAME is the first argument. */
7032 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
7033 /* Target FILENAME is the third argument. */
7034 Fput (Qwrite_region, Qtarget_idx, make_number (2));
7035
7036 Qcall_process = intern ("call-process");
7037 staticpro (&Qcall_process);
7038 /* Target PROGRAM is the first argument. */
7039 Fput (Qcall_process, Qtarget_idx, make_number (0));
7040
7041 Qcall_process_region = intern ("call-process-region");
7042 staticpro (&Qcall_process_region);
7043 /* Target PROGRAM is the third argument. */
7044 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7045
7046 Qstart_process = intern ("start-process");
7047 staticpro (&Qstart_process);
7048 /* Target PROGRAM is the third argument. */
7049 Fput (Qstart_process, Qtarget_idx, make_number (2));
7050
7051 Qopen_network_stream = intern ("open-network-stream");
7052 staticpro (&Qopen_network_stream);
7053 /* Target SERVICE is the fourth argument. */
7054 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7055
7056 Qcoding_system = intern ("coding-system");
7057 staticpro (&Qcoding_system);
7058
7059 Qeol_type = intern ("eol-type");
7060 staticpro (&Qeol_type);
7061
7062 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7063 staticpro (&Qbuffer_file_coding_system);
7064
7065 Qpost_read_conversion = intern ("post-read-conversion");
7066 staticpro (&Qpost_read_conversion);
7067
7068 Qpre_write_conversion = intern ("pre-write-conversion");
7069 staticpro (&Qpre_write_conversion);
7070
7071 Qno_conversion = intern ("no-conversion");
7072 staticpro (&Qno_conversion);
7073
7074 Qundecided = intern ("undecided");
7075 staticpro (&Qundecided);
7076
7077 Qcoding_system_p = intern ("coding-system-p");
7078 staticpro (&Qcoding_system_p);
7079
7080 Qcoding_system_error = intern ("coding-system-error");
7081 staticpro (&Qcoding_system_error);
7082
7083 Fput (Qcoding_system_error, Qerror_conditions,
7084 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7085 Fput (Qcoding_system_error, Qerror_message,
7086 build_string ("Invalid coding system"));
7087
7088 Qcoding_category = intern ("coding-category");
7089 staticpro (&Qcoding_category);
7090 Qcoding_category_index = intern ("coding-category-index");
7091 staticpro (&Qcoding_category_index);
7092
7093 Vcoding_category_table
7094 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7095 staticpro (&Vcoding_category_table);
7096 {
7097 int i;
7098 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7099 {
7100 XVECTOR (Vcoding_category_table)->contents[i]
7101 = intern (coding_category_name[i]);
7102 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7103 Qcoding_category_index, make_number (i));
7104 }
7105 }
7106
7107 Qtranslation_table = intern ("translation-table");
7108 staticpro (&Qtranslation_table);
7109 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
7110
7111 Qtranslation_table_id = intern ("translation-table-id");
7112 staticpro (&Qtranslation_table_id);
7113
7114 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7115 staticpro (&Qtranslation_table_for_decode);
7116
7117 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7118 staticpro (&Qtranslation_table_for_encode);
7119
7120 Qsafe_chars = intern ("safe-chars");
7121 staticpro (&Qsafe_chars);
7122
7123 Qchar_coding_system = intern ("char-coding-system");
7124 staticpro (&Qchar_coding_system);
7125
7126 /* Intern this now in case it isn't already done.
7127 Setting this variable twice is harmless.
7128 But don't staticpro it here--that is done in alloc.c. */
7129 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7130 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7131 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (2));
7132
7133 Qvalid_codes = intern ("valid-codes");
7134 staticpro (&Qvalid_codes);
7135
7136 Qemacs_mule = intern ("emacs-mule");
7137 staticpro (&Qemacs_mule);
7138
7139 Qraw_text = intern ("raw-text");
7140 staticpro (&Qraw_text);
7141
7142 defsubr (&Scoding_system_p);
7143 defsubr (&Sread_coding_system);
7144 defsubr (&Sread_non_nil_coding_system);
7145 defsubr (&Scheck_coding_system);
7146 defsubr (&Sdetect_coding_region);
7147 defsubr (&Sdetect_coding_string);
7148 defsubr (&Sfind_coding_systems_region_internal);
7149 defsubr (&Sdecode_coding_region);
7150 defsubr (&Sencode_coding_region);
7151 defsubr (&Sdecode_coding_string);
7152 defsubr (&Sencode_coding_string);
7153 defsubr (&Sdecode_sjis_char);
7154 defsubr (&Sencode_sjis_char);
7155 defsubr (&Sdecode_big5_char);
7156 defsubr (&Sencode_big5_char);
7157 defsubr (&Sset_terminal_coding_system_internal);
7158 defsubr (&Sset_safe_terminal_coding_system_internal);
7159 defsubr (&Sterminal_coding_system);
7160 defsubr (&Sset_keyboard_coding_system_internal);
7161 defsubr (&Skeyboard_coding_system);
7162 defsubr (&Sfind_operation_coding_system);
7163 defsubr (&Supdate_coding_systems_internal);
7164 defsubr (&Sset_coding_priority_internal);
7165
7166 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7167 doc: /* List of coding systems.
7168
7169 Do not alter the value of this variable manually. This variable should be
7170 updated by the functions `make-coding-system' and
7171 `define-coding-system-alias'. */);
7172 Vcoding_system_list = Qnil;
7173
7174 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7175 doc: /* Alist of coding system names.
7176 Each element is one element list of coding system name.
7177 This variable is given to `completing-read' as TABLE argument.
7178
7179 Do not alter the value of this variable manually. This variable should be
7180 updated by the functions `make-coding-system' and
7181 `define-coding-system-alias'. */);
7182 Vcoding_system_alist = Qnil;
7183
7184 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7185 doc: /* List of coding-categories (symbols) ordered by priority.
7186
7187 On detecting a coding system, Emacs tries code detection algorithms
7188 associated with each coding-category one by one in this order. When
7189 one algorithm agrees with a byte sequence of source text, the coding
7190 system bound to the corresponding coding-category is selected. */);
7191 {
7192 int i;
7193
7194 Vcoding_category_list = Qnil;
7195 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7196 Vcoding_category_list
7197 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7198 Vcoding_category_list);
7199 }
7200
7201 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7202 doc: /* Specify the coding system for read operations.
7203 It is useful to bind this variable with `let', but do not set it globally.
7204 If the value is a coding system, it is used for decoding on read operation.
7205 If not, an appropriate element is used from one of the coding system alists:
7206 There are three such tables, `file-coding-system-alist',
7207 `process-coding-system-alist', and `network-coding-system-alist'. */);
7208 Vcoding_system_for_read = Qnil;
7209
7210 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7211 doc: /* Specify the coding system for write operations.
7212 Programs bind this variable with `let', but you should not set it globally.
7213 If the value is a coding system, it is used for encoding of output,
7214 when writing it to a file and when sending it to a file or subprocess.
7215
7216 If this does not specify a coding system, an appropriate element
7217 is used from one of the coding system alists:
7218 There are three such tables, `file-coding-system-alist',
7219 `process-coding-system-alist', and `network-coding-system-alist'.
7220 For output to files, if the above procedure does not specify a coding system,
7221 the value of `buffer-file-coding-system' is used. */);
7222 Vcoding_system_for_write = Qnil;
7223
7224 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7225 doc: /* Coding system used in the latest file or process I/O. */);
7226 Vlast_coding_system_used = Qnil;
7227
7228 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7229 doc: /* *Non-nil means always inhibit code conversion of end-of-line format.
7230 See info node `Coding Systems' and info node `Text and Binary' concerning
7231 such conversion. */);
7232 inhibit_eol_conversion = 0;
7233
7234 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7235 doc: /* Non-nil means process buffer inherits coding system of process output.
7236 Bind it to t if the process output is to be treated as if it were a file
7237 read from some filesystem. */);
7238 inherit_process_coding_system = 0;
7239
7240 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7241 doc: /* Alist to decide a coding system to use for a file I/O operation.
7242 The format is ((PATTERN . VAL) ...),
7243 where PATTERN is a regular expression matching a file name,
7244 VAL is a coding system, a cons of coding systems, or a function symbol.
7245 If VAL is a coding system, it is used for both decoding and encoding
7246 the file contents.
7247 If VAL is a cons of coding systems, the car part is used for decoding,
7248 and the cdr part is used for encoding.
7249 If VAL is a function symbol, the function must return a coding system
7250 or a cons of coding systems which are used as above. The function gets
7251 the arguments with which `find-operation-coding-systems' was called.
7252
7253 See also the function `find-operation-coding-system'
7254 and the variable `auto-coding-alist'. */);
7255 Vfile_coding_system_alist = Qnil;
7256
7257 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7258 doc: /* Alist to decide a coding system to use for a process I/O operation.
7259 The format is ((PATTERN . VAL) ...),
7260 where PATTERN is a regular expression matching a program name,
7261 VAL is a coding system, a cons of coding systems, or a function symbol.
7262 If VAL is a coding system, it is used for both decoding what received
7263 from the program and encoding what sent to the program.
7264 If VAL is a cons of coding systems, the car part is used for decoding,
7265 and the cdr part is used for encoding.
7266 If VAL is a function symbol, the function must return a coding system
7267 or a cons of coding systems which are used as above.
7268
7269 See also the function `find-operation-coding-system'. */);
7270 Vprocess_coding_system_alist = Qnil;
7271
7272 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7273 doc: /* Alist to decide a coding system to use for a network I/O operation.
7274 The format is ((PATTERN . VAL) ...),
7275 where PATTERN is a regular expression matching a network service name
7276 or is a port number to connect to,
7277 VAL is a coding system, a cons of coding systems, or a function symbol.
7278 If VAL is a coding system, it is used for both decoding what received
7279 from the network stream and encoding what sent to the network stream.
7280 If VAL is a cons of coding systems, the car part is used for decoding,
7281 and the cdr part is used for encoding.
7282 If VAL is a function symbol, the function must return a coding system
7283 or a cons of coding systems which are used as above.
7284
7285 See also the function `find-operation-coding-system'. */);
7286 Vnetwork_coding_system_alist = Qnil;
7287
7288 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7289 doc: /* Coding system to use with system messages.
7290 Also used for decoding keyboard input on X Window system. */);
7291 Vlocale_coding_system = Qnil;
7292
7293 /* The eol mnemonics are reset in startup.el system-dependently. */
7294 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7295 doc: /* *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
7296 eol_mnemonic_unix = build_string (":");
7297
7298 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7299 doc: /* *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
7300 eol_mnemonic_dos = build_string ("\\");
7301
7302 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7303 doc: /* *String displayed in mode line for MAC-like (CR) end-of-line format. */);
7304 eol_mnemonic_mac = build_string ("/");
7305
7306 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7307 doc: /* *String displayed in mode line when end-of-line format is not yet determined. */);
7308 eol_mnemonic_undecided = build_string (":");
7309
7310 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7311 doc: /* *Non-nil enables character translation while encoding and decoding. */);
7312 Venable_character_translation = Qt;
7313
7314 DEFVAR_LISP ("standard-translation-table-for-decode",
7315 &Vstandard_translation_table_for_decode,
7316 doc: /* Table for translating characters while decoding. */);
7317 Vstandard_translation_table_for_decode = Qnil;
7318
7319 DEFVAR_LISP ("standard-translation-table-for-encode",
7320 &Vstandard_translation_table_for_encode,
7321 doc: /* Table for translating characters while encoding. */);
7322 Vstandard_translation_table_for_encode = Qnil;
7323
7324 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
7325 doc: /* Alist of charsets vs revision numbers.
7326 While encoding, if a charset (car part of an element) is found,
7327 designate it with the escape sequence identifying revision (cdr part of the element). */);
7328 Vcharset_revision_alist = Qnil;
7329
7330 DEFVAR_LISP ("default-process-coding-system",
7331 &Vdefault_process_coding_system,
7332 doc: /* Cons of coding systems used for process I/O by default.
7333 The car part is used for decoding a process output,
7334 the cdr part is used for encoding a text to be sent to a process. */);
7335 Vdefault_process_coding_system = Qnil;
7336
7337 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
7338 doc: /* Table of extra Latin codes in the range 128..159 (inclusive).
7339 This is a vector of length 256.
7340 If Nth element is non-nil, the existence of code N in a file
7341 \(or output of subprocess) doesn't prevent it to be detected as
7342 a coding system of ISO 2022 variant which has a flag
7343 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
7344 or reading output of a subprocess.
7345 Only 128th through 159th elements has a meaning. */);
7346 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
7347
7348 DEFVAR_LISP ("select-safe-coding-system-function",
7349 &Vselect_safe_coding_system_function,
7350 doc: /* Function to call to select safe coding system for encoding a text.
7351
7352 If set, this function is called to force a user to select a proper
7353 coding system which can encode the text in the case that a default
7354 coding system used in each operation can't encode the text.
7355
7356 The default value is `select-safe-coding-system' (which see). */);
7357 Vselect_safe_coding_system_function = Qnil;
7358
7359 DEFVAR_LISP ("char-coding-system-table", &Vchar_coding_system_table,
7360 doc: /* Char-table containing safe coding systems of each characters.
7361 Each element doesn't include such generic coding systems that can
7362 encode any characters. They are in the first extra slot. */);
7363 Vchar_coding_system_table = Fmake_char_table (Qchar_coding_system, Qnil);
7364
7365 DEFVAR_BOOL ("inhibit-iso-escape-detection",
7366 &inhibit_iso_escape_detection,
7367 doc: /* If non-nil, Emacs ignores ISO2022's escape sequence on code detection.
7368
7369 By default, on reading a file, Emacs tries to detect how the text is
7370 encoded. This code detection is sensitive to escape sequences. If
7371 the sequence is valid as ISO2022, the code is determined as one of
7372 the ISO2022 encodings, and the file is decoded by the corresponding
7373 coding system (e.g. `iso-2022-7bit').
7374
7375 However, there may be a case that you want to read escape sequences in
7376 a file as is. In such a case, you can set this variable to non-nil.
7377 Then, as the code detection ignores any escape sequences, no file is
7378 detected as encoded in some ISO2022 encoding. The result is that all
7379 escape sequences become visible in a buffer.
7380
7381 The default value is nil, and it is strongly recommended not to change
7382 it. That is because many Emacs Lisp source files that contain
7383 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
7384 in Emacs's distribution, and they won't be decoded correctly on
7385 reading if you suppress escape sequence detection.
7386
7387 The other way to read escape sequences in a file without decoding is
7388 to explicitly specify some coding system that doesn't use ISO2022's
7389 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
7390 inhibit_iso_escape_detection = 0;
7391 }
7392
7393 char *
7394 emacs_strerror (error_number)
7395 int error_number;
7396 {
7397 char *str;
7398
7399 synchronize_system_messages_locale ();
7400 str = strerror (error_number);
7401
7402 if (! NILP (Vlocale_coding_system))
7403 {
7404 Lisp_Object dec = code_convert_string_norecord (build_string (str),
7405 Vlocale_coding_system,
7406 0);
7407 str = (char *) XSTRING (dec)->data;
7408 }
7409
7410 return str;
7411 }
7412
7413 #endif /* emacs */
7414